Sample records for flat upper surface

  1. Super free fall for a container composed of diverging flat plates

    NASA Astrophysics Data System (ADS)

    Medina, A.; Torres, A.; Peralta, S.; Weidman, P. D.

    2010-11-01

    We have analyzed experimentally and theoretically the characteristics of the upper free surface of a liquid column released from rest in a vertical container whose cross-section opens slowly in the downward direction. In distinction with the work of Villermaux and Pomeau (2010) for a conical container, we consider a container composed of slightly inclined flat surfaces. At small times for which viscous effects can be neglected, the free surface moves downward with an acceleration larger than gravity. The existence of a nipple centered on the upper free surface with amplitude an increasing function of time is observed. A one-dimensional model of the initial acceleration for flat, slightly expanding walls reproduces the observed super free fall experiments fairly well. Details of the nipple development will be presented.

  2. Apparatus for testing skin samples or the like

    DOEpatents

    Holland, J.M.

    1982-08-31

    An apparatus for testing the permeability of living skin samples has a flat base with a plurality of sample-holding cavities formed in its upper surface, the samples being placed in counterbores in the cavities with the epidermis uppermost. O-rings of Teflon washers are respectively placed on the samples and a flat cover is connected to the base to press the rings against the upper surfaces of the samples. Media to maintain tissue viability and recovery of metabolites is introduced into the lower portion of the sample-holding cavities through passages in the base. Test materials are introduced through holes in the cover plate after assembly of the chamber.

  3. Fluctuating pressures in flow fields of jets

    NASA Technical Reports Server (NTRS)

    Schroeder, J. C.; Haviland, J. K.

    1976-01-01

    The powered lift configurations under present development for STOL aircraft are the externally blown flap (EBF), involving direct jet impingement on the aircraft flaps, and the upper surface blown (USB), where the jet flow is attached on the upper surface of the wing and directed downwards. Towards the goal of developing scaling laws to predict unsteady loads imposed on the structural components of these STOL aircraft from small model tests, the near field fluctuating pressure behavior for the simplified cases of a round free cold jet and the same jet impinging on a flat plate was investigated. Examples are given of coherences, phase lags (giving convection velocities), and overall fluctuating pressure levels measured. The fluctuating pressure levels measured on the flat plate are compared to surface fluctuating pressure levels measured on full-scale powered-lift configuration models.

  4. The crust and uppermost mantle structure in Southern Peru from ambient noise and earthquake surface wave analysis

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Clayton, R. W.

    2012-12-01

    We determine the Vs structure to a depth of 140 km of Southern Peru, where the subducted Nazca slab changes from normal to flat subduction. The data are from a box-like array that is approximately 300 km on a side, and with 150 stations in total. The structure is inverted from surface wave dispersion curves measured between 5 s to 23 s period from ambient noise cross-correlations, and between 25 s to 69 s from earthquake two-plane-wave analysis. From the map views of different depths, we observe that: (1) The forearc region is characterized by shallow crustal thickness and higher crustal velocity compared with the backarc. (2) The upper-crust velocity in the backarc above normal subduction (3.0-3.2 km/s) is lower compared with that above flat subduction region (3.2-3.4 km/s). The low velocity coincides with the deep sediments above the Altiplano plateau. (3) The transition from the normal to flat subduction is characterized by a comparatively lower upper-mid crust velocity (3.2-3.4 km/s). The lower velocity zone also coincides with the highest topography (>4700 m) in the study area. (4) The mantle wedge velocity above the flat subduction (4.6-4.9 km/s) is higher than the surrounding mantle and the mantle above the normal subduction region (4.3-4.5 km/s). We deduce that the upper-mid crust above the transition of the slab geometry is probably more felsic, which can be due to the old volcanic activity during the normal-flat transition, and thus can more easily accommodate the crustal shortening. The lack of present volcanism above the flat subduction, however, could be explained by the high velocity anomaly related to the flat slab. It may indicate a cold environment, and thus the lack of mantle melting.

  5. An Experimental Investigation of Helicopter Rotor Hub Fairing Drag Characteristics

    NASA Technical Reports Server (NTRS)

    Sung, D. Y.; Lance, M. B.; Young, L. A.; Stroub, R. H.

    1989-01-01

    A study was done in the NASA 14- by 22-Foot Wind Tunnel at Langley Research Center on the parasite drag of different helicopter rotor hub fairings and pylons. Parametric studies of hub-fairing camber and diameter were conducted. The effect of hub fairing/pylon clearance on hub fairing/pylon mutual interference drag was examined in detail. Force and moment data are presented in tabular and graphical forms. The results indicate that hub fairings with a circular-arc upper surface and a flat lower surface yield maximum hub drag reduction; and clearance between the hub fairing and pylon induces high mutual-interference drag and diminishes the drag-reduction benefit obtained using a hub fairing with a flat lower surface. Test data show that symmetrical hub fairings with circular-arc surfaces generate 74 percent more interference drag than do cambered hub fairings with flat lower surfaces, at moderate negative angle of attack.

  6. Transport processes in intertidal sand flats

    NASA Astrophysics Data System (ADS)

    Wu, Christy

    2010-05-01

    Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.

  7. Quantum group symmetry of the quantum Hall effect on non-flat surfaces

    NASA Astrophysics Data System (ADS)

    Alimohammadi, M.; Shafei Deh Abad, A.

    1996-02-01

    After showing that the magnetic translation operators are not the symmetries of the quantum Hall effect (QHE) on non-flat surfaces, we show that another set of operators which leads to the quantum group symmetries for some of these surfaces exists. As a first example we show that the su(2) symmetry of the QHE on a sphere leads to 0305-4470/29/3/010/img6(2) algebra in the equator. We explain this result by a contraction of su(2). Second, with the help of the symmetry operators of QHE on the Poincaré upper half plane, we will show that the ground-state wavefunctions form a representation of the 0305-4470/29/3/010/img6(2) algebra.

  8. Full-Field Strain Behavior of Friction Stir-Welded Titanium Alloy

    DTIC Science & Technology

    2008-01-01

    and slag formed on the upper weld surface by the FSW process and the remnant laser weld bead on the underside of the FSW surface were removed from...using 3M brand ‘Super 77’ spray adhesive and then hand sanding against a mechanically flat ceramic backing surface using silicon 32 carbide...weld surface using Loctite brand “5-minute Epoxy” and allowing to cure. Following the required cure period, the aluminum grating glass backing was

  9. Rugged Iris Mechanism

    NASA Technical Reports Server (NTRS)

    Ferragut, Nelson J.

    2005-01-01

    A rugged iris mechanism has been designed to satisfy several special requirements, including a wide aperture in the "open" position, full obscuration in the "closed" position, ability to function in a cryogenic or other harsh environment, and minimization of friction through minimization of the number of components. An important element of the low-friction aspect of the design is maximization of the flatness of, and provision of small gaps between, adjacent iris blades. The tolerances of the design can be very loose, accommodating thermal expansions and contractions associated with large temperature excursions. The design is generic in that it is adaptable to a wide range of aperture sizes and can be implemented in a variety of materials to suit the thermal, optical, and mechanical requirements of various applications. The mechanism (see figure) includes an inner flat ring, an outer flat ring, and an even number of iris blades. The iris blades shown in front in the figure are denoted as "upper," and the iris blades shown partly hidden behind the front ones are denoted as "lower." Each iris blade is attached to the inner ring by a pivot assembly and to the outer ring by a roller/slider assembly. The upper and lower rings are co-centered and are kept in sliding contact. The iris is opened or closed by turning the outer ring around the center while holding the inner ring stationary. The mechanism is enclosed in a housing (not shown in the figure) that comprises an upper and a lower housing shell. The housing provides part of the sliding support for the outer ring and keeps the two rings aligned as described above. The aforementioned pivot assemblies at the inner ring also serve as spacers for the housing. The lower housing shell contains part of the lower sliding surface and features for mounting the overall mechanism and housing assembly. The upper housing shell contains part of the upper sliding surface.

  10. Tests of Round and Flat Spoilers on a Tapered Wing in the NACA 19-Foot Pressure Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J; Bowen, John D

    1941-01-01

    Several arrangements of round and flat spanwise spoilers attached to the upper surface of a tapered wing were tested in the NACA 19-foot pressure wind tunnel to determine the most effective type, location, and size of spoiler necessary to reduce greatly the lift on the wings of large flying boats when moored. The effect of the various spoilers on the lift, the drag, and the pitching-moment characteristics of the tapered wing was measured over a range of angles of attack from zero to maximum lift. The most effective type of spoiler was found to be the flat type with no space between it and the wing surface. The chordwise location of such a spoiler was not critical within the range investigated, from 5 to 20 percent of the wing chord from the leading edge.

  11. Shear Wave Velocities in the Pampean Flat Slab Region from Rayleigh Wave Tomography: Implications for Crustal Composition and Upper Mantle Hydration

    NASA Astrophysics Data System (ADS)

    Porter, R. C.; Gilbert, H. J.; Zandt, G.; Beck, S. L.; Warren, L. M.; Calkins, J. A.; Alvarado, P. M.; Anderson, M. L.

    2011-12-01

    The Pampean flat slab region, located in Chile and western Argentina between 29° and 34° S, is characterized by the subducting Nazca plate assuming a sub-horizontal geometry for ~300 km laterally before resuming a more "normal" angle of subduction. The onset of flat slab subduction is associated with the cessation of regional arc related volcanism and the migration of deformation inboard from the high Andes into the thin-skinned Precordillera and thick-skinned Sierras Pampeanas. Developing a better understanding of this region's geology is of particular importance, as it is an ideal area to study flat slab subduction and serves as a modern analogue to Laramide flat slab subduction in the western US. To study the crustal and mantle structure in the region, we combine ambient noise tomography and ballistic surface wave tomography to produce a regional 3D shear wave velocity model that encompasses flat slab subduction in the north and normal subduction geometry in the south, allowing for a comparison of the two. Results from this work show that shear velocities within the upper crust are largely determined by composition, with sedimentary basins and areas with active volcanism exhibiting slower velocities than basement cored uplifts and other bedrock exposures. Though surface waves are not particularly sensitive to the depth of sharp velocity contrasts, we observe an eastward increase in shear velocity at depth that correlates with an eastward decrease in crustal thickness. In both the slab and overlying mantle, we observe significant variations in shear wave velocity. North of 32° S, where flat slab subduction is occurring, the Nazca plate contains low-velocity zones (LVZs) beneath the high Andes and Precordillera that are not present in the east beneath the Sierras Pampeanas. An opposite transition is observed in the overlying mantle, which changes from fast in the west to slow in the east. Both of these observations are consistent with an initially hydrated slab dehydrating and releasing water into the overlying mantle. Within this region we also observe a LVZ immediately above the slab as the subduction angle steepens. This zone potentially represents asthenosphere or hydrated lithospheric mantle. South of 32° S, where subduction is occurring at a more normal angle, the slab is visible as a high-velocity body with a low-velocity mantle wedge present beneath the arc and back arc. The variations in slab and upper mantle shear velocities are consistent with a hydrated flat slab and the presence of a LVZ above the flat slab as it steepens suggests that water is being transported to a significant depth or that an asthenospheric wedge is present between the slab and cratonic lithosphere.

  12. Split spline screw

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1993-01-01

    A split spline screw type payload fastener assembly, including three identical male and female type split spline sections, is discussed. The male spline sections are formed on the head of a male type spline driver. Each of the split male type spline sections has an outwardly projecting load baring segment including a convex upper surface which is adapted to engage a complementary concave surface of a female spline receptor in the form of a hollow bolt head. Additionally, the male spline section also includes a horizontal spline releasing segment and a spline tightening segment below each load bearing segment. The spline tightening segment consists of a vertical web of constant thickness. The web has at least one flat vertical wall surface which is designed to contact a generally flat vertically extending wall surface tab of the bolt head. Mutual interlocking and unlocking of the male and female splines results upon clockwise and counter clockwise turning of the driver element.

  13. Design and Fabrication of Quadrupole Ion Mass Spectrometer for Upper Atmosphere.

    DTIC Science & Technology

    1981-09-30

    34 diameter con-flat flange were T.I.G. welded to the end of each of three bowls. All bowls were then electro- polished, cleaned and sent out to have...plated surface was .0001" to .0002" thick. After gold plating, the hemispheres were mated and T.I.G. welded to form a sphere with a con-flat flange at...Valve Rotatable Conflat to fit k" Swage Lock Weld Adaptors. 5 2 3/4" Conflat Flanges machined to fit Swage Lock unions. 12 10-24 x 2 " Brass Screws necket

  14. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  15. Effect of punch tip geometry and embossment on the punch tip adherence of a model ibuprofen formulation.

    PubMed

    Roberts, Matthew; Ford, James L; MacLeod, Graeme S; Fell, John T; Smith, George W; Rowe, Philip H; Dyas, A Mark

    2004-07-01

    The sticking of a model ibuprofen-lactose formulation with respect to compaction force, punch tip geometry and punch tip embossment was assessed. Compaction was performed at 10, 25 or 40 kN using an instrumented single-punch tablet press. Three sets of 'normal' concave punches were used to evaluate the influence of punch curvature and diameter. The punches were 10, 11 and 12 mm in diameter, respectively. The 10-mm punch was embossed with a letter 'A' logo to assess the influence of an embossment on sticking. Flat-faced punches (12.5 mm) were used for comparison with the concave tooling. Surface profiles (Taylor Hobson Talysurf 120) of the upper punch faces were obtained to evaluate the surface quality of the tooling used. Following compaction, ibuprofen attached to the upper punch face was quantified by spectroscopy. Increasing punch curvature from flat-faced punches to concave decreased sticking. Altering punch diameter of the concave punches had no effect on sticking when expressed as microg mm(-2). The embossed letter 'A' logo increased sticking considerably owing to the probable concentration of shear stresses at the lateral faces of the embossed logo.

  16. Numerical Investigation of the Residual Stress Distribution of Flat-Faced and Convexly Curved Tablets Using the Finite Element Method.

    PubMed

    Otoguro, Saori; Hayashi, Yoshihiro; Miura, Takahiro; Uehara, Naoto; Utsumi, Shunichi; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2015-01-01

    The stress distribution of tablets after compression was simulated using a finite element method, where the powder was defined by the Drucker-Prager cap model. The effect of tablet shape, identified by the surface curvature, on the residual stress distribution was investigated. In flat-faced tablets, weak positive shear stress remained from the top and bottom die walls toward the center of the tablet. In the case of the convexly curved tablet, strong positive shear stress remained on the upper side and in the intermediate part between the die wall and the center of the tablet. In the case of x-axial stress, negative values were observed for all tablets, suggesting that the x-axial force always acts from the die wall toward the center of the tablet. In the flat tablet, negative x-axial stress remained from the upper edge to the center bottom. The x-axial stress distribution differed between the flat and convexly curved tablets. Weak stress remained in the y-axial direction of the flat tablet, whereas an upward force remained at the center of the convexly curved tablet. By employing multiple linear regression analysis, the mechanical properties of the tablets were predicted accurately as functions of their residual stress distribution. However, the multiple linear regression prediction of the dissolution parameters of acetaminophen, used here as a model drug, was limited, suggesting that the dissolution of active ingredients is not a simple process; further investigation is needed to enable accurate predictions of dissolution parameters.

  17. Device for reducing vehicle aerodynamic resistance

    DOEpatents

    Graham, Sean C.

    2006-03-07

    A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular flat front face comprising a plurality of load bearing struts of a predetermined size attached to the flat front face adjacent the sides and top thereof, a pair of pliable opposing flat sheets having an outside edge portion attached to the flat front face adjacent the sides thereof and an upper edge with a predetermined curve; the opposing flat sheets being bent and attached to the struts to form effective curved airfoil shapes, and a top pliable flat sheet disposed adjacent the top of the flat front face and having predetermined curved side edges, which, when the top sheet is bent and attached to the struts to form an effective curved airfoil shape, mate with the curved upper edges of the opposing sheets to complete the aerodynamic device.

  18. Growth behavior of surface cracks in the circumferential plane of solid and hollow cylinders

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Shivakumar, V.

    1986-01-01

    Experiments were conducted to study the growth behavior of surface fatigue cracks in the circumferential plane of solid and hollow cylinders. In the solid cylinders, the fatigue cracks were found to have a circular arc crack front with specific upper and lower limits to the arc radius. In the hollow cylinders, the fatigue cracks were found to agree accurately with the shape of a transformed semiellipse. A modification to the usual nondimensionalization expression used for surface flaws in flat plates was found to give correct trends for the hollow cylinder problem.

  19. Inertia effects in thin film flow with a corrugated boundary

    NASA Technical Reports Server (NTRS)

    Serbetci, Ilter; Tichy, John A.

    1991-01-01

    An analytical solution is presented for two-dimensional, incompressible film flow between a sinusoidally grooved (or rough) surface and a flat-surface. The upper grooved surface is stationary whereas the lower, smooth surface moves with a constant speed. The Navier-Stokes equations were solved employing both mapping techniques and perturbation expansions. Due to the inclusion of the inertia effects, a different pressure distribution is obtained than predicted by the classical lubrication theory. In particular, the amplitude of the pressure distribution of the classical lubrication theory is found to be in error by over 100 perent (for modified Reynolds number of 3-4).

  20. An exact solution for effects of topography on free Rayleigh waves

    USGS Publications Warehouse

    Savage, W.Z.

    2004-01-01

    An exact solution for the effects of topography on Rayleigh wave amplification is presented. The solution is obtained by incorporating conformal mapping into complex-variable stress functions developed for free Rayleigh wave propagation in an elastic half-space with a flat upper surface. Results are presented for free Rayleigh wave propagation across isolated symmetric ridges and valleys. It is found for wavelengths that are comparable to ridge widths that horizontal Rayleigh wave amplitudes are amplified at ridge crests and that vertical amplitudes are strongly reduced near ridge crests relative to horizontal and vertical amplitudes of free Rayleigh waves in the flat case. Horizontal amplitudes are strongly deamplified at valley bottoms relative to those for the flat case for Rayleigh wavelengths comparable to valley widths. Wave amplitudes in the symmetric ridges and valleys asymptotically approach those for the flat case with increased wavelengths, increased ridge and valley widths, and with horizontal distance from and depth below the isolated ridges and valleys. Also, prograde particle motion is predicted near crests of narrow ridges and near the bottoms of narrow valleys. Finally, application of the theory at two sites known for topographic wave amplification gives a predicted surface wave amplification ratio of 3.80 at the ridge center for a frequency of 1.0 Hz at Robinwood Ridge in northern California and a predicted surface wave amplification ratio of 1.67 at the ridge center for the same frequency at the Cedar Hill Nursery site at Tarzana in southern California.

  1. Coral Microatolls and Their Role as Fixed Biological Indicators of Holocene Sea-Level Changes

    NASA Astrophysics Data System (ADS)

    Woodroffe, C. D.; Smithers, S. G.; McGregor, H. V.

    2008-12-01

    Corals microatolls are individual colonies of massive coral that have grown up to a level at which further upward growth is constrained by exposure at low tide, and which then continue to grow outwards, resulting in a flat-topped discoid morphology. Typically, microatolls comprise a single colony of massive Porites up to several metres in diameter. Modern microatolls are living on their outer margin but are predominantly dead on their upper surface. Microatolls are fixed biological sea-level indicators of the former upper limits to coral growth providing information on sea level at several temporal scales. Fossil microatolls have been used extensively to reconstruct broad patterns of Holocene sea-level trends in the Indo-Pacific reef province. Where they are preserved at a height above that of their living counterparts in the eastern Indian Ocean, Southeast Asia, northern Australia, and across much of the equatorial Pacific Ocean, they indicate that reef flats have experienced relatively higher sea levels in the mid- and late Holocene. Progressively lower corals have been interpreted to record the fall in sea level to its present position over millennial time scales. Large specimens of microatolls can reach several metres in diameter and contain a growth record of tens to hundreds of years; the upper surfaces of these can be used to track the pattern of sea-level variation over several decades. In this paper we explore the potential for using concentric annuli and subtle undulations preserved on microatoll upper surfaces to interpret sea-level changes over decadal to millennial time scales. We demonstrate that in the central Pacific modern microatolls preserve a surface morphology that reflects oscillations of sea level associated with El Niño. We evaluate the extent to which similar fluctuations may be recorded in the morphology of Indian Ocean microatolls, and the circumstances which promote the preservation of these morphological records of sea-level change over longer time scales. We discuss the potential to reconstruct extended records of sea-level change by using geochemical signatures preserved within microatoll skeletons to improve cross-correlations between colonies, and assess the precision with which sea level can be inferred.

  2. Upper flow regime sheets, lenses and scour fills: Extending the range of architectural elements for fluvial sediment bodies

    NASA Astrophysics Data System (ADS)

    Fielding, Christopher R.

    2006-08-01

    Fluvial strata dominated internally by sedimentary structures of interpreted upper flow regime origin are moderately common in the rock record, yet their abundance is not appreciated and many examples may go unnoticed. A spectrum of sedimentary structures is recognised, all of which occur over a wide range of scale: 1. cross-bedding with humpback, sigmoidal and ultimately low-angle cross-sectional foreset geometries (interpreted as recording the transition from dune to upper plane bed bedform stability field), 2. planar/flat lamination with parting lineation, characteristic of the upper plane bed phase, 3. flat and low-angle lamination with minor convex-upward elements, characteristic of the transition from upper plane bed to antidune stability fields, 4. convex-upward bedforms, down- and up-palaeocurrent-dipping, low-angle cross-bedding and symmetrical drapes, interpreted as the product of antidunes, and 5. backsets terminating updip against an upstream-dipping erosion surface, interpreted as recording chute and pool conditions. In some fluvial successions, the entirety or substantial portions of channel sandstone bodies may be made up of such structures. These Upper Flow Regime Sheets, Lenses and Scour Fills (UFR) are defined herein as an extension of Miall's [Miall, A.D., 1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Sci. Rev. 22: 261-308.] Laminated Sand Sheets architectural element. Given the conditions that favour preservation of upper flow regime structures (rapid changes in flow strength), it is suggested that the presence of UFR elements in ancient fluvial successions may indicate sediment accumulation under the influence of a strongly seasonal palaeoclimate that involves a pronounced seasonal peak in precipitation and runoff.

  3. Preliminary hydrogeologic investigation of the Maxey Flats radioactive waste burial site, Fleming County, Kentucky

    USGS Publications Warehouse

    Zehner, Harold H.

    1979-01-01

    Burial trenches at the Maxey Flats radioactive waste burial site , Fleming County, Ky., cover an area of about 0.03 square mile, and are located on a plateau, about 300 to 400 feet above surrounding valleys. Although surface-water characteristics are known, little information is available regarding the ground-water hydrology of the Maxey Flats area. If transport of radionuclides from the burial site were to occur, water would probably be the principal mechanism of transport by natural means. Most base flow in streams around the burial site is from valley alluvium, and from the mantle of regolith, colluvium, and soil partially covering adjacent hills. Very little base flow is due to ground-water flow from bedrock. Most water in springs is from the mantle, rather than from bedrock. Rock units underlying the Maxey Flats area are, in descending order, the Nancy and Farmers Members of the Borden Formation, Sunbury, Bedford, and Ohio Shales, and upper part of the Crab Orchard Formation. These units are mostly shales, except for the Farmers Member, which is mostly sandstone. Total thickness of the rocks is about 320 feet. All radioactive wastes are buried in the Nancy Member. Most ground-water movement in bedrock probably occurs in fractures. The ground-water system at Maxey Flats is probably unconfined, and recharge occurs by (a) infiltration of rainfall into the mantle, and (b) vertical, unsaturated flow from the saturated regolith on hilltops to saturated zones in the Farmers Member and Ohio Shale. Data are insufficient to determine if saturated zones exist in other rock units. The upper part of the Crab Orchard Formation is probably a hydrologic boundary, with little ground-water flow through the formation. (USGS)

  4. Matrix Synthesis of Graphene on a Diamond Surface and Its Simulation

    NASA Astrophysics Data System (ADS)

    Alekseev, N. I.

    2018-07-01

    A quantum-chemical simulation is performed for the transformation of the upper sublayer of carbon atoms in the lattice of single-crystal diamond into a flat graphene lattice under the influence of the atoms of a molten copper film on the diamond surface. It is established that the stable system configuration corresponds to the thermally activated motion of carbon atoms in the lower sublayer of the interface diamond layer to the position of graphene, i.e., at the same level as the atoms of the upper sublayer. The energy gain in comparison to the noninteracting subsystems of the copper and diamond atoms is approximately 0.7 eV per atom of the lower sublayer. The maximum size of the resulting graphene film is estimated and a possible mechanism for its rupture is considered.

  5. Long-term effects of surface coal mining on ground-water levels and quality in two small watersheds in eastern Ohio

    USGS Publications Warehouse

    Cunningham, W.L.; Jones, R.L.

    1990-01-01

    Two small watersheds in eastern Ohio that were surface mined for coal and reclaimed were studied during 1986-89. Water-level and water-quality data were compared with similar data collected during previous investigations conducted during 1976-83 to determine long-term effects of surface mining on the hydrologic system. Before mining, the watersheds were characterized by sequences of flat-lying sedimentary rocks containing two major coal seams and underclays. An aquifer was present above each of the underclays. Surface mining removed the upper aquifer, stripped the coal seam, and replaced the sediment. This created a new upper aquifer with different hydraulic and chemical characteristics. Mining did not disturb the middle aquifer. A third, deeper aquifer in each watershed was not studied. Water levels were continuously recorded in one well in each aquifer. Other wells were measured every 2 months. Water levels in the upper aquifers reached hydraulic equilibrium from 2 to 5 years after mining ceased. Water levels in the middle aquifers increased more than 5 feet during mining and reached equilibrium almost immediately thereafter. Water samples were collected from three upper-aquifer well, a seep from the upper aquifer, and the stream in each watershed. Two samples were collected in 1986 and 1987, and one each in 1988 and 1989. In both watersheds, sulfate replaced bicarbonate as the dominant upper-aquifer and surface-water anion after mining. For the upper aquifer of a watershed located in Muskingum County, water-quality data were grouped into premining and late postmining time periods (1986-89). The premining median pH and concentration of dissolved solids and sulfate were 7.6, 378 mg/L (milligrams per liter), and 41 mg/L, respectively. The premining median concentrations of iron and manganese were 10? /L (micrograms per liter) and 25?, respectively. The postmining median values of pH, dissolved solids, and sulfate were 6.7, 1,150 mg/L, and 560 mg/L, respectively. The postmining median concentrations of iron and manganese were 3,900?g/L and 1,900? g/L, respectively. For the upper aquifer of a watershed located in Jefferson County, the water-quality data were grouped into three time periods of premining, early postmining, and late postmining. The premining median pH and concentrations of dissolved solids and sulfate were 7.0, 335 mg/L, and 85 mg/L, respectively. The premining median concentrations of iron and manganese were 30? g/L for each constituent. Late postmining median pH and concentrations of dissolved solids and sulfate were 6.7, 1,495 mg/L, and 825 mg/L, respectively. The postmining median concentrations of iron and manganese were 31? g/L and 1,015? g/L, respectively. Chemistry of water in the middle aquifer in each watershed underwent similar changes. In general, statistically significant increases in concentrations of dissolved constituents occurred because of surface mining. In some constituents, concentrations increased by more than an order of magnitude. The continued decrease in pH indicated that ground water had no reached geochemical equilibrium in either watershed more than 8 years after mining.

  6. Packaging Of Control Circuits In A Robot Arm

    NASA Technical Reports Server (NTRS)

    Kast, William

    1994-01-01

    Packaging system houses and connects control circuitry mounted on circuit boards within shoulder, upper section, and lower section of seven-degree-of-freedom robot arm. Has modular design that incorporates surface-mount technology, multilayer circuit boards, large-scale integrated circuits, and multi-layer flat cables between sections for compactness. Three sections of robot arm contain circuit modules in form of stardardized circuit boards. Each module contains two printed-circuit cards, one of each face.

  7. Helicopter hub fairing and pylon interference drag

    NASA Technical Reports Server (NTRS)

    Graham, D. R.; Sung, D. Y.; Young, L. A.; Louie, A. W.; Stroub, R. H.

    1989-01-01

    A wind tunnel test was conducted to study the aerodynamics of helicopter hub and pylon fairings. The test was conducted in the 7-by 10 Foot Subsonic Wind Tunnel (Number 2) at Ames Research Center using a 1/5-scale XH-59A fuselage model. The primary focus of the test was on the rotor hub fairing and pylon mutual interference drag. Parametric studies of pylon and hub fairing geometry were also conducted. This report presents the major findings of the test as well as tabulated force and moment data, flow visualization photographs, and graphical presentations of the drag data. The test results indicate that substantial drag reduction can be attained through the use of a cambered hub fairing with circular arc upper surface and flat lower surface. Furthermore, a considerable portion of the overall drag reduction is attributed to the reduction in the hub-on-pylon interference drag. It is also observed that the lower surface curvature of the fairing has a strong influence on the hub fairing and on pylon interference drag. However, the drag reduction benefit that was obtained by using the cambered hub fairing with a flat lower surface was adversely affected by the clearance between the hub fairing and the pylon.

  8. Assembling and compressing a semifluorinated alkane monolayer on a hydrophobic surface: Structural and dielectric properties

    NASA Astrophysics Data System (ADS)

    El Abed, Abdel I.; Ionov, Radoslav; Daoud, Mohamed; Abillon, Olivier

    2004-11-01

    We investigate the dynamic behavior upon lateral compression of a semifluorinated alkane F(CF2)8(CH2)18H (denoted F8H18 ), spread on the hydrophobic top of a suitable amphiphilic monolayer: namely, a natural α -helix alamethicin peptide (alam). We show, in particular, the formation of an asymmetric flat bilayer by compressing at the air-water interface a mixed Langmuir film made of F8H18 and alam. The particular chemical structure of F8H18 , the suitable structure of the underlying alam monolayer and its collapse properties, allow for a continuous compression of the upper F8H18 monolayer while the density of the lower alam monolayer remains constant. Combining grazing incidence x-ray reflectivity, surface potential, and atomic force microscopy data allow for the determination of the orientation and dielectric constant of the upper F8H18 monolayer.

  9. Surface phase separation, dewetting feature size, and crystal morphology in thin films of polystyrene/poly(ε-caprolactone) blend.

    PubMed

    Ma, Meng; He, Zhoukun; Li, Yuhan; Chen, Feng; Wang, Ke; Zhang, Qing; Deng, Hua; Fu, Qiang

    2012-12-01

    Thin films of polystyrene (PS)/poly(ε-caprolactone) (PCL) blends were prepared by spin-coating and characterized by tapping mode force microscopy (AFM). Effects of the relative concentration of PS in polymer solution on the surface phase separation and dewetting feature size of the blend films were systematically studied. Due to the coupling of phase separation, dewetting, and crystallization of the blend films with the evaporation of solvent during spin-coating, different size of PS islands decorated with various PCL crystal structures including spherulite-like, flat-on individual lamellae, and flat-on dendritic crystal were obtained in the blend films by changing the film composition. The average distance of PS islands was shown to increase with the relative concentration of PS in casting solution. For a given ratio of PS/PCL, the feature size of PS appeared to increase linearly with the square of PS concentration while the PCL concentration only determined the crystal morphology of the blend films with no influence on the upper PS domain features. This is explained in terms of vertical phase separation and spinodal dewetting of the PS rich layer from the underlying PCL rich layer, leading to the upper PS dewetting process and the underlying PCL crystalline process to be mutually independent. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Structural and electric properties of two semifluorinated alkane monolayers compressed on top of a controlled hydrophobic monolayer substrate

    NASA Astrophysics Data System (ADS)

    El Abed, Abdel-Illah; Ionov, Radoslav; Goldmann, Michel

    2007-10-01

    We investigate the dynamic behavior upon lateral compression of two mixed films made with one of the two semifluorinated alkanes F(CF2)8(CH2)18H and F(CF2)10(CH2)10H and the natural α -helix alamethicin peptide. Surface pressure, surface potential versus molecular area isotherms, and grazing-incidence x-ray diffraction were applied to characterize this system. We show that both mixed films demix vertically to form two asymmetric flat bilayers where the lower layer is made of alamethicin and the upper layer is made of semifluorinated molecules. The structure matching of the semifluorinated alkanes (where the hydrophilic group is missing) with a suitable organization of the underlying alamethicin monolayer allows for a continuous compression of the upper semifluorinated layers while the density of the lower alamethicin monolayer remains constant. Comparing data of the two studied mixed films enables us to evaluate the effect of chain length on the in-plane organization of the molecules and on the electric properties of the upper layers.

  11. Deep and shallow forms of the sulcus for extensor carpi ulnaris.

    PubMed

    Nakashima, T; Hojo, T; Furukawa, H

    1993-12-01

    Anatomical variations in the sulcus for the tendon of extensor carpi ulnaris were studied in 240 upper limbs. The sulcus lies between the head and the styloid process on the dorsal surface of the distal end of the ulna. This groove has deep and shallow forms and, rarely, a flat form. The sulcus was classified into 4 grades according to its depth. Grade I, a deep sulcus, was found in 51.3%. Grades II and III are shallow, but the styloid process in grade II is more prominent than in grade III. The former was found in 28.8%, the latter in 14.2%. Grade IV is a flat form. This was rare and found only in 1.3%. This variation was not age-related, but was a congenital feature.

  12. Unusual seismogenic soft-sediment deformation structures in Cambrian epicratonic carbonate deposits, western Colorado, U.S.A

    NASA Astrophysics Data System (ADS)

    Myrow, P.; Chen, J.

    2013-12-01

    A wide variety of unusual penecontemporaneous deformation structures exist in grainstone and flat-pebble conglomerate beds of the Upper Cambrian strata, western Colorado, including slide scarps, thrusted beds, irregular blocks and internally deformed beds. Slide scarps are characterized by concave-up, sharp surfaces that truncate one or more underlying beds. Thrusted beds record movement of a part of a bed onto itself along a moderate to steeply inclined (generally 25°-40°) ramp. The hanging wall lenses in cases show fault-bend geometries, with either intact or mildly deformed bedding. Irregular bedded to internally deformed blocks isolated on generally flat upper bedding surfaces are similar in composition to the underlying beds. These features represent parts of beds that were detached, moved up onto, and some distances across, the laterally adjacent undisturbed bed surfaces. The blocks moved either at the sediment-water interface or intrastratally at shallow depths within overlying muddy deposits. Finally, internally deformed beds have large blocks, fitted fabrics of highly irregular fragments, and contorted lamination, which represent heterogeneous deformation, such as brecciation and liquefaction. The various deformation structures were most probably triggered by earthquakes, considering the nature of deformation (regional distribution of liquefaction structures, and the brittle segmentation and subsequent transportation of semi-consolidated beds) and the reactivation of Mesoproterozoic, crustal-scale shear zones in the central Rockies during the Late Cambrian. Features produced by initial brittle deformation are unusual relative to most reported seismites, and may represent poorly recognized to unrecognized seismogenic structures in the rock record.

  13. Floodwaters Renew Zambia's Kafue Wetland

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Not all floods are unwanted. Heavy rainfall in southern Africa between December 2003 and April 2004 provided central Zambia with floodwaters needed to support the diverse uses of water within the Kafue Flats area. The Kafue Flats are home to about one million people and provide a rich inland fishery, habitat for an array of unique wildlife, and the means for hydroelectricity production. The Flats falls between two dams: Upstream to the west (not visible here) is the Izhi-tezhi, and downstream (middle right of the images) is the Kafue Gorge dam. Since the construction of these dams, the flooded area has been reduced and the timing and intensity of the inundation has changed. During June 2004 an agreement was made with the hydroelectricity company to restore water releases from the dams according to a more natural flooding regime. These images from NASA's Multi-angle Imaging SpectroRadiometer (MISR) illustrate surface changes to the wetlands and other surfaces in central Zambia resulting from an unusually lengthy wet season. The Kafue Flats appear relatively dry on July 19, 2003 (upper images), with the Kafue River visible as a slender dark line that snakes from east to west on its way to join the Zambezi (visible in the lower right-hand corner). On July 21, 2004 (lower images), well into the dry season, much of the 6,500-square kilometer area of the Kafue Flats remains inundated. To the east of the Kafue Flats is Lusaka, the Zambian capital, visible as a pale area in the middle right of the picture, north of the river. In the upper portions of these images is the prominent roundish shape of the Lukanga Swamp, another important wetland.

    The images along the left are natural-color views from MISR's nadir camera, and the images along the right are angular composites in which red band data from MISR's 46o forward, nadir, and 46o backward viewing cameras is displayed as red, green and blue, respectively. In order to preserve brightness variations among the various cameras, the data from each camera were processed identically. Here, color changes indicate surface texture, and are influenced by terrain, vegetation structure, soil type and soil moisture content. Wet surfaces or areas with standing water appear blue in this display because sun glitter makes smooth, wet surfaces look brighter at the backward camera's view angle. Mostly the landscape appears somewhat purple, indicating that most of the surfaces scatter sunlight in both backward and forward directions. Areas that appear with a slight greenish hue can indicate sparce vegetation, since the nadir camera is more likely to sight the gaps between the trees or shrubs, and since vegetation is darker (in the red band) than the underlying soil surface. Areas which preferentially exhibit a red or pink hue correspond with wetland vegetation. The plateau of the Kafue National Park, to the west of Lukanga Swamp, appears brighter in 2004 compared with 2003, which indicates weaker absorption at the red band. Overall, the 2004 image exhibits a subtle blue hue (preference for forward-scattering) compared with 2003, which indicates overall surface changes that may be a result of enhanced surface wetness.

    The Multiangle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 19072 and 24421. The panels cover an area of 235 kilometers x 239 kilometers, and utilize data from blocks 100 to 103 within World Reference System-2 path 172.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  14. Sedimentation, bioturbation, and sedimentary fabric evolution on a modern mesotidal mudflat: A multi-tracer study of processes, rates, and scales

    NASA Astrophysics Data System (ADS)

    Bentley, Samuel J.; Swales, Andrew; Pyenson, Benjamin; Dawe, Justin

    2014-03-01

    A study of muddy tidal-flat sedimentation and bioturbation was undertaken in the Waitetuna Arm of Raglan Harbor, New Zealand, to evaluate the physical and biological processes that control cycling of sediment between the intertidal seabed and sediment-water interface, and also the formation of tidal flat sedimentary fabric and fine-scale stratigraphy. Cores were collected along an intertidal transect, and analyzed for sedimentary fabric, 210Pb and 7Be radiochemical distributions, and grain size. At the same locations, a new approach for time-series core-X-radiography study was undertaken (spanning 191 days), using magnetite-rich sand as a tracer for sedimentation and bioturbation processes in shallow tidal flat sediments. Sedimentary fabric consists of a shallow stratified layer overlying a deeper zone of intensely bioturbated shelly mud. Bioadvection mixes the deeper zone and contributes fine sediment to the surface stratified layer, via biodeposition. Physical resuspension and deposition of surface muds by wave and tidal flow are also likely contributors to formation of the surficial stratified layer, but physical stratification is not observed below this depth. The deliberate tracer study allowed calculation of bioadvection rates that control strata formation, and can be used to model diagenetic processes. Results suggest that the upper ˜15 cm of seabed can be fully mixed over timescales <1.75 y. Such mixing will erase pre-existing sedimentary fabric and transport buried sediment and chemical compounds back to the tidal-flat surface. Shallow biodiffusion also exists, but produces much slower and shallower mass transport. Best fits for 210Pb profiles using a diagenetic bioadvection/sedimentation model and independently measured tiered bioadvection rates suggest that sediment accumulation rates (SARs) on the tidal flat are ˜0.25 cm/y, near the low end of contemporary New Zealand muddy intertidal SARs. Frequent deposition and erosion of the surface layer demonstrates that long-term sediment accumulation captures only a small fraction of sediment deposited at any one time. Model results also suggest that our magnetite tracer method may slightly underestimate short-term shallow mixing rates (demonstrated by 7Be profiles), and slightly overestimate longer-term, deeper bioturbation rates (demonstrated by 210Pb profiles).

  15. Investigations of Moon Polar Regions from Luna-Resource and Luna-Glob Landers - Science Instruments and Operational Plan on Surface

    NASA Astrophysics Data System (ADS)

    Tretyakov, V.; Mitrofanov, I.; Litvak, M.; Malakhov, A.; Mokrousov, M.

    2012-04-01

    Scientific goals for Landers of Luna-Resource and Luna-Glob missions will be presented. Both project aimed on search for volatiles and water ice in upper layer of regolith, study structure and content of regolith and investigate of moon's surface exosphere in lunar polar regions. Science devices for payload, which were selected in accordance to the main goals of these missions, will be described. Criteria for potential landing sites selection will be considered: from engineering suitability (flatness and roughness of surface, radio visibility, solar irradiation and so on) and from scientific applicability for these missions. The detailed plan of surface operations during fist moon day will be presented and preliminary plans for sunset and for second and others days will be discussed.

  16. Real-time aerodynamic heating and surface temperature calculations for hypersonic flight simulation

    NASA Technical Reports Server (NTRS)

    Quinn, Robert D.; Gong, Leslie

    1990-01-01

    A real-time heating algorithm was derived and installed on the Ames Research Center Dryden Flight Research Facility real-time flight simulator. This program can calculate two- and three-dimensional stagnation point surface heating rates and surface temperatures. The two-dimensional calculations can be made with or without leading-edge sweep. In addition, upper and lower surface heating rates and surface temperatures for flat plates, wedges, and cones can be calculated. Laminar or turbulent heating can be calculated, with boundary-layer transition made a function of free-stream Reynolds number and free-stream Mach number. Real-time heating rates and surface temperatures calculated for a generic hypersonic vehicle are presented and compared with more exact values computed by a batch aeroheating program. As these comparisons show, the heating algorithm used on the flight simulator calculates surface heating rates and temperatures well within the accuracy required to evaluate flight profiles for acceptable heating trajectories.

  17. Relationship between surface area for adhesion and tensile bond strength--evaluation of a micro-tensile bond test.

    PubMed

    Sano, H; Shono, T; Sonoda, H; Takatsu, T; Ciucchi, B; Carvalho, R; Pashley, D H

    1994-07-01

    The purpose of this study was to test the null hypothesis that there is no relationship between the bonded surface area of dentin and the tensile strength of adhesive materials. The enamel was removed from the occlusal surface of extracted human third molars, and the entire flat surface was covered with resin composite bonded to the dentin to form a flat resin composite crown. Twenty-four hours later, the bonded specimens were sectioned parallel to the long axis of the tooth into 10-20 thin sections whose upper part was composed of resin composite with the lower half being dentin. These small sections were trimmed using a high speed diamond bur into an hourglass shape with the narrowest portion at the bonded interface. Surface area was varied by altering the specimen thickness and width. Tensile bond strength was measured using custom-made grips in a universal testing machine. Tensile bond strength was inversely related to bonded surface area. At surface areas below 0.4 mm2, the tensile bond strengths were about 55 MPa for Clearfil Liner Bond 2 (Kuraray Co., Ltd.), 38 MPa for Scotchbond MP (3M Dental Products), and 20 MPa for Vitremer (3M Dental Products). At these small surface areas all of the bond failures were adhesive in nature. This new method permits measurement of high bond strengths without cohesive failure of dentin. It also permits multiple measurements to be made within a single tooth.

  18. Theoretical investigation of flutter of two-dimensional flat panels with one surface exposed to supersonic potential flow

    NASA Technical Reports Server (NTRS)

    Nelson, Herbert C; Cunningham, Herbert J

    1956-01-01

    A Rayleigh type analysis involving chosen modes of the panel as degrees of freedom is used to treat the flutter of a two-dimensional flat panel supported at its leading and trailing edges and subjected to a middle-plane tensile force. The panel has a supersonic stream passing over its upper surface and still air below. The aerodynamic forces due to the supersonic stream are obtained from the theory for linearized two-dimensional unsteady flow and the forces due to the still air are obtained from acoustical theory. In order to study the effect of increasing the number of modes in the analysis, two and then four modes are employed. The modes used are the first four natural modes of the panel in a vacuum with no tensile force acting. The analysis includes these variables: Mach number, structural damping, tensile force, density of the still air, and edge fixity (clamped and pinned). For certain combinations of these variables, stability boundaries are obtained which can be used to determine the panel thickness required to prevent flutter for any panel material and altitude.

  19. 3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER CONSTRUCTION. THE BASEMENT HOUSES HEATING, VENTILATION, AND AIR CONDITIONING EQUIPMENT AND MECHANICAL UTILITIES, THE UPPER PART OF THE PLUTONIUM STORAGE VAULT AND MAINTENANCE BAY, AND SMALL PLUTONIUM PROCESSING AREAS. THE BASEMENT LEVEL IS DIVIDED INTO NEARLY EQUAL NORTH AND SOUTH PARTS BY THE UPPER PORTION OF THE PLUTONIUM STORAGE VAULT. (10/7/74) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  20. Coprates Chasma

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Mars Orbiter Camera (MOC) image of a 10 km by 12 km area of Coprates Chasma (14.7 degrees S, 55.8 degrees W), a ridge with a flat upper surface in the center of Coprates Chasma, which is part of the 6000-km-long Valles Marineris. Rock layers are visible just below the ridge. The gray scale (4.8 m/pixel) MOC image was combined with a Viking Orbiter color view of the same area. The faults of a graben offset beds on the slope to the left.

    Figure caption from Science Magazine

  1. Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei.

    PubMed

    Tavagnacco, Letizia; Mason, Philip E; Schnupf, Udo; Pitici, Felicia; Zhong, Linghao; Himmel, Michael E; Crowley, Michael; Cesàro, Attilio; Brady, John W

    2011-05-01

    Molecular dynamics simulations were carried out for a system consisting of the carbohydrate-binding module (CBM) of the cellulase CBH I from Trichoderma reesei (Hypocrea jecorina) in a concentrated solution of β-D-glucopyranose, to determine whether there is any tendency for the sugar molecules to bind to the CBM. In spite of the general tendency of glucose to behave as an osmolyte, a marked tendency for the sugar molecules to bind to the protein was observed. However, the glucose molecules tended to bind only to specific sites on the protein. As expected, the hydrophobic face of the sugar molecules, comprising the axial H1, H3, and H5 aliphatic protons, tended to adhere to the flat faces of the three tyrosine side chains on the planar binding surface of the CBM. However, a significant tendency to bind to a groove-like feature on the upper surface of the CBM was also observed. These results would not be inconsistent with a model of the mechanism for this globular domain in which the cellodextrin chain being removed from the surface of crystalline cellulose passes over the upper surface of the CBM, presumably then available for hydrolysis in the active site tunnel of this processive cellulase. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Photometric model of diffuse surfaces described as a distribution of interfaced Lambertian facets.

    PubMed

    Simonot, Lionel

    2009-10-20

    The Lambertian model for diffuse reflection is widely used for the sake of its simplicity. Nevertheless, this model is known to be inaccurate in describing a lot of real-world objects, including those that present a matte surface. To overcome this difficulty, we propose a photometric model where the surfaces are described as a distribution of facets where each facet consists of a flat interface on a Lambertian background. Compared to the Lambertian model, it includes two additional physical parameters: an interface roughness parameter and the ratio between the refractive indices of the background binder and of the upper medium. The Torrance-Sparrow model--distribution of strictly specular facets--and the Oren-Nayar model--distribution of strictly Lambertian facets--appear as special cases.

  3. Three-Dimensional Shear Wave Velocity Structure of the Peru Flat Slab Subduction Segment

    NASA Astrophysics Data System (ADS)

    Knezevic Antonijevic, S.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.

    2012-12-01

    Recent studies focused on flat slab subduction segments in central Chile (L. S. Wagner, 2006) and Alaska (B. R. Hacker and G. A. Aber, 2012) suggest significant differences in seismic velocity structures, and hence, composition in the mantle wedge between flat and normal "steep" subducting slabs. Instead of finding the low velocities and high Vp/Vs ratios common in normal subduction zones, these studies find low Vp, high Vs, and very low Vp/Vs above flat slabs. This may indicate the presence of dry, cold material in the mantle wedge. In order to investigate the seismic velocities of the upper mantle above the Peruvian flat segment, we have inverted for 2D Rayleigh wave phase velocity maps using data from the currently deployed 40 station PULSE seismic network and some adjacent stations from the CAUGHT seismic network. We then used the sensitivity of surface waves to shear wave velocity structure with depth to develop a 3D shear wave velocity model. This model will allow us to determine the nature of the mantle lithosphere above the flat slab, and how this may have influenced the development of local topography. For example, dry conditions (high Vs velocities) above the flat slab would imply greater strength of this material, possibly making it capable of causing further inland overthrusting, while wet conditions (low Vs) would imply weaker material. This could provide some insight into the ongoing debate over whether the Fitzcarrald arch (along the northern most flank of the Altiplano) could be a topographical response to the subducted Nazca ridge hundred kilometers away from the trench (N. Espurt, 2012, P. Baby, 2005, V. A. Ramos, 2012) or not (J. Martinod, 2005, M. Wipf, 2008, T. Gerya, 2008).

  4. A preliminary investigation of boundary-layer transition along a flat plate with adverse pressure gradient

    NASA Technical Reports Server (NTRS)

    Von Doenhoff, Albert E

    1938-01-01

    Boundary-layer surveys were made throughout the transition region along a smooth flat plate placed in an airstream of practically zero turbulence and with an adverse pressure gradient. The boundary-layer Reynolds number at the laminar separation point was varied from 1,800 to 2,600. The test data, when considered in the light of certain theoretical deductions, indicated that transition probably began with separation of the laminar boundary layer. The extent of the transition region, defined as the distance from a calculated laminar separation point to the position of the first fully developed turbulent boundary-layer profile, could be expressed as a constant Reynolds number run of approximately 70,000. Some speculations are presented concerning the application of the foregoing concepts, after certain assumptions have been made, to the problem of the connection between transition on the upper surface of an airfoil at high angles of attack and the maximum lift.

  5. 64. Photographic copy of historic photo, July 1908 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. Photographic copy of historic photo, July 1908 (original print filed in Record Group 115, National Archives, Washington, D.C.). TEAM MOVING TRACK ON UPPER DEER FLAT EMBANKMENT. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  6. Shed vortex structure and phase-averaged velocity statistics in symmetric/asymmetric turbulent flat plate wakes

    NASA Astrophysics Data System (ADS)

    Rai, Man Mohan

    2018-05-01

    The near wake of a flat plate is investigated via direct numerical simulations. Many earlier experimental investigations have used thin plates with sharp trailing edges and turbulent boundary layers to create the wake. This results in large θ/DTE values (θ is the boundary layer momentum thickness toward the end of the plate and DTE is the trailing edge thickness). In the present study, the emphasis is on relatively thick plates with circular trailing edges (CTEs) resulting in θ/D values less than one (D is the plate thickness and the diameter of the CTE) and vigorous vortex shedding. The Reynolds numbers based on the plate length and D are 1.255 × 106 and 10 000, respectively. Two cases are computed: one with turbulent boundary layers on both the upper and lower surfaces of the plate (statistically the same, symmetric wake, Case TT) and the other with turbulent and laminar boundary layers on the upper and lower surfaces, respectively (asymmetric case, Case TL). The data and understanding obtained are of considerable engineering interest, particularly in turbomachinery where the pressure side of an airfoil can remain laminar or transitional because of a favorable pressure gradient and the suction side is turbulent. Shed-vortex structure and phase-averaged velocity statistics obtained in the two cases are compared here. The upper negative shed vortices in Case TL (turbulent separating boundary layer) are weaker than the lower positive ones (laminar separating boundary layer) at inception (a factor of 1.27 weaker in terms of peak phase-averaged spanwise vorticity at the first appearance of a peak). The upper vortices weaken rapidly as they travel downstream. A second feature of interest in Case TL is a considerable increase in the peak phase-averaged, streamwise normal intensity (random component) with increasing streamwise distance (x/D) that occurs near the positive vortex cores. This behavior is observed for a few diameters in the near wake. This is counter to Case TT where the peak value essentially decreases with increasing x/D. Both these effects are examined in detail, and the important contributors are identified.

  7. 65. Photographic copy of historic photo, May 1908 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. Photographic copy of historic photo, May 1908 (original print filed in Record Group 115, National Archives, Washington, D.C.). UPPER DEER FLAT EMBANKMENT; UPSTREAM FACE, SHOWING GRAVEL FACING AND METHOD OF PLACING. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  8. Circles-in-the-sky searches and observable cosmic topology in a flat universe

    NASA Astrophysics Data System (ADS)

    Mota, B.; Rebouças, M. J.; Tavakol, R.

    2010-05-01

    In a universe with a detectable nontrivial spatial topology, the last scattering surface contains pairs of matching circles with the same distribution of temperature fluctuations—the so-called circles-in-the-sky. Searches for nearly antipodal circles-in-the-sky in maps of cosmic microwave background radiation have so far been unsuccessful. This negative outcome, along with recent theoretical results concerning the detectability of nearly flat compact topologies, is sufficient to exclude a detectable nontrivial topology for most observers in very nearly flat positively and negatively curved universes, whose total matter-energy density satisfies 0<|Ωtot-1|≲10-5. Here, we investigate the consequences of these searches for observable nontrivial topologies if the Universe turns out to be exactly flat (Ωtot=1). We demonstrate that in this case, the conclusions deduced from such searches can be radically different. We show that, although there is no characteristic topological scale in the flat manifolds, for all multiply-connected orientable flat manifolds, it is possible to directly study the action of the holonomies in order to obtain a general upper bound on the angle that characterizes the deviation from antipodicity of pairs of matching circles associated with the shortest closed geodesic. This bound is valid for all observers and all possible values of the compactification length parameters. We also show that in a flat universe, there are observers for whom the circles-in-the-sky searches already undertaken are insufficient to exclude the possibility of a detectable nontrivial spatial topology. It is remarkable how such small variations in the spatial curvature of the Universe, which are effectively indistinguishable geometrically, can have such a drastic effect on the detectability of cosmic topology. Another important outcome of our results is that they offer a framework with which to make statistical inferences from future circles-in-the-sky searches on whether the Universe is exactly flat.

  9. Velopharyngeal mucosal surface topography in healthy subjects and subjects with obstructive sleep apnea.

    PubMed

    Lambeth, Christopher; Amatoury, Jason; Wang, Ziyu; Foster, Sheryl; Amis, Terence; Kairaitis, Kristina

    2017-03-01

    Macroscopic pharyngeal anatomical abnormalities are thought to contribute to the pathogenesis of upper airway (UA) obstruction in obstructive sleep apnea (OSA). Microscopic changes in the UA mucosal lining of OSA subjects are reported; however, the impact of these changes on UA mucosal surface topography is unknown. This study aimed to 1 ) develop methodology to measure UA mucosal surface topography, and 2 ) compare findings from healthy and OSA subjects. Ten healthy and eleven OSA subjects were studied. Awake, gated (end expiration), head and neck position controlled magnetic resonance images (MRIs) of the velopharynx (VP) were obtained. VP mucosal surfaces were segmented from axial images, and three-dimensional VP mucosal surface models were constructed. Curvature analysis of the models was used to study the VP mucosal surface topography. Principal, mean, and Gaussian curvatures were used to define surface shape composition and surface roughness of the VP mucosal surface models. Significant differences were found in the surface shape composition, with more saddle/spherical and less flat/cylindrical shapes in OSA than healthy VP mucosal surface models ( P < 0.01). OSA VP mucosal surface models were also found to have more mucosal surface roughness ( P < 0.0001) than healthy VP mucosal surface models. Our novel methodology was utilized to model the VP mucosal surface of OSA and healthy subjects. OSA subjects were found to have different VP mucosal surface topography, composed of increased irregular shapes and increased roughness. We speculate increased irregularity in VP mucosal surface may increase pharyngeal collapsibility as a consequence of friction-related pressure loss. NEW & NOTEWORTHY A new methodology was used to model the upper airway mucosal surface topography from magnetic resonance images of patients with obstructive sleep apnea and healthy adults. Curvature analysis was used to analyze the topography of the models, and a new metric was derived to describe the mucosal surface roughness. Increased roughness was found in the obstructive sleep apnea vs. healthy group, but further research is required to determine the functional effects of the measured difference on upper airway airflow mechanics. Copyright © 2017 the American Physiological Society.

  10. The upper-mantle transition zone beneath the Chile-Argentina flat subduction zone

    NASA Astrophysics Data System (ADS)

    Bagdo, Paula; Bonatto, Luciana; Badi, Gabriela; Piromallo, Claudia

    2016-04-01

    The main objective of the present work is the study of the upper mantle structure of the western margin of South America (between 26°S and 36°S) within an area known as the Chile-Argentina flat subduction zone. For this purpose, we use teleseismic records from temporary broad band seismic stations that resulted from different seismic experiments carried out in South America. This area is characterized by on-going orogenic processes and complex subduction history that have profoundly affected the underlying mantle structure. The detection and characterization of the upper mantle seismic discontinuities are useful to understand subduction processes and the dynamics of mantle convection; this is due to the fact that they mark changes in mantle composition or phase changes in mantle minerals that respond differently to the disturbances caused by mantle convection. The discontinuities at a depth of 410 km and 660 km, generally associated to phase changes in olivine, vary in width and depth as a result of compositional and temperature anomalies. As a consequence, these discontinuities are an essential tool to study the thermal and compositional structure of the mantle. Here, we analyze the upper-mantle transition zone discontinuities at a depth of 410 km and 660 km as seen from Pds seismic phases beneath the Argentina-Chile flat subduction.

  11. The pectinate zone is stiff and the arcuate zone determines passive basilar membrane mechanics in the gerbil

    NASA Astrophysics Data System (ADS)

    Xia, Hongyi; Steele, Charles R.; Puria, Sunil

    2018-05-01

    The gerbil basilar membrane (BM) differs from other mammalian BMs in that the lower collagen-fiber layer of the pectinate zone (PZ) forms an arch, the upper fiber layer is flat, and ground substance separates the two layers. The role of this arch has been unknown, but can be elucidated by models. In the standard simple beam model (SBM), the upper and lower collagen-fiber layers of the BM are represented as a single layer in both the PZ and the arcuate zone (AZ). In our new arch-beam model (ABM), the upper fiber layer is flat, the lower layer forms an arch in the PZ, and the two layers combine to form the flat portion of the BM in the AZ. This design is incorporated into a 3D finite-element tapered-box model of the cochlea with viscous fluid. We find in the model that the PZ rotates as a rigid body, so its specific properties have little influence, while the AZ thickness and collagen volume fraction primarily determine passive BM mechanics.

  12. Origin of Florida Canyon and the role of spring sapping on the formation of submarine box canyons

    USGS Publications Warehouse

    Paull, Charles K.; Spiess, Fred N.; Curray, Joseph R.; Twichell, David C.

    1990-01-01

    Florida Canyon, one of a series of major submarine canyons on the southwestern edge of the Florida Platform, was surveyed using GLORIA, SeaBeam, and Deep-Tow technologies, and it was directly observed during three DSRV Alvin dives. Florida Canyon exhibits two distinct morphologies: a broad V-shaped upper canyon and a deeply entrenched, flat-floored, U-shaped lower canyon. The flat- floored lower canyon extends 20 km into the Florida Platform from the abyssal Gulf. The lower canyon ends abruptly at an ∼3 km in diameter semicircular headwall that rises 750 m with a >60° slope angle to the foot of the upper canyon. The sides of the lower canyon are less steep than its headwall and are characterized by straight faces that occur along preferred orientations and indicate a strong joint control. The upper canyon is characterized by a gently sloping, straight V-shaped central valley cut into a broad terrace. The flat floor of the upper canyon continues as terraces along the upper walls of the lower canyon. On the flanks of the upper canyon, there are five >50-m-deep, >0.5-km-wide, closed sink-hole-like depressions which indicate subsurface dissolution within the platform. The origin of the lower canyon is difficult to explain with traditional models of submarine canyon formation by external physical processes. The movement of ground water, probably with high salinities and reduced compounds along regional joints, may have focused the corrosive force of submarine spring sapping at the head of the lower canyon to produce the canyon's present shape.

  13. 23. INTERIOR VIEW TO THE SOUTHEAST OF THE UPPER SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. INTERIOR VIEW TO THE SOUTHEAST OF THE UPPER SECTION OF ROOM 123, THE DISASSEMBLY BAY. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV

  14. 24. INTERIOR VIEW TO THE SOUTHWEST OF THE UPPER SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. INTERIOR VIEW TO THE SOUTHWEST OF THE UPPER SECTION OF ROOM 123, THE DISASSEMBLY BAY. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV

  15. The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Des Marais, D. J.

    1990-01-01

    Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.

  16. Effects of Nose Radius and Aerodynamic Loading on Leading Edge Receptivity

    NASA Technical Reports Server (NTRS)

    Hammerton, P. W.; Kerschen, E. J.

    1998-01-01

    An analysis is presented of the effects of airfoil thickness and mean aerodynamic loading on boundary-layer receptivity in the leading-edge region. The case of acoustic free-stream disturbances, incident on a thin cambered airfoil with a parabolic leading edge in a low Mach number flow, is considered. An asymptotic analysis based on large Reynolds number is developed, supplemented by numerical results. The airfoil thickness distribution enters the theory through a Strouhal number based on the nose radius of the airfoil, S = (omega)tau(sub n)/U, where omega is the frequency of the acoustic wave and U is the mean flow speed. The influence of mean aerodynamic loading enters through an effective angle-of-attack parameter ti, related to flow around the leading edge from the lower surface to the upper. The variation of the receptivity level is analyzed as a function of S, mu, and characteristics of the free-stream acoustic wave. For an unloaded leading edge, a finite nose radius dramatically reduces the receptivity level compared to that for a flat plate, the amplitude of the instability waves in the boundary layer being decreased by an order of magnitude when S = 0.3. Modest levels of aerodynamic loading are found to further decrease the receptivity level for the upper surface of the airfoil, while an increase in receptivity level occurs for the lower surface. For larger angles of attack close to the critical angle for boundary layer separation, a local rise in the receptivity level occurs for the upper surface, while for the lower surface the receptivity decreases. The effects of aerodynamic loading are more pronounced at larger values of S. Oblique acoustic waves produce much higher receptivity levels than acoustic waves propagating downstream parallel to the airfoil chord.

  17. Topography of the Flattest Surface on Earth: using ICESAT, GPS, and MISR to Measure Salt Surface Topography on Salar de Uyuni, Bolivia

    NASA Technical Reports Server (NTRS)

    Comstock, Robert L.; Bills, Bruce G.

    2004-01-01

    Salt flats are aptly named: they are composed largely of salt, and are maintained as nearly equipotential surfaces via frequent flooding. The salar de Uyuni, on the Altiplano in southwestern Bolivia, is the largest salt flat on Earth, with an area of 9,800 sq km. Except for a few bedrock islands, it has less than 40 cm of relief. The upper-most salt unit averages 5 m thick and contains 50 cu km of nearly pure halite. It includes most of the salt that was in solution in paleolake Minchin, which attained a maximum area of 60,000 sq km and a maximum depth of 150 m, roughly 15 kyr ago. Despite approx. 10 m of differential isostatic rebound since deposition, the salar surface has been actively maintained as an extraordinarily flat and smooth surface by annual flooding during the rainy season. We have used the strong optical absorption properties of water in the visible band to map spatial variations in water depth during a time when the salar was flooded. As water depth increases, the initially pure white surface appears both darker and bluer. We utilized MISR images taken during the interval from April to November 2001. The red and infra-red bands (672 and 867 nm wavelength) were most useful since the water depth is small and the absorption at those wavelengths is quite strong. Nadir pointed MISR images have 275 m spatial resolution. To aid in our evaluation of water depth variations over the saiar surface, we utilized two sources of direct topographic measurements: several ICESAT altimetry tracks cross the area, and a 40x50 km GPS grid was surveyed to calibrate ICESAT. A difficulty in using these data types is that both give salt surface elevations relative to the ellipsoid, whereas the water surface will, in the absence of wind or tidal disturbances, follow an equipotential surface. Geoid height is not known to the required accuracy of a few cm in the central Andes. As a result, before comparing optical absorption from MISR to salt surface topography from GPS or ICESAT, we removed the longest wavelengths from both.

