Method of manufacturing lightweight thermo-barrier material
NASA Technical Reports Server (NTRS)
Blair, Winford (Inventor)
1987-01-01
A method of manufacturing thermal barrier structures comprising at least three dimpled cores separated by flat plate material with the outer surface of the flat plate material joined together by diffusion bonding.
NASA Astrophysics Data System (ADS)
Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid
2015-01-01
This paper reports on measurements of thermal conductivity of a graphite bipolar plate (BPP) as a function of temperature and its thermal contact resistance (TCR) with treated and untreated gas diffusion layers (GDLs). The thermal conductivity of the BPP decreases with temperature and its thermal contact resistance with GDLs, which has been overlooked in the literature, is found to be dominant over a relatively wide range of compression. The effects of PTFE loading, micro porous layer (MPL), compression, and BPP out-of-flatness are also investigated experimentally. It is found that high PTFE loadings, MPL and even small BPP out-of-flatness increase the BPP-GDL thermal contact resistance dramatically. The paper also presents the effect of cyclic load on the total resistance of a GDL-BPP assembly, which sheds light on the behavior of these materials under operating conditions in polymer electrolyte membrane fuel cells.
Khan, Waqar A.; Uddin, Md Jashim; Ismail, A. I. Md.
2013-01-01
The effects of hydrodynamic and thermal slip boundary conditions on the double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid vertical plate are investigated numerically. It is assumed that free stream is moving. The governing boundary layer equations are non-dimensionalized and transformed into a system of nonlinear, coupled similarity equations. The effects of the controlling parameters on the dimensionless velocity, temperature, solute and nanofluid concentration as well as on the reduced Nusselt number, reduced Sherwood number and the reduced nanoparticle Sherwood number are investigated and presented graphically. To the best of our knowledge, the effects of hydrodynamic and thermal slip boundary conditions have not been investigated yet. It is found that the reduced local Nusselt, local solute and the local nanofluid Sherwood numbers increase with hydrodynamic slip and decrease with thermal slip parameters. PMID:23533566
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
...-Plated Flat-Rolled Steel Products From Japan: Postponement of Preliminary Determination of Antidumping... investigation of diffusion-annealed, nickel-plated flat-rolled steel products from Japan. See Diffusion- Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan: Initiation of Antidumping Duty Investigation...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-11
...-Plated Flat-Rolled Steel Products From Japan; Scheduling of the Final Phase of an Antidumping... imports from Japan of diffusion-annealed, nickel- plated flat-rolled steel products, provided for... diffusion-annealed, nickel- plated flat-rolled steel products from Japan are being sold in the United States...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
...-Plated Flat-Rolled Steel Products From Japan: Initiation of Antidumping Duty Investigation AGENCY: Import... products from Japan (``certain nickel-plated, flat-rolled steel''), filed in proper form by Thomas Steel... Antidumping Duty Petition on Diffusion-Annealed, Nickel- Plated Steel Flat-Rolled Products from Japan, dated...
78 FR 31577 - Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-24
..., Nickel-Plated Flat-Rolled Steel Products From Japan Determination On the basis of the record \\1... imports from Japan of diffusion-annealed, nickel-plated flat-rolled steel products, provided for primarily... flat-rolled steel products from Japan. Accordingly, effective March 27, 2013, the Commission instituted...
NASA Astrophysics Data System (ADS)
Chan, Hoy-Yen; Vinson, A. A.; Baljit, S. S. S.; Ruslan, M. H.
2018-04-01
Flat plate solar air collector is the most common collector design, which is relatively simpler to fabricate and lower cost. In the present study, perforated plate solar collector was developed to improve the system thermal performance. A glazed perforated plate of 6mm holes diameter with square geometry was designed and installed as the absorber of the collector. The influences of solar radiation intensity and mass flow rate on the thermal performance were investigated. The perforated collector was compared with the flat plate solar collector under the same operating conditions. The highest values of thermal efficiency in this study for the perforated plate (PP) and the flat plate (FP) solar collectors were 59% and 36% respectively, at solar radiation intensity of 846 Wm-2 and mass flow rate of 0.02 kgs-1. Furthermore, PP collector gave better thermal performance compared to FP collector; and compared to previous studies, the present perforated design was compatible with the flat plate with double pass designs.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
... Memorandum 1. Background 2. Scope of the Investigation 3. Respondent Selection 4. Discussion of Methodology a...: Scope of the Investigation The diffusion-annealed, nickel-plated flat-rolled steel products included in this investigation are flat-rolled, cold-reduced steel products, regardless of chemistry; whether or...
NASA Technical Reports Server (NTRS)
Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.
2016-01-01
In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.
NASA Astrophysics Data System (ADS)
Dmitriev, S. S.; Vasil'ev, K. E.; Mokhamed, S. M. S. O.; Gusev, A. A.; Barbashin, A. V.
2017-11-01
In modern combined cycle gas turbines (CCGT), when designing the reducers from the output diffuser of a gas turbine to a boiler-utilizer, wide-angle diffusers are used, in which practically from the input a flow separation and transition to jet stream regime occurs. In such channels, the energy loss in the field of velocities sharply rise and the field of velocities in the output from them is characterized by considerable unevenness that worsens the heat transfer process in the first by motion tube bundles of the boiler-utilizer. The results of experimental research of the method for reducing the energy loss and alignment of the field of velocities at the output from a flat asymmetrical diffuser channel with one deflecting wall with the opening angle of 40° by means of placing inside the channel the flat plate parallel to the deflecting wall are presented in the paper. It is revealed that, at this placement of the plate in the channel, it has a chance to reduce the energy loss by 20%, considerably align the output field of velocities, and decrease the dynamic loads on the walls in the output cross-section. The studied method of resistance reduction and alignment of the fields of velocities in the flat diffuser channels was used for optimization of the reducer from the output diffuser of the gas turbine to the boiler-utilizer of CCGT of PGU-450T type of Kaliningrad Thermal Power Plant-2. The obtained results are evidence that the configuration of the reducer installed in the PGU-450T of Kaliningrad Thermal Power Plant-2 is not optimal. It follows also from the obtained data that working-off the reducer should be necessarily conducted by the test results of the channel consisting of the model of reducer with the model of boiler-utilizer installed behind it. Application of the method of alignment of output field of velocities and reducing the resistance in the wide-angle diffusers investigated in the work made it possible—when using the known model of diffusion reducer for PGU-450T, which is bad from the standpoint of aerodynamics— to reduce the value of the coefficient of the total loss by almost 20% as compared with the model of real reducer of PGU-450T.
Use of vertical temperature gradients for prediction of tidal flat sediment characteristics
Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei
2012-01-01
Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
..., by reason of imports from Japan of diffusion-annealed, nickel-plated steel flat-rolled products... 45 days, or in this case by May 13, 2013. The Commission's views are due at Commerce within five.... Lisa R. Barton, Acting Secretary to the Commission. [FR Doc. 2013-07584 Filed 4-1-13; 8:45 am] BILLING...
Advanced solar box and flat plate collector cookers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grupp, M.; Bergler, H.
Several new solar cooker systems have been developed at Synopsis during the last years: advanced box type cookers, featuring an optimized heat transfer from the absorber into the cooking vessel; flat plate cookers, based on a particular two-way collector with air as transfer fluid; flat plate cookers with heat-pipe transfer; specialized cookers for the baking of bread and flat bread. The working principle of these cookers is described, the structure of a thermal simulation model and results of thermal tests are presented. The results of the first year of local production and use of advanced boxes in India are reported.
Experimental study on flat plate air solar collector using a thin sand layer
NASA Astrophysics Data System (ADS)
Lati, Moukhtar; Boughali, Slimane; Bouguettaia, Hamza; Mennouche, Djamel; Bechki, Djamel
2016-07-01
A flat plate air solar collector was constructed in the laboratory of New and Renewable Energy in Arid Zones LENREZA, Ouargla University-South East Algeria. The absorber of the flat plate air solar collector was laminated with a thin layer of local sand. This acted as a thermal storage system (packed bed) with a collecting area of 2.15 m2 (0.86 m × 2.5 m). It was noticed that the solar heater integrated with the thermal storage material delivered comparatively higher temperatures; thus, giving a better efficiency than the air heater without the thermal storage system.
Rashidi, Mohammad M.; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J.; Freidoonimehr, Navid
2014-01-01
In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, , local Nusselt number, , and local Sherwood number are shown and explained through tables. PMID:25343360
NASA Technical Reports Server (NTRS)
1979-01-01
A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.
Ex vivo laser lipolysis assisted with radially diffusing optical applicator
NASA Astrophysics Data System (ADS)
Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook
2016-05-01
Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.
NASA Technical Reports Server (NTRS)
Dow, J. W.
1972-01-01
A numerical solution of the turbulent mass transport equation utilizing the concept of eddy diffusivity is presented as an efficient method of investigating turbulent mass transport in boundary layer type flows. A FORTRAN computer program is used to study the two-dimensional diffusion of ammonia, from a line source on the surface, into a turbulent boundary layer over a flat plate. The results of the numerical solution are compared with experimental data to verify the results of the solution. Several other solutions to diffusion problems are presented to illustrate the versatility of the computer program and to provide some insight into the problem of mass diffusion as a whole.
A high performance porous flat-plate solar collector
NASA Technical Reports Server (NTRS)
Lansing, F. L.; Clarke, V.; Reynolds, R.
1979-01-01
A solar collector employing a porous matrix as a solar absorber and heat exchanger is presented and its application in solar air heaters is discussed. The collector is composed of a metallic matrix with a porous surface which acts as a large set of cavity radiators; cold air flows through the matrix plate and exchanges heat with the thermally stratified layers of the matrix. A steady-state thermal analysis of the collector is used to determine collector temperature distributions for the cases of an opaque surface matrix with total absorption of solar energy at the surface, and a diathermanous matrix with successive solar energy absorption at each depth. The theoretical performance of the porous flat plate collector is shown to exceed greatly that of a solid flat plate collector using air as the working medium for any given set of operational conditions. An experimental collector constructed using commercially available, low cost steel wool as the matrix has been found to have thermal efficiencies from 73 to 86%.
NASA Astrophysics Data System (ADS)
Kapania, R. K.; Mohan, P.
1996-09-01
Finite element static, free vibration and thermal analysis of thin laminated plates and shells using a three noded triangular flat shell element is presented. The flat shell element is a combination of the Discrete Kirchhoff Theory (DKT) plate bending element and a membrane element derived from the Linear Strain Triangular (LST) element with a total of 18 degrees of freedom (3 translations and 3 rotations per node). Explicit formulations are used for the membrane, bending and membrane-bending coupling stiffness matrices and the thermal load vector. Due to a strong analogy between the induced strain caused by the thermal field and the strain induced in a structure due to an electric field the present formulation is readily applicable for the analysis of structures excited by surface bonded or embedded piezoelectric actuators. The results are presented for (i) static analysis of (a) simply supported square plates under doubly sinusoidal load and uniformly distributed load (b) simply supported spherical shells under a uniformly distributed load, (ii) free vibration analysis of (a) square cantilever plates, (b) skew cantilever plates and (c) simply supported spherical shells; (iii) Thermal deformation analysis of (a) simply supported square plates, (b) simply supported-clamped square plate and (c) simply supported spherical shells. A numerical example is also presented demonstrating the application of the present formulation to analyse a symmetrically laminated graphite/epoxy laminate excited by a layer of piezoelectric polyvinylidene flouride (PVDF). The results presented are in good agreement with those available in the literature.
LDEF transverse flat plate heat pipe experiment /S1005/. [Long Duration Exposure Facility
NASA Technical Reports Server (NTRS)
Robinson, G. A., Jr.
1979-01-01
The paper describes the Transverse Flat Plate Heat Pipe Experiment. A transverse flat plate heat pipe is a thermal control device that serves the dual function of temperature control and mounting base for electronic equipment. In its ultimate application, the pipe would be a lightweight structure member that could be configured in a platform or enclosure and provide temperature control for large space structures, flight experiments, equipment, etc. The objective of the LDEF flight experiment is to evaluate the zero-g performance of a number of transverse flat plate heat pipe modules. Performance will include: (1) the pipes transport capability, (2) temperature drop, and (3) ability to maintain temperature over varying duty cycles and environments. Performance degradation, if any, will be monitored over the length of the LDEF mission. This information is necessary if heat pipes are to be considered for system designs where they offer benefits not available with other thermal control techniques, such as minimum weight penalty, long-life heat pipe/structural members.
Rashidi, Mohammad M; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J; Freidoonimehr, Navid
2014-01-01
In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, [Formula: see text], local Nusselt number, [Formula: see text], and local Sherwood number [Formula: see text] are shown and explained through tables.
NASA Technical Reports Server (NTRS)
Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.
2015-01-01
This work describes the development of an improved vacuum compatible flat plate radiometric source used for characterizing and calibrating remote optical sensors, in situ, throughout their testing period. The original flat plate radiometric source was developed for use by the VIIRS instrument during the NPOESS Preparatory Project (NPP). Following this effort, the FPI has had significant upgrades in order to improve both the radiometric throughput and uniformity. Results of the VIIRS testing with the reconfigured FPI are reported and discussed.
High Performance Flat Plate Solar Thermal Collector Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockenbaugh, Caleb; Dean, Jesse; Lovullo, David
2016-09-01
This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.