  18. Selective adsorption of a supramolecular structure on flat and stepped gold surfaces

    NASA Astrophysics Data System (ADS)

    Peköz, Rengin; Donadio, Davide

    2018-04-01

    Halogenated aromatic molecules assemble on surfaces forming both hydrogen and halogen bonds. Even though these systems have been intensively studied on flat metal surfaces, high-index vicinal surfaces remain challenging, as they may induce complex adsorbate structures. The adsorption of 2,6-dibromoanthraquinone (2,6-DBAQ) on flat and stepped gold surfaces is studied by means of van der Waals corrected density functional theory. Equilibrium geometries and corresponding adsorption energies are systematically investigated for various different adsorption configurations. It is shown that bridge sites and step edges are the preferred adsorption sites for single molecules on flat and stepped surfaces, respectively. The role of van der Waals interactions, halogen bonds and hydrogen bonds are explored for a monolayer coverage of 2,6-DBAQ molecules, revealing that molecular flexibility and intermolecular interactions stabilize two-dimensional networks on both flat and stepped surfaces. Our results provide a rationale for experimental observation of molecular carpeting on high-index vicinal surfaces of transition metals.

  19. Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation.

    PubMed

    Ling, Yonghong; Huang, Lirong; Hong, Wei; Liu, Tongjun; Jing, Luan; Liu, Wenbin; Wang, Ziyong

    2017-11-27

    Realizing versatile functionalities in a single photonic device is crucial for photonic integration. We here propose a polarization-switchable and wavelength-controllable multi-functional metasurface. By changing the polarization state of incident light, its functionality can be switched between the flat focusing lens and exciting surface-plasmon-polariton (SPP) wave. Interestingly, by tuning the wavelength of incident light, the generated SPP waves can also be controlled at desired interfaces, traveling along the upper or lower interface of the metasurface, or along both of them, depending on whether the incident light satisfies the first or second Kerker condition. This polarization-switchable and wavelength-controllable multifunctional metasurface may provide flexibility in designing tunable or multifunctional metasurfaces and may find potential applications in highly integrated photonic systems.

  20. Design philosophy of long range LFC transports with advanced supercritical LFC airfoils. [laminar flow control

    NASA Technical Reports Server (NTRS)

    Pfenninger, Werner; Vemuru, Chandra S.

    1988-01-01

    The achievement of 70 percent laminar flow using modest boundary layer suction on the wings, empennage, nacelles, and struts of long-range LFC transports, combined with larger wing spans and lower span loadings, could make possible an unrefuelled range halfway around the world up to near sonic cruise speeds with large payloads. It is shown that supercritical LFC airfoils with undercut front and rear lower surfaces, an upper surface static pressure coefficient distribution with an extensive low supersonic flat rooftop, a far upstream supersonic pressure minimum, and a steep subsonic rear pressure rise with suction or a slotted cruise flap could alleviate sweep-induced crossflow and attachment-line boundary-layer instability. Wing-mounted superfans can reduce fuel consumption and engine tone noise.

  1. Radial wedge flange clamp

    DOEpatents

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  2. Bulldozing of Basal Continental Mantle Lithosphere During Flat-Slab Subduction

    NASA Astrophysics Data System (ADS)

    Axen, G. J.; van Wijk, J.; Currie, C. A.

    2017-12-01

    Flat-slab subduction occurs along 10% of subduction margins, forming magmatic gaps and causing inland migration of upper-plate deformation. We suggest that basal continental mantle lithosphere (CML) can be bulldozed ahead of the flat portion of horizontally-subducted oceanic lithosphere, forming a growing and advancing keel of thickened CML. This process fills the asthenospheric mantle wedge with CML, precluding melting. The bulldozed CML keel may transmit tectonic stresses ahead of the flat slab itself, causing upper-plate deformation ahead of the slab hinge. We designed 2-D numerical models after the North American Laramide orogeny, with subduction of a thick, buoyant oceanic plateau (conjugate Shatsky Rise) and with the continent advancing trenchward over the initial slab hinge. This results in slab-flattening, and removal of CML material. In our models, the thickness of the CML layer removed by this process depends on overriding plate rheology and is up to 25 km. The removed material is bulldozed ahead of the hinge and may fill up the asthenospheric wedge. Low-density (depleted) CML favors formation of bulldozed keels, which increase in width as CML strength decreases. Regular-density and/or stronger CML forms smaller bulldozed keels that are more likely to sink with the slab as eclogitization and densification proceed. When the flat slab rolls back, it leaves a step in the CML at the farthest extent of the slab. Relics of this step may remain below North America or may have dripped off. We interpret an upper-mantle fast-velocity anomaly below SE New Mexico and W Texas as a drip/keel, and the step in lithosphere thickness in southwestern Colorado as a fossil step, caused by the removal of the CML layer. Our model predicts that the Laramide bulldozed CML keel may have aided in stress transmission that caused basement uplifts as far as NE Wyoming and subsurface folds even farther N and E. Modern examples may exist in South American flat slab segments.

  3. Wetting of flat gradient surfaces.

    PubMed

    Bormashenko, Edward

    2018-04-01

    Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Upper mantle anisotropy beneath Peru from SKS splitting: Constraints on flat slab dynamics and interaction with the Nazca Ridge

    NASA Astrophysics Data System (ADS)

    Eakin, Caroline M.; Long, Maureen D.; Wagner, Lara S.; Beck, Susan L.; Tavera, Hernando

    2015-02-01

    The Peruvian flat slab is by far the largest region of flat subduction in the world today, but aspects of its structure and dynamics remain poorly understood. In particular, questions remain over whether the relatively narrow Nazca Ridge subducting beneath southern Peru provides dynamic support for the flat slab or it is just a passive feature. We investigate the dynamics and interaction of the Nazca Ridge and the flat slab system by studying upper mantle seismic anisotropy across southern Peru. We analyze shear wave splitting of SKS, sSKS, and PKS phases at 49 stations distributed across the area, primarily from the PerU Lithosphere and Slab Experiment (PULSE). We observe distinct spatial variations in anisotropic structure along strike, most notably a sharp transition from coherent splitting in the north to pervasive null (non-split) arrivals in the south, with the transition coinciding with the northern limit of the Nazca Ridge. For both anisotropic domains there is evidence for complex and multi-layered anisotropy. To the north of the ridge our *KS splitting measurements likely reflect trench-normal mantle flow beneath the flat slab. This signal is then modified by shallower anisotropic layers, most likely in the supra-slab mantle, but also potentially from within the slab. To the south the sub-slab mantle is similarly anisotropic, with a trench-oblique fast direction, but widespread nulls appear to reflect dramatic heterogeneity in anisotropic structure above the flat slab. Overall the regional anisotropic structure, and thus the pattern of deformation, appears to be closely tied to the location of the Nazca Ridge, which further suggests that the ridge plays a key role in the mantle dynamics of the Peruvian flat slab system.

  5. Shed Vortex Structure and Phase-Averaged Velocity Statistics in Symmetric/Asymmetric Turbulent Flat Plate Wakes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2017-01-01

    The near wake of a flat plate is investigated via direct numerical simulations (DNS). Many earlier experimental investigations have used thin plates with sharp trailing edges and turbulent boundary layers to create the wake. This results in large theta divided by D (sub TE) values (theta is the boundary layer momentum thickness towards the end of the plate and D (sub TE) is the trailing edge thickness). In the present study the emphasis is on relatively thick plates with circular trailing edges (CTE) resulting in theta divided by D values less than one (D is the plate thickness and the diameter of the CTE), and vigorous vortex shedding. The Reynolds numbers based on the plate length and D are 1.255 x 10 (sup 6) and 10,000, respectively. Two cases are computed; one with turbulent boundary layers on both the upper and lower surfaces of the plate (statistically the same, symmetric wake, Case TT) and, a second with turbulent and laminar boundary layers on the upper and lower surfaces, respectively (asymmetric case, Case TL). The data and understanding obtained is of considerable engineering interest, particularly in turbomachinery where the pressure side of an airfoil can remain laminar or transitional because of a favorable pressure gradient and the suction side is turbulent. Shed-vortex structure and phase-averaged velocity statistics obtained in the two cases are compared here. The upper negative shed vortices in Case TL (turbulent separating boundary layer) are weaker than the lower positive ones (laminar separating boundary layer) at inception (a factor 1.27 weaker in terms of peak phase-averaged spanwise vorticity at first appearance of a peak). The upper vortices weaken rapidly as they travel downstream. A second feature of interest in Case TL is a considerable increase in the peak phase-averaged, streamwise normal intensity (random component) with increasing streamwise distance (x divided by D) that occurs nears the positive vortex cores. This behavior is observed for a few diameters in the near wake. This is counter to Case TT where the peak value essentially decreases with increasing x divided by D. Both these effects are examined in detail and the important contributors are identified.

  6. A non-hydrostatic flat-bottom ocean model entirely based on Fourier expansion

    NASA Astrophysics Data System (ADS)

    Wirth, A.

    2005-01-01

    We show how to implement free-slip and no-slip boundary conditions in a three dimensional Boussinesq flat-bottom ocean model based on Fourier expansion. Our method is inspired by the immersed or virtual boundary technique in which the effect of boundaries on the flow field is modeled by a virtual force field. Our method, however, explicitly depletes the velocity on the boundary induced by the pressure, while at the same time respecting the incompressibility of the flow field. Spurious spatial oscillations remain at a negligible level in the simulated flow field when using our technique and no filtering of the flow field is necessary. We furthermore show that by using the method presented here the residual velocities at the boundaries are easily reduced to a negligible value. This stands in contradistinction to previous calculations using the immersed or virtual boundary technique. The efficiency is demonstrated by simulating a Rayleigh impulsive flow, for which the time evolution of the simulated flow is compared to an analytic solution, and a three dimensional Boussinesq simulation of ocean convection. The second instance is taken form a well studied oceanographic context: A free slip boundary condition is applied on the upper surface, the modeled sea surface, and a no-slip boundary condition to the lower boundary, the modeled ocean floor. Convergence properties of the method are investigated by solving a two dimensional stationary problem at different spatial resolutions. The work presented here is restricted to a flat ocean floor. Extensions of our method to ocean models with a realistic topography are discussed.

  7. Rare earth element fingerprints in Korean coastal bay sediments: Association with provenance discrimination

    NASA Astrophysics Data System (ADS)

    Kang, Jeongwon; Woo, Han Jun; Jang, Seok; Jeong, Kap-Sik; Jung, Hoi-Soo; Hwang, Ha Gi; Lee, Jun-Ho; Cho, Jin Hyung

    2016-09-01

    Rare earth elements (REEs: La-Lu) in surface sediments collected from the mouth and middle tidal flats of Gomso Bay, South Korea, in August 2011 and May 2012 were analyzed to investigate the fine-grained sediment provenance. The upper continental crust (UCC)-normalized light REEs (LREEs: La to Nd) were more enriched than the middle REEs (MREEs: Sm to Dy) and heavy REEs (HREEs: Ho to Lu), resulting in large (La/Yb)UCC (1.9 ± 0.4) to (Gd/Yb)UCC (1.4 ± 0.2) ratios. The monthly (La/Yb)UCC values differed between the mouth and middle tidal flats due to deposition of fine-grained sediments that originated from distant rivers (the Geum and Yeongsan) and the Jujin Stream, located on the southern shore of the inner bay. We observed relative reductions in the (La/Yb)UCC value and REE content in the sediments from the mouth of the bay compared with those from Jujin Stream sediments. Confined to the middle tidal flat around the KH Line of Jujin Stream, the sediments, most enriched in LREEs but depleted in Eu, were distributed in August as strong Jujin Stream runs. Here, we suggest that an increase in LREE/HREE and decrease in MREE/LREE ratios can be used as a proxy to identify the Jujin Stream provenance in mixed riverine sediments and to trace Jujin Stream sediments within the Gomso Bay tidal flat, especially in the summer rainy season.

  8. Indoor test for thermal performance evaluation of Lenox-Honeywell solar collector. [conducted using Marshall Space Flight Center Solar Simulator

    NASA Technical Reports Server (NTRS)

    Shih, K.

    1977-01-01

    The test procedures used and the test results obtained from an evaluation test program conducted on a double-covered liquid solar collector under simulated conditions are presented. The test article was a flat plate solar collector using liquid as the heat transfer medium. The absorber plate was steel with the copper tubes bonded on the upper surface. The plate was coated with black chrome with an absorptivity factor of .95 and emissivity factor of .12. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector.

  9. Upper motor neurone modulation of the structure of the terminal cisternae in rat skeletal muscle fibres.

    PubMed

    Dulhunty, A F; Gage, P W; Valois, A A

    1981-12-23

    There are fewer indentations on the flat surfaces of terminal cisternae in soleus (slow-twitch) than in extensor digitorum longus (EDL, fast-twitch) muscle fibres of rats. Following mid-thoracic spinal cord transection, there is an increase in the number of indentations in soleus fibres but no change in EDL fibres. The increase in the numbers of indentations after spinal cord transections is correlated with changes in the contractile and charge movement properties of the soleus fibres so that they resemble normal EDL fibres. The indentations appear to have an important role in excitation-contraction coupling.

  10. Stationary nonimaging concentrator as a second stage element in tracking systems

    NASA Astrophysics Data System (ADS)

    Kritchman, E. M.; Snail, K. A.; Ogallagher, J.; Winston, R.

    1983-01-01

    An increase in the concentration in line focus solar concentrators is shown to be available using an evacuated compound parabolic concentrator (CPC) tube as a second stage element. The absorber is integrated into an evacuated tube with a transparent upper section and a reflective lower section, with a selective coating on the absorber surface. The overall concentration is calculated in consideration of a parabolic mirror in a trough configuration, a flat Fresnel lens over the top, or a color and coma corrected Fresnel lens. The resulting apparatus is noted to also suppress thermal losses due to conduction, convection, and IR radiation.

  11. Hypersonic aerodynamic characteristics of a family of power-law, wing body configurations

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1973-01-01

    The configurations analyzed are half-axisymmetric, power-law bodies surmounted by thin, flat wings. The wing planform matches the body shock-wave shape. Analytic solutions of the hypersonic small disturbance equations form a basis for calculating the longitudinal aerodynamic characteristics. Boundary-layer displacement effects on the body and the wing upper surface are approximated. Skin friction is estimated by using compressible, laminar boundary-layer solutions. Good agreement was obtained with available experimental data for which the basic theoretical assumptions were satisfied. The method is used to estimate the effects of power-law, fineness ratio, and Mach number variations at full-scale conditions. The computer program is included.

  12. Carbonate chemistry in a Kennebec Estuary softshell clam flat: Seasonal variability and implications for blue carbon mitigation

    NASA Astrophysics Data System (ADS)

    Miller, H. R.; Jurcic, B.; Indrick, R.; LaVigne, M.

    2016-12-01

    Maine's softshell clam (Mya arenaria) industry brings $20 million to the state annually. Reduced clam flat sediments aragonite saturation state (Ω), a predicted effect of ocean acidification, has been shown to negatively impact shell development in M. arenaria's early life stages. Seagrass restoration has been proposed to benefit Maine clam flats. However, the Gulf of Maine experiences seasonal changes in temperature and freshwater input, and the impacts on the carbonate chemistry of intertidal ecosystems have yet to be quantified. We measured overlying water and surface ( upper 1cm) porewater temperature (T), salinity (S), pH, and alkalinity (TA) biweekly from March to August, 2016 to quantify spatial and seasonal sediment Ω variability in a Kennebec Estuary clam flat (Wyman Bay, Maine). Reduced freshwater flow from spring into summer caused an increase in overlying water S (5-25ppt), TA (400-1800ueq/L), and W (0.09-1.20). Surface sediment pore water S (15-29ppt) and TA (1100-2100ueq/L) also increased in summer; however, Ω was variable and remained well below saturation (<0.40). Overlying water pH (7.38-7.96) and sediment pore water pH (6.85-7.47) showed no seasonal trend. Contrary to the predicted impact of seagrass on clam flat carbonate chemistry, preliminary data show sediment Ω is significantly lower in a site located within S. alterniflora (0.150.05) compared to sites lacking alterniflora (0.210.1) within Wyman Bay. Elevated sediment organic matter concentrations found with grasses (4.6%0.5) vs. without (2.9%0.4) may be produced by the grasses and organisms attracted to the ecosystem, and may result in greater respiration driving pH and Ω down rather than up. The strong correlation between TA and S (R2=0.78-0.99) suggests freshwater flow with spring melt during M. arenaria's planktonic larval stage and rain events (predicted to increase with climate change) can reduce Ω, with potentially negative implications for early M. arenaria life stages.

  13. A semiflexible alternating copolymer chain adsorption on a flat and a fluctuating surface.

    PubMed

    Mishra, Pramod Kumar

    2010-04-21

    A lattice model of a directed self-avoiding walk is used to investigate adsorption properties of a semiflexible alternating copolymer chain on an impenetrable flat and fluctuating surface in two (square, hexagonal and rectangular lattice) and three dimensions (cubic lattice). In the cubic lattice case the surface is two-dimensional impenetrable flat and in two dimensions the surface is a fluctuating impenetrable line (hexagonal lattice) and also flat impenetrable line (square and rectangular lattice). Walks of the copolymer chains are directed perpendicular to the plane of the surface and at a suitable value of monomer surface attraction, the copolymer chain gets adsorbed on the surface. To calculate the exact value of the monomer surface attraction, the directed walk model has been solved analytically using the generating function method to discuss results when one type of monomer of the copolymer chain has attractive, repulsive or no interaction with the surface. Results obtained in the flat surface case show that, for a stiffer copolymer chain, adsorption transition occurs at a smaller value of monomer surface attraction than a flexible copolymer chain while in the case of a fluctuating surface, the adsorption transition point is independent of bending energy of the copolymer chain. These features are similar to that of a semiflexible homopolymer chain adsorption.

  14. Fragile surface zero-energy flat bands in three-dimensional chiral superconductors

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2015-12-01

    We study surface zero-energy flat bands in three-dimensional chiral superconductors with pz(px+i py) ν -wave pairing symmetry (ν is a nonzero integer), based on topological arguments and tunneling conductance. It is shown that the surface flat bands are fragile against (i) the surface misorientation and (ii) the surface Rashba spin-orbit interaction. The fragility of (i) is specific to chiral SCs, whereas that of (ii) happens for general odd-parity SCs. We demonstrate that these flat-band instabilities vanish or suppress a zero-bias conductance peak in a normal/insulator/superconductor junction, which behavior is clearly different from high-Tc cuprates and noncentrosymmetric superconductors. By calculating the angle-resolved conductance, we also discuss a topological surface state associated with the coexistence of line and point nodes.

  15. Use of flue gas desulfurization gypsum for leaching Cd and Pb in reclaimed tidal flat soil.

    PubMed

    Yang, Ping; Li, Xian; Tong, Ze-Jun; Li, Qu-Sheng; He, Bao-Yan; Wang, Li-Li; Guo, Shi-Hong; Xu, Zhi-Min

    2016-04-01

    A soil column leaching experiment was conducted to eliminate heavy metals from reclaimed tidal flat soil. Flue gas desulfurization (FGD) gypsum was used for leaching. The highest removal rates of Cd and Pb in the upper soil layers (0-30 cm) were 52.7 and 30.5 %, respectively. Most of the exchangeable and carbonate-bound Cd and Pb were removed. The optimum FGD gypsum application rate was 7.05 kg·m(-2), and the optimum leaching water amount for the application was 217.74 L·m(-2). The application of FGD gypsum (two times) and the extension of the leaching interval time to 20 days increased the heavy metal removal rate in the upper soil layers. The heavy metals desorbed from the upper soil layers were re-adsorbed and fixed in the 30-70 cm soil layers.

  16. Single lens laser beam shaper

    DOEpatents

    Liu, Chuyu [Newport News, VA; Zhang, Shukui [Yorktown, VA

    2011-10-04

    A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.

  17. Development and application of W/Cu flat-type plasma facing components at ASIPP

    NASA Astrophysics Data System (ADS)

    Li, Q.; Zhao, S. X.; Sun, Z. X.; Xu, Y.; Li, B.; Wei, R.; Wang, W. J.; Qin, S. G.; Shi, Y. L.; Xie, C. Y.; Wang, J. C.; Wang, X. L.; Missirlian, M.; Guilhem, D.; Liu, G. H.; Yang, Z. S.; Luo, G.-N.

    2017-12-01

    W/Cu flat-type plasma facing components (PFCs) were widely used in divertor of fusion device because of its advantages, such as low cost, light in weight and good machinability. However, it is very difficult to manufacture them due to the large mismatch between the thermo-mechanical properties of W and Cu. Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) has successfully developed W/Cu flat-type PFCs for EAST W/Cu divertor project by hot isostatic pressing (HIP) technology. This paper presents the development and application of W/Cu flat-type PFCs at ASIPP. The optimized manufacturing process is to cast pure copper onto the rear side of W tiles at temperature of 1200 °C firstly, and then to HIP the W/Cu tiles onto CuCrZr heat sink at temperature of 600 °C, pressure of 150 MPa and duration of 3 h. W/Cu flat-type testing mock-up for EAST survived 1000 cycles at heat load of 5 MW m-2 in high heat flux tests. And then ASIPP prepared two mock-ups for CEA’s tungsten environment in steady-state tokamak (WEST) project. One mock-up withstood successfully 302 cycles of 20 MW m-2, which are far beyond the design requirement. Since 2014, W/Cu flat-type PFCs were wildly used in EAST upper divertor as baffle and dome components which showed excellent performance in 2015 and 2016 campaigns. Given the success in EAST upper divertor, W/Cu flat-type concept is as well applied in the design of actively cooled Langmuir probes which will be mounted onto EAST divertor targets soon.

  18. Method for fabricating prescribed flaws in the interior of metals

    DOEpatents

    Hsu, David K.; Thompson, Donald O.

    1989-03-07

    The method for fabricating a metal body having a flaw of predetermined size and shape located therein comprises placing half of the metal powder required to make the metal body in the die of a press and pressing it to create a flat upper surface thereon. A piece of copper foil is cut to the size and shape of the desired interior crack and placed on the upper surface of the powder and centered in position. The remaining powder is then placed in the die to cover the copper foil. The powder is first cold pressed and removed from the press. The powder metal piece is then sintered in a furnace at a temperature above the melting point of the copper and below the melting point of the metal. It is then removed from the furnace, cooled to room temperature, and placed back in the die and pressed further. This procedure results in an interior flaw or crack. Modified forms of the method involve using a press-sinter-press-sinter cycle with the first sinter being below the melting point of the copper and the second sinter being above the melting point of the copper and below the melting point of the metal.

  19. An experimental study of furan adsorption and decomposition on vicinal palladium surfaces using scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Loui, A.; Chiang, S.

    2018-04-01

    The intact adsorption and decomposition of furan (C4H4O) on vicinal palladium surfaces with (111)-oriented terraces has been studied by scanning tunneling microscopy (STM) over a range of temperatures. STM images at 225 K show that furan molecules lie flat and prefer to adsorb at upper step edges. At 225 K, furan molecules adsorbed on "narrow" terraces of 20 to 45 Å in width appear to diffuse more readily than those adsorbed on "wide" terraces of 160 to 220 Å. A distinct population of smaller features appears in STM images on "narrow" terraces at 288 K and on "wide" terraces at 415 K and is identified with the C3H3 decomposition product, agreeing with prior studies which demonstrated that furan dissociates on Pd(111) to yield carbon monoxide (CO) and a C3H3 moiety in the 280 to 320 K range. Based on our direct visualization of this reaction using STM, we propose a spatial mechanism in which adsorption of furan at upper step edges allows catalysis of the dissociation, followed by diffusion of the product to lower step edges.

  20. Shin-Etsu super-high-flat substrate for FPD panel photomask

    NASA Astrophysics Data System (ADS)

    Ishitsuka, Youkou; Harada, Daijitsu; Watabe, Atsushi; Takeuchi, Masaki

    2017-07-01

    Recently, high-resolution exposure machine has been developed for production of high-definition (HD) panels, and higher-flat photomask substrates for FPD is being expected for panel makers to produce HD panels. In this presentation, we introduce about Shin-Etsu's advanced technique of producing super-high-flat photomask substrates. Shin-Etsu has developed surface polishing and planarization technology with No.1-quality-IC photomask substrates. Our most advanced IC photomask substrates have gained the highest estimation and appreciation from our customers because of their surface quality (non-defect surface without sub-0.1um size defects) and ultimate flatness (sub-0.1um order having achieved). By scaling up those IC photomask substrate technologies and developing unique large-size processing technologies, we have achieved creating high-flat large substrates, even G10-photomask size as well as regular G6-G8 photomask size. The core technology is that the surface shape of the substrate is completely controlled by the unique method. For example, we can regularly produce a substrate with its flatness of triple 5ums; front side flatness, back side flatness and total thickness variation are all less than 5μm. Furthermore, we are able to supply a substrate with its flatness of triple 3ums for G6-photomask size advanced grade, believed to be needed in near future.

  1. Crack growth measured on flat and curved surfaces at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Orange, T. W.; Sullivan, T. L.

    1967-01-01

    Multiple element continuity gage measures plane stress crack growth plus surface crack growth under plane strain conditions. The gage measures flat and curved surfaces and operates at cryogenic temperatures.

  2. The Assessment of Distortion in Neurosurgical Image Overlay Projection.

    PubMed

    Vakharia, Nilesh N; Paraskevopoulos, Dimitris; Lang, Jozsef; Vakharia, Vejay N

    2016-02-01

    Numerous studies have demonstrated the superiority of neuronavigation during neurosurgical procedures compared to non-neuronavigation-based procedures. Limitations to neuronavigation systems include the need for the surgeons to avert their gaze from the surgical field and the cost of the systems, especially for hospitals in developing countries. Overlay projection of imaging directly onto the patient allows localization of intracranial structures. A previous study using overlay projection demonstrated the accuracy of image coregistration for a lesion in the temporal region but did not assess image distortion when projecting onto other anatomical locations. Our aim is to quantify this distortion and establish which regions of the skull would be most suitable for overlay projection. Using the difference in size of a square grid when projected onto an anatomically accurate model skull and a flat surface, from the same distance, we were able to calculate the degree of image distortion when projecting onto the skull from the anterior, posterior, superior, and lateral aspects. Measuring the size of a square when projected onto a flat surface from different distances allowed us to model change in lesion size when projecting a deep structure onto the skull surface. Using 2 mm as the upper limit for distortion, our results show that images can be accurately projected onto the majority (81.4%) of the surface of the skull. Our results support the use of image overlay projection in regions with ≤2 mm distortion to assist with localization of intracranial lesions at a fraction of the cost of existing methods. © The Author(s) 2015.

  3. Friction factor data for flat plate tests of smooth and honeycomb surfaces. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ha, Tae Woong

    1989-01-01

    Friction factors for honeycomb surfaces were measured with a flat plate tester. The flat plate test apparatus was described and a method was discussed for determining the friction factor experimentally. The friction factor model was developed for the flat plate test based on the Fanno Line Flow. The comparisons of the friction factor were plotted for smooth surfaces and six-honeycomb surfaces with three-clearances, 6.9 bar to 17.9 bar range of inlet pressures, and 5,000 to 100,000 range of the Reynolds number. The optimum geometries for the maximum friction factor were found as a function of cell width to cell depth and cell width to clearance ratios.

  4. Spin-imbalanced pairing and Fermi surface deformation in flat bands

    NASA Astrophysics Data System (ADS)

    Huhtinen, Kukka-Emilia; Tylutki, Marek; Kumar, Pramod; Vanhala, Tuomas I.; Peotta, Sebastiano; Törmä, Päivi

    2018-06-01

    We study the attractive Hubbard model with spin imbalance on two lattices featuring a flat band: the Lieb and kagome lattices. We present mean-field phase diagrams featuring exotic superfluid phases, similar to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, whose stability is confirmed by dynamical mean-field theory. The nature of the pairing is found to be richer than just the Fermi surface shift responsible for the usual FFLO state. The presence of a flat band allows for changes in the particle momentum distributions at null energy cost. This facilitates formation of nontrivial superfluid phases via multiband Cooper pair formation: the momentum distribution of the spin component in the flat band deforms to mimic the Fermi surface of the other spin component residing in a dispersive band. The Fermi surface of the unpaired particles that are typical for gapless superfluids becomes deformed as well. The results highlight the profound effect of flat dispersions on Fermi surface instabilities, and provide a potential route for observing spin-imbalanced superfluidity and superconductivity.

  5. 76 FR 31856 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Adoption of Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... Flat Wood Paneling Surface Coating Processes AGENCY: Environmental Protection Agency (EPA). ACTION... by EPA's Control Techniques Guidelines (CTG) standards for flat wood paneling surface coating processes. EPA is approving this revision concerning the adoption of the EPA CTG requirements for flat wood...

  6. 76 FR 13567 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Adoption of Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... Flat Wood Paneling Surface Coating Processes AGENCY: Environmental Protection Agency (EPA). ACTION... sources covered by EPA's Control Techniques Guidelines (CTG) standards for flat wood paneling surface... Protection (PADEP) submitted to EPA a SIP revision concerning the adoption of the CTG for flat wood paneling...

  7. 3D mapping, hydrodynamics and modelling of the freshwater-brine mixing zone in salt flats similar to the Salar de Atacama (Chile)

    NASA Astrophysics Data System (ADS)

    Marazuela, M. A.; Vázquez-Suñé, E.; Custodio, E.; Palma, T.; García-Gil, A.; Ayora, C.

    2018-06-01

    Salt flat brines are a major source of minerals and especially lithium. Moreover, valuable wetlands with delicate ecologies are also commonly present at the margins of salt flats. Therefore, the efficient and sustainable exploitation of the brines they contain requires detailed knowledge about the hydrogeology of the system. A critical issue is the freshwater-brine mixing zone, which develops as a result of the mass balance between the recharged freshwater and the evaporating brine. The complex processes occurring in salt flats require a three-dimensional (3D) approach to assess the mixing zone geometry. In this study, a 3D map of the mixing zone in a salt flat is presented, using the Salar de Atacama as an example. This mapping procedure is proposed as the basis of computationally efficient three-dimensional numerical models, provided that the hydraulic heads of freshwater and mixed waters are corrected based on their density variations to convert them into brine heads. After this correction, the locations of lagoons and wetlands that are characteristic of the marginal zones of the salt flats coincide with the regional minimum water (brine) heads. The different morphologies of the mixing zone resulting from this 3D mapping have been interpreted using a two-dimensional (2D) flow and transport numerical model of an idealized cross-section of the mixing zone. The result of the model shows a slope of the mixing zone that is similar to that obtained by 3D mapping and lower than in previous models. To explain this geometry, the 2D model was used to evaluate the effects of heterogeneity in the mixing zone geometry. The higher the permeability of the upper aquifer is, the lower the slope and the shallower the mixing zone become. This occurs because most of the freshwater lateral recharge flows through the upper aquifer due to its much higher transmissivity, thus reducing the freshwater head. The presence of a few meters of highly permeable materials in the upper part of these hydrogeological systems, such as alluvial fans or karstified evaporites that are frequently associated with the salt flats, is enough to greatly modify the geometry of the saline interface.

  8. In Vitro Assessment of Early Bacterial Activity on Micro/Nanostructured Ti6Al4V Surfaces.

    PubMed

    Valdez-Salas, Benjamin; Beltrán-Partida, Ernesto; Castillo-Uribe, Sandra; Curiel-Álvarez, Mario; Zlatev, Roumen; Stoytcheva, Margarita; Montero-Alpírez, Gisela; Vargas-Osuna, Lidia

    2017-05-18

    It is imperative to understand and systematically compare the initial interactions between bacteria genre and surface properties. Thus, we fabricated a flat, anodized with 80 nm TiO₂ nanotubes (NTs), and a rough Ti6Al4V surface. The materials were characterized using field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). We cultured in vitro Staphylococcus epidermidis ( S. epidermidis ) and Pseudomonas aeruginosa ( P. aeruginosa ) to evaluate the bacterial-surface behavior by FE-SEM and viability calculation. In addition, the initial effects of human osteoblasts were tested on the materials. Gram-negative bacteria showed promoted adherence and viability over the flat and rough surface, while NTs displayed opposite activity with altered morphology. Gram-positive bacteria illustrated similar cellular architecture over the surfaces but with promoted surface adhesion bonds on the flat alloy. Rough surfaces supported S. epidermidis viability, whilst NTs exhibited lower vitality. NTs advocated promoted better osteoblast organization with enhanced vitality. Gram-positive bacteria suggested preferred adhesion capability over flat and carbon-rich surfaces. Gram-negative bacteria were strongly disturbed by NTs but largely stimulated by flat and rough materials. Our work proposed that the chemical profile of the material surface and the bacterial cell wall characteristics might play an important role in the bacteria-surface interactions.

  9. Fully methylated, atomically flat (111) silicon surface

    NASA Astrophysics Data System (ADS)

    Fidélis, A.; Ozanam, F.; Chazalviel, J.-N.

    2000-01-01

    The atomically flat hydrogenated (111) silicon surface has been methylated by anodization in a Grignard reagent and the surface obtained characterized by infrared spectroscopy. 100% substitution of the hydrogen atoms by methyl groups is observed. The resulting surface exhibits preserved ordering and superior chemical stability.

  10. Analysis of Flatness Deviations for Austenitic Stainless Steel Workpieces after Efficient Surface Machining

    NASA Astrophysics Data System (ADS)

    Nadolny, K.; Kapłonek, W.

    2014-08-01

    The following work is an analysis of flatness deviations of a workpiece made of X2CrNiMo17-12-2 austenitic stainless steel. The workpiece surface was shaped using efficient machining techniques (milling, grinding, and smoothing). After the machining was completed, all surfaces underwent stylus measurements in order to obtain surface flatness and roughness parameters. For this purpose the stylus profilometer Hommel-Tester T8000 by Hommelwerke with HommelMap software was used. The research results are presented in the form of 2D surface maps, 3D surface topographies with extracted single profiles, Abbott-Firestone curves, and graphical studies of the Sk parameters. The results of these experimental tests proved the possibility of a correlation between flatness and roughness parameters, as well as enabled an analysis of changes in these parameters from shaping and rough grinding to finished machining. The main novelty of this paper is comprehensive analysis of measurement results obtained during a three-step machining process of austenitic stainless steel. Simultaneous analysis of individual machining steps (milling, grinding, and smoothing) enabled a complementary assessment of the process of shaping the workpiece surface macro- and micro-geometry, giving special consideration to minimize the flatness deviations

  11. Wrinkle structures—a critical review

    NASA Astrophysics Data System (ADS)

    Porada, Hubertus; Bouougri, El Hafid

    2007-04-01

    In this paper, a variety of so-called 'wrinkle structures' is reviewed in an attempt to help distinguish between crinkly decorations arising from physical processes that acted on siliciclastic bedding surfaces, and true microbially induced 'wrinkle structures'. Two types of small-scale, microbially induced sedimentary structures are prominent due to their distinct geometry and mode of occurrence: (1) 'elephant skin' textures, characterized by reticulate patterns of sharp-crested ridges forming mm- to cm-scale polygons, occurring on argillite or argillaceous veneers above fine-grained sandstone and likely reflecting growth structures of microbial, mats (2) 'Kinneyia' structures, characterized by mm-scale flat-topped, winding ridges and intervening troughs and pits, sometimes resembling small-scale interference ripples. 'Kinneyia' structures usually occur on upper surfaces of siltstone/sandstone beds, themselves frequently event deposits, and are thought to have formed beneath microbial mats. Additionally, more linear variations of mat growth structures, partly resembling small-scale 'α-petees' may be developed. Finally, some wrinkly structures resulting from tractional mat deformation or mat slumping are occasionally preserved. These may appear as arcuate belts of non-penetrative, small-scale folds or as wrinkled bulges on otherwise flat surfaces. 'Wrinkle structures' as indicators for the former presence of mats gain in importance if other mat-related structures are additionally observed in the same clastic succession, e.g. 'sand chips' (sandy intraclasts) or spindle-shaped or sinuously curved to circular sand cracks, frequently combined in networks. Furthermore, appropriate lithologies and facies are required. For instance, if compared with the distribution of modern cohesive microbial mats, laminated siltstone/argillite with intercalated siltstone/sandstone beds representing event deposits in tidal flat successions would be compatible with microbial mat development. Within a variety of physically induced small-scale wrinkly structures, miniature load structures may, above all, be misinterpreted as microbially induced 'wrinkle structures', due to their similar size and appearance, and their comparatively frequent occurrence.

  12. Turbulent boundary layer on a convex, curved surface

    NASA Technical Reports Server (NTRS)

    Gillis, J. C.; Johnston, J. P.; Kays, W. M.; Moffat, R. J.

    1980-01-01

    The effects of strong convex curvature on boundary layer turbulence were investigated. The data gathered on the behavior of Reynolds stress suggested the formulation of a simple turbulence model. Three sets of data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning, and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero - thus avoiding any effects of streamwise acceleration on the wall layers. Results show that after a sudden introduction of curvature, the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. In contrast, when the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions.

  13. A study of the effect of a boundary layer profile on the dynamic response and acoustic radiation of flat panels. Ph.D. Thesis - Virginia Univ.

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.

    1973-01-01

    The response of a thin, elastic plate to a harmonic force which drives the plate from below and a compressible air stream with a viscous boundary layer flowing parallel to the upper surface along the length was investigated. Equations governing the forced response of the coupled plate-aerodynamic system are derived along with appropriate boundary conditions. Calculations of basic solution parameters for a linear velocity profile and for a Blasius profile showed that the same system response could be obtained from each profile if appropriate values of boundary layer thickness were chosen for each profile.

  14. Residual Cap

    NASA Technical Reports Server (NTRS)

    2006-01-01

    10 May 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a summertime view of the south polar residual cap of Mars. In this image, mesas composed largely of solid carbon dioxide are separated from one another by irregularly-shaped depressions. The variation in brightness across this scene is a function of several factors including, but not limited to, varying proportions of dust and solid carbon dioxide, undulating topography, and differences in the roughness of the slopes versus the flat surfaces.

    Location near: 86.7oS, 343.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  15. Preparation of atomically flat rutile TiO 2(001) surfaces for oxide film growth

    DOE PAGES

    Wang, Yang; Lee, Shinbuhm; Vilmercati, P.; ...

    2016-01-01

    The availability of low-index rutile TiO 2 single crystal substrates with atomically flat surfaces is essential for enabling epitaxialgrowth of rutile transition metal oxide films. The high surface energy of the rutile (001) surface often leads to surface faceting, which precludes the sputter and annealing treatment commonly used for the preparation of clean and atomically flat TiO 2(110) substrate surfaces. In this work, we reveal that stable and atomically flat rutile TiO 2(001) surfaces can be prepared with an atomically ordered reconstructedsurface already during a furnace annealing treatment in air. We tentatively ascribe this result to the decrease in surfacemore » energy associated with the surface reconstruction, which removes the driving force for faceting. Despite the narrow temperature window where this morphology can initially be formed, we demonstrate that it persists in homoepitaxialgrowth of TiO 2(001) thin films. The stabilization of surface reconstructions that prevent faceting of high-surface-energy crystal faces may offer a promising avenue towards the realization of a wider range of high quality epitaxial transition metal oxide heterostructures.« less

  16. Output-increasing, protective cover for a solar cell

    DOEpatents

    Hammerbacher, Milfred D.

    1995-11-21

    A flexible cover (14) for a flexible solar cell (12) protects the cell from the ambient and increases the cell's efficiency. The cell(12)includes silicon spheres (16) held in a flexible aluminum sheet matrix (20,22). The cover (14) is a flexible, protective layer (60) of light-transparent material having a relatively flat upper, free surface (64) and an irregular opposed surface (66). The irregular surface (66) includes first portions (68) which conform to the polar regions (31R) of the spheres (16) and second convex (72) or concave (90) portions (72 or 90) which define spaces (78) in conjunction with the reflective surface (20T) of one aluminum sheet (20). Without the cover (14) light (50) falling on the surface (20T) between the spheres (16) is wasted, that is, it does not fall on a sphere (16). The surfaces of the second portions are non-parallel to the direction of the otherwise wasted light (50), which fact, together with a selected relationship between the refractive indices of the cover and the spaces, result in sufficient diffraction of the otherwise wasted light (50) so that about 25% of it is reflected from the surface (20T) onto a sphere (16).

  17. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties.

    PubMed

    Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas

    2016-01-01

    To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P < 0.001). The order from lowest to highest relative muscle activity matched the order from most to least stable therapy device. There was no significant interaction between muscle location (lower versus upper leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Implications of seismic reflection and potential field geophysical data on the structural framework of the Yucca Mountain-Crater Flat region, Nevada

    USGS Publications Warehouse

    Brocher, T.M.; Hunter, W.C.; Langenheim, V.E.

    1998-01-01

    Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate- to high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. Deeper, low-angle detachment surface(s) within Proterozoic-Paleozoic bedrock cannot be ruled out by our geophysical data, but are inconsistent with other geologic and geophysical observations in this vicinity. Beneath Crater Flat, the base of the seismogenic crust at 12 km depth is close to the top of the reflective (ductile) lower crust at 14 to 15 km depth, where brittle fault motions in the upper crust may be converted to pure shear in the ductile lower crust. Thus, our preferred interpretation of these geophysical data is that moderate- to high-angle faults extend to 12-15-km depth beneath Yucca Mountain and Crater Flat, with only modest changes in dip. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64????5??. Within Crater Flat, east-dipping high-angle normal faults offset the pre-Tertiary-Tertiary contact as well as a reflector within the Miocene tuff sequence, tilting both to the west. The diffuse eastern boundary of the Amargosa Desert rift zone is formed by a broad series of high-angle down-to-the-west normal faults extending eastward across Yucca Mountain. Along our profile the transition from east- to west-dipping faults occurs at or just west of the Solitario Canyon fault, which bounds the western side of Yucca Mountain. The interaction at depth of these east- and west-dipping faults, having up to hundreds of meters offset, is not imaged by the seismic reflection profile. Understanding potential seismic hazards at Yucca Mountain requires knowledge of the subsurface geometry of the faults near Yucca Mountain, since earthquakes generally nucleate and release the greatest amount of their seismic energy at depth. The geophysical data indicate that many fault planes near the potential nuclear waste facility dip toward Yucca Mountain, including the Bare Mountain range-front fault and several west-dipping faults east of Yucca Mountain. Thus, earthquake ruptures along these faults would lie closer to Yucca Mountain than is often estimated from their surface locations and could therefore be more damaging.

  19. Upper mantle seismic anisotropy beneath Northern Peru from shear wave splitting analysis.

    NASA Astrophysics Data System (ADS)

    Franca, G. S.; Condori, C.; Tavera, H.; Eakin, C. M.; Beck, S. L.

    2017-12-01

    Beneath much of Peru lies the largest region of flat-slab subduction in the world today. The origins and dynamics of the Peruvian flat-slab however remain elusive, particularly in the north away from the Nazca Ridge. Studies of seismic anisotropy can potentially provide us with insight into the dynamics of recent and past deformational processes in the upper mantle. In this study, we conduct shear wave splitting to investigate seismic anisotropy across the northern extent of the Peruvian flat-slab for the first time. For the analysis, we used arrivals of SKS, SKKS and PKS phases from teleseismic events (88° > Δ < 150°) recorded at 30 broadband seismic stations from the Peruvian permanent and portable seismic networks, and international networks (CTBTO and RSBR-Brazil). The preliminary results reveal a complex anisotropy pattern with variations along strike. In the northernmost region, the average delay times range between 1.0 s and 1.2 s, with fast directions predominantly ENE-WSW oriented in a direction approximately perpendicular to the trench, parallel with subduction of the Nazca plate. Meanwhile towards the central region of Peru, the predominant fast direction changes to SE-NW oblique with the trench, but consistent with the pattern seen previously over the southern extent of the flat-slab by Eakin et al. (2013, 2015). These characteristics suggest a fundamental difference between the anisotropic structures, and therefore underlying mantle processes, beneath the northern and central portions of the Peruvian flat-slab.

  20. 60. Photographic copy of historic photo, April 25, 1907 (original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. Photographic copy of historic photo, April 25, 1907 (original print filed in Record Group 115, National Archives, Washington, D.C.). UPPER DEER FLAT EMBANKMENT. STEAM SHOVEL NO. 1 LOADING CARS IN EASTERLY BORROW PIT. CARS IN THIS TRAIN OF 12 NEARLY ALL LOADED. EAIGHT MINUTES REQUIRED TO LOAD 12 CARS EQUAL TO 42 CU YDS. PLACE MEASUREMENT. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  1. Self-sculpting of a dissolvable body due to gravitational convection

    NASA Astrophysics Data System (ADS)

    Davies Wykes, Megan S.; Huang, Jinzi Mac; Hajjar, George A.; Ristroph, Leif

    2018-04-01

    Natural sculpting processes such as erosion or dissolution often yield universal shapes that bear no imprint or memory of the initial conditions. Here we conduct laboratory experiments aimed at assessing the shape dynamics and role of memory for the simple case of a dissolvable boundary immersed in a fluid. Though no external flow is imposed, dissolution and consequent density differences lead to gravitational convective flows that in turn strongly affect local dissolving rates and shape changes, and we identify two distinct behaviors. A flat boundary dissolving from its lower surface tends to retain its overall shape (an example of near perfect memory) while bearing small-scale pits that reflect complex near-body flows. A boundary dissolving from its upper surface tends to erase its initial shape and form an upward spike structure that sharpens indefinitely. We propose an explanation for these different outcomes based on observations of the coupled shape dynamics, concentration fields, and flows.

  2. Preliminary study of effects of winglets on wing flutter

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Farmer, M. G.

    1976-01-01

    Some experimental flutter results are presented over a Mach number range from about 0.70 to 0.95 for a simple, swept, tapered, flat-plate wing model having a planform representative of subsonic transport airplanes and for the same wing model equipped with two different upper surface winglets. Both winglets had the same planform and area (about 2 percent of the basic-wing area); however, one weighed about 0.3 percent of the basic-wing weight, and the other weighed about 1.8 percent of the wing weight. The addition of the lighter winglet reduced the wing-flutter dynamic pressure by about 3 percent; the heavier winglet reduced the wing-flutter dynamic pressure by about 12 percent. The experimental flutter results are compared at a Mach number of 0.80 with analytical flutter results obtained by using doublet-lattice and lifting-surface (kernel-function) unsteady aerodynamic theories.

  3. Solid oxide fuel cell with monolithic core

    DOEpatents

    McPheeters, Charles C.; Mrazek, Franklin C.

    1988-01-01

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700.degree. C. and 1100.degree. C.

  4. Solid oxide fuel cell with monolithic core

    DOEpatents

    McPheeters, C.C.; Mrazek, F.C.

    1988-08-02

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700 C and 1,100 C. 8 figs.

  5. Observations of ebb flows on tidal flats: Evidence of dewatering?

    NASA Astrophysics Data System (ADS)

    Rinehimer, J. P.; Thomson, J. M.; Chickadel, C.

    2010-12-01

    Incised channels are a common morphological feature of tidal flats. When the flats are inundated, flows are generally forced by the tidally varying sea surface height. During low tide, however, these channels continue to drain throughout flat exposure even without an upstream source of water. While the role of porewater is generally overlooked due to the low permeability of marine muds, it remains the only potential source of flows through the channels during low tide. In situ and remotely sensed observations (Figure 1) at an incised channel on a tidal flat in Willapa Bay from Spring 2010 indicate that dewatering of the flats may be driving these low tide flows. High resolution Aquadopp ADCP velocity profiles are combined with observations from tower-based infrared (IR) video to produce a complete time series of surface velocity measurements throughout low tide. The IR video observations provide a measurement of surface currents even when the channel depth is below the blanking distance of the ADCP (10 cm). As the depth within the channel drops from 50 cm to 10 cm surface velocities increase from 10 cm/s to 60 cm/s even as the tide level drops below the channel flanks and the flats are dry. As the drainage continues, the temperature of the flow rises throughout low tide, mirroring temperatures within the sediment bed on the tidal flat. Drainage salinity falls despite the lack of any freshwater input to the flat indicating that less saline porewater may be the source. The likely source of the drainage water is from the channel flanks where time-lapse video shows slumping and compaction of channel sediments. Velocity profiles, in situ temperatures, and IR observations also are consistent with the presence of fluid muds and a hyperpycnal, density driven outflow at the channel mouth highlighting a possible pathway for sediment delivery from the flats to the main distributary channels of the bay. Figure 1: Time series of tidal flat channel velocities and temperatures. Top: (soild) Water depth within the channel and (dashed) tidal flat elevation. Center: Channel surface velocities as measured by an (black) ADCP and (red) a Fourier technique using infrared video. Bottom: Temperatures of (blue) near bed water downstream of the incised channel, (black) channel outflow, and (red) tidal flat sediment at 10 cm depth within the bed.

  6. Hydrogeomorphic Classification of Wetlands on Mt. Desert Island, Maine, Including Hydrologic Susceptibility Factors for Wetlands in Acadia National Park

    USGS Publications Warehouse

    Nielsen, Martha G.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, developed a hydrogeomorphic (HGM) classification system for wetlands greater than 0.4 hectares (ha) on Mt. Desert Island, Maine, and applied this classification using map-scale data to more than 1,200 mapped wetland units on the island. In addition, two hydrologic susceptibility factors were defined for a subset of these wetlands, using 11 variables derived from landscape-scale characteristics of the catchment areas of these wetlands. The hydrologic susceptibility factors, one related to the potential hydrologic pathways for contaminants and the other to the susceptibility of wetlands to disruptions in water supply from projected future changes in climate, were used to indicate which wetlands (greater than 1 ha) in Acadia National Park (ANP) may warrant further investigation or monitoring. The HGM classification system consists of 13 categories: Riverine-Upper Perennial, Riverine-Nonperennial, Riverine- Tidal, Depressional-Closed, Depressional-Semiclosed, Depressional-Open, Depressional-No Ground-Water Input, Mineral Soil Flat, Organic Soil Flat, Tidal Fringe, Lacustrine Fringe, Slope, and Hilltop/Upper Hillslope. A dichotomous key was developed to aid in the classification of wetlands. The National Wetland Inventory maps produced by the U.S. Fish and Wildlife Service provided the wetland mapping units used for this classification. On the basis of topographic map information and geographic information system (GIS) layers at a scale of 1:24,000 or larger, 1,202 wetland units were assigned a preliminary HGM classification. Two of the 13 HGM classes (Riverine-Tidal and Depressional-No Ground-Water Input) were not assigned to any wetlands because criteria for determining those classes are not available at that map scale, and must be determined by more site-specific information. Of the 1,202 wetland polygons classified, which cover 1,830 ha in ANP, 327 were classified as Slope, 258 were Depressional (Open, Semiclosed, and Closed), 231 were Riverine (Upper Perennial and Nonperennial), 210 were Soil Flat (Mineral and Organic), 68 were Lacustrine Fringe, 51 were Tidal Fringe, 22 were Hilltop/Upper Hillslope, and another 35 were small open water bodies. Most small, isolated wetlands classified on the island are Slope wetlands. The least common, Hilltop/Upper Hillslope wetlands, only occur on a few hilltops and shoulders of hills and mountains. Large wetland complexes generally consist of groups of Depressional wetlands and Mineral Soil Flat or Organic Soil Flat wetlands, often with fringing Slope wetlands at their edges and Riverine wetlands near streams flowing through them. The two analyses of wetland hydrologic susceptibility on Mt. Desert Island were applied to 186 wetlands located partially or entirely within ANP. These analyses were conducted using individually mapped catchments for each wetland. The 186 wetlands were aggregated from the original 1,202 mapped wetland polygons on the basis of their HGM classes. Landscape-level hydrologic, geomorphic, and soil variables were defined for the catchments of the wetlands, and transformed into scaled scores from 0 to 10 for each variable. The variables included area of the wetland, area of the catchment, area of the wetland divided by the area of the catchment, the average topographic slope of the catchment, the amount of the catchment where bedrock crops out with no soil cover or excessively thin soil cover, the amount of storage (in lakes and wetlands) in the catchment, the topographic relief of the catchment, the amount of clay-rich soil in the catchment, the amount of manmade impervious surface, whether the wetland had a stream inflow, and whether the wetland had a hydraulic connection to a lake or estuary. These data were determined using a GIS and data layers mapped at a scale of 1:24,000 or larger. These landscape variables were combined in different ways for the two hydrologic susceptibility fact

  7. Surface properties of atomically flat poly-crystalline SrTiO3

    PubMed Central

    Woo, Sungmin; Jeong, Hoidong; Lee, Sang A.; Seo, Hosung; Lacotte, Morgane; David, Adrian; Kim, Hyun You; Prellier, Wilfrid; Kim, Yunseok; Choi, Woo Seok

    2015-01-01

    Comparison between single- and the poly-crystalline structures provides essential information on the role of long-range translational symmetry and grain boundaries. In particular, by comparing single- and poly-crystalline transition metal oxides (TMOs), one can study intriguing physical phenomena such as electronic and ionic conduction at the grain boundaries, phonon propagation, and various domain properties. In order to make an accurate comparison, however, both single- and poly-crystalline samples should have the same quality, e.g., stoichiometry, crystallinity, thickness, etc. Here, by studying the surface properties of atomically flat poly-crystalline SrTiO3 (STO), we propose an approach to simultaneously fabricate both single- and poly-crystalline epitaxial TMO thin films on STO substrates. In order to grow TMOs epitaxially with atomic precision, an atomically flat, single-terminated surface of the substrate is a prerequisite. We first examined (100), (110), and (111) oriented single-crystalline STO surfaces, which required different annealing conditions to achieve atomically flat surfaces, depending on the surface energy. A poly-crystalline STO surface was then prepared at the optimum condition for which all the domains with different crystallographic orientations could be successfully flattened. Based on our atomically flat poly-crystalline STO substrates, we envision expansion of the studies regarding the TMO domains and grain boundaries. PMID:25744275

  8. Martian 'Kitchen Sponge'

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This picture is illuminated by sunlight from the upper left. It shows a tiny 1 kilometer by 1 kilometer (0.62 x 0.62 mile) area of the martian north polar residual ice cap as it appears in summertime.

    The surface looks somewhat like that of a kitchen sponge--it is flat on top and has many closely-spaced pits of no more than 2 meters (5.5 ft) depth. The upper, flat surface in this image has a medium-gray tone, while the pit interiors are darker gray. Each pit is generally 10 to 20 meters (33-66 feet) across. The pits probably form as water ice sublimes--going directly from solid to vapor--during the martian northern summer seasons. The pits probably develop over thousands of years. This texture is very different from what is seen in the south polar cap, where considerably larger and more circular depressions are found to resemble slices of swiss cheese rather than a kitchen sponge.

    This picture was taken by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) during northern summer on March 8, 1999. It was one of the very last 'calibration' images taken before the start of the Mapping Phase of the MGS mission, and its goal was to determine whether the MOC was properly focused. The crisp appearance of the edges of the pits confirmed that the instrument was focused and ready for its 1-Mars Year mapping mission. The scene is located near 86.9oN, 207.5oW, and has a resolution of about 1.4 meters (4 ft, 7 in) per pixel.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  9. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-15

    This VIS image provides another instance where the topography of the upper floor material affects the winds and dune formation. At the edges of the dune field, the dunes become smaller and more separated, revealing the harder surface that the dunes are moving across. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 57843 Latitude: -43.3482 Longitude: 34.6454 Instrument: VIS Captured: 2014-12-28 12:37 https://photojournal.jpl.nasa.gov/catalog/PIA22143

  10. Sedimentary Facies Mapping Based on Tidal Channel Network and Topographic Features

    NASA Astrophysics Data System (ADS)

    Ryu, J. H.; Lee, Y. K.; Kim, K.; Kim, B.

    2015-12-01

    Tidal flats on the west coast of Korea suffer intensive changes in their surface sedimentary facies as a result of the influence of natural and artificial changes. Spatial relationships between surface sedimentary facies distribution and benthic environments were estimated for the open-type Ganghwa tidal flat and semi closed-type Hwangdo tidal flat, Korea. In this study, we standardized the surface sedimentary facies and tidal channel index of the channel density, distance, thickness and order. To extract tidal channel information, we used remotely sensed data, such as those from the Korea Multi-Purpose Satellite (KOMPSAT)-2, KOMPSAT-3, and aerial photographs. Surface sedimentary facies maps were generated based on field data using an interpolation method.The tidal channels in each sediment facies had relatively constant meandering patterns, but the density and complexity were distinguishable. The second fractal dimension was 1.7-1.8 in the mud flat, about 1.4 in the mixed flat, and about 1.3 in the sand flat. The channel density was 0.03-0.06 m/m2 in the mud flat and less than 0.02 m/m2 in the mixed and sand flat areas of the two test areas. Low values of the tidal channel index, which indicated a simple pattern of tidal channel distribution, were identified at areas having low elevation and coarse-grained sediments. By contrast, high values of the tidal channel index, which indicated a dendritic pattern of tidal channel distribution, were identified at areas having high elevation and fine-grained sediments. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures.

  11. Longevity and progressive abandonment of the Rocky Flats surface, Front Range, Colorado

    NASA Astrophysics Data System (ADS)

    Riihimaki, Catherine A.; Anderson, Robert S.; Safran, Elizabeth B.; Dethier, David P.; Finkel, Robert C.; Bierman, Paul R.

    2006-08-01

    The post-orogenic evolution of the Laramide landscape of the western U.S. has been characterized by late Cenozoic channel incision of basins and their adjacent ranges. One means of constraining the incision history of basins is dating the remnants of gravel-capped surfaces above modern streams. Here, we focus on an extensive remnant of the Rocky Flats surface between Golden and Boulder, Colorado, and use in situ-produced 10Be and 26Al concentrations in terrace alluvium to constrain the Quaternary history of this surface. Coal and Ralston Creeks, both tributaries of the South Platte River, abandoned the Rocky Flats surface and formed the Verdos and Slocum pediments, which are cut into Cretaceous bedrock between Rocky Flats and the modern stream elevations. Rocky Flats alluvium ranges widely in age, from > 2 Ma to ˜ 400 ka, with oldest ages to the east and younger ages closer to the mountain front. Numerical modeling of isotope concentration depth profiles suggests that individual sites have experienced multiple resurfacing events. Preliminary results indicate that Verdos and Slocum alluvium along Ralston Creek, which is slightly larger than Coal Creek, is several hundred thousand years old. Fluvial incision into these surfaces appears therefore to progress headward in response to downcutting of the South Platte River. The complex ages of these surfaces call into question any correlation of such surfaces based solely on their elevation above the modern channel.

  12. Improving catalytic selectivity through control of adsorption orientation

    NASA Astrophysics Data System (ADS)

    Pang, Simon H.

    In this thesis, we present an investigation, starting from surface science experiments, leading to design of supported catalysts, of how adsorption orientation can be used to affect reaction selectivity of highly functional molecules. The surface chemistry of furfuryl alcohol and benzyl alcohol and their respective aldehydes was studied on a Pd(111) single-crystal surface under ultra-high vacuum conditions. Temperature-programmed desorption experiments showed that synergistic chemistry existed between the aromatic ring and the oxygen-containing functional group, each allowing the other to participate in reaction pathways that a monofunctional molecule could not. Most important of these was a deoxygenation reaction that occurred more readily when the surface was crowded by the highest exposures. High-resolution electron energy loss spectroscopy revealed that at these high exposures, molecules were oriented upright on the surface, with the aromatic function extending into vacuum. In contrast, at low exposures, molecules were oriented flat on the surface. The upright adsorption geometry was correlated with deoxygenation, whereas the flat-lying geometry was correlated with decarbonylation. The insight gained from surface science experiments was utilized in catalyst design. Self-assembled monolayers of alkanethiolates were used to systematically reduce the average surface ensemble size, and the reaction selectivity was tracked. When a sparsely-packed monolayer was used, such as one formed by 1-adamantanethiol, the reactant furfural was still able to lie flat on the surface and the reaction selectivity was similar to that of the uncoated catalyst. However, when a densely-packed monolayer, formed by 1-octadecanethiol, was used, furfural was not able to adsorb flat on the surface and instead adopted an upright conformation, leading to a drastic increase in aldehyde hydrogenation and hydrodeoxygenation reaction selectivity. Using an even higher sulfur coverage from a monolayer formed by 1,2-benzenedithiol, we determined that hydrodeoxygenation selectively occurred on catalyst particle steps and edges from an upright structure, whereas decarbonylation occurred on particle terraces from a flat-lying structure. Control of furfural adsorption orientation was also achieved through the use of NiCu bimetallic catalysts. The aromatic furan ring was repelled from surface Cu, leading to an upright structure. However, under hydrogenation conditions, Ni tended to be near the surface of thin films and catalysts, leading to less dramatic selectivity enhancement. The presence of a 1-octadecanethiol monolayer kinetically stabilized the surface termination, allowing Cu to remain at the surface.

  13. Topographic control of mat-surface structures evolution: Examples from modern evaporitic carbonate (Abu Dhabi) and evaporitic siliciclastic (Tunisia) tidal flats.

    NASA Astrophysics Data System (ADS)

    Hafid Bouougri, El; Porada, Hubertus

    2010-05-01

    In terms of optimal light utilization, mat surfaces ideally are flat. In nature, however, flat mat surfaces are observed rarely or in restricted patches only. Rather they are shaped by a variety of linear and subcircular to irregular protrusions at various scales, including overgrown upturned crack margins, bulges (‘petees'), domes (‘blisters' and ‘pustules'), reticulate networks with tufts and pinnacles etc. These features are so characteristic that ‘mat types' have been established according to their prevalence, e.g., film, flat, smooth, crinkle, blister, tufted, cinder, mammilate, pustular and polygonal mats (Kendall and Skipwith, 1969; Logan et al., 1974). Responsible for the development of such mat surface features are environmental (physical and chemical) factors and, in reaction, the opportunistic growth behaviour of the participating bacterial taxa. Theoretically, a ‘juvenile' mat may be assumed as being flat, evolving into various forms with typical surface morphologies according to environmental impacts and respective bacterial reactions. Observations in the Abu Dhabi evaporitic carbonate tidal flats and Tunisian evaporitic siliciclastic tidal flats demonstrate that topography plays a fundamental role, both on the large scale of the tidal flat and on the small scale of mat surface morphology. It controls, together with related factors like, e.g., frequency of tidal flooding; duration of water cover; frequency and duration of subaerial exposure, the spatial distribution and the temporal evolution of mat surface structures. On the tidal flat scale, topographic differences result a priori from its seaward gradient and may arise additionally from physical processes which may modify the substrate surface and produce in the intertidal and lower supratidal zones narrow creeks and shallow depressions meandering perpendicular to the slope. Within a wide tidal flat without local topographic changes in the tidal zones, mat surface structures display a typical shore-parallel zonality. In contrast, in tidal flats with slight changes in topography, the typical shore-parallel zonality appears disturbed mainly along the intertidal and lower supratidal zones. The mat surface structures within each tidal zone show local and lateral transitions but all evolve from an incipient flat or polygonal mat. On the mat scale, microtopographic differences are created by the mats themselves, e.g., in the form of upturned crack margins, bulges and domes. All these are small-scale topographic highs that influence the distribution of microbial activity and mat growth dynamics. In the Abu Dhabi area it is observed that smooth or polygonal mats may grade temporally into mammilate, cinder or pustular and tufted mats along an evolutionary path controlled by preferred growth along bulges and upturned crack margins. A similar temporal evolution appears in the intertidal and supratidal zones in Tunisia where local changes on mat-surface induce a variety of mat-growth struc¬tures on and along upturned crack margins, gas domes and isolated to polygonal bulges and petee ridges. References Kendall C.G.St.C, Skipwith, P.A.d'E. (1968) Recent algal mats of a Persian gulf lagoon. J. Sedim. Res., 38, 1040-1058. Logan B.W. Hoffman P. Gebelein, C.D. (1974) Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. AAPG Mem., 22, 140-194.

  14. Constraints of subducted slab geometries on trench migration and subduction velocities: flat slabs and slab curtains in the mantle under Asia

    NASA Astrophysics Data System (ADS)

    Wu, J. E.; Suppe, J.; Renqi, L.; Lin, C.; Kanda, R. V.

    2013-12-01

    The past locations, shapes and polarity of subduction trenches provide first-order constraints for plate tectonic reconstructions. Analogue and numerical models of subduction zones suggest that relative subducting (Vs) and overriding (Vor) plate velocities may strongly influence final subducted slab geometries. Here we have mapped the 3D geometries of subducted slabs in the upper and lower mantle of Asia from global seismic tomography. We have incorporated these slabs into plate tectonic models, which allows us to infer the subducting and overriding plate velocities. We describe two distinct slab geometry styles, ';flat slabs' and ';slab curtains', and show their implications for paleo-trench positions and subduction geometries in plate tectonic reconstructions. When compared to analogue and numerical models, the mapped slab styles show similarities to modeled slabs that occupy very different locations within Vs:Vor parameter space. ';Flat slabs' include large swaths of sub-horizontal slabs in the lower mantle that underlie the well-known northward paths of India and Australia from Eastern Gondwana, viewed in a moving hotspot reference. At India the flat slabs account for a significant proportion of the predicted lost Ceno-Tethys Ocean since ~100 Ma, whereas at Australia they record the existence of a major 8000km by 2500-3000km ocean that existed at ~43 Ma between East Asia, the Pacific and Australia. Plate reconstructions incorporating the slab constraints imply these flat slab geometries were generated when continent overran oceanic lithosphere to produce rapid trench retreat, or in other words, when subducting and overriding velocities were equal (i.e. Vs ~ Vor). ';Slab curtains' include subvertical Pacific slabs near the Izu-Bonin and Marianas trenches that extend from the surface down to 1500 km in the lower mantle and are 400 to 500 km thick. Reconstructed slab lengths were assessed from tomographic volumes calculated at serial cross-sections. The ';slab curtain' geometry and restored slab lengths indicate a nearly stationary Pacific trench since ~43 Ma. In contrast to the flat slabs, here the reconstructed subduction zone had large subducting plate velocities relative to very small overriding plate velocities (i.e. Vs >> Vor). In addition to flat slabs and slab curtains, we also find other less widespread local subduction settings that lie at other locations in Vs:Vor parameter space or involved other processes. Slabs were mapped using Gocad software. Mapped slabs were restored to a spherical model Earth surface by two approaches: unfolding (i.e. piecewise flattening) to minimize shape and area distortions, and by evaluated mapped slab volumes. Gplates software was used to integrate the mapped slabs with plate tectonic reconstructions.

  15. Surface capillary currents: Rediscovery of fluid-structure interaction by forced evolving boundary theory

    NASA Astrophysics Data System (ADS)

    Wang, Chunbai; Mitra, Ambar K.

    2016-01-01

    Any boundary surface evolving in viscous fluid is driven with surface capillary currents. By step function defined for the fluid-structure interface, surface currents are found near a flat wall in a logarithmic form. The general flat-plate boundary layer is demonstrated through the interface kinematics. The dynamics analysis elucidates the relationship of the surface currents with the adhering region as well as the no-slip boundary condition. The wall skin friction coefficient, displacement thickness, and the logarithmic velocity-defect law of the smooth flat-plate boundary-layer flow are derived with the advent of the forced evolving boundary method. This fundamental theory has wide applications in applied science and engineering.

  16. Evolution of a Holocene delta driven by episodic sediment delivery and coseismic deformation, Puget Sound, Washington, USA

    USGS Publications Warehouse

    Barnhardt, W.A.; Sherrod, B.L.

    2006-01-01

    Episodic, large-volume pulses of volcaniclastic sediment and coseismic subsidence of the coast have influenced the development of a late Holocene delta at southern Puget Sound. Multibeam bathymetry, ground-penetrating radar (GPR) and vibracores were used to investigate the morphologic and stratigraphic evolution of the Nisqually River delta. Two fluvial–deltaic facies are recognized on the basis of GPR data and sedimentary characteristics in cores, which suggest partial emplacement from sediment-rich floods that originated on Mount Rainier. Facies S consists of stacked, sheet-like deposits of andesitic sand up to 4 m thick that are continuous across the entire width of the delta. Flat-lying, highly reflective surfaces separate the sand sheets and comprise important facies boundaries. Beds of massive, pumice- and charcoal-rich sand overlie one of the buried surfaces. Organic-rich material from that surface, beneath the massive sand, yielded a radiocarbon age that is time-correlative with a series of known eruptive events that generated lahars in the upper Nisqually River valley. Facies CF consists of linear sandbodies or palaeochannels incised into facies S on the lower delta plain. Radiocarbon ages of wood fragments in the sandy channel-fill deposits also correlate in time to lahar deposits in upstream areas. Intrusive, sand-filled dikes and sills indicate liquefaction caused by post-depositional ground shaking related to earthquakes. Continued progradation of the delta into Puget Sound is currently balanced by tidal-current reworking, which redistributes sediment into large fields of ebb- and flood-oriented bedforms.

  17. Earth Observations taken by the Expedition 22 Crew

    NASA Image and Video Library

    2009-12-15

    ISS022-E-012224 (15 Dec. 2009) --- Evaporation ponds in the Salar de Atacama, Chile are featured in this image photographed by an Expedition 22 crew member on the International Space Station. The Salar (salt flat) de Atacama in Chile is an enclosed basin with no drainage outlets. While the grey-brown surface of the Salar is flat and desiccated, mineral-rich brines - water with a high percentage of dissolved salts - are located below the surface. The subsurface brines of the Salar de Atacama are particularly rich in lithium salts. Lithium is an essential component of advanced batteries and medicines, among many other uses. The brines are pumped to the surface through a network of wells and into large shallow evaporation ponds ? three such evaporation pond facilities are visible in the center of the image. Color variations in the ponds are due to varying amounts of salts relative to water. The dry and windy climate enhances evaporation of the water, leaving concentrated salts behind for extraction of the lithium. The Salar de Atacama is located in the southern half of the Atacama Desert ? with no historical or current records of rainfall in some parts of this desert, it is considered to be one of the driest places on Earth. This photograph illustrates the central portion of the Salar de Atacama. It is bounded by brown to grey-brown folded and faulted strata of the Cordillera de la Sal to the northwest (upper left) and darker bedrock of the Cordon de Lila to the south (lower right).

  18. CENDRILLON CONTAINERS FOR THE TRANSPORT AND DISPENSING OF RADIOACTIVE LIQUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vertut, J.

    1963-01-01

    Pumpkin-shaped containers were developed for safe transport and dispensing of radioactive liquids. Four different sizes varying in capacity from 3.5 to 50 liters are available, However, liquids with criticality hazards cannot be handled in these containers. The shape was chosen to make the container rest firmly on a flat surface and to prevent it from being turned over and remaining upset. The liquid is held in an inner container of stainless steel. It is surrounded by a protective lead shell made in two halves, so that the upper half can be taken off. The lead itself is cast into steelmore » shells to provide additional strength. Both halves are rendered liquid tight by asbestos packing. (M.C.G.)« less

  19. Sharp transition from ripple patterns to a flat surface for ion beam erosion of Si with simultaneous co-deposition of iron

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Brötzmann, M.; Hofsäss, H.

    2012-09-01

    We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30° incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2×1015 Fe/cm2) over dot patterns (2-8×1015 Fe/cm2), ripples patterns (8-17×1015 Fe/cm2), pill bug structures (1.8×1016 Fe/cm2) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8×1016 Fe/cm2). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness ˜ 18 nm) to a rather flat surface (rms roughness ˜ 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8×1016 Fe/cm2, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi2. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.

  20. Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms.

    PubMed

    Nelayah, J; Kociak, M; Stéphan, O; Geuquet, N; Henrard, L; García de Abajo, F J; Pastoriza-Santos, I; Liz-Marzán, L M; Colliex, C

    2010-03-10

    We report on the nanometer scale spectral imaging of surface plasmons within individual silver triangular nanoprisms by electron energy loss spectroscopy and on related discrete dipole approximation simulations. A dependence of the energy and intensity of the three detected modes as function of the edge length is clearly identified both experimentally and with simulations. We show that for experimentally available prisms (edge lengths ca. 70 to 300 nm) the energies and intensities of the different modes show a monotonic dependence as function of the aspect ratio of the prisms. For shorter or longer prisms, deviations to this behavior are identified thanks to simulations. These modes have symmetric charge distribution and result from the strong coupling of the upper and lower triangular surfaces. They also form a standing wave in the in-plane direction and are identified as quasistatic short range surface plasmons of different orders as emphasized within a continuum dielectric model. This model explains in simple terms the measured and simulated energy and intensity changes as function of geometric parameters. By providing a unified vision of surface plasmons in platelets, such a model should be useful for engineering of the optical properties of metallic nanoplatelets.

  1. A novel rotating electrochemically anodizing process to fabricate titanium oxide surface nanostructures enhancing the bioactivity of osteoblastic cells.

    PubMed

    Chang, Chih-Hung; Lee, Hsin-Chun; Chen, Chia-Chun; Wu, Yi-Hau; Hsu, Yuan-Ming; Chang, Yin-Pen; Yang, Ta-I; Fang, Hsu-Wei

    2012-07-01

    Titanium oxide (TiO(2) ) surface layers with various surface nanostructures (nanotubes and nanowires) have been developed using an anodizing technique. The pore size and length of TiO(2) nanotubes can be tailored by changing the anodizing time and applied voltage. We developed a novel method to transform the upper part of the formed TiO(2) nanotubes into a nanowire-like structure by rotating the titanium anode during anodizing process. The transformation of nanotubes contributed to the preferential chemical dissolution of TiO(2) on the areas with intense interface tension stress. Furthermore, we further compared the effect of various TiO(2) surface nanostructures including flat, nanotubes, and nanowires on bioactive applications. The MG-63 osteoblastic cells cultured on the TiO(2) nanowires exhibited a polygonal shape with extending filopodia and showed highest levels of cell viability and alkaline phosphatase activity (ALP). The TiO(2) nanowire structure formed by our novel method can provide beneficial effects for MG-63 osteoblastic cells in attachment, proliferation, and secretion of ALP on the TiO(2) surface layer. Copyright © 2012 Wiley Periodicals, Inc.

  2. Alkylation of Silicon(111) surfaces

    NASA Astrophysics Data System (ADS)

    Rivillon, S.; Chabal, Y. J.

    2006-03-01

    Methylation of chlorine-terminated silicon (111) (Si-Cl) is investigated by Infra Red Absorption Spectroscopy (IRAS). Starting from an atomically flat H-terminated Si(111), the surface is first chlorinated by a gas phase process, then methylated using a Grignard reagent. Methyl groups completely replace Cl, and are oriented normal to the surface. The surface remains atomically flat with no evidence of etching.

  3. Incomplete Puzzle

    NASA Technical Reports Server (NTRS)

    2006-01-01

    15 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a mid-summer view of a portion of the south polar residual cap of Mars. The large, relatively flat-lying, puzzle-like pieces in this scene are mesas composed largely of solid carbon dioxide.

    Location near: 85.5oS, 76.8oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  4. Luneburg lens with extended flat focal surface for electronic scan applications.

    PubMed

    Li, Ying; Zhu, Qi

    2016-04-04

    Luneburg lens with flat focal surface has been developed to work together with planar antenna feeds for beam steering applications. According to our analysis of the conventional flattened Luneburg lens, it cannot accommodate enough feeding elements which can cover its whole scan range with half power beamwidths (HPBWs). In this paper, a novel Luneburg lens with extended flat focal surface is proposed based on the theory of Quasi-Conformal Transformation Optics (QCTO), with its beam steering features reserved. To demonstrate this design, a three-dimensional (3D) prototype of this novel extend-flattened Luneburg lens working at Ku band is fabricated based on 3D printing techniques, whose flat focal surface is attached to a 9-element microstrip antenna array to achieve different scan angles. Our measured results show that, with different antenna elements being fed, the HPBWs can cover the whole scan range.

  5. Cesium injection system for negative ion duoplasmatrons

    DOEpatents

    Kobayashi, Maasaki; Prelec, Krsto; Sluyters, Theodorus J

    1978-01-01

    Longitudinally extending, foraminous cartridge means having a cylindrical side wall forming one flat, circular, tip end surface and an opposite end; an open-ended cavity, and uniformly spaced orifices for venting the cavity through the side wall in the annulus of a plasma ring for uniformly ejecting cesium for coating the flat, circular, surface. To this end, the cavity is filled with a cesium containing substance and attached to a heater in a hollow-discharge duoplasmatron. By coating the flat circular surface with a uniform monolayer of cesium and locating it in an electrical potential well at the end of a hollow-discharge, ion duoplasmatron source of an annular hydrogen plasma ring, the negative hydrogen production from the duoplasmatron is increased. The negative hydrogen is produced on the flat surface of the cartridge and extracted by the electrical potential well along a trajectory coaxial with the axis of the plasma ring.

  6. Laminar flow control SPF/08 feasibility demonstration

    NASA Astrophysics Data System (ADS)

    Ecklund, R. C.; Williams, N. R.

    1981-10-01

    The feasibility of applying superplastic forming/diffusion bonding (SPF/DB) technology to laminar flow control (LFC) system concepts was demonstrated. Procedures were developed to produce smooth, flat titanium panels, using thin -0.016 inch sheets, meeting LFC surface smoothness requirements. Two large panels 28 x 28 inches were fabricated as final demonstration articles. The first was flat on the top and bottom sides demonstrating the capability of the tooling and the forming and diffusion bonding procedures to produce flat, defect free surfaces. The second panel was configurated for LFC porous panel treatment by forming channels with dimpled projections on the top side. The projections were machined away leaving holes extending into the panel. A perforated titanium sheet was adhesively bonded over this surface to complete the LFC demonstration panel. The final surface was considered flat enough to meet LFC requirements for a jet transport aircraft in cruising flight.

  7. Suspension system for a wheel rolling on a flat track. [bearings for directional antennas

    NASA Technical Reports Server (NTRS)

    Mcginness, H. D. (Inventor)

    1981-01-01

    An improved suspension system for an uncrowned wheel rolling on a flat track is presented. It is characterized by a wheel frame assembly including a wheel frame and at least one uncrowned wheel connected in supporting relation with the frame. It is adapted to be seated in rolling engagement with a flat track, a load supporting bed, and a plurality of flexural struts interconnecting the bed in supported relation with the frame. Each of said struts is disposed in a plane passing through the center of the uncrowned wheel surface along a line substantially bisecting the line of contact established between the wheel surface and the flat surface of the truck and characterized by a modulus of elasticity sufficient for maintaining the axis of rotation for the wheel in substantial parallelism with the line of contact established between the surfaces of the wheel and track.

  8. 49 CFR 173.175 - Permeation devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., flat and horizontal surface from a height of 1.8 m (5.9 feet): (i) One drop flat on the bottom; (ii) One drop flat on the top; (iii) One drop flat on the long side; (iv) One drop flat on the short side... stacked to a height of 3 m (10 feet) (including the test sample). (3) Each of the above tests may be...

  9. 49 CFR 178.609 - Test requirements for packagings for infectious substances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... free-fall drops onto a rigid, nonresilient, flat, horizontal surface from a height of 9 m (30 feet... must be dropped, one in each of the following orientation: (i) Flat on the base; (ii) Flat on the top; (iii) Flat on the longest side; (iv) Flat on the shortest side; and (v) On a corner. (2) Where the...

  10. 49 CFR 173.175 - Permeation devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., flat and horizontal surface from a height of 1.8 m (5.9 feet): (i) One drop flat on the bottom; (ii) One drop flat on the top; (iii) One drop flat on the long side; (iv) One drop flat on the short side; (v) One drop on a corner at the junction of three intersecting edges; and (2) A force applied to the...

  11. 49 CFR 173.175 - Permeation devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., flat and horizontal surface from a height of 1.8 m (5.9 feet): (i) One drop flat on the bottom; (ii) One drop flat on the top; (iii) One drop flat on the long side; (iv) One drop flat on the short side; (v) One drop on a corner at the junction of three intersecting edges; and (2) A force applied to the...

  12. Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars

    NASA Astrophysics Data System (ADS)

    Miège, Clément; Forster, Richard R.; Brucker, Ludovic; Koenig, Lora S.; Solomon, D. Kip; Paden, John D.; Box, Jason E.; Burgess, Evan W.; Miller, Julie Z.; McNerney, Laura; Brautigam, Noah; Fausto, Robert S.; Gogineni, Sivaprasad

    2016-12-01

    We document the existence of widespread firn aquifers in an elevation range of 1200-2000 m, in the high snow-accumulation regions of the Greenland ice sheet. We use NASA Operation IceBridge accumulation radar data from five campaigns (2010-2014) to estimate a firn-aquifer total extent of 21,900 km2. We investigate two locations in Southeast Greenland, where repeated radar profiles allow mapping of aquifer-extent and water table variations. In the upper part of Helheim Glacier the water table rises in spring following above-average summer melt, showing the direct firn-aquifer response to surface meltwater production changes. After spring 2012, a drainage of the firn-aquifer lower margin (5 km) is inferred from both 750 MHz accumulation radar and 195 MHz multicoherent radar depth sounder data. For 2011-2014, we use a ground-penetrating radar profile located at our Ridgeline field site and find a spatially stable aquifer with a water table fluctuating less than 2.5 m vertically. When combining radar data with surface topography, we find that the upper elevation edge of firn aquifers is located directly downstream of locally high surface slopes. Using a steady state 2-D groundwater flow model, water is simulated to flow laterally in an unconfined aquifer, topographically driven by ice sheet surface undulations until the water encounters crevasses. Simulations suggest that local flow cells form within the Helheim aquifer, allowing water to discharge in the firn at the steep-to-flat transitions of surface topography. Supported by visible imagery, we infer that water drains into crevasses, but its volume and rate remain unconstrained.

  13. Smart Structures for Control of Optical Surfaces

    DTIC Science & Technology

    2002-03-01

    2-1 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Pressurized Lenticular Optics... lenticular . [10] . . . . . . . . . . 2-2 2.2. Schematic of 37-element piezo bimorph mirror. [4] . . . . . . . 2-3 2.3. Surface flatness improvement due to...10 flat mirror. Note slight 45◦ astigmatism (3.0λ PV, 0.36λ RMS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13 4.18. Surface

  14. Deep resistivity structure of Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Asch, Theodore H.; Rodriguez, Brian D.; Sampson, Jay A.; Wallin, Erin L.; Williams, Jackie M.

    2006-01-01

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area project. One issue of concern is the nature of the somewhat poorly constrained pre Tertiary geology and its effects on ground-water flow in the area adjacent to a nuclear test. Ground water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey, supported by the DOE and NNSA-NSO, collected and processed data from 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations at the Nevada Test Site in and near Yucca Flat to assist in characterizing the pre-Tertiary geology in that area. The primary purpose was to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (late Devonian - Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) in the Yucca Flat area. The MT and AMT data have been released in separate USGS Open File Reports. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology beneath each station. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit are generally well determined in the upper 5 km. Inferences can be made regarding the presence of the Lower Clastic Confining Unit at depths below 5 km. Large fault structures such as the CP Thrust fault, the Carpetbag fault, and the Yucca fault that cross Yucca Flat are also discernable as are other smaller faults. The subsurface electrical resistivity distribution and inferred geologic structures determined by this investigation should help constrain the hydrostratigraphic framework model that is under development.

  15. Pixel-based absolute surface metrology by three flat test with shifted and rotated maps

    NASA Astrophysics Data System (ADS)

    Zhai, Dede; Chen, Shanyong; Xue, Shuai; Yin, Ziqiang

    2018-03-01

    In traditional three flat test, it only provides the absolute profile along one surface diameter. In this paper, an absolute testing algorithm based on shift-rotation with three flat test has been proposed to reconstruct two-dimensional surface exactly. Pitch and yaw error during shift procedure is analyzed and compensated in our method. Compared with multi-rotation method proposed before, it only needs a 90° rotation and a shift, which is easy to carry out especially in condition of large size surface. It allows pixel level spatial resolution to be achieved without interpolation or assumption to the test surface. In addition, numerical simulations and optical tests are implemented and show the high accuracy recovery capability of the proposed method.

  16. Crustal modeling of the central part of the Northern Western Desert, Egypt using gravity data

    NASA Astrophysics Data System (ADS)

    Alrefaee, H. A.

    2017-05-01

    The Bouguer anomaly map of the central part of the Northern Western Desert, Egypt was used to construct six 2D gravity models to investigate the nature, physical properties and structures of the crust and upper mantle. The crustal models were constrained and constructed by integrating results from different geophysical techniques and available geological information. The depth to the basement surface, from eight wells existed across the study area, and the depth to the Conrad and Moho interfaces as well as physical properties of sediments, basement, crust and upper mantle from previous petrophysical and crustal studies were used to establish the gravity models. Euler deconvolution technique was carried on the Bouguer anomaly map to detect the subsurface fault trends. Edge detection techniques were calculated to outlines the boundaries of subsurface structural features. Basement structural map was interpreted to reveal the subsurface structural setting of the area. The crustal models reveals increasing of gravity field from the south to the north due to northward thinning of the crust. The models reveals also deformed and rugged basement surface with northward depth increasing from 1.6 km to 6 km. In contrast to the basement, the Conrad and Moho interfaces are nearly flat and get shallower northward where the depth to the Conrad or the thickness of the upper crust ranges from 18 km to 21 km while the depth to the Moho (crustal thickness) ranges from 31.5 km to 34 km. The crust beneath the study area is normal continental crust with obvious thinning toward the continental margin at the Mediterranean coast.

  17. On-Line Flatness Measurement in the Steelmaking Industry

    PubMed Central

    Molleda, Julio; Usamentiaga, Rubén; Garcίa, Daniel F.

    2013-01-01

    Shape is a key characteristic to determine the quality of outgoing flat-rolled products in the steel industry. It is greatly influenced by flatness, a feature to describe how the surface of a rolled product approaches a plane. Flatness is of the utmost importance in steelmaking, since it is used by most downstream processes and customers for the acceptance or rejection of rolled products. Flatness sensors compute flatness measurements based on comparing the length of several longitudinal fibers of the surface of the product under inspection. Two main different approaches are commonly used. On the one hand, most mechanical sensors measure the tensile stress across the width of the rolled product, while manufacturing and estimating the fiber lengths from this stress. On the other hand, optical sensors measure the length of the fibers by means of light patterns projected onto the product surface. In this paper, we review the techniques and the main sensors used in the steelmaking industry to measure and quantify flatness defects in steel plates, sheets and strips. Most of these techniques and sensors can be used in other industries involving rolling mills or continuous production lines, such as aluminum, copper and paper, to name a few. Encompassed in the special issue, State-of-the-Art Sensors Technology in Spain 2013, this paper also reviews the most important flatness sensors designed and developed for the steelmaking industry in Spain. PMID:23939583

  18. On-line flatness measurement in the steelmaking industry.

    PubMed

    Molleda, Julio; Usamentiaga, Rubén; García, Daniel F

    2013-08-09

    Shape is a key characteristic to determine the quality of outgoing flat-rolled products in the steel industry. It is greatly influenced by flatness, a feature to describe how the surface of a rolled product approaches a plane. Flatness is of the utmost importance in steelmaking, since it is used by most downstream processes and customers for the acceptance or rejection of rolled products. Flatness sensors compute flatness measurements based on comparing the length of several longitudinal fibers of the surface of the product under inspection. Two main different approaches are commonly used. On the one hand, most mechanical sensors measure the tensile stress across the width of the rolled product, while manufacturing and estimating the fiber lengths from this stress. On the other hand, optical sensors measure the length of the fibers by means of light patterns projected onto the product surface. In this paper, we review the techniques and the main sensors used in the steelmaking industry to measure and quantify flatness defects in steel plates, sheets and strips. Most of these techniques and sensors can be used in other industries involving rolling mills or continuous production lines, such as aluminum, copper and paper, to name a few. Encompassed in the special issue, State-of-the-Art Sensors Technology in Spain 2013, this paper also reviews the most important flatness sensors designed and developed for the steelmaking industry in Spain.

  19. Shape Sensing a Morphed Wing with an Optical Fiber Bragg Grating

    NASA Technical Reports Server (NTRS)

    Tai, Hsiang

    2005-01-01

    We suggest using distributed fiber Bragg sensors systems which were developed locally at Langley Research Center carefully placed on the wing surface to collect strain component information at each location. Then we used the fact that the rate change of slope in the definition of linear strain is very small and can be treated as a constant. Thereby the strain distribution information of a morphed surface can be reduced into a distribution of local slope information of a flat surface. In other words a morphed curve surface is replaced by the collection of individual flat surface of different slope. By assembling the height of individual flat surface, the morphed curved surface can be approximated. A more sophisticated graphic routine can be utilized to restore the curved morphed surface. With this information, the morphed wing can be further adjusted and controlled. A numerical demonstration is presented.

  20. Effect of salinity changes on the bacterial diversity, photosynthesis and oxygen consumption of cyanobacterial mats from an intertidal flat of the Arabian Gulf.

    PubMed

    Abed, Raeid M M; Kohls, Katharina; de Beer, Dirk

    2007-06-01

    The effects of salinity fluctuation on bacterial diversity, rates of gross photosynthesis (GP) and oxygen consumption in the light (OCL) and in the dark (OCD) were investigated in three submerged cyanobacterial mats from a transect on an intertidal flat. The transect ran 1 km inland from the low water mark along an increasingly extreme habitat with respect to salinity. The response of GP, OCL and OCD in each sample to various salinities (65 per thousand, 100 per thousand, 150 per thousand and 200 per thousand) were compared. The obtained sequences and the number of unique operational taxonomic units showed clear differences in the mats' bacterial composition. While cyanobacteria decreased from the lower to the upper tidal mat, other bacterial groups such as Chloroflexus and Cytophaga/Flavobacteria/Bacteriodetes showed an opposite pattern with the highest dominance in the middle and upper tidal mats respectively. Gross photosynthesis and OCL at the ambient salinities of the mats decreased from the lower to the upper tidal zone. All mats, regardless of their tidal location, exhibited a decrease in areal GP, OCL and OCD rates at salinities > 100 per thousand. The extent of inhibition of these processes at higher salinities suggests an increase in salt adaptation of the mats microorganisms with distance from the low water line. We conclude that the resilience of microbial mats towards different salinity regimes on intertidal flats is accompanied by adjustment of the diversity and function of their microbial communities.

  1. Silicone-Rubber Microvalves Actuated by Paraffin

    NASA Technical Reports Server (NTRS)

    Svelha, Danielle; Feldman, Sabrina; Barsic, David

    2004-01-01

    Microvalves containing silicone-rubber seals actuated by heating and cooling of paraffin have been proposed for development as integral components of microfluidic systems. In comparison with other microvalves actuated by various means (electrostatic, electromagnetic, piezoelectric, pneumatic, and others), the proposed valves (1) would contain simpler structures that could be fabricated at lower cost and (2) could be actuated by simpler (and thus less expensive) control systems. Each valve according to the proposal would include a flow channel bounded on one side by a flat surface and on the other side by a curved surface defined by an arched-cross-section, elastic seal made of silicone rubber [polydimethylsilane (PDMS)]. The seal would be sized and shaped so that the elasticity of the PDMS would hold the channel open except when the seal was pressed down onto the flat surface to close the channel. The principle of actuation would exploit the fact that upon melting or freezing, the volume of a typical paraffin increases or decreases, respectively, by about 15 percent. In a valve according to the proposal, the seal face opposite that of the channel would be in contact with a piston-like plug of paraffin. In the case of a valve designed to be normally open at ambient temperature, one would use a paraffin having a melting temperature above ambient. The seal would be pushed against the flat surface to close the channel by heating the paraffin above its melting temperature. In the case of a valve designed to be normally closed at ambient temperature, one would use a paraffin having a melting temperature below ambient. The seal would be allowed to spring away from the flat surface to open the channel by cooling the paraffin below its melting temperature. The availability of paraffins that have melting temperatures from 70 to +80 C should make it possible to develop a variety of normally closed and normally open valves. The figure depicts examples of prototype normally open and normally closed valves according to the proposal. In each valve, an arch cross section defining a channel having dimensions of the order of tens of micrometers would be formed in a silicone-rubber sheet about 40 m thick. The silicone rubber sheet would be hermetically sealed to a lower glass plate that would define the sealing surface and to an upper glass plate containing a well. The well would be filled with paraffin and capped with a rigid restraining layer of epoxy. In the normally open valve, the paraffin would have a melting temperature above ambient (e.g., 40 C) and the wall of the well would be coated with a layer of titanium that would serve as an electric heater. In the normally closed valve, the paraffin would have a melting temperature below ambient (e.g.-5 C). Instead of a heater in the well, the normally closed valve would include a thermoelectric cooler on top of the epoxy cap.

  2. The AXAF technology program: The optical flats tests

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Harper, J. D.; Reily, J. C.; Weisskopf, M. C.; Wyman, C. L.; Zombeck, M.

    1984-01-01

    The results of a technology program aimed at determining the limits of surface polishing for reflecting X-ray telescopes is presented. This program is part of the major task of developing the Advanced X-ray Astrophysical Facility (AXAF). By studying the optical properties of state-of-the-art polished flat surfaces, conclusions were drawn as to the potential capability of AXAF. Surface microtopography of the flats as well as their figure are studied by X-ray, visual, and mechanical techniques. These techniques and their results are described. The employed polishing techniques are more than adequate for the specifications of the AXAF mirrors.

  3. Flowers of Cypripedium fargesii (Orchidaceae) fool flat-footed flies (Platypezidae) by faking fungus-infected foliage

    PubMed Central

    Ren, Zong-Xin; Li, De-Zhu; Bernhardt, Peter; Wang, Hong

    2011-01-01

    Charles Darwin was fascinated by the orchid–pollinator interactions, but he did not realize that many orchid species are pollinated by deceit. Cypripedium, a model lineage of nonrewarding orchid flowers, is pollinated primarily by bees. Here we present both an example of floral mimesis of fungus-infected foliage in orchids and an example of flat-footed flies (Agathomyia sp.; Platypezidae) as pollen vectors for angiosperms. Cypripedium fargesii is a nectarless, terrestrial, endangered orchid from southwestern China that requires cross-pollination to produce the maximum number of viable embryos. All insects caught entering or leaving the labellum sac were Agathomyia sp. carrying conidia of Cladosporium sp. on their mouthparts and legs, suggesting mycophagy. Blackish hairy spots on the upper surface of foliage may imitate black mold spots, serving as short-term visual lures. Some odor molecules also associated with Cladosporium cultures were isolated in the floral scent. Mimesis of fungus-infected foliage probably represents an overlooked but important option in angiosperm diversification, because there are three to five more Cypripedium spp. in southwestern China with the same mode of floral presentation and black-spotted hairy leaves. PMID:21502502

  4. Flowers of Cypripedium fargesii (Orchidaceae) fool flat-footed flies (Platypezidae) by faking fungus-infected foliage.

    PubMed

    Ren, Zong-Xin; Li, De-Zhu; Bernhardt, Peter; Wang, Hong

    2011-05-03

    Charles Darwin was fascinated by the orchid-pollinator interactions, but he did not realize that many orchid species are pollinated by deceit. Cypripedium, a model lineage of nonrewarding orchid flowers, is pollinated primarily by bees. Here we present both an example of floral mimesis of fungus-infected foliage in orchids and an example of flat-footed flies (Agathomyia sp.; Platypezidae) as pollen vectors for angiosperms. Cypripedium fargesii is a nectarless, terrestrial, endangered orchid from southwestern China that requires cross-pollination to produce the maximum number of viable embryos. All insects caught entering or leaving the labellum sac were Agathomyia sp. carrying conidia of Cladosporium sp. on their mouthparts and legs, suggesting mycophagy. Blackish hairy spots on the upper surface of foliage may imitate black mold spots, serving as short-term visual lures. Some odor molecules also associated with Cladosporium cultures were isolated in the floral scent. Mimesis of fungus-infected foliage probably represents an overlooked but important option in angiosperm diversification, because there are three to five more Cypripedium spp. in southwestern China with the same mode of floral presentation and black-spotted hairy leaves.

  5. Simulation and Modeling of Self-Assembled Monolayers of Carboxylic Acid Thiols on Flat and Nanoparticle Gold Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Techane, Sirnegeda D.; Baer, Donald R.; Castner, David G.

    2011-09-01

    Quantitative analysis of the 16-mercaptohexadecanoic acid self-assembled monolayer (C16 COOH-SAM) layer thickness on gold nanoparticles (AuNPs) was performed using simulation of electron spectra for surface analysis (SESSA) and x-ray photoelectron spectroscopy (XPS). XPS measurements of C16 COOH SAMs on flat gold surfaces were made at 9 different photoelectron take-off angles (5o to 85o in 5o increments), corrected using geometric weighting factors and then summed together to approximate spherical AuNPs. The SAM thickness and relative surface roughness (RSA) in SESSA were optimized to determine the best agreement between simulated and experimental surface composition. Based on the glancing angle results, it wasmore » found that inclusion of a hydrocarbon contamination layer on top the C16 COOH-SAM was necessary to improve the agreement between the SESSA and XPS results. For the 16 COOH-SAMs on flat Au surfaces, using a SAM thickness of 1.1Å/CH2 group, an RSA of 1.05 and a 1.5Å CH2-contamination overlayer (total film thickness = 21.5Å) for the SESSA calculations provided the best agreement with the experimental XPS data. After applying the appropriate geometric corrections and summing the SESSA flat surface compositions, the best fit results for the 16 COOH-SAM thickness and surface roughness on the AuNPs were determined to be 0.9Å/CH2 group and 1.06 RSA with a 1.5Å CH2-contamination overlayer (total film thickness = 18.5Å). The three angstrom difference in SAM thickness between the flat Au and AuNP surfaces suggests the alkyl chains of the SAM are slightly more tilted or disordered on the AuNP surfaces.« less

  6. Wildlife surveys and monitoring with the Use of remote camera traps in the Greater Oak Flat Watershed near Superior, Arizona

    Treesearch

    Roger Featherstone; Sky Jacobs; Sergio Avila-Villegas; Sandra Doumas

    2013-01-01

    In September 2011, we initiated a 2-year “camera trap” mammal survey in the Greater Oak Flat Watershed near Superior, Arizona. Our survey area covers a total of 6,475 ha. The area surveyed is primarily a mixing zone of upper Sonoran Desert and interior chaparral, with influences from the Madrean vegetation community. Elevations range from 1150 to 1450 m. Ten cameras...

  7. Environmental Assessment for the Expansion of the Yukon Measurement and Debriefing System in the Fox and Yukon MOAs

    DTIC Science & Technology

    2006-05-01

    River, Porcupine River, Chandalar River, and the upper portion of the Yukon River. The southern portion of the area is drained by the Fortymile River...physiographic features in the central 17 EA for Expansion of YMDS April2006 portion are the Porcupine Plateau and the Yukon Flats. The Yukon Flats...mile. The Fortymile caribou herd utilizes the surrounding area as its principle winter range. Since 1995, the Fortymile caribou herd has increased

  8. Spectral characterization of the LANDSAT Thematic Mapper sensors

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Barker, J. L.

    1984-01-01

    The spectral coverage characteristics of the two thematic mapper instruments were determined by analyses of spectral measurements of the optics, filters, and detectors. The following results are presented: (1) band 2 and 3 flatness was slightly below specification, and band 7 flatness was below specification; (2) band 5 upper-band edge was higher than specifications; (3) band 2 band edges were shifted upward about 9 nm relative to nominal; and (4) band 4, 5, and 7 lower band edges were 16 to 18 nm higher then nominal.

  9. Capturing and stitching images with a large viewing angle and low distortion properties for upper gastrointestinal endoscopy

    NASA Astrophysics Data System (ADS)

    Liu, Ya-Cheng; Chung, Chien-Kai; Lai, Jyun-Yi; Chang, Han-Chao; Hsu, Feng-Yi

    2013-06-01

    Upper gastrointestinal endoscopies are primarily performed to observe the pathologies of the esophagus, stomach, and duodenum. However, when an endoscope is pushed into the esophagus or stomach by the physician, the organs behave similar to a balloon being gradually inflated. Consequently, their shapes and depth-of-field of images change continually, preventing thorough examination of the inflammation or anabrosis position, which delays the curing period. In this study, a 2.9-mm image-capturing module and a convoluted mechanism was incorporated into the tube like a standard 10- mm upper gastrointestinal endoscope. The scale-invariant feature transform (SIFT) algorithm was adopted to implement disease feature extraction on a koala doll. Following feature extraction, the smoothly varying affine stitching (SVAS) method was employed to resolve stitching distortion problems. Subsequently, the real-time splice software developed in this study was embedded in an upper gastrointestinal endoscope to obtain a panoramic view of stomach inflammation in the captured images. The results showed that the 2.9-mm image-capturing module can provide approximately 50 verified images in one spin cycle, a viewing angle of 120° can be attained, and less than 10% distortion can be achieved in each image. Therefore, these methods can solve the problems encountered when using a standard 10-mm upper gastrointestinal endoscope with a single camera, such as image distortion, and partial inflammation displays. The results also showed that the SIFT algorithm provides the highest correct matching rate, and the SVAS method can be employed to resolve the parallax problems caused by stitching together images of different flat surfaces.

  10. Forearm and upper-arm oscillometric blood pressure comparison in acutely ill adults.

    PubMed

    Schell, Kathleen; Morse, Kate; Waterhouse, Julie K

    2010-04-01

    When patients' upper arms are not accessible and/or when cuffs do not fit large upper arms, the forearm site is often used for blood pressure (BP) measurement. The purpose of this study is to compare forearm and upper-arm BPs in 70 acutely ill adults, admitted to a community hospital's 14-bed ICU. Using Philips oscillometric monitors, three repeated measures of forearm and upper-arm BPs are obtained with head of bed flat and with head of bed elevated at 30 degrees. Arms are resting on the bed. Paired t tests show statistically significant differences in systolic BPs, diastolic BPs, and mean arterial pressures in the supine and head-elevated positions. Bland-Altman analyses indicate that forearm and upper-arm oscillometric BPs are not interchangeable in acutely ill adults.

  11. Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6: Salt Valley

    NASA Astrophysics Data System (ADS)

    1984-12-01

    Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker trail formation.

  12. Characterizing the recovery of a solid surface after tungsten nano-tendril formation

    NASA Astrophysics Data System (ADS)

    Wright, G. M.; van Eden, G. G.; Kesler, L. A.; De Temmerman, G.; Whyte, D. G.; Woller, K. B.

    2015-08-01

    Recovery of a flat tungsten surface from a nano-tendril surface is attempted through three techniques; a mechanical wipe, a 1673 K annealing, and laser-induced thermal transients. Results were determined through SEM imaging and elastic recoil detection to assess the helium content in the surface. The mechanical wipe leaves a ∼0.5 μm deep layer of nano-tendrils on the surface post-wipe regardless of the initial nano-tendril layer depth. Laser-induced thermal transients only significantly impact the surface morphology at heat loads of 35.2 MJ/m2 s1/2 or above, however a fully flat or recovered surface was not achieved for 100 transients at this heat load despite reducing the helium content by a factor of ∼7. A 1673 K annealing removes all detectable levels of helium but sub-surface voids/bubbles remain intact. The surface is recovered to a nearly flat state with only some remnants of nano-tendrils re-integrating into the surface remaining.

  13. Method for preparing ultraflat, atomically perfect areas on large regions of a crystal surface by heteroepitaxy deposition

    DOEpatents

    El Gabaly, Farid; Schmid, Andreas K.

    2013-03-19

    A novel method of forming large atomically flat areas is described in which a crystalline substrate having a stepped surface is exposed to a vapor of another material to deposit a material onto the substrate, which material under appropriate conditions self arranges to form 3D islands across the substrate surface. These islands are atomically flat at their top surface, and conform to the stepped surface of the substrate below at the island-substrate interface. Thereafter, the deposited materials are etched away, in the etch process the atomically flat surface areas of the islands transferred to the underlying substrate. Thereafter the substrate may be cleaned and annealed to remove any remaining unwanted contaminants, and eliminate any residual defects that may have remained in the substrate surface as a result of pre-existing imperfections of the substrate.

  14. Direct observation for atomically flat and ordered vertical {111} side-surfaces on three-dimensionally figured Si(110) substrate using scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Haoyu; Hattori, Azusa N.; Ohata, Akinori; Takemoto, Shohei; Hattori, Ken; Daimon, Hiroshi; Tanaka, Hidekazu

    2017-11-01

    A three-dimensional Si{111} vertical side-surface structure on a Si(110) wafer was fabricated by reactive ion etching (RIE) followed by wet-etching and flash-annealing treatments. The side-surface was studied with scanning tunneling microscopy (STM) in atomic scale for the first time, in addition to atomic force microscopy (AFM), scanning electron microscopy (SEM), and low-energy electron diffraction (LEED). AFM and SEM showed flat and smooth vertical side-surfaces without scallops, and STM proved the realization of an atomically-flat 7 × 7-reconstructed structure, under optimized RIE and wet-etching conditions. STM also showed that a step-bunching occurred on the produced {111} side-surface corresponding to a reversely taped side-surface with a tilt angle of a few degrees, but did not show disordered structures. Characteristic LEED patterns from both side- and top-reconstructed surfaces were also demonstrated.

  15. 9. DETAIL OF DECORATIVE MORTAR AND COBBLESTONE WORK ON TYPICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF DECORATIVE MORTAR AND COBBLESTONE WORK ON TYPICAL POST ON UPSTREAM PARAPET WALL OF UPPER EMBANKMENT. VIEW TO SOUTH. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  16. Face specificity and the role of metal adatoms in molecular reorientation at surfaces

    NASA Astrophysics Data System (ADS)

    Perry, C. C.; Haq, S.; Frederick, B. G.; Richardson, N. V.

    1998-07-01

    Using reflection absorption infrared spectroscopy (RAIRS), the coverage-dependent reorientation of the benzoate species on the (110) and (111) faces of copper is compared and contrasted. Whereas on Cu(110) benzoate reorients from a flat-lying to an upright orientation with increasing coverage, on Cu(111), at all coverages, benzoate is aligned normal to the surface. The formation of periodic, flat-lying copper-benzoate structures has been attributed to the availability of metal adatoms, which differs dramatically between the (111) and (110) faces. We discuss the face specificity of molecular orientation by comparing calculated formation energies of adatom vacancies from ledges and kink sites on (100), (110) and (111) faces. Further support for this model is given by the evaporation of sodium, either by pre- or post-dosing, onto low-coverage benzoate/Cu(111), which induces benzoate to convert from a perpendicular to a parallel orientation. Likewise, coevaporation of Cu while dosing benzoic acid onto the Cu(111) surface also results in a majority of flat-lying benzoate species. Finally, for adsorption on the p(2×1)O/Cu(110) reconstruction, benzoate occurs only as the upright species, which is consistent with reducing the copper mobility and availability on the (110) face. We therefore suggest the possible role of metal adatoms as a new mechanism in controlling adsorbate orientation and therefore face specificity in surface reactions.

  17. Effects of gas adsorption isotherm and liquid contact angle on capillary force for sphere-on-flat and cone-on-flat geometries.

    PubMed

    Hsiao, Erik; Marino, Matthew J; Kim, Seong H

    2010-12-15

    This paper explains the origin of the vapor pressure dependence of the asperity capillary force in vapor environments. A molecular adsorbate layer is readily formed on solid surface in ambient conditions unless the surface energy of the solid is low enough and unfavorable for vapor adsorption. Then, the capillary meniscus formed around the solid asperity contact should be in equilibrium with the adsorbate layer, not with the bare solid surface. A theoretical model incorporating the vapor adsorption isotherm into the solution of the Young-Laplace equation is developed. Two contact geometries--sphere-on-flat and cone-on-flat--are modeled. The calculation results show that the experimentally-observed strong vapor pressure dependence can be explained only when the adsorption isotherm of the vapor on the solid surface is taken into account. The large relative partial pressure dependence mainly comes from the change in the meniscus size due to the presence of the adsorbate layer. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Experimental data and model for the turbulent boundary layer on a convex, curved surface

    NASA Technical Reports Server (NTRS)

    Gillis, J. C.; Johnson, J. P.; Moffat, R. J.; Kays, W. M.

    1981-01-01

    Experiments were performed to determine how boundary layer turbulence is affected by strong convex curvature. The data gathered on the behavior of the Reynolds stress suggested the formulation of a simple turbulence model. Data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero. Two experiments were performed at delta/R approximately 0.10, and one at weaker curvature with delta/R approximately 0.05. Results show that after a sudden introduction of curvature the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. When the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions. A simple turbulence model, which was based on the theory that the Prandtl mixing length in the outer layer should scale on the velocity gradient layer, was shown to account for the slow recovery.

  19. Sharp transition from ripple patterns to a flat surface for ion beam erosion of Si with simultaneous co-deposition of iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, K.; Broetzmann, M.; Hofsaess, H.

    We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30 Degree-Sign incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}) over dot patterns (2-8 Multiplication-Sign 10{sup 15}more » Fe/cm{sup 2}), ripples patterns (8-17 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}), pill bug structures (1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness {approx} 18 nm) to a rather flat surface (rms roughness {approx} 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi{sub 2}. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.« less

  20. Tubular copper thrust chamber design study

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.

    1992-01-01

    The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer.

  1. Gravitating Q-balls in the Affleck-Dine mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamaki, Takashi; Sakai, Nobuyuki; Department of Education, Yamagata University, Yamagata 990-8560

    2011-04-15

    We investigate how gravity affects ''Q-balls'' with the Affleck-Dine potential V{sub AD}({phi}):=(m{sup 2}/2){phi}{sup 2} [1+Kln(({phi}/M)){sup 2}]. Contrary to the flat case, in which equilibrium solutions exist only if K<0, we find three types of gravitating solutions as follows. In the case that K<0, ordinary Q-ball solutions exist; there is an upper bound of the charge due to gravity. In the case that K=0, equilibrium solutions called (mini-)boson stars appear due to gravity; there is an upper bound of the charge, too. In the case that K>0, equilibrium solutions appear, too. In this case, these solutions are not asymptotically flat butmore » surrounded by Q-matter. These solutions might be important in considering a dark matter scenario in the Affleck-Dine mechanism.« less

  2. Comparison of various techniques for calibration of AIS data

    NASA Technical Reports Server (NTRS)

    Roberts, D. A.; Yamaguchi, Y.; Lyon, R. J. P.

    1986-01-01

    The Airborne Imaging Spectrometer (AIS) samples a region which is strongly influenced by decreasing solar irradiance at longer wavelengths and strong atmospheric absorptions. Four techniques, the Log Residual, the Least Upper Bound Residual, the Flat Field Correction and calibration using field reflectance measurements were investigated as a means for removing these two features. Of the four techniques field reflectance calibration proved to be superior in terms of noise and normalization. Of the other three techniques, the Log Residual was superior when applied to areas which did not contain one dominant cover type. In heavily vegetated areas, the Log Residual proved to be ineffective. After removing anomalously bright data values, the Least Upper Bound Residual proved to be almost as effective as the Log Residual in sparsely vegetated areas and much more effective in heavily vegetated areas. Of all the techniques, the Flat Field Correction was the noisest.

  3. Anomalous increase of solar anisotropy above 150GV in 1981-1983

    NASA Technical Reports Server (NTRS)

    Ueno, H.; Fujii, Z.; Mori, S.; Morishita, I.; Nagashima, K.

    1985-01-01

    An analysis was carried out of the observed data with Nagoya (surface). Misato (34mwe) and Sakashita (80mwe) multidirectional muon telescope, for the solar activity maximum period of 1978-1983. These data respond to primaries extending over the median rigidity range 60GV to 600GV. The observed amplitude at Sakashita station in 1981-1983 increased, especially in 1982; the amplitude is twice as large as that in 1978-1980, when those at Nagoya and Misato stations are nearly the same as those in 1978-1980. Uni-directional anisotropy is derived by the best fit method by assuming the flat rigidity spectrum with the upper cutoff rigidity Pu. The value of Pu obtained is 270GV in 1981-1983 and 150GV in 1978-1980.

  4. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography.

    PubMed

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-11-04

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.

  5. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-11-01

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.

  6. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography

    PubMed Central

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-01-01

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer. PMID:27812006

  7. Method Of Making A Vacuum-Tight Continuous Cable Feedthrough Device

    DOEpatents

    Bazizi, Kamel Abdel; Haelen, Thomas Eugene; Lobkowicz, Frederick; Slattery, Paul Francis

    2001-07-17

    A vacuum-tight cable feedthrough device includes a metallic first flange that is penetrated by a slot. Passing through the slot is a flat stripline cable that includes a plurality of conductive signal channels encompassed by a dielectric material on whose upper and lower surfaces is disposed a conductive material includes a ground. The stripline cable is sealed within the slot to provide a substantially vacuum-tight seal between the cable and the first flange. In a preferred embodiment, the cable feedthrough device includes a plurality, at least 16, of stripline cables. In a further preferred embodiment, the device includes a second flange and a bellows sealably connecting the first and second flanges, thereby providing a substantially vacuum-tight, flexible housing for the plurality of cables.

  8. Effect of nanostructured surface configuration on evaporation and condensation characteristics of thin film liquid argon in a nano-scale confinement

    NASA Astrophysics Data System (ADS)

    Kuri, Subrata Kumar; Rakibuzzaman, S. M.; Sabah, Arefiny; Ahmed, Jannat; Hasan, Mohammad Nasim

    2017-12-01

    Molecular dynamics simulation has been carried out to go through the evaporation and condensation characteristics of thin liquid argon film in nanoscale confinement having nanostructured boundary. Nanoscale confinement under consideration consists of hot and cold parallel platinum plates at the bottom and top end of a model cuboid inside which the fluid domain comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the confinement. Three different confinement configurations have been considered here: (i) Both platinum plates are flat, (ii) Upper plate consisting of transverse slots and (iii) Both plates consisting of transverse slots. The height of the slots is 1.5 nm. Considering hydrophilic nature of top and bottom plates, two different high temperatures of the hot wall was set and an observation was made. For all the structures, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall is set to two different temperatures like 110 K and 250 K for all three models to perform non-equilibrium molecular dynamics (NEMD). Various system characteristics such as atomic distribution, wall heat flux, evaporative mass flux etc. have been obtained and discussed to have a clear understanding of the effect of nanotextured surface on phase change phenomena.

  9. The Role of Interface Shape on the Impact Characteristics and Cranial Fracture Patterns Using the Immature Porcine Head Model,.

    PubMed

    Vaughan, Patrick E; Vogelsberg, Caitlin C M; Vollner, Jennifer M; Fenton, Todd W; Haut, Roger C

    2016-09-01

    The forensic literature suggests that when adolescents fall onto edged and pointed surfaces, depressed fractures can occur at low energy levels. This study documents impact biomechanics and fracture characteristics of infant porcine skulls dropped onto flat, curved, edged, and focal surfaces. Results showed that the energy needed for fracture initiation was nearly four times higher against a flat surface than against the other surfaces. While characteristic measures of fracture such as number and length of fractures did not vary with impact surface shape, the fracture patterns did depend on impact surface shape. While experimental impacts against the flat surface produced linear fractures initiating at sutural boundaries peripheral to the point of impact (POI), more focal impacts produced depressed fractures initiating at the POI. The study supported case-based forensic literature suggesting cranial fracture patterns depend on impact surface shape and that fracture initiation energy is lower for more focal impacts. © 2016 American Academy of Forensic Sciences.

  10. Study of role of meniscus and viscous forces during liquid-mediated contacts separation

    NASA Astrophysics Data System (ADS)

    Dhital, Prabin

    Menisci may form between two solid surfaces with the presence of an ultra-thin liquid film. When the separation operation is needed, meniscus and viscous forces contribute to an adhesion leading stiction, high friction, possibly high wear and potential failure of the contact systems, for instance microdevices, magnetic head disks and diesel fuel injectors. The situation may become more pronounced when the contacting surfaces are ultra-smooth and the normal load is small. Various design parameters, such as contact angle, initial separation height, surface tension and liquid viscosity, have been investigated during liquid-mediated contact separation. However, how the involved forces will change roles for various liquid is of interest and is necessary to be studied. In this study, meniscus and viscous forces due to water and liquid lubricants during separation of two flat surfaces are studied. Previously established mathematical model for meniscus and viscous forces during flat on flat contact separation is simulated. The effect of meniscus and viscous force on critical meniscus area at which those forces change role is studied with different liquid properties for flat on flat contact surfaces. The roles of the involved forces at various meniscus areas are analyzed. Experiments are done in concerns to studying the effect of surface roughness on contact angle. The impact of liquid properties, initial separation heights and contact angle on critical meniscus area for different liquid properties are analyzed. The study provides a fundamental understanding of the forces of the separation process and its value for the design of interfaces. The effect of surface roughness and liquid properties on contact angle are studied.

  11. Liquefaction Effects from the Bhuj earthquake

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These MISR images show the Kachchh region in the Gujarat province of western India. On January 26, 2001, a magnitude 7.7 earthquake devastated this area, killing 20,000 people and destroying buildings, dams, and port facilities. The two upper MISR images are pre- and post-earthquake scenes acquired on January 15 and January 31, 2001, respectively (Terra orbits 5736 and 5969). They are 'true-color' images made by combining the red, green and blue bands from the nadir (vertically down-looking) camera. The two lower views are 'false-color' images made by combining the red bands from three different cameras. Blue is assigned to the camera pointing 70 degrees forward (more sun-facing), green to the nadir camera, and red to the camera pointing 70 degrees aftward. Each of these images is about 275 kilometers wide by 218 kilometers high.

    The earthquake epicenter was just below the southern tip of the large, white area on the right-hand side of the images, and about 70 kilometers northeast of the city of Bhuj. The earthquake may have occurred on the Kachchh Mainland Fault, which extends from the region of the epicenter westward along the curved boundary between the darker brown region to the south and the lighter brown area north of it. The compressive stresses responsible for the earthquake are related to the collision of India with Asia and the resulting rise of the Himalayas to the northeast.

    That part of the Kachchh region which lies north of the Kachchh Mainland Fault includes the Banni Plains and the Rann of Kachchh. It is a low, flat basin characterized by salt pans and mud flats. The salt forms in the Rann of Kachchh as mineral-laden waters evaporate. The salt flats can be seen in the nadir images as highly reflective, white and gray areas. During the earthquake, strong shaking produced liquefaction in the fine silts and sands below the water table in the Rann of Kachchh. This caused the mineral grains to settle and expel their interstitial water to the surface. Field investigations have found abundant evidence of mud volcanos, sand boils, and fissures from which salty ground water erupted over an area exceeding 10,000 square kilometers. Evidence of the expelled water can also be seen on the MISR images.

    Notice the delicate, dendritic pattern of stream channels throughout many of the salt-flats on the post-earthquake image, especially due north of the epicenter. These carried water brought to the surface by liquefaction during the earthquake. Areas where shallow surface water is present are much easier to see on the false-color multi-angle composite images. Wet areas are exhibiting a combination of enhanced forward-scattered light due to the reflection by the water, and enhanced backward scattering due to surface roughness or the presence of sediments. This combination results in blue to purple hues.

    The region of sand dunes in the upper right and the Indus River valley and delta in the upper left are inside Pakistan. Near the top of the images, there is an east-west trending linear feature separating the Thar desert of Pakistan from the Rann of Kachchh. This is the Nagar Parkar Fault. On both pre-earthquake images, this feature is evident only from the contrasting brown colors on either side of it. On the post-earthquake images, a narrow ribbon defines the boundary between the two geologic provinces. However, only in the multi-angle composite do we see evidence that this ribbon may be a water-filled channel. Because this area is politically sensitive and fairly inaccessible, no field teams have been able to verify liquefaction effects or the presence of water there.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  12. Relationship between the parent material and the soil, in plain and mountainous areas

    NASA Astrophysics Data System (ADS)

    Kerek, Barbara; Kuti, Laszlo; Dobos, Timea; Vatai, Jozsef; Szentpetery, Ildiko

    2013-04-01

    One of the most important tasks of the soil is the nutrition of plants. This function is determinated by those parts of the geological media on what is the soil situated and from what the soil was formed (those two can be different). Soil can be formed definitely just from sediment, so it is more proper to speak about parent material than parent rock. Soil forming sediment is defined as the loose sediment on the surface, which is the upper layer of near-surface rocks in flat and hilly regions, and it is the upper layer of the sediment-ensemble situated on the undisturbed bedrock in mountainous areas. Considering its origin, these sediments could be autochthon or allochton. Soil forming is determinated, besides other factors (climate, elevation, vegetation, etc.), by the parent material, which has a crucial influence on the type, quality and fertility of soils through its mineral composition, physical and chemical characteristics. Agrogeological processes happen in the superficial loose sediments in mountainous areas, but the underlying solid rock (where on the surface or close to it, there is solid rock), has an effect on them. The plain and hilly regions covered by thick loose sediment and the areas build up by solid rock and covered with thinner loose sediment in mountainous areas should be searched separately. In plain areas the near-surface formations have to be studied as a whole down to the saturated zone, but at least to 10 m. In regions of mountain and mountain fronts, the thickness, the composition and genetics of the young unconsolidated sediments situated above the older solid rocks have a vital importance, and also the relations among the soils, soil forming sediments and the base rocks have to be understood.

  13. Length estimations of presumed upward connecting leaders in lightning flashes to flat water and flat ground

    NASA Astrophysics Data System (ADS)

    Stolzenburg, Maribeth; Marshall, Thomas C.; Karunarathne, Sumedhe; Orville, Richard E.

    2018-10-01

    Using video data recorded at 50,000 frames per second for nearby negative lightning flashes, estimates are derived for the length of positive upward connecting leaders (UCLs) that presumably formed prior to new ground attachments. Return strokes were 1.7 to 7.8 km distant, yielding image resolutions of 4.25 to 19.5 m. No UCLs are imaged in these data, indicating those features were too transient or too dim compared to other lightning processes that are imaged at these resolutions. Upper bound lengths for 17 presumed UCLs are determined from the height above flat ground or water of the successful stepped leader tip in the image immediately prior to (within 20 μs before) the return stroke. Better estimates of maximum UCL lengths are determined using the downward stepped leader tip's speed of advance and the estimated return stroke time within its first frame. For 17 strokes, the upper bound length of the possible UCL averages 31.6 m and ranges from 11.3 to 50.3 m. Among the close strokes (those with spatial resolution <8 m per pixel), the five which connected to water (salt water lagoon) have UCL upper bound estimates averaging significantly shorter (24.1 m) than the average for the three close strokes which connected to land (36.9 m). The better estimates of maximum UCL lengths for the eight close strokes average 20.2 m, with slightly shorter average of 18.3 m for the five that connected to water. All the better estimates of UCL maximum lengths are <38 m in this dataset

  14. Kinematic analysis of the thoracic limb of healthy dogs during descending stair and ramp exercises.

    PubMed

    Kopec, Nadia L; Williams, Jane M; Tabor, Gillian F

    2018-01-01

    OBJECTIVE To compare the kinematics of the thoracic limb of healthy dogs during descent of stairs and a ramp with those during a trot across a flat surface (control). ANIMALS 8 privately owned dogs. PROCEDURES For each dog, the left thoracic limb was instrumented with 5 anatomic markers to facilitate collection of 2-D kinematic data during each of 3 exercises (descending stairs, descending a ramp, and trotting over a flat surface). The stair exercise consisted of 4 steps with a 35° slope. For the ramp exercise, a solid plank was placed over the steps to create a ramp with a 35° slope. For the flat exercise, dogs were trotted across a flat surface for 2 m. Mean peak extension, peak flexion, and range of movement (ROM) of the shoulder, elbow, and carpal joints were compared among the 3 exercises. RESULTS Mean ROM for the shoulder and elbow joints during the stair exercise were significantly greater than during the flat exercise. Mean peak extension of the elbow joint during the flat exercise was significantly greater than that during both the stair and ramp exercises. Mean peak flexion of the elbow joint during the stair exercise was significantly greater than that during the flat exercise. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that descending stairs may be beneficial for increasing the ROM of the shoulder and elbow joints of dogs. Descending stair exercises may increase elbow joint flexion, whereas flat exercises may be better for targeting elbow joint extension.

  15. Solution algorithm of dwell time in slope-based figuring model

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhou, Lin

    2017-10-01

    Surface slope profile is commonly used to evaluate X-ray reflective optics, which is used in synchrotron radiation beam. Moreover, the measurement result of measuring instrument for X-ray reflective optics is usually the surface slope profile rather than the surface height profile. To avoid the conversion error, the slope-based figuring model is introduced introduced by processing the X-ray reflective optics based on surface height-based model. However, the pulse iteration method, which can quickly obtain the dell time solution of the traditional height-based figuring model, is not applied to the slope-based figuring model because property of the slope removal function have both positive and negative values and complex asymmetric structure. To overcome this problem, we established the optimal mathematical model for the dwell time solution, By introducing the upper and lower limits of the dwell time and the time gradient constraint. Then we used the constrained least squares algorithm to solve the dwell time in slope-based figuring model. To validate the proposed algorithm, simulations and experiments are conducted. A flat mirror with effective aperture of 80 mm is polished on the ion beam machine. After iterative polishing three times, the surface slope profile error of the workpiece is converged from RMS 5.65 μrad to RMS 1.12 μrad.

  16. Experimental Investigation of the Effect of Burnishing Force on Service Properties of AISI 1010 Steel Plates

    NASA Astrophysics Data System (ADS)

    Gharbi, F.; Sghaier, S.; Morel, F.; Benameur, T.

    2015-02-01

    This paper presents the results obtained with a new ball burnishing tool developed for the mechanical treatment of large flat surfaces. Several parameters can affect the mechanical behavior and fatigue of workpiece. Our study focused on the effect of the burnishing force on the surface quality and on the service properties (mechanical behavior, fatigue) of AISI 1010 steel hot-rolled plates. Experimental results assert that burnishing force not exceeding 300 N causes an increase in the ductility. In addition, results indicated that the effect of the burnishing force on the residual surface stress was greater in the direction of advance than in the cross-feed direction. Furthermore, the flat burnishing surfaces did not improve the fatigue strength of AISI 1010 steel flat specimens.

  17. Novel reef fabrics from the Devonian Canning Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Wood, Rachel

    1998-11-01

    Large cement-filled cavities (0.2 to 1.5 m wide) are well developed in slope-margin sediments of the spectacular Upper Devonian (Frasnian) reefs of the Canning Basin, Western Australia, where they account for up to 50% of the primary porosity. These are here interpreted as primary reef framework cavities that formed beneath a variety of domal, tabular or laminar stromatoporoid sponges. Of particular note are those created by unusual, very thin (2 to 8 mm), laminar stromatoporoids (mainly Stachyodes australe), that formed arching, hollow domes up to 0.3 m in height and 1.5 m in diameter over the sediment surface to enclose flat-based cavities. The free undersurface of these stromatoporoids often supported a hitherto unrecognised cryptic community, dominated by pendent growth of the putative calcified cyanobacterium Renalcis, with rare intergrown lithistid sponges and spiny atrypid brachiopods. The uneven growth surface of the cryptos imparts an irregular, stromatactis-like texture to the upper surface of the remaining cavity, which is filled by early marine, finely banded, fibrous cements (mainly radiaxial calcite) interbedded with often multiple generations of geopetal sediment containing peloids and ostracod debris. This ecology yields the tabular stromatoporoid- Renalcis fabric described ubiquitously from the Canning Basin reef complex. Such unusual reef fabrics are a consequence of the ecology of shallow marine mid-Palaeozoic reefs which were quite unlike that of modern coral reefs. The frequent preservation of relatively delicate, in situ communities was due to (1) rapid and pervasive early cementation, (2) growth under non-energetic conditions, and (3) the relative insignificance of bioeroders associated with reefs at this time.