NASA Technical Reports Server (NTRS)
1976-01-01
Basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator are given. The collector was tested over ranges of inlet temperature and flux level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranjan, Devesh
Diffusion bonded heat exchangers are the leading candidates for the sCO 2 Brayton cycles in next generation nuclear power plants. Commercially available diffusion bonded heat exchangers utilize set of continuous semi-circular zigzag micro channels to increase the heat transfer area and enhance heat transfer through increased turbulence production. Such heat exchangers can lead to excessive pressure drop as well as flow maldistribution in the case of poorly designed flow distribution headers. The goal of the current project is to fabricate and test potential discontinuous fin patterns for diffusion bonded heat exchangers; which can achieve desired thermal performance at lower pressuremore » drops. Prototypic discontinuous offset rectangular and Airfoil fin surface geometries were chemically etched on to 316 stainless steel plate and sealed against an un-etched flat pate using O-ring seal emulating diffusion bonded heat exchangers. Thermal-hydraulic performance of these prototypic discontinuous fin geometries was experimentally evaluated and compared to the existing data for the continuous zigzag channels. The data generated from this project will serve as the database for future testing and validation of numerical models.« less
Thermal performance evaluation of the Semco (liquid) solar collector
NASA Technical Reports Server (NTRS)
1979-01-01
Procedures used and results obtained during the evaluation test program on a flat plate collector which uses water as the working fluid are discussed. The absorber plate is copper tube soldered to copper fin coated with flat black paint. The glazing consists of two plates of Lo-Iron glass; the insulation is polyurethane foam. The collector weight is 242.5 pounds with overall external dimensions of approximately 48.8 in. x 120.8 in. x 4.1 in. The test program was conducted to obtain thermal performance data before and after 34 days of weather exposure test.
Design Guideline for New Generation of High-Temperature Guarded Hot Plate
NASA Astrophysics Data System (ADS)
Wu, J.; Hameury, J.; Failleau, G.; Blahut, A.; Vachova, T.; Strnad, R.; Krause, M.; Rafeld, E.; Hammerschmidt, U.
2018-02-01
This paper complements the existing measurement standards and literature for high-temperature guarded hot plates (HTGHPs) by addressing specific issues relating to thermal conductivity measurement of technical insulation at high temperatures. The examples given are focused on the designs of HTGHPs for measuring thin thermal insulation. The sensitivity studies have been carried out on major influencing factors that affect the thermal conductivity measurements using HTGHPs, e.g., the uncertainty of temperature measurements, plate flatness and center-guard gap design and imbalance. A new configuration of center-guard gap with triangular shape cross section has been optimized to obtain the same thermal resistance as a 2 mm wide gap with rectangular shape cross section that has been used in the HTGHPs at NPL and LNE. Recommendations have been made on the selections of heater plate materials, high-temperature high-emissivity coatings and miniature temperature sensors. For the first time, thermal stress analysis method has been applied to the field of HTGHPs, in order to estimate the effect of differential thermal expansion on the flatness of thin rigid specimens during thermal conductivity tests in a GHP.
Effect of diffuser vane shape on the performance of a centrifugal compressor stage
NASA Astrophysics Data System (ADS)
Reddy, T. Ch Siva; Ramana Murty, G. V.; Prasad, M. V. S. S. S. M.
2014-04-01
The present paper reports the results of experimental investigations on the effect of diffuser vane shape on the performance of a centrifugal compressor stage. These studies were conducted on the chosen stage having a backward curved impeller of 500 mm tip diameter and 24.5 mm width and its design flow coefficient is ϕd=0.0535. Three different low solidity diffuser vane shapes namely uncambered aerofoil, constant thickness flat plate and circular arc cambered constant thickness plate were chosen as the variants for diffuser vane shape and all the three shapes have the same thickness to chord ratio (t/c=0.1). Flow coefficient, polytropic efficiency, total head coefficient, power coefficient and static pressure recovery coefficient were chosen as the parameters for evaluating the effect of diffuser vane shape on the stage performance. The results show that there is reasonable improvement in stage efficiency and total head coefficient with the use of the chosen diffuser vane shapes as compared to conventional vaneless diffuser. It is also noticed that the aero foil shaped LSD has shown better performance when compared to flat plate and circular arc profiles. The aerofoil vane shape of the diffuser blade is seen to be tolerant over a considerable range of incidence.
Analysis of thermal stresses and metal movement during welding
NASA Technical Reports Server (NTRS)
Muraki, T.; Pattee, F. M.; Masubuchi, K.
1974-01-01
Finite element computer programs were developed to determine thermal stresses and metal movement during butt welding of flat plates and bead-on-plate welding along the girth of a cylindrical shell. Circular cylindrical shells of 6061 aluminum alloy were used for the tests. Measurements were made of changes in temperature and thermal strains during the welding process.
NASA Technical Reports Server (NTRS)
Johnson, S. M.
1976-01-01
Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.
NASA Astrophysics Data System (ADS)
Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis
2014-12-01
This paper describes experimental and numerical investigations focused on the shock wave modification, induced by a dc glow discharge, of a Mach 2 flow under rarefied regime. The model under investigation is a flat plate equipped with a plasma actuator composed of two electrodes. The glow discharge is generated by applying a negative potential to the upstream electrode, enabling the creation of a weakly ionized plasma. The natural flow (i.e. without the plasma) exhibits a thick laminar boundary layer and a shock wave with a hyperbolic shape. Images of the flow obtained with an ICCD camera revealed that the plasma discharge induces an increase in the shock wave angle. Thermal effects (volumetric, and at the surface) and plasma effects (ionization, and thermal non-equilibrium) are the most relevant processes explaining the observed modifications. The effect induced by the heating of the flat plate surface is studied experimentally by replacing the upstream electrode by a heating element, and numerically by modifying the thermal boundary condition of the model surface. The results show that for a similar temperature distribution over the plate surface, modifications induced by the heating element are lower than those produced by the plasma. This difference shows that other effects than purely thermal effects are involved with the plasma actuator. Measurements of the electron density with a Langmuir probe highlight the fact that the ionization degree plays an important role into the modification of the flow. The gas properties, especially the isentropic exponent, are indeed modified by the plasma above the actuator and upstream the flat plate. This leads to a local modification of the flow conditions, inducing an increase in the shock wave angle.
Thermal Creep Force: Analysis And Application
2016-06-01
University Press, 1952. [18] Y. H. Kuo, “On the flow of an incompressible viscous fluid past a flat plate at moderate Reynolds numbers,” The Journal of...observed [19]. Thus, for uniform flow past a flat plate the Stokes drag force on both sides of the plate is 212 5.91 , 2D D F U C LW U Lρ µ...immersed bodies,” A.I.Ch.E. Journal , vol. 7, no. 1, pp. 20–25, 1961. [20] Z. Janour, Resistance of a Plate in Parallel Flow at Low Reynolds Numbers
NASA Technical Reports Server (NTRS)
Johnson, S.
1976-01-01
This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.
A calibration mechanism based on worm drive for space telescope
NASA Astrophysics Data System (ADS)
Chong, Yaqin; Li, Chuang; Xia, Siyu; Zhong, Peifeng; Lei, Wang
2017-08-01
In this paper, a new type of calibration mechanism based on worm drive is presented for a space telescope. This calibration mechanism based on worm drive has the advantages of compact size and self-lock. The mechanism mainly consists of thirty-six LEDs as the light source for flat calibration, a diffuse plate, a step motor, a worm gear reducer and a potentiometer. As the main part of the diffuse plate, a PTFE tablet is mounted in an aluminum alloy frame. The frame is fixed on the shaft of the worm gear, which is driven by the step motor through the worm. The shaft of the potentiometer is connected to that of the worm gear to measure the rotation angle of the diffuse plate through a flexible coupler. Firstly, the calibration mechanism is designed, which includes the LEDs assembly design, the worm gear reducer design and the diffuse plate assembly design. The counterweight blocks and two end stops are also designed for the diffuse plate assembly. Then a modal analysis with finite element method for the diffuse plate assembly is completed.
Development of flat-plate solar plate collector: Evaporator
NASA Astrophysics Data System (ADS)
Abramzon, B.; Yaron, I.
1981-11-01
In the present study the thermal performance of a flat plate solar collector is analyzed theoretically for the case in which the working fluid may undergo a phase change within the tubes of the collector. In addition to the common domestic applications, such a collector - evaporator may be used as a generator of vapors for the production of mechanical or electrical energy, e.g., solar water pumps, solar power stations, etc., as well as for solar - powered absorption refrigeration machines, distillation installations, etc.
NASA Technical Reports Server (NTRS)
Rosenberg, G. S.; Schoeberle, D. F.; Valentin, R. A.
1969-01-01
Analysis and solution are presented for transient thermal stresses in a free heat-generating flat plate and a free, hollow-generating cylinder as a result of sudden environmental changes. The technique used and graphical results obtained are of interest to the heat transfer industry.
Solar air heaters and their applications
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1977-01-01
The solar air heater appears to be the most logical choice, as far as the ultimate application of heating air to maintain a comfortable environment is concerned. One disadvantage of solar air heaters is the need for handling larger volumes of air than liquids due to the low density of air as a working substance. Another disadvantage is the low thermal capacity of air. In cases where thermal storage is needed, water is superior to air. Design variations of solar air heaters are discussed along with the calculation of the efficiency of a flat plate solar air heater, the performance of various collector types, and the applications of solar air heaters. Attention is given to collectors with nonporous absorber plates, collectors with porous absorbers, the performance of flat plate collectors with finned absorbers, a wire mesh absorber, and an overlapped glass plate air heater.
NASA Astrophysics Data System (ADS)
Zainul, R.; Oktavia, B.; Dewata, I.; Efendi, J.
2018-04-01
This research aims to investigate the process of forming a multi-scale copper oxide semiconductor (CuO/Cu2O) through a process of calcining a copper plate. The changes that occur during the formation of the oxide are thermally and surface evaluated. Evaluation using Differential Thermal Analysis (DTA) obtained by surface change of copper plate happened at temperature 380°C. Calcination of oxide formation was carried out at temperature 380°C for 1 hour. Surface evaluation process by using Scanning Electron Microscope (SEM) surface and cross-section, to determine diffusion of oxide formation on copper plate. The material composition is monitored by XRF and XRD to explain the process of structural and physical changes of the copper oxide plate formed during the heating process. The thickness of Cu plates used is 200-250 μm. SEM analysis results, the oxygen atom interruption region is in the range of 20-30 μm, and diffuses deeper during thermal oxidation process. The maximum diffusion depth of oxygen atoms reaches 129 μm.
NASA Astrophysics Data System (ADS)
Pandit, K. K.; Sarma, D.; Singh, S. I.
2017-12-01
An investigation of the effects of a chemical reaction and thermal radiation on unsteady MHD free convection heat and mass transfer flow of an electrically conducting, viscous, incompressible fluid past a vertical infinite flat plate embedded in a porous medium is carried out. The flow is induced by a general time-dependent movement of the vertical plate, and the cases of ramped temperature and isothermal plates are studied. An exact solution of the governing equations is obtained in closed form by the Laplace Transform technique. Some applications of practical interest for different types of plate motions are discussed. The numerical values of fluid velocity, temperature and species concentration are displayed graphically whereas the numerical values of skin friction, Nusselt number and Sherwood number are presented in a tabular form for various values of pertinent flow parameters for both ramped temperature and isothermal plates.
Using thermal and compositional modeling to assess the role of water in Alaskan flat slab subduction
NASA Astrophysics Data System (ADS)
Robinson, S. E.; Porter, R. C.; Hoisch, T. D.
2017-12-01
Although plate tectonic theory is well established in the geosciences, the mechanisms and details of various plate-tectonics related phenomena are not always well understood. In some ( 10%) convergent plate boundaries, subduction of downgoing oceanic plates is characterized by low angle geometries and is termed "flat slab subduction." The mechanism(s) driving this form of subduction are not well understood. The goal of this study is to explore the role that water plays in these flat slab subduction settings. This is important for a better understanding of the behavior of these systems and for assessing volcanic hazards associated with subduction and slab rollback. In southern Alaska, the Pacific Plate is subducting beneath the North American plate at a shallow angle. This low-angle subduction within the region is often attributed to the subduction of the Yakutat block, a terrane accreting to the south-central coast of Alaska. This flat slab region is bounded by the Aleution arc to the west and the strike-slip Queen Charlotte fault to the east. Temperature and compositional models for a 500-km transect across this subduction zone in Alaska were run for ten million years (the length of time that flat slab subduction has been ongoing in Alaska) and allow for interpretation of present-day conditions at depth. This allows for an evaluation of two hypotheses regarding the role of water in flat-slab regions: (1) slab hydration and dehydration help control slab buoyancy which influences whether flat slab subduction will be maintained or ended. (2) slab hydration/dehydration of the overlying lithosphere impacts deformation within the upper plate as water encourages plate deformation. Preliminary results from thermal modeling using Thermod8 show that cooling of the mantle to 500 °C is predicted down to 100 km depth at 10 million years after the onset of low-angle subduction (representing present-day). Results from compositional modeling in Perple_X show the maximum amount of water that can be held in the system assuming crustal (basalt and metabasalt) and mantle (peridotite) compositions. These models will be compared with seismic velocity models created from EarthScope Transportable Array data in the region in order to determine amounts of serpentinite and other water-bearing rocks within the flat slab subduction system.
NASA Technical Reports Server (NTRS)
1976-01-01
Basic test results are given of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes, and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.
Preliminary design review package on air flat plate collector for solar heating and cooling system
NASA Technical Reports Server (NTRS)
1977-01-01
Guidelines to be used in the development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet (10-4 ft x 8 ft panels) of collector area are presented. Topics discussed include: (1) verification plan; (2) thermal analysis; (3) safety hazard analysis; (4) drawing list; (5) special handling, installation and maintenance tools; (6) structural analysis; and (7) selected drawings.