  18. 49 CFR 173.4 - Small quantities for highway and rail.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... drops made from a height of 1.8 m (5.9 feet) directly onto a solid unyielding surface without breakage... package: (A) One drop flat on bottom; (B) One drop flat on top; (C) One drop flat on the long side; (D) One drop flat on the short side; and (E) One drop on a corner at the junction of three intersecting...

  19. Influence of Surface Texture and Roughness of Softer and Harder Counter Materials on Friction During Sliding

    NASA Astrophysics Data System (ADS)

    Menezes, Pradeep L.; Kishore; Kailas, Satish V.; Lovell, Michael R.

    2015-01-01

    Surface texture influences friction during sliding contact conditions. In the present investigation, the effect of surface texture and roughness of softer and harder counter materials on friction during sliding was analyzed using an inclined scratch testing system. In the experiments, two test configurations, namely (a) steel balls against aluminum alloy flats of different surface textures and (b) aluminum alloy pins against steel flats of different surface textures, are utilized. The surface textures were classified into unidirectionally ground, 8-ground, and randomly polished. For a given texture, the roughness of the flat surfaces was varied using grinding or polishing methods. Optical profilometer and scanning electron microscope were used to characterize the contact surfaces before and after the experiments. Experimental results showed that the surface textures of both harder and softer materials are important in controlling the frictional behavior. The softer material surface textures showed larger variations in friction between ground and polished surfaces. However, the harder material surface textures demonstrated a better control over friction among the ground surfaces. Although the effect of roughness on friction was less significant when compared to textures, the harder material roughness showed better correlations when compared to the softer material roughness.

  20. Concentric wrench for blind access opening in a turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurer, Kurt Neal; Drlik, Gary Joseph; Gibler, Edward Eugene

    The concentric wrench includes an outer tube having flats at one end and a gripping surface at an opposite end. An inner tube has interior flats at one end and a gripping surface at its opposite end. With the inner and outer tubes disposed about a pressure transmitting conduit, the tubes may be inserted into a blind access opening in the outer turbine casing to engage the flats of the tubes against hex nuts of an internal fitting. By relatively rotating the tubes using the externally exposed gripping surfaces, the threaded connection between the parts of the fitting bearing themore » respective hex nuts can be tightened or loosened.« less

  1. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  2. Spray Cooling Trajectory Angle Impact Upon Heat Flux Using a Straight Finned Enhanced Surface

    NASA Technical Reports Server (NTRS)

    Silk, Eric A.; Kim, Jungho; Kiger, Ken

    2005-01-01

    Experiments were conducted to study the effects of spray trajectory angles upon heat flux for flat and enhanced surface spray cooling. The surface enhancement consisted of straight fins machined on the top surface of a copper heater block. Spray cooling curves were obtained with the straight fin surface aligned both parallel (axial) and perpendicular (transverse) to the spray axis. Measurements were also obtained on a flat surface heater block for comparison purposes. Each copper block had a cross-sectional area of 2.0 sq cm. A 2x2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data was obtained under nominally degassed (chamber pressure of 41.4 kPa) conditions. Results show that the maximum CHF in all cases was attained for a trajectory angle of 30' from the surface normal. Furthermore, trajectory angles applied to straight finned surfaces can have a critical heat flux (CHF) enhancement as much as 75% (heat flux value of 140 W/sq cm) relative to the vertical spray orientation for the analogous flat surface case under nominally degassed conditions.

  3. Exposing high-energy surfaces by rapid-anneal solid phase epitaxy

    DOE PAGES

    Wang, Y.; Song, Y.; Peng, R.; ...

    2017-08-08

    The functional design of nanoscale transition metal oxide heterostructures depends critically on the growth of atomically flat epitaxial thin films. Much of the time, improved functionality is expected for heterostructures and surfaces with orientations that do not have the lowest surface free energy. For example, crystal faces with a high surface free energy, such as rutile (001) planes, frequently exhibit higher catalytic activities but are correspondingly harder to synthesize due to energy-lowering faceting transitions. We propose a broadly applicable rapid-anneal solid phase epitaxial synthesis approach for the creation of atomically flat, high surface free energy oxide heterostructures. We also demonstratemore » its efficacy via the synthesis of atomically flat, epitaxial RuO 2(001) films with a superior oxygen evolution activity, quantified by their lower onset potential and higher current density, relative to that of more common RuO 2(110) films.« less

  4. Crimp sealing of tubes flush with or below a fixed surface

    DOEpatents

    Fischer, J.E.; Walmsley, D.; Wapman, P.D.

    1996-08-20

    An apparatus for crimp sealing and severing tubes flush or below a fixed surface. Tube crimping below a fixed surface requires an asymmetric die and anvil configuration. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. This asymmetric die and anvil is used when a ductile metal tube and valve assembly are attached to a pressure vessel which has a fixed surface around the base of the tube at the pressure vessel. A flat anvil is placed against the tube. Die guides are placed against the tube on a side opposite the anvil. A pinch-off die is inserted into the die guides against the tube. Adequate clearance for inserting the die and anvil around the tube is needed below the fixed surface. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. 8 figs.

  5. Crimp sealing of tubes flush with or below a fixed surface

    DOEpatents

    Fischer, Jon E.; Walmsley, Don; Wapman, P. Derek

    1996-01-01

    An apparatus for crimp sealing and severing tubes flush or below a fixed surface. Tube crimping below a fixed surface requires an asymmetric die and anvil configuration. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. This asymmetric die and anvil is used when a ductile metal tube and valve assembly are attached to a pressure vessel which has a fixed surface around the base of the tube at the pressure vessel. A flat anvil is placed against the tube. Die guides are placed against the tube on a side opposite the anvil. A pinch-off die is inserted into the die guides against the tube. Adequate clearance for inserting the die and anvil around the tube is needed below the fixed surface. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes.

  6. Morphological alterations of T24 cells on flat and nanotubular TiO2 surfaces.

    PubMed

    Imani, Roghayeh; Kabaso, Doron; Erdani Kreft, Mateja; Gongadze, Ekaterina; Penic, Samo; Elersic, Kristina; Kos, Andrej; Veranic, Peter; Zorec, Robert; Iglic, Ales

    2012-12-01

    To investigate morphological alterations of malignant cancer cells (T24) of urothelial origin seeded on flat titanium (Ti) and nanotubular TiO(2) (titanium dioxide) nanostructures. Using anodization method, TiO(2) surfaces composed of vertically aligned nanotubes of 50-100 nm diameters were produced. The flat Ti surface was used as a reference. The alteration in the morphology of cancer cells was evaluated using scanning electron microscopy (SEM). A computational model, based on the theory of membrane elasticity, was constructed to shed light on the biophysical mechanisms responsible for the observed changes in the contact area of adhesion. Large diameter TiO(2) nanotubes exhibited a significantly smaller contact area of adhesion (P<0.0001) and had more membrane protrusions (eg, microvilli and intercellular membrane nanotubes) than on flat Ti surface. Numerical membrane dynamics simulations revealed that the low adhesion energy per unit area would hinder the cell spreading on the large diameter TiO(2) nanotubular surface, thus explaining the small contact area. The reduction in the cell contact area in the case of large diameter TiO(2) nanotube surface, which does not enable formation of the large enough number of the focal adhesion points, prevents spreading of urothelial cells.

  7. Non-lightlike ruled surfaces with constant curvatures in Minkowski 3-space

    NASA Astrophysics Data System (ADS)

    Ali, Ahmad Tawfik

    We study the non-lightlike ruled surfaces in Minkowski 3-space with non-lightlike base curve c(s) =∫(αt + βn + γb)ds, where t, n, b are the tangent, principal normal and binormal vectors of an arbitrary timelike curve Γ(s). Some important results of flat, minimal, II-minimal and II-flat non-lightlike ruled surfaces are studied. Finally, the following interesting theorem is proved: the only non-zero constant mean curvature (CMC) non-lightlike ruled surface is developable timelike ruled surface generated by binormal vector.

  8. TECHNICAL NOTE: Actuation displacement performance change of pre-stressed piezoelectric actuators attached to a flat surface

    NASA Astrophysics Data System (ADS)

    Goo, Nam Seo; Phuoc Phan, Van; Park, Hoon Cheol

    2009-03-01

    Pre-stressed piezoelectric actuators such as RAINBOW, THUNDER™, and LIPCA have a curvature due to a mismatch of the coefficient of thermal expansion, which inevitably exists during the manufacturing process. This technical note provides an answer to the question of how their actuation displacement performance changes when the curved pre-stressed piezoelectric actuators are attached to a flat surface. Finite element analysis with the ANSYS™ program was used to calculate the stress distribution inside a LIPCA, one of the pre-stressed piezoelectric actuators, after the LIPCA was cured and attached to the flat surface. The change of actuation displacement performance can be explained in terms of the relation between the piezoelectric strain constants and internal stress. As a result of the curing and attachment to a flat surface, the two-dimensional stress state inside the piezoceramic layer leads to an expected increase of around 51% for the longitudinal piezoelectric strain constant. To confirm this result, we reconsider the experimental results of the actuation moment measurement of the LIPCA and bare lead zirconium titanate.

  9. Nonplanar Method for Predicting Incompressible Aerodynamic Coefficients of Rectangular Wings with Circular-Arc Camber. Ph.D. Thesis - Virginia Polytechnic Institute

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.

    1971-01-01

    The development of a nonplanar lifting surface method having a continuous distribution of singularities and satisfying the tangent flow boundary condition on the mean camber surface is given. The method predicts some incompressible longitudinal aerodynamic coefficients of rectangular wings which have circular-arc camber. The solution method is of the integral-equation type and the resulting surface integrals are evaluated by either using numerical or analytical techniques, as are appropriate. Applications are made and the results compared with those from an exact two-dimensional circular-arc camber solution, a three-dimensional flat-wing solution which represents the camber by a projected slope onto the flat surface, and a flat-wing experiment. From these comparisons, the present method is found to predict well the flat-wing experiment and limiting values, in addition to the center of pressure variation at an angle of attack of zero for any camber. For wings having camber ratios larger than about 1.25% and moderate to high aspect ratios, the results deterioriate due to the inadequacy of lifting pressure modes employed.

  10. Automatic Aircraft Collision Avoidance System and Method

    NASA Technical Reports Server (NTRS)

    Skoog, Mark (Inventor); Hook, Loyd (Inventor); McWherter, Shaun (Inventor); Willhite, Jaimie (Inventor)

    2014-01-01

    The invention is a system and method of compressing a DTM to be used in an Auto-GCAS system using a semi-regular geometric compression algorithm. In general, the invention operates by first selecting the boundaries of the three dimensional map to be compressed and dividing the three dimensional map data into regular areas. Next, a type of free-edged, flat geometric surface is selected which will be used to approximate terrain data of the three dimensional map data. The flat geometric surface is used to approximate terrain data for each regular area. The approximations are checked to determine if they fall within selected tolerances. If the approximation for a specific regular area is within specified tolerance, the data is saved for that specific regular area. If the approximation for a specific area falls outside the specified tolerances, the regular area is divided and a flat geometric surface approximation is made for each of the divided areas. This process is recursively repeated until all of the regular areas are approximated by flat geometric surfaces. Finally, the compressed three dimensional map data is provided to the automatic ground collision system for an aircraft.

  11. Flat conductor cable commercialization project

    NASA Technical Reports Server (NTRS)

    Hogarth, P.; Wadsworth, E.

    1977-01-01

    An undercarpet flat conductor cable and a baseboard flat conductor cable system were studied for commercialization. The undercarpet system is designed for use in office and commercial buildings. It employs a flat power cable, protected by a grounded metal shield, that terminates in receptacles mounted on the floor. It is designed to interface with a flat conductor cable telephone system. The baseboard system consists of a flat power cable mounted in a plastic raceway; both the raceway and the receptacles are mounted on the surface of the baseboard. It is designed primarily for use in residential buildings, particularly for renovation and concrete and masonry construction.

  12. 75 FR 81555 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Allegheny County's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Techniques Guidelines for Large Appliance and Metal Furniture; Flat Wood Paneling; Paper, Film, and Foil... appliance and metal furniture; flat wood paneling; and paper, film, and foil surface coating processes. In... Control Techniques Guidelines for Large Appliance and Metal Furniture; Flat Wood Paneling; Paper, Film...

  13. Emulation of Forward-looking Radar Technology for Threat Detection in Rough Terrain Environments: A Scattering and Imaging Study

    DTIC Science & Technology

    2012-12-01

    a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm, lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm...horizontal-horizontal (hh)-polarized images for 20 m×10 m scene: (a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm...lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm, lc=14.93 cm. Ground electrical properties: εr=6, σd=10 mS/m. Frequency span: 0.3

  14. Numerical study on the splitting of a vapor bubble in the ultrasonic assisted EDM process with the curved tool and workpiece.

    PubMed

    Shervani-Tabar, M T; Seyed-Sadjadi, M H; Shabgard, M R

    2013-01-01

    Electrical discharge machining (EDM) is a powerful and modern method of machining. In the EDM process, a vapor bubble is generated between the tool and the workpiece in the dielectric liquid due to an electrical discharge. In this process dynamic behavior of the vapor bubble affects machining process. Vibration of the tool surface affects bubble behavior and consequently affects material removal rate (MRR). In this paper, dynamic behavior of the vapor bubble in an ultrasonic assisted EDM process after the appearance of the necking phenomenon is investigated. It is noteworthy that necking phenomenon occurs when the bubble takes the shape of an hour-glass. After the appearance of the necking phenomenon, the vapor bubble splits into two parts and two liquid jets are developed on the boundaries of the upper and lower parts of the vapor bubble. The liquid jet developed on the upper part of the bubble impinges to the tool and the liquid jet developed on the lower part of the bubble impinges to the workpiece. These liquid jets cause evacuation of debris from the gap between the tool and the workpiece and also cause erosion of the workpiece and the tool. Curved tool and workpiece affect the shape and the velocity of the liquid jets during splitting of the vapor bubble. In this paper dynamics of the vapor bubble after its splitting near the curved tool and workpiece is investigated in three cases. In the first case surfaces of the tool and the workpiece are flat, in the second case surfaces of the tool and the workpiece are convex and in the third case surfaces of the tool and workpiece are concave. Numerical results show that in the third case, the velocity of liquid jets which are developed on the boundaries of the upper and lower parts of the vapor bubble after its splitting have the highest magnitude and their shape are broader than the other cases. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Surface patterning of GaAs under irradiation with very heavy polyatomic Au ions

    NASA Astrophysics Data System (ADS)

    Bischoff, L.; Böttger, R.; Heinig, K.-H.; Facsko, S.; Pilz, W.

    2014-08-01

    Self-organization of surface patterns on GaAs under irradiation with heavy polyatomic Au ions has been observed. The patterns depend on the ion mass, and the substrate temperature as well as the incidence angle of the ions. At room temperature, under normal incidence the surface remains flat, whereas above 200 °C nanodroplets of Ga appear after irradiation with monatomic, biatomic as well as triatomic Au ions of kinetic energies in the range of 10-30 keV per atom. In the intermediate temperature range of 100-200 °C meander- and dot-like patterns form, which are not related to Ga excess. Under oblique ion incidence up to 45° from the surface normal, at room temperature the surface remains flat for mon- and polyatomic Au ions. For bi- and triatomic ions in the range of 60° ≤ α ≤ 70° ripple patterns have been found, which become shingle-like for α ≥ 80°, whereas the surface remains flat for monatomic ions.

  16. Correcting Thermal Deformations in an Active Composite Reflector

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.

    2011-01-01

    Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several meters. This technology is specifically referring to correcting thermal deformations of a large, flat structure to a specified tolerance. However, the underlying concept (an array of actuators on the back face of a panel for correcting the flatness of the front face) could be extended to many applications, including energy harvesting, changing the wavefront of an optical system, and correcting the flatness of an array of segmented deployable panels.

  17. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-14

    This VIS image of Rabe Crater is dominated by the extensive dunes that cover the crater floor. To the top of the image part of the pit is visible, as well as a small peninsula that has been eroded into the upper level floor materials. On the upper elevation on the side left of the peninsula the dunes cascade onto the lower pit elevation. There is also a slight arc to the dunes on the pit floor due to how the peninsula changed the wind pattern. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 52206 Latitude: -43.6573 Longitude: 34.9551 Instrument: VIS Captured: 2013-09-20 13:07 https://photojournal.jpl.nasa.gov/catalog/PIA22142

  18. Sub-monolayer growth of Ag on flat and nanorippled SiO{sub 2} surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto

    2016-05-30

    In-situ Rutherford Backscattering Spectrometry (RBS) and Molecular Dynamics (MD) simulations have been used to investigate the growth dynamics of silver on a flat and the rippled silica surface. The calculated sticking coefficient of silver over a range of incidence angles shows a similar behaviour to the experimental results for an average surface binding energy of a silver adatom of 0.2 eV. This value was used to parameterise the MD model of the cumulative deposition of silver in order to understand the growth mechanisms. Both the model and the RBS results show marginal difference between the atomic concentration of silver on themore » flat and the rippled silica surface, for the same growth conditions. For oblique incidence, cluster growth occurs mainly on the leading edge of the rippled structure.« less

  19. Effect of Cutting Tool Properties and Depth of Cut in Rock Cutting: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Rostamsowlat, Iman

    2018-06-01

    The current paper is designed to investigate the effect of worn (blunt) polycrystalline diamond compact cutter properties on both the contact stress (σ) and friction coefficient ( μ) mobilized at the wear flat-rock interface at different inclination angles of the wear flat surface and at a wide range of depths of cut. An extensive and comprehensive set of cutting experiments is carried out on two sedimentary rocks (one limestone and one sandstone) using a state-of-the-art rock cutting equipment (Wombat) and various blunt cutters. Experiments with blunt cutters are characterized by different wear flat inclination angles (β), different wear flat surface roughness (Ra), different wear flat material, and different cutting tool velocities ({\\varvec{v}}) were conducted. The experimental results show that both the contact stress and friction coefficient are predominantly affected by the wear flat roughness at all inclination angles of the wear flat; however, the cutting tool velocity has a negligible influence on both the contact stress and friction coefficient. Further investigations suggest that the contact stress is greatly affected by the depth of cut within the plastic regime of frictional contact while the contact stress is insensitive to the depth of cut within the elastic regime.

  20. Effect of Macrogeometry on the Surface Topography of Dental Implants.

    PubMed

    Naves, Marina Melo; Menezes, Helder Henrique Machado; Magalhães, Denildo; Ferreira, Jessica Afonso; Ribeiro, Sara Ferreira; de Mello, José Daniel Biasoli; Costa, Henara Lillian

    2015-01-01

    Because the microtopography of titanium implants influences the biomaterial-tissue interaction, surface microtexturing treatments are frequently used for dental implants. However, surface treatment alone may not determine the final microtopography of a dental implant, which can also be influenced by the implant macrogeometry. This work analyzed the effects on surface roughness parameters of the same treatment applied by the same manufacturer to implants with differing macro-designs. Three groups of titanium implants with different macro-designs were investigated using laser interferometry and scanning electron microscopy. Relevant surface roughness parameters were calculated for different regions of each implant. Two flat disks (treated and untreated) were also investigated for comparison. The tops of the threads and the nonthreaded regions of all implants had very similar roughness parameters, independent of the geometry of the implant, which were also very similar to those of flat disks treated with the same process. In contrast, the flanks and valleys of the threads presented larger irregularities (Sa) with higher slopes (Sdq) and larger developed surface areas (Sdr) on all implants, particularly for implants with threads with smaller heights. The flanks and valleys displayed stronger textures (Str), particularly on the implants with threads with larger internal angles. Parameters associated with the height of the irregularities (Sa), the slope of the asperities (Sdq), the presence of a surface texture (Str), and the developed surface area of the irregularities (Sdr) were significantly affected by the macrogeometry of the implants. Flat disks subjected to the same surface treatment as dental implants reproduced only the surface topography of the flat regions of the implants.

  1. Method and apparatus for preparing multiconductor cable with flat conductors

    NASA Technical Reports Server (NTRS)

    Marcell, G. V. (Inventor)

    1969-01-01

    A method and apparatus for preparing flat conductor cable having a plurality of ribbon-like conductors disposed upon and adhesively bonded to the surface of a substrate is described. The conductors are brought into contact with the substrate surface, and while maintained in axial tension on said substrate, the combination is seated on a yieldably compressible layer to permit the conductor to become embedded into the surface of the substrate film.

  2. Comparison of surface abrasion produced on the enamel surface by a standard dentifrice using three different toothbrush bristle designs: A profilometric in vitro study

    PubMed Central

    Kumar, Sandeep; Kumari, Minal; Acharya, Shashidhar; Prasad, Ram

    2014-01-01

    Aim: The aim was to assess, in vitro, the effect on surface abrasivity of enamel surface caused by three different types (flat trim, zig-zag, bi-level) of toothbrush bristle design. Materials and Methods: Twenty-four freshly extracted, sound, human incisor teeth were collected for this study. The enamel slab was prepared, which were mounted, on separate acrylic bases followed by subjected to profilometric analysis. The surface roughness was measured using the profilometer. The specimen were divided into three groups, each group containing eight mounted specimens, wherein, Group 1 specimens were brushed with flat trim toothbrush; Group 2 brushed with zig-zag and Group 3 with bi-level bristle design. A commercially available dentifrice was used throughout the study. A single specimen was brushed for 2 times daily for 2 min period for 1 week using a customized brushing apparatus. The pre- and post-roughness value change were analyzed and recorded. Statistical test: Kruskal–Wallis test and Mann–Whitney U-test. Result: The results showed that surface abrasion was produced on each specimen, in all the three groups, which were subjected to brushing cycle. However, the bi-level bristle design (350% increase in roughness, P = 0.021) and zig-zag bristle design (160% increase in roughness, P = 0.050) showed significantly higher surface abrasion when compared with flat trim bristle design toothbrush. Conclusion: Flat trim toothbrush bristle produces least surface abrasion and is relatively safe for use. PMID:25125852

  3. Foreland uplift during flat subduction: Insights from the Peruvian Andes and Fitzcarrald Arch

    NASA Astrophysics Data System (ADS)

    Bishop, Brandon T.; Beck, Susan L.; Zandt, George; Wagner, Lara S.; Long, Maureen D.; Tavera, Hernando

    2018-04-01

    Foreland deformation has long been associated with flat-slab subduction, but the precise mechanism linking these two processes remains unclear. One example of foreland deformation corresponding in space and time to flat subduction is the Fitzcarrald Arch, a broad NE-SW trending topographically high feature covering an area of >4 × 105 km2 in the Peruvian Andean foreland. Recent imaging of the southern segment of Peruvian flat slab shows that the shallowest part of the slab, which corresponds to the subducted Nazca Ridge northeast of the present intersection of the ridge and the Peruvian trench, extends up to and partly under the southwestern edge of the arch. Here, we evaluate models for the formation of this foreland arch and find that a basal-shear model is most consistent with observations. We calculate that 5 km of lower crustal thickening would be sufficient to generate the arch's uplift since the late Miocene. This magnitude is consistent with prior observations of unusually thickened crust in the Andes immediately south of the subducted ridge that may also have been induced by flat subduction. This suggests that the Fitzcarrald Arch's formation by the Nazca Ridge may be one of the clearest examples of upper plate deformation induced through basal shear observed in a flat-slab subduction setting. We then explore the more general implications of our results for understanding deformation above flat slabs in the geologic past.

  4. SU-F-T-70: A High Dose Rate Total Skin Electron Irradiation Technique with A Specific Inter-Film Variation Correction Method for Very Large Electron Beam Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Rosenfield, J; Dong, X

    2016-06-15

    Purpose: Rotational total skin electron irradiation (RTSEI) is used in the treatment of cutaneous T-cell lymphoma. Due to inter-film uniformity variations the dosimetry measurement of a large electron beam of a very low energy is challenging. This work provides a method to improve the accuracy of flatness and symmetry for a very large treatment field of low electron energy used in dual beam RTSEI. Methods: RTSEI is delivered by dual angles field a gantry of ±20 degrees of 270 to cover the upper and the lower halves of the patient body with acceptable beam uniformity. The field size is inmore » the order of 230cm in vertical height and 120 cm in horizontal width and beam energy is a degraded 6 MeV (6 mm of PMMA spoiler). We utilized parallel plate chambers, Gafchromic films and OSLDs as a measuring devices for absolute dose, B-Factor, stationary and rotational percent depth dose and beam uniformity. To reduce inter-film dosimetric variation we introduced a new specific correction method to analyze beam uniformity. This correction method uses some image processing techniques combining film value before and after radiation dose to compensate the inter-variation dose response differences among films. Results: Stationary and rotational depth of dose demonstrated that the Rp is 2 cm for rotational and the maximum dose is shifted toward the surface (3mm). The dosimetry for the phantom showed that dose uniformity reduced to 3.01% for the vertical flatness and 2.35% for horizontal flatness after correction thus achieving better flatness and uniformity. The absolute dose readings of calibrated films after our correction matched with the readings from OSLD. Conclusion: The proposed correction method for Gafchromic films will be a useful tool to correct inter-film dosimetric variation for the future clinical film dosimetry verification in very large fields, allowing the optimizations of other parameters.« less

  5. Nonflat equilibrium liquid shapes on flat surfaces.

    PubMed

    Starov, Victor M

    2004-01-15

    The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.

  6. Surface-based atlases of cerebellar cortex in the human, macaque, and mouse.

    PubMed

    Van Essen, David C

    2002-12-01

    This study describes surface reconstructions and associated flat maps that represent the highly convoluted shape of cerebellar cortex in three species: human, macaque, and mouse. The reconstructions were based on high-resolution structural MRI data obtained from other laboratories. The surface areas determined for the fiducial reconstructions are about 600 cm(2) for the human, 60 cm(2) for the macaque, and 0.8 cm(2) for the mouse. As expected from the ribbon-like pattern of cerebellar folding, the cerebellar flat maps are elongated along the axis parallel to the midline. However, the degree of elongation varies markedly across species. The macaque flat map is many times longer than its mean width, whereas the mouse flat map is only slightly elongated and the human map is intermediate in its aspect ratio. These cerebellar atlases, along with associated software for visualization and for mapping experimental data onto the atlas, are freely available to the neuroscience community (see http:/brainmap.wustl.edu).

  7. Surface-based atlases of cerebellar cortex in the human, macaque, and mouse

    NASA Technical Reports Server (NTRS)

    Van Essen, David C.

    2002-01-01

    This study describes surface reconstructions and associated flat maps that represent the highly convoluted shape of cerebellar cortex in three species: human, macaque, and mouse. The reconstructions were based on high-resolution structural MRI data obtained from other laboratories. The surface areas determined for the fiducial reconstructions are about 600 cm(2) for the human, 60 cm(2) for the macaque, and 0.8 cm(2) for the mouse. As expected from the ribbon-like pattern of cerebellar folding, the cerebellar flat maps are elongated along the axis parallel to the midline. However, the degree of elongation varies markedly across species. The macaque flat map is many times longer than its mean width, whereas the mouse flat map is only slightly elongated and the human map is intermediate in its aspect ratio. These cerebellar atlases, along with associated software for visualization and for mapping experimental data onto the atlas, are freely available to the neuroscience community (see http:/brainmap.wustl.edu).

  8. Stabilization of posture by precision touch of the index finger with rigid and flexible filaments

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Rabin, E.; DiZio, P.

    2001-01-01

    Light touch of the index finger with a stationary surface at non-mechanically supportive force levels (<100 g) greatly attenuates the body sway of standing subjects. In three experiments, we evaluated the properties of finger contact and of the contacted object necessary to produce postural stabilization in subjects standing heel-to-toe with eyes closed, as well as how accurately hand position can be controlled. Experiment 1 involved finger contact with flexible filaments of different bending strengths, a flat surface, and an imagined spatial position. Contact with the flat surface was most effective in attenuating sway; the flexible filaments were much less effective but still significantly better than imagined contact. Experiment 2 compared the effectiveness of finger contact with a flexible filament, a rigid filament of the same diameter, a flat surface, and an imagined spatial position. The rigid filament and flat surface conditions were equally effective in attenuating body sway and were greatly superior to contact with the flexible filament, which was superior to imagined contact. Experiment 3 included five conditions: arms by sides; finger "contact" with an imagined spatial position; finger contact with a flat surface; finger contact with a flexible filament attempting to maintain it bent; and contact with the flexible filament attempting not to bend it. The arms by sides and finger "contact" with an imagined position conditions did not differ significantly; all three conditions involving actual finger contact showed significantly less center of pressure and hand sway, but contact with the flat surface was most effective in attenuating both postural and hand displacement. In all three experiments, the level of force applied in fingertip contact conditions was far below that necessary to provide mechanical stabilization. Our findings indicate that: (1) stimulation of a small number of receptors in the fingertip is adequate to allow stabilization of sway, (2) fingertip force levels as low as 5-10 g provide some stabilization, (3) contact with a stationary spatial referent is most effective, and (4) independent control of arm and torso occurs when finger contact is allowed.

  9. Experimental study of the interaction of HO2 radicals with soot surface.

    PubMed

    Bedjanian, Yuri; Lelièvre, Stéphane; Le Bras, Georges

    2005-01-21

    The reaction of HO2 with toluene and kerosene flame soot was studied over the temperature range 240-350 K and at P = 0.5-5 Torr of helium using a discharge flow reactor coupled to a modulated molecular beam mass spectrometer. A flat-flame burner was used for the preparation and deposition of soot samples from premixed flames of liquid fuels under well controlled and adjustable combustion conditions. The independent of temperature in the range 240-350 K value of gamma = (7.5 +/- 1.5) x 10(-2) (calculated with geometric surface area) was found for the uptake coefficient of HO2 on kerosene and toluene soot. No significant deactivation of soot surface during its reaction with HO2 was observed. Experiments on soot ageing under ambient conditions showed that the reactivity of aged soot is similar to that of freshly prepared soot samples. The results show that the HO2 + soot reaction could be a significant loss process for HOx in the urban atmosphere with a potential impact on photochemical ozone formation. In contrast this process will be negligible in the upper troposphere even in flight corridors.

  10. Geohydrology and susceptibility of major aquifers to surface contamination in Alabama; area 12

    USGS Publications Warehouse

    Scott, J.C.; Cobb, R.H.

    1988-01-01

    This report delineates and describes the geohydrology and susceptibility of major aquifers to contamination in Coffee, Dale, Henry, Houston, and Geneva Counties, Alabama. The major aquifers are the Upper Floridan, Lisbon, Nanafalia-Clayton, and Providence-Ripley aquifers. Estimated groundwater withdrawals for public water supplies are about 42 million gal/day. Maximum withdrawals for irrigation are 15 to 20 million gal/day. Withdrawals for self-supplied industrial and domestic uses are estimated to be 3 and 2.5 million gal/day, respectively. Long-term withdrawals of water from the Nanafalia-Clayton aquifer have resulted in significant declines in the potentiometric surface in Coffee, Dale, and Houston Counties. Significant declines in the potentiometric surfaces of the other major aquifers are not apparent. Recharge areas for all major aquifers are susceptible to contamination, but the probability of contamination of the Lisbon, Nanafalia-Clayton, and Providence-Ripley aquifers is low because the recharge areas are remote from areas of withdrawal. The recharge area for the Floridan aquifer, which consists largely of flat, sandy farmland , coincides with the area of use. This area is highly susceptible to contamination from insecticides and herbicides. (USGS)

  11. Development of Surfaces Optically Suitable for Flat Solar Panels

    NASA Technical Reports Server (NTRS)

    Desmet, D.; Jason, A.

    1978-01-01

    Three areas of research in the development of flat solar panels are described. (1) A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces was developed. The reflectometer has a phase locked detection system. (2) A coating composed of strongly bound copper oxide that is formed by an etching process performed on an aluminum alloy with high copper content was also developed. Because of this one step fabrication process, fabrication costs are expected to be small. (3) A literature search was conducted and conclusions on the required optical properties of flat plate solar collectors are presented.

  12. In-Flight Boundary-Layer Transition of a Large Flat Plate at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Frederick, M. A.; Tracy, R. R.; Matisheck, J. R.; Vanecek, N. D.

    2012-01-01

    A flight experiment was conducted to investigate the pressure distribution, local-flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.00. The tests used a NASA testbed aircraft with a bottom centerline mounted test fixture. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating. Boundary-layer transition was captured in both analog and digital formats using an onboard infrared imaging system. Surface pressures were measured on the surface of the flat plate. Flow field measurements near the leading edge of the test fixture revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration.

  13. Comparisons of the Maxwell and CLL gas/surface interaction models using DSMC

    NASA Technical Reports Server (NTRS)

    Hedahl, Marc O.; Wilmoth, Richard G.

    1995-01-01

    The behavior of two different models of gas-surface interactions is studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and the Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate represents one of the solar panels on the Magellan spacecraft, and the freestream conditions correspond to those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two-plate system is not representative of the Magellan geometry but is studied to explore possible experiments that might be used to differentiate between the two gas-surface interaction models. The Maxwell and CLL models produce qualitatively similar results for the aerodynamic forces and heat transfer on a single flat plate. However, the flow fields produced with the two models are qualitatively different for both the single-plate and two-plate calculations. These differences in the flowfield lead to predictions of the angle of attack for maximum heat transfer in a two plate configuration that are distinctly different for the two gas-surface interactions models.

  14. A Theoretical and Experimental Study of Planing Surfaces Including Effects of Cross Section and Plan Form

    NASA Technical Reports Server (NTRS)

    Shuford, Charles L , Jr

    1958-01-01

    A summary is given of the background and present status of the pure-planing theory for rectangular flat plates and v-bottom surfaces. The equations reviewed are compared with experiment. In order to extend the range of available planing data, the principal planing characteristics for models having sharp bottom surfaces having constant angles of dead rise of 20 degrees and 40 degrees. Planing data were also obtained for flat-plate surfaces with very slightly rounded chines for which decreased lift and drag coefficients are obtained.

  15. Improved Nazca slab structure from teleseismic P-wave tomography along the Andean margin

    NASA Astrophysics Data System (ADS)

    Portner, D. E.; Beck, S. L.; Scire, A. C.; Zandt, G.

    2017-12-01

    South America marks the longest continuous ocean-continent subduction zone. As such, there is significant along-strike variability in the subducting Nazca slab structure and the tectonics of the South American margin. Most notably two gaps in the otherwise continuous volcanic arc are correlated with regions of flat slab subduction, indicating that the structure of the Nazca slab plays a controlling role in South American tectonics. Traditionally in subduction zones, our knowledge of slab structure is defined by Wadati-Benioff zone earthquakes. While this method allows for the determination of large-scale variations in Nazca slab structure such as regions of flat slab subduction, a scarcity of intermediate-depth earthquakes hinders our ability to observe the smaller-scale structural variations in the slab that may be critical to our understanding of the geologic record. We use an updated, larger dataset for finite-frequency teleseismic P-wave tomography including relative arrival times from >700 seismic stations along the Andean margin to image the detailed Nazca slab structure throughout the upper mantle and uppermost lower mantle between latitudes 5°S and 45°S. Our results show prominent variations in slab character along the margin. Slab dip varies significantly, from sub-vertical inboard of the Peruvian flat slab segment to 30° dip south of the Pampean flat slab, while the slab's velocity anomaly amplitude changes dramatically near the Pampean flat slab region. High slab velocities north of the Pampean region relative to the south indicate variable slab thermal structures that correspond roughly with the locations of deep (>500 km depth) earthquakes that also occur exclusively north of the Pampean region. Additionally, a wider regional footprint increases our sampling of the upper-lower mantle boundary, improving constraints on the slab's interaction with the 660 km discontinuity along strike. We see that the Nazca slab appears to penetrate into the lower mantle along the majority of the margin.

  16. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Grotzinger, J. P.; Arvidson, R. E.; Bell, J. F.; Calvin, W.; Clark, B. C.; Fike, D. A.; Golombek, M.; Greeley, R.; Haldemann, A.; Herkenhoff, K. E.; Jolliff, B. L.; Knoll, A. H.; Malin, M.; McLennan, S. M.; Parker, T.; Soderblom, L.; Sohl-Dickstein, J. N.; Squyres, S. W.; Tosca, N. J.; Watters, W. A.

    2005-11-01

    Outcrop exposures of sedimentary rocks at the Opportunity landing site (Meridiani Planum) form a set of genetically related strata defined here informally as the Burns formation. This formation can be subdivided into lower, middle, and upper units which, respectively, represent eolian dune, eolian sand sheet, and mixed eolian sand sheet and interdune facies associations. Collectively, these three units are at least 7 m thick and define a "wetting-upward" succession which records a progressive increase in the influence of groundwater and, ultimately, surface water in controlling primary depositional processes. The Burns lower unit is interpreted as a dry dune field (though grain composition indicates an evaporitic source), whose preserved record of large-scale cross-bedded sandstones indicates either superimposed bedforms of variable size or reactivation of lee-side slip faces by episodic (possibly seasonal) changes in wind direction. The boundary between the lower and middle units is a significant eolian deflation surface. This surface is interpreted to record eolian erosion down to the capillary fringe of the water table, where increased resistance to wind-induced erosion was promoted by increased sediment cohesiveness in the capillary fringe. The overlying Burns middle unit is characterized by fine-scale planar-laminated to low-angle-stratified sandstones. These sandstones accumulated during lateral migration of eolian impact ripples over the flat to gently undulating sand sheet surface. In terrestrial settings, sand sheets may form an intermediate environment between dune fields and interdune or playa surfaces. The contact between the middle and upper units of the Burns formation is interpreted as a diagenetic front, where recrystallization in the phreatic or capillary zones may have occurred. The upper unit of the Burns formation contains a mixture of sand sheet facies and interdune facies. Interdune facies include wavy bedding, irregular lamination with convolute bedding and possible small tepee or salt-ridge structures, and cm-scale festoon cross-lamination indicative of shallow subaqueous flows marked by current velocities of a few tens of cm/s. Most likely, these currents were gravity-driven, possibly unchannelized flows resulting from the flooding of interdune/playa surfaces. However, evidence for lacustrine sedimentation, including mudstones or in situ bottom-growth evaporites, has not been observed so far at Eagle and Endurance craters. Mineralogical and elemental data indicate that the eolian sandstones of the lower and middle units, as well as the subaqueous and eolian deposits of the Burns upper unit, were derived from an evaporitic source. This indirectly points to a temporally equivalent playa where lacustrine evaporites or ground-water-generated efflorescent crusts were deflated to provide a source of sand-sized particles that were entrained to form eolian dunes and sand sheets. This process is responsible for the development of sulfate eolianites at White Sands, New Mexico, and could have provided a prolific flux of sulfate sediment at Meridiani. Though evidence for surface water in the Burns formation is mostly limited to the upper unit, the associated sulfate eolianites provide strong evidence for the critical role of groundwater in controlling sediment production and stratigraphic architecture throughout the formation.

  17. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.

    PubMed

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi

    2016-01-01

    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.

  18. Positioning system for single or multi-axis sensitive instrument calibration and calibration system for use therewith

    NASA Technical Reports Server (NTRS)

    Finley, Tom D. (Inventor); Parker, Peter A. (Inventor)

    2008-01-01

    A positioning and calibration system are provided for use in calibrating a single or multi axis sensitive instrument, such as an inclinometer. The positioning system includes a positioner that defines six planes of tangential contact. A mounting region within the six planes is adapted to have an inclinometer coupled thereto. The positioning system also includes means for defining first and second flat surfaces that are approximately perpendicular to one another with the first surface adapted to be oriented relative to a local or induced reference field of interest to the instrument being calibrated, such as a gravitational vector. The positioner is positioned such that one of its six planes tangentially rests on the first flat surface and another of its six planes tangentially contacts the second flat surface. A calibration system is formed when the positioning system is used with a data collector and processor.

  19. Comparisons of the Maxwell and CLL Gas/Surface Interaction Models Using DSMC

    NASA Technical Reports Server (NTRS)

    Hedahl, Marc O.

    1995-01-01

    Two contrasting models of gas-surface interactions are studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate is that of one of the solar panels on the Magellan spacecraft, and the freestream conditions are one of those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two plate system is not representative of the Magellan geometry, but is studied to explore possible experiments that might be used to differentiate between the two gas surface interaction models.

  20. Metal powder absorptivity: Modeling and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  1. Metal powder absorptivity: Modeling and experiment

    DOE PAGES

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.; ...

    2016-08-10

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  2. A leading edge heating array and a flat surface heating array: Final design. [for testing the thermal protection system of the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A heating array is described for testing full-scale sections of the leading edge and lower fuselage surfaces of the shuttle. The heating array was designed to provide a tool for development and acceptance testing of leading edge segments and large flat sections of the main body thermal protection system. The array was designed using a variable length module concept to meet test requirements using interchangeable components from one test configuration in another configuration. Heat generating modules and heat absorbing modules were employed to achieve the thermal gradient around the leading edge. A support was developed to hold the modules to form an envelope around a variety of leading edges; to supply coolant to each module; the support structure and to hold the modules in the flat surface heater configuration. An optical pyrometer system mounted within the array was designed to monitor specimen surface temperatures without altering the test article's surface.

  3. Forest Types in the Lower Suwannee River Floodplain, Florida?-A Report and Interactive Map

    USGS Publications Warehouse

    Darst, M.R.; Light, H.M.; Lewis, L.J.; Sepulveda, A.A.

    2003-01-01

    A map of forest types in the lower Suwannee River floodplain, Florida, was created during a study conducted from 1996 to 2000 by the U.S. Geological Survey in cooperation with the Suwannee River Water Management District. The map is presented with this report on a compact disc with interactive viewing software. The forest map can be used by scientists for ecological studies in the floodplain based on land cover types and by landowners and management personnel making land use decisions. The study area is the 10-year floodplain of the lower Suwannee River from its confluence with the Santa Fe River to the lower limit of forests near the Gulf of Mexico. The floodplain is divided into three reaches: riverine (non-tidal), upper tidal, and lower tidal, due to changes in hydrology, vegetation, and soils with proximity to the coast. The 10-year floodplain covers about 21,170 hectares; nearly 88 percent of this area (18,580 hectares) is mapped as 14 major forest types. Approximately 29 percent (5,319 hectares) of these forests have been altered by agriculture or development. About 75 percent of the area of major forest types (13,994 hectares) is wetland forests and about 25 percent (4,586 hectares) is upland forests. Tidal wetland forests (8,955 hectares) cover a much greater area than riverine wetland forests (5,039 hectares). Oak/pine upland forests are present in the riverine and upper tidal reaches of the floodplain on elevations that are inundated only briefly during the highest floods. High bottomland hardwoods are present on the higher levees, ridges, and flats of the riverine reach where soils are usually sandy. Low bottomland hardwood forests are present in the riverine reach on swamp margins and low levees and flats that are flooded continuously for several weeks or longer every 1 to 3 years. Riverine swamps are present in the lowest and wettest areas of the non-tidal floodplain that are either inundated or saturated most of the time. Upper tidal bottomland hardwood forests are present on sandy soils on high flats and in transitional areas between upland forests and swamps. Upper tidal mixed forests are found on low levees or between swamps and higher forest types. Upper tidal swamps are present at elevations below median monthly high stage and usually have surface soils that are permanently saturated mucks. Lower tidal hammocks are found on higher elevations that do not receive regular tidal inundation but have a high water table and are briefly inundated by storm surges several times a decade. Lower tidal mixed forests include swamps with numerous small hummocks or less common larger hummocks. Lower tidal swamps are found on deep muck soils that are below the elevation of the median daily or monthly high stage. Seven additional land cover types (2,590 hectares) are mapped. Water in the main channel of the lower Suwannee River (1,767 hectares) was mapped separately from open water in the floodplain (239 hectares). Other land cover types are: seepage slopes (70 hectares), isolated forested wetlands (19 hectares), marshes upstream of the tree line (505 hectares), beds of emergent aquatic vegetation (21 hectares), and floodplain glades (46 hectares)

  4. Narrowband Angular Reflectance Properties of the Alkali Flats at White Sands, New Mexico

    NASA Technical Reports Server (NTRS)

    Whitlock, Charles H.; LeCroy, Stuart R.; Wheeler, Robert J.

    1994-01-01

    Results from helicopter measurements of the angular properties of surface reflectance for the alkali flats regions of the White Sands Missile Range are presented for the wavelength interval of 0.4 to 0.85 microns. This work was performed to allow accurate radiative transfer calculations over the region. Detailed tables and interpolation equations are given that permit other investigators to perform satellite calibrations over the alkali flats site. The effects of wavelength and soil moisture on narrowband angular reflectance are also investigated. Although there is a spectral variation in surface albedo, there is little spectral effect in Anisotropic Factor except in the forward scattering peak at solar zenith angles greater than 60 deg. The magnitude of the forward-scattering peak is also sensitive to soil moisture, with wet conditions causing a larger peak. The significance of this result is that angular reflectance properties at the center of the alkali flats usually will be different than those at the flats edge because moisture differences typically exist.

  5. Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS).

    PubMed

    Kurouski, Dmitry; Deckert-Gaudig, Tanja; Deckert, Volker; Lednev, Igor K

    2014-01-07

    Amyloid fibrils are β-sheet-rich protein aggregates that are strongly associated with a variety of neurodegenerative maladies, such as Alzheimer's and Parkinson's diseases. Even if the secondary structure of such fibrils is well characterized, a thorough understanding of their surface organization still remains elusive. Tip-enhanced Raman spectroscopy (TERS) is one of a few techniques that allow the direct characterization of the amino acid composition and the protein secondary structure of the amyloid fibril surface. Herein, we investigated the surfaces of two insulin fibril polymorphs with flat (flat) and left-twisted (twisted) morphology. It was found that the two differ substantially in both amino acid composition and protein secondary structure. For example, the amounts of Tyr, Pro, and His differ, as does the number of carboxyl groups on the respective surfaces, whereas the amounts of Phe and of positively charged amino and imino groups remain similar. In addition, the surface of protofilaments, the precursors of the mature flat and twisted fibrils, was investigated using TERS. The results show substantial differences with respect to the mature fibrils. A correlation of amino acid frequencies and protein secondary structures on the surface of protofilaments and on flat and twisted fibrils allowed us to propose a hypothetical mechanism for the propagation to specific fibril polymorphs. This knowledge can shed a light on the toxicity of amyloids and define the key factors responsible for fibril polymorphism. Finally, this work demonstrates the potential of TERS for the surface characterization of amyloid fibril polymorphs. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Surface inspection of flat products by means of texture analysis: on-line implementation using neural networks

    NASA Astrophysics Data System (ADS)

    Fernandez, Carlos; Platero, Carlos; Campoy, Pascual; Aracil, Rafael

    1994-11-01

    This paper describes some texture-based techniques that can be applied to quality assessment of flat products continuously produced (metal strips, wooden surfaces, cork, textile products, ...). Since the most difficult task is that of inspecting for product appearance, human-like inspection ability is required. A common feature to all these products is the presence of non- deterministic texture on their surfaces. Two main subjects are discussed: statistical techniques for both surface finishing determination and surface defect analysis as well as real-time implementation for on-line inspection in high-speed applications. For surface finishing determination a Gray Level Difference technique is presented to perform over low resolution images, that is, no-zoomed images. Defect analysis is performed by means of statistical texture analysis over defective portions of the surface. On-line implementation is accomplished by means of neural networks. When a defect arises, textural analysis is applied which result in a data-vector, acting as input of a neural net, previously trained in a supervised way. This approach tries to reach on-line performance in automated visual inspection applications when texture is presented in flat product surfaces.

  7. Development of CFRP mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo

    2013-09-01

    CFRP (Caron fiber reinforced plastics) have superior properties of high specific elasticity and low thermal expansion for satellite telescope structures. However, difficulties to achieve required surface accuracy and to ensure stability in orbit have discouraged CFRP application as main mirrors. We have developed ultra-light weight and high precision CFRP mirrors of sandwich structures composed of CFRP skins and CFRP cores using a replica technique. Shape accuracy of the demonstrated mirrors of 150 mm in diameter was 0.8 μm RMS (Root Mean Square) and surface roughness was 5 nm RMS as fabricated. Further optimization of fabrication process conditions to improve surface accuracy was studied using flat sandwich panels. Then surface accuracy of the flat CFRP sandwich panels of 150 mm square was improved to flatness of 0.2 μm RMS with surface roughness of 6 nm RMS. The surface accuracy vs. size of trial models indicated high possibility of fabrication of over 1m size mirrors with surface accuracy of 1μm. Feasibility of CFRP mirrors for low temperature applications was examined for JASMINE project as an example. Stability of surface accuracy of CFRP mirrors against temperature and moisture was discussed.

  8. Blackfolds, plane waves and minimal surfaces

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Blau, Matthias

    2015-07-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  9. Method of manufacturing lightweight thermo-barrier material

    NASA Technical Reports Server (NTRS)

    Blair, Winford (Inventor)

    1987-01-01

    A method of manufacturing thermal barrier structures comprising at least three dimpled cores separated by flat plate material with the outer surface of the flat plate material joined together by diffusion bonding.

  10. 54. Same view. The crib back wall member, freed from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. Same view. The crib back wall member, freed from the wall, is flown (upper right) to the flat bed truck. - Wabash & Erie Canal, Lock No. 2, 8 miles east of Fort Wayne, adjacent to U.S. Route 24, New Haven, Allen County, IN

  11. Solid particle impingement erosion characteristics of cylindrical surfaces, pre-existing holes and slits

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1983-01-01

    The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.

  12. The Effect of Leading-Edge Sweep and Surface Inclination on the Hypersonic Flow Field Over a Blunt Flat Plate

    NASA Technical Reports Server (NTRS)

    Creager, Marcus O.

    1959-01-01

    An investigation of the effects of variation of leading-edge sweep and surface inclination on the flow over blunt flat plates was conducted at Mach numbers of 4 and 5.7 at free-stream Reynolds numbers per inch of 6,600 and 20,000, respectively. Surface pressures were measured on a flat plate blunted by a semicylindrical leading edge over a range of sweep angles from 0 deg to 60 deg and a range of surface inclinations from -10 deg to +10 deg. The surface pressures were predicted within an average error of +/- 8 percent by a combination of blast-wave and boundary-layer theory extended herein to include effects of sweep and surface inclination. This combination applied equally well to similar data of other investigations. The local Reynolds number per inch was found to be lower than the free-stream Reynolds number per inch. The reduction in local Reynolds number was mitigated by increasing the sweep of the leading edge. Boundary-layer thickness and shock-wave shape were changed little by the sweep of the leading edge.

  13. Shielding Characteristics Using an Ultrasonic Configurable Fan Artificial Noise Source to Generate Modes - Experimental Measurements and Analytical Predictions

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.

  14. Scintigraphy in laryngopharyngeal and gastroesophageal reflux disease: a definitive diagnostic test?

    PubMed

    Falk, Gregory L; Beattie, John; Ing, Alvin; Falk, S E; Magee, Michael; Burton, Leticia; Van der Wall, Hans

    2015-03-28

    To investigate the utility of scintigraphic studies in predicting response to laparoscopic fundoplication (LF) for chronic laryngopharyngeal reflux symptoms. Patients with upper aero-digestive symptoms that remained undiagnosed after a period of 2 mo were studied with conventional pH and manometric studies. Patients mainly complained of cough, sore throat, dysphonia and globus. These patients were imaged after ingestion of 99m-technetium diethylene triamine pentaacetic acid. Studies were quantified with time activity curves over the pharynx, upper and lower oesophagus and background. Late studies of the lungs were obtained for aspiration. Patients underwent LF with post-operative review at 3 mo after surgery. Thirty four patients (20 F, 14 M) with an average age of 57 years and average duration of symptoms of 4.8 years were studied. Twenty four hour pH and manometry studies were abnormal in all patients. On scintigraphy, 27/34 patients demonstrated pharyngeal contamination and a rising or flat pharyngeal curve. Lung aspiration was evident in 50% of patients. There was evidence of pulmonary aspiration in 17 of 34 patients in the delayed study (50%). Pharyngeal contamination was found in 27 patients. All patients with aspiration showed pharyngeal contamination. In the 17 patients with aspiration, graphical time activity curve showed rising activity in the pharynx in 9 patients and a flat curve in 8 patients. In those 17 patients without pulmonary aspiration, 29% (5 patients) had either a rising or flat pharyngeal graph. A rising or flat curve predicted aspiration with a positive predictive value of 77% and a negative predictive value of 100%. Over 90% of patients reported a satisfactory symptomatic response to LF with an acceptable side-effect profile. Scintigraphic reflux studies offer a good screening tool for pharyngeal contamination and aspiration in patients with gastroesophageal reflux disease.

  15. Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces

    PubMed Central

    Alvarez-Escobar, Marta; Hansford, Derek; Monteiro, Fernando J.

    2018-01-01

    Introduction Microfabrication offers opportunities to study surface concepts focused to reduce bacterial adhesion on implants using human minimally invasive rapid screening (hMIRS). Wide information is available about cell/biomaterial interactions using eukaryotic and prokaryotic cells on surfaces of dental materials with different topographies, but studies using human being are still limited. Objective To evaluate a synergy of microfabrication and hMIRS to study the bacterial adhesion on micropatterned surfaces for dental materials. Materials and Methods Micropatterned and flat surfaces on biomedical PDMS disks were produced by soft lithography. The hMIRS approach was used to evaluate the total oral bacterial adhesion on PDMS surfaces placed in the oral cavity of five volunteers (the study was approved by the University Ethical Committee). After 24 h, the disks were analyzed using MTT assay and light microscopy. Results In the present pilot study, microwell structures were microfabricated on the PDMS surface via soft lithography with a spacing of 5 µm. Overall, bacterial adhesion did not significantly differ between the flat and micropatterned surfaces. However, individual analysis of two subjects showed greater bacterial adhesion on the micropatterned surfaces than on the flat surfaces. Significance Microfabrication and hMIRS might be implemented to study the cell/biomaterial interactions for dental materials. PMID:29593793

  16. Low-cost fabrication and direct bond installation of flat, single-curvature and compound-curvature ablative heat shield panels

    NASA Technical Reports Server (NTRS)

    Norwood, L. B.

    1972-01-01

    Procedures for low cost fabrication and direct bond installation of flat, single curved, and compound curvature ablative heat shields on a DC-3 aircraft are discussed. The panel sizes and attachment locations are identified. In addition to the bonding of the four contoured panels, two flat panels were bonded to the nearly flat, lower surface of the center wing section. The detailed requirements and objectives of the investigation are described.

  17. Extracting flat-field images from scene-based image sequences using phase correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caron, James N., E-mail: Caron@RSImd.com; Montes, Marcos J.; Obermark, Jerome L.

    Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method usesmore » sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.« less

  18. Lack of bedrock grain size influence on the soil production rate

    NASA Astrophysics Data System (ADS)

    Gontier, Adrien; Rihs, Sophie; Chabaux, Francois; Lemarchand, Damien; Pelt, Eric; Turpault, Marie-Pierre

    2015-10-01

    Our study deals with the part played by bedrock grain size on soil formation rates. U- and Th-series disequilibria were measured in two soil profiles developed from two different facies of the same bedrock, i.e., fine and coarse grain size granites, in the geomorphically flat landscape of the experimental Breuil-Chenue forest site, Morvan, France. The U- and Th-series disequilibria of soil layers and the inferred soil formation rate (1-2 mm ky-1) are nearly identical along the two profiles despite differences in bedrock grain size, variable weathering states and a significant redistribution of U and Th from the uppermost soil layers. This indicates that the soil production rate is more affected by regional geomorphology than by the underlying bedrock texture. Such a production rate inferred from residual soil minerals integrated over the age of the soil is consistent with the flat and slowly eroding geomorphic landscape of the study site. It also compares well to the rate inferred from dissolved solutes integrated over the shorter time scale of solute transport from granitic and basaltic watersheds under similar climates. However, it is significantly lower than the denudation or soil formation rates previously reported from either cosmogenic isotope or U-series measurements from similar climates and lithologies. Our results highlight the particularly low soil production rates of flat terrains in temperate climates. Moreover, they provide evidence that the reactions of mineral weathering actually take place in horizons deeper than 1 m, while a chemical steady state of both concentrations and U-series disequilibria is established in the upper most soil layers, i.e., above ∼70 cm depth. In such cases, the use of soil surface horizons for determining weathering rates is precluded and illustrates the need to focus instead on the deepest soil horizons.

  19. Short time dynamics of water coalescence on a flat water pool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Su Jin; Gim, Bopil; Fezzaa, Kamel

    2016-12-01

    Coalescence is an important hydrodynamic event that frequently takes place in nature as well as in industry. Here we provide an experimental study on short time dynamics of water coalescence, particularly when a water droplet comes in contact with a flat water surface, by utilizing high-resolution high-penetration ultrafast X-ray microscopy. Our results demonstrate a possibility that an extreme curvature difference between a drop and a flat surface can significantly modify the hydrodynamics of water coalescence, which is unexpected in the existing theory. We suggest a plausible explanation for why coalescence can be modified by an extreme curvature difference.

  20. Soil strength response of select soil disturbance classes on a wet pine flat in South Carolina

    Treesearch

    Emily A. Carter; W. Michael Aust; James A. Burger

    2007-01-01

    Harvest operations conducted under conditions of high soil moisture on a et pine flat in South Carolina resulted in a high degree of soil surface disturbance. Less soil surface disturbance occurred when soil moisture content was lower. Soil strength varied by soil disturbance class in wet harvested locations and highly disturbed areas were associated with low soil...

  1. Channel surface plasmons in a continuous and flat graphene sheet

    NASA Astrophysics Data System (ADS)

    Chaves, A. J.; Peres, N. M. R.; da Costa, D. R.; Farias, G. A.

    2018-05-01

    We derive an integral equation describing surface-plasmon polaritons in graphene deposited on a substrate with a planar surface and a dielectric protrusion in the opposite surface of the dielectric slab. We show that the problem is mathematically equivalent to the solution of a Fredholm equation, which we solve exactly. In addition, we show that the dispersion relation of the channel surface plasmons is determined by the geometric parameters of the protrusion alone. We also show that such a system supports both even and odd modes. We give the electrostatic potential and the intensity plot of the electrostatic field, which clearly show the transverse localized nature of the surface plasmons in a continuous and flat graphene sheet.

  2. Preliminary model of the pre-Tertiary basement rocks beneath Yucca Flat, Nevada Test Site, Nevada, based on analysis of gravity and magnetic data

    USGS Publications Warehouse

    Phelps, Geoffrey A.; McKee, Edwin H.; Sweetkind, D.; Langenheim, V.E.

    2000-01-01

    The Environmental Restoration Program of the U.S. Department of Energy, Nevada Operations Office, was developed to investigate the possible consequences to the environment of 40 years of nuclear testing on the Nevada Test Site. The majority of the tests were detonated underground, introducing contaminants into the ground-water system (Laczniak and others, 1996). An understanding of the ground-water flow paths is necessary to evaluate the extent of ground-water contamination. This report provides information specific to Yucca Flat on the Nevada Test Site. Critical to understanding the ground-water flow beneath Yucca Flat is an understanding of the subsurface geology, particularly the structure and distribution of the pre-Tertiary rocks, which comprise both the major regional aquifer and aquitard sequences (Winograd and Thordarson, 1975; Laczniak and others, 1996). Because the pre-Tertiary rocks are not exposed at the surface of Yucca Flat their distribution must be determined through well logs and less direct geophysical methods such as potential field studies. In previous studies (Phelps and others, 1999; Phelps and Mckee, 1999) developed a model of the basement surface of the Paleozoic rocks beneath Yucca Flat and a series of normal faults that create topographic relief on the basement surface. In this study the basement rocks and structure of Yucca Flat are examined in more detail using the basement gravity anomaly derived from the isostatic gravity inversion model of Phelps and others (1999) and high-resolution magnetic data, as part of an effort to gain a better understanding of the Paleozoic rocks beneath Yucca Flat in support of groundwater modeling.

  3. 49 CFR 173.4a - Excepted quantities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... package or packing different materials in the package must not result in a violation of § 173.21. (6) Each... onto a solid unyielding surface from a height of 1.8 m (5.9 feet): (i) Where the sample is in the shape...; (B) One drop flat on the top; (C) One drop flat on the longest side; (D) One drop flat on the...

  4. 49 CFR 173.4 - Small quantities for highway and rail.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... solid materials; (iii) One (1) g (0.04 ounce) for authorized materials meeting the definition of a... drops made from a height of 1.8 m (5.9 feet) directly onto a solid unyielding surface without breakage... package: (A) One drop flat on bottom; (B) One drop flat on top; (C) One drop flat on the long side; (D...

  5. Seasonal sedimentary processes of the macrotidal flat in Gomso Bay, west coast of Korea

    NASA Astrophysics Data System (ADS)

    Woo, H.; Kang, J.; Choi, J.

    2012-12-01

    The tidal flats on the west coast of Korea have broad zones with gentle slopes and a macrotidal setting with 4 to 10 meters of tidal ranges. They are directly influenced by monsoons and heavily affected by waves in winter and tidal currents in summer. As a result, most western tidal flats show the seasonal changes of sedimentary features comprising sedimentation and/or erosion of sediments. Gomso bay in the mid-west of Korea is a funnel-shaped embayment with a wide entrance to the west. Tides are semidiurnal and macrotidal, with a mean tidal range of 433.8 cm. Digital elevation model (DEM) showed that the landward inner bay had mainly high elevations and the seaward outer bay had relatively low elevations. In particular, there are considerable gradients in the outer bay from area of high-water line to area of low-water line. The sedimentary analysis and monitoring short-term sedimentation rates were investigated to understand seasonal sedimentary processes of tidal flats in Gomso bay. The surface sediments in the bay were classified into five sedimentary facies in spring 2011. Generally, sandy sediments were dominated in the outer bay, whereas sandy mud sediments were distributed on the inner bay. The middle bay mainly consisted of muddy sand sediments. The percentages of sand decreased from outer to inner bay. The short-term sedimentation rates were obtained from three lines by burying a plate at sub-bottom depth and periodically measuring the changing sediment depth from February 2011 to February 2012. In the tidal flat at inner bay (KB- Line), the annual sedimentation rates were ranged -8.87 to 74.69 mm/year with the net deposition rate of 40.90 mm/year. The deposition occurred on KB-Line in spring, autumn and winter. The erosion was dominated on the tidal flats at middle (KH-Line) and outer bay (KM-Line) during autumn and winter with an annual erosion rate of -29.86 mm/year and -9.92 mm/year, respectively. The seasonal variations of sedimentation on these tidal flats showed that the deposition occurred with an inflow of muddy sediments in summer, whereas the erosion was dominated in autumn and winter. In August 2011, the distribution patterns of rare earth elements (REEs) relative to the upper continental crust (UCC) showed the enrichment of light REEs (LREEs: La-Nd), together with an apparent depletion of Eu in the KH- and KM-Lines. This pattern was more pronounced in the middle bay sediments (KH-Line) due to influence of muddy sediment transport from Jujin Stream during the rainy period (July and August). On the other hand, the outer bay sediments in the KM-Line were reflected more inflow of second sediment source, the Geum River. The major control factors for seasonal variations of sediments on the tidal flat could be heavy rainfall and tidal currents during summer and strong waves during winter. The net sedimentation showed that the deposition occurred in the inner tidal flat and erosion occurred in the middle and outer tidal flat of the bay.

  6. Effect of surface nano/micro-structuring on the early formation of microbial anodes with Geobacter sulfurreducens: Experimental and theoretical approaches.

    PubMed

    Champigneux, Pierre; Renault-Sentenac, Cyril; Bourrier, David; Rossi, Carole; Delia, Marie-Line; Bergel, Alain

    2018-06-01

    Smooth and nano-rough flat gold electrodes were manufactured with controlled Ra of 0.8 and 4.5nm, respectively. Further nano-rough surfaces (Ra 4.5nm) were patterned with arrays of micro-pillars 500μm high. All these electrodes were implemented in pure cultures of Geobacter sulfurreducens, under a constant potential of 0.1V/SCE and with a single addition of acetate 10mM to check the early formation of microbial anodes. The flat smooth electrodes produced an average current density of 0.9A·m -2 . The flat nano-rough electrodes reached 2.5A·m -2 on average, but with a large experimental deviation of ±2.0A·m -2 . This large deviation was due to the erratic colonization of the surface but, when settled on the surface, the cells displayed current density that was directly correlated to the biofilm coverage ratio. The micro-pillars considerably improved the experimental reproducibility by offering the cells a quieter environment, facilitating biofilm development. Current densities of up to 8.5A·m -2 (per projected surface area) were thus reached, in spite of rate limitation due to the mass transport of the buffering species, as demonstrated by numerical modelling. Nano-roughness combined with micro-structuring increased current density by a factor close to 10 with respect to the smooth flat surface. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Safety yoke would protect construction workers from falling

    NASA Technical Reports Server (NTRS)

    Goforth, O. H.

    1967-01-01

    Simple dismountable yoke protects construction workers on narrow steel I beams at high levels. The yoke engages the upper flat of the I beam and slides freely along it to permit freedom of movement to the worker while limiting his ability to fall by a harness attached to the yoke.

  8. Treatment of phosphorus transported from tile and ditch-drained agricultural fields using sorption materials

    USDA-ARS?s Scientific Manuscript database

    Many flat, poorly drained soils, such as the Delmarva Peninsula, the upper Midwest, and certain areas of Europe such as Denmark and Netherlands, have been extensively drained through the construction of artificial drainage ditches and tiles to allow agriculture and other human activities. In additi...

  9. Flatness metrology based on small-angle deflectometric procedures with electronic tiltmeters

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Laubach, S.; Schulz, M.

    2017-06-01

    The measurement of optical flats, e. g. synchrotron or XFEL mirrors, with single nanometer topography uncertainty is still challenging. At PTB, we apply for this task small-angle deflectometry in which the angle between the direction of the beam sent to the surface and the beam detected is small. Conventional deflectometric systems measure the surface angle with autocollimators whose light beam also represents the straightness reference. An advanced flatness metrology system was recently implemented at PTB that separates the straightness reference task from the angle detection task. We call it `Exact Autocollimation Deflectometric Scanning' because the specimen is slightly tilted in such a way that at every scanning position the specimen is `exactly' perpendicular to the reference light beam directed by a pentaprism to the surface under test. The tilt angle of the surface is then measured with an additional autocollimator. The advantage of the EADS method is that the two tasks (straightness reference and measurement of surface slope) are separated and each of these can be optimized independently. The idea presented in this paper is to replace this additional autocollimator by one or more electro-mechanical tiltmeters, which are typically faster and have a higher resolution than highly accurate commercially available autocollimators. We investigate the point stability and the linearity of a highly accurate electronic tiltmeter. The pros and cons of using tiltmeters in flatness metrology are discussed.

  10. Relict Landscape Response to Knickpoint Migration on the Roan Plateau, Western Colorado, Explored Through ALSM Data Analysis

    NASA Astrophysics Data System (ADS)

    Berlin, M. M.; Anderson, R. S.

    2007-12-01

    The unprecedented spatial resolution of Digital Elevation Models (DEMs) derived from Airborne Laser Swath Mapping (ALSM) makes them ideal for detecting subtle morphologic features. We explore to what extent information about knickpoint migration is communicated upstream by analyzing an ASLM-derived DEM in a transient landscape. We target the Roan Plateau in western Colorado, a landscape developed in flat-lying Eocene shales, in which multiple upstream-migrating waterfalls triggered by base level fall have incised dramatic canyons in their wake. The waterfalls separate low-gradient, bedrock-floored reaches above the waterfalls from steep, boulder-choked canyons below. Similarly, a sheer canyon rim separates a smooth, relict landscape above the canyon walls from the steep cliffs and talus-mantled slopes below. Waterfall and canyon rim elevations correlate well with the outcrop of a resistant oil-shale layer. We use a 1-meter DEM to develop two simple metrics that detect channel and hillslope response of the upper landscape to knickpoint migration. The first metric is stream profile analysis of upper plateau tributaries. In a steady-state stream channel, slope should decrease with distance downstream, as drainage area and the associated water discharge increase. Departures from this trend can be attributed to either lithologic variation, or transient oversteepening that may be associated with the presence of the waterfall. Oversteepening of the channel can incite hillslope response, and give rise to a box canyon upstream of the waterfall. We document the slope of channels as they approach the free overfall, and the presence and lengths of box canyons upstream of the waterfall lip. The second metric is the curvature of plateau hilltops. In a steady state landscape, hilltops should be roughly parabolic in cross-section, reflecting a balance between a uniform rate of regolith production and diffusive transport at all points along the hillslope. Departure from this parabolic form can reflect lithologic variation, transient hillslope response to increased rates of stream incision, or transport processes that are not linearly dependent on slope. Isolation of roughly the upper 100 m of hilltops and evaluation of the curvature of these crests provides constraint on the ratio of weathering rate to transport efficiency in the landscape most likely to be in steady state. Changes in crest curvature with distance from the canyon rim can be used to document transient hillslope response of the upper plateau surface in areas with uniform lithology. Paired with field observations and mapped bedrock contacts, analysis of an ASLM-derived DEM allows us to evaluate the extent to which the upper plateau channels and hillslopes have responded to knickpoint migration and the carving of canyons downstream. Morphologic evidence for significant upper plateau response to this incision event would suggest that the timescale for landscape adjustment to base level fall may be shorter than that required to propagate a knickpoint upstream.

  11. Influence of Initial Geometry and Boundary Conditions on Flat Subduction Models and Resulting Topography

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Moucha, R.

    2014-12-01

    Numerical investigations of surface deformation in response to flat slab subduction began with seminal papers by Bird (1988) and Mitrovica et al. (1989). Recently, a number of numerical studies have begun to explore the complexity in the dynamics of flat-slab subduction initiation and continuation, but did not address the corresponding surface deformation (English et al., 2003; Pérez-Campos et al., 2008; Liu et al., 2010; Jones et al., 2011; Arrial and Billen, 2013; Vogt and Gerya, 2014). Herein, we explore the conditions that lead to flat-slab subduction and characterize the resulting surface deformation using a 2D finite-difference marker-in-cell method. We specifically explore how initial model geometry and boundary conditions affect the evolution of the angle at which a slab subducts in the presence/absence of a buoyant oceanic plateau and the resulting surface topography. In our simulations, the surface is tracked through time as an internal erosion/sedimentation surface. The top boundary of the crust is overlaid by a "sticky" (viscous 10^17 Pa.s) water/air layer with correspondingly stratified densities. We apply a coupled surface processes model that solves the sediment transport/diffusion erosion equation at each time step to account for the corresponding crustal mass flux and its effect on crustal deformation. Model results show the initial angle of subduction has a substantial impact on the subduction angle of the slab and hence the evolution of topography. The results also indicate plate velocity and the presence of an oceanic plateau in a forced subduction only have a moderate effect on the angle of subduction.

  12. Orbital Winch

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert (Inventor); Slostad, Jeffrey T. (Inventor); Frank, Scott (Inventor); Barnes, Ian M. (Inventor)

    2016-01-01

    Orbital winch having: lower and upper frames; spool having upper and lower flanges with lower flange attached to lower frame; axial tether guide mounted to upper frame; secondary slewing ring coaxial with spool and rotatably mounted to upper frame, wherein secondary slewing ring's outer surface has gearing; upper tether guide mounted to inner surface of secondary slewing ring; linear translation means having upper end mounted to upper frame and lower end mounted on lower frame; primary slewing ring rotatably mounted within linear translation means allowing translation axially between flanges, wherein primary slewing ring's outer surface has gearing; lower tether guide mounted on primary slewing ring's inner surface; pinion rod having upper end mounted to upper frame and lower end mounted to lower frame, wherein pinion rod's teeth engage primary and secondary slewing rings' outer surface teeth; and tether passing through axial, upper, and lower tether guides and winding around spool.

  13. Quadratic Forms and Semiclassical Eigenfunction Hypothesis for Flat Tori

    NASA Astrophysics Data System (ADS)

    T. Sardari, Naser

    2018-03-01

    Let Q( X) be any integral primitive positive definite quadratic form in k variables, where {k≥4}, and discriminant D. For any integer n, we give an upper bound on the number of integral solutions of Q( X) = n in terms of n, k, and D. As a corollary, we prove a conjecture of Lester and Rudnick on the small scale equidistribution of almost all functions belonging to any orthonormal basis of a given eigenspace of the Laplacian on the flat torus {T^d} for {d≥ 5}. This conjecture is motivated by the work of Berry [2,3] on the semiclassical eigenfunction hypothesis.

  14. South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes.

    PubMed

    Schepers, Gerben; van Hinsbergen, Douwe J J; Spakman, Wim; Kosters, Martha E; Boschman, Lydian M; McQuarrie, Nadine

    2017-05-16

    At two trench segments below the Andes, the Nazca Plate is subducting sub-horizontally over ∼200-300 km, thought to result from a combination of buoyant oceanic-plateau subduction and hydrodynamic mantle-wedge suction. Whether the actual conditions for both processes to work in concert existed is uncertain. Here we infer from a tectonic reconstruction of the Andes constructed in a mantle reference frame that the Nazca slab has retreated at ∼2 cm per year since ∼50 Ma. In the flat slab portions, no rollback has occurred since their formation at ∼12 Ma, generating 'horse-shoe' slab geometries. We propose that, in concert with other drivers, an overpressured sub-slab mantle supporting the weight of the slab in an advancing upper plate-motion setting can locally impede rollback and maintain flat slabs until slab tearing releases the overpressure. Tear subduction re-establishes a continuous slab and allows the process to recur, providing a mechanism for the transient character of flat slabs.

  15. Biomechanical analysis of three tennis serve types using a markerless system.

    PubMed

    Abrams, Geoffrey D; Harris, Alex H S; Andriacchi, Thomas P; Safran, Marc R

    2014-02-01

    The tennis serve is commonly associated with musculoskeletal injury. Advanced players are able to hit multiple serve types with different types of spin. No investigation has characterised the kinematics of all three serve types for the upper extremity and back. Seven NCAA Division I male tennis players performed three successful flat, kick and slice serves. Serves were recorded using an eight camera markerless motion capture system. Laser scanning was utilised to accurately collect body dimensions and data were computed using inverse kinematic methods. There was no significant difference in maximum back extension angle for the flat, kick or slice serves. The kick serve had a higher force magnitude at the back than the flat and slice as well as larger posteriorly directed shoulder forces. The flat serve had significantly greater maximum shoulder internal rotation velocity versus the slice serve. Force and torque magnitudes at the elbow and wrist were not significantly different between the serves. The kick serve places higher physical demands on the back and shoulder while the slice serve demonstrated lower overall kinetic forces. This information may have injury prevention and rehabilitation implications.

  16. Convergent Polishing: A Simple, Rapid, Full Aperture Polishing Process of High Quality Optical Flats & Spheres

    PubMed Central

    Suratwala, Tayyab; Steele, Rusty; Feit, Michael; Dylla-Spears, Rebecca; Desjardin, Richard; Mason, Dan; Wong, Lana; Geraghty, Paul; Miller, Phil; Shen, Nan

    2014-01-01

    Convergent Polishing is a novel polishing system and method for finishing flat and spherical glass optics in which a workpiece, independent of its initial shape (i.e., surface figure), will converge to final surface figure with excellent surface quality under a fixed, unchanging set of polishing parameters in a single polishing iteration. In contrast, conventional full aperture polishing methods require multiple, often long, iterative cycles involving polishing, metrology and process changes to achieve the desired surface figure. The Convergent Polishing process is based on the concept of workpiece-lap height mismatch resulting in pressure differential that decreases with removal and results in the workpiece converging to the shape of the lap. The successful implementation of the Convergent Polishing process is a result of the combination of a number of technologies to remove all sources of non-uniform spatial material removal (except for workpiece-lap mismatch) for surface figure convergence and to reduce the number of rogue particles in the system for low scratch densities and low roughness. The Convergent Polishing process has been demonstrated for the fabrication of both flats and spheres of various shapes, sizes, and aspect ratios on various glass materials. The practical impact is that high quality optical components can be fabricated more rapidly, more repeatedly, with less metrology, and with less labor, resulting in lower unit costs. In this study, the Convergent Polishing protocol is specifically described for fabricating 26.5 cm square fused silica flats from a fine ground surface to a polished ~λ/2 surface figure after polishing 4 hr per surface on a 81 cm diameter polisher. PMID:25489745

  17. Fuel cell separator plate with bellows-type sealing flanges

    DOEpatents

    Louis, G.A.

    1984-05-29

    A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which steps just short of the plate, these side walls affording resilient compressibility to the sealing flange in a direction generally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

  18. The impact of the South-American plate motion and the Nazca Ridge subduction on the flat subduction below South Peru

    NASA Astrophysics Data System (ADS)

    van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.

    2002-07-01

    Flat subduction near Peru occurs only where the thickened crust of the Nazca Ridge subducts. Furthermore, the South-America continent shows a westward absolute plate motion. Both the overriding motion of South-America and the subduction of the Nazca Ridge have been proposed to explain the flat slab segment below South Peru. We have conducted a series of numerical model experiments to investigate the relative importance of both mechanisms. Results suggest that the average upper mantle viscosity should be about 3.5 × 1020 Pa s or less and basaltic crust should be able to survive 600 to 800°C ambient temperature before transforming into eclogite to explain the slab geometry below Peru. The effect of the overriding plate is estimated to be as large or twice as large as that of the plateau subduction.

  19. Fuel cell separator plate with bellows-type sealing flanges

    DOEpatents

    Louis, George A.

    1986-08-05

    A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which stops just short of the plate, these side walls affording resilient compressibility to the sealing flange in a directiongenerally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

  20. Pair Formation of Hard Core Bosons in Flat Band Systems

    NASA Astrophysics Data System (ADS)

    Mielke, Andreas

    2018-05-01

    Hard core bosons in a large class of one or two dimensional flat band systems have an upper critical density, below which the ground states can be described completely. At the critical density, the ground states are Wigner crystals. If one adds a particle to the system at the critical density, the ground state and the low lying multi particle states of the system can be described as a Wigner crystal with an additional pair of particles. The energy band for the pair is separated from the rest of the multi-particle spectrum. The proofs use a Gerschgorin type of argument for block diagonally dominant matrices. In certain one-dimensional or tree-like structures one can show that the pair is localised, for example in the chequerboard chain. For this one-dimensional system with periodic boundary condition the energy band for the pair is flat, the pair is localised.

  1. Atomically Flat Surfaces Developed for Improved Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony

    2001-01-01

    New wide bandgap semiconductor materials are being developed to meet the diverse high temperature, -power, and -frequency demands of the aerospace industry. Two of the most promising emerging materials are silicon carbide (SiC) for high-temperature and high power applications and gallium nitride (GaN) for high-frequency and optical (blue-light-emitting diodes and lasers) applications. This past year Glenn scientists implemented a NASA-patented crystal growth process for producing arrays of device-size mesas whose tops are atomically flat (i.e., step-free). It is expected that these mesas can be used for fabricating SiC and GaN devices with major improvements in performance and lifetime. The promising new SiC and GaN devices are fabricated in thin-crystal films (known as epi films) that are grown on commercial single-crystal SiC wafers. At this time, no commercial GaN wafers exist. Crystal defects, known as screw defects and micropipes, that are present in the commercial SiC wafers propagate into the epi films and degrade the performance and lifetime of subsequently fabricated devices. The new technology isolates the screw defects in a small percentage of small device-size mesas on the surface of commercial SiC wafers. This enables atomically flat surfaces to be grown on the remaining defect-free mesas. We believe that the atomically flat mesas can also be used to grow GaN epi films with a much lower defect density than in the GaN epi films currently being grown. Much improved devices are expected from these improved low-defect epi films. Surface-sensitive SiC devices such as Schottky diodes and field effect transistors should benefit from atomically flat substrates. Also, we believe that the atomically flat SiC surface will be an ideal surface on which to fabricate nanoscale sensors and devices. The process for achieving atomically flat surfaces is illustrated. The surface steps present on the "as-received" commercial SiC wafer is also illustrated. because of the small tilt angle between the crystal "basal" plane and the polished wafer surface. These steps are used in normal SiC epi film growth in a process known as stepflow growth to produce material for device fabrication. In the new process, the first step is to etch an array of mesas on the SiC wafer top surface. Then, epi film growth is carried out in the step flow fashion until all steps have grown themselves out of existence on each defect-free mesa. If the size of the mesas is sufficiently small (about 0.1 by 0.1 mm), then only a small percentage of the mesas will contain an undesired screw defect. Mesas with screw defects supply steps during the growth process, allowing a rough surface with unwanted hillocks to form on the mesa. The improvement in SiC epi surface morphology achievable with the new technology is shown. An atomic force microscope image of a typical SiC commercial epilayer surface is also shown. A similar image of an SiC atomically flat epi surface grown in a Glenn laboratory is given. With the current screw defect density of commercial wafers (about 5000 defects/cm2), the yield of atomically free 0.1 by 0.l mm mesas is expected to be about 90 percent. This is large enough for many types of electronic and optical devices. The implementation of this new technology was recently published in Applied Physics Letters. This work was initially carried out in-house under a Director's Discretionary Fund project and is currently being further developed under the Information Technology Base Program.

  2. Interpretation of ICESat-Derived Elevation Change on the Malaspina-Seward Glacier

    NASA Astrophysics Data System (ADS)

    Sauber, J.; Ramage, J.; Kopczynski, S.; Muskett, R.

    2005-12-01

    In this study, we report and interpret ICESat-derived short-term variability in surface elevation in the snow accumulation region of the Seward-Malaspina Glacier, one of the largest glacier systems in southern Alaska. The Seward-Malaspina complex consists of an extensive icefield, the upper Seward Glacier, and a narrower lower outlet glacier (lower Seward) through which ice drains to the enormous piedmont of the Malaspina Glacier. Although the upper Seward is just 80 km north of the Gulf of Alaska it has an environment more continental than maritime because of shielding afforded by high mountains to the south [Sharp, 1951]. The Malaspina Glacier by contrast lies completely within the moist maritime environment of the southern Alaska coast. In an earlier study of the Malaspina Glacier, we reported elevation differences between ICESat Laser 1-3 observations (February 2003 - November 2004) and a Shuttle Radar Topography Mission (SRTM)-derived DEM from February 2000 [Sauber et al., 2005]. Elevation decreases of up to 20-25 m over a 3-4 year time period were observed across the folded loop moraine on the southern portion of the piedmont lobe of the Malaspina Glacier. For the western portion of the Upper Seward we will estimate elevation change over a comparable time period by using an X-band InSAR-derived DEM from Intermap Tech. (Sept. 2000) and ICESat-derived elevations. Early field measurements (1945-1949) from the Upper Seward Glacier indicated an average annual net surplus of 75 cm water equivalent in the Upper Seward basin [Sharp, 1951]. However, even over this short time period, Sharp [1951] found large interannual variability in net accumulation of 41-168 cm. To further constrain and understand surface changes, we examined ICESat-derived elevations from a variable set of repeated ICESat upper Seward profiles made between Feb. 2003 and May 2005. Additionally we compared the elevation change profiles to snowmelt timing and ablation season length derived from the Special Sensor Microwave Imager (SSM/I) 37 GHz brightness temperatures for 2000-2004 using the approach of Ramage and Isacks (2003). We found the largest elevation increase between Oct 2003 and late Feb./March 2004 (3-4 m over a flat region of the upper Seward at 1740 m), little discernible elevation change occurred between March and May 2004, and about 2 m of elevation decrease occurred at 1750 m between May and Oct. 2004. The elevation increase of 3-4 m at 1740 m in the upper Seward occurred after refreezing started in August 2003 and before the snowmelt onset in mid to late April 2004. Ramage and Isacks, J. Glaciol., 2003. Sauber et al., Geophys. Res. Lett., in press, 2005. Sharp, Geol. Soc. Am.,1951.

  3. Process and apparatus for indirect-fired heating and drying

    DOEpatents

    Abbasi, Hamid Ali; Chudnovsky, Yaroslav

    2005-04-12

    A method for heating flat or curved surfaces comprising injecting fuel and oxidant along the length, width or longitudinal side of a combustion space formed between two flat or curved plates, transferring heat from the combustion products via convection and radiation to the surface being heated on to the material being dried/heated, and recirculating at least 20% of the combustion products to the root of the flame.

  4. Analysis of Experimental Investigations of the Planing Process of the Surface of Water

    NASA Technical Reports Server (NTRS)

    Sottorf, W.

    1944-01-01

    Pressure distribution and spray measurements were carried out on rectangular flat and V-bottom planing surfaces. Lift, resistance, and center of pressure data are analyzed and it is shown how these values may be computed for the pure planing procees of a flat or V-bottom suface of arbitrary beam, load and speed, the method being illustrated with the aid of an example.

  5. 49 CFR 173.441 - Radiation level limitations and exclusive use provisions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...; or in the case of a flat-bed style vehicle, at any point on the vertical planes projected from the... external surface of the vehicle; (3) 0.1 mSv/h (10 mrem/h) at any point 2 m (6.6 feet) from the outer lateral surfaces of the vehicle (excluding the top and underside of the vehicle); or in the case of a flat...

  6. A leading edge heating array and a flat surface heating array - operation, maintenance and repair manual

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A general description of the leading edge/flat surface heating array is presented along with its components, assembly instructions, installation instructions, operation procedures, maintenance instructions, repair procedures, schematics, spare parts lists, engineering drawings of the array, and functional acceptance test log sheets. The proper replacement of components, correct torque values, step-by-step maintenance instructions, and pretest checkouts are described.

  7. Metallization of ultra-thin, non-thiol SAMs with flat-lying molecular units: Pd on 1, 4-dicyanobenzene.

    PubMed

    Eberle, Felix; Metzler, Martin; Kolb, Dieter M; Saitner, Marc; Wagner, Patrick; Boyen, Hans-Gerd

    2010-09-10

    Self-assembled monolayers of 1,4-dicyanobenzene on Au(111) electrodes are studied by cyclic voltammetry, in-situ STM and ex-situ XPS. High-resolution STM images reveal a long-range order of propeller-like assemblies each of which consists of three molecules, all lying flat on the gold substrate with the cyano groups oriented parallel to the metal surface. It is demonstrated that both functional groups can act as complexation sites for metal ions from solution. Surprisingly, such arrangements still allow the metal to be deposited on top of the molecules by electrochemical reduction despite the close vicinity to the Au surface. The latter is demonstrated by angle-resolved XPS which unequivocally shows that the metal indeed resides on top of the organic layer rather than underneath, despite the flat arrangement of the molecules.

  8. Testing of flat conductor cable to Underwriters Laboratory standards UL719 and UL83

    NASA Technical Reports Server (NTRS)

    Loggins, R. W.; Herndon, R. H.

    1974-01-01

    The flat conductor cable (FCC) which was tested consisted of three AWG No. 12 flat copper conductors laminated between two films of polyethylene terephthalate (Mylar) insulation with a self-extinguishing polyester adhesive. Results of the tests conducted on this cable, according to specifications, warrants the use of this FCC for electrical interconnections in a surface nonmetallic protective covering.

  9. Geology and lithogeochemistry of the Ren gold prospect, Elko County, Nevada - the role of rock sampling in exploration for deep Carlin-type deposits

    USGS Publications Warehouse

    Albino, G.V.

    1994-01-01

    The Ren gold prospect, Elko County, Nevada, is in the northern part of the Carlin trend, two kilometers northwest of the recently-discovered, high-grade Purple Vein deposit. The Ren area is underlain mainly by Paleozoic sedimentary rocks, consisting of limestone, calcareous siltstone, and mudstone of the eastern (carbonate) assemblage, overlain in thrust contact by chert, quartzite, and mudstone of the western (siliceous) assemblage. Cretaceous(?) granodiorite porphyry and hornblende porphyry dikes have intruded the sedimentary rocks along north-striking faults. Three stages of mineralization include a pre- or syntectonic base metal-barite assemblage, a middle stage of Ag- and Sb-rich jasperoid, and a late Au-rich stage responsible for the potentially economic mineralization at the prospect. The latter two stages of alteration and mineralization were focused along steep east-dipping faults and dikes, and the nearly flat-lying contact between lower massive limestone and laminated calcareous siltstone. Mineralization is present between 380 and 500 m below the surface. Alteration includes decalcification and weak silicification in siltstone, and formation of massive jasperoid in the upper part of the limestone unit. Alteration of dikes is mainly sericite-quartz-pyrite, with late pyrite-quartz-kaolinite. The element suite characteristic of Au-stage mineralization includes Au, As, and Hg with minor Ag and Hg; Ag and Sb are most enriched in the earlier jasperoid event. Haloes of As and Hg extend at least 80 m above the Au mineralization, but no anomalies are present at the surface. Gold anomalies are more widespread, and extend to shallower depths, but are less coherent. ?? 1994.

  10. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China

    NASA Astrophysics Data System (ADS)

    Hori, Kazuaki; Saito, Yoshiki; Zhao, Quanhong; Cheng, Xinrong; Wang, Pinxian; Sato, Yoshio; Li, Congxian

    2001-11-01

    The Changjiang (Yangtze) River, one of the largest rivers in the world, has formed a broad tide-dominated delta at its mouth during the Holocene sea-level highstand. Three boreholes (CM97, JS98, and HQ98) were obtained from the Changjiang delta plain in 1997-1998 to clarify the characteristics of tide-dominated delta sediments and architecture. Based on sediment composition and texture, and faunal content, core sediments were divided into six depositional units. In ascending order, they were interpreted as tidal sand ridge, prodelta, delta-front, subtidal to lower intertidal flat, upper intertidal flat, and surface soil deposits. The deltaic sequence from the prodelta deposits to the delta front deposits showed an upward-coarsening succession, overlain by an upward-fining succession from the uppermost part of the delta front deposits to the surface soil. Thinly interlaminated to thinly interbedded sand and mud (sand-mud couplets), and bidirectional cross laminations in these deposits show that tide is the key factor affecting the formation of Changjiang deltaic facies. Sediment facies and their succession combined with AMS 14C dating revealed that isochron lines cross unit boundaries clearly, and delta progradation has occurred since about 6000 to 7000 years BP, when the rising sea level neared or reached its present position. The average progradation rate of the delta front was approximately 50 km/kyear over the last 5000 years. The progradation rate, however, increased abruptly ca. 2000 years BP, going from 38 to 80 km/kyear. The possible causes for this active progradation could have been an increase in sediment production in the drainage basin due to widespread human interference and/or decrease in deposition in the middle reaches related to the channel stability caused by human activity and climatic cooling after the mid-Holocene.

  11. Subglacial Depositional Processes in the Port Askaig Formation (Neoproterozoic) of Ireland

    NASA Astrophysics Data System (ADS)

    Knight, J.

    2004-12-01

    The Port Askaig Formation was deposited during the Vendian glaciation (c. 650 Ma) and is a range of tillites that outcrop discontinuously from Banffshire (Scotland) to Connemara (Ireland). Sedimentary structures commonly observed include dropstones and sediment drapes, interpreted as deposition from a floating glacial ice shelf in a shallow marginal sea. Other structures, such as intersecting clastic dikes, have been interpreted as evidence for subaerial exposure of the tillite surface. Exposures of the Port Askaig Formation were examined at its Irish type area at Kiltyfanned Lough, County Donegal. Here, homogeneous sandy beds with internal planar bedding structures are separated by laminated fine sand beds which have erosional upper surfaces. The laminated beds are clast-free and individual laminae are laterally continuous and undisturbed. Larger clasts lie bed-parallel and are draped by overlying beds. Occasionally drapes are asymmetric with a thickened sediment prow, suggestive of flow direction. The clastic dikes are polygonal in plan view, may be isolated or interconnected, and are often arranged in parallel sheets which pinch out laterally. Internally, the clastic dikes are infilled with coarse sand to gravel. Infills are often aligned parallel to dike margins. The presence of draped and deformed sediments suggest a subglacial environment with free water availability. The flat-lying morphology of clasts also favours a subglacial rather than a full marine environment. The morphology and disposition of clastic dikes is interpreted as due to subglacial hydrofracturing of a till sheet and upward passage of sediment-charged water through the fracture zone, which is known from late Pleistocene and Precambrian tillites elsewhere. Variations in water availability can be reconciled by a sub-ice shelf depositional model with spatial and temporal changes in tidally-induced ice-bed coupling.

  12. Planation surfaces as a record of medium to large wavelength deformation: the example of the Lake Albert Rift (Uganda) on the East African Dome

    NASA Astrophysics Data System (ADS)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Jean, Braun; Olivier, Dauteuil; Massimo, Dall'Asta

    2016-04-01

    African relief is characterized by planation surfaces, some of them of continental scale. These surfaces are slightly deformed according to different wavelengths (x10 km; x100 km, x1000 km) which record both mantle dynamics (very long wavelength, x 1000 km) and lithosphere deformation (long wavelength deformation, x 100 km). Different types of these planation surfaces are recognized: - Etchplains capped by iron-duricrust which correspond to erosional nearly flat weathered surfaces resulting from the growth of laterites under warm and humid conditions. - Pediments which define mechanical erosional surfaces with concave or rectilinear profiles delimited by upslope scarps connected upstream with the upper landforms. We here focused on the Lake Albert Rift at the northern termination of the western branch of the East African Rift System of which the two branches are surimposed on the East-African Dome. Different wavelengths of deformation were characterized based on the 3D mapping of stepped planation surfaces: (1) very long wavelength deformations resulting from the uplift of the East African Dome; (2) long wavelength deformations resulting from the opening of the eastern branch and (3) medium wavelength deformations represented by the uplift of rift shoulders like the Rwenzori Mountains. The paleo-landscape reconstruction of Uganda shows the existence of four generations of landforms dated according to their geometrical relationships with volcanic rocks. A four stepped evolution of the Ugandan landforms is proposed: • 70 - 22 Ma: generation of two weathered planation surfaces (etchplain Uw and Iw). The upper one (Uw) records a very humid period culminating at time of the Early Eocene Climatic Optimum (70-45 Ma). It corresponds to the African Surface. A first uplift of the East African Dome generates a second lower planation surface (Iw) connected to the Atlantic Ocean base level; • 17-2.7 Ma: planation of large pediplains connected to the local base level induced by the birth of the Albertine Rift System and the formation of the proto-Lake Albert; • 2.7-0.4 Ma: uplift of the Ruwenzori Mountains and degradation by river incision of the previous large pediplains; • 0.4-0 Ma: long wavelength downwarping of the Tanzania Craton between the two branches of the rift, creation of the Victoria Lake, inversion of the drainage and formation of the fault-bounded scarps of Albert Rift.

  13. The ratio of the spherical and flat Detectors at tissue surfaces during pleural photodynamic therapy.

    PubMed

    Zhu, Timothy C; Friedberg, Joseph S; Dimofte, Andrea; Miles, Jeremy; Metz, James; Glatstein, Eli; Hahn, Stephen M

    2002-06-06

    An isotropic detector-based system was compared with a flat photodiode-based system in patients undergoing pleural photodynamic therapy. Isotropic and flat detectors were placed side by side in the chest cavity, for simultaneous in vivo dosimetry at surface locations for twelve patients. The treatment used 630nm laser to a total light irradiance of 30 J/cm 2 (measured with the flat photodiodes) with photofrin® IV as the photosensitizer. Since the flat detectors were calibrated at 532nm, wavelength correction factors (WCF) were used to convert the calibration to 630nm (WCF between 0.542 and 0.703). The mean ratio between isotropic and flat detectors for all sites was linear to the accumulated fluence and was 3.4±0.6 or 2.1±0.4, with or without the wavelength correction for the flat detectors, respectively. The μ eff of the tissues was estimated to vary between 0.5 to 4.3 cm -1 for four sites (Apex, Posterior Sulcus, Anterior Chest Wall, and Posterior Mediastinum) assuming μ s ' = 7 cm -1 . Insufficient information was available to estimate μ eff directly for three other sites (Anterior Sulcus, Posterior Chest Wall, and Pericardium) primarily due to limited sample size, although one may assume the optical penetration in all sites to vary in the same range (0.5 to 4.3 cm -1 ).

  14. Random packing of regular polygons and star polygons on a flat two-dimensional surface.

    PubMed

    Cieśla, Michał; Barbasz, Jakub

    2014-08-01

    Random packing of unoriented regular polygons and star polygons on a two-dimensional flat continuous surface is studied numerically using random sequential adsorption algorithm. Obtained results are analyzed to determine the saturated random packing ratio as well as its density autocorrelation function. Additionally, the kinetics of packing growth and available surface function are measured. In general, stars give lower packing ratios than polygons, but when the number of vertexes is large enough, both shapes approach disks and, therefore, properties of their packing reproduce already known results for disks.

  15. Development of a laser-induced heat flux technique for measurement of convective heat transfer coefficients in a supersonic flowfield

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.

  16. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.

  17. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.

  18. Facies analysis of Lofer cycles (Upper Triassic), in the Argolis Peninsula (Greece)

    NASA Astrophysics Data System (ADS)

    Pomoni-Papaioannou, F.

    The Upper Triassic carbonate sediments of Argolis Peninsula are part of the Upper Triassic-Lower Jurassic extensive and thick neritic carbonate formations (Pantokrator facies) that formed at the passive Pelagonian margin and are considered as Dachstein-type platform carbonates. Facies analysis of the Upper Triassic "Lofer-type" lagoonal-peritidal cycles in the Dhidimi area, proved that cycles, although mostly incomplete, were regressive shallowing-upward. The ideal elementary cyclothems are meter-scale in thickness and begin with a subtidal bed (Member C), represented by a peloidal dolostone with megalodonts (wackestone or packstone), being followed by a stromatolitic intertidal dolomitic mudstone and/or fenestral intertidal dolomitic mudstone (Member B) that is overlain by dolocrete (terrestrial stromatolites or pisoidic dolomite) or a supratidal "soil conglomerate" in red micritic matrix (Member A). Lofer-cycle boundaries are defined at the erosional surfaces and accordingly the Lofer cyclothems are unconformity-bounded units. Due to common post-depositional truncation of the subtidal and intertidal facies, the supratidal members prevail, being developed, in places, directly upon subaerial exposure surfaces (erosionally reduced cyclothems). Peritidal layers are characterized by a well-expressed lamination, sheet cracks, tepee structures, fenestral pores and karst dissolution cavities. The studied lagoonal-peritidal cycles are considered to have been deposited in a tidal-flat setting (inner platform), repeatedly exposed under subaerial conditions, in the context of a broader tropical rimmed platform. Although the studied area was tectonically active due to rift-activity and the autocyclic processes should also be taken in consideration, the great lateral correlatability of cycles, the facies shifting and the widespread erosion that resulted in superposition of supratidal-pedogenic facies directly upon subtidal members (subaerial erosional unconformity), indicating a sea-level drop, reflect allocyclic control via high-frequency eustatic sea-level oscillation (orbital forcing). Sediment deposition occurred during low-stand system tract (LST), that probably continued also in the transgressive system tract (TST) and reflects an overall sea-level fall. Under these conditions dissolution and cement precipitation episodes, as well development of paleosols and karsts, were triggered, during a relatively less arid interval.

  19. In vivo measurement of skin surface strain and sub-surface layer deformation induced by natural tissue stretching.

    PubMed

    Maiti, Raman; Gerhardt, Lutz-Christian; Lee, Zing S; Byers, Robert A; Woods, Daniel; Sanz-Herrera, José A; Franklin, Steve E; Lewis, Roger; Matcher, Stephen J; Carré, Matthew J

    2016-09-01

    Stratum corneum and epidermal layers change in terms of thickness and roughness with gender, age and anatomical site. Knowledge of the mechanical and tribological properties of skin associated with these structural changes are needed to aid in the design of exoskeletons, prostheses, orthotics, body mounted sensors used for kinematics measurements and in optimum use of wearable on-body devices. In this case study, optical coherence tomography (OCT) and digital image correlation (DIC) were combined to determine skin surface strain and sub-surface deformation behaviour of the volar forearm due to natural tissue stretching. The thickness of the epidermis together with geometry changes of the dermal-epidermal junction boundary were calculated during change in the arm angle, from flexion (90°) to full extension (180°). This posture change caused an increase in skin surface Lagrange strain, typically by 25% which induced considerable morphological changes in the upper skin layers evidenced by reduction of epidermal layer thickness (20%), flattening of the dermal-epidermal junction undulation (45-50% reduction of flatness being expressed as Ra and Rz roughness profile height change) and reduction of skin surface roughness Ra and Rz (40-50%). The newly developed method, DIC combined with OCT imaging, is a powerful, fast and non-invasive methodology to study structural skin changes in real time and the tissue response provoked by mechanical loading or stretching. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    NASA Astrophysics Data System (ADS)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.

  1. Impact of Cubic Pin Finned Surface Structure Geometry upon Spray Cooling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Silk, Eric A.; Kim, Jungho; Kiger, Ken

    2005-01-01

    Experiments were conducted to study the effects of enhanced surface structures on heat flux using spray cooling. The surface enhancements consisted of cubic pin fins machined on the top surface of copper heater blocks. The structure height, pitch, and width were parametrically vaned. Each copper block had a projected cross-sectional area of 2.0 sq cm. Measurements were also obtained on a heater block with a flat surface for baseline comparison purposes. A 2 x 2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data were obtained under nominally degassed (chamber pressure of 41.4 kPa) and gassy conditions (chamber with N2 gas at 100.7 kPa) with a bulk fluid temperature of 20.5 C. Results for both the degassed and gassy cases show that structure width and separation distance have a dominant effect upon the heat transfer for the size ranges used. Cubic pin fin height had little impact upon heat flux. The maximum critical heat flux (CHF) attained for any of the surfaces was 121 W/sq cm, giving an enhancement of 51% relative to the flat surface case under nominally degassed conditions. The gassy case had a maximum CHF of 149 W/sq cm, giving an enhancement of 38% relative to the flat surface case.

  2. Cell density-dependent differential proliferation of neural stem cells on omnidirectional nanopore-arrayed surface.

    PubMed

    Cha, Kyoung Je; Kong, Sun-Young; Lee, Ji Soo; Kim, Hyung Woo; Shin, Jae-Yeon; La, Moonwoo; Han, Byung Woo; Kim, Dong Sung; Kim, Hyun-Jung

    2017-10-12

    Recently, the importance of surface nanotopography in the determination of stem cell fate and behavior has been revealed. In the current study, we generated polystyrene cell-culture dishes with an omnidirectional nanopore arrayed surface (ONAS) (diameter: 200 nm, depth: 500 nm, center-to-center distance: 500 nm) and investigated the effects of nanotopography on rat neural stem cells (NSCs). NSCs cultured on ONAS proliferated better than those on the flat surface when cell density was low and showed less spontaneous differentiation during proliferation in the presence of mitogens. Interestingly, NSCs cultured on ONAS at clonal density demonstrated a propensity to generate neurospheres, whereas those on the flat surface migrated out, proliferated as individuals, and spread out to attach to the surface. However, the differential patterns of proliferation were cell density-dependent since the distinct phenomena were lost when cell density was increased. ONAS modulated cytoskeletal reorganization and inhibited formation of focal adhesion, which is generally observed in NSCs grown on flat surfaces. ONAS appeared to reinforce NSC-NSC interaction, restricted individual cell migration and prohibited NSC attachment to the nanopore surface. These data demonstrate that ONAS maintains NSCs as undifferentiated while retaining multipotency and is a better topography for culturing low density NSCs.

  3. Structure of the screening layer near a plane isolated body in the deep vacuum. Part 2. Monoenergetic isotropic flow

    NASA Astrophysics Data System (ADS)

    Gunko, Yuri F.; Gunko, Natalia A.

    2018-05-01

    In this paper we consider the problem of determining the structure of the electric field near the surface of a flat insulated body under conditions of a deep vacuum. It is assumed that the emitted particles are electrons leaving the body surface under the influence of ionizing radiation whose velocities distribution near the surface is isotropic. It is estimated the thickness of the screening layer under conditions of stationary emission from a flat surface. The solutio of the problem of determining a stationary self-consistent electric field near the surface is found in a simple analytical form. The thickness of the screening layer is calculated from this formula.

  4. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOEpatents

    Britten, Jerald A.

    1997-01-01

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.

  5. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOEpatents

    Britten, J.A.

    1997-08-26

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.

  6. Drug release from slabs and the effects of surface roughness.

    PubMed

    Kalosakas, George; Martini, Dimitra

    2015-12-30

    We discuss diffusion-controlled drug release from slabs or thin films. Analytical and numerical results are presented for slabs with flat surfaces, having a uniform thickness. Then, considering slabs with rough surfaces, the influence of a non-uniform slab thickness on release kinetics is numerically investigated. The numerical release profiles are obtained using Monte Carlo simulations. Release kinetics is quantified through the stretched exponential (or Weibull) function and the resulting dependence of the two parameters of this function on the thickness of the slab, for flat surfaces, and the amplitude of surface fluctuations (or the degree of thickness variability) in case of roughness. We find that a higher surface roughness leads to a faster drug release. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Micro-cone targets for producing high energy and low divergence particle beams

    DOEpatents

    Le Galloudec, Nathalie

    2013-09-10

    The present invention relates to micro-cone targets for producing high energy and low divergence particle beams. In one embodiment, the micro-cone target includes a substantially cone-shaped body including an outer surface, an inner surface, a generally flat and round, open-ended base, and a tip defining an apex. The cone-shaped body tapers along its length from the generally flat and round, open-ended base to the tip defining the apex. In addition, the outer surface and the inner surface connect the base to the tip, and the tip curves inwardly to define an outer surface that is concave, which is bounded by a rim formed at a juncture where the outer surface meets the tip.

  8. Variability of intertidal foraminferal assemblages in a salt marsh, Oregon, USA

    USGS Publications Warehouse

    Milker, Yvonne; Horton, Benjamin P.; Nelson, Alan R.; Engelhart, Simon E.; Witter, Robert C.

    2015-01-01

    We studied 18 sampling stations along a transect to investigate the similarity between live (rose Bengal stained) foraminiferal populations and dead assemblages, their small-scale spatial variations and the distribution of infaunal foraminifera in a salt marsh (Toms Creek marsh) at the upper end of the South Slough arm of the Coos Bay estuary, Oregon, USA. We aimed to test to what extent taphonomic processes, small-scale variability and infaunal distribution influence the accuracy of sea-level reconstructions based on intertidal foraminifera. Cluster analyses have shown that dead assemblages occur in distinct zones with respect to elevation, a prerequisite for using foraminifera as sea-level indicators. Our nonparametric multivariate analysis of variance showed that small-scale spatial variability has only a small influence on live (rose Bengal stained) populations and dead assemblages. The dissimilarity was higher, however, between live (rose Bengal stained) populations in the middle marsh. We observed early diagenetic dissolution of calcareous tests in the dead assemblages. If comparable post-depositional processes and similar minor spatial variability also characterize fossil assemblages, then dead assemblage are the best modern analogs for paleoenvironmental reconstructions. The Toms Creek tidal flat and low marsh vascular plant zones are dominated by Miliammina fusca, the middle marsh is dominated by Balticammina pseudomacrescens and Trochammina inflata, and the high marsh and upland–marsh transition zone are dominated by Trochamminita irregularis. Analysis of infaunal foraminifera showed that most living specimens are found in the surface sediments and the majority of live (rose Bengal stained) infaunal specimens are restricted to the upper 10 cm, but living individuals are found to depths of 50 cm. The dominant infaunal specimens are similar to those in the corresponding surface samples and no species have been found living solely infaunally. The total numbers of infaunal foraminifera are small compared to the total numbers of dead specimens in the surface samples. This suggests that surface samples adequately represent the modern intertidal environment in Toms Creek.

  9. Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.

    PubMed

    Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L

    2017-11-01

    This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.

  10. Differences Between Gait on Stairs and Flat Surfaces in Relation to Fall Risk and Future Falls.

    PubMed

    Wang, Kejia; Delbaere, Kim; Brodie, Matthew A D; Lovell, Nigel H; Kark, Lauren; Lord, Stephen R; Redmond, Stephen J

    2017-11-01

    We used body-worn inertial sensors to quantify differences in semi-free-living gait between stairs and on normal flat ground in older adults, and investigated the utility of assessing gait on these terrains for predicting the occurrence of multiple falls. Eighty-two community-dwelling older adults wore two inertial sensors, on the lower back and the right ankle, during several bouts of walking on flat surfaces and up and down stairs, in between rests and activities of daily living. Derived from the vertical acceleration at the lower back, step rate was calculated from the signal's fundamental frequency. Step rate variability was the width of this fundamental frequency peak from the signal's power spectral density. Movement vigor was calculated at both body locations from the signal variance. Partial Spearman correlations between gait parameters and physiological fall risk factors (components from the Physiological Profile Assessment) were calculated while controlling for age and gender. Overall, anteroposterior vigor at the lower back in stair descent was lower in subjects with longer reaction times. Older adults walked more slowly on stairs, but they were not significantly slower on flat surfaces. Using logistic regression, faster step rate in stair descent was associated with multiple prospective falls over 12 months. No significant associations were shown from gait parameters derived during walking upstairs or on flat surfaces. These results suggest that stair descent gait may provide more insight into fall risk than regular walking and stair ascent, and that further sensor-based investigation into unsupervised gait on different terrains would be valuable.

  11. Solar shutter arrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulkerson, P.L.

    1988-02-02

    In a structure having a roof with a skylight including a glass panel which transmits solar energy, a shutter arrangement supported on the roof is described comprising an insulative flat one-piece solid shutter in the form of a panel selectively and linearly slidable on tracks which conceal the side edges thereof from a position blocking transmittal of solar energy through the glass panel of the skylight into an area within the structure to a position permitting transmittal of solar energy through the glass panel of the skylight into the area within the structure. The skylight presents a space between themore » glass panel and the selectively and linearly slidable insulative flat one-piece solid shutter, where the latter serves as the selective inner wall of the space contiguous with the area within the structure and the glass panel serves as the fixed outer wall of the space, where temperature responsive means is disposed within the space and in direct engagement with the inner surface of the glass panel, where the temperature responsive means is a black thermocouple operating a motor in a driving relationship with the insulative flat one-piece solid shutter. The insulative flat one-piece solid shutter is supported by a cable secured to a rotatable shaft controlled by the motor, where bi-directional movement of the rotatable shaft achieves raising and lowering of the insulative flat one-piece solid shutter to each of the solar energy blocking and transmittal positions, and where the insulative flat one-piece solid shutter includes a reflective surface facing the skylight and a decorative surface facing the area within the structure.« less

  12. Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode.

    PubMed

    Na, Jun-Hee; Park, Seung Chul; Kim, Se-Um; Choi, Yoonseuk; Lee, Sin-Doo

    2012-01-16

    A convertible lenticular liquid crystal (LC) lens architecture is demonstrated using an index-matched planarization layer on a periodically undulated electrode for the homogeneous alignment of an LC. It is found that the in-plane component of the electric field by the undulated electrode plays a primary role in the flat-to-lens effect while the out-of-plane component contributes to the anchoring enhancement of the LC molecules in the surface layer. Our LC device having an index-matched planarization layer on the undulated electrode is capable of achieving the electrical tunability from the flat surface to the lenticular lens suitable for 2D/3D convertible displays.

  13. Comparative Study of the Binding of Concanavalin A to Self-Assembled Monolayers Containing a Thiolated α-Mannoside on Flat Gold and on Nanoporous Gold

    PubMed Central

    Pandey, Binod; Tan, Yih Horng; Fujikawa, Kohki; Demchenko, Alexei V.

    2013-01-01

    We have prepared SAMs containing 8-mercaptooctyl α-D-mannopyranoside, either as a single component or in mixed SAMs with n-octanethiol on flat gold surfaces and on nanoporous gold. Electrochemical impedance spectroscopy showed that the mixed SAMs on flat gold surfaces showed the highest Con A binding near 1:9 solution molar ratio of thiolatedα-mannoside to n-octanethiol whereas those on NPG showed the highest response at 1:19 solution molar ratio of thiolated α-mannoside to n-octanethiol. Atomic force microscopy was employed to image the monolayers, and also to image the bound Con A protein. PMID:23519474

  14. Lithostratigraphic controls on bedding-plane fractures and the potential for discrete groundwater flow through a siliciclastic sandstone aquifer, southern Wisconsin

    NASA Astrophysics Data System (ADS)

    Swanson, Susan K.

    2007-04-01

    Outcrop-analog studies of the Upper Cambrian Tunnel City Group sandstones in southern Wisconsin show the utility of lithostratigraphic information in hydrostratigraphic studies of siliciclastic sandstone aquifers. Recent work supports the lateral continuity of discrete groundwater flow through these sandstones. Lithologic description of the Reno Member of the Lone Rock Formation (Tunnel City Group) in outcrop and core reveals repeating sequences of three dominant lithofacies, including flat-pebble intraclast conglomerate with a glauconite-rich matrix; glauconitic and feldspathic subquartzose sandstone with horizontal-planar, low-angle, and hummocky lamination; and feldspathic subquartzose sandstone with dolomite-filled burrows. The vertically stacked Reno Member sequences have been interpreted as having a storm-related origin, and they are laterally continuous on the scale of an outcrop. Horizontal fracture locations correlate with bedding planes at contacts between lithofacies. They are most commonly associated with the base of the flat-pebble intraclast conglomerate or with partings along laminae and erosional surfaces in the laminated subquartzose sandstone lithofacies. Sequences show upward increases in natural gamma radiation due to increasing potassium feldspar content. The incorporation of the detailed lithostratigraphic information allows a more accurate interpretation of borehole natural gamma logs where the rocks are buried and saturated and clarifies the role of sedimentary structures in the distribution of features that might promote discrete flow through these rocks.

  15. Imaging the Peruvian flat slab with Rayliegh wave tomography

    NASA Astrophysics Data System (ADS)

    Knezevic Antonijevic, Sanja

    In subduction zones the oceanic plates descend at a broad range of dip angles. A "flat slab" is an oceanic plate that starts to subduct steeply, but bends at 100 km depth and continues almost horizontally for several hundred kilometers. This unusual slab geometry has been linked to various geologic features, including the cessation of arc volcanism, basement core uplifts removed far from subducting margins, and the formation of high plateaus. Despite the prevalence of flat slabs worldwide since the Proterozoic, questions on how flat slabs form, persist, and re-steepen remains a topic of ongoing research. Even less clear is how this phenomenon relates to unusual features observed at the surface. To better understand the causes and consequences of slab flattening I focus on the Peruvian flat slab. This is not only the biggest flat slab region today, but due to the oblique angle at which the Nazca Plate subducts under the South American Plate, it also provides unique opportunity to get insights into the temporal evolution of the flat slab. Using ambient noise and earthquake-generated Rayleigh waves recorded at several contemporary dense seismic networks, I was able to perform unprecedentedly high resolution imaging of the subduction zone in southern Peru. Surprisingly, instead of imaging a vast flat slab region as expected, I found that the flat slab tears and re-steepens north of the subducting Nazca Ridge. The change in slab geometry is associated with variations in the slab's internal strain along strike, as inferred from slab-related anisotropy. Based on newly-discovered features I discuss the critical role of the subducting ridges in the formation and longevity of flat slabs. The slab tear created a new mantle pathway between the torn slab and the flat slab remnant to the east, and is possibly linked to the profound low velocity anomaly located under the eastern corner of the flat slab. Finally, I re-evaluate the connection between slab flattening and volcanic patterns at the surface. These findings have important implications for all present-day and paleo-flat slab regions, such as the one proposed for the western United States during the Laramide orogeny 80-55 Ma.

  16. Effects of orientation and downward-facing convex curvature on pool-boiling critical heat flux

    NASA Astrophysics Data System (ADS)

    Howard, Alicia Ann Harris

    Photographic studies of near-saturated pool boiling on both inclined flat surfaces and a downward-facing convex surface were conducted in order to determine the physical mechanisms that trigger critical heat flux (CHF). Based on the vapor behavior observed just prior to CHF, it is shown for the flat surfaces that the surface orientations can be divided into three regions: upward-facing (0-60°), near-vertical (60-165°), and downward-facing (165-180°) each region is associated with a unique CHIP trigger mechanism. In the upward-facing region, the buoyancy forces remove the vapor vertically off the heater surface. The near- vertical region is characterized by a wavy liquid-vapor interface which sweeps along the heater surface. In the downward-facing region, the vapor repeatedly stratifies on the heater surface, greatly decreasing CHF. The vapor behavior along the convex surface is cyclic in nature and similar to the nucleation/coalescence/stratification/release procedure observed for flat surfaces in the downward-facing region. The vapor stratification occurred at the bottom (downward-facing) heaters on the convex surface. CHF is always triggered on these downward-facing heaters and then propagates up the convex surface, and the orientations of these heaters are comparable with the orientation range of the flat surface downward-facing region. The vast differences between the observed vapor behavior within the three regions and on the convex surface indicate that a single overall pool boiling CHF model cannot possibly account for all the observed effects. Upward-facing surfaces have been examined and modeled extensively by many investigators and a few investigators have addressed downward-facing surfaces, so this investigation focuses on modeling the near-vertical region. The near-vertical CHF model incorporates classical two-dimensional interfacial instability theory, a separated flow model, an energy balance, and a criterion for separation of the wavy interface from the surface at CHF. The model was tested for different fluids and shows good agreement with CHF data. Additionally, the instability theory incorporated into this model accurately predicts the angle of transition between the near-vertical and downward-facing regions.

  17. Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides).

    PubMed

    Li, Chen; Hsieh, S Tonia; Goldman, Daniel I

    2012-09-15

    A diversity of animals that run on solid, level, flat, non-slip surfaces appear to bounce on their legs; elastic elements in the limbs can store and return energy during each step. The mechanics and energetics of running in natural terrain, particularly on surfaces that can yield and flow under stress, is less understood. The zebra-tailed lizard (Callisaurus draconoides), a small desert generalist with a large, elongate, tendinous hind foot, runs rapidly across a variety of natural substrates. We use high-speed video to obtain detailed three-dimensional running kinematics on solid and granular surfaces to reveal how leg, foot and substrate mechanics contribute to its high locomotor performance. Running at ~10 body lengths s(-1) (~1 m s(-1)), the center of mass oscillates like a spring-mass system on both substrates, with only 15% reduction in stride length on the granular surface. On the solid surface, a strut-spring model of the hind limb reveals that the hind foot saves ~40% of the mechanical work needed per step, significant for the lizard's small size. On the granular surface, a penetration force model and hypothesized subsurface foot rotation indicates that the hind foot paddles through fluidized granular medium, and that the energy lost per step during irreversible deformation of the substrate does not differ from the reduction in the mechanical energy of the center of mass. The upper hind leg muscles must perform three times as much mechanical work on the granular surface as on the solid surface to compensate for the greater energy lost within the foot and to the substrate.

  18. The Universal Transverse Mercator (UTM) grid

    USGS Publications Warehouse

    ,

    1997-01-01

    The most convenient way to identify points on the curved surface of the Earth is with a system of reference lines called parallels of latitude and meridians of longitude. On some maps the meridians and parallels appear as straight lines. On most modern maps, however, the meridians and parallels may appear as curved lines. These differences are due to the mathematical treatment required to portray a curved surface on a flat surface so that important properties of the map (such as distance and areal accuracy) are shown with minimum distortion. The system used to portray a portion of the round Earth on a flat surface is called a map projection.

  19. The Universal Transverse Mercator (UTM) grid

    USGS Publications Warehouse

    ,

    1999-01-01

    The most convenient way to identify points on the curved surface of the Earth is with a system of reference lines called parallels of latitude and meridians of longitude. On some maps, the meridians and parallels appear as straight lines. On most modern maps, however, the meridians and parallels appear as curved lines. These differences sre due to the mathematical treatment required to portray a curved surface on a flat surface so that important properties of the map (such as distance and areal accuracy) are shown with minimum distortion. The system used to portray a portion of the round Earth on a flat surface is called a map projection.

  20. Effect of geometry variations on lee-surface vortex-induced heating for flat-bottom three-dimensional bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Hefner, J. N.

    1973-01-01

    Studies have shown that vortices can produce relatively severe heating on the leeward surfaces of conceptual hypersonic vehicles and that surface geometry can strongly influence this vortex-induced heating. Results which show the effects of systematic geometry variations on the vortex-induced lee-surface heating on simple flat-bottom three-dimensional bodies at angles of attack of 20 deg and 40 deg are presented. The tests were conducted at a free-stream Mach number of 6 and at a Reynolds number of 1.71 x 10 to the 7th power per meter.

  1. Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements

    NASA Astrophysics Data System (ADS)

    Johnson, Tyler; Lang, Amy

    2009-11-01

    Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.

  2. Earthquake-caused subsidence events of the Duck Flats at the eastern end of the Knik Arm, Alaska

    NASA Astrophysics Data System (ADS)

    Reeder, J. W.

    2012-12-01

    A 5 km NS-trending gas pipeline trench, excavated in 1984 across the Duck Flats of the eastern end of the Knik Arm about 50 km NE of Anchorage, Alaska, exposed two continuous buried peat horizons. Two bulk C-14 dates for the upper buried peat horizon were determined to be 790 ± 160 and 775 ± 170 ybp. The depth of this peat horizon varied from 1.0 to 1.8 m. The deeper paleopeat horizon had a single bulk C-14 date of 1190 ± 80 ybp and varied from 1.7 to greater than 2.4 m (depth of trench). A deeper third paleopeat horizon was confirmed in 2012 by hand auger, which was found at a depth of 3.7 m. Turbulent organic (principally grass) mixing with tidal silt and clay immediately above both of the trench paleopeat horizons is interpreted to reflect tsunami flooding. The March 27, 1964, earthquake caused recognized subsidence of up to 0.3 m at the southern end of the trench as based on tidal deposits above 1964 peats. This was caused by consolidation of Matanuska and Knik fluvial deposits immediately to the S and by some tectonic subsidence. The 1964 peat horizon was not recognized for the rest of the trench possibly because of poor near-surface winter exposures or more simply because the 1964 peat horizon is also part of the present surface. The existence of the above continuous paleopeat horizons is significant because they reflect subsidence events not expected with 1964-type megathrust subduction. In fact, the above paleopeat C-14 age dates correlate more with recognized earthquake events of the Castle Mountain fault, an intraplate fault 20 km to the NW, than with recognized 1964-type megathrust events. However, movements on regional crustal faults, such as the Castle Mountain fault, likely would not be enough to account for the large amounts of subsidence observed on the Duck Flats. Instead, these subsidence events probably reflect sudden tectonic movements of the Pacific plate beneath the North American plate in this region. The process would involve flat-slab subduction of the Yakutat microplate coupled to the Pacific plate. Such movements might have extended not only to, but possibly even combined at times with, 1964-type megathrust movements principally to the SE, as well as combined with movements of regional faults such as the Castle Mountain fault. The potential for such continental megathrust earthquakes should be included with any future earthquake hazard considerations for this region.

  3. 10 CFR 71.75 - Qualification of special form radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... target must be a flat, horizontal surface of such mass and rigidity that any increase in its resistance... of ×10−4 torr-liter/s (1.3××10−4 atm-cm3/s) based on air at 25 °C (77 °F) and one atmosphere... supported by a smooth solid surface, and struck by the flat face of a steel billet so as to produce an...

  4. 10 CFR 71.75 - Qualification of special form radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... target must be a flat, horizontal surface of such mass and rigidity that any increase in its resistance... of ×10−4 torr-liter/s (1.3××10−4 atm-cm3/s) based on air at 25 °C (77 °F) and one atmosphere... supported by a smooth solid surface, and struck by the flat face of a steel billet so as to produce an...

  5. 10 CFR 71.75 - Qualification of special form radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... target must be a flat, horizontal surface of such mass and rigidity that any increase in its resistance... of ×10−4 torr-liter/s (1.3××10−4 atm-cm3/s) based on air at 25 °C (77 °F) and one atmosphere... supported by a smooth solid surface, and struck by the flat face of a steel billet so as to produce an...

  6. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06157a

  7. Experiment in Motivating Functional Illiterates To Learn. Final Report.

    ERIC Educational Resources Information Center

    Tuskegee Inst., AL. School of Applied Sciences.

    This research investigated whether low income rural functional illiterates could be motivated to learn by a prorated stipend given on the basis of academic performance. Fifty control subjects received a flat $15 weekly; 50 experimental subjects received the $15 plus stipends. Participants eligible for stipends were those in the upper third of…

  8. Stratification on the Skagit Bay Tidal Flats

    DTIC Science & Technology

    2012-09-01

    and wind -driven currents can 11 affect the potential energy anomaly balance in estuaries and ROFIs during storms (Yang and Khangaonkar, 2009...30 3.4.1 The Potential Energy Anomaly Balance...turbulent energy is dissipated by destabilizing the fluid rather than by slowing the upper water column (Turner, 1973). Overall, stratification tends to

  9. Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges

    NASA Astrophysics Data System (ADS)

    Sunderland, Zofia; Patorski, Krzysztof

    2015-09-01

    When testing transparent plates with high quality flat surfaces and a small angle between them the three-beam interference phenomenon is observed. Since the reference beam and the object beams reflected from both the front and back surface of a sample are detected, the recorded intensity distribution may be regarded as a sum of three fringe patterns. Images of that type cannot be succesfully analyzed with standard interferogram analysis methods. They contain, however, useful information on the tested plate surface flatness and its optical thickness variations. Several methods were elaborated to decode the plate parameters. Our technique represents a competitive solution which allows for retrieval of phase components of the three-beam interferogram. It requires recording two images: a three-beam interferogram and the two-beam one with the reference beam blocked. Mutually subtracting these images leads to the intensity distribution which, under some assumptions, provides access to the two component fringe sets which encode surfaces flatness. At various stages of processing we take advantage of nonlinear operations as well as single-frame interferogram analysis methods. Two-dimensional continuous wavelet transform (2D CWT) is used to separate a particular fringe family from the overall interferogram intensity distribution as well as to estimate the phase distribution from a pattern. We distinguish two processing paths depending on the relative density of fringe sets which is connected with geometry of a sample and optical setup. The proposed method is tested on simulated data.

  10. Direct charge carrier injection into Ga2O3 thin films using an In2O3 cathode buffer layer: their optical, electrical and surface state properties

    NASA Astrophysics Data System (ADS)

    Cui, W.; Zhao, X. L.; An, Y. H.; Guo, D. Y.; Qing, X. Y.; Wu, Z. P.; Li, P. G.; Li, L. H.; Cui, C.; Tang, W. H.

    2017-04-01

    Conductive Ga2O3 thin films with an In2O3 buffer layer have been prepared on c-plane sapphire substrates using a laser molecular beam epitaxy technique. The effects of the In2O3 buffer layer on the structure and optical, electrical and surface state properties of the Ga2O3 films have been studied. The change in conductivity of the thin films is attributed to different thicknesses of the In2O3 buffer layer, which determine the concentration of charge carriers injected into the upper Ga2O3 layer from the interface of the bilayer thin films. In addition, the increase in flat band voltage shift and capacitance values as the In2O3 buffer layer thickens are attributed to the increase in surface state density, which also contributes to the rapid shrinkage of the optical band gap of the Ga2O3. With transparency to visible light, high n-type conduction and the ability to tune the optical band gap and surface state density, we propose that Ga2O3/In2O3 bilayer thin film is an ideal n-type semiconductor for fabrication of transparent power devices, solar cell electrodes and gas sensors.