Investigation of the Non-Isothermal Convective Mixing of Turbulent, Round, Wall Jets
NASA Astrophysics Data System (ADS)
Kristo, Paul; Kimber, Mark
2017-11-01
The wall jet has become a paradigm for geometrically bounded flows due to the intrinsically difficult nature of the advection promoted by the geometry of the jet, coupled with prompt diffusion from the adjacent wall. Previous experimental investigations have sought to characterize the hydraulic and thermal behavior of such flows, however the physics promoted by parallel coplanar round jets has received inadequate experimental attention. The current effort is comprised of three parallel, coplanar, equidistant round jets issuing vertically downward into a pseudo-unconfined test section. The outer diameters of the jets are placed tangentially along a smooth flat plate. Non-intrusive optical techniques are incorporated for both hydraulic and thermal observations. Preliminary tests provide accurate inlet boundary conditions for each case. Reference metrics are captured during testing to account for ambient effects and readings inside of the test section. By varying the velocity and temperature inlet parameters, insights are drawn regarding the effects on the merging point (MP) and combined point (CP) of both the flow and thermal fields. Velocity fields in the plane normal to the wall yield additional insight into the deceleration caused by dissipation from both the plate and surrounding stagnant fluid.
Feasibility of Actively Cooled Silicon Nitride Airfoil for Turbine Applications Demonstrated
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.
2001-01-01
Nickel-base superalloys currently limit gas turbine engine performance. Active cooling has extended the temperature range of service of nickel-base superalloys in current gas turbine engines, but the margin for further improvement appears modest. Therefore, significant advancements in materials technology are needed to raise turbine inlet temperatures above 2400 F to increase engine specific thrust and operating efficiency. Because of their low density and high-temperature strength and thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, the high processing costs and low impact resistance of silicon nitride ceramics have proven to be major obstacles for widespread applications. Advanced rapid prototyping technology in combination with conventional gel casting and sintering can reduce high processing costs and may offer an affordable manufacturing approach. Researchers at the NASA Glenn Research Center, in cooperation with a local university and an aerospace company, are developing actively cooled and functionally graded ceramic structures. The objective of this program is to develop cost-effective manufacturing technology and experimental and analytical capabilities for environmentally stable, aerodynamically efficient, foreign-object-damage-resistant, in situ toughened silicon nitride turbine nozzle vanes, and to test these vanes under simulated engine conditions. Starting with computer aided design (CAD) files of an airfoil and a flat plate with internal cooling passages, the permanent and removable mold components for gel casting ceramic slips were made by stereolithography and Sanders machines, respectively. The gel-cast part was dried and sintered to final shape. Several in situ toughened silicon nitride generic airfoils with internal cooling passages have been fabricated. The uncoated and thermal barrier coated airfoils and flat plates were burner rig tested for 30 min without and with air cooling. Without cooling, the surface temperature of the flat plate reached approximately 2350 F. Starting with computer aided design (CAD) files of an airfoil and a flat plate with internal cooling passages, the permanent and removable mold components for gel casting ceramic slips were made by stereolithography and Sanders machines, respectively. The gel-cast part was dried and sintered to final shape. Several in situ toughened silicon nitride generic airfoils with internal cooling passages have been fabricated. The uncoated and thermal barrier coated airfoils and flat plates were burner rig tested for 30 min without and with air cooling. Without cooling, the surface temperature of the flat plate reached approximately 2350 F. With cooling, the surface temperature decreased to approximately 1910 F--a drop of approximately 440 F. This preliminary study demonstrates that a near-net-shape silicon nitride airfoil can be fabricated and that silicon nitride can sustain severe thermal shock and the thermal gradients induced by cooling and, thus, is a viable candidate for cooled components.
NASA Technical Reports Server (NTRS)
1976-01-01
This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.
Process for manufacturing hollow fused-silica insulator cylinder
Sampayan, Stephen E.; Krogh, Michael L.; Davis, Steven C.; Decker, Derek E.; Rosenblum, Ben Z.; Sanders, David M.; Elizondo-Decanini, Juan M.
2001-01-01
A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.
High-performance noncontact thermal diode via asymmetric nanostructures
NASA Astrophysics Data System (ADS)
Shen, Jiadong; Liu, Xianglei; He, Huan; Wu, Weitao; Liu, Baoan
2018-05-01
Electric diodes, though laying the foundation of modern electronics and information processing industries, suffer from ineffectiveness and even failure at high temperatures. Thermal diodes are promising alternatives to relieve above limitations, but usually possess low rectification ratios, and how to obtain a high-performance thermal rectification effect is still an open question. This paper proposes an efficient contactless thermal diode based on the near-field thermal radiation of asymmetric doped silicon nanostructures. The rectification ratio computed via exact scattering theories is demonstrated to be as high as 10 at a nanoscale gap distance and period, outperforming the counterpart flat-plate diode by more than one order of magnitude. This extraordinary performance mainly lies in the higher forward and lower reverse radiative heat flux within the low frequency band compared with the counterpart flat-plate diode, which is caused by a lower loss and smaller cut-off wavevector of nanostructures for the forward and reversed scheme, respectively. This work opens new routes to realize high performance thermal diodes, and may have wide applications in efficient thermal computing, thermal information processing, and thermal management.
A two-equation model for heat transport in wall turbulent shear flows
NASA Astrophysics Data System (ADS)
Nagano, Y.; Kim, C.
1988-08-01
A new proposal for closing the energy equation is presented at the two-equation level of turbulence modeling. The eddy diffusivity concept is used in modeling. However, just as the eddy viscosity is determined from solutions of the k and epsilon equations, so the eddy diffusivity for heat is given as functions of temperature variance, and the dissipation rate of temperature fluctuations, together with k and epsilon. Thus, the proposed model does not require any questionable assumptions for the 'turbulent Prandtl number'. Modeled forms of the equations are developed to account for the physical effects of molecular Prandtl number and near-wall turbulence. The model is tested by application to a flat-plate boundary layer, the thermal entrance region of a pipe, and the turbulent heat transfer in fluids over a wide range of the Prandtl number. Agreement with the experiment is generally very satisfactory.
Numerical Investigation of an Oscillating Flat Plate Airfoil
NASA Astrophysics Data System (ADS)
Mohaghegh, Fazlolah; Janechek, Matthew; Buchholz, James; Udaykumar, Hs
2017-11-01
This research investigates the vortex dynamics of a plunging flat plate airfoil by analyzing the vorticity transport in 2D simulations. A horizontal airfoil is subject to a freestream flow at Re =10000. A prescribed vertical sinusoidal motion is applied to the airfoil. Smoothed Profile Method (SPM) models the fluid-structure interaction. SPM as a diffuse interface model considers a thickness for the interface and applies a smooth transition from solid to fluid. As the forces on the airfoil are highly affected by the interaction of the generated vortices from the surface, it is very important to find out whether a diffuse interface solver can model a flow dominated by vorticities. The results show that variation of lift coefficient with time agrees well with the experiment. Study of vortex evolution shows that similar to experiments, when the plate starts moving downward from top, the boundary layer is attached to the surface and the leading-edge vortex (LEV) is very small. By time, LEV grows and rolls up and a secondary vortex emerges. Meanwhile, the boundary layer starts to separate and finally LEV detaches from the surface. In overall, SPM as a diffuse interface model can predict the lift force and vortex pattern accurately.
Evaluation of Rhenium Joining Methods
NASA Technical Reports Server (NTRS)
Reed, Brian D.; Morren, Sybil H.
1995-01-01
Coupons of rhenium-to-Cl03 flat plate joints, formed by explosive and diffusion bonding, were evaluated in a series of shear tests. Shear testing was conducted on as-received, thermally-cycled (100 cycles, from 21 to 1100 C), and thermally-aged (3 and 6 hrs at 1100 C) joint coupons. Shear tests were also conducted on joint coupons with rhenium and/or Cl03 electron beam welded tabs to simulate the joint's incorporation into a structure. Ultimate shear strength was used as a figure of merit to assess the effects of the thermal treatment and the electron beam welding of tabs on the joint coupons. All of the coupons survived thermal testing intact and without any visible degradation. Two different lots of as-received, explosively-bonded joint coupons had ultimate shear strengths of 281 and 310 MPa and 162 and 223 MPa, respectively. As-received, diffusion-bonded coupons had ultimate shear strengths of 199 and 348 MPa. For the most part, the thermally-treated and rhenium weld tab coupons had shear strengths slightly reduced or within the range of the as-received values. Coupons with Cl03 weld tabs experienced a significant reduction in shear strength. The degradation of strength appeared to be the result of a poor heat sink provided during the electron beam welding. The Cl03 base material could not dissipate heat as effectively as rhenium, leading to the formation of a brittle rhenium-niobium intermetallic.
Using laser radiation for the formation of capillary structure in flat ceramic heat pipes
NASA Astrophysics Data System (ADS)
Nikolaenko, Yu. E.; Rotner, S. M.
2012-12-01
The possibility of using laser radiation with a wavelength of 1.064 μm for the formation of a capillary structure in the evaporation zone of flat ceramic heat pipes has been experimentally confirmed. Using a technological regime with established parameters, a capillary structure was formed in AlN and Al2O3 ceramic plates with a thickness of 1-2 mm and lateral dimensions of 48 × 60 and 100 × 100 mm, which ensured absorption of heat-transfer fluids (distilled water, ethyl alcohol, acetone) to a height of 100 mm against gravity forces. The thermal resistance of flat ceramic heat pipes with this capillary structure reaches 0.07°C/W, which is quite acceptable for their use as heat sinks in systems of thermal regime control for electronic components and as heat exchange plates for large-size thermoelectric conversion units.
An experimental study on the compatibility of acetone with aluminum flat-plate heat pipes
NASA Astrophysics Data System (ADS)
Hsieh, Jui-Ching; Lin, David T. W.; Huang, Hsin-Jung; Yang, Tzu-Wei
2014-04-01
This study investigates the compatibility of aluminum flat-plate heat pipes (FPHPs) used for filling acetone as a working fluid after long-term operation of and the non-condensable gas (NCG) exhausting process. The rate of NCG generation substantially decreased after conducting the NCG exhausting process, proving the compatibility of acetone with the aluminum FPHPs. However, the thermal resistance was not enhanced because hydroxide bayerite (Al(OH)3) was generated as a product of the reaction.
Influence of wire-coil inserts on the thermo-hydraulic performance of a flat-plate solar collector
NASA Astrophysics Data System (ADS)
Herrero Martín, R.; García, A.; Pérez-García, J.
2012-11-01
Enhancement techniques can be applied to flat-plate liquid solar collectors towards more compact and efficient designs. For the typical operating mass flow rates in flat-plate solar collectors, the most suitable technique is inserted devices. Based on previous studies from the authors, wire coils were selected for enhancing heat transfer. This type of inserted device provides better results in laminar, transitional and low turbulence fluid flow regimes. To test the enhanced solar collector and compare with a standard one, an experimental side-by-side solar collector test bed was designed and constructed. The testing set up was fully designed following the requirements of EN12975-2 and allow us to accomplish performance tests under the same operating conditions (mass flow rate, inlet fluid temperature and weather conditions). This work presents the thermal efficiency curves of a commercial and an enhanced solar collector, for the standardized mass flow rate per unit of absorber area of 0.02 kg/sm2 (in useful engineering units 144 kg/h for water as working fluid and 2 m2 flat-plate solar collector of absorber area). The enhanced collector was modified inserting spiral wire coils of dimensionless pitch p/D = 1 and wire-diameter e/D = 0.0717. The friction factor per tube has been computed from the overall pressure drop tests across the solar collectors. The thermal efficiency curves of both solar collectors, a standard and an enhanced collector, are presented. The enhanced solar collector increases the thermal efficiency by 15%. To account for the overall enhancement a modified performance evaluation criterion (R3m) is proposed. The maximum value encountered reaches 1.105 which represents an increase in useful power of 10.5% for the same pumping power consumption.
NASA Technical Reports Server (NTRS)
Kandula, M.; Haddad, G. F.; Chen, R.-H.
2006-01-01
Three-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal boundary layer correction factors for circular convective heat flux gauges (such as Schmidt-Boelter and plug type)mounted flush in a flat plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are obtained for a free stream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate surface temperature have been investigated. The 3-D CFD results for the heat flux correction factors are compared to quasi-21) results deduced from constant property integral solutions and also 2-D CFD analysis with both constant and variable properties. The role of three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.
Fuel cell assembly unit for promoting fluid service and electrical conductivity
Jones, Daniel O.
1999-01-01
Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.
Improvement of rolling 6 mm thin plates in plate rolling mill PT. Krakatau Posco
NASA Astrophysics Data System (ADS)
Pujiyanto, Hamdani
2017-01-01
A 6-mm thin plate is difficult to produce especially if the product requires wide size and high strength. Flatness is the main quality issue in rolling 6-mm plate using a 4-high reversing mill which use ±1100-mm work roll. Thus some methods are applied to overcome such issue in order to comply to customer quality requirement. Pre-rolling, rolling, and post-rolling conditions have to be considered comprehensively. Roll unit management will be the key factor before rolling condition. The roll unit itself has a significant impact on work roll crown wearness in relation with work roll intial crown and thermal crown. Work roll crown along with the modification of hydraulic gap control (HGC) could directly alter the flatness of the plate.
Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames
NASA Astrophysics Data System (ADS)
Schlup, Jason; Blanquart, Guillaume
2018-03-01
The mixture-averaged thermal diffusion model originally proposed by Chapman and Cowling is validated using multiple flame configurations. Simulations using detailed hydrogen chemistry are done on one-, two-, and three-dimensional flames. The analysis spans flat and stretched, steady and unsteady, and laminar and turbulent flames. Quantitative and qualitative results using the thermal diffusion model compare very well with the more complex multicomponent diffusion model. Comparisons are made using flame speeds, surface areas, species profiles, and chemical source terms. Once validated, this model is applied to three-dimensional laminar and turbulent flames. For these cases, thermal diffusion causes an increase in the propagation speed of the flames as well as increased product chemical source terms in regions of high positive curvature. The results illustrate the necessity for including thermal diffusion, and the accuracy and computational efficiency of the mixture-averaged thermal diffusion model.
Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System
NASA Astrophysics Data System (ADS)
Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao
The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.