  11. Reduction of Surface Errors over a Wide Range of Spatial Frequencies Using a Combination of Electrolytic In-Process Dressing Grinding and Magnetorheological Finishing

    NASA Astrophysics Data System (ADS)

    Kunimura, Shinsuke; Ohmori, Hitoshi

    We present a rapid process for producing flat and smooth surfaces. In this technical note, a fabrication result of a carbon mirror is shown. Electrolytic in-process dressing (ELID) grinding with a metal bonded abrasive wheel, then a metal-resin bonded abrasive wheel, followed by a conductive rubber bonded abrasive wheel, and finally magnetorheological finishing (MRF) were performed as the first, second, third, and final steps, respectively in this process. Flatness over the whole surface was improved by performing the first and second steps. After the third step, peak to valley (PV) and root mean square (rms) values in an area of 0.72 x 0.54 mm2 on the surface were improved. These values were further improved after the final step, and a PV value of 10 nm and an rms value of 1 nm were obtained. Form errors and small surface irregularities such as surface waviness and micro roughness were efficiently reduced by performing ELID grinding using the above three kinds of abrasive wheels because of the high removal rate of ELID grinding, and residual small irregularities were reduced by short time MRF. This process makes it possible to produce flat and smooth surfaces in several hours.

  12. The influence of four macrozoobenthic species on the abundance of the amphipod Corophium volutator on tidal flats of the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Flach, E. C.

    On the tidal flats of the Wadden Sea, a zonation pattern can be found with Corophium volutator and Nereis diversicolor as the dominating species of the upper intertidal zone and Arenicola marina and Cerastoderma edule as the dominating species of the lower zone. As C. volutator can live under a great variety of physical conditions, its restriction to higher areas might result from biotic interactions. This was investigated by field experiments on a tidal flat in the westernmost part of the Wadden Sea. Within large depopulated areas, small plots were recolonized with different densities of N. diversicolor, A. marina, C. edule and Macoma balthica and the subsequent settlement and dynamics of C. volutator were studied. In addition, A. marina and/or C. edule were added to or removed from small plots within a natural benthic community. Neither the presence of M. balthica not that of N. diversicolor significantly affected the abundance of C. volutator. A strongly negative effect was found of C. edule when present in high densities, whereas A. marina negatively affected C. volutator abundance already at relatively low densities. Local removals of A. marina and C. edule from their own zone resulted in increases of Corophium numbers at these locations and local additions of these species within the Corophium zone resulted in decreases of Corophium numbers at these locations. It is suggested that the major species to restrict C. volutator effectively to the upper tidal zone is A. marina.

  13. Cratering motions and structural deformation in the rim of the Prairie Flat multiring explosion crater

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Ullrich, G. W.; Sauer, F. M.; Jones, G. H. S.

    1977-01-01

    Cratering motions and structural deformation are described for the rim of the Prairie Flat multiring crater, 85.5 m across and 5.3 m deep, which was formed by the detonation of a 500-ton TNT surface-tangent sphere. The terminal displacement and motion data are derived from marker cans and velocity gages emplaced in drill holes in a three-dimensional matrix radial to the crater. The integration of this data with a detailed geologic cross section, mapped from deep trench excavations through the rim, provides a composite view of the general sequence of motions that formed a transiently uplifted rim, overturned flap, inverted stratigraphy, downfolded rim, and deformed strata in the crater walls. Preliminary comparisons with laboratory experimental cratering and with numerical simulations indicate that explosion craters of the Prairie Flat-type generated by surface and near-surface energy sources tend to follow predictable motion sequences and produce comparable structural deformation. More specifically, central uplift and multiring impact craters with morphologies and structures comparable to Prairie Flat are inferred to have experienced similar deformational histories of the rim, such as uplift, overturning, terracing, and downfolding.

  14. Hydrology and surface morphology of the Bonneville Salt Flats and Pilot Valley Playa, Utah

    USGS Publications Warehouse

    Lines, Gregory C.

    1979-01-01

    The Bonneville Salt Flats and Pilot Valley are in the western part of the Great Salt Lake Desert in northwest Utah. The areas are separate, though similar, hydrologic basins, and both contain a salt crust. The Bonneville salt crust covered about 40 square miles in the fall of 1976, and the salt crust in Pilot Valley covered 7 square miles. Both areas lack any noticeable surface relief (in 1976, 1.3 feet on the Bonneville salt crust and 0.3 foot on the Pilot Valley salt crust).The salt crust on the Salt Flats has been used for many years for automobile racing, and brines from shallow lacustrine deposits have been used for the production of potash. In recent years, there has been an apparent conflict between these two major uses of the area as the salt crust has diminished in both thickness and extent. Much of the Bonneville Racetrack has become rougher, and there has also been an increase in the amount of sediment on the south end of the racetrack. The Pilot Valley salt crust and surrounding playa have been largely unused.Evaporite minerals on the Salt Flats and the Pilot Valley playa are concentrated in three zones: (1) a carbonate zone composed mainly of authigenic clay-size carbonate minerals, (2) a sulfate zone composed mainly of authigenic gypsum, and (3) a chloride zone composed of crystalline halite (the salt crust). Five major types of salt crust were recognized on the Salt Flats, but only one type was observed in Pilot Valley. Geomorphic differences in the salt crust are caused by differences in their hydrologic environments. The salt crusts are dynamic features that are subject to change because of climatic factors and man's activities.Ground water occurs in three distinct aquifers in much of the western Great Salt Lake Desert: (1) the basin-fill aquifer, which yields water from conglomerate in the lower part of the basin fill, (2) the alluvial-fan aquifer, which yields water from sand and gravel along the western margins of both playas, and (3) the shallow-brine aquifer, which yields water from near-surface carbonate muds and crystalline halite and gypsum. The shallow-brine aquifer is the main source of brine used for the production of potash on the Salt Flats.Recharge to that part of the shallow-brine aquifer north of Interstate Highway 80 on the Salt Flats is mainly by infiltration of precipitation and wind-driven floods of surface brine. Discharge was mainly by evaporation at the playa surface and withdrawals from brine-collection ditches. Some water was transpired by phreatophytes, and some leaked into the alluvial fan along the western edge of the playa.Salt-scraping studies indicate that the amount of halite on the Salt Flats is directly related to the amount of recharge through the surface (which causes re-solution of halite) and the amount of evaporation at the surface (which causes crystallization of halite). Evaporation rates through sediment-covered salt crust and the gypsum surface were estimated at between 3x10-4 and 4x10-3 inches per day during the summer and fall of 1976. Evaporation rates through the surface of thick perennial salt crust were much higher.The concentration of dissolved solids in brine in the shallow-brine aquifer varies, but it generally increases from the edges of the playas toward areas of salt crust. Dissolved-solids concentration in the shallow brine ranges from less than 100,000 to more than 300,000 milligrams per liter on both playas. The increase in salinity toward areas of salt crust reflects the natural direction of brine movement through the aquifer toward the natural discharge area.On the Salt Flats, the percentages of dissolved potassium chloride and magnesium chloride in the shallow-brine aquifer generally increase from the edge of the playa to- ward the salt crust. The relative enrichment in potassium and magnesium reflects the many years of subsurface drainage toward the main discharge area (the salt crust) prior to man's withdrawal of brine. By artificially extracting brines from the carbonate muds, the percentages of potassium and magnesium have decreased while brine salinity has been maintained by re-solution of the salt crust.The configuration of the density-corrected potentiometric surface in the fall of 1976 indicates that brine in the shallow-brine aquifer under the Bonneville Racetrack was draining toward brine-collection ditches or a well field to the west. Ground-water divides have no effect on the movement of dissolved salt across the surface in wind-driven floods, and salt in surface brine was carried from the racetrack into the area of influence of the ditches by such surface movement. During 1976 on the Salt Flats, some brine was moving through the shallow-brine aquifer across lease and property boundaries.An evaluation of suggested remedial measures indicates that none will completely eliminate the conflict between uses or transform the Bonneville Salt Flats to its original state prior to man's activities in the area.

  15. Magnetotelluric Data, Central Yucca Flat, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Central Yucca Flat, Profile 1, as shown in figure 1. No interpretation of the data is included here.« less

  16. Magnetotelluric Data, North Central Yucca Flat, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for north central Yucca Flat, Profile 7, as shown in Figure 1. No interpretation of the data is included here.« less

  17. Magnetotelluric Data, Northern Frenchman Flat, Nevada Test Site Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.M. Williams; B.D. Rodriguez, and T. H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Frenchman Flat Profile 3, as shown in Figure 1. No interpretation of the data is included here.« less

  18. Magnetotelluric Data, Southern Yucca Flat, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Southern Yucca Flat, Profile 4, as shown in Figure 1. No interpretation of the data is included here.« less

  19. Magnetotelluric Data, Northern Yucca Flat, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Profile 2, (fig. 1), located in the northern Yucca Flat area. No interpretation of the data is included here.« less

  20. Slot-grating flat lens for telecom wavelengths.

    PubMed

    Pugh, Jonathan R; Stokes, Jamie L; Lopez-Garcia, Martin; Gan, Choon-How; Nash, Geoff R; Rarity, John G; Cryan, Martin J

    2014-07-01

    We present a stand-alone beam-focusing flat lens for use in the telecommunications wavelength range. Light incident on the back surface of the lens propagates through a subwavelength aperture and is heavily diffracted on exit and partially couples into a surface plasmon polariton and a surface wave propagating along the surface of the lens. Interference between the diffracted wave and re-emission from a grating patterned on the surface produces a highly collimated beam. We show for the first time a geometry at which a lens of this type can be used at telecommunication wavelengths (λ=1.55 μm) and identify the light coupling and re-emission mechanisms involved. Measured beam profile results at varying incident wavelengths show excellent agreement with Lumerical FDTD simulation results.

  1. Detection of Influenza Virus with Specific Subtype by Using Localized Surface Plasmons Excited on a Flat Metal Surface

    NASA Astrophysics Data System (ADS)

    Ning, Jun; Nagata, Kotaro; Ainai, Akira; Hasegawa, Hideki; Kano, Hiroshi

    2013-08-01

    We report on a method to determine subtype of influenza viruses by using surface plasmons localized in microscopic region on a flat metal surface. In this method, refractive index variation arisen from interactions between viruses and their monoclonal antibodies is measured. The developed sensor shows stability of refractive index in the order of 10-4 against sample exchange. In our experiment, A/H1N1 viruses are distinguished from A/H3N2 viruses by using monoclonal antibodies immobilized on the metal surface. Since the measurement probe has the volume of ˜6 al, the method has potential to handle multiple subtypes in the measurement of a sample with ultra small volume.

  2. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P.; Wilson, William D.; Barbee, Jr., Troy W.; Lane, Stephen M.

    2004-11-16

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  3. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P [Livermore, CA; Wilson, William D [Pleasanton, CA; Barbee, Jr., Troy W.; Lane, Stephen M [Oakland, CA

    2006-06-27

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  4. Ignition technique for an in situ oil shale retort

    DOEpatents

    Cha, Chang Y.

    1983-01-01

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  5. Axially shaped channel and integral flow trippers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L. Jr.; Johansson, E.B.; Matzner, B.

    1992-02-11

    This patent describes a fuel assembly. It comprises: fuel rods positioned in spaced array by upper and lower tie-plates, and open ended flow channel surrounding the array for conducting coolant upward between a lower support plate having coolant communicated thereto to an upper support grid having a steam/water outlet communicated thereto. The flow channel surrounding the array for conducting coolant about the fuel rods; the open ended channel having a polygon shaped cross section with the channel constituting a closed conduit with flat side sections connected at corners to form the enclosed conduit; means separate from the channel for connectingmore » the upper and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel, the improvement in the flow channel comprising tapered side walls, the tapered side walls extending from an average thick cross section adjacent the lower support plate to an average thin cross section adjacent the upper core grid whereby the channel is reduced in thickness adjacent the upper core grid to correspond with the reduced pressure adjacent the upper core grid.« less

  6. Coverage-Dependent Anchoring of 4,4'-Biphenyl Dicarboxylic Acid to CoO(111) Thin Films.

    PubMed

    Mohr, Susanne; Schmitt, Tobias; Döpper, Tibor; Xiang, Feifei; Schwarz, Matthias; Görling, Andreas; Schneider, M Alexander; Libuda, Jörg

    2017-05-02

    We investigated the adsorption behavior of 4,4'-biphenhyl dicarboxylic acid (BDA) on well-ordered CoO(111) films grown on Ir(100) as a function of coverage and temperature using time-resolved and temperature-programmed infrared reflection absorption spectroscopy (TR-IRAS, TP-IRAS) in combination with density functional theory (DFT) and scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. To compare the binding behavior of BDA as a function of the oxide film thickness, three different CoO(111) film thicknesses were explored: films of about 20 bilayers (BLs) (approximately 5 nm), 2 BLs, and 1 BL. The two carboxylic acid groups of BDA offer two potential anchoring points to the oxide surface. At 150 K, intact BDA adsorbs on 20 BL thick oxide films in planar geometry with the phenyl rings aligned parallel to the surface. With decreasing oxide film thickness, we observe an increasing tendency for deprotonation and the formation of flat-lying BDA molecules anchored as dicarboxylates. After saturation of the first monolayer, intact BDA multilayers grow with molecules aligned parallel to the surface. The BDA multilayer desorbs at around 360 K. Completely different growth behavior is observed if BDA is deposited above the multilayer desorption temperature. Initially, doubly deprotonated dicarboxylates are formed by adopting a flat-lying orientation. With increasing exposure, however, the adsorbate layer transforms into upright standing monocarboxylates. A sharp OH stretching band (3584 cm -1 ) and a blue-shifted CO stretching band (1759 cm -1 ) indicate weakly interacting apical carboxylic acid groups at the vacuum interface. The anchored monocarboxylate phase slowly desorbs in a temperature range of up to 470 K. At higher temperature, a flat-lying doubly deprotonated BDA is formed, which desorbs and decomposes in a temperature range of up to 600 K.

  7. Sensitivity of tidal characteristics in double inlet systems to momentum dissipation on tidal flats: a perturbation analysis

    NASA Astrophysics Data System (ADS)

    Hepkema, Tjebbe M.; de Swart, Huib E.; Zagaris, Antonios; Duran–Matute, Matias

    2018-05-01

    In a tidal channel with adjacent tidal flats, along-channel momentum is dissipated on the flats during rising tides. This leads to a sink of along-channel momentum. Using a perturbative method, it is shown that the momentum sink slightly reduces the M2 amplitude of both the sea surface elevation and current velocity and favours flood dominant tides. These changes in tidal characteristics (phase and amplitude of sea surface elevations and currents) are noticeable if widths of tidal flats are at least of the same order as the channel width, and amplitudes and gradients of along-channel velocity are large. The M2 amplitudes are reduced because stagnant water flows from the flats into the channel, thereby slowing down the current. The M4 amplitudes and phases change because the momentum sink acts as an advective term during the fall of the tide, such a term generates flood dominant currents. For a prototype embayment that resembles the Marsdiep-Vlie double-inlet system of the Western Wadden Sea, it is found that for both the sea surface elevation and current velocity, including the momentum sink, lead to a decrease of approximately 2 % in M2 amplitudes and an increase of approximately 25 % in M4 amplitudes. As a result, the net import of coarse sediment is increased by approximately 35 %, while the transport of fine sediment is hardly influenced by the momentum sink. For the Marsdiep-Vlie system, the M2 sea surface amplitude obtained from the idealised model is similar to that computed with a realistic three-dimensional numerical model whilst the comparison with regard to M4 improves if momentum sink is accounted for.

  8. Processing and Characterization of Nanoparticle Coatings for Quartz Crystal Microbalance Measurements

    PubMed Central

    Torrey, Jessica D.; Kirschling, Teresa L.; Greenlee, Lauren F.

    2015-01-01

    The quartz-crystal microbalance is a sensitive and versatile tool for measuring adsorption of a variety of compounds (e.g. small molecules, polymers, biomolecules, nanoparticles and cells) to surfaces. While the technique has traditionally been used for measuring adsorption to flat surfaces and thin ridged films, it can also be extended to study adsorption to nanoparticle surfaces when the nanoparticles are fixed to the crystal surface. The sensitivity and accuracy of the measurement depend on the users’ ability to reproducibly prepare a thin uniform nanoparticle coating. This study evaluated four coating techniques, including spin coating, spray coating, drop casting, and electrophoretic deposition, for two unique particle chemistries [nanoscale zero valent iron (nZVI) and titanium dioxide (TiO2)] to produce uniform and reproducible nanoparticle coatings for real-time quartz-crystal microbalance measurements. Uniform TiO2 coatings were produced from a 50 mg/mL methanol suspension via spin coating. Nanoscale zero-valent iron was best applied by spray coating a low concentration 1.0 mg/mL suspended in methanol. The application of multiple coatings, rather than an increase in the suspension concentration, was the best method to increase the mass of nanoparticles on the crystal surface while maintaining coating uniformity. An upper mass threshold was determined to be approximately 96 µg/cm2; above this mass, coatings no longer maintained their uniform rigid characteristic, and a low signal to noise ratio resulted in loss of measurable signal from crystal resonances above the fundamental. PMID:26958434

  9. Rayleigh-Bénard-Marangoni convection in a weakly non-Boussinesq fluid layer with a deformable surface

    NASA Astrophysics Data System (ADS)

    Lyubimov, D. V.; Lyubimova, T. P.; Lobov, N. I.; Alexander, J. I. D.

    2018-02-01

    The influence of surface deformations on the Rayleigh-Bénard-Marangoni instability of a uniform layer of a non-Boussinesq fluid heated from below is investigated. In particular, the stability of the conductive state of a horizontal fluid layer with a deformable surface, a flat isothermal rigid lower boundary, and a convective heat transfer condition at the upper free surface is considered. The fluid is assumed to be isothermally incompressible. In contrast to the Boussinesq approximation, density variations are accounted for in the continuity equation and in the buoyancy and inertial terms of the momentum equations. Two different types of temperature dependence of the density are considered: linear and exponential. The longwave instability is studied analytically, and instability to perturbations with finite wavenumber is examined numerically. It is found that there is a decrease in stability of the system with respect to the onset of longwave Marangoni convection. This result could not be obtained within the framework of the conventional Boussinesq approximation. It is also shown that at Ma = 0 the critical Rayleigh number increases with Ga (the ratio of gravity to viscous forces or Galileo number). At some value of Ga, the Rayleigh-Bénard instability vanishes. This stabilization occurs for each of the density equations of state. At small values of Ga and when deformation of the free surface is important, it is shown that there are significant differences in stability behavior as compared to results obtained using the Boussinesq approximation.

  10. Surface-micromachined 2D optical scanners with optically flat single-crystalline silicon micromirrors

    NASA Astrophysics Data System (ADS)

    Su, John G.; Patterson, Pamela R.; Wu, Ming C.

    2001-05-01

    We have developed a novel wafer-scale single-crystalline silicon micromirror bonding process to fabricate optically flat micromirrors on polysilicon surface-micromachined 2D scanners. The electrostatically actuated 2D scanner has a mirror area of 450 micrometers x 450 micrometers and an optical scan angle of +/- +/-7.5 degree(s). Compared to micromirrors made with a standard polysilicon surface-micromachining process, the radius of curvature of the micromirror has been improved by 1 50 times from 1.8 cm to 265 cm, with surface roughness < 10 nm. Besides, single-crystalline honeycomb micromirrors derived from silicon on insulator (SOI) have been developed to reduce the mass of the bonded mirror.

  11. Lateral trends and vertical sequences in estuarine sediments, Willapa Bay, Washington

    USGS Publications Warehouse

    Clifton, H. Edward; Phillips, L.

    1980-01-01

    Willapa Bay is a sizable estuary on the southern coast of Washington- Relatively unmodified in a geologic sense by human activity the bay provides an excellent example of modern depositional facies in an estuarine setting. Studies of these deposits indicate that consistent lateral trends exist in sediment texture and sedimentary structures. The texture changes from sandy at the mouth of the bay to muddy in its upper parts. In any part of the bay , sediment is coarsest in the channel bottoms, where lag deposits accumulate. The sediment tends to fine in an upslope direction and is finest in supratidal flat deposits of silt and clay. The nature of sedimentary structures depends on the combination of physical and biological processes and sediment textures. Bedforms exist wherever the bed is sandy. In the main tidal channels sandwaves and dunes up to 4 meters high occur. In tributary channels and at the margins of the main channel, at shallower depths and under less intense currents , the structures are generally less than a meter high. Current ripples occur in t he sandy bed of all of the tidal channels and in runoff channels cross the tidal flat. Symmetric long-crested ripples are produced by wave action over the sandy intertidal flat. Internal structures in the bay's sediment depend not only on the nature of the bedform but also on the rate of bioturbation relative to physical processes. Under fields of large sandwaves or dunes, medium- to large-scale tabular and trough crossbedding predominates. This crossbedding generally is unidirectional, reflecting the locally dominant current (ebb or flood). Ripple bedding predominates elsewhere in sandy sediment within the channels. Where sand transport is diminished, as on the floor of the upper tributary channels, bioturbation exceeds the rate of production of physical structures and bedding is destroyed. The depositional banks in such areas tend to be sites of rapid sediment accumulation and bedding in the form of interlayered sand (commonly ripple bedded) and mud persists. On intertidal flats the sediment accumulates slowly and bioturbation erases nearly all physical structures. Bedding is preserved only where deposition is locally rapid , as in topographic depressions or on the depositional banks of runoff channels, or where faunal activity is inhibited, as beneath mounds of blue-green algae. The rate of sedimentation is slower still on the supratidal flats, but the general paucity of faunal activity allows the preservation of thin alternations of fine sand , silt or clay. The lateral migration of the tidal channels produces vertical sequences in which topographically higher facies are superposed on one another. Near the mouth of the estuary the upward sequence: lag deposit — crossbedded sand — ripple or planar-bedded sand is typical. The crossbedding shows a general upward decrease in thickness and a progression from trough to tabular units. In the main tidal channel - in the central estuary and in sandy tributary channels, the typical vertical sequence resembles that near the mouth , with the exception that the sequence is capped by bioturbated sandy or muddy tide flat deposits. In the upper estuary , where muddy sediment predominates, a typical sequence shows the progression-. bioturbated lag deposit — gently dipping interlaminated sand and mud layers of the accretionary bank — bioturbated mud flat deposits — thinly laminated fine supratidal deposits.

  12. Functional and structural mapping of human cerebral cortex: Solutions are in the surfaces

    PubMed Central

    Van Essen, David C.; Drury, Heather A.; Joshi, Sarang; Miller, Michael I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex. PMID:9448242

  13. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.

  14. Surface texture can bias tactile form perception.

    PubMed

    Nakatani, Masashi; Howe, Robert D; Tachi, Susumu

    2011-01-01

    The sense of touch is believed to provide a reliable perception of the object's properties; however, our tactile perceptions could be illusory at times. A recently reported tactile illusion shows that a raised form can be perceived as indented when it is surrounded by textured areas. This phenomenon suggests that the form perception can be influenced by the surface textures in its adjacent areas. As perception of texture and that of form have been studied independently of each other, the present study examined whether textures, in addition to the geometric edges, contribute to the tactile form perception. We examined the perception of the flat and raised contact surface (3.0 mm width) with various heights (0.1, 0.2, 0.3 mm), which had either textured or non-textured adjacent areas, under the static, passive and active touch conditions. Our results showed that texture decreased the raised perception of the surface with a small height (0.1 mm) and decreased the flat perception of the physically flat surface under the passive and active touch conditions. We discuss a possible mechanism underlying the effect of the textures on the form perception based on previous neurophysiological findings.

  15. Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.

  16. Frost Growth and Densification in Laminar Flow Over Flat Surfaces

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2011-01-01

    One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.

  17. Flat ion milling: a powerful tool for preparation of cross-sections of lead-silver alloys.

    PubMed

    Brodusch, Nicolas; Boisvert, Sophie; Gauvin, Raynald

    2013-06-01

    While conventional mechanical and chemical polishing results in stress, deformation and polishing particles embedded on the surface, flat milling with Ar+ ions erodes the material with no mechanical artefacts. This flat milling process is presented as an alternative method to prepare a Pb-Ag alloy cross-section for scanning electron microscopy. The resulting surface is free of scratches with very little to no stress induced, so that electron diffraction and channelling contrast are possible. The results have shown that energy dispersive spectrometer (EDS) mapping, electron channelling contrast imaging and electron backscatter diffraction can be conducted with only one sample preparation step. Electron diffraction patterns acquired at 5 keV possessed very good pattern quality, highlighting an excellent surface condition. An orientation map was acquired at 20 keV with an indexing rate of 90.1%. An EDS map was performed at 5 keV, and Pb-Ag precipitates of sizes lower than 100 nm were observed. However, the drawback of the method is the generation of a noticeable surface topography resulting from the interaction of the ion beam with a polycrystalline and biphasic sample.

  18. Optimized micromirror arrays for adaptive optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalicek, M. Adrian

    This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 {mu}m minimum feature sizes and 0.1 {mu}m mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces canmore » be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2{endash}3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98{percent} or better. Combining the process planarization with a {open_quotes}planarized-by-design{close_quotes} approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive optics. {copyright} {ital 1999 American Institute of Physics.}« less

  19. Staphylococcus epidermidis adhesion on surface-treated open-cell Ti6Al4V foams.

    PubMed

    Türkan, Uğur; Güden, Mustafa; Sudağıdan, Mert

    2016-06-01

    The effect of alkali and nitric acid surface treatments on the adhesion of Staphylococcus epidermidis to the surface of 60% porous open-cell Ti6Al4V foam was investigated. The resultant surface roughness of foam particles was determined from the ground flat surfaces of thin foam specimens. Alkali treatment formed a porous, rough Na2Ti5O11 surface layer on Ti6Al4V particles, while nitric acid treatment increased the number of undulations on foam flat and particle surfaces, leading to the development of finer surface topographical features. Both surface treatments increased the nanometric-scale surface roughness of particles and the number of bacteria adhering to the surface, while the adhesion was found to be significantly higher in alkali-treated foam sample. The significant increase in the number of bacterial attachment on the alkali-treated sample was attributed to the formation of a highly porous and nanorough Na2Ti5O11 surface layer.

  20. Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.

    1998-01-01

    Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in precipitation of uranium minerals. At the deepest exposed levels, wall-rocks were altered to sericite; and uraninite, coffinite, jordisite, fluorite, molybdenite, quartz, and pyrite were deposited in the veins. The fluids were progressively oxidized and cooled at higher levels in the system by boiling and degassing; iron-bearing minerals in wall rocks were oxidized to hematite, and quartz, fluorite, minor siderite, and uraninite were deposited in the veins. Near the ground surface, the fluids were acidified by condensation of volatiles and oxidation of hydrogen sulfide in near-surface, steam-heated, ground waters; wall rocks were altered to kaolinite, and quartz fluorite, and uraninite were deposited in veins. Secondary uranium minerals, hematite, and gypsum formed during supergene alteration later in the Cenozoic when the upper part of the mineralized system was exposed by erosion.

  1. Descriptive and Computer Aided Drawing Perspective on an Unfolded Polyhedral Projection Surface

    NASA Astrophysics Data System (ADS)

    Dzwierzynska, Jolanta

    2017-10-01

    The aim of the herby study is to develop a method of direct and practical mapping of perspective on an unfolded prism polyhedral projection surface. The considered perspective representation is a rectilinear central projection onto a surface composed of several flat elements. In the paper two descriptive methods of drawing perspective are presented: direct and indirect. The graphical mapping of the effects of the representation is realized directly on the unfolded flat projection surface. That is due to the projective and graphical connection between points displayed on the polyhedral background and their counterparts received on the unfolded flat surface. For a significant improvement of the construction of line, analytical algorithms are formulated. They draw a perspective image of a segment of line passing through two different points determined by their coordinates in a spatial coordinate system of axis x, y, z. Compared to other perspective construction methods that use information about points, for computer vision and the computer aided design, our algorithms utilize data about lines, which are applied very often in architectural forms. Possibility of drawing lines in the considered perspective enables drawing an edge perspective image of an architectural object. The application of the changeable base elements of perspective as a horizon height and a station point location enable drawing perspective image from different viewing positions. The analytical algorithms for drawing perspective images are formulated in Mathcad software, however, they can be implemented in the majority of computer graphical packages, which can make drawing perspective more efficient and easier. The representation presented in the paper and the way of its direct mapping on the flat unfolded projection surface can find application in presentation of architectural space in advertisement and art.

  2. In-Flight Boundary-Layer Transition on a Large Flat Plate at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Fredericks, Michael Alan; Tracy, Richard R.; Matisheck, Jason R.; Vanecek, Neal D.

    2012-01-01

    A flight experiment was conducted to investigate the pressure distribution, local flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.0. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. The tests used a F-15B testbed aircraft with a bottom centerline mounted test fixture. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating for future laminar flow flight tests employing infrared thermography. Boundary-layer transition was captured using an onboard infrared imaging system. The infrared imagery was captured in both analog and digital formats. Surface pressures were measured with electronically scanned pressure modules connected to 60 surface-mounted pressure orifices. The local flow field was measured with five 5-hole conical probes mounted near the leading edge of the test fixture. Flow field measurements revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration. The infrared imaging system was able to capture shock wave impingement on the surface of the flat plate in addition to indicating laminar-to-turbulent boundary-layer transition.

  3. A Preliminary Detection of Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    NASA Technical Reports Server (NTRS)

    Dawson, K. S.; Holzapfel, W. L.; Carlstrom, J. E.; Joy, M.; LaRoque, S. J.; Reese, E. D.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We have used the Berkeley-Illinois-Maryland-Association (BIMA) array outfitted with sensitive cm-wave receivers to expand our search for minute scale anisotropy of the Cosmic Microwave Background (CMB). The interferometer was placed in a compact configuration to obtain high brightness sensitivity on arcminute scales over its 6.6' FWHM field of view. The sensitivity of this experiment to flat band power peaks at a multipole of 1 = 5530 which corresponds to an angular scale of -2'. We present the analysis of a total of 470 hours of on-source integration time on eleven independent fields which were selected based on their low IR contrast and lack of bright radio sources. Applying a Bayesian analysis to the visibility data, we find CMB anisotropy flat band power Q_flat = 6.1(+2.8/-4.8) microKelvin at 68% confidence. The confidence of a nonzero signal is 76% and we find an upper limit of Q_flat < 12.4 microKelvin at 95% confidence. We have supplemented our BIMA observations with concurrent observations at 4.8 GHz with the VLA to search for and remove point sources. We find the point sources make an insignificant contribution to the observed anisotropy.

  4. Target Tracking and Interception by Aggressive Honeybees

    DTIC Science & Technology

    2010-08-01

    flat disc) of equal surface area . When aggressive bees are offered a choice between a hemispherical sphere and a flat disc (of equal diameter or...equal surface area ), the bees display a greater frequency of attacks toward the 3-D target when it has the same diameter as the 2-D target, but a...as 107  those carrying pollen on their hind legs. The bees were anesthetized in a refrigerator for 20-108  30 min, after which they were taken out

  5. An intramontane pull-apart basin in tectonic escape deformation: Elbistan Basin, Eastern Taurides, Turkey

    NASA Astrophysics Data System (ADS)

    Yusufoğlu, H.

    2013-04-01

    The Elbistan Basin in the east-Central Anatolia is an intramontane structural depression in the interior part of the Anatolide-Tauride Platform. The Neogene fill in and around Elbistan Basin develops above the Upper Devonian to lower Tertiary basement and comprises two units separated by an angular unconformity: (1) intensely folded and faulted Miocene shallow marine to terrestrial and lacustrine sediments and (2) nearly flat-lying lignite-bearing lacustrine (lower unit) and fluvial (upper unit) deposits of Plio-Quaternary Ahmetçik Formation. The former is composed of Lower-Middle Miocene Salyan, Middle-upper Middle Miocene Gövdelidağ and Upper Miocene Karamağara formations whereas the latter one is the infill of the basin itself in the present configuration of the Elbistan Basin. The basin is bound by normal faults with a minor strike-slip component. It commenced as an intramontane pull-apart basin and developed as a natural response to Early Pliocene tectonic escape-related strike-slip faulting subsequent to post-collisional intracontinental compressional tectonics during which Miocene sediments were intensely deformed. The Early Pliocene time therefore marks a dramatic changeover in tectonic regime and is interpreted as the beginning of the ongoing last tectonic evolution and deformation style in the region unlike to previous views that it commenced before that time. Consequently, the Elbistan Basin is a unique structural depression that equates the extensional strike-slip regime in east-Central Anatolia throughout the context of the neotectonical framework of Turkey across progressive collision of Arabia with Eurasia. Its Pliocene and younger history differs from and contrasts with that of the surrounding pre-Pliocene basins such as Karamağara Basin, on which it has been structurally superimposed.

  6. Aerodynamic Surface Stress Intermittency and Conditionally Averaged Turbulence Statistics

    NASA Astrophysics Data System (ADS)

    Anderson, W.

    2015-12-01

    Aeolian erosion of dry, flat, semi-arid landscapes is induced (and sustained) by kinetic energy fluxes in the aloft atmospheric surface layer. During saltation -- the mechanism responsible for surface fluxes of dust and sediment -- briefly suspended sediment grains undergo a ballistic trajectory before impacting and `splashing' smaller-diameter (dust) particles vertically. Conceptual models typically indicate that sediment flux, q (via saltation or drift), scales with imposed aerodynamic (basal) stress raised to some exponent, n, where n > 1. Since basal stress (in fully rough, inertia-dominated flows) scales with the incoming velocity squared, u^2, it follows that q ~ u^2n (where u is some relevant component of the above flow field, u(x,t)). Thus, even small (turbulent) deviations of u from its time-averaged value may play an enormously important role in aeolian activity on flat, dry landscapes. The importance of this argument is further augmented given that turbulence in the atmospheric surface layer exhibits maximum Reynolds stresses in the fluid immediately above the landscape. In order to illustrate the importance of surface stress intermittency, we have used conditional averaging predicated on aerodynamic surface stress during large-eddy simulation of atmospheric boundary layer flow over a flat landscape with momentum roughness length appropriate for the Llano Estacado in west Texas (a flat agricultural region that is notorious for dust transport). By using data from a field campaign to measure diurnal variability of aeolian activity and prevailing winds on the Llano Estacado, we have retrieved the threshold friction velocity (which can be used to compute threshold surface stress under the geostrophic balance with the Monin-Obukhov similarity theory). This averaging procedure provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Preliminary evidence indicates that surface stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. We will characterize geometric attributes of such structures and explore streamwise and vertical vorticity distribution within the conditionally averaged flow field.

  7. Tolerance to solar ultraviolet-B radiation in the citrus red mite, an upper surface user of host plant leaves.

    PubMed

    Fukaya, Midori; Uesugi, Ryuji; Ohashi, Hirokazu; Sakai, Yuta; Sudo, Masaaki; Kasai, Atsushi; Kishimoto, Hidenari; Osakabe, Masahiro

    2013-01-01

    Plant-dwelling mites are potentially exposed to solar ultraviolet-B (UVB) radiation that causes deleterious and often lethal effects, leading most mites to inhabit the lower (underside) leaf surfaces. However, in species of spider mite belonging to the Genus Panonychus, a substantial portion of individuals occur on upper leaf surfaces. We investigated whether the upper leaf surfaces of citrus trees are favorable for P. citri, and to what extent they are tolerant to UVB radiation. If eggs are not adequately protected from UVB damage, females may avoid ovipositing on the upper surfaces of sunny leaves. To test this, we conducted laboratory experiments using a UVB lamp, and semioutdoor manipulative experiments. As a result, P. citri eggs are tolerant to UVB. Field studies revealed that the ratio of eggs and adult females on upper leaf surfaces were larger for shaded than for sunny leaves. However, 64-89% of eggs hatched successfully even on sunny upper leaf surfaces. Nutritional evaluation revealed that whether on sunny or shaded leaves, in fecundity and juvenile development P. citri reaped the fitness benefits of upper leaf surfaces. Consequently, P. citri is tolerant to UVB damage, and inhabiting the upper surfaces of shaded leaves is advantageous to this mite. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  8. Development of Physical Techniques for the Non-Destructive Evaluation of Polymers

    DTIC Science & Technology

    1986-09-30

    retreival is possible in an interferometer employing microwaves, a simple Fizeau arrangement was constructed, in which partially aluminised expanded ... polystyrene flats formed BMW the surfaces of the cavity within which interference took place. Figure 21 shows the interference pattern recorded when the flats

  9. Cell behavior on surface modified polydimethylsiloxane (PDMS).

    PubMed

    Stanton, Morgan M; Rankenberg, Johanna M; Park, Byung-Wook; McGimpsey, W Grant; Malcuit, Christopher; Lambert, Christopher R

    2014-07-01

    Designing complex tissue culture systems requires cell alignment and directed extracellular matrix (ECM) and gene expression. Here, a micro-rough, polydimethylsiloxane (PDMS) surface, that also integrates a micro-pattern of 50 µm wide lines of fibronectin (FN) separated by 60 µm wide lines of bovine serum albumin (BSA), is developed. Human fibroblasts cultured on the rough, patterned substrate have aligned growth and a significant change in morphology when compared to cells on a flat, patterned surface. The rough PDMS topography significantly decreases cell area and induces the upregulation of several ECM related genes by two-fold when compared to cells cultured on flat PDMS. This study describes a simple surface engineering procedure for creating surface architecture for scaffolds to design and control the cell-surface interface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Highly confined surface plasmon polaritons in the ultraviolet region

    NASA Astrophysics Data System (ADS)

    Chubchev, E. D.; Nechepurenko, I. A.; Dorofeenko, A. V.; Vinogradov, A. P.; Lisyansky, A. A.

    2018-04-01

    We study a surface plasmon polariton mode that is strongly confined in the transverse direction and propagates along a periodically nanostructured metal-dielectric interface. We show that the wavelength of this mode is determined by the period of the structure, and may therefore, be orders of magnitude smaller than the wavelength of a plasmon-polariton propagating along a flat surface. This plasmon polariton exists in the frequency region in which the sum of the real parts of the permittivities of the metal and dielectric is positive, a frequency region in which surface plasmon polaritons do not exist on a flat surface. The propagation length of the new mode can reach a several dozen wavelengths. This mode can be observed in materials that are uncommon in plasmonics, such as aluminum or sodium.

  11. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrov, D. A.; Bell, G. I.; Smedley, J.

    Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less

  12. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes

    DOE PAGES

    Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...

    2017-10-26

    Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less

  13. Ripple formation on atomically flat cleaved Si surface with roughness of 0.038 nm rms by low-energy Ar{sup 1+} ion bombardment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahlovy, Shahjada A.; Mahmud, S. F.; Yanagimoto, K.

    The authors have conducted research regarding ripple formation on an atomically flat cleaved Si surface by low-energy Ar{sup +} ion bombardment. The cleaved atomically flat and smooth plane of a Si wafer was obtained by cutting vertically against the orientation of a Si (100) wafer. Next, the cleaved surface was sputtered by a 1 keV Ar{sup +} ion beam at ion-incidence angles of 0 deg., 60 deg., 70 deg., and 80 deg. The results confirm the successful ripple formation at ion-incidence angles of 60 deg. - 80 deg. and that the wavelength of the ripples increases with the increase ofmore » the ion-incidence angle, as well as the inverse of ion doses. The direction of the ripple also changes from perpendicular to parallel to the projection of the ion-beam direction along the surface with the increasing ion-incidence angle. The authors have also observed the dose effects on surface roughness of cleaved Si surface at the ion-incidence angle of 60 deg., where the surface roughness increases with the increased ion dose. Finally, to understand the roughening mechanism, the authors studied the scaling behavior, measured the roughness exponent {alpha}, and compared the evolution of scaling regimes with Cuerno's one-dimensional simulation results.« less

  14. Micro-PIXE characterisation of uranium occurrence in the coal zones and the mudstones of the Springbok Flats Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Nxumalo, V.; Kramers, J.; Mongwaketsi, N.; Przybyłowicz, W. J.

    2017-08-01

    Uranium occurrence and characterisation in the coal samples of the upper coal zones of the Vryheid Formation and mudstones of the Volksrust Formation was investigated using micro-PIXE (Proton-Induced X-ray Emission) and proton backscattering spectrometry (BS) in conjunction with the nuclear microprobe. Two styles of uranium mineralisation in the Springbok Flats Basin were found: syngenetic mineralisation in which uranium occurs organically bound with coal matrix, with no discrete uranium minerals formed, and epigenetic mineralisation in which uranium occurs in veins that are filled with coffinite with botryoidal texture in the mudstones of the Volksrust Formation, overlying the coal zones. Micro-PIXE analysis made it possible to map out trace elements (including uranium) associated with the coals at low levels of detection, which other techniques such as SEM-EDS and ore microscopy failed. This information will help in better understanding of the best extraction methods to be employed to recover uranium from the coals of the Springbok Flats Basin.

  15. A Parametric Study of Jet Interactions with Rarefied Flow

    NASA Technical Reports Server (NTRS)

    Glass, C. E.

    2004-01-01

    Three-dimensional computational techniques, in particular the uncoupled CFD-DSMC of the present study, are available to be applied to problems such as jet interactions with variable density regions ranging from a continuum jet to a rarefied free stream. When the value of the jet to free stream momentum flux ratio approximately greater than 2000 for a sharp leading edge flat plate forward separation vortices induced by the jet interaction are present near the surface. Also as the free stream number density n (infinity) decreases, the extent and magnitude of normalized pressure increases and moves upstream of the nozzle exit. Thus for the flat plate model the effect of decreasing n (infinity) is to change the sign of the moment caused by the jet interaction on the flat plate surface.

  16. Epidemiology of Injury Due to Race-Day Jockey Falls in Professional Flat and Jump Horse Racing in Ireland, 2011-2015.

    PubMed

    O'Connor, Siobhan; Warrington, Giles; McGoldrick, Adrian; Cullen, SarahJane

    2017-12-01

      Professional horse racing is considered a high-risk sport, yet the last analysis of fall and injury incidence in this sport in Ireland was completed between 1999 and 2006.   To provide an updated analysis of the fall and injury incidence in professional flat and jump horse racing in Ireland from 2011 through 2015, compare it with the previous analysis, and detail the specific types and locations of injuries.   Descriptive epidemiology study.   A medical doctor recorded all injuries that occurred at every official flat and jump race meeting for the 2011 through 2015 seasons using standardized injury-report forms.   Injury and fall rates and their 95% confidence intervals (CIs) were reported for flat and jump racing. Incidence rate ratios and 95% CIs were calculated between flat and jump racing, between the 1999-2006 analysis and the current results, and between 2011 and 2015. The distribution of injuries for type and location of injury was reported.   Compared with flat racing, jump racing had significantly more falls per 1000 rides (49.5 versus 3.8), injuries per 1000 rides (10.1 versus 1.4), and injuries per 1000 meetings (776.0 versus 94.1). However, the rate of injuries per 1000 falls was significantly higher in flat racing (352.8 versus 203.8). An increase in injuries per 1000 falls between 2011 and 2015 was found in flat racing ( P = .005). Since the previous analysis, a significant increase in injuries per 1000 rides and falls was noted in jump racing. Soft tissue injuries were predominant in flat and jump racing (61.54% and 68.80%, respectively), with fractures the second most common injury (15.38% and 18.06%, respectively). Concussions were more prevalent from flat-racing falls (incidence rate ratio = 0.30; 95% CI = 0.15, 0.61). The lower limb was the most frequent location of injury (32.89%) in flat racing; however, in jump racing, upper limb injuries (34.97%) were predominant.   An update on professional flat- and jump-racing fall and injury epidemiology is provided. Further research to identify risk factors for injury, design and investigate the feasibility of injury-prevention strategies, and document their effects on fall and injury incidence is required.

  17. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  18. Droplet Impact Onto A Flat Plate: Inclined Verses Moving Surfaces

    NASA Astrophysics Data System (ADS)

    Tsai, Scott; Bird, James C.; Stone, Howard A.

    2008-11-01

    Much research has been conducted on the impact of droplets normal to flat surfaces. However, very little research has been carried out on oblique impacts, even though they occur frequently in nature and industry. We experiment with the effects of tangential and normal impact velocities on the behavior of a droplet as it impacts a flat plate. The plate is inclined in the first case, and in the second case the plate is rotated via an electric motor. The asymmetric nature of the impact causes asymmetric splashing, such that under certain conditions only part of the rim splashes. Using a high-speed camera, we demonstrate that the splash threshold of inclined and moving surfaces are quantitatively similar, with only small differences. We also develop a phase diagram of splashing showing which phase occurs given a tangential and normal impact velocity. Such a phase diagram is useful for both engineering design and for the evaluation of splash-prediction models.

  19. Direct measurement of interaction forces between a single bacterium and a flat plate.

    PubMed

    Klein, Jonah D; Clapp, Aaron R; Dickinson, Richard B

    2003-05-15

    A technique for precisely measuring the equilibrium and viscous interaction forces between a single bacterium and a flat surface as functions of separation distance is described. A single-beam gradient optical trap was used to micromanipulate the bacterium against a flat surface while evanescent wave light scattering was used to measure separation distances. Calibrating the optical trap far from the surface allowed the trapped bacterium to be used as a force probe. Equilibrium force-distance profiles were determined by measuring the deflection of the cell from the center of the optical trap at various trap positions. Simultaneously, viscous forces were determined by measuring the relaxation time for the fluctuating bacterium. Absolute distances were determined using a best-fit approximation to the theoretical prediction for the hindered mobility of a diffusing sphere near a wall. Using this approach, forces in the range from 0.01 to 4 pN were measured at near-nanometer resolution between Staphylococcus aureus and glass that was bare or coated with adsorbed protein.

  20. A high performance porous flat-plate solar collector

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Clarke, V.; Reynolds, R.

    1979-01-01

    A solar collector employing a porous matrix as a solar absorber and heat exchanger is presented and its application in solar air heaters is discussed. The collector is composed of a metallic matrix with a porous surface which acts as a large set of cavity radiators; cold air flows through the matrix plate and exchanges heat with the thermally stratified layers of the matrix. A steady-state thermal analysis of the collector is used to determine collector temperature distributions for the cases of an opaque surface matrix with total absorption of solar energy at the surface, and a diathermanous matrix with successive solar energy absorption at each depth. The theoretical performance of the porous flat plate collector is shown to exceed greatly that of a solid flat plate collector using air as the working medium for any given set of operational conditions. An experimental collector constructed using commercially available, low cost steel wool as the matrix has been found to have thermal efficiencies from 73 to 86%.

  1. Using surface impedance for calculating wakefields in flat geometry

    DOE PAGES

    Bane, Karl; Stupakov, Gennady

    2015-03-18

    Beginning with Maxwell's equations and assuming only that the wall interaction can be approximated by a surface impedance, we derive formulas for the generalized longitudinal and transverse impedance in flat geometry, from which the wakefields can also be obtained. From the generalized impedances, by taking the proper limits, we obtain the normal longitudinal, dipole, and quad impedances in flat geometry. These equations can be applied to any surface impedance, such as the known dc, ac, and anomalous skin models of wall resistance, a model of wall roughness, or one for a pipe with small, periodic corrugations. We show that, formore » the particular case of dc wall resistance, the longitudinal impedance obtained here agrees with a known result in the literature, a result that was derived from a very general formula by Henke and Napoly. As an example, we apply our results to representative beam and machine parameters in the undulator region of LCLS-II and estimate the impact of the transverse wakes on the machine performance.« less

  2. Contrast coating of the surface of flat polyps at CT colonography: a marker of detection

    PubMed Central

    Kim, David H.; Hinshaw, J. Louis; Lubner, Meghan G.; Munoz del Rio, Alejandro; Pooler, B. Dustin; Pickhardt, Perry J.

    2014-01-01

    Purpose To assess the frequency of oral contrast coating of flat polyps, which may promote detection, and influencing factors within a screening CTC population. Materials From 7,426 individuals, 123 patients with 160 flat polyps were extracted. Flat polyps were defined as plaque-like, raised ≤ 3mm in height and reviewed for contrast coating. Factors including demographic variables such as age and sex, and polyp variables such as polyp size, location, and histology were analyzed for effect on coating. Results Of 160 flat polyps (mean size 9.4mm±3.6), 78.8% demonstrated coating. Mean coat thickness was 1.5mm±0.6; 23.8% (n=30), demonstrating a thin film of contrast. Large size (≥10 mm), and proximal colonic location (relative to splenic flexure) were predictive variables by univariate logistic regression [OR (odds ratio) 3.4(CI 1.3–8.9; p=0.011), 2.0(CI 1.2–3.5; p=0.011), respectively]. Adenomas (OR 0.37, CI: 0.14–1.02; p=0.054) and mucosal polyps or venous blebs (OR 0.07, CI: 0.02–0.25; p < 0.001) were less likely to coat than serrated/hyperplastic lesions. Age and sex were not predictive for coating (p=0.417, p= 0.499, respectively). Conclusions Surface contrast coating is common for flat polyps at CTC, promoted by large size, proximal location, and serrated/hyperplastic histology. Given the difficulty in detection, recognition may aid in flat polyp identification. PMID:24482303

  3. Identification of flat dysplastic aberrant crypt foci in the colon of azoxymethane-treated A/J mice.

    PubMed

    Paulsen, Jan Erik; Knutsen, Helle; Ølstørn, Hege Benedikte; Løberg, Else Marit; Alexander, Jan

    2006-02-01

    The role of aberrant crypt foci (ACF) as preneoplastic lesions in colon carcinogenesis is not clear. In Min/+ mice and their wild-type littermates treated with azoxymethane (AOM), we previously identified a subgroup of flat ACF that seem more immediate precursors of tumors than the classical elevated ACF. In the present study, we identified a similar subgroup of flat ACF in AOM-treated A/J mice and compared them with nascent tumors and classical elevated ACF. At week 1 and 2 after birth, A/J mice were injected subcutaneously with AOM (10 mg/kg bw/injection). At weeks 7-14, we examined the luminal surface of unsectioned colon preparations stained with methylene blue in the inverse light microscope. The lesions were also examined by histopathology and immunohistochemistry. Surface examination revealed flat ACF, classical elevated ACF and nascent tumors. Since flat ACF were not observed as elevated structures, their bright blue appearance and compressed pit pattern of crypt openings seen with transillumination were used as criteria for their identification. Flat ACF and nascent tumors displayed a uniform picture of severe dysplasia, compressed pit pattern, overexpression of cytoplasmic/nuclear beta-catenin and nuclear overexpression of cyclin D1. Apparently, flat ACF and tumors represented the same type of dysplastic lesions at different stages of crypt multiplication. In contrast, classical elevated ACF did not seem to be as clearly related to tumorigenesis. They infrequently (1/20) possessed severe dysplasia, overexpression of cytoplasmic/nuclear beta-catenin, or nuclear overexpression of cyclin D1, and they did not have compressed crypt openings. Furthermore, flat ACF grew significantly faster than classical elevated ACF. In conclusion, our data indicate a development from flat ACF to adenoma characterized by aberrant activation of the Wnt signaling pathway and fast crypt multiplication. Classical elevated ACF do not seem to be as closely related to tumorigenesis. Copyright 2005 Wiley-Liss, Inc.

  4. Low-Melt Poly(Amic Acids) and Polyimides and Their Uses

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parks, Steven L. (Inventor)

    2014-01-01

    Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.

  5. Low-Melt Poly(amic Acids) and Polyimides and Their Uses

    NASA Technical Reports Server (NTRS)

    Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parrish, Clyde F. (Inventor); Parks, Steven L. (Inventor)

    2015-01-01

    Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.

  6. 39 CFR Appendix A to Subpart A of... - Mail Classification Schedule

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Density and Saturation Letters High Density and Saturation Flats/Parcels Carrier Route Letters Flats Not... Package Services Single-Piece Parcel Post Inbound Surface Parcel Post (at UPU rates) Bound Printed Matter... Single-Piece First-Class Mail International Standard Mail (Regular and Nonprofit) High Density and...

  7. Polymeric and Lipid Membranes—From Spheres to Flat Membranes and vice versa

    PubMed Central

    Saveleva, Mariia S.; Gorin, Dmitry A.; Skirtach, Andre G.

    2017-01-01

    Membranes are important components in a number of systems, where separation and control of the flow of molecules is desirable. Controllable membranes represent an even more coveted and desirable entity and their development is considered to be the next step of development. Typically, membranes are considered on flat surfaces, but spherical capsules possess a perfect “infinite” or fully suspended membranes. Similarities and transitions between spherical and flat membranes are discussed, while applications of membranes are also emphasized. PMID:28809796

  8. Polymeric and Lipid Membranes-From Spheres to Flat Membranes and vice versa.

    PubMed

    Saveleva, Mariia S; Lengert, Ekaterina V; Gorin, Dmitry A; Parakhonskiy, Bogdan V; Skirtach, Andre G

    2017-08-15

    Membranes are important components in a number of systems, where separation and control of the flow of molecules is desirable. Controllable membranes represent an even more coveted and desirable entity and their development is considered to be the next step of development. Typically, membranes are considered on flat surfaces, but spherical capsules possess a perfect "infinite" or fully suspended membranes. Similarities and transitions between spherical and flat membranes are discussed, while applications of membranes are also emphasized.

  9. Effect of dialyzer geometry on granulocyte and complement activation.

    PubMed

    Schaefer, R M; Heidland, A; Hörl, W H

    1987-01-01

    During hemodialysis with cuprophan membranes, the complement system as well as leukocytes become activated. In order to clarify the role of dialyzer geometry, the effect of hollow-fiber versus flat-sheet dialyzers and of different surface areas on C3a generation and leukocyte degranulation was investigated. Plasma levels of leukocyte elastase in complex with alpha 1-proteinase inhibitor were significantly increased after 1 h (+55%) and 3 h (+62%) of hemodialysis with flat-sheet dialyzers as compared to hollow-fiber devices. In addition, plasma levels of lactoferrin, released from the specific granules of leukocytes during activation, were significantly higher (+42%) 3 h after the onset of dialysis treatment with flat-sheet than with hollow-fiber dialyzers. With respect to surface area, larger dialyzers tended to cause more release of leukocyte elastase as compared to dialyzers with smaller surface areas, irrespectively of the configuration of the dialyzer used. On the other hand, activation of the complement system, as measured by the generation of C3a-desarg, did not differ with both types of configurations. The same held true for leukopenia, which was almost identical for hollow-fiber and flat-sheet dialyzers. From these findings two lines of evidence emerge: First, not only the type of membrane material used in a dialyzer may influence its biocompatibility, but the geometry of the extracorporeal device also determines the degree of compatibility. Hence, the extent of leukocyte activation correlated with both configuration of the dialyzer and surface area of the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Thin walled channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Johansson, E.B.

    1988-06-07

    A fuel assembly is described comprising fuel rods positioned in a spaced array by upper and lower tie-plates, an open ended flow channel surrounding the array for conducting coolant upward about the fuel rods, the open ended channel having a polygon shaped cross section with flat side sections connected between the corner sections; means separate from the channel connecting the upper and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel, improvement in the flow channel comprising: four corners having a first thickness; four sides having a second and reduced thickness from themore » corner thickness, the sides welded to the corner sections.« less

  11. Superconductivity in the two-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Beenen, J.; Edwards, D. M.

    1995-11-01

    Quasiparticle bands of the two-dimensional Hubbard model are calculated using the Roth two-pole approximation to the one-particle Green's function. Excellent agreement is obtained with recent Monte Carlo calculations, including an anomalous volume of the Fermi surface near half-filling, which can possibly be explained in terms of a breakdown of Fermi liquid theory. The calculated bands are very flat around the (π,0) points of the Brillouin zone in agreement with photoemission measurements of cuprate superconductors. With doping there is a shift in spectral weight from the upper band to the lower band. The Roth method is extended to deal with superconductivity within a four-pole approximation allowing electron-hole mixing. It is shown that triplet p-wave pairing never occurs. A self-consistent solution with singlet dx2-y2-wave pairing is found and optimal doping occurs when the van Hove singularity, corresponding to the flat band part, lies at the Fermi level. Nearest-neighbor antiferromagnetic correlations play an important role in flattening the bands near the Fermi level and in favoring superconductivity. However, the mechanism for superconductivity is a local one, in contrast to spin-fluctuation exchange models. For reasonable values of the hopping parameter the transition temperature Tc is in the range 10-100 K. The optimum doping δc lies between 0.14 and 0.25, depending on the ratio U/t. The gap equation has a BCS-like form and 2Δmax/kTc~=4.

  12. Microscopic modeling of confined crystal growth and dissolution.

    PubMed

    Høgberget, Jørgen; Røyne, Anja; Dysthe, Dag K; Jettestuen, Espen

    2016-08-01

    We extend the (1+1)-dimensional fluid solid-on-solid (SOS) model to include a confining flat surface opposite to the SOS surface subject to a constant load. This load is balanced by a repulsive surface-surface interaction given by an ansatz which agrees with known analytical solutions in the limit of two separated flat surfaces. Mechanical equilibrium is imposed at all times by repositioning the confining surface. By the use of kinetic Monte Carlo (KMC) we calculate how the equilibrium concentration (deposition rate) depends on the applied load, and find it to reproduce analytical thermodynamics independent of the parameters of the interaction ansatz. We also study the dependency between the surface roughness and the saturation level as we vary the surface tension, and expand on previous analyses of the asymmetry between growth and dissolution by parametrizing the linear growth rate constant for growth and dissolution separately. We find the presence of a confining surface to affect the speed of growth and dissolution equally.

  13. Microscopic modeling of confined crystal growth and dissolution

    NASA Astrophysics Data System (ADS)

    Høgberget, Jørgen; Røyne, Anja; Dysthe, Dag K.; Jettestuen, Espen

    2016-08-01

    We extend the (1+1)-dimensional fluid solid-on-solid (SOS) model to include a confining flat surface opposite to the SOS surface subject to a constant load. This load is balanced by a repulsive surface-surface interaction given by an ansatz which agrees with known analytical solutions in the limit of two separated flat surfaces. Mechanical equilibrium is imposed at all times by repositioning the confining surface. By the use of kinetic Monte Carlo (KMC) we calculate how the equilibrium concentration (deposition rate) depends on the applied load, and find it to reproduce analytical thermodynamics independent of the parameters of the interaction ansatz. We also study the dependency between the surface roughness and the saturation level as we vary the surface tension, and expand on previous analyses of the asymmetry between growth and dissolution by parametrizing the linear growth rate constant for growth and dissolution separately. We find the presence of a confining surface to affect the speed of growth and dissolution equally.

  14. 40 CFR 81.329 - Nevada.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... on the State of Nevada Division of Water Resources' map titled Water Resources and Inter-basin Flows...-26E) X Clovers Area (64)(32-39N, 42-46E) X 1 EPA designation replaces State designation. 2 Rest of... Boulder Flat (61) (31-37N, 45-51E): Upper Unit 61 X Lower Unit 61 X Rest of State 1 X 1 Rest of State...

  15. Three-dimensional mapping of equiprobable hydrostratigraphic units at the Frenchman Flat Corrective Action Unit, Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirley, C.; Pohlmann, K.; Andricevic, R.

    1996-09-01

    Geological and geophysical data are used with the sequential indicator simulation algorithm of Gomez-Hernandez and Srivastava to produce multiple, equiprobable, three-dimensional maps of informal hydrostratigraphic units at the Frenchman Flat Corrective Action Unit, Nevada Test Site. The upper 50 percent of the Tertiary volcanic lithostratigraphic column comprises the study volume. Semivariograms are modeled from indicator-transformed geophysical tool signals. Each equiprobable study volume is subdivided into discrete classes using the ISIM3D implementation of the sequential indicator simulation algorithm. Hydraulic conductivity is assigned within each class using the sequential Gaussian simulation method of Deutsch and Journel. The resulting maps show the contiguitymore » of high and low hydraulic conductivity regions.« less

  16. Development of Surfaces Optically Suitable for Flat Solar Panels

    NASA Technical Reports Server (NTRS)

    Desmet, D.; Jason, A.; Parr, A.

    1977-01-01

    Innovations in reflectometry techniques are described; and the development of an absorbing selective coating is discussed along with details of surface properties. Conclusions as to the parameterization desired for practical applications of selective surfaces are provided.

  17. Correlation of Water Frost Porosity in Laminar Flow over Flat Surfaces

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2011-01-01

    A dimensionless correlation has been proposed for water frost porosity expressing its dependence on frost surface temperature and Reynolds number for laminar forced flow over a flat surface. The correlation is presented in terms of a dimensionless frost surface temperature scaled with the cold plate temperature, and the freezing temperature. The flow Reynolds number is scaled with reference to the critical Reynolds number for laminar-turbulent transition. The proposed correlation agrees satisfactorily with the simultaneous measurements of frost density and frost surface temperature covering a range of plate temperature, ambient air velocity, humidity, and temperature. It is revealed that the frost porosity depends primarily on the frost surface and the plate temperatures and the flow Reynolds number, and is only weakly dependent on the relative humidity. The results also point out the general character of frost porosity displaying a decrease with an increase in flow Reynolds number.

  18. The lithostratigraphy of a marine kame delta-outwash fan complex at Pease AFB, Newington, NH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dineen, R.J.; Manning, S.; McGeehan, K.

    The overburden stratigraphy at Pease AFB is based on over 1,200 wells, borings, piezometers, and test pits, and includes five lithologic units: Fill, Upper Sand (US), Marine Clay and Silt (MCS), Lower Sand (LS), and Till (GT). The US is a yellow brown, poorly sorted sand to silty sand and is massive to laminated, and locally has hummocky bedding. The MCS (the Presumpscot Formation) is a dark gray, massive to laminated sandy to silty clay, and is locally interbedded with silty sand. The MCS contains a trace of organic matter, primarily as fine particles of peat. The LS is amore » gray to brown, poorly sorted, silty sand to gravelly sand that is massive to planar bedded and locally grades down into GT and/or upward into MCS. The GT consists of a massive to crudely bedded dark gray to dark brown, very poorly sorted, sandy silt to gravelly, silty sand. The US, MCS, LS and upper part of the GT were deposited in a marine environment at or near the ice margin. Pease AFB is built on two large fans of gravelly sand (LS plus US) that are bordered to the east by NW-SE till ridges (drumlins ). The northern-most fan is flat-topped with a surface elevation of 30 m ASL. The southern fan is more hummocky, with a surface elevation of 18.5 m ASL. Both fans coarsen towards the NW, and are interbedded with MCS towards the SE. The apices of the fans overlie deeply-scoured troughs in the rock surface. The fans are interpreted to be kame deltas or submarine outwash fans that are deposited along the retreating Wisconsinan ice margin by concentrated meltwater flow. Later, the US may have been deposited by marine shoreface erosion of the emergent fans as the ice front retreated and sea level fell.« less

  19. Lithospheric Structure across the Alaskan Cordillera from Surface Waves and Receiver Functions

    NASA Astrophysics Data System (ADS)

    Ward, K. M.; Lin, F. C.

    2017-12-01

    The long awaited Transportable Array (TA) deployment in Alaska and western Canada is nearing its final deployment stage. With only one more deployment season, most of the TA station locations have been occupied and begun providing data. These TA stations combined with upgraded existing locations have provided enough high-quality data to begin investigating the crustal and upper mantle structure across the entire Alaskan Cordillera. From a tectonic standpoint, many interesting questions remain unanswered. For example, how does the transition from oceanic-oceanic subduction to continental-oceanic normal subduction to continental-oceanic "flat-slab" subduction to strike-slip conservative plate motion affect the deformation/uplift of the overriding plate and mantle geodynamic characteristics? How does the long and completed terrene accretion process partition stress/strain in the crust? On more local scales, are there any significant mid-crustal magmatic systems as observed in other sections of the American Cordillera, and if so, what is there role in uplift and crustal deformation? Our approach to investigating these questions is though surface wave imaging from ambient noise and earthquake generated sources along with Rayleigh wave ellipticity paired with Ps receiver functions. Our preliminary tomography results agree with previous studies but expand the spatial coverage showing additional detail. Our ellipticity results show a heterogeneous but spatially consistent anisotropic shallow crust. Although the complete TA data set has not yet been collected, we have jointly inverted surface waves with receiver functions for a 3-D shear-wave velocity model across the entire Alaskan Cordillera. Key features of our velocity model include a high-velocity feature in the upper mantle associated with the subducting Pacific plate that extends north of the seismicity used to contour the geometry of the slab and mid-crustal low-velocity zones associated with the active volcanics in the Wrangell mountains and along the Aleutian arc.

  20. Effect of surface morphology on friction of graphene on various substrates

    NASA Astrophysics Data System (ADS)

    Cho, Dae-Hyun; Wang, Lei; Kim, Jin-Seon; Lee, Gwan-Hyoung; Kim, Eok Su; Lee, Sunhee; Lee, Sang Yoon; Hone, James; Lee, Changgu

    2013-03-01

    The friction of graphene on various substrates, such as SiO2, h-BN, bulk-like graphene, and mica, was investigated to characterize the adhesion level between graphene and the underlying surface. The friction of graphene on SiO2 decreased with increasing thickness and converged around the penta-layers due to incomplete contact between the two surfaces. However, the friction of graphene on an atomically flat substrate, such as h-BN or bulk-like graphene, was low and comparable to that of bulk-like graphene. In contrast, the friction of graphene folded onto bulk-like graphene was indistinguishable from that of mono-layer graphene on SiO2 despite the ultra-smoothness of bulk-like graphene. The characterization of the graphene's roughness before and after folding showed that the corrugation of graphene induced by SiO2 morphology was preserved even after it was folded onto an atomically flat substrate. In addition, graphene deposited on mica, when folded, preserved the same corrugation level as before the folding event. Our friction measurements revealed that graphene, once exfoliated from the bulk crystal, tends to maintain its corrugation level even after it is folded onto an atomically flat substrate and that ultra-flatness in both graphene and the substrate is required to achieve the intimate contact necessary for strong adhesion.The friction of graphene on various substrates, such as SiO2, h-BN, bulk-like graphene, and mica, was investigated to characterize the adhesion level between graphene and the underlying surface. The friction of graphene on SiO2 decreased with increasing thickness and converged around the penta-layers due to incomplete contact between the two surfaces. However, the friction of graphene on an atomically flat substrate, such as h-BN or bulk-like graphene, was low and comparable to that of bulk-like graphene. In contrast, the friction of graphene folded onto bulk-like graphene was indistinguishable from that of mono-layer graphene on SiO2 despite the ultra-smoothness of bulk-like graphene. The characterization of the graphene's roughness before and after folding showed that the corrugation of graphene induced by SiO2 morphology was preserved even after it was folded onto an atomically flat substrate. In addition, graphene deposited on mica, when folded, preserved the same corrugation level as before the folding event. Our friction measurements revealed that graphene, once exfoliated from the bulk crystal, tends to maintain its corrugation level even after it is folded onto an atomically flat substrate and that ultra-flatness in both graphene and the substrate is required to achieve the intimate contact necessary for strong adhesion. Electronic supplementary information (ESI) available: Sample preparation method, identification of graphene thickness, AFM and FFM measurements. See DOI: 10.1039/c3nr34181j

  1. 78 FR 16198 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... determine if wires touch the upper surface of the center upper auxiliary fuel tank, and marking the location, as necessary; inspecting all wire bundles above the center upper auxiliary fuel tank for splices and... requires inspecting to determine if wires touch the upper surface of the center upper auxiliary fuel tank...

  2. Illusions and Cloaks for Surface Waves

    PubMed Central

    McManus, T. M.; Valiente-Kroon, J. A.; Horsley, S. A. R.; Hao, Y.

    2014-01-01

    Ever since the inception of Transformation Optics (TO), new and exciting ideas have been proposed in the field of electromagnetics and the theory has been modified to work in such fields as acoustics and thermodynamics. The most well-known application of this theory is to cloaking, but another equally intriguing application of TO is the idea of an illusion device. Here, we propose a general method to transform electromagnetic waves between two arbitrary surfaces. This allows a flat surface to reproduce the scattering behaviour of a curved surface and vice versa, thereby giving rise to perfect optical illusion and cloaking devices, respectively. The performance of the proposed devices is simulated using thin effective media with engineered material properties. The scattering of the curved surface is shown to be reproduced by its flat analogue (for illusions) and vice versa for cloaks. PMID:25145953

  3. Comparative life cycle assessment of standard and green roofs.

    PubMed

    Saiz, Susana; Kennedy, Christopher; Bass, Brad; Pressnail, Kim

    2006-07-01

    Life cycle assessment (LCA) is used to evaluate the benefits, primarily from reduced energy consumption, resulting from the addition of a green roof to an eight story residential building in Madrid. Building energy use is simulated and a bottom-up LCA is conducted assuming a 50 year building life. The key property of a green roof is its low solar absorptance, which causes lower surface temperature, thereby reducing the heat flux through the roof. Savings in annual energy use are just over 1%, but summer cooling load is reduced by over 6% and reductions in peak hour cooling load in the upper floors reach 25%. By replacing the common flat roof with a green roof, environmental impacts are reduced by between 1.0 and 5.3%. Similar reductions might be achieved by using a white roof with additional insulation for winter, but more substantial reductions are achieved if common use of green roofs leads to reductions in the urban heat island.

  4. Axially shaped channel and integral flow trippers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Johansson, E.B.; Matzner, B.

    1988-06-07

    A fuel assembly is described comprising fuel rods positioned in spaced array by upper and lower tie-plates, an open ended flow channel surrounding the array for conducting coolant upward between a lower support plate having coolant communicated thereto to an upper support grid having a steam/water outlet communicated thereto. The flow channel surrounds the array for conducting coolant about the fuel rods. The open ended channel has a polygon shaped cross section with the channel constituting a closed conduit with flat side sections connected at corners to form the enclosed conduit; means separate from the channel for connecting the uppermore » and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel. The improvement in the flow channel comprises tapered side walls. The tapered side walls extend from an average thick cross section adjacent the lower support plate to an average thin cross section adjacent the upper core grid whereby the channel is reduced in thickness adjacent the upper core grid to correspond with the reduced pressure adjacent the upper core grid.« less

  5. Shingle assembly with support bracket

    DOEpatents

    Almy, Charles

    2007-01-02

    A shingle system, mountable to a support surface, includes overlapping shingle assemblies. Each shingle assembly comprises a support bracket, having upper and lower ends, secured to a shingle body. The upper end has an upper support portion, extending away from the shingle body, and an upper support-surface-engaging part, engageable with a support surface so that the upper edge of the shingle body is positionable at a first distance from the support surface to create a first gap therebetween. The lower end has a lower support portion extending away from the lower surface. The support brackets create: (1) a second gap between shingle bodies of the first and second shingle assemblies, and (2) an open region beneath the first shingle assembly fluidly coupling the first and second gaps.

  6. The polar amplification asymmetry: role of Antarctic surface height

    NASA Astrophysics Data System (ADS)

    Salzmann, Marc

    2017-05-01

    Previous studies have attributed an overall weaker (or slower) polar amplification in Antarctica compared to the Arctic to a weaker Antarctic surface albedo feedback and also to more efficient ocean heat uptake in the Southern Ocean in combination with Antarctic ozone depletion. Here, the role of the Antarctic surface height for meridional heat transport and local radiative feedbacks, including the surface albedo feedback, was investigated based on CO2-doubling experiments in a low-resolution coupled climate model. When Antarctica was assumed to be flat, the north-south asymmetry of the zonal mean top of the atmosphere radiation budget was notably reduced. Doubling CO2 in a flat Antarctica (flat AA) model setup led to a stronger increase in southern hemispheric poleward atmospheric and oceanic heat transport compared to the base model setup. Based on partial radiative perturbation (PRP) computations, it was shown that local radiative feedbacks and an increase in the CO2 forcing in the deeper atmospheric column also contributed to stronger Antarctic warming in the flat AA model setup, and the roles of the individual radiative feedbacks are discussed in some detail. A considerable fraction (between 24 and 80 % for three consecutive 25-year time slices starting in year 51 and ending in year 126 after CO2 doubling) of the polar amplification asymmetry was explained by the difference in surface height, but the fraction was subject to transient changes and might to some extent also depend on model uncertainties. In order to arrive at a more reliable estimate of the role of land height for the observed polar amplification asymmetry, additional studies based on ensemble runs from higher-resolution models and an improved model setup with a more realistic gradual increase in the CO2 concentration are required.

  7. Regenerator seal

    DOEpatents

    Davis, Leonard C.; Pacala, Theodore; Sippel, George R.

    1981-01-01

    A method for manufacturing a hot side regenerator cross arm seal assembly having a thermally stablilized wear coating with a substantially flat wear surface thereon to seal between low pressure and high pressure passages to and from the hot inboard side of a rotary regenerator matrix includes the steps of forming a flat cross arm substrate member of high nickel alloy steel; fixedly securing the side edges of the substrate member to a holding fixture with a concave surface thereacross to maintain the substrate member to a slightly bent configuration on the fixture surface between the opposite ends of the substrate member to produce prestress therein; applying coating layers on the substrate member including a wear coating of plasma sprayed nickel oxide/calcium flouride material to define a wear surface of slightly concave form across the restrained substrate member between the free ends thereon; and thereafter subjecting the substrate member and the coating thereon to a heat treatment of 1600.degree. F. for sixteen hours to produce heat stabilizing growth in the coating layers on the substrate member and to produce a thermally induced growth stress in the wear surface that substantially equalizes the prestress in the substrate whereby when the cross arm is removed from the fixture surface following the heat treatment step a wear face is formed on the cross arm assembly that will be substantially flat between the ends.

  8. Apparatus and method for rapid cooling of large area substrates in vacuum

    DOEpatents

    Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.

    2012-11-06

    The present invention is directed to an apparatus and method for rapid cooling of a large substrate in a vacuum environment. A first cooled plate is brought into close proximity with one surface of a flat substrate. The spatial volume between the first cooling plate and the substrate is sealed and brought to a higher pressure than the surrounding vacuum level to increase the cooling efficiency. A second cooled plate is brought into close proximity with the opposite surface of the flat substrate. A second spatial volume between the second cooling plate and the substrate is sealed and the gas pressure is equalized to the gas pressure in the first spatial volume. The equalization of the gas pressure on both sides of the flat substrate eliminates deflection of the substrate and bending stress in the substrate.

  9. 'Endurance Crater's' Dazzling Dunes (false-color)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    As NASA's Mars Exploration Rover Opportunity creeps farther into 'Endurance Crater,' the dune field on the crater floor appears even more dramatic. This false-color image taken by the rover's panoramic camera shows that the dune crests have accumulated more dust than the flanks of the dunes and the flat surfaces between them. Also evident is a 'blue' tint on the flat surfaces as compared to the dune flanks. This results from the presence of the hematite-containing spherules ('blueberries') that accumulate on the flat surfaces.

    Sinuous tendrils of sand less than 1 meter (3.3 feet) high extend from the main dune field toward the rover. Scientists hope to send the rover down to one of these tendrils in an effort to learn more about the characteristics of the dunes. Dunes are a common feature across the surface of Mars, and knowledge gleaned from investigating the Endurance dunes close-up may apply to similar dunes elsewhere.

    Before the rover heads down to the dunes, rover drivers must first establish whether the slippery slope that leads to them is firm enough to ensure a successful drive back out of the crater. Otherwise, such hazards might make the dune field a true sand trap.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wexler, Jason; Botkin, Jonathan; Culligan, Matthew

    A mounting support for a photovoltaic module is described. The mounting support includes a pedestal having a surface adaptable to receive a flat side of a photovoltaic module laminate. A hole is disposed in the pedestal, the hole adaptable to receive a bolt or a pin used to couple the pedestal to the flat side of the photovoltaic module laminate.

  11. Growth of pentacene on α -Al2O3 (0001) studied by in situ optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Fu, X.; Hohage, M.; Zeppenfeld, P.; Sun, L. D.

    2017-09-01

    The growth of pentacene thin films on a sapphire α -Al2O3 (0001) surface was investigated in situ using differential reflectance spectroscopy (DRS). Two different film structures are observed depending on the substrate temperature. If pentacene is deposited at room temperature, a wetting layer consisting of flat-lying molecules is formed after which upright-standing molecular layers with a herringbone structure start to grow. At low substrate temperature of 100 K, the long molecular axis of the pentacene molecules remains parallel to the surface plane throughout the entire growth regime up to rather large thicknesses. Heating thin films deposited at 100 K to room temperature causes the pentacene molecules beyond the wetting layer to stand up and assemble into a herringbone structure. Another interesting observation is the dewetting of the first flat-lying monolayer upon exposure to air, leading to the condensation of islands consisting of upright-standing molecules. Our results emphasize the interplay between growth kinetics and thermodynamics and its influence on the molecular orientation in organic thin films.

  12. Method to improve superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.

  13. Antibacterial Au nanostructured surfaces.

    PubMed

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-02-07

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.

  14. Selective phonon damping in topological semimetals

    NASA Astrophysics Data System (ADS)

    Gordon, Jacob S.; Kee, Hae-Young

    2018-05-01

    Topological semimetals are characterized by their intriguing Fermi surfaces (FSs) such as Weyl and Dirac points, or nodal FS, and their associated surface states. Among them, topological crystalline semimetals, in the presence of strong spin-orbit coupling, possess a nodal FS protected by nonsymmorphic lattice symmetries. In particular, it was theoretically proposed that SrIrO3 exhibits a bulk nodal ring due to glide symmetries, as well as flat two-dimensional surface states related to chiral and mirror symmetries. However, due to the semimetallic nature of the bulk, direct observation of these surface states is difficult. Here we study the effect of flat-surface states on phonon modes for SrIrO3 side surfaces. We show that mirror odd optical surface phonon modes are damped at the zone center, as a result of coupling to the surface states with different mirror parities, while even modes are unaffected. This observation could be used to infer their existence, and experimental techniques for such measurements are also discussed.

  15. Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.

    PubMed

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2012-11-05

    LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%.

  16. Thermal properties of Rhea's Poles: Evidence for a Meter-Deep Unconsolidated Subsurface Layer

    NASA Technical Reports Server (NTRS)

    Howett, C. J. A.; Spencer, J. R.; Hurford, T.; Verbiscer, A.; Segura, M.

    2016-01-01

    Cassini's Composite Infrared Spectrometer (CIRS) observed both of Rhea's polar regions during a close (2000 km) flyby on 9th March 2013 during orbit 183. Rhea's southern pole was again observed during a more distant (51,000 km) flyby on 10th February 2015 during orbit 212. The results show Rhea's southern winter pole is one of the coldest places directly observed in our Solar System: surface temperatures of 25.4 +/-7.4 K and 24.7 +/-6.8 K are inferred from orbit 183 and 212 data, respectively. The surface temperature of the northern summer pole inferred from orbit 183 data is warmer: 66.6 +/-0.6 K. Assuming the surface thermophysical properties of the two polar regions are comparable then these temperatures can be considered a summer and winter seasonal temperature constraint for the polar region. Orbit 183 will provide solar longitude ( LS ) coverage at 133 deg and 313 deg for the summer and winter poles respectively, while orbit 212 provides an additional winter temperature constraint at LS 337 deg. Seasonal models with bolometric albedo values between 0.70 and 0.74 and thermal inertia values between 1 and 46 J m( exp -2) K( exp -1) s (exp -1/2) (otherwise known as MKS units) can provide adequate fits to these temperature constraints (assuming the winter temperature is an upper limit). Both these albedo and thermal inertia values agree within the uncertainties with those previously observed on both Rhea's leading and trailing hemispheres. Investigating the seasonal temperature change of Rhea's surface is particularly important, as the seasonal wave is sensitive to deeper surface temperatures ( approximately tens of centimeters to meter depths) than the more commonly reported diurnal wave (typically less than a centimeter), the exact depth difference dependent upon the assumed surface properties. For example, if a surface porosity of 0.5 and thermal inertia of 25 MKS is assumed then the depth of the seasonal thermal wave is 76 cm, which is much deeper than the approximately 0.5 cm probed by diurnal studies of Rhea ( Howett et al., 2010 ). The low thermal inertia derived here implies that Rhea's polar surfaces are highly porous even at great depths. Analysis of a CIRS focal plane 1 (10-600 cm(exp -1 ) stare observation, taken during the orbit 183 encounter between 16:22:33 and 16:23:26 UT centered on 71.7 deg W, 58.7 deg S provides the first analysis of a thermal emissivity spectrum on Rhea. The results show a flat emissivity spectrum with negligible emissivity features. A few possible explanations exist for this flat emissivity spectrum, but the most likely for Rhea is that the surface is both highly porous and composed of small particles ( less than approximately 50 micrometers).

  17. Seismic signature of the Alpine indentation, evidence from the Eastern Alps

    PubMed Central

    Bianchi, I.; Bokelmann, G.

    2014-01-01

    The type of collision between the European and the Adriatic plates in the easternmost Alps is one of the most interesting questions regarding the Alpine evolution. Tectonic processes such as compression, escape and uplift are interconnected and shape this area. We can understand these ongoing processes better, if we look for signs of the deformation within the Earth's deep crust of the region. By collecting records from permanent and temporary seismic networks, we assemble a receiver function dataset, and analyze it with the aim of giving new insights on the structure of the lower crust and of the shallow portion of the upper mantle, which are inaccessible to direct observation. Imaging is accomplished by performing common conversion depth stacks along three profiles that crosscut the Eastern Alpine orogen, and allow isolating features consistently persistent in the area. The study shows a moderately flat Moho underlying a seismically anisotropic middle-lower crust from the Southern Alps to the Austroalpine nappes. The spatial progression of anisotropic axes reflects the orientation of the relative motion and of the stress field detected at the surface. These observations suggest that distributed deformation is due to the effect of the Alpine indentation. In the shallow upper mantle right below the Moho interface, a further anisotropic layer is recognized, extended from the Bohemian Massif to the Northern Calcareous Alps. PMID:26525181

  18. Supersonic aerodynamic characteristics of a proposed Assured Crew Return Capability (ACRC) lifting-body configuration

    NASA Technical Reports Server (NTRS)

    Ware, George M.

    1989-01-01

    An investigation was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers from 1.6 to 4.5. The model had a low-aspect-ratio body with a flat undersurface. A center fin and two outboard fins were mounted on the aft portion of the upper body. The outboard fins were rolled outboard 40 deg from the vertical. Elevon surfaces made up the trailing edges of the outboard fins, and body flaps were located on the upper and lower aft fuselage. The center fin pivoted about its midchord for yaw control. The model was longitudinally stable about the design center-of-gravity position at 54 percent of the body length. The configuration with undeflected longitudinal controls trimmed near 0 deg angle of attack at Mach numbers from 1.6 to 3.0 where lift and lift-drag ratio were negative. Longitudinal trim was near the maximum lift-drag ratio (1.4) at Mach 4.5. The model was directionally stable over Mach number range except at angles of attack around 4 deg at M = 2.5. Pitch control deflection of more than -10 deg with either elevons or body flaps is needed to trim the model to angles of attack at which lift becomes positive. With increased control deflection, the lifting-body configuration should perform the assured crew return mission through the supersonic speed range.

  19. Seismic signature of the Alpine indentation, evidence from the Eastern Alps.

    PubMed

    Bianchi, I; Bokelmann, G

    2014-12-01

    The type of collision between the European and the Adriatic plates in the easternmost Alps is one of the most interesting questions regarding the Alpine evolution. Tectonic processes such as compression, escape and uplift are interconnected and shape this area. We can understand these ongoing processes better, if we look for signs of the deformation within the Earth's deep crust of the region. By collecting records from permanent and temporary seismic networks, we assemble a receiver function dataset, and analyze it with the aim of giving new insights on the structure of the lower crust and of the shallow portion of the upper mantle, which are inaccessible to direct observation. Imaging is accomplished by performing common conversion depth stacks along three profiles that crosscut the Eastern Alpine orogen, and allow isolating features consistently persistent in the area. The study shows a moderately flat Moho underlying a seismically anisotropic middle-lower crust from the Southern Alps to the Austroalpine nappes. The spatial progression of anisotropic axes reflects the orientation of the relative motion and of the stress field detected at the surface. These observations suggest that distributed deformation is due to the effect of the Alpine indentation. In the shallow upper mantle right below the Moho interface, a further anisotropic layer is recognized, extended from the Bohemian Massif to the Northern Calcareous Alps.

  20. Examining the spatial and temporal variation of groundwater inflows to a valley-to-floodplain river using 222Rn, geochemistry and river discharge: the Ovens River, southeast Australia

    NASA Astrophysics Data System (ADS)

    Yu, M. C. L.; Cartwright, I.; Braden, J. L.; de Bree, S. T.

    2013-12-01

    Radon (222Rn) and major ion geochemistry were used to define and quantify the catchment-scale groundwater-surface water interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the Ovens River is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through the permeable aquifers increases the water table. The rising water table, referred to as hydraulic loading, increases the hydraulic head gradient toward the river and hence causes high baseflow to the river during wet (high flow) periods. In the lower catchment, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower but more constant groundwater inflows. The water table in the lower reaches has a shallow gradient, and small changes in river height or groundwater level can result in fluctuating gaining and losing behaviour. The middle catchment represents a transition in river-aquifer interactions from the upper to the lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flowing over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflows are 2 to 17% of total flow with higher inflows occurring during high flow periods. In comparison to 222Rn activities, estimates of groundwater inflows from Cl concentrations are higher by up to 2000% in the upper and middle catchment but lower by 50 to 100% in the lower catchment. The high baseflow estimates using Cl concentrations may be due to the lack of sufficient difference between groundwater and surface water Cl concentrations. Both hydrograph separation and differential flow gauging yield far higher baseflow fluxes than 222Rn activities and Cl concentrations, probably indicating the input of other sources to the river in additional to regional groundwater, such as bank return flows.

  1. Study of the transverse and longitudinal electric field components of surface plasmon polaritons on flat metal film by polarization-resolved Fourier-space microscopy

    NASA Astrophysics Data System (ADS)

    Liu, C.; Ong, H. C.

    2018-01-01

    We have employed a polarization-resolved Fourier-space surface plasmon resonance microscope to determine the electric field component ratio of surface plasmon polaritons (SPPs) propagating on a flat gold film. By using a metallic nanoparticle as a probe to capture the radiation damping of the SPP scattered waves, we find the angular far-field distribution is related to the transverse and longitudinal fields of SPPs. The experiment is supported by analytical and numerical calculations. Our results present a simple but useful approach to probe the behaviors of SPPs such as the transverse spin density as well as the energy density.

  2. Performance Simulation of a Flat-Plate Thermoelectric Module Consisting of Square Truncated Pyramid Elements

    NASA Astrophysics Data System (ADS)

    Oki, Sae; Suzuki, Ryosuke O.

    2017-05-01

    The performance of a flat-plate thermoelectric (TE) module consisting of square truncated pyramid elements is simulated using commercial software and original TE programs. Assuming that the temperatures of both the hot and cold surfaces are constant, the performance can be varied by changing the element shape and element alignment pattern. When the angle between the edge and the base is 85° and the small square surfaces of all n-type element faces are connected to the low-temperature surface, the efficiency becomes the largest among all the 17 examined shapes and patterns. By changing the shape to match the temperature distribution, the performance of the TE module is maximized.

  3. Neuromuscular Control During the Bench Press Movement in an Elite Disabled and Able-Bodied Athlete

    PubMed Central

    Zwierzchowska, Anna; Maszczyk, Adam; Wilk, Michał; Stastny, Petr; Zając, Adam

    2017-01-01

    Abstract The disabled population varies significantly in regard to physical fitness, what is conditioned by the damage to the locomotor system. Recently there has been an increased emphasis on the role of competitive sport in enhancing health and the quality of life of individuals with disability. One of the sport disciplines of Paralympics is the flat bench press. The bench press is one of the most popular resistance exercises used for the upper body in healthy individuals. It is used not only by powerlifters, but also by athletes in most strength-speed oriented sport disciplines. The objective of the study was to compare neuromuscular control for various external loads (from 60 to 100% 1RM) during the flat bench press performed by an elite able-bodied athlete and an athlete with lower limb disability. The research project is a case study of two elite bench press athletes with similar sport results: an able-bodied athlete (M.W., age 34 years, body mass 103 kg, body height 1.72 m, 1RM in the flat bench press 200 kg) and a disabled athlete (M.T., age 31 years, body mass 92 kg, body height 1.70 m, 1RM in the flat bench press 190 kg). The activity was recorded for four muscles: pectoralis major (PM), anterior deltoid (AD), as well as for the lateral and long heads of the triceps brachii (TBlat and TBlong). The T-test revealed statistically significant differences between peak activity of all the considered muscles (AD with p = 0.001; PM with p = 0.001; TBlat with p = 0.0021 and TBlong with p = 0.002) between the 2 athletes. The analysis of peak activity differences of M.W and M.T. in relation to the load revealed statistically significant differences for load changes between: 60 to 100% 1RM (p = 0.007), 70 to 100% 1RM (p = 0.016) and 80 to 100% 1RM (p = 0.032). The flat bench press performed without legs resting firmly on the ground leads to the increased engagement of upper body muscles and to their greater activation. Isolated initial positions can be used to generate greater engagement of muscle groups during the bench press exercise and evoke their higher activation. PMID:29340001

  4. Neuromuscular Control During the Bench Press Movement in an Elite Disabled and Able-Bodied Athlete.

    PubMed

    Gołaś, Artur; Zwierzchowska, Anna; Maszczyk, Adam; Wilk, Michał; Stastny, Petr; Zając, Adam

    2017-12-01

    The disabled population varies significantly in regard to physical fitness, what is conditioned by the damage to the locomotor system. Recently there has been an increased emphasis on the role of competitive sport in enhancing health and the quality of life of individuals with disability. One of the sport disciplines of Paralympics is the flat bench press. The bench press is one of the most popular resistance exercises used for the upper body in healthy individuals. It is used not only by powerlifters, but also by athletes in most strength-speed oriented sport disciplines. The objective of the study was to compare neuromuscular control for various external loads (from 60 to 100% 1RM) during the flat bench press performed by an elite able-bodied athlete and an athlete with lower limb disability. The research project is a case study of two elite bench press athletes with similar sport results: an able-bodied athlete (M.W., age 34 years, body mass 103 kg, body height 1.72 m, 1RM in the flat bench press 200 kg) and a disabled athlete (M.T., age 31 years, body mass 92 kg, body height 1.70 m, 1RM in the flat bench press 190 kg). The activity was recorded for four muscles: pectoralis major (PM), anterior deltoid (AD), as well as for the lateral and long heads of the triceps brachii (TBlat and TBlong). The T-test revealed statistically significant differences between peak activity of all the considered muscles (AD with p = 0.001; PM with p = 0.001; TBlat with p = 0.0021 and TBlong with p = 0.002) between the 2 athletes. The analysis of peak activity differences of M.W and M.T. in relation to the load revealed statistically significant differences for load changes between: 60 to 100% 1RM (p = 0.007), 70 to 100% 1RM (p = 0.016) and 80 to 100% 1RM (p = 0.032). The flat bench press performed without legs resting firmly on the ground leads to the increased engagement of upper body muscles and to their greater activation. Isolated initial positions can be used to generate greater engagement of muscle groups during the bench press exercise and evoke their higher activation.

  5. Land claim and loss of tidal flats in the Yangtze Estuary.

    PubMed

    Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun

    2016-04-01

    Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world's largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km(2), a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.

  6. Land claim and loss of tidal flats in the Yangtze Estuary

    PubMed Central

    Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun

    2016-01-01

    Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km2, a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics. PMID:27035525

  7. Land claim and loss of tidal flats in the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun

    2016-04-01

    Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km2, a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.

  8. Feasibility study of a 270V dc flat cable aircraft electrical power distributed system

    NASA Astrophysics Data System (ADS)

    Musga, M. J.; Rinehart, R. J.

    1982-01-01

    This report documents the efforts of a one man-year feasibility study to evaluate the usage of flat conductors in place of conventional round wires for a 270 volt direct current aircraft power distribution system. This study consisted of designing electrically equivalent power distribution harnesses in flat conductor configurations for a currently operational military aircraft. Harness designs were established for installation in aircraft airframes which are: (1) All metal, or (2) All composite, or (3) a mixture of both. Flat cables have greater surface areas for heat transfer allowing higher current densities and therefore lighter weight conductors, than with round wires. Flat cables are less susceptible to electromagnetic effects. However, these positive factors are partially offset by installation and maintenance difficulties. This study concludes that the extent of these difficulties can be adequately limited with appropriate modification to present installation and maintenance practices. A comparative analysis of the flat and the round conductor power distribution harnesses was made for weight, cost, maintenance and reliability. The knowledge gained from the design and comparative analysis phases was used to generate design criteria for flat power cable harnesses and to identify and prioritize flat cable harness components and associated production tooling which require development.

  9. Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers.

    PubMed

    Papiorek, Sarah; Junker, Robert R; Lunau, Klaus

    2014-01-01

    Flowers bear the function of filters supporting the attraction of pollinators as well as the deterrence of floral antagonists. The effect of epidermal cell shape on the visual display and tactile properties of flowers has been evaluated only recently. In this study we quantitatively measured epidermal cell shape, gloss and spectral reflectance of flowers pollinated by either bees or birds testing three hypotheses: The first two hypotheses imply that bee-pollinated flowers might benefit from rough surfaces on visually-active parts produced by conical epidermal cells, as they may enhance the colour signal of flowers as well as the grip on flowers for bees. In contrast, bird-pollinated flowers might benefit from flat surfaces produced by flat epidermal cells, by avoiding frequent visitation from non-pollinating bees due to a reduced colour signal, as birds do not rely on specific colour parameters while foraging. Moreover, flat petal surfaces in bird-pollinated flowers may hamper grip for bees that do not touch anthers and stigmas while consuming nectar and thus, are considered as nectar thieves. Beside this, the third hypothesis implies that those flower parts which are vulnerable to nectar robbing of bee- as well as bird-pollinated flowers benefit from flat epidermal cells, hampering grip for nectar robbing bees. Our comparative data show in fact that conical epidermal cells are restricted to visually-active parts of bee-pollinated flowers, whereas robbing-sensitive parts of bee-pollinated as well as the entire floral surface of bird-pollinated flowers possess on average flat epidermal cells. However, direct correlations between epidermal cell shape and colour parameters have not been found. Our results together with published experimental studies show that epidermal cell shape as a largely neglected flower trait might act as an important feature in pollinator attraction and avoidance of antagonists, and thus may contribute to the partitioning of flower-visitors.

  10. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-18

    The majority of the dune field in Rabe Crater consists of a sand sheet with dune forms on the surface. The sand sheet is where a thick layer of sand has been concentrated. As continued winds blow across the sand surface it creates dune forms. The depth of the sand sheet prevents excavation to the crater floor and the dune forms all appear connected. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 58024 Latitude: -43.6954 Longitude: 34.8236 Instrument: VIS Captured: 2015-01-12 09:48 https://photojournal.jpl.nasa.gov/catalog/PIA22144

  11. Tectonic evolution of the Mexico flat slab and patterns of intraslab seismicity.

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Sandiford, D.

    2017-12-01

    The Cocos plate slab is horizontal for about 250 km beneath the Guerrero region of southern Mexico. Analogous morphologies can spontaneously develop in subduction models, through the presence of a low-viscosity mantle wedge. The Mw 7.1 Puebla earthquake appears to have ruptured the inboard corner of the Mexican flat slab; likely in close proximity to the mantle wedge corner. In addition to the historical seismic record, the Puebla earthquake provides a valuable constraint through which to assess geodynamic models for flat slab evolution. Slab deformation predicted by the "weak wedge" model is consistent with past seismicity in the both the upper plate and slab. Below the flat section, the slab is anomalously warm relative to its depth; the lack of seismicity in the deeper part of the slab fits the global pattern of temperature-controlled slab seismicity. This has implications for understanding the deeper structure of the slab, including the seismic hazard from source regions downdip of the Puebla rupture (epicenters closer to Mexico City). While historical seismicity provides a deformation pattern consistent with the weak wedge model , the Puebla earthquake is somewhat anomalous. The earthquake source mechanism is consistent with stress orientations in our models, however it maps to a region of relatively low deviatoric stress.

  12. Substrate Topography Induces a Crossover from 2D to 3D Behavior in Fibroblast Migration

    PubMed Central

    Ghibaudo, Marion; Trichet, Léa; Le Digabel, Jimmy; Richert, Alain; Hersen, Pascal; Ladoux, Benoît

    2009-01-01

    Abstract In a three-dimensional environment, cells migrate through complex topographical features. Using microstructured substrates, we investigate the role of substrate topography in cell adhesion and migration. To do so, fibroblasts are plated on chemically identical substrates composed of microfabricated pillars. When the dimensions of the pillars (i.e., the diameter, length, and spacing) are varied, migrating cells encounter alternating flat and rough surfaces that depend on the spacing between the pillars. Consequently, we show that substrate topography affects cell shape and migration by modifying cell-to-substrate interactions. Cells on micropillar substrates exhibit more elongated and branched shapes with fewer actin stress fibers compared with cells on flat surfaces. By analyzing the migration paths in various environments, we observe different mechanisms of cell migration, including a persistent type of migration, that depend on the organization of the topographical features. These responses can be attributed to a spatial reorganization of the actin cytoskeleton due to physical constraints and a preferential formation of focal adhesions on the micropillars, with an increased lifetime compared to that observed on flat surfaces. By changing myosin II activity, we show that actomyosin contractility is essential in the cellular response to micron-scale topographic signals. Finally, the analysis of cell movements at the frontier between flat and micropillar substrates shows that cell transmigration through the micropillar substrates depends on the spacing between the pillars. PMID:19580774

  13. Connecting the surface to the deep: Flat-slab subduction dynamics and the evolution of western Amazonia

    NASA Astrophysics Data System (ADS)

    Eakin, C. M.

    2017-12-01

    Plate tectonics is primarily driven by the subduction of cold dense oceanic slabs. It has yet to be fully understood however how variations in slab morphology and buoyancy influence the surrounding mantle dynamics, and what difference if any is seen at the surface. An excellent natural laboratory to answer such questions is found along the Andean margin where the world's largest flat slab is presently subducting beneath much of Peru. Following the deployment of broadband seismic arrays across the region, mantle flow both beneath and above the flat-slab is investigated using targeted shear-wave splitting techniques that detect seismic anisotropy and the pattern of mantle deformation. The along strike change in slab dip angle and buoyancy content is found to exert a strong control over the surrounding mantle flow field. Modeling of the induced mantle flow, and the dynamic topography at the surface that results, predicts a wave of dynamic subsidence that propagates away from the trench as the flat slab develops. This is found to correlate well with the record of widespread sediment deposition across western Amazonia during the Miocene. A combination of uplift, flexure and dynamic topography during slab flattening is proposed to explain the overall landscape evolution of the region and the subsequent configuration of the transcontinental Amazon drainage system we see today.

  14. Voluntary wheel running improves recovery from a moderate spinal cord injury.

    PubMed

    Engesser-Cesar, Christie; Anderson, Aileen J; Basso, D Michele; Edgerton, V R; Cotman, Carl W

    2005-01-01

    Recently, locomotor training has been shown to improve overground locomotion in patients with spinal cord injury (SCI). This has triggered renewed interest in the role of exercise in rehabilitation after SCI. However, there are no mouse models for voluntary exercise and recovery of function following SCI. Here, we report voluntary wheel running improves recovery from a SCI in mice. C57Bl/10 female mice received a 60-kdyne T9 contusion injury with an IH impactor after 3 weeks of voluntary wheel running or 3 weeks of standard single housing conditions. Following a 7-day recovery period, running mice were returned to their running wheels. Weekly open-field behavior measured locomotor recovery using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale and the Basso Mouse Scale (BMS) locomotor rating scale, a scale recently developed specifically for mice. Initial experiments using standard rung wheels show that wheel running impaired recovery, but subsequent experiments using a modified flat-surface wheel show improved recovery with exercise. By 14 days post SCI, the modified flat-surface running group had significantly higher BBB and BMS scores than the sedentary group. A repeated measures ANOVA shows locomotor recovery of modified flat-surface running mice was significantly improved compared to sedentary animals (p < 0.05). Locomotor assessment using a ladder beam task also shows a significant improvement in the modified flat-surface runners (p < 0.05). Finally, fibronectin staining shows no significant difference in lesion size between the two groups. These data represent the first mouse model showing voluntary exercise improves recovery after SCI.

  15. 32. INTERIOR VIEW TO THE NORTH OF THE FIRST FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. INTERIOR VIEW TO THE NORTH OF THE FIRST FLOOR EAST CORRIDOR AND VIEWING GALLERY TO THE DISASSEMBLY BAY. A VIEWING AND WORK STATION FOR THE EAST SIDE OF THE UPPER LEVEL OF THE DISASSEMBLY BAY IS ON THE WEST SIDE OF THE CORRIDOR. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV

  16. Photo-responsive surface topology in chiral nematic media

    NASA Astrophysics Data System (ADS)

    Liu, Danqing; Bastiaansen, Cees W. M.; Toonder, Jaap. M. J.; Broer, Dirk J.

    2012-03-01

    We report on the design and fabrication of 'smart surfaces' that exhibit dynamic changes in their surface topology in response to exposure to light. The principle is based on anisotropic geometric changes of a liquid crystal network upon a change of the molecular order parameter. The photomechanical property of the coating is induced by incorporating an azobenzene moiety into the liquid crystal network. The responsive surface topology consists of regions with two different types of molecular order: planar chiral-nematic areas and homeotropic. Under flood exposure with 365 nm light the surfaces deform from flat to one with a surface relief. The height of the relief structures is of the order of 1 um corresponding to strain difference of around 20%. Furthermore, we demonstrate surface reliefs can form either convex or concave structures upon exposure to UV light corresponding to the decrease or increase molecular order parameter, respectively, related to the isomeric state of the azobenzene crosslinker. The reversible deformation to the initial flat state occurs rapidly after removing the light source.

  17. Experimental studies of hypersonic shock-wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Lu, Frank K.

    1992-01-01

    Two classes of shock-wave boundary-layer interactions were studied experimentally in a shock tunnel in which a low Reynolds number, turbulent flow at Mach 8 was developed on a cold, flat test surface. The two classes of interactions were: (1) a swept interaction generated by a wedge ('fin') mounted perpendicularly on the flat plate; and (2) a two-dimensional, unseparated interaction induced by a shock impinging near an expansion corner. The swept interaction, with wedge angles of 5-20 degrees, was separated and there was also indication that the strongest interactions prossessed secondary separation zones. The interaction spread out extensively from the inviscid shock location although no indication of quasi-conical symmetry was evident. The surface pressure from the upstream influence to the inviscid shock was relatively low compared to the inviscid downstream value but it rose rapidly past the inviscid shock location. However, the surface pressure did not reach the downstream inviscid value and reasons were proposed for this anomalous behavior compared to strongly separated, supersonic interactions. The second class of interactions involved weak shocks impinging near small expansion corners. As a prelude to studying this interaction, a hypersonic similarity parameter was identified for the pure, expansion corner flow. The expansion corner severely damped out surface pressure fluctuations. When a shock impinged upstream of the corner, no significant changes to the surface pressure were found as compared to the case when the shock impinged on a flat plate. But, when the shock impinged downstream of the corner, a close coupling existed between the two wave systems, unlike the supersonic case. This close coupling modified the upstream influence. Regardless of whether the shock impinged ahead or behind the corner, the downstream region was affected by the close coupling between the shock and the expansion. Not only was the mean pressure distribution modified but the unsteadiness in the surface pressure was reduced compared to the flat-plate case.

  18. Stability analysis of a pressure-solution surface

    NASA Astrophysics Data System (ADS)

    Gal, Doron; Nur, Amos; Aharonov, Einat

    We present a linear stability analysis of a dissolution surface subjected to non-hydrostatic stress. A sinusoidal perturbation is imposed on an initially flat solid/fluid interface, and the consequent changes in elastic strain energy and surface energy are calculated. Our results demonstrate that if the far-field lateral stresses are either greater, or much smaller than the fluid pressure, the perturbed configuration has a lower strain energy than the initial one. For wavelengths greater than a critical wavelength this energy decrease may be large enough to offset the increased surface energy. Under these conditions, the perturbation grows unstably. If these conditions are not met, the surface becomes flat. The growth rate and wavelength of the maximally unstable mode depend on the mechanism of matter transport. We conclude that the instability discussed in this paper may account for the formation of stylolites and other pressure-solution phenomena, such as roughening of grain contacts.

  19. Heat transfer and flow characteristics on a gas turbine shroud.

    PubMed

    Obata, M; Kumada, M; Ijichi, N

    2001-05-01

    The work described in this paper is an experimental investigation of the heat transfer from the main flow to a turbine shroud surface, which may be applicable to ceramic gas turbines. Three kinds of turbine shrouds are considered with a flat surface, a taper surface and a spiral groove surface opposite to the blades in an axial flow turbine of actual turbo-charger. Heat transfer measurements were performed for the experimental conditions of a uniform heat flux or a uniform wall temperature. The effects of the inlet flow angle, rotational speed, and tip clearance on the heat transfer coefficient were clarified under on- and off-design flow conditions. The mean heat transfer coefficient was correlated to the blade Reynolds number and tip clearance, and compared with an experimental correlation and measurements of a flat surface. A comparison was also made for the measurement of static pressure distributions.

  20. Photoresponsive Polymer Surfaces

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Spiros H.; Lygeraki, M. I.; Lakiotaki, K.; Varda, M.; Athanassiou, A.; Farsari, M.; Fotakis, C.

    2007-03-01

    Photochromic spiropyran molecules are utilized as additives for the development of polymer surfaces whose wetting characteristics can reversibly respond to irradiation with laser beams of properly chosen photon energy. The hydrophilicity is enhanced upon UV laser irradiation since the embedded non-polar spiropyran molecules convert to their polar merocyanine isomers, which is reversed upon green laser irradiation. Micropatterning of the photochromic-polymer films using soft lithography or photo-polymerization techniques affects their wettability towards a more hydrophobic or more hydrophilic behavior depending on the dimensions of the patterned features and on the hydrophilicity-hydrophobicity of the flat surface. The light-induced wettability variations of the structured surfaces are enhanced by up to a factor of three as compared to those on the flat surfaces. This enhancement is attributed to the photoinduced reversible volume changes to the imprinted gratings, which additionally contribute to the wettability changes due to the light-induced photochromic interconversions.

  1. The influence of sea level and cyclones on Holocene reef flat development: Middle Island, central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Ryan, E. J.; Smithers, S. G.; Lewis, S. E.; Clark, T. R.; Zhao, J. X.

    2016-09-01

    The geomorphology and chronostratigraphy of the reef flat (including microatoll ages and elevations) were investigated to better understand the long-term development of the reef at Middle Island, inshore central Great Barrier Reef. Eleven cores across the fringing reef captured reef initiation, framework accretion and matrix sediments, allowing a comprehensive appreciation of reef development. Precise uranium-thorium ages obtained from coral skeletons revealed that the reef initiated ~7873 ± 17 years before present (yBP), and most of the reef was emplaced in the following 1000 yr. Average rates of vertical reef accretion ranged between 3.5 and 7.6 mm yr-1. Reef framework was dominated by branching corals ( Acropora and Montipora). An age hiatus of ~5000 yr between 6439 ± 19 and 1617 ± 10 yBP was observed in the core data and attributed to stripping of the reef structure by intense cyclones during the mid- to late-Holocene. Large shingle ridges deposited onshore and basset edges preserved on the reef flat document the influence of cyclones at Middle Island and represent potential sinks for much of the stripped material. Stripping of the upper reef structure around the outer margin of the reef flat by cyclones created accommodation space for a thin (<1.2 m) veneer of reef growth after 1617 ± 10 yBP that grew over the eroded mid-Holocene reef structure. Although limited fetch and open-water exposure might suggest the reef flat at Middle Island is quite protected, our results show that high-energy waves presumably generated by cyclones have significantly influenced both Holocene reef growth and contemporary reef flat geomorphology.

  2. Impingement heat transfer from turbulent air jets to flat plates: A literature survey

    NASA Technical Reports Server (NTRS)

    Livingood, J. N. B.; Hrycak, P.

    1973-01-01

    Heat transfer characteristics of single and multiple turbulent air jets impinging on flat surfaces have been studied by many investigators. Results of many of these studies are summarized. Suggested correlations for use in the design of cooled turbine blades are noted, and areas where further research would be advisable are identified.

  3. The oral health of upper income Americans.

    PubMed

    Bailit, Howard; Lim, Sungwoo; Ismail, Amid

    2016-06-01

    Limited information is available on the oral health status of upper income Americans (>400 percent of the FPL). They constitute 33 percent of the population and account for 53 percent of dental expenditures. Using 1999-2004 NHANES data, we examined differences in the mean number and percentage of decayed and filled permanent surfaces and missing teeth among age and family income groups. For upper income Americans, across age groups, the mean number of untreated decayed surfaces and missing teeth ranged from 0.2 to 0.5 and 2.6 to 3.3, respectively. The mean number of restored surfaces was low in children but extensive in adults. Income disparities increased with increasing age. Overall, upper income Americans have good oral health. Relatively few have untreated decayed surfaces or missing teeth. The reasons for the large number of restored surfaces in upper income adults require further research. Most upper income Americans are in good oral health, especially the 12-18 year cohort. As this group ages, the oral health of upper income adults is expected to improve. © 2015 American Association of Public Health Dentistry.

  4. Flat-slab subduction, whole crustal faulting, and geohazards in Alaska: Targets for Earthscope

    NASA Astrophysics Data System (ADS)

    Gulick, S. P.; Pavlis, T. L.; Bruhn, R. L.; Christeson, G. L.; Freymueller, J. T.; Hansen, R. A.; Koons, P. O.; Pavlis, G. L.; Roeske, S.; Reece, R.; van Avendonk, H. J.; Worthington, L. L.

    2010-12-01

    Crustal structure and evolution illuminated by the Continental Dynamics ST. Elias Erosion and tectonics Project (STEEP) highlights some fundamental questions about active tectonics processes in Alaska including: 1) what are the controls on far field deformation and lithospheric stabilization, 2) do strike slip faults extend through the entire crust and upper mantle and how does this influence mantle flow, and 3) how does the transition from “normal” subduction of the Pacific along the Aleutians to flat slab subduction of the Yakutat Terrane beneath southeast and central Alaska to translation of the Yakutat Terrane past North American in eastern Alaska affect geohazard assessment for the north Pacific? Active and passive seismic studies and geologic fieldwork focusing on the Yakutat Terrane show that the Terrane ranges from 15-35 km thick and is underthrusting the North American plate from the St. Elias Mountains to the Alaska Range (~500 km). Deformation of the upper plate occurs within the offshore Pamplona Zone fold and thrust belt, and onshore throughout the Robinson Mountains. Deformation patterns, structural evolution, and the sedimentary products of orogenesis are fundamentally influenced by feedbacks with glacial erosion. The Yakutat megathrust extends beneath Prince William Sound such that the 1964 Mw 9.2 great earthquake epicenter was on this plate boundary and jumped to the adjacent Aleutian megathrust coseismically; this event illuminates the potential for transitional tectonic systems to enhance geohazards. The northern, southern, and eastern limits of the Yakutat microplate are strike-slip faults that, where imaged, appear to cut the entire crustal section and may allow for crustal extrusion towards the Bering Sea. Yakutat Terrane effects on mantle flow, however, have been suggested to cross these crustal features to allow for far-field deformation in the Yukon, Brooks Range, and Amerasia Basin. From the STEEP results it is clear that the Yakutat Terrane is driving a range of tectonic and surface processes perturbing the Aleutian subduction system at its eastern extent and linking this system with Laramide style subduction and plate boundary strike-slip tectonics farther east. Targeted geodetic and seismic deployments as part of Earthscope could examine all of these features and seek to address fundamental questions about tectonic interactions.

  5. Crustal and Upper Mantle Velocity Structure beneath Northwestern South America revealed by the CARMArray

    NASA Astrophysics Data System (ADS)

    Miao, W.; Cornthwaite, J.; Levander, A.; Niu, F.; Schmitz, M.; Dionicio, V.; Nader-Nieto, M. F.

    2017-12-01

    The Caribbean plate (CAR) is a fragment of the Farallon plate heavily modified by igneous processes that created the Caribbean large igneous province (CLIP) between 110 and 80 Ma.The CAR collided with and initiated subduction beneath northwestern South America plate (SA) at about 60-55 Ma as a narrow flat-slab subduction zone with an accretionary prism offshore, but no volcanic arc. Large scale regional tomography suggests that 1000 km of the CAR has been subducted (Van Benthem et al., 2013, JGR). The flat slab has caused Laramide-style basement uplifts of the Merida Andes, Sierra de la Perija, and Santa Marta ranges with elevations >5 km. The details of subduction geometry of the CAR plate beneath northeastern Colombia and northwestern Venezuela are complicated and remain unclear. The region of slab steepening lies below the triangular Maracaibo block (Bezada et al, 2010, JGR), bounded by major strike slip faults and currently escaping to the north over the CAR. Geodetic data suggests the this region has the potential for a magnitude 8+ earthquake (Bilham and Mencin, 2013, AGU Abstract). To better understand the subduction geometry, we deployed 65 broadband (BB) stations across northeastern Colombia and northwestern Venezuela in April of 2016. The 65 stations interweave with the 32 existing Colombian and Venezuelan BB stations, forming a 2-D array (hereafter referred to as CARMArray) with a station spacing of 35-100 km that covers an area of 600 km by 400 km extending from the Caribbean coast in Colombia to the interior plains of Venezuela. With data from the first year of operation, we have measured the Rayleigh wave phase velocities and Z/H ratios in the period range of 8-40 s using both ambient noise and earthquake data recorded by the CARMArray. We also generated Ps receiver functions from waveform data of teleseismic events recorded by the array. We then jointly inverted the three datasets to construct a 3-D S-wave velocity model beneath the array. We will report the initial results of the inversion and discuss the lateral variations of crustal and upper mantle structure and their potential links with surface geology and regional tectonics.

  6. The subsurface geology of the Florida-Hatteras shelf, slope, and inner Blake Plateau

    USGS Publications Warehouse

    Paull, Charles K.; Dillon, William P.

    1979-01-01

    The structure and stratigraphy of the Florida-Hatteras Slope and inner Blake Plateau was studied by means of 4,780 km of single-channel air gun seismic reflection profiles. Control for the seismic stratigraphy is provided by correlating reflecting units and paleontologically dated stratigraphic units identified in offshore wells and dredge hauls. Many Tertiary unconformities exist, and major regional unconformities at the end of the Oligocene and in the late Paleocene are mapped. Reflecting surfaces believed to represent the tops of the Cretaceous, Paleocene, and Oligocene extend throughout the region. Upper Cretaceous (pre-Maastrichtian) rocks on the southeastern side of the Carolina Platform form a large seaward-facing progradational wedge. The Upper Cretaceous rocks in the Southeast Georgia Embayment, are seismically transparent and on the inner Blake Plateau are cut by numerous small faults, perhaps due to compaction. Within the survey area relatively flat-lying Maastrichtian and Paleocene strata show no evidence that a feature similar to the present Florida-Hatteras Slope existed at the beginning of the Tertiary. Late Paleocene erosion, related to the initiation of the Gulf Stream flow, probably developed this regional unconformity. Eocene and Oligocene sediments landward of the present Gulf Stream form a thick sequence of seaward-dipping progradational beds. A seaward progradational wedge of Miocene to Holocene age covers a regionally traceable unconformity, which separates the Oligocene from the Miocene sediments. Under and seaward of the present Gulf Stream, the Eocene and younger sediment supply was much smaller and the buildup is comparatively insignificant. The difference in accumulation rates in the Eocene and younger sediments, landward and seaward of the Gulf Stream, is responsible for the Florida-Hatteras Slope. Tertiary isopach maps suggest that there is a well developed triangular depocenter under the shelf. The edges of the depocenter correspond with magnetic anomalies and it is suggested that the depocenter is related to differential subsidence during the Tertiary across older crustal structures. The Eocene and Oligocene units contain the aquifer onshore, and the aquifer probably remains in these units offshore. With this assumption the potential aquifer has been identified and traced under the shelf and slope.

  7. Triple bar, high efficiency mechanical sealer

    DOEpatents

    Pak, Donald J.; Hawkins, Samantha A.; Young, John E.

    2013-03-19

    A clamp with a bottom clamp bar that has a planar upper surface is provided. The clamp may also include a top clamp bar connected to the bottom clamp bar, and a pressure distribution bar between the top clamp bar and the bottom clamp bar. The pressure distribution bar may have a planar lower surface in facing relation to the upper surface of the bottom clamp bar. An object is capable of being disposed in a clamping region between the upper surface and the lower surface. The width of the planar lower surface may be less than the width of the upper surface within the clamping region. Also, the pressure distribution bar may be capable of being urged away from the top clamp bar and towards the bottom clamp bar.

  8. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-20

    This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 52231 Latitude: -43.6665 Longitude: 34.2627 Instrument: VIS Captured: 2013-09-22 14:29 https://photojournal.jpl.nasa.gov/catalog/PIA22146

  9. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-22

    This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 67144 Latitude: -43.5512 Longitude: 34.5951 Instrument: VIS Captured: 2017-02-01 12:57 https://photojournal.jpl.nasa.gov/catalog/PIA22148

  10. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-19

    This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 51157 Latitude: -43.6787 Longitude: 34.3985 Instrument: VIS Captured: 2013-06-26 05:33 https://photojournal.jpl.nasa.gov/catalog/PIA22145

  11. Measurement of the residual stress in hot rolled strip using strain gauge method

    NASA Astrophysics Data System (ADS)

    Kumar, Lokendra; Majumdar, Shrabani; Sahu, Raj Kumar

    2017-07-01

    Measurement of the surface residual stress in a flat hot rolled steel strip using strain gauge method is considered in this paper. Residual stresses arise in the flat strips when the shear cut and laser cut is applied. Bending, twisting, central buckled and edge waviness is the common defects occur during the cutting and uncoiling process. These defects arise due to the non-uniform elastic-plastic deformation, phase transformation occurring during cooling and coiling-uncoiling process. The residual stress analysis is very important because with early detection it is possible to prevent an object from failure. The goal of this paper is to measure the surface residual stress in flat hot rolled strip using strain gauge method. The residual stress was measured in the head and tail end of hot rolled strip considering as a critical part of the strip.

  12. Aerodynamic characteristics of a Sparrow 3 missile model in the flow field of a generalized parent body at Mach 2.86

    NASA Technical Reports Server (NTRS)

    Stallings, R. L., Jr.

    1984-01-01

    Longitudinal aerodynamic characteristics of a Sparrow 3 wing control missile model were measured through a range of separation distances relative to a flat plate surface that represented the parent-body configuration. Measurements were obtained with and without two dimensional circular arc protuberances attached to the flat plate surface. The tests were conducted at a Mach number of 2.86 and a Reynolds number per meter of 6.56 million. The behavior of these longitudinal characteristics with varying separation distance in the flow field created by the flat plate and protuberance was generally as would be expected on the basis of flow field boundaries determined from the second order approximation of Friedrich. In general, varying roll angle from 0 deg to 45 deg caused no significant effect on the store separation characteristics.

  13. Accurate stratospheric particle size distributions from a flat plate collection surface

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Mackinnon, I. D. R.

    1985-01-01

    Flat plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere. It is found that the ratio of terrestrial to extraterrestrial material and the nature of the material collected may vary significantly over short time scales. These fluctuations may be related to massive injections of volcanic ash, emissions from solid fuel rockets, or variations in the micrometeoroid flux. The variations in particle number density can be of great importance to the earth's atmospheric radiation balance, and, therefore, its climate. With the objective to assess the number density of solid particles in the stratosphere, an examination has been conducted of all particles exceeding 1 micron in average diameter for a representative suite of particles obtained from a single flat plate collection surface. Attention is given to solid particle size distributions in the stratosphere, and the origin of important stratospheric particle types.

  14. Zirconium doped TiO{sub 2} thin films: A promising dielectric layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Arvind; Mondal, Sandip, E-mail: sandipmondal@physics.iisc.ernet.in; Rao, K. S. R. Koteswara

    2016-05-06

    In the present work, we have fabricated the zirconium doped TiO{sub 2} thin (ZTO) films from a facile spin – coating method. The addition of Zirconium in TiO{sub 2} offers conduction band offset to Si and consequently decreased the leakage current density by approximately two orders as compared to pure TiO{sub 2} thin (TO) films. The ZTO thin film shows a high dielectric constant 27 with a very low leakage current density ∼10{sup −8} A/cm{sup 2}. The oxide capacitate, flat band voltage and change in flat band voltage are 172 pF, -1.19 V and 54 mV. The AFM analysis confirmed the compactmore » and pore free flat surface. The RMS surface roughness is found to be 1.5 Å. The ellipsometry analysis also verified the fact with a high refractive index 2.21.« less

  15. The information content of high-frequency seismograms and the near-surface geologic structure of "hard rock" recording sites

    USGS Publications Warehouse

    Cranswick, E.

    1988-01-01

    Due to hardware developments in the last decade, the high-frequency end of the frequency band of seismic waves analyzed for source mechanisms has been extended into the audio-frequency range (>20 Hz). In principle, the short wavelengths corresponding to these frequencies can provide information about the details of seismic sources, but in fact, much of the "signal" is the site response of the nearsurface. Several examples of waveform data recorded at "hard rock" sites, which are generally assumed to have a "flat" transfer function, are presented to demonstrate the severe signal distortions, including fmax, produced by near-surface structures. Analysis of the geology of a number of sites indicates that the overall attenuation of high-frequency (>1 Hz) seismic waves is controlled by the whole-path-Q between source and receiver but the presence of distinct fmax site resonance peaks is controlled by the nature of the surface layer and the underlying near-surface structure. Models of vertical decoupling of the surface and nearsurface and horizontal decoupling of adjacent sites on hard rock outcrops are proposed and their behaviour is compared to the observations of hard rock site response. The upper bound to the frequency band of the seismic waves that contain significant source information which can be deconvolved from a site response or an array response is discussed in terms of fmax and the correlation of waveform distortion with the outcrop-scale geologic structure of hard rock sites. It is concluded that although the velocity structures of hard rock sites, unlike those of alluvium sites, allow some audio-frequency seismic energy to propagate to the surface, the resulting signals are a highly distorted, limited subset of the source spectra. ?? 1988 Birkha??user Verlag.

  16. Universal phase diagrams with superconducting domes for electronic flat bands

    NASA Astrophysics Data System (ADS)

    Löthman, Tomas; Black-Schaffer, Annica M.

    2017-08-01

    Condensed matter systems with flat bands close to the Fermi level generally exhibit, due to their very large density of states, extraordinarily high critical ordering temperatures of symmetry-breaking orders, such as superconductivity and magnetism. Here we show that the critical temperatures follow one of two universal curves with doping away from a flat band depending on the ordering channel, which completely dictates both the general order competition and the phase diagram. Notably, we find that orders in the particle-particle channel (superconducting orders) survive decisively farther than orders in the particle-hole channel (magnetic or charge orders) because the channels have fundamentally different polarizabilities. Thus, even if a magnetic or charge order initially dominates, superconducting domes are still likely to exist on the flanks of flat bands. We apply these general results to both the topological surface flat bands of rhombohedral ABC-stacked graphite and to the Van Hove singularity of graphene.

  17. Colloids with high-definition surface structures

    PubMed Central

    Chen, Hsien-Yeh; Rouillard, Jean-Marie; Gulari, Erdogan; Lahann, Joerg

    2007-01-01

    Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of ≈107 to 108 particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors. PMID:17592149

  18. The perception of 3-D shape from shadows cast onto curved surfaces.

    PubMed

    Norman, J Farley; Lee, Young-lim; Phillips, Flip; Norman, Hideko F; Jennings, L RaShae; McBride, T Ryan

    2009-05-01

    In a natural environment, cast shadows abound. Objects cast shadows both upon themselves and upon background surfaces. Previous research on the perception of 3-D shape from cast shadows has only examined the informativeness of shadows cast upon flat background surfaces. In outdoor environments, however, background surfaces often possess significant curvature (large rocks, trees, hills, etc.), and this background curvature distorts the shape of cast shadows. The purpose of this study was to determine the extent to which observers can "discount" the distorting effects of curved background surfaces. In our experiments, observers viewed deforming or static shadows of naturally shaped objects, which were cast upon flat and curved background surfaces. The results showed that the discrimination of 3-D object shape from cast shadows was generally invariant over the distortions produced by hemispherical background surfaces. The observers often had difficulty, however, in identifying the shadows cast onto saddle-shaped background surfaces. The variations in curvature which occur in different directions on saddle-shaped background surfaces cause shadow distortions that lead to difficulties in object recognition and discrimination.

  19. Build-up and surface dose measurements on phantoms using micro-MOSFET in 6 and 10 MV x-ray beams and comparisons with Monte Carlo calculations.

    PubMed

    Xiang, Hong F; Song, Jun S; Chin, David W H; Cormack, Robert A; Tishler, Roy B; Makrigiorgos, G Mike; Court, Laurence E; Chin, Lee M

    2007-04-01

    This work is intended to investigate the application and accuracy of micro-MOSFET for superficial dose measurement under clinically used MV x-ray beams. Dose response of micro-MOSFET in the build-up region and on surface under MV x-ray beams were measured and compared to Monte Carlo calculations. First, percentage-depth-doses were measured with micro-MOSFET under 6 and 10 MV beams of normal incidence onto a flat solid water phantom. Micro-MOSFET data were compared with the measurements from a parallel plate ionization chamber and Monte Carlo dose calculation in the build-up region. Then, percentage-depth-doses were measured for oblique beams at 0 degrees-80 degrees onto the flat solid water phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm below the surface. Measurements were compared to Monte Carlo calculations under these settings. Finally, measurements were performed with micro-MOSFET embedded in the first 1 mm layer of bolus placed on a flat phantom and a curved phantom of semi-cylindrical shape. Results were compared to superficial dose calculated from Monte Carlo for a 2 mm thin layer that extends from the surface to a depth of 2 mm. Results were (1) Comparison of measurements with MC calculation in the build-up region showed that micro-MOSFET has a water-equivalence thickness (WET) of 0.87 mm for 6 MV beam and 0.99 mm for 10 MV beam from the flat side, and a WET of 0.72 mm for 6 MV beam and 0.76 mm for 10 MV beam from the epoxy side. (2) For normal beam incidences, percentage depth dose agree within 3%-5% among micro-MOSFET measurements, parallel-plate ionization chamber measurements, and MC calculations. (3) For oblique incidence on the flat phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm, measurements were consistent with MC calculations within a typical uncertainty of 3%-5%. (4) For oblique incidence on the flat phantom and a curved-surface phantom, measurements with micro-MOSFET placed at 1.0 mm agrees with the MC calculation within 6%, including uncertainties of micro-MOSFET measurements of 2%-3% (1 standard deviation), MOSFET angular dependence of 3.0%-3.5%, and 1%-2% systematical error due to phantom setup geometry asymmetry. Micro-MOSFET can be used for skin dose measurements in 6 and 10 MV beams with an estimated accuracy of +/- 6%.