Convective diffusion in protein crystal growth
NASA Technical Reports Server (NTRS)
Baird, J. K.; Meehan, E. J., Jr.; Xidis, A. L.; Howard, S. B.
1986-01-01
A protein crystal modeled as a flat plate suspended in the parent solution, with the normal to the largest face perpendicular to gravity and the protein concentration in the solution adjacent to the plate taken to be the equilibrium solubility, is studied. The Navier-Stokes equation and the equation for convective diffusion in the boundary layer next to the plate are solved to calculate the flow velocity and the protein mass flux. The local rate of growth of the plate is shown to vary significantly with depth due to the convection. For an aqueous solution of lysozyme at a concentration of 40 mg/ml, the boundary layer at the top of a 1-mm-high crystal has a thickness of 80 microns at 1 g, and 2570 microns at 10 to the -6th g.
NASA Technical Reports Server (NTRS)
Crawford, M. E.; Kays, W. M.
1976-01-01
A large variety of two dimensional flows can be accommodated by the program, including boundary layers on a flat plate, flow inside nozzles and diffusers (for a prescribed potential flow distribution), flow over axisymmetric bodies, and developing and fully developed flow inside circular pipes and flat ducts. The flows may be laminar or turbulent, and provision is made to handle transition.
Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badruddin, Irfan Anjum; Quadir, G. A.
2016-06-08
Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter.
NASA Technical Reports Server (NTRS)
Simon, F. F.
1975-01-01
A performance evaluation was made of two, black nickel coated, flat plate solar collectors. Collector performance was determined under a simulated sun for a wide range of inlet temperatures, including the temperature required for solar powered absorption air conditioning. For a basis of comparison a performance test was made on a traditional, two glass, nonselective, black paint coated, flat plate collector. Performance curves and performance parameters are presented to point out the importance of the design variables which determine an efficient collector. A black nickel coated collector was found to be a good performer at the conditions expected for solar powered absorption air conditioning. This collector attained a thermal efficiency of 50 percent at an inlet temperature of 366 K (200 F) and an incident flux of 946 watts/sq m (300 Btu/hr-sq ft).
NASA Astrophysics Data System (ADS)
Pandiaraj, P.; Gnanavelbabu, A.; Saravanan, P.
Metallic fluids like CuO, Al2O3, ZnO, SiO2 and TiO2 nanofluids were widely used for the development of working fluids in flat plate heat pipes except magnesium oxide (MgO). So, we initiate our idea to use MgO nanofluids in flat plate heat pipe as a working fluid material. MgO nanopowders were synthesized by wet chemical method. Solid state characterizations of synthesized nanopowders were carried out by Ultraviolet Spectroscopy (UV), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) techniques. Synthesized nanopowders were prepared as nanofluids by adding water and as well as water/ethylene glycol as a binary mixture. Thermal conductivity measurements of prepared nanofluids were studied using transient hot-wire apparatus. Response surface methodology based on the Box-Behnken design was implemented to investigate the influence of temperature (30-60∘C), particle fraction (1.5-4.5 vol.%), and solution pH (4-12) of nanofluids as the independent variables. A total of 17 experiments were accomplished for the construction of second-order polynomial equations for target output. All the influential factors, their mutual effects and their quadratic terms were statistically validated by analysis of variance (ANOVA). The optimum stability and thermal conductivity of MgO nanofluids with various temperature, volume fraction and solution pH were predicted and compared with experimental results. The results revealed that increase in particle fraction and pH of MgO nanofluids at certain points would increase thermal conductivity and become stable at nominal temperature.
NASA Astrophysics Data System (ADS)
Khairul Anuar Mohamed, Muhammad; Zuki Salleh, Mohd; Noar, Nor Aida Zuraimi Md; Ishak, Anuar
2017-09-01
The laminar boundary layer flow over a permeable flat plat with the presence of thermal radiation and Newtonian heating is numerically studied. The non linear partial differential equations that governed the model are transformed to ordinary differential equations before being solved numerically by Runge-Kutta-Fehlberg (RKF) method using Maple software. The influenced and characteristic of pertinent parameters which are the Prandtl number, the suction/blowing parameter, the thermal radiation parameter and the conjugate parameter are analyzed and discussed. It is found that the presence of thermal radiation and blowing parameter has increased the value of wall temperature. Meanwhile, the trend is contrary with the suction effect.
Indoor thermal performance evaluation of Daystar solar collector
NASA Technical Reports Server (NTRS)
Shih, K., Sr.
1977-01-01
The test procedures used and results obtained from a test program to obtain thermal performance data on a Daystar Model 21B, S/N 02210, Unit 2, liquid solar collector under simulated conditions are described. The test article is a flat plate solar collector using liquid as a heat transfer medium. The absorber plate is copper and coated with black paint. Between the tempered low iron glass and absorber plate is a polycarbonate trap used to suppress convective heat loss. The collector incorporates a convector heat dump panel to limit temperature excursions during stagnation. The following tests were conducted: (1) collector thermal efficiency; (2) collector time constant; (3) collector incident angle modifier; (4) collector heat loss coefficient; and (5) collector stagnation.
Simulation of moving flat plate with unsteady translational motion using vortex method
NASA Astrophysics Data System (ADS)
Widodo, A. F.; Zuhal, L. R.
2013-10-01
This paper presents simulation of moving flate plate with unsteady translational motion using Lagrangianmeshless numerical simulation named vortex method. The method solves Navier-Stokes equations in term of vorticity. The solving strategy is splitting the equation into diffusion and convection term to be solved separately. The diffusion term is modeled by particles strength exchange(PSE) which is the most accurate of diffusion modeling in vortex method. The convection term that represents transport of particles is calculated by time step integration of velocity. Velocity of particles is natively calculated using Biot-Savart relation but for acceleration, fastmultiple method(FMM) is employed. The simulation is validated experimentally using digital particle image velocimetry(DPIV) and the results give good agreement.
Influence of nanofluids on the efficiency of Flat-Plate Solar Collectors (FPSC)
NASA Astrophysics Data System (ADS)
Nejad, Marjan B.; Mohammed, H. A.; Sadeghi, O.; Zubeer, Swar A.
2017-11-01
A numerical investigation is performed using finite volume method to study the laminar heat transfer in a three-dimensional flat-plate solar collector using different nanofluids as working fluids. Three nanofluids with different types of nanoparticles (Ag, MWCNT and Al2O3 dispersed in water) with 1-2 wt% volume fractions are analyzed. A constant heat flux, equivalent to solar radiation absorbed by the collector, is applied at the top surface of the absorber plate. In this study, several parameters including boundary conditions (different volume flow rates, different fluid inlet temperatures and different solar irradiance at Skudai, Malaysia), different types of nanoparticles, and different solar collector tilt angles are investigated to identify their effects on the heat transfer performance of FPSC. The numerical results reveal that the three types of nanofluid enhance the thermal performance of solar collector compared to pure water and FPSC with Ag nanofluid has the best thermal performance enhancement. For all the cases, the collector efficiency increased with the increase of volume flow rate while fluid outlet temperature decreased. It is found that FPSC with tilt angle of 10° and fluid inlet temperature of 301.15 K has the best thermal performance.
Unsteady conjugate heat transfer analysis for impinging jet cooling
NASA Astrophysics Data System (ADS)
Tejero, F.; Flaszyński, P.; Szwaba, R.; Telega, J.
2016-10-01
The paper presents the numerical investigations of the heat transfer on a flat plate cooled by a single impinging jet. The thermal conductivity of the plate was modified from a high thermal case (steel -λ= 35 W/m/K) to a low one (steel alloy Inconel -λ= 9.8 W/m/K). The numerical simulations results are compared with the experimental data from the Institute of Fluid-Flow Machinery Polish Academy of Sciences, Gdansk (Poland). The numerical simulations are carried out by means of Ansys/Fluent and k-ω SST turbulence model and the temperature evolution on the target plate is investigated by conjugated heat transfer computations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, C.M.
1963-05-01
PLASTlC-SASS, an ALTAC-3 computer program that determines stresses and deflections in a flat-plate, rectangular reactor subassembly is described. Elastic, plastic, and creep properties are used to calculate the results of temperature, pressure, and fuel expansion. Plate deflections increase or decrease local channel thicknesses and thus produce a hydraulic load which is a function of fuel plate deflection. (auth)
Neutron scattering study of the freezing of water near a cupric oxide surface
NASA Astrophysics Data System (ADS)
Torres, J.; Buck, Z. N.; Zhang, F. Z.; Chen, T.; Winholtz, R. A.; Kaiser, H.; Ma, H. B.; Taub, H.; Tyagi, M.
Oscillating heat pipes (OHP) offer promising two-phase heat transfer for a variety of applications, including cooling of electronic devices.2 Recently, it has been shown that a hydrophilic CuO coating on either the evaporator or condenser sections of a flat-plate OHP can significantly enhance its thermal performance.3 This finding has motivated us to assess the strength of the CuO/H2O interaction by investigating the freezing behavior of H2O in proximity to a CuO surface. Using the High-Flux Backscattering Spectrometer at NIST, we have measured the intensity of neutrons scattered elastically from a well-hydrated sample of CuO-coated Cu foils that mimic the oxide surfaces in a flat-plate OHP. We observe abrupt freezing of bulk-like H2O above the CuO surface at 270 K followed by continuous freezing of the interfacial H2O down to 265 K. This freezing behavior is qualitatively similar to that found for water near a zwitterionic single-supported bilayer lipid membrane.3 Further studies are planned to compare the diffusion coefficients of the interfacial water for the coated and uncoated OHPs.22F.Z. Zhang et al., submitted to J. Heat Transfer. 3M. Bai et al., Europhys. Lett. 98, 48006 (2012); Miskowiec et al., Europhys. Lett. 107, 28008 (2014). Supported by NSF Grant Nos. DMR-0944772 and DGE-1069091.
The Impact of Reduced Gravity on Free Convective Heat Transfer from a Finite, Flat, Vertical Plate
NASA Astrophysics Data System (ADS)
Lotto, Michael A.; Johnson, Kirstyn M.; Nie, Christopher W.; Klaus, David M.
2017-10-01
Convective heat transfer is governed by a number of factors including various fluid properties, the presence of a thermal gradient, geometric configuration, flow condition, and gravity. Empirically-derived analytical relationships can be used to estimate convection as a function of these governing parameters. Although it is relatively straightforward to experimentally quantify the contributions of the majority of these variables, it is logistically difficult to assess the influence of reduced-gravity due to practical limitations of establishing this environment. Therefore, in order to explore this regime, a series of tests was conducted to evaluate convection under reduced-gravity conditions averaging 0.45 m/sec2 (0.05 g) achieved aboard a parabolic aircraft. The results showed a reduction in net heat transfer of approximately 61% in flight relative to a 1 g terrestrial baseline using the same setup. The average experimental Nusselt Number of 19.05 ± 1.41 statistically correlated with the predicted value of 18.90 ± 0.63 (N = 13), estimated using the Churchill-Chu correlation for free convective heat transfer from a finite, flat, vertical plate. Extrapolating this to similar performance in true microgravity (10-6 g) indicates that these conditions should yield a Nusselt Number of 1.27, which is 2.6% the magnitude of free convection at 1 g, or a reduction of 97.4%. With advection essentially eliminated, heat transfer becomes limited to diffusion and radiation, which are gravity-independent and nearly equivalent in magnitude in this case. These results offer a general guideline for integrating components that utilize natural (free) convective gas cooling in a spacecraft habitat and properly sizing the thermal control system.
Development of Surfaces Optically Suitable for Flat Solar Panels
NASA Technical Reports Server (NTRS)
Desmet, D.; Jason, A.
1978-01-01
Three areas of research in the development of flat solar panels are described. (1) A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces was developed. The reflectometer has a phase locked detection system. (2) A coating composed of strongly bound copper oxide that is formed by an etching process performed on an aluminum alloy with high copper content was also developed. Because of this one step fabrication process, fabrication costs are expected to be small. (3) A literature search was conducted and conclusions on the required optical properties of flat plate solar collectors are presented.
Micromachined silicon electrostatic chuck
Anderson, R.A.; Seager, C.H.
1996-12-10
An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.
NASA Astrophysics Data System (ADS)
Liu, X.; Currie, C. A.
2017-12-01
The subducted Farallon plate is believed to have evolved to a flat geometry underneath North America plate during Late Cretaceous, triggering Laramide deformation within the continental interior. However, the mechanism that caused the oceanic slab to flatten and the factors that control the flat-slab depth remain uncertain. In this work, we use 2D thermal-mechanical models using the SOPALE code to study the subduction dynamics from 90 Ma to 50 Ma. During this period, an oceanic plateau (Shatsky Conjugate) is inferred to have subducted beneath western North America and interacted with the continental lithosphere, including areas of thicker lithosphere such as the Colorado Plateau and Wyoming Craton. Based on seismic tomography and plate reconstruction data sets, we built a set of models to examine the influence of the structure and rheology of the oceanic and continental plates on slab dynamics. Models include a 600 km wide oceanic plateau consisting of 18 km thick crust and a 36 km thick underlying harzburgite layer, and we ran a series of model experiments to test different continental thicknesses (80 km, 120 km, & 180 km) and continental mantle lithosphere strengths (approximating conditions from wet olivine to dry olivine). Consistent with earlier studies, we find that creation of a long flat slab requires a buoyant oceanic plateau (i.e., non-eclogitized crust) and trenchward motion of the continent. In addition, our models demonstrate the upper plate has an important control on slab dynamics. A flat slab requires either a thin continent or, if the continent is thick, its mantle lithosphere must be relatively weak so that it can be displaced by the flattening slab. The depth of the flat slab is mainly controlled by two factors: (1) the continental thickness and (2) the strength of the continental mantle lithosphere. For the same initial lithosphere thickness (120 km), a shallower flat slab ( 90 km depth) occurs for the weakest mantle lithosphere ( wet olivine) compared to 120 km depth for strong ( dry) mantle lithosphere because the flat slab removes the lowermost weak lithosphere. Moreover, an even deeper slab ( 130 km) can be found underneath the weakest but thicker continental lithosphere (180 km). Future models will focus on how the flat slab may induce hydration and deformation for the overriding continental plate.
NASA Technical Reports Server (NTRS)
Horai, K.-I.
1981-01-01
A theory of the measurement of the thermal diffusivity of a sample by the modified Angstrom method is developed for the case in which radiative heat loss from the end surface of the sample is not negligible, and applied to measurements performed on lunar samples. Formulas allowing sample thermal diffusivity to be determined from the amplitude decay and phase lag of a temperature wave traveling through the sample are derived for a flat disk sample for which only heat loss from the end surface is important, and a sample of finite diameter and length for which heat loss through the end and side surfaces must be considered. It is noted that in the case of a flat disk, measurements at a single angular frequency of the temperature wave are sufficient, while the sample of finite diameter and length requires measurements at two discrete angular frequencies. Comparison of the values of the thermal diffusivities of two lunar samples of dimensions approximately 1 x 1 x 2 cm derived by the present methods and by the Angstrom theory for a finite bar reveals them to differ by not more than 5%, and indicates that more refined data are required as the measurement theory becomes more complicated.
We describe an inexpensive, compact parallel plate diffusion denuder coupled capillary IC system for the determination of soluble ionogenic atmospheric trace gases. The active sampling area (0.6×10 cm) of the denuder is formed in a novel manner by thermally bonding silica ge...
NASA Astrophysics Data System (ADS)
Cai, Chunpei
2013-10-01
In this paper, we investigate highly rarefied gaseous jet flows out of a planar exit and impinging at a normally set flat plate. Especially, we concentrate on the plate center stagnation point pressure and heat flux coefficients. For a specular reflective plate, the stagnation point pressure coefficient can be represented using two non-dimensional factors: the characteristic gas exit speed ratio S0 and the geometry ratio of H/L, where H is the planar exit semi-height and L is the center-to-center distance from the exit to the plate. For a diffuse reflective plate, the stagnation point pressure and heat flux coefficients involve an extra factor of T0/Tw, i.e., the ratio of exit gas temperature to the plate wall temperature. These results allow us to develop four diagrams, from which we can conveniently obtain the pressure and heat flux coefficients for the stagnation impingement point, at the collisionless flow limit. After normalization with these maximum coefficients, the pressure and heat flux coefficient distributions along the surface essentially degenerate to almost identical curves. As a result, with known plate surface pressure coefficient distributions and these diagrams, we can conveniently construct the heat flux coefficient distributions along the plate surface, and vice versa.
Determining passive cooling limits in CPV using an analytical thermal model
NASA Astrophysics Data System (ADS)
Gualdi, Federico; Arenas, Osvaldo; Vossier, Alexis; Dollet, Alain; Aimez, Vincent; Arès, Richard
2013-09-01
We propose an original thermal analytical model aiming to predict the practical limits of passive cooling systems for high concentration photovoltaic modules. The analytical model is described and validated by comparison with a commercial 3D finite element model. The limiting performances of flat plate cooling systems in natural convection are then derived and discussed.
NASA Astrophysics Data System (ADS)
Pal, Debashis; Chakraborty, Suman
2015-05-01
We delineate the dynamics of temporally and spatially periodic flow over a flat plate originating out of periodic thermoviscous expansion of the fluid, as a consequence of a thermal wave applied on the plate wall. We identify two appropriate length scales, namely, the wavelength of the temperature wave and the thermal penetration depth, so as to bring out the complex thermo-physical interaction between the fluid and the solid boundaries. Our results reveal that the entire thermal fluctuation and the subsequent thermoviscous actuation remain confined within a "thermo-viscous boundary layer." Based on the length scales and the analytical solution for the temperature field, we demarcate three different layers, namely, the wall layer (which is further sub-divided into various sub-layers, based on the temperature field), the intermediate layer, and the outer layer. We show that the interactions between the pressure oscillation and temperature-dependent viscosity yield a unidirectional time-averaged (mean) flow within the wall layer opposite to the direction of motion of the thermal wave. We also obtain appropriate scalings for the time-averaged velocity, which we further substantiate by full scale numerical simulations. Our analysis may constitute a new design basis for simultaneous control of the net throughput and mixing over a solid boundary, by the judicious employment of a traveling temperature wave.
NASA Astrophysics Data System (ADS)
Tlijani, M.; Ben Younes, R.; Durastanti, J. F.; Boudenne, A.
2010-11-01
A periodic method is used to determine simultaneously both thermal conductivity and diffusivity of various insulate materials at room temperature. The sample is placed between two metallic plates and temperature modulation is applied on the front side of one of the metallic plates. The temperature at the front and rear sides of both plates is measured and the experimental transfer function is calculated. The theoretical thermal heat transfer function is calculated by the quadripole method. Thermal conductivity and diffusivity are simultaneously identified from both real and imaginary parts of the experimental transfer function. The thermophysical parameters of several wood scale samples obtained from palm wood trees and common trees with unknown thermal properties (E) with different thicknesses were studied. The value identified for the thermal conductivity 0.03 Wm-1 K-1 compared with different insulate solid material such as glass, glass-wool and PVC is much better and close to the air conductivity, It allowed us to consider the wood scale extracted from palm wood trees, bio and renewable material as good heat insulator aiming in the future as a use for lightness applications, insulating or as a reinforcement in a given matrix. These potentialities still unknown are stengthened by the enormous quantity of such kind of wood gathered annually from palm trees and considered as wastes.
Transient Evolution of a Planar Diffusion Flame Aft of a Translating Flat Plate
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.
2003-01-01
The high degree of spatial symmetry of a planar diffusion flame affords great simplifications for experimental and modeling studies of gaseous fuel combustion. Particularly, in a microgravity environment, where buoyancy effects are negligible, an effectively strain-rate-free, vigorous flame may be obtained. Such a flame can also provide long residence times and large length scales for practical probing of flame structures and soot processes. This 2-D numerical study explores the feasibility of establishing such a planar diffusion flame in an enclosed container utilizing a realistic test protocol for a microgravity experiment. Fuel and oxygen mixtures, initially segregated into two half-volumes of a squat rectangular container by a thin separator, are ignited as soon as a flammable mixture is formed in the wake of the separator withdrawn in the centerplane. A triple-flame ensues that propagates behind the trailing edge of the separator. The results of calculations show that the mechanically- and thermally-induced convection decays in about two seconds. The establishment of a planar diffusion flame after this period seems feasible in the central region of the container with sufficient quantities of reactants left over for subsequent studies. An analysis of the flame initiation and formation process suggests how the feasibility of creating such a flame can be further improved.
Effect of Backing Plate Thermal Property on Friction Stir Welding of 25-mm-Thick AA6061
NASA Astrophysics Data System (ADS)
Upadhyay, Piyush; Reynolds, Anthony
2014-04-01
By using backing plates made out of materials with widely varying thermal diffusivity this work seeks to elucidate the effects of the root side thermal boundary condition on weld process variables and resulting joint properties. Welds were made in 25.4-mm-thick AA6061 using ceramic, titanium, steel, and aluminum as backing plate (BP) material. Welds were also made using a "composite backing plate" consisting of longitudinal narrow strip of low diffusivity material at the center and two side plates of high diffusivity aluminum. Stir zone temperature during the welding was measured using two thermocouples spot welded at the core of the probe: one at the midplane height and another near the tip of the probe corresponding to the root of the weld. Steady state midplane probe temperatures for all the BPs used were found to be very similar. Near root peak temperature, however, varied significantly among weld made with different BPs all other things being equal. Whereas the near root and midplane temperature were the same in the case of ceramic backing plate, the root peak temperature was 318 K (45 °C) less than the midplane temperature in the case of aluminum BP. The trends of nugget hardness and grain size in through thickness direction were in agreement with the measured probe temperatures. Hardness and tensile test results show that the use of composite BP results in stronger joint compared to monolithic steel BP.
The effect of a realistic thermal diffusivity on numerical model of a subducting slab
NASA Astrophysics Data System (ADS)
Maierova, P.; Steinle-Neumann, G.; Cadek, O.
2010-12-01
A number of numerical studies of subducting slab assume simplified (constant or only depth-dependent) models of thermal conductivity. The available mineral physics data indicate, however, that thermal diffusivity is strongly temperature- and pressure-dependent and may also vary among different mantle materials. In the present study, we examine the influence of realistic thermal properties of mantle materials on the thermal state of the upper mantle and the dynamics of subducting slabs. On the basis of the data published in mineral physics literature we compile analytical relationships that approximate the pressure and temperature dependence of thermal diffusivity for major mineral phases of the mantle (olivine, wadsleyite, ringwoodite, garnet, clinopyroxenes, stishovite and perovskite). We propose a simplified composition of mineral assemblages predominating in the subducting slab and the surrounding mantle (pyrolite, mid-ocean ridge basalt, harzburgite) and we estimate their thermal diffusivity using the Hashin-Shtrikman bounds. The resulting complex formula for the diffusivity of each aggregate is then approximated by a simpler analytical relationship that is used in our numerical model as an input parameter. For the numerical modeling we use the Elmer software (open source finite element software for multiphysical problems, see http://www.csc.fi/english/pages/elmer). We set up a 2D Cartesian thermo-mechanical steady-state model of a subducting slab. The model is partly kinematic as the flow is driven by a boundary condition on velocity that is prescribed on the top of the subducting lithospheric plate. Reology of the material is non-linear and is coupled with the thermal equation. Using the realistic relationship for thermal diffusivity of mantle materials, we compute the thermal and flow fields for different input velocity and age of the subducting plate and we compare the results against the models assuming a constant thermal diffusivity. The importance of the realistic description of thermal properties in models of subducted slabs is discussed.
Solar Thermal Utilization: Past, Present and Future
2010-09-01
SO•C NON-FOCUSSING FLAT PLATE / (FPC) 100- 150•C For low temperature 50- 200•C COMPOUND applications PARABOLIC EVACUATED CONCENTRATOR ~ (ETC...2030 Ø 200GW BY 2050 Ø 20 MILLION SQ.METER SOLAR THERMAL COLLECTORS (20GW power) Ø 20 MILLION SOLAR LIGHTS LAUNCHING OF SOLAR INDIA SOLAR THERMAL...Temperature (20oC- 80oC) NALSUN ApplicationsThermal Conversion range SOLAR ENERGY COLLECTORS 40- GO•C UNGLAZED COLLECTORS 60- 90•C SOLAR POND 60
NASA Astrophysics Data System (ADS)
Rushi Kumar, B.; Jayakar, R.; Vijay Kumar, A. G.
2017-11-01
An exact analysis of the problem of free convection flow of a viscous incompressible chemically reacting fluid past an infinite vertical plate with the flow due to impulsive motion of the plate with Newtonian heating in the presence of thermal radiation and variable mass diffusion is performed. The resulting governing equations were tackled by Laplace transform technique. Finally the effects of pertinent flow parameters such as the radiation parameter, chemical reaction parameter, buoyancy ratio parameter, thermal Grashof number, Schmidt number, Prandtl number and time on the velocity, temperature, concentration and skin friction for both aiding and opposing flows were examined in detail when Pr=0.71(conducting air) and Pr=7.0(water).
Study on convection improvement of standard vacuum tube
NASA Astrophysics Data System (ADS)
He, J. H.; Du, W. P.; Qi, R. R.; He, J. X.
2017-11-01
For the standard all-glass vacuum tube collector, enhancing the vacuum tube axial natural convection can improve its thermal efficiency. According to the study of the standard all-glass vacuum tube, three kinds of guide plates which can inhibit the radial convection and increase axial natural convection are designed, and theory model is established. Experiments were carried out on vacuum tubes with three types of baffles and standard vacuum tubes without the improvement. The results show that T-type guide plate is better than that of Y-type guide plate on restraining convection and increasing axial radial convection effect, Y type is better than that of flat plate type, all guide plates are better than no change; the thermal efficiency of the tube was 2.6% higher than that of the unmodified standard vacuum tube. The efficiency of the system in the experiment can be increased by 3.1%.
NASA Astrophysics Data System (ADS)
Fu, Yubin; Liu, Jia; Su, Jia; Zhao, Zhongkai; Liu, Yang; Xu, Qian
2012-03-01
Microbial fuel cell (MFC) on the ocean floor is a kind of novel energy- harvesting device that can be developed to drive small instruments to work continuously. The shape of electrode has a great effect on the performance of the MFC. In this paper, several shapes of electrode and cell structure were designed, and their performance in MFC were compared in pairs: Mesh (cell-1) vs. flat plate (cell-2), branch (cell-3) vs. cylinder (cell-4), and forest (cell-5) vs. disk (cell-6) FC. Our results showed that the maximum power densities were 16.50, 14.20, 19.30, 15.00, 14.64, and 9.95 mWm-2 for cell-1, 2, 3, 4, 5 and 6 respectively. And the corresponding diffusion-limited currents were 7.16, 2.80, 18.86, 10.50, 18.00, and 6.900 mA. The mesh and branch anodes showed higher power densities and much higher diffusion-limited currents than the flat plate and the cylinder anodes respectively due to the low diffusion hindrance with the former anodes. The forest cathode improved by 47% of the power density and by 161% of diffusion-limited current than the disk cathode due to the former's extended solid/liquid/gas three-phase boundary. These results indicated that the shape of electrode is a major parameter that determining the diffusion-limited current of an MFC, and the differences in the electrode shape lead to the differences in cell performance. These results would be useful for MFC structure design in practical applications.
An experimental investigation with artificial sunlight of a solar hot-water heater
NASA Technical Reports Server (NTRS)
Simon, F. F.