  20. Diffractive optical elements on non-flat substrates using electron beam lithography

    NASA Technical Reports Server (NTRS)

    Maker, Paul D. (Inventor); Muller, Richard E. (Inventor); Wilson, Daniel W. (Inventor)

    2002-01-01

    The present disclosure describes a technique for creating diffraction gratings on curved surfaces with electron beam lithography. The curved surface can act as an optical element to produce flat and aberration-free images in imaging spectrometers. In addition, the fabrication technique can modify the power structure of the grating orders so that there is more energy in the first order than for a typical grating. The inventors noticed that by using electron-beam lithography techniques, a variety of convex gratings that are well-suited to the requirements of imaging spectrometers can be manufactured.

  1. Study of a wide-aperture combined deformable mirror for high-power pulsed phosphate glass lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samarkin, V V; Aleksandrov, A G; Romanov, P N

    2015-12-31

    A deformable mirror with the size of 410 × 468 mm controlled by bimorph piezoceramic plates and multilayer piezo stacks is developed. The response functions of individual actuators and the measurements of the flatness of the deformable mirror surface are presented. The study of mirrors with an interferometer and a wavefront sensor has shown that it is possible to improve the surface flatness down to a residual roughness of 0.033 μm (RMS). The possibility of correction of beam aberrations in an ultra-high-power laser using the created bimorph mirror is demonstrated. (letters)

  2. Investigation of the Influence of Shapes-Texture on Surface Deformation of UHMWPE as a Bearing Material in Static Normal Load and Rolling Contact

    NASA Astrophysics Data System (ADS)

    Lestari, W. D.; Ismail, R.; Jamari, J.; Bayuseno, A. P.

    2017-05-01

    Surface texture is a common method for improving wear properties of a tribo-pair of soft and hard bearing material. The reduction of wear rates on the contacting surface material is becoming important issues. In the present study, analysis of the contact pressure on the flat surface of UHMWPE (Ultra High Molecular Weight Polyethylene) under the static- and rolling motion with the surface of steel ball used the 3D finite element method (FEM) (the ABAQUS software version 6.12). Five shaped-texture models (square, circle, ellipse, triangle, and chevron) were presented on the flat surface for analysis. The normal load of 17, 30 and 50 N was deliberately set-up for static and rolling contact analysis. The contact pressure was determined to predict the wear behavior of the shaped-texture on the flat surface of UHMWPE. The results have shown that the static normal load yielded the lowest von-Mises stress distribution on the shaped-texture of the ellipse for all values applied a load, while the square shape experienced the highest stress distribution. Under rolling contact, however, the increasing load yielded the increasing von Mises stress distribution for the texture with a triangle shape. Moreover, the texture shapes for circle, ellipse, and chevron respectively, may undergo the lowest stress distribution for all load. The wear calculation provided that the circle and square shape may undergo the highest wear rates. Obviously, the surface texture of circle, ellipse, and chevron may experience the lowest wear rates and is potential for use in the surface engineering of bearing materials.

  3. Underwater refraction-polarization patterns of skylight perceived by aquatic animals through Snell's window of the flat water surface.

    PubMed

    Horváth, G; Varjú, D

    1995-06-01

    The grass shrimp (Palaemonetes vulgaris) orients itself by means of the polarization pattern of the sky visible through Snell's window of the water surface. The celestial polarization pattern viewed from water is distorted and modified because of refraction and repolarization of skylight at the air-water interface. This work provides a quantitative account of the repolarization of skylight transmitted through a flat water surface. The degree and direction of linear polarization, the transmissivity and the shape of the refraction-polarization oval are calculated at the air-water interface as functions of the polarization characteristics and the incident angle of partially linearly polarized incoming light. Two-dimensional patterns of linear polarization ellipses and of the degree and direction of polarization of skylight are presented for different zenith distances of the sun. The corresponding underwater refraction-polarization patterns are computed. Transmissivity patterns of a flat water surface are calculated for unpolarized light of an overcast sky and for partially polarized light of clear skies as a function of the zenith distance of the sun. The role of these refraction-polarization patterns in orientation and polarization vision of the grass shrimp (P. vulgaris) and rainbow trout (Oncorhyncus mykiss) is reviewed. The effects of cloud cover, surface waves and water turbidity on the refraction-polarization patterns are briefly discussed.

  4. The Effect of Boundary Support and Reflector Dimensions on Inflatable Parabolic Antenna Performance

    NASA Technical Reports Server (NTRS)

    Coleman, Michael J.; Baginski, Frank; Romanofsky, Robert R.

    2011-01-01

    For parabolic antennas with sufficient surface accuracy, more power can be radiated with a larger aperture size. This paper explores the performance of antennas of various size and reflector depth. The particular focus is on a large inflatable elastic antenna reflector that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. The surface accuracy of the antenna is measured by an RMS calculation, while the reflector phase error component of the efficiency is determined by computing the power density at boresight. In the analysis, the calculation of antenna efficiency is not based on the Ruze Equation. Hence, no assumption regarding the distribution of the reflector surface distortions is presumed. The reflector surface is modeled as an isotropic elastic membrane using a linear stress-strain constitutive relation. Three types of antenna reflector construction are considered: one molded to an ideal parabolic form and two different flat panel design patterns. The flat panel surfaces are constructed by seaming together panels in a manner that the desired parabolic shape is approximately attained after pressurization. Numerical solutions of the model problem are calculated under a variety of conditions in order to estimate the accuracy and efficiency of these antenna systems. In the case of the flat panel constructions, several different cutting patterns are analyzed in order to determine an optimal cutting strategy.

  5. Comparison of High and Low Density Airborne LIDAR Data for Forest Road Quality Assessment

    NASA Astrophysics Data System (ADS)

    Kiss, K.; Malinen, J.; Tokola, T.

    2016-06-01

    Good quality forest roads are important for forest management. Airborne laser scanning data can help create automatized road quality detection, thus avoiding field visits. Two different pulse density datasets have been used to assess road quality: high-density airborne laser scanning data from Kiihtelysvaara and low-density data from Tuusniemi, Finland. The field inventory mainly focused on the surface wear condition, structural condition, flatness, road side vegetation and drying of the road. Observations were divided into poor, satisfactory and good categories based on the current Finnish quality standards used for forest roads. Digital Elevation Models were derived from the laser point cloud, and indices were calculated to determine road quality. The calculated indices assessed the topographic differences on the road surface and road sides. The topographic position index works well in flat terrain only, while the standardized elevation index described the road surface better if the differences are bigger. Both indices require at least a 1 metre resolution. High-density data is necessary for analysis of the road surface, and the indices relate mostly to the surface wear and flatness. The classification was more precise (31-92%) than on low-density data (25-40%). However, ditch detection and classification can be carried out using the sparse dataset as well (with a success rate of 69%). The use of airborne laser scanning data can provide quality information on forest roads.

  6. Fabrication of ф 160 mm convex hyperbolic mirror for remote sensing instrument

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Hsiang; Yu, Zong-Ru; Ho, Cheng-Fang; Hsu, Wei-Yao; Chen, Fong-Zhi

    2012-10-01

    In this study, efficient polishing processes with inspection procedures for a large convex hyperbolic mirror of Cassegrain optical system are presented. The polishing process combines the techniques of conventional lapping and CNC polishing. We apply the conventional spherical lapping process to quickly remove the sub-surface damage (SSD) layer caused by grinding process and to get the accurate radius of best-fit sphere (BFS) of aspheric surface with fine surface texture simultaneously. Thus the removed material for aspherization process can be minimized and the polishing time for SSD removal can also be reduced substantially. The inspection procedure was carried out by using phase shift interferometer with CGH and stitching technique. To acquire the real surface form error of each sub aperture, the wavefront errors of the reference flat and CGH flat due to gravity effect of the vertical setup are calibrated in advance. Subsequently, we stitch 10 calibrated sub-aperture surface form errors to establish the whole irregularity of the mirror in 160 mm diameter for correction polishing. The final result of the In this study, efficient polishing processes with inspection procedures for a large convex hyperbolic mirror of Cassegrain optical system are presented. The polishing process combines the techniques of conventional lapping and CNC polishing. We apply the conventional spherical lapping process to quickly remove the sub-surface damage (SSD) layer caused by grinding process and to get the accurate radius of best-fit sphere (BFS) of aspheric surface with fine surface texture simultaneously. Thus the removed material for aspherization process can be minimized and the polishing time for SSD removal can also be reduced substantially. The inspection procedure was carried out by using phase shift interferometer with CGH and stitching technique. To acquire the real surface form error of each sub aperture, the wavefront errors of the reference flat and CGH flat due to gravity effect of the vertical setup are calibrated in advance. Subsequently, we stitch 10 calibrated sub-aperture surface form errors to establish the whole irregularity of the mirror in 160 mm diameter for correction polishing. The final result of the Fabrication of ф160 mm Convex Hyperbolic Mirror for Remote Sensing Instrument160 mm convex hyperbolic mirror is 0.15 μm PV and 17.9 nm RMS.160 mm convex hyperbolic mirror is 0.15 μm PV and 17.9 nm RMS.

  7. A curved edge diffraction-utilized displacement sensor for spindle metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, ChaBum, E-mail: clee@tntech.edu; Zhao, Rui; Jeon, Seongkyul

    This paper presents a new dimensional metrological sensing principle for a curved surface based on curved edge diffraction. Spindle error measurement technology utilizes a cylindrical or spherical target artifact attached to the spindle with non-contact sensors, typically a capacitive sensor (CS) or an eddy current sensor, pointed at the artifact. However, these sensors are designed for flat surface measurement. Therefore, measuring a target with a curved surface causes error. This is due to electric fields behaving differently between a flat and curved surface than between two flat surfaces. In this study, a laser is positioned incident to the cylindrical surfacemore » of the spindle, and a photodetector collects the total field produced by the diffraction around the target surface. The proposed sensor was compared with a CS within a range of 500 μm. The discrepancy between the proposed sensor and CS was 0.017% of the full range. Its sensing performance showed a resolution of 14 nm and a drift of less than 10 nm for 7 min of operation. This sensor was also used to measure dynamic characteristics of the spindle system (natural frequency 181.8 Hz, damping ratio 0.042) and spindle runout (22.0 μm at 2000 rpm). The combined standard uncertainty was estimated as 85.9 nm under current experiment conditions. It is anticipated that this measurement technique allows for in situ health monitoring of a precision spindle system in an accurate, convenient, and low cost manner.« less

  8. Turbulence between two inline hemispherical obstacles under wave-current interactions

    NASA Astrophysics Data System (ADS)

    Barman, K.; Debnath, K.; Mazumder, B. S.

    2016-02-01

    This paper reports an experimental investigation of open channel turbulent flow between two inline surface mounted hemispherical obstacles in tandem arrangement. A series of experiments are performed under combined wave-current interaction with seven relative spacing L/h, where L is center to center spacing distance and h is the obstacle height for Reynolds number Re = 5.88 × 104. The observations are particularly focused on the changes induced in the mean velocity components, turbulence intensities and Reynolds shear stress due to superposition of surface waves on the ambient flow, and are compared to that of flat-surface and a single hemisphere. The paper also investigates the dominant turbulent bursting events that contribute to the Reynolds shear stress for different relative depth influenced by hemispheres. It is observed that the contributions to the total shear stress due to ejection and sweep are dominant at the wake region for single and double hemisphere near the bed, while towards the surface outward and inward interactions show significant effect for wave-current interactions which is largely different from that over the flat-surface case. Spectral analysis of the observed velocity fluctuations reveals the existence of two distinct power law scaling regime near the bed. At high frequency, an inertial sub-range of turbulence with -5/3 Kolmogorov scaling is observed for the flat-surface. The spectral slope is calculated to show the shifting of standard Kolmogorov scale for both only current and wave-induced tests.

  9. Patchwork Coating of Fragmented Ultra-Thin Films and Their Biomedical Applications in Burn Therapy and Antithrombotic Coating

    PubMed Central

    Okamura, Yosuke; Nagase, Yu; Takeoka, Shinji

    2015-01-01

    We have proposed free-standing centimeter-sized ultra-thin films (nanosheets) for biomedical applications. Such nanosheets exhibit unique properties such as transparency, flexibility, and good adhesiveness. However, they are only easily adhered to broad and flat surfaces due to their dimensions. To this end, we recently proposed an innovative nanomaterial: the nanosheets fragmented into submillimeter-size pieces. Intriguingly, such fragmented nanosheets could be adhered to uneven and irregular surfaces in addition to flat surfaces in a spread-out “patchwork” manner. We herein review the fabrication procedure and characterization of fragmented nanosheets composed of biodegradable polyesters and thermostable bio-friendly polymers, and their biomedical applications in burn therapy and antithrombotic coating using a “patchwork coating”. PMID:28793663

  10. Patchwork Coating of Fragmented Ultra-Thin Films and Their Biomedical Applications in Burn Therapy and Antithrombotic Coating.

    PubMed

    Okamura, Yosuke; Nagase, Yu; Takeoka, Shinji

    2015-11-11

    We have proposed free-standing centimeter-sized ultra-thin films (nanosheets) for biomedical applications. Such nanosheets exhibit unique properties such as transparency, flexibility, and good adhesiveness. However, they are only easily adhered to broad and flat surfaces due to their dimensions. To this end, we recently proposed an innovative nanomaterial: the nanosheets fragmented into submillimeter-size pieces. Intriguingly, such fragmented nanosheets could be adhered to uneven and irregular surfaces in addition to flat surfaces in a spread-out "patchwork" manner. We herein review the fabrication procedure and characterization of fragmented nanosheets composed of biodegradable polyesters and thermostable bio-friendly polymers, and their biomedical applications in burn therapy and antithrombotic coating using a "patchwork coating".

  11. Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection

    PubMed Central

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-01-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators. PMID:23985717

  12. Force sum rules for stepped surfaces of jellium

    NASA Astrophysics Data System (ADS)

    Farjam, Mani

    2007-03-01

    The Budd-Vannimenus theorem for jellium surface is generalized for stepped surfaces of jellium. Our sum rules show that the average value of the electrostatic potential over the stepped jellium surface equals the value of the potential at the corresponding flat jellium surface. Several sum rules are tested with numerical results obtained within the Thomas-Fermi model of stepped surfaces.

  13. The GALEX/S4G Surface Brightness and Color Profiles Catalog. I. Surface Photometry and Color Gradients of Galaxies

    NASA Astrophysics Data System (ADS)

    Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Muñoz-Mateos, Juan Carlos; Boissier, Samuel; Sheth, Kartik; Zaritsky, Dennis; Peletier, Reynier F.; Knapen, Johan H.; Gallego, Jesús

    2018-02-01

    We present new spatially resolved surface photometry in the far-ultraviolet (FUV) and near-ultraviolet (NUV) from images obtained by the Galaxy Evolution Explorer (GALEX) and IRAC1 (3.6 μm) photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G). We analyze the radial surface brightness profiles μ FUV, μ NUV, and μ [3.6], as well as the radial profiles of (FUV ‑ NUV), (NUV ‑ [3.6]), and (FUV ‑ [3.6]) colors in 1931 nearby galaxies (z < 0.01). The analysis of the 3.6 μm surface brightness profiles also allows us to separate the bulge and disk components in a quasi-automatic way and to compare their light and color distribution with those predicted by the chemo-spectrophotometric models for the evolution of galaxy disks of Boissier & Prantzos. The exponential disk component is best isolated by setting an inner radial cutoff and an upper surface brightness limit in stellar mass surface density. The best-fitting models to the measured scale length and central surface brightness values yield distributions of spin and circular velocity within a factor of two of those obtained via direct kinematic measurements. We find that at a surface brightness fainter than μ [3.6] = 20.89 mag arcsec‑2, or below 3 × 108 M ⊙ kpc‑2 in stellar mass surface density, the average specific star formation rate (sSFR) for star-forming and quiescent galaxies remains relatively flat with radius. However, a large fraction of GALEX Green Valley galaxies show a radial decrease in sSFR. This behavior suggests that an outside-in damping mechanism, possibly related to environmental effects, could be testimony of an early evolution of galaxies from the blue sequence of star-forming galaxies toward the red sequence of quiescent galaxies.

  14. Global boundary flattening transforms for acoustic propagation under rough sea surfaces.

    PubMed

    Oba, Roger M

    2010-07-01

    This paper introduces a conformal transform of an acoustic domain under a one-dimensional, rough sea surface onto a domain with a flat top. This non-perturbative transform can include many hundreds of wavelengths of the surface variation. The resulting two-dimensional, flat-topped domain allows direct application of any existing, acoustic propagation model of the Helmholtz or wave equation using transformed sound speeds. Such a transform-model combination applies where the surface particle velocity is much slower than sound speed, such that the boundary motion can be neglected. Once the acoustic field is computed, the bijective (one-to-one and onto) mapping permits the field interpolation in terms of the original coordinates. The Bergstrom method for inverse Riemann maps determines the transform by iterated solution of an integral equation for a surface matching term. Rough sea surface forward scatter test cases provide verification of the method using a particular parabolic equation model of the Helmholtz equation.

  15. Three-dimensional flat shell-to-shell coupling: numerical challenges

    NASA Astrophysics Data System (ADS)

    Guo, Kuo; Haikal, Ghadir

    2017-11-01

    The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love) plate and thick (Reissner-Mindlin) plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

  16. Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled-release matrix tablets.

    PubMed

    Reynolds, Thomas D; Mitchell, Shawn A; Balwinski, Karen M

    2002-04-01

    The purpose of this study was to investigate the influence of tablet surface area/volume (SA/Vol) on drug release from controlled-release matrix tablets containing hydroxypropylmethylcellulose (HPMC). Soluble drugs (promethazine HCl, diphenhydramine HCl, and propranolol HCl) were utilized in this study to give predominantly diffusion-controlled release. Drug release from HPMC matrix tablets with similar values of SA/Vol was comparable within the same tablet shape (i.e., flat-faced round tablets) and among different shapes (i.e., oval, round concave, flat-faced beveled-edge, and flat-faced round tablets). Tablets having the same surface area but different SA/Vol values did not result in similar drug release; tablets with larger SA/Vol values hadfaster release profiles. Utility of SA/Vol to affect drug release was demonstrated by changing drug doses, and altering tablet shape to adjust SA/Vol. When SA/Vol was held constant, similar release profiles were obtained with f2 metric values greater than 70. Thus, surface area/volume is one of the key variables in controlling drug release from HPMC matrix tablets. Proper use of this variable has practical application by formulators who may need to duplicate drug release profiles from tablets of different sizes and different shapes.

  17. Supported plasma sputtering apparatus for high deposition rate over large area

    DOEpatents

    Moss, Ronald W.; McClanahan, Jr., Edwin D.; Laegreid, Nils

    1977-01-01

    A supported plasma sputtering apparatus is described having shaped electrical fields in the electron discharge region between the cathode and anode and the sputter region between the target and substrate while such regions are free of any externally applied magnetic field to provide a high deposition rate which is substantially uniform over a wide area. Plasma shaping electrodes separate from the anode and target shape the electrical fields in the electron discharge region and the sputter region to provide a high density plasma. The anode surrounds the target to cause substantially uniform sputtering over a large target area. In one embodiment the anode is in the form of an annular ring surrounding a flat target surface, such anode being provided with a ribbed upper surface which shields portions of the anode from exposure to sputtered material to maintain the electron discharge for a long stable operation. Several other embodiments accomplish the same result by using different anodes which either shield the anode from sputtered material, remove the sputtered coating on the anode by heating, or simultaneously mix sputtered metal from the auxiliary target with sputtered insulator from the main target so the resultant coating is conductive. A radio frequency potential alone or together with a D.C. potential, may be applied to the target for a greater sputtering rate.

  18. Stereo 3-D Vision in Teaching Physics

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2012-01-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…

  19. Laminar Horse Shoe Vortex for a Triangular Cylinder Flat Plate Juncture

    NASA Astrophysics Data System (ADS)

    Younis, Muhammad Yamin; Zhang, H.; Hu, B.; Sohail, Muhammad Amjad; Muhammad, Zaka

    2011-09-01

    Juncture Flows are 3-D flows which occur when fluid, flowing on a flat surface encounters an obstacle on its way. The flow separates from the surface due to the adverse pressure gradient produced by the obstacle and rolls up to form a vortical structure known as "Horse Shoe Vortex". Studies and research is underway to completely identify and understand different hidden features of the horse shoe vortex. In the present study the structure of horse shoe vortex for a Triangular cylinder flat plate juncture is visualized using particle image velocimetry (PIV). The diameter Reynolds number experimented is within the range of 2 000 ≤ ReA ≤ 8 000. The flow characteristics are studied for the horse shoe vortex and the flow is categorized into different flow regimes. (1) Steady or static vortex system, (2) periodic amalgamating vortex system, and (3) periodic break away vortex system. The range for different vortex systems is also calculated with shedding frequency for the periodic unsteady vortex system. Most importantly the range of Reynolds number for which the above mentioned vortex systems exist is much higher for Sharp leading edge cylinder than for blunt (circular and Elliptical) and flat (Square) leading edge cylinders studied earlier.

  20. Experimental investigation of a jet inclined to a subsonic crossflow

    NASA Technical Reports Server (NTRS)

    Aoyagi, K.; Snyder, P. K.

    1981-01-01

    Experimental investigations have been conducted to determine the surface-pressure distribution on a flat plate and a body of revolution with a jet issuing at a large angle to the free stream and to obtain a better understanding of the entrainment mechanism close to the jet exit by quantitative mean velocity surveys. Pressure data were obtained with a flat plate model at several nozzle injection angles using a single round nozzle. For the body of revolution model, data were obtained with a round jet exhausting perpendicular to the crossflow and with two round jets spaced two to six nozzle diameters apart. Mean velocity measurements were obtained with laser velocimeter surveys near the base of a round jet exhausting normal to a flat plate. For the flat plate model, the pressure field shifts downstream and the entrainment effect decreases with decreasing nozzle injection angle. For the body of revolution model with two jets, the jet-induced effect of the rear jet on the surface-pressure distribution was less than the front jet. The flow regions close to the jet are defined by the laser surveys, but further mean velocity surveys are required to understand the entrainment mechanism.

  1. Highly Anisotropic Adhesive Film Made from Upside-Down, Flat, and Uniform Vertically Aligned CNTs.

    PubMed

    Hong, Sanghyun; Lundstrom, Troy; Ghosh, Ranajay; Abdi, Hamed; Hao, Ji; Jeoung, Sun Kyoung; Su, Paul; Suhr, Jonghwan; Vaziri, Ashkan; Jalili, Nader; Jung, Yung Joon

    2016-12-14

    We have created a multifunctional dry adhesive film with transferred vertically aligned carbon nanotubes (VA-CNTs). This unique VA-CNT film was fabricated by a multistep transfer process, converting the flat and uniform bottom of VA-CNTs grown on atomically flat silicon wafer substrates into the top surface of an adhesive layer. Unlike as-grown VA-CNTs, which have a nonuniform surface, randomly entangled CNT arrays, and a weak interface between the CNTs and substrates, this transferred VA-CNT film shows an extremely high coefficient of static friction (COF) of up to 60 and a shear adhesion force 30 times higher (12 N/cm 2 ) than that of the as-grown VA-CNTs under a very small preloading of 0.2 N/cm 2 . Moreover, a near-zero normal adhesion force was observed with 20 mN/cm 2 preloading and a maximum 100-μm displacement in a piezo scanner, demonstrating ideal properties for an artificial gecko foot. Using this unique structural feature and anisotropic adhesion properties, we also demonstrate effective removal and assembly of nanoparticles into organized micrometer-scale circular and line patterns by a single brushing of this flat and uniform VA-CNT film.

  2. 40 CFR 761.267 - Sampling non-porous surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling non-porous surfaces. 761.267... PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.267 Sampling non-porous surfaces. (a) Sample large, nearly flat, non-porous surfaces by dividing...

  3. 40 CFR 761.267 - Sampling non-porous surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling non-porous surfaces. 761.267... PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.267 Sampling non-porous surfaces. (a) Sample large, nearly flat, non-porous surfaces by dividing...

  4. Machine Shop. Module 7: Grinders. Instructor's Guide.

    ERIC Educational Resources Information Center

    Nobles, Jack; Gage, Mel

    This document consists of materials for an eight-unit course on the following topics: (1) grinder safety and types of grinders; (2) surface grinder accessories and equipment maintenance; (3) surface grinder preparation and set-up; (4) surface grinding flat and angular surfaces; (5) cylindrical grinding; (6) tool and cutter safety; (7) tool and…

  5. Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface

    NASA Astrophysics Data System (ADS)

    Lee, Siwoo; Jo, Kukhyun; Keum, Hee-sung; Chae, Sangmin; Kim, Yonghyeon; Choi, Jiyeon; Lee, Hyun Hwi; Kim, Hyo Jung

    2018-04-01

    We found that micro-cells surrounded by nanowalls can be formed by a maskless wet-etching process on Si (100) surfaces possessing Laser Induced Periodic Surface Structure (LIPSS) by femtosecond laser irradiation. The LIPSS process could produce periodic one-dimensional micron scale ripples on a Si surface, which could be developed into micro-cells by a subsequent etching process. The solution etching conditions strongly affected both the micro-cell and nanowall shapes such as the height and the thickness of nanowalls. The tetramethylammonium hydroxide solution created thin nanowalls and the resulting micro-cells with a well-flattened bottom while the KOH solution formed thick walls and incomplete micro-cells. The bottoms of micro-cells surrounded by the nanowalls were considerably flat with a 3.10 nm surface roughness. A pentacene layer was deposited on the micro-cells of a Si surface to evaluate the film properties by grazing incidence wide angle x-ray scattering measurements. The pentacene film on the micro-cell Si surface showed a strong film phase, which was comparable to the film phase grown on the atomically flat Si surface.

  6. 1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator.

    PubMed

    Liang, Jinyang; Kohn, Rudolph N; Becker, Michael F; Heinzen, Daniel J

    2009-04-01

    We demonstrate a digital micromirror device (DMD)-based optical system that converts a spatially noisy quasi-Gaussian to an eighth-order super-Lorentzian flat-top beam. We use an error-diffusion algorithm to design the binary pattern for the Texas Instruments DLP device. Following the DMD, a telescope with a pinhole low-pass filters the beam and scales it to the desired sized image. Experimental measurements show a 1% root-mean-square (RMS) flatness over a diameter of 0.28 mm in the center of the flat-top beam and better than 1.5% RMS flatness over its entire 1.43 mm diameter. The power conversion efficiency is 37%. We develop an alignment technique to ensure that the DMD pattern is correctly positioned on the incident beam. An interferometric measurement of the DMD surface flatness shows that phase uniformity is maintained in the output beam. Our approach is highly flexible and is able to produce not only flat-top beams with different parameters, but also any slowly varying target beam shape. It can be used to generate the homogeneous optical lattice required for Bose-Einstein condensate cold atom experiments.

  7. Acoustic Evaluation of Sanders Associates ACODAC Sensors

    DTIC Science & Technology

    1983-03-01

    this securing technique because of its susceptibility to in-band resonances. Although this unit was primarily submitted for sensor flow- noise evaluation...of this sensor and prepare it for the required flow- noise evaluation by replacing the defective geophones in the cosine channel. For completeness...channels displayed essentially flat response with a low frequency roll off starting at about 20 Hz and an upper resonance at 3300 Hz. The sensitivity

  8. Bäcklund transformations for harmonic maps in two independent variables

    NASA Astrophysics Data System (ADS)

    Başkal, S.; Eriş, A.

    1994-06-01

    Bäcklund transformations for harmonic maps are described as the action of the structure group on harmonic one-forms or as gauge transformations of the soliton connection constructed via embedding the configuration manifold into a flat space. As an illustration, Bäcklund transformations for maps from M 2 to the Poincaré upper half-plane and for maps determining stationary vacuum gravitational fields with axial symmetry are obtained.

  9. Ureteroscopic biopsy of upper tract urothelial carcinoma: comparison of basket and forceps.

    PubMed

    Kleinmann, Nir; Healy, Kelly A; Hubosky, Scott G; Margel, David; Bibbo, Marluce; Bagley, Demetrius H

    2013-12-01

    To compare two different biopsy devices for upper tract urothelial carcinoma (UTUC) and evaluate the pathologic result obtained by these devices. From January 2008 to December 2010, 414 ureteroscopies were performed and 504 biopsies were taken for evaluation of UTUC. Two biopsy devices were compared: 2.4F stainless steel flat wire basket and 3F cup biopsy forceps. The effect of the biopsy device on obtaining an adequate pathologic specimen was evaluated using univariate and multivariate binary logistic regression analysis. We also investigated whether tumor grade determination was affected by the biopsy device among patients with a diagnostic biopsy. Diagnosis was successful in 63% and 94% in the forceps and basket groups, respectively (P < 0.0001). Among biopsies with a definite diagnosis of UTUC, specific grade was determined in 80% and 93% in the forceps and basket groups, respectively (P = 0.033). In subgroup analysis of tumors larger than 10 mm in diameter, diagnosis was obtained in 80% and 94% in the forceps and basket groups, respectively (P = 0.037). Cytologic evaluation was found to increase diagnostic rates. The stainless steel flat wire basket was shown to be superior to the 3F cup biopsy forceps in terms of obtaining tissue diagnosis and providing specific grade.

  10. Tomographic imaging of the effects of Peruvian flat slab subduction on the Nazca slab and surrounding mantle under central and southern Peru

    NASA Astrophysics Data System (ADS)

    Scire, A. C.; Zandt, G.; Beck, S. L.; Bishop, B.; Biryol, C. B.; Wagner, L. S.; Long, M. D.; Minaya, E.; Tavera, H.

    2014-12-01

    The modern central Peruvian Andes are dominated by a laterally extensive region of flat slab subduction. The Peruvian flat slab extends for ~1500 km along the strike of the Andes, correlating with the subduction of the Nazca Ridge in the south and the theorized Inca Plateau in the north. We have used data from the CAUGHT and PULSE experiments for finite frequency teleseismic P- and S-wave tomography to image the Nazca slab in the upper mantle below 95 km depth under central Peru between 10°S and 18°S as well as the surrounding mantle. Since the slab inboard of the subducting Nazca Ridge is mostly aseismic, our results provide important constraints on the geometry of the subducting Nazca slab in this region. Our images of the Nazca slab suggest that steepening of the slab inboard of the subducting Nazca Ridge locally occurs ~100 km further inland than was indicated in previous studies. The region where we have imaged the steepening of the Nazca slab inboard of the Nazca Ridge correlates with the location of the Fitzcarrald Arch, a long wavelength upper plate topographic feature which has been suggested to be a consequence of ridge subduction. When the slab steepens inboard of the flat slab region, it does so at a very steep (~70°) angle. The transition from the Peruvian flat slab to the more normally dipping slab south of 16°S below Bolivia is characterized by an abrupt bending of the slab anomaly in the mantle in response to the shift from flat to normal subduction. The slab anomaly appears to be intact south of the Nazca Ridge with no evidence for tearing of the slab in response to the abrupt change in slab dip. A potential tear in the slab is inferred from an observed offset in the slab anomaly north of the Nazca Ridge extending subparallel to the ridge axis between 130 and 300 km depth. A high amplitude (-5-6%) slow S-wave velocity anomaly is observed below the projection of the Nazca Ridge. This anomaly appears to be laterally confined to the mantle directly below projection of the Nazca Ridge but descends to ~300 km depth in the mantle. This sub-slab slow anomaly may correlate with vertical mantle flow induced by movement of material through the inferred tear in the slab north of the Nazca Ridge or alternately may represent a long-lived feature of the sub-slab mantle possibly associated with the development of the Nazca Ridge at the Easter Island hot spot.

  11. Process for manufacturing hollow fused-silica insulator cylinder

    DOEpatents

    Sampayan, Stephen E.; Krogh, Michael L.; Davis, Steven C.; Decker, Derek E.; Rosenblum, Ben Z.; Sanders, David M.; Elizondo-Decanini, Juan M.

    2001-01-01

    A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.

  12. Efficiency of plasma actuator ionization in shock wave modification in a rarefied supersonic flow over a flat plate

    NASA Astrophysics Data System (ADS)

    Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis

    2014-12-01

    This paper describes experimental and numerical investigations focused on the shock wave modification, induced by a dc glow discharge, of a Mach 2 flow under rarefied regime. The model under investigation is a flat plate equipped with a plasma actuator composed of two electrodes. The glow discharge is generated by applying a negative potential to the upstream electrode, enabling the creation of a weakly ionized plasma. The natural flow (i.e. without the plasma) exhibits a thick laminar boundary layer and a shock wave with a hyperbolic shape. Images of the flow obtained with an ICCD camera revealed that the plasma discharge induces an increase in the shock wave angle. Thermal effects (volumetric, and at the surface) and plasma effects (ionization, and thermal non-equilibrium) are the most relevant processes explaining the observed modifications. The effect induced by the heating of the flat plate surface is studied experimentally by replacing the upstream electrode by a heating element, and numerically by modifying the thermal boundary condition of the model surface. The results show that for a similar temperature distribution over the plate surface, modifications induced by the heating element are lower than those produced by the plasma. This difference shows that other effects than purely thermal effects are involved with the plasma actuator. Measurements of the electron density with a Langmuir probe highlight the fact that the ionization degree plays an important role into the modification of the flow. The gas properties, especially the isentropic exponent, are indeed modified by the plasma above the actuator and upstream the flat plate. This leads to a local modification of the flow conditions, inducing an increase in the shock wave angle.

  13. Imaging prototypical aromatic molecules on insulating surfaces: a review

    NASA Astrophysics Data System (ADS)

    Hoffmann-Vogel, R.

    2018-01-01

    Insulating substrates allow for in-plane contacted molecular electronics devices where the molecule is in contact with the insulator. For the development of such devices it is important to understand the interaction of molecules with insulating surfaces. As substrates, ionic crystals such as KBr, KCl, NaCl and CaF2 are discussed. The surface energies of these substrates are small and as a consequence intrinsic properties of the molecules, such as molecule–molecule interaction, become more important relative to interactions with the substrates. As prototypical molecules, three variants of graphene-related molecules are used, pentacene, C60 and PTCDA. Pentacene is a good candidate for molecular electronics applications due to its high charge carrier mobility. It shows mainly an upright standing growth mode and the morphology of the islands is strongly influenced by dewetting. A new second flat-lying phase of the molecule has been observed. Studying the local work function using the Kelvin method reveals details such as line defects in the center of islands. The local work function differences between the upright-standing and flat-lying phase can only be explained by charge transfer that is unusual on ionic crystalline surfaces. C60 nucleation and growth is explained by loosely bound molecules at kink sites as nucleation sites. The stability of C60 islands as a function of magic numbers is investigated. Peculiar island shapes are obtained from unusual dewetting processes already at work during growth, where molecules ‘climb’ to the second molecular layer. PTCDA is a prototypical semiconducting molecule with strong quadrupole moment. It grows in the form of elongated islands where the top and the facets can be molecularly resolved. In this way the precise molecular arrangement in the islands is revealed.

  14. Funnel for localizing biological cell placement and arrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soscia, David; Benett, William J.; Mukerjee, Erik V.

    2018-03-06

    The present disclosure relates to a funnel apparatus for channeling cells onto a plurality of distinct, closely spaced regions of a seeding surface. The funnel apparatus has a body portion having an upper surface and a lower surface. The body portion forms a plurality of flow paths, at least one of which is shaped to have a decreasing cross-sectional area from the upper surface to the lower surface. The flow paths are formed at the lower surface to enable cells deposited into the flow paths at the upper surface of the funnel apparatus to be channeled into a plurality ofmore » distinct, closely spaced regions on the seeding surface positioned adjacent the lower surface.« less

  15. Paleoseismology of a possible fault scarp in Wenas Valley, central Washington

    USGS Publications Warehouse

    Sherrod, Brian L.; Barnett, Elizabeth A.; Knepprath, Nichole; Foit, Franklin F.

    2013-01-01

    In October 2009, two trenches excavated across an 11-kilometer-long scarp at Wenas Valley in central Washington exposed evidence for late Quaternary deformation. Lidar imagery of the Wenas Valley illuminated the west-northwest-trending, 2- to 8-meter-high scarp as it bisected alluvial fans developed at the mouths of canyons along the south side of Umtanum Ridge. The alignment of the scarp and aeromagnetic lineaments suggested that the scarp may be a product of and controlled by the same tectonic structure that produced the magnetic lineaments. Several large landslides mapped in the area demonstrated the potential for large mass-wasting events in the area. In order to test whether the scarp was the result of an earthquake-generated surface rupture or a landslide, trenches were excavated at Hessler Flats and McCabe Place. The profiles of bedrock and soil stratigraphy that underlie the scarp in each trench were photographed, mapped, and described, and a sequence of depositional and deformational events established for each trench. The McCabe Place trench exposed a sequence of volcaniclastic deposits overlain by soils and alluvial deposits separated by three unconformities. Six normal faults and two possible reverse faults deformed the exposed strata. Crosscutting relations indicated that up to five earthquakes occurred on a blind reverse fault, and a microprobe analysis of lapilli suggested that the earliest faulting occurred after 47,000 years before present. The Hessler Flat trench exposure revealed weathered bedrock that abuts loess and colluvium deposits and is overlain by soil, an upper sequence of loess, and colluvium. The latter two units bury a distinctive paloesol.

  16. Review of Skin Friction Measurements Including Recent High-Reynolds Number Results from NASA Langley NTF

    NASA Technical Reports Server (NTRS)

    Watson, Ralph D.; Hall, Robert M.; Anders, John B.

    2000-01-01

    This paper reviews flat plate skin friction data from early correlations of drag on plates in water to measurements in the cryogenic environment of The NASA Langley National Transonic Facility (NTF) in late 1996. The flat plate (zero pressure gradient with negligible surface curvature) incompressible skin friction at high Reynolds numbers is emphasized in this paper, due to its importance in assessing the accuracy of measurements, and as being important to the aerodynamics of large scale vehicles. A correlation of zero pressure gradient skin friction data minimizing extraneous effects between tests is often used as the first step in the calculation of skin friction in complex flows. Early data compiled by Schoenherr for a range of momentum thickness Reynolds numbers, R(sub Theta) from 860 to 370,000 contained large scatter, but has proved surprisingly accurate in its correlated form. Subsequent measurements in wind tunnels under more carefully controlled conditions have provided inputs to this database, usually to a maximum R(sub Theta) of about 40,000. Data on a large axisymmetric model in the NASA Langley National Transonic Facility extends the upper limit in incompressible R(sub Theta) to 619,800 using the van Driest transformation. Previous data, test techniques, and error sources ar discussed, and the NTF data will be discussed in detail. The NTF Preston tube and Clauser inferred data accuracy is estimated to be within -2 percent of a power-law curve fit, and falls above the Spalding theory by 1 percent at R(sub Theta) of about 600,000.

  17. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes.

    PubMed

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-08-26

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them.

  18. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    PubMed Central

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-01-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546

  19. Titanium based flat heat pipes for computer chip cooling

    NASA Astrophysics Data System (ADS)

    Soni, Gaurav; Ding, Changsong; Sigurdson, Marin; Bozorgi, Payam; Piorek, Brian; MacDonald, Noel; Meinhart, Carl

    2008-11-01

    We are developing a highly conductive flat heat pipe (called Thermal Ground Plane or TGP) for cooling computer chips. Conventional heat pipes have circular cross sections and thus can't make good contact with chip surface. The flatness of our TGP will enable conformal contact with the chip surface and thus enhance cooling efficiency. Another limiting factor in conventional heat pipes is the capillary flow of the working fluid through a wick structure. In order to overcome this limitation we have created a highly porous wick structure on a flat titanium substrate by using micro fabrication technology. We first etch titanium to create very tall micro pillars with a diameter of 5 μm, a height of 40 μm and a pitch of 10 μm. We then grow a very fine nano structured titania (NST) hairs on all surfaces of the pillars by oxidation in H202. In this way we achieve a wick structure which utilizes multiple length scales to yield high performance wicking of water. It's capable of wicking water at an average velocity of 1 cm/s over a distance of several cm. A titanium cavity is laser-welded onto the wicking substrate and a small quantity of water is hermetically sealed inside the cavity to achieve a TGP. The thermal conductivity of our preliminary TGP was measured to be 350 W/m-K, but has the potential to be several orders of magnitude higher.

  20. Clarification of Institutional Controls at the Rocky Flats Site Central Operable Unit and Implementation of the Soil Disturbance Review Plan - 13053

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiSalvo, Rick; Surovchak, Scott; Spreng, Carl

    2013-07-01

    Cleanup and closure of DOE's Rocky Flats Site in Colorado, which was placed on the CERCLA National Priority List in 1989, was accomplished under CERCLA, RCRA, and the Colorado Hazardous Waste Act (CHWA). The physical cleanup work was completed in late 2005 and all buildings and other structures that composed the Rocky Flats industrial complex were removed from the surface, but remnants remain in the subsurface. Other remaining features include two landfills closed in place with covers, four groundwater treatment systems, and surface water and groundwater monitoring systems. Under the 2006 Corrective Action Decision/Record of Decision for Rocky Flats Plantmore » (US DOE) Peripheral Operable Unit and the Central Operable Unit (CAD/ROD), the response actions selected for the Central Operable Unit (OU) are institutional controls (ICs), physical controls, and continued monitoring and maintenance. The objectives of these ICs were to prevent unacceptable exposure to remaining subsurface contamination and to prevent contaminants from mobilizing to surface water and to prevent interfering with the proper functioning of the engineered components of the remedy. An amendment in 2011 of the 2006 CAD/ROD clarified the ICs to prevent misinterpretation that would prohibit work to manage and maintain the Central OU property. The 2011 amendment incorporated a protocol for a Soil Disturbance Review Plan for work subject to ICs that requires approval from the State and public notification by DOE prior to conducting approved soil-disturbing work. (authors)« less

  1. Effect of specific surface microstructures on substrate endothelialisation and thrombogenicity: Importance for stent design.

    PubMed

    Lutter, Christoph; Nothhaft, Matthias; Rzany, Alexander; Garlichs, Christoph D; Cicha, Iwona

    2015-01-01

    In coronary artery disease, highly stenosed arteries are frequently treated by stent implantation, which thereafter necessitates a dual-antiplatelet therapy (DAPT) in order to prevent stent-thrombosis. We hypothesized that specific patterns of microstructures on stents can accelerate endothelialisation thereby reducing their thrombogenicity and the DAPT duration. Differently designed, 2-5 μm high elevations or hollows were lithographically etched on silicon plates, subsequently coated with silicon carbide. Smooth silicon plates and bare metal substrates were used as controls. To assess attachment and growth of human umbilical vein endothelial cells under static or flow conditions, actin cytoskeleton was visualised with green phalloidin. Endothelial migration was assessed in a modified barrier assay. To investigate surface thrombogenicity, platelets were incubated on the structured surfaces in static and flow conditions, and visualised with fluorescein-conjugated P-selectin antibody. Images were taken with incident-light fluorescent microscope for non-transparent objects. Compared to smooth surface, flat cubic elevations (5 μm edge length) improved endothelial cell attachment and growth under static and dynamic conditions, whereas smaller, spiky structures (2 μm edge length) had a negative influence on endothelialisation. Endothelial cell migration was fastest on flat cubic elevations, hollows, and smooth surfaces, whereas spiky structures and bare metal had a negative effect on endothelial migration. Thrombogenicity assays under static and flow conditions showed that platelet adhesion was reduced on the flat elevations and the smooth surface, as compared to the spiky structures, the hollow design and the bare metal substrates. Surface microstructures strongly influence endothelialisation of substrates. Designing stents with surface topography which accelerates endothelialisation and reduces thrombogenicity may be of clinical benefit by improving the safety profile of coronary interventions.

  2. Lubrication and wear mechanisms of polyimide-bonded graphite fluoride films subjected to low contact stress

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1980-01-01

    The tribological properties of polyimide-bonded graphite fluoride films were studied with a pin-on-disk friction apparatus. A 440 C HT stainless steel rider with a 0.95 millimeter diameter flat area was slid against the film in order to achieve a light, closely controlled contact stress. A 1 kilogram load was applied to this flat to give a projected contact stress of 14 megapascals. Two stages of lubrication were operating. In the first stage, the film supported the load and the lubricating mechanism appeared to be the shear of a thin surface layer of the film between the rider and the bulk of the film. The second stage began after the original film was worn away, and the lubricating mechanism appeared to be the shear of very thin lubricant layers between the flat area on the rider and flat plateaus generated on the sandblasted asperities of the metallic substrate. The major difference between the lubricating mechanisms of the hemispherical and flat riders was that the flat wore through the film much more slowly than did the hemisphere.

  3. Effect of SiC particle impact nano-texturing on tribological performance of 304L stainless steel

    NASA Astrophysics Data System (ADS)

    Lorenzo-Martin, C.; Ajayi, O. O.

    2014-10-01

    Topographical features on sliding contact surfaces are known to have a significant impact on friction and wear. Indeed, various forms of surface texturing are being used to improve and/or control the tribological performance of sliding surfaces. In this paper, the effect of random surface texturing produced by a mechanical impact process is studied for friction and wear behavior of 304L stainless steel (SS) under dry and marginal oil lubrication. The surface processing was applied to 304L SS flat specimens and tested under reciprocating ball-on-flat sliding contact, with a 440C stainless steel ball. Under dry contact, the impact textured surface exhibited two order of magnitude lower wear than the isotropically ground surface of the same material. After 1500 s of sliding and wearing through of the processed surface layer following occurring of scuffing, the impact textured surface underwent a transition in wear and friction behavior. Under marginal oil lubrication, however, no such transition occurred, and the wear for the impact textured surface was consistently two orders of magnitude lower than that for the ground material. Mechanisms for the tribological performance enhancement are proposed.

  4. Ankle and hip postural strategies defined by joint torques

    NASA Technical Reports Server (NTRS)

    Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control patterns into a continuum of postural corrections.

  5. Installation of surface-mounted flat-conductor cable

    NASA Technical Reports Server (NTRS)

    Carden, J. R.

    1976-01-01

    Guide describes step-by-step process for installation of interior surface-mounted FCC used in commerical and residential buildings. Photographs illustrate how cable-riser and baseboard covers are installed as well as receptacle assembly and receptacle-cover replacement.

  6. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments

    NASA Astrophysics Data System (ADS)

    Baker, Brendon M.; Trappmann, Britta; Wang, William Y.; Sakar, Mahmut S.; Kim, Iris L.; Shenoy, Vivek B.; Burdick, Jason A.; Chen, Christopher S.

    2015-12-01

    To investigate how cells sense stiffness in settings structurally similar to native extracellular matrices, we designed a synthetic fibrous material with tunable mechanics and user-defined architecture. In contrast to flat hydrogel surfaces, these fibrous materials recapitulated cell-matrix interactions observed with collagen matrices including stellate cell morphologies, cell-mediated realignment of fibres, and bulk contraction of the material. Increasing the stiffness of flat hydrogel surfaces induced mesenchymal stem cell spreading and proliferation; however, increasing fibre stiffness instead suppressed spreading and proliferation for certain network architectures. Lower fibre stiffness permitted active cellular forces to recruit nearby fibres, dynamically increasing ligand density at the cell surface and promoting the formation of focal adhesions and related signalling. These studies demonstrate a departure from the well-described relationship between material stiffness and spreading established with hydrogel surfaces, and introduce fibre recruitment as a previously undescribed mechanism by which cells probe and respond to mechanics in fibrillar matrices.

  7. Effect of Ultraviolet Light Irradiation on Structure and Electrochemical Properties of Iron Surface

    NASA Astrophysics Data System (ADS)

    Nanjo, Hiroshi; Deng, Huihua; Oconer, Irmin S.; Ishikawa, Ikuo; Suzuki, Toshishige M.

    2005-01-01

    The effect of ultraviolet light (UV) irradiation (254 nm, 0.8 mW/cm2) on air-formed oxide films and passivated films on iron was investigated by electrochemical methods and scanning tunneling microscopy (STM), in particular with respect to surface micro/nanostructures and the surface protective property. An as-deposited film appeared uniformly flat after UV irradiation for 2-4 h, which is associated with a decrease in current density. UV irradiation for 1-4 h assisted N-dodecylhydroxamic acid (DHA) molecules to strongly bond to the air-formed oxide film. UV irradiation for 1 h led to the formation of a flat terrace of atomic resolution on a surface passivated at 800 mV for 15 min. However, it was difficult to observe a terrace wider than 3 nm on the passive film irradiated for 4 h.

  8. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Dong, Shuwen; Cawood, Peter A.; Zhao, Guochun; Johnston, Stephen T.; Zhang, Yueqiao; Xin, Yujia

    2018-05-01

    In the Mesozoic, South China was situated along the convergent margin between the Asian and Pacific plates, providing an excellent laboratory to understand the interactions between deformation, sedimentation and magmatism in a retroarc environment. The crustal architecture of northwest South China is displayed along the ∼600-km-long SINOPROBE deep seismic reflection profiles and reveals from east to west: (1) highly folded and truncated reflectors in the upper crust of the Yangtze Fold Zone, which correspond to thin- and thick-skinned thrust systems, and document large-scale intraplate structural imbrication and shortening; (2) a crustal-scale flat-ramp-flat structure, termed the Main Yangtze decollement, which forms a weak, viscous layer to accommodate strain decoupling and material transport in the thin- and thick-skinned systems; and (3) nearly flat-lying reflectors in the Sichuan Basin, which support interpretation of the basin as a weakly deformed depocentre. The Yangtze Fold Zone and the Sichuan Basin represent a retro-arc foreland basin system that is >800 km away from the continental-margin magmatic arc. We suggest that tectonic processes across the arc and retro-arc systems, including arc magma flare-up, basin sedimentation, retroarc thrust propagation, lithosphere underthrusting, root foundering, and extension-related magmatism were interrelated and governed mass transfer. Age data and geological relations link the tectonic processes to evolving geodynamics of the subducting Paleo-Pacific plate.

  9. Flow of ultra-hot Precambrian orogens and the making of crustal layering in Phanerozoic orogenic plateaux

    NASA Astrophysics Data System (ADS)

    Chardon, Dominique; Gapais, Denis; Cagnard, Florence; Jayananda, Mudlappa; Peucat, Jean-Jacques

    2010-05-01

    Reassessment of structural / metamorphic properties of ultra-hot Precambrian orogens and shortening of model weak lithospheres support a syn-convergence flow mode on an orogen scale, with a large component of horizontal finite elongation parallel to the orogen. This orogen-scale flow mode combines distributed shortening, gravity-driven flow, lateral escape, and three-dimensional mass redistribution of buried supracrustal rocks, magmas and migmatites in a thick fluid lower crust. This combination preserves a nearly flat surface and Moho. The upper crust maintains a nearly constant thickness by real-time erosion and near-field clastic sedimentation and by ablation at its base by burial of pop-downs into the lower crust. Steady state regime of these orogens is allowed by activation of an attachment layer that maintains kinematic compatibility between the thin and dominantly plastic upper crust and a thick "water bed" of lower crust. Because very thin lithospheres of orogenic plateaux and Precambrian hot orogens have similar thermomechanical structures, bulk orogenic flow comparable to that governing Precambrian hot orogens should actually operate through today's orogenic plateaux as well. Thus, syn-convergence flow fabrics documented on exposed crustal sections of ancient hot orogens that have not undergone collapse may be used to infer the nature of flow fabrics that are imaged by geophysical techniques beneath orogenic plateaux. We provide a detailed geological perspective on syn-convergence crustal flow in relation to magma emplacement and partial melting on a wide oblique crustal transition of the Neoarchean ultra-hot orogen of Southern India. We document sub-horizontal bulk longitudinal flow of the partially molten lower crust over a protracted period of 60 Ma. Bulk flow results from the interplay of (1) pervasive longitudinal transtensional flow of the partially molten crust, (2) longitudinal coaxial flow on flat fabrics in early plutons, (3) distributed, orogen-normal shortening, (4) emplacement of late prolate shape plutons in the direction of flow, and (5) late, conjugate strike-slip shearing. The macroscopic- to regional scale tectonoplutonic pattern produced by longitudinal flow forms a flat composite anisotropy throughout the lower crust. In the light of GPS data, these results suggest that bulk longitudinal flow accounts for observed deformation of the Tibetan plateau as well as for its seismic structure. This flow mode may be preferred to lateral, east-directed channel flow because it combines both lateral gravity-driven thinning and distributed, orogen-normal shortening of the crust. These results further suggest that lower crustal seismic reflectivity in orogenic belts may not necessarily images fabrics produced by extensional tectonics, as commonly thought, but crustal layering produced by syn-convergence lateral flow.

  10. History and evolution of Subduction in the Precambrium

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2013-12-01

    Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g. Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic subduction is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further subduction history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction changes to shallow underplating and buckling. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere starts to delaminate and drip-off. But the subduction style is not only a function of upper-mantle temperature but also strongly depends on the thickness of the subducting plate. If thinner present day oceanic plates are used in the Precambrian models, no shallow underplating is observed but steep subduction can be found up to an upper-mantle temperature of 200 K above present day values. Increasing oceanic plate thickness introduces a transition from steep to flat subduction at lower temperatures of around 150 K. Thicker oceanic plates in the Precambrium also agree with results from earlier studies, e.g. Abbott (1994). References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370. Subduction depends strongly on upper-mantle temperature. (a) Modern subduction with present day temperature gradients in upper-mantle and lithosphere. (b) Increase of temperature by 100 K at the lithosphere-asthenosphere boundary (LAB) leads to melting and drip-off of the of the slab-tip. (c) A temperature increase of 200 K leads to buckling of the subducting slab and Rayleigh-Taylor instabilities not only at the slab-tip but the whole LAB. At this stage subduction is no longer possible as the slab melts or breaks before it can be subducted into the mantle.

  11. 2009 Insensitive Munitions and Energetic Materials Technology Symposium

    DTIC Science & Technology

    2009-05-14

    Multilayer Structure 1D STIMULI Flat end rod Round end rod Flat cookie -cutter Spherical fragment Simple shaped charge jet Real shaped charge jet Thin plate... cookie -cutter Spherical fragment Simple shaped charge jet Real shaped charge jet Thin plate Constant Temperature Rising Temperature Multilayer...Propellants  Plasticizer mixed into the Propellant - Dough NO SURFACE COATING Formulation Impetus (J/g) Flame Temp (K) Mw (g/mole) A

  12. Composition and functional diversity of microbial community across a mangrove-inhabited mudflat as revealed by 16S rDNA gene sequences.

    PubMed

    Zhang, Xiaoying; Hu, Bill X; Ren, Hejun; Zhang, Jin

    2018-08-15

    The gradient distribution of microbial communities has been detected in profiles along many natural environments. In a mangrove seedlings inhabited mudflat, the microbes drive a variety of biogeochemical processes and are associated with a dramatically changed environment across the tidal zones of mudflat. A better understanding of microbial composition, diversity and associated functional profiles in relation to physicochemical influences could provide more insights into the ecological functions of microbes in a coastal mangrove ecosystem. In this study, the variation of microbial community along successive tidal flats inhabited by mangrove seedlings were characterized based on the 16S rDNA gene sequences, and then the factors that shape the bacterial and archaeal communities were determined. Results showed that the tidal cycles strongly influence the distribution of bacterial and archaeal communities. Dissimilarity and gradient distribution of microbial communities were found among high tidal flat, mid-low tidal flat and seawater. Discrepancies were also as well observed from the surface to subsurface layers specifically in the high tidal flat. For example, Alphaproteobacteria displayed an increasing trend from low tidal to high tidal flat and vice versa for Deltaproteobacteria; Cyanobacteria and Thaumarchaeota were more dominant in the surface layer than the subsurface. In addition, by classifying the microorganisms into metabolic functional groups, we were able to identify the biogeochemical pathway that was dominant in each zone. The (oxygenic) photoautotrophy and nitrate reduction were enhanced in the mangrove inhabited mid tidal flat. It revealed the ability of xenobiotic metabolism microbes to degrade, transform, or accumulate environmental hydrocarbon pollutants in seawater, increasing sulfur-related respiration from high tidal to low tidal flat. An opposite distribution was found for major nitrogen cycling processes. The shift of both composition and function of microbial communities were significantly related to light, oxygen availability and total dissolved nitrogen instead of sediment types or salinity. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Symmetry conditions of a nodal superconductor for generating robust flat-band Andreev bound states at its dirty surface

    NASA Astrophysics Data System (ADS)

    Ikegaya, Satoshi; Kobayashi, Shingo; Asano, Yasuhiro

    2018-05-01

    We discuss the symmetry property of a nodal superconductor that hosts robust flat-band zero-energy states at its surface under potential disorder. Such robust zero-energy states are known to induce the anomalous proximity effect in a dirty normal metal attached to a superconductor. A recent study has shown that a topological index NZES describes the number of zero-energy states at the dirty surface of a p -wave superconductor. We generalize the theory to clarify the conditions required for a superconductor that enables NZES≠0 . Our results show that NZES≠0 is realized in a topological material that belongs to either the BDI or CII class. We also present two realistic Hamiltonians that result in NZES≠0 .

  14. Selected field and analytical methods and analytical results in the Dutch Flats area, western Nebraska, 1995-99

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Steele, G.V.; Cannia, J.C.; Bohlke, J.K.; Kraemer, T.E.; Hitch, D.E.; Wilson, K.E.; Carnes, A.E.

    2001-01-01

    A study of the water resources of the Dutch Flats area in the western part of the North Platte Natural Resources District, western Nebraska, was conducted from 1995 through 1999 to describe the surface water and hydrogeology, the spatial distribution of selected water-quality constituents in surface and ground water, and the surface-water/ground-water interaction in selected areas. This report describes the selected field and analytical methods used in the study and selected analytical results from the study not previously published. Specifically, dissolved gases, age-dating data, and other isotopes collected as part of an intensive sampling effort in August and November 1998 and all uranium and uranium isotope data collected through the course of this study are included in the report.

  15. Numerical modeling of Farallon Plate flat-slab subduction: Influence of lithosphere structure and rheology on slab dynamics

    NASA Astrophysics Data System (ADS)

    Liu, X.; Currie, C. A.

    2017-12-01

    The subducted Farallon plate is believed to have evolved to a flat geometry underneath North America plate during Late Cretaceous, triggering Laramide deformation within the continental interior. However, the mechanism that caused the oceanic slab to flatten and the factors that control the flat-slab depth remain uncertain. In this work, we use 2D thermal-mechanical models using the SOPALE code to study the subduction dynamics from 90 Ma to 50 Ma. During this period, an oceanic plateau (Shatsky Conjugate) is inferred to have subducted beneath western North America and interacted with the continental lithosphere, including areas of thicker lithosphere such as the Colorado Plateau and Wyoming Craton. Based on seismic tomography and plate reconstruction data sets, we built a set of models to examine the influence of the structure and rheology of the oceanic and continental plates on slab dynamics. Models include a 600 km wide oceanic plateau consisting of 18 km thick crust and a 36 km thick underlying harzburgite layer, and we ran a series of model experiments to test different continental thicknesses (80 km, 120 km, & 180 km) and continental mantle lithosphere strengths (approximating conditions from wet olivine to dry olivine). Consistent with earlier studies, we find that creation of a long flat slab requires a buoyant oceanic plateau (i.e., non-eclogitized crust) and trenchward motion of the continent. In addition, our models demonstrate the upper plate has an important control on slab dynamics. A flat slab requires either a thin continent or, if the continent is thick, its mantle lithosphere must be relatively weak so that it can be displaced by the flattening slab. The depth of the flat slab is mainly controlled by two factors: (1) the continental thickness and (2) the strength of the continental mantle lithosphere. For the same initial lithosphere thickness (120 km), a shallower flat slab ( 90 km depth) occurs for the weakest mantle lithosphere ( wet olivine) compared to 120 km depth for strong ( dry) mantle lithosphere because the flat slab removes the lowermost weak lithosphere. Moreover, an even deeper slab ( 130 km) can be found underneath the weakest but thicker continental lithosphere (180 km). Future models will focus on how the flat slab may induce hydration and deformation for the overriding continental plate.

  16. Upper Miocene reef complex of Mallorca, Balearic Islands, Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomar, L.

    1988-02-01

    The late Tortonian-Messinian coral reef platform of south Mallorca onlaps a folded middle late Miocene carbonate platform on which progradation of up to 20 km occurs. Vertical sea cliffs (up to 100 m high) superbly show the last 5 km of this progradation and complement the numerous water-well cores from the island interior. The Mallorca reef presents the most complete facies zonation of the Miocene reefs of the western Mediterranean. The reef wall framework is up to 20 m thick and shows (1) erosional reef flat with reef breccia and small corals; (2) spur-and-grove zone with large, massive corals; (3)more » deep buttresses and pinnacles with terraces of branching corals; and (4) deep reef wall with flat, laminar coral colonies, branching red algae, and Halimeda sands.« less

  17. Space configuration as an explanation for lithology-related cross-polarized radar image anomalies

    NASA Technical Reports Server (NTRS)

    Mccauley, J. R.

    1972-01-01

    Three rock types are described that produce dark cross-polarized images on Ka-band imagery: lava flows dating from Pleistocene and Holocene, some Tertiary volcanics, and certain massive sandstones. Their planar surfaces are large with respect to the wavelength of the Ka-band system, yet are small in comparison to the resolution. It is found that only outcrops with proper faceted surface orientations produce significant radar returns showing the dominance of specular reflectors. The omnidirectional attitude of the facets and their wide distribution on the outcrops explains the independence of look-direction that the flat-lying anomalous outcrops exhibit in production of darker cross-polarized images.

  18. Nanoscale Ge fin etching using F- and Cl-based etchants for Ge-based multi-gate devices

    NASA Astrophysics Data System (ADS)

    Zhang, Bingxin; An, Xia; Li, Ming; Hao, Peilin; Zhang, Xing; Huang, Ru

    2018-04-01

    In this paper, nanoscale germanium (Ge) fin etching with inductively coupled plasma equipment with SF6/CHF3/Ar and Cl2/BCl3/Ar gas mixes are experimentally demonstrated. The impact of the gas ratio on etching induced Ge surface flatness, etch rate and sidewall steepness are comprehensively investigated and compared for these two kinds of etchants and the optimized gas ratio is provided. By using silicon oxide as a hard mask, nanoscale Ge fin with a flat surface and sharp sidewall is experimentally illustrated, which indicates great potential for use in nanoscale Ge-based multi-gate MOSFETs.

  19. Nanocrystalline copper films are never flat

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaopu; Han, Jian; Plombon, John J.; Sutton, Adrian P.; Srolovitz, David J.; Boland, John J.

    2017-07-01

    We used scanning tunneling microscopy to study low-angle grain boundaries at the surface of nearly planar copper nanocrystalline (111) films. The presence of grain boundaries and their emergence at the film surface create valleys composed of dissociated edge dislocations and ridges where partial dislocations have recombined. Geometric analysis and simulations indicated that valleys and ridges were created by an out-of-plane grain rotation driven by reduction of grain boundary energy. These results suggest that in general, it is impossible to form flat two-dimensional nanocrystalline films of copper and other metals exhibiting small stacking fault energies and/or large elastic anisotropy, which induce a large anisotropy in the dislocation-line energy.

  20. Free Surface Effects on the Wake of a Flat Plate.

    DTIC Science & Technology

    1984-11-08

    D-i46 98 FREE SURFCE’EFFECTS ON THE MAKE OF A FLAT PLTE(U) i/l 9(8 NAVAL RESEARCH LAB WASHINGTON DC T F SWEAN ET AL. 08 NOV 84 NRL-MR...5426UNCLASSIFIED F/ 20/4 NL 11111 ~ L.0 2 4 11111L .563 I -A 16 CEO -- . . IV NRL Memorandum Rpot52 Free Surface iEffwcs on the Wake of Al lit Plate T . F. SWEAlJ...13b. TIME COVERED 14. DATE OF REPORT (YeasrUonitDay) S.PAGE COUNT .0 - Interim IFROM _ TO T 1984 November 8 FS23 16 SUPPLEMENTARY NOTATION 17 COSATI

Top