1976-01-01
Thermal performance measurements were made of a commercial solar hot water heater in a solar simulator to determine basic performance characteristics of a traditional type of flat plate collector, with and without side reflectors (to increase the solar flux). Information on each of the following was obtained; (1) the effect of flow and incidence angle on the efficiency of a flat plate collector (but only without side reflectors); (2) transient performance under flow and nonflow conditions; (3) the effectiveness of reflectors to increase collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning; and (4) the limits of applicability of a collector efficiency correlation based on the Hottel Whillier equation.
NASA Technical Reports Server (NTRS)
Deissler, R. G.; Loeffler, A. L., Jr.
1959-01-01
A previous analysis of turbulent heat transfer and flow with variable fluid properties in smooth passages is extended to flow over a flat plate at high Mach numbers, and the results are compared with experimental data. Velocity and temperature distributions are calculated for a boundary layer with appreciative effects of frictional heating and external heat transfer. Viscosity and thermal conductivity are assumed to vary as a power or the temperature, while Prandtl number and specific heat are taken as constant. Skin-friction and heat-transfer coefficients are calculated and compared with the incompressible values. The rate of boundary-layer growth is obtained for various Mach numbers.
Thermal Analysis of Antenna Structures. Part 2: Panel Temperature Distribution
NASA Technical Reports Server (NTRS)
Schonfeld, D.; Lansing, F. L.
1983-01-01
This article is the second in a series that analyzes the temperature distribution in microwave antennas. An analytical solution in a series form is obtained for the temperature distribution in a flat plate analogous to an antenna surface panel under arbitrary temperature and boundary conditions. The solution includes the effects of radiation and air convection from the plate. Good agreement is obtained between the numerical and analytical solutions.
NASA Astrophysics Data System (ADS)
Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa
2018-05-01
The nature of Casson fluid on MHD free convective flow of over an impulsively started infinite vertically inclined plate in presence of thermal diffusion (Soret), thermal radiation, heat and mass transfer effects is studied. The basic governing nonlinear coupled partial differential equations are solved numerically using finite element method. The relevant physical parameters appearing in velocity, temperature and concentration profiles are analyzed and discussed through graphs. Finally, the results for velocity profiles and the reduced Nusselt and Sherwood numbers are obtained and compared with previous results in the literature and are found to be in excellent agreement. Applications of the present study would be useful in magnetic material processing and chemical engineering systems.
Diffusion of drag-reducing polymer solutions within a rough-walled turbulent boundary layer
NASA Astrophysics Data System (ADS)
Elbing, Brian R.; Dowling, David R.; Perlin, Marc; Ceccio, Steven L.
2010-04-01
The influence of surface roughness on diffusion of wall-injected, drag-reducing polymer solutions within a turbulent boundary layer was studied with a 0.94 m long flat-plate test model at speeds of up to 10.6 m s-1 and Reynolds numbers of up to 9×106. The surface was hydraulically smooth, transitionally rough, or fully rough. Mean concentration profiles were acquired with planar laser induced fluorescence, which was the primary flow diagnostic. Polymer concentration profiles with high injection concentrations (≥1000 wppm) had the peak concentration shifted away from the wall, which was partially attributed to a lifting phenomenon. The diffusion process was divided into three zones—initial, intermediate, and final. Studies of polymer injection into a polymer ocean at concentrations sufficient for maximum drag reduction indicated that the maximum initial zone length is of the order of 100 boundary layer thicknesses. The intermediate zone results indicate that friction velocity and roughness height are important scaling parameters in addition to flow and injection conditions. Lastly, the current results were combined with those in Petrie et al. ["Polymer drag reduction with surface roughness in flat-plate turbulent boundary layer flow," Exp. Fluids 35, 8 (2003)] to demonstrate that the influence of polymer degradation increases with increased surface roughness.
NASA Astrophysics Data System (ADS)
Elbing, Brian; Perlin, Marc; Dowling, David; Solomon, Michael; Ceccio, Steven
2008-11-01
Two experiments were conducted to investigate polymer drag reduction (PDR) within high Reynolds number (to 200 million based on downstream distance), rough-wall turbulent boundary layers. The first experiment was conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate at speeds to 20 m/s with the surface hydraulically smooth and fully rough. Local skin-friction measurements on the smooth and rough surfaces had maximum PDR levels of 65 and 75 percent, respectively. However, PDR decreased with increasing downstream distance and flow speed more rapidly on the rough surface, and at the top speed no measureable level of PDR was observed. The roughness-induced increased diffusion was quantified with near-wall concentration measurements and the second experiment, which measured concentration profiles on a 0.94 m long flat-plate with three surface conditions: smooth, 240-grit, and 60-grit sandpaper. The increased diffusion does not fully explain the smooth-rough PDR differences observed in the first experiment. Rheological analysis of drawn samples from the first experiment indicates that polymer degradation (chain scission) could be responsible for the remaining loss of rough-wall PDR. These results have implications for the cost effectiveness of PDR for surface ships.
Vortex detection through pressure measurements
NASA Astrophysics Data System (ADS)
Bhide, Aditi
Vortex Generators (VGs) are known to hinder boundary layer separation, a frequently unwanted phenomenon when it comes to external flows over aircraft wings, on-ground vehicles or internal flows within pipes, diffusers and turbomachinery. Boundary layer separation leads to loss of lift, higher drag and subsequently, energy losses. The vortices generated inhibit boundary layer separation. This thesis is an effort to discern the strength and location of these generated vortices using an array of VGs over a flat plate. Such information may be useful in the future in active control systems for streamwise vortices, which have been proposed to relaminarize turbulent boundary layers. Flow over flat plates, simulated using wind tunnel experiments, is studied for pressure variation using an array of pressure ports mounted over the plate and connected to suitable pressure sensors. Pressure coefficient and Velocity maps are generated using the data obtained from the Kirsten Wind Tunnel data acquisition system. These represent the nature of the flow field over the plate and are used to locate the vortices and determine their strength. It was found that the vortices can be detected using this method and their strength and location can be estimated.
Film boiling of mercury droplets
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.
1975-01-01
Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.
NASA Technical Reports Server (NTRS)
Shih, K.
1977-01-01
The thermal performance of a flat plate solar collector that uses liquid as the heat transfer medium was investigated under simulated conditions. The test conditions and thermal performance data obtained during the tests are presented in tabular form, as well as in graphs. Data obtained from a time constant test and incident angle modifier test, conducted to determine transient effect and the incident angle effect on the collector, are included.
FISSILE MATERIAL AND FUEL ELEMENTS FOR NEUTRONIC REACTORS
Shaner, B.E.
1961-08-15
The fissile material consists of about 64 to 70% (weight) zirconium dioxide, 15 to 19% uranium dioxide, and 8 to 17% calcium oxide. The fissile material is formed into sintered composites which are disposed in a compartmented fuel element, comprising essentially a flat filler plate having a plurality of compartments therein, enclosed in cladding plates of the same material as the filler plate. The resultant fuel has good resistance to corrosion in high temperature pressurized water, good dimensional stability to elevated temperatures, and good resistance to thermal shock. (AEC)
Towards a flat 45%-efficient concentrator module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohedano, Rubén, E-mail: rmohedano@lpi-europe.com; Hernandez, Maikel; Vilaplana, Juan
2015-09-28
The so-called CCS{sup 4}FK is an ultra-flat photovoltaic system of high concentration and high efficiency, with potential to convert, ideally, the equivalent of a 45% of direct solar radiation into electricity by optimizing the usage of sun spectrum and by collecting part of the diffuse radiation, as a flat plate does. LPI has recently finished a design based on this concept and is now developing a prototype based on this technology, thanks to the support of FUNDACION REPSOL-Fondo de Emprendedores, which promotes entrepreneur projects in different areas linked to energy. This works shows some details of the actual design andmore » preliminary potential performance expected, according to accurate spectral simulations.« less
Towards a flat 45%-efficient concentrator module
NASA Astrophysics Data System (ADS)
Mohedano, Rubén; Hernandez, Maikel; Vilaplana, Juan; Chaves, Julio; Miñano, Juan C.; Benitez, Pablo; Sorgato, S.; Falicoff, Waqidi
2015-09-01
The so-called CCS4FK is an ultra-flat photovoltaic system of high concentration and high efficiency, with potential to convert, ideally, the equivalent of a 45% of direct solar radiation into electricity by optimizing the usage of sun spectrum and by collecting part of the diffuse radiation, as a flat plate does. LPI has recently finished a design based on this concept and is now developing a prototype based on this technology, thanks to the support of FUNDACION REPSOL-Fondo de Emprendedores, which promotes entrepreneur projects in different areas linked to energy. This works shows some details of the actual design and preliminary potential performance expected, according to accurate spectral simulations.
Increasing thermal efficiency of solar flat plate collectors
NASA Astrophysics Data System (ADS)
Pona, J.
A study of methods to increase the efficiency of heat transfer in flat plate solar collectors is presented. In order to increase the heat transfer from the absorber plate to the working fluid inside the tubes, turbulent flow was induced by installing baffles within the tubes. The installation of the baffles resulted in a 7 to 12% increase in collector efficiency. Experiments were run on both 1 sq ft and 2 sq ft collectors each fitted with either slotted baffles or tubular baffles. A computer program was run comparing the baffled collector to the standard collector. The results obtained from the computer show that the baffled collectors have a 2.7% increase in life cycle cost (LCC) savings and a 3.6% increase in net cash flow for use in domestic hot water systems, and even greater increases when used in solar heating systems.
Slip effects on MHD flow and heat transfer of ferrofluids over a moving flat plate
NASA Astrophysics Data System (ADS)
Ramli, Norshafira; Ahmad, Syakila; Pop, Ioan
2017-08-01
In this study, the problem of MHD flow and heat transfer of ferrofluids over a moving flat plate with slip effect and uniform heat flux is considered. The governing ordinary differential equations are solved via shooting method. The effect of slip parameter on the dimensionless velocity, temperature, skin friction and Nusselt numbers are numerically studied for the three selected ferroparticles; magnetite (Fe3O4), cobalt ferrite (CoFe2O4) and Mn-Zn ferrite (Mn-ZnFe2O4) with water-based fluid. The results indicate that dual solutions exist for a plate moving towards the origin. It is found that the slip process delays the boundary layer separation. Moreover, the velocity and thermal boundary-layer thicknesses decrease in the first solution while increase with the increase of the value of slip parameters in second solution.
NASA Astrophysics Data System (ADS)
Hameury, J.; Koenen, A.; Hay, B.; Wu, J.; Hammerschmidt, U.; Rafeld, E. K.; Pennewitz, E.; Turzó-András, E.; Strnad, R.; Blahut, A.
2018-01-01
The selection of a material for making the hot and cold plates of high-temperature guarded hot plates (HTGHPs) working up to 800°C is still an issue. The material must be machinable, have a high mechanical stability to keep the high level of flatness of the plates and have a high thermal conductivity and a high resistance to oxidation when used in air. Nickel 201 alloy has been used in several instruments, but has shown, sometimes, problems of mechanical stability. The total hemispherical emissivity of the plates must be higher than 0.8 as recommended by the standards. Three ceramic materials, a silicon infiltrated silicon carbide (SiSiC), a machinable aluminum nitride and a sintered aluminum nitride (AlN) with high thermal conductivity claimed at ambient temperature, were selected for tests in thermal conductivity and opacity to thermal radiation. Three paints withstanding high temperatures were tested in total hemispherical emissivity and durability at high temperature. Above 600°C, Nickel 201 alloy has a higher thermal conductivity than the three ceramics. Below 600°C, the SiSiC and the sintered AlN have a thermal conductivity significantly higher than Nickel 201, but the sintered AlN shows a wide transparency spectral band at short wavelengths (below 6.5 μ m). Above 300°C, the three paints have a total hemispherical emissivity above 0.8. One of the paints has polluted the specimens of an insulation material tested in thermal conductivity up to 650°C. The other two can be recommended to coat the hot and cold plates of HTGHPs used up to 800°C.
Magnetostrictive clad steel plates for high-performance vibration energy harvesting
NASA Astrophysics Data System (ADS)
Yang, Zhenjun; Nakajima, Kenya; Onodera, Ryuichi; Tayama, Tsuyoki; Chiba, Daiki; Narita, Fumio
2018-02-01
Energy harvesting technology is becoming increasingly important with the appearance of the Internet of things. In this study, a magnetostrictive clad steel plate for harvesting vibration energy was proposed. It comprises a cold-rolled FeCo alloy and cold-rolled steel joined together by thermal diffusion bonding. The performances of the magnetostrictive FeCo clad steel plate and conventional FeCo plate cantilevers were compared under bending vibration; the results indicated that the clad steel plate construct exhibits high voltage and power output compared to a single-plate construct. Finite element analysis of the cantilevers under bending provided insights into the magnetic features of a clad steel plate, which is crucial for its high performance. For comparison, the experimental results of a commercial piezoelectric bimorph cantilever were also reported. In addition, the cold-rolled FeCo and Ni alloys were joined by thermal diffusion bonding, which exhibited outstanding energy harvesting performance. The larger the plate volume, the more the energy generated. The results of this study indicated not only a promising application for the magnetostrictive FeCo clad steel plate as an efficient energy harvester, related to small vibrations, but also the notable feasibility for the formation of integrated units to support high-power trains, automobiles, and electric vehicles.
Flat-plate techniques for measuring reflectance of macro-algae (Ulva curvata)
Ramsey, Elijah W.; Rangoonwala, Amina; Thomsen, Mads Solgaard; Schwarzschild, Arthur
2012-01-01
We tested the consistency and accuracy of flat-plate spectral measurements (400–1000 nm) of the marine macrophyte Ulva curvata. With sequential addition of Ulva thallus layers, the reflectance progressively increased from 6% to 9% with six thalli in the visible (VIS) and from 5% to 19% with ten thalli in the near infrared (NIR). This progressive increase was simulated by a mathematical calculation based on an Ulva thallus diffuse reflectance weighted by a transmittance power series. Experimental and simulated reflectance differences that were particularly high in the NIR most likely resulted from residual water and layering structure unevenness in the experimental progression. High spectral overlap existed between fouled and non-fouled Ulva mats and the coexistent lagoon mud in the VIS, whereas in the NIR, spectral contrast was retained but substantially dampened by fouling.
Operation and maintenance of the SOL-DANCE building solar system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-07-29
The Sol-Dance building solar heating system consists of 136 flat plate solar collectors divided evenly into two separate building systems, each providing its total output to a common thermal storage tank. An aromatic base transformer oil is circulated through a closed loop consisting of the collectors and a heat exchanger. Water from the thermal storage tank is passed through the same heat exchanger where heat from the oil is given up to the thermal storage. Back-up heat is provided by air source heat pumps. Heat is transferred from the thermal storage to the living space by liquid-to-air coils in themore » distribution ducts. Separate domestic hot water systems are provided for each building. The system consists of 2 flat plate collectors with a single 66 gallon storage tank with oil circulated in a closed loop through an external tube and shell heat exchanger. Some problems encountered and lessons learned during the project construction are listed as well as beneficial aspects and a project description. As-built drawings are provided as well as system photographs. An acceptance test plan is provided that checks the collection, thermal storage, and space and water heating subsystems and the total system installation. Predicted performance data are tabulated. Details are discussed regarding operation, maintenance, and repair, and manufacturers data are provided. (LEW)« less
Micromachined silicon electrostatic chuck
Anderson, Robert A.; Seager, Carleton H.
1996-01-01
An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.
An Idealized Direct-Contact Biomass Pyrolysis Reactor Model
NASA Technical Reports Server (NTRS)
Miller, R. S.; Bellan, J.
1996-01-01
A numerical study is performed in order to assess the performance of biomass pyrolysis reactors which utilize direct particle-wall thermal conduction heating. An idealized reactor configuration consisting of a flat-plate turbulent boundary layer flow with particle convection along the heated wall and incorporating particle re-entrainment is considered.
Background Paper on Aerospace & Missile Needs
2006-05-01
Micro- welding based coatings Trivalent chromium plated coatings Nano-composite Ni-P and Co-P based plated coatings Thermal diffusion coatings Plasma...working in conjunction with Advanced Surfaces and Processes, Inc. to determine the applicability of another type of ESD process. Trivalent Chromium ...Plating: Trivalent chromium is considered to be much less toxic than hexavalent chromium . Consequently, trivalent chromium coatings are being
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pech-May, Nelson Wilbur; Department of Applied Physics, CINVESTAV Unidad Mérida, carretera Antigua a Progreso km6, A.P. 73 Cordemex, Mérida Yucatán 97310, México; Mendioroz, Arantza
2014-10-15
In this work, we have extended the front-face flash method to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of semitransparent plates. A complete theoretical model that allows calculating the front surface temperature rise of the sample has been developed. It takes into consideration additional effects, such as multiple reflections of the heating light beam inside the sample, heat losses by convection and radiation, transparency of the sample to infrared wavelengths, and heating pulse duration. Measurements performed on calibrated solids, covering a wide range of absorption coefficients (from transparent to opaque) and thermal diffusivities, validate the proposed method.
High stability wavefront reference source
Feldman, M.; Mockler, D.J.
1994-05-03
A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam is disclosed. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave. 7 figures.
High stability wavefront reference source
Feldman, Mark; Mockler, Daniel J.
1994-01-01
A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave.
Enhanced heat transfer characteristics of viscous liquid flows in a chevron plate heat exchanger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muley, A.; Manglik, R.M.; Metwally, H.M.
1999-11-01
Thermal processing and manufacturing in the chemical, foods, pharmaceutical, hygiene products, and biochemical industries invariably involve heating and cooling of highly viscous fluid media. These fluids tend to flow in the low Reynolds number regime, inherently have relatively low heat transfer coefficients, and are often temperature sensitive and prone to thermal degradation in the presence of large temperature differences. In recent times, plate heat exchangers (PHEs) have found increasing usage in such applications, primarily due to their features that promote enhanced heat transfer, and provide for the flexibility in altering their unit thermal size with ease, close approach temperature operation,more » and mitigation of thermal degradation of the process fluid. Here, steady-state heat transfer and pressure drop data for single-phase viscous fluid flows (2 {le} Re {le} 400) in a single-pass U-type counterflow plate heat exchanger (PHE) with chevron plates are presented. With vegetable oil as test fluid (130 {lt} Pr {lt} 290), three different plate arrangements are employed: two symmetric ({beta} = 30 deg/30 deg and 60 deg/60 deg) and one mixed ({beta} = 30 deg/60 deg). The effects of chevron angle {beta}, corrugation aspect ratio {gamma}, and flow conditions (Re, Pr, {mu}/{mu}{sub w}) on Nu and f characteristics of the PHE are delineated. The results show a rather complex influence of plate surface corrugations on the enhanced thermal-hydraulic behavior. Relative to the performance of equivalent flat-plate packs, chevron plates sustain up to 2.9 times higher heat transfer rates on a fixed geometry and constant pumping power basis, and require up to 48% less surface area for the fixed heat load and pressure drop constraint.« less
Transitional and turbulent flat-plate boundary layers with heat transfer
NASA Astrophysics Data System (ADS)
Wu, Xiaohua; Moin, Parviz
2010-11-01
We report on our direct numerical simulation of two incompressible, nominally zero-pressure-gradient flat-plate boundary layers from momentum thickness Reynolds number 80 to 1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number=1. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cfdeviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Turbulent Prandtl number t peaks at the wall. Preponderance of hairpin vortices is observed in both the transitional and turbulent regions of the boundary layers. In particular, the internal structure of merged turbulent spots is hairpin forest; the internal structure of infant turbulent spots is hairpin packet. Numerous hairpin vortices are readily detected in both the near-wall and outer regions of the boundary layers up to momentum thickness Reynolds number 1950. This suggests that the hairpin vortices in the turbulent region are not simply the aged hairpin forests convected from the upstream transitional region. Temperature iso-surfaces in the companion thermal boundary layers are found to be a useful tracer in identifying hairpin vortex structures.
Evaluation of solar thermal driven cooling system in office buildings in Saudi Arabia
NASA Astrophysics Data System (ADS)
Linjawi, Majid T.; Talal, Qazi; Al-Sulaiman, Fahad A.
2017-11-01
In this study solar driven absorption chiller is used to reduce the peak cooling load in office buildings in Saudi Arabia for different selected cities. The study is conducted for six cities of Abha, Dhahran, Hail, Jeddah, Nejran and Riyadh under three operating durations of 4, 6, and 8 hours using flat plate or evacuated tube collectors. The energy analysis concluded that flat plate collectors are better than evacuated tube collectors. However, the results from economic analysis suggest that while proposing a gas fired absorption chiller will reduce running costs, further reduction by using solar collectors is not feasible because of its high initial cost. At the best case scenario the Net Present Value of a 10 Ton Absorption chiller operated by natural gas boiler and two large flat plate collectors (12m2 each) running for 8 hours/day, 5days/week has a value of 117,000 and Internal Rate of Return (IRR) of 12%. Solar driven absorption chiller could be more feasible if the gas prices increases or the solar collector prices decreases significantly. Finally, government economic incentives and taxes are recommended to provide a boost for the feasibility of such projects.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Moorthy, Jayashree
1995-01-01
A time-domain study of the random response of a laminated plate subjected to combined acoustic and thermal loads is carried out. The features of this problem also include given uniform static inplane forces. The formulation takes into consideration a possible initial imperfection in the flatness of the plate. High decibel sound pressure levels along with high thermal gradients across thickness drive the plate response into nonlinear regimes. This calls for the analysis to use von Karman large deflection strain-displacement relationships. A finite element model that combines the von Karman strains with the first-order shear deformation plate theory is developed. The development of the analytical model can accommodate an anisotropic composite laminate built up of uniformly thick layers of orthotropic, linearly elastic laminae. The global system of finite element equations is then reduced to a modal system of equations. Numerical simulation using a single-step algorithm in the time-domain is then carried out to solve for the modal coordinates. Nonlinear algebraic equations within each time-step are solved by the Newton-Raphson method. The random gaussian filtered white noise load is generated using Monte Carlo simulation. The acoustic pressure distribution over the plate is capable of accounting for a grazing incidence wavefront. Numerical results are presented to study a variety of cases.
Thermal performance evaluation of the Calmac (liquid) solar collector
NASA Technical Reports Server (NTRS)
Usher, H.
1978-01-01
The procedures used and the results obtained during the evaluation test program on the S. N. 1, (liquid) solar collector are presented. The flat plate collector uses water as the working fluid. The absorber plate is aluminum with plastic tubes coated with urethane black. The glazing consists of .040 in fiberglass reinforced polyester. The collector weight is 78.5 pounds with overall external dimensions of approximately 50.3in. x 98.3in. x 3.8in. The following information is given: thermal performance data under simulated conditions, structural behavior under static loading, and the effects of long term exposure to natural weathering. These tests were conducted using the MSFC Solar Simulator.
NASA Technical Reports Server (NTRS)
Kaufman, L. G., II; Johnson, C. B.
1979-01-01
Surface pressure distributions and heat transfer distributions were obtained on wing half-models in regions where three dimensional separated flow effects are prominent. Unswept and 50 deg and 70 deg swept semispan wings were tested, for trailing-edge-elevon ramp angles of 0 deg, 10 deg, 20 deg, and 30 deg, with and without cylindrical and flat plate center bodies and with and without various wing-tip plates and fins. The data, obtained for a free stream Mach number of 6 and a wing-root-chord Reynolds number of 18.5 million, reveal considerably larger regions of increased pressure and thermal loads than would be anticipated using non-separated flow analyses.
Corrugated cover plate for flat plate collector
Hollands, K. G. Terry; Sibbitt, Bruce
1978-01-01
A flat plate radiant energy collector is providing having a transparent cover. The cover has a V-corrugated shape which reduces the amount of energy reflected by the cover away from the flat plate absorber of the collector.
Flat-plate solar array project process development area: Process research of non-CZ silicon material
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1986-01-01
Several different techniques to simultaneously diffuse the front and back junctions in dendritic web silicon were investigated. A successful simultaneous diffusion reduces the cost of the solar cell by reducing the number of processing steps, the amount of capital equipment, and the labor cost. The three techniques studied were: (1) simultaneous diffusion at standard temperatures and times using a tube type diffusion furnace or a belt furnace; (2) diffusion using excimer laser drive-in; and (3) simultaneous diffusion at high temperature and short times using a pulse of high intensity light as the heat source. The use of an excimer laser and high temperature short time diffusion experiment were both more successful than the diffusion at standard temperature and times. The three techniques are described in detail and a cost analysis of the more successful techniques is provided.
NASA Astrophysics Data System (ADS)
Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.
2017-06-01
Unsteady MHD free convection flow past a vertical porous plate in porous medium with radiation, diffusion thermo, thermal diffusion and heat source are analyzed. The governing non-linear, partial differential equations are transformed into dimensionless by using non-dimensional quantities. Then the resultant dimensionless equations are solved numerically by applying an efficient, accurate and conditionally stable finite difference scheme of explicit type with the help of a computer programming language Compaq Visual Fortran. The stability and convergence analysis has been carried out to establish the effect of velocity, temperature, concentration, skin friction, Nusselt number, Sherwood number, stream lines and isotherms line. Finally, the effects of various parameters are presented graphically and discussed qualitatively.
Efficiency and design analysis of a solar thermal powered flat plate dryer (abstract)
USDA-ARS?s Scientific Manuscript database
Specialty crop fruit and vegetable pomaces are a common byproduct of the food processing and juicing industries. These pomaces can have high nutritional value, but are currently underutilized or treated as waste. Drum drying is one method that could be adopted to dry and stabilize fruit and vegetabl...
NASA Technical Reports Server (NTRS)
1976-01-01
Basic test results are presented of a flat-plate solar collector whose performance was determined in solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency was correlated in terms of inlet temperature and flux level.
NASA Astrophysics Data System (ADS)
M, Adimurthy; Katti, Vadiraj V.
2017-02-01
Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing ( Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio ( l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.
NASA Astrophysics Data System (ADS)
Xu, Hui; Chen, Jian-hao; Ren, Shu-bin; He, Xin-bo; Qu, Xuan-hui
2018-04-01
Nickel-coated graphite flakes/copper (GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes (GFs) being modified by Ni-P electroless plating. The effects of the phase transition of the amorphous Ni-P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity (TC) of the GN/Cu composites were systematically investigated. The introduction of Ni-P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650°C and slightly increased the TC of the X-Y basal plane of the GF/Cu composites with 20vol%-30vol% graphite flakes. However, when the graphite flake content was greater than 30vol%, the TC of the GF/Cu composites decreased with the introduction of Ni-P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.
NASA Technical Reports Server (NTRS)
Shih, K.
1977-01-01
The test procedures used and the test results obtained from an evaluation test program conducted on a double-covered liquid solar collector under simulated conditions are presented. The test article was a flat plate solar collector using liquid as the heat transfer medium. The absorber plate was steel with the copper tubes bonded on the upper surface. The plate was coated with black chrome with an absorptivity factor of .95 and emissivity factor of .12. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector.
Latent heat effects of the major mantle phase transitions on low-angle subduction
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.
2001-08-01
Very low to zero shallow dip angles are observed at several moderately young subduction zones with an active trenchward moving overriding plate. We have investigated the effects of latent heat for this situation, where mantle material is pushed through the major mantle phase transitions during shallow low-angle subduction below the overriding plate. The significance of the buoyancy forces, arising from the latent heat effects, on the dynamics of the shallowly subducting slab is examined by numerical modeling. When a 32-Ma-old slab is overridden with 2.5 cm/yr by a continent, flat subduction occurs with a 4-5 cm/yr convergence rate. When latent heat is included in the model, forced downwellings cause a thermal anomaly and consequently thermal and phase buoyancy forces. Under these circumstances, the flat slab segment subducts horizontally about 350 km further and for about 11 Ma longer than in the case without latent heat, before it breaks through the 400-km phase transition. The style of subduction strongly depends on the mantle rheology: increasing the mantle viscosity by one order of magnitude can change the style of subduction from steep to shallow. Similarly, an overriding velocity of less than 1 cm/yr leads to steep subduction, which gradually changes to flat subduction when increasing the overriding velocity. However, these model parameters do not change the aforementioned effect of the latent heat, provided that low-angle subduction occurs. In all models latent heat resulted in a substantial increase of the flat slab length by 300-400 km. Varying the olivine-spinel transition Clapeyron slope γ from 1 to 6 MPa/K reveals a roughly linear relation between γ and the horizontal length of the slab. Based on these results, we conclude that buoyancy forces due to latent heat of phase transitions play an important role in low-angle subduction below an overriding plate.
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
1995-01-01
This report deals with the direct numerical simulation of transitional and turbulent flow at low Mach numbers using high-order-accurate finite-difference techniques. A computation of transition to turbulence of the spatially-evolving boundary layer on a heated flat plate in the presence of relatively high freestream turbulence was performed. The geometry and flow conditions were chosen to match earlier experiments. The development of the momentum and thermal boundary layers was documented. Velocity and temperature profiles, as well as distributions of skin friction, surface heat transfer rate, Reynolds shear stress, and turbulent heat flux, were shown to compare well with experiment. The results indicate that the essential features of the transition process have been captured. The numerical method used here can be applied to complex geometries in a straightforward manner.
Development and applications of a flat triangular element for thin laminated shells
NASA Astrophysics Data System (ADS)
Mohan, P.
Finite element analysis of thin laminated shells using a three-noded flat triangular shell element is presented. The flat shell element is obtained by combining the Discrete Kirchhoff Theory (DKT) plate bending element and a membrane element similar to the Allman element, but derived from the Linear Strain Triangular (LST) element. The major drawback of the DKT plate bending element is that the transverse displacement is not explicitly defined within the interior of the element. In the present research, free vibration analysis is performed both by using a lumped mass matrix and a so called consistent mass matrix, obtained by borrowing shape functions from an existing element, in order to compare the performance of the two methods. Several numerical examples are solved to demonstrate the accuracy of the formulation for both small and large rotation analysis of laminated plates and shells. The results are compared with those available in the existing literature and those obtained using the commercial finite element package ABAQUS and are found to be in good agreement. The element is employed for two main applications involving large flexible structures. The first application is the control of thermal deformations of a spherical mirror segment, which is a segment of a multi-segmented primary mirror used in a space telescope. The feasibility of controlling the surface distortions of the mirror segment due to arbitrary thermal fields, using discrete and distributed actuators, is studied. The second application is the analysis of an inflatable structure, being considered by the US Army for housing vehicles and personnel. The updated Lagrangian formulation of the flat shell element has been developed primarily for the nonlinear analysis of the tent structure, since such a structure is expected to undergo large deformations and rotations under the action of environmental loads like the wind and snow loads. The follower effects of the pressure load have been included in the updated Lagrangian formulation of the flat shell element and have been validated using standard examples in the literature involving deformation-dependent pressure loads. The element can be used to obtain the nonlinear response of the tent structure under wind and snow loads. (Abstract shortened by UMI.)
Evolution of the long-wavelength, subduction-driven topography of South America since 150 Ma
NASA Astrophysics Data System (ADS)
Flament, N. E.; Gurnis, M.; Williams, S.; Bower, D. J.; Seton, M.; Müller, D.
2014-12-01
Subduction to the west of South America spans 6000 km along strike and has been active for over 250 Myr. The influence of the history of subduction on the geodynamics of South America has been profound, driving mountain building and arc volcanism in the Andean Cordillera. Here, we investigate the long-wavelength changes in the topography of South America associated with subduction and plate motion and their interplay with the lithospheric deformation associated with the opening of the South Atlantic. We pay particular attention to the topographic expression of flat-lying subduction zones. We develop time-dependent geodynamic models of mantle flow and lithosphere deformation to investigate the evolution of South American dynamic and total topography since the late Jurassic (150 Ma). Our models are semi-empirical because the computational cost of fully dynamic, evolutionary models is still prohibitive. We impose the kinematics of global plate reconstructions with deforming continents in forward global mantle convection models with compositionally distinct crust and continental lithosphere embedded within the thermal lithosphere. The shallow thermal structure of subducting slabs is imposed, allowing us to investigate the evolution of dynamic topography around flat slab segments in time-dependent models. Multiple cases are used to investigate how the evolution of South American dynamic topography is influenced by mantle viscosity, the kinematics of the opening of the South Atlantic and alternative scenarios for recent and past flat-slab subduction. We predict that the migration of South America over sinking oceanic lithosphere resulted in continental tilt to the west until ~ 45 Ma, inverting to an eastward tilt thereafter. This first-order result is consistent with the reversal of the drainage of the Amazon River system. We investigate which scenarios of flat-slab subduction since the Eocene are compatible with geological constraints on the evolution of the Solimoes Basin, the Chaco Basin, the Sierras Pampeanas and the Central Patagonian Basin. To broadly constrain mantle viscosity, we compare models to the total subsidence inferred from well data offshore Argentina and Brazil, and to mantle tomography, since the initial and boundary conditions are based on independent plate reconstructions.
Thermal performance evaluation of the Solargenics solar collector at outdoor conditions
NASA Technical Reports Server (NTRS)
1978-01-01
Test procedures used during the performance of an evaluation program are presented. The test program was conducted to obtain the following performance data and information on the solar collector. (1) thermal performance data under outdoor conditions; (2) structural behavior of collector under static conditions; (3) effects of long term exposure to material weathering elements. The solargenics is a liquid, single-glazed, flat plate collector. Approximate dimensions of each collector are 240 inches long, 36 inches wide, and 3.5 inches in depth.
Twisted Pair Of Insulated Wires Senses Moisture
NASA Technical Reports Server (NTRS)
Laue, Eric G.; Stephens, James B.
1989-01-01
Sensitivity of electronic moisture sensor to low levels of moisture increased by new electrode configuration. Moisture-sensing circuit described in "Low-Cost Humidity Sensor" (NPO-16544). New twisted pair of wires takes place of flat-plate capacitor in circuit. Configuration allows for thermal expansion and contraction of polymer while maintaining nearly constant area of contact between polymer and wires.
NASA Technical Reports Server (NTRS)
Johnson, S. M.
1976-01-01
Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.
Cost effective flat plate photovoltaic modules using light trapping
NASA Technical Reports Server (NTRS)
Bain, C. N.; Gordon, B. A.; Knasel, T. M.; Malinowski, R. L.
1981-01-01
Work in optical trapping in 'thick films' is described to form a design guide for photovoltaic engineers. A thick optical film can trap light by diffusive reflection and total internal reflection. Light can be propagated reasonably long distances compared with layer thicknesses by this technique. This makes it possible to conduct light from inter-cell and intra-cell areas now not used in photovoltaic modules onto active cell areas.
Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary
NASA Astrophysics Data System (ADS)
Khan, W. A.; Khan, Z. H.; Rahi, M.
2014-06-01
Homogeneous flow model is used to study the flow and heat transfer of carbon nanotubes (CNTs) along a flat plate subjected to Navier slip and uniform heat flux boundary conditions. This is the first paper on the flow and heat transfer of CNTs along a flat plate. Two types of CNTs, namely, single- and multi-wall CNTs are used with water, kerosene or engine oil as base fluids. The empirical correlations are used for the thermophysical properties of CNTs in terms of the solid volume fraction of CNTs. For the effective thermal conductivity of CNTs, Xue (Phys B Condens Matter 368:302-307,
USAF solar thermal applications overview
NASA Technical Reports Server (NTRS)
Hauger, J. S.; Simpson, J. A.
1981-01-01
Process heat applications were compared to solar thermal technologies. The generic process heat applications were analyzed for solar thermal technology utilization, using SERI's PROSYS/ECONOMAT model in an end use matching analysis and a separate analysis was made for solar ponds. Solar technologies appear attractive in a large number of applications. Low temperature applications at sites with high insolation and high fuel costs were found to be most attractive. No one solar thermal technology emerges as a clearly universal or preferred technology, however,, solar ponds offer a potential high payoff in a few, selected applications. It was shown that troughs and flat plate systems are cost effective in a large number of applications.
Ice crystal growth in a dynamic thermal diffusion chamber
NASA Technical Reports Server (NTRS)
Keller, V. W.
1980-01-01
Ice crystals were grown in a supersaturated environment produced by a dynamic thermal diffusion chamber, which employed two horizontal plates separated by a distance of 2.5 cm. Air was circulated between and along the 1.2 m length of the plates past ice crystals which nucleated and grew from a fiber suspended vertically between the two plates. A zoom stereo microscope with a magnification which ranged from 3X to 80X and both 35 mm still photographs and 16 mm time lapse cine films taken through the microscope were used to study the variation of the shape and linear growth rate of ice crystals as a function of the ambient temperature, the ambient supersaturation, and the forced ventilation velocity. The ambient growth conditions were varied over the range of temperature 0 to -40 C, over the range of supersaturation 4% to 50% with respect to ice, and over the range of forced ventilation velocities 0 cm/s to 20 cm/s.
Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules
NASA Technical Reports Server (NTRS)
Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.
1981-01-01
The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.
NASA Astrophysics Data System (ADS)
Cecere, Anselmo; De Cristofaro, Davide; Savino, Raffaele; Ayel, Vincent; Sole-Agostinelli, Thibaud; Marengo, Marco; Romestant, Cyril; Bertin, Yves
2018-06-01
A Flat Plate Pulsating Heat Pipe (FPPHP) filled with an ordinary liquid (water) and a self-rewetting mixture (dilutes aqueous solutions of long-chain alcohols with unusual surface tension behavior) is investigated under variable gravity conditions on board a 'Zero-g' plane during the 65th Parabolic Flight Campaign of the European Space Agency. The FPPHP thermal performance in terms of evaporator and condenser temperatures, start-up levels and flow regimes is characterized for the two working fluids and a power input ranging from 0 to 200 W (up to 17 W/cm2 at the heater/evaporator wall interface). The experimental set-up also includes a transparent plate enabling the visualization of the oscillating flow patterns during the experiments. For a low power input (4 W/cm2), the pulsating heat pipe filled with pure water is not able to work under low-g conditions, because the evaporator immediately exhibits dry-out conditions and the fluid oscillations stops, preventing heat transfer between the hot and cold side and resulting in a global increase of the temperatures. On the other hand, the FPPHP filled with the self-rewetting fluid runs also during the microgravity phase. The liquid rewets several times the evaporator zone triggering the oscillatory regime. The self-rewetting fluid helps both the start-up and the thermal performance of the FPPHP in microgravity conditions.
NASA Technical Reports Server (NTRS)
1981-01-01
The technical readiness of a cost effective process sequence that has the potential for the production of flat plate photovoltaic modules which met the price goal in 1986 of $.70 or less per Watt peak was demonstrated. The proposed process sequence was reviewed and laboratory verification experiments were conducted. The preliminary process includes the following features: semicrystalline silicon (10 cm by 10 cm) as the silicon input material; spray on dopant diffusion source; Al paste BSF formation; spray on AR coating; electroless Ni plate solder dip metallization; laser scribe edges; K & S tabbing and stringing machine; and laminated EVA modules.
Development and Experimental Evaluation of Passive Fuel Cell Thermal Control
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Jakupca, Ian J.; Castle, Charles H.; Burke, Kenneth A.
2014-01-01
To provide uniform cooling for a fuel cell stack, a cooling plate concept was evaluated. This concept utilized thin cooling plates to extract heat from the interior of a fuel cell stack and move this heat to a cooling manifold where it can be transferred to an external cooling fluid. The advantages of this cooling approach include a reduced number of ancillary components and the ability to directly utilize an external cooling fluid loop for cooling the fuel cell stack. A number of different types of cooling plates and manifolds were developed. The cooling plates consisted of two main types; a plate based on thermopyrolytic graphite (TPG) and a planar (or flat plate) heat pipe. The plates, along with solid metal control samples, were tested for both thermal and electrical conductivity. To transfer heat from the cooling plates to the cooling fluid, a number of manifold designs utilizing various materials were devised, constructed, and tested. A key aspect of the manifold was that it had to be electrically nonconductive so it would not short out the fuel cell stack during operation. Different manifold and cooling plate configurations were tested in a vacuum chamber to minimize convective heat losses. Cooling plates were placed in the grooves within the manifolds and heated with surface-mounted electric pad heaters. The plate temperature and its thermal distribution were recorded for all tested combinations of manifold cooling flow rates and heater power loads. This testing simulated the performance of the cooling plates and manifold within an operational fuel cell stack. Different types of control valves and control schemes were tested and evaluated based on their ability to maintain a constant temperature of the cooling plates. The control valves regulated the cooling fluid flow through the manifold, thereby controlling the heat flow to the cooling fluid. Through this work, a cooling plate and manifold system was developed that could maintain the cooling plates within a minimal temperature band with negligible thermal gradients over power profiles that would be experienced within an operating fuel cell stack.
An experimental investigation with artificial sunlight of a solar hot-water heater
NASA Technical Reports Server (NTRS)
Simon, F. F.
1976-01-01
Thermal performance measurements were made of a commercial solar hot-water heater in a solar simulator. The objective of the test was to determine basic performance characteristics of a traditional type of flat-plate collector, with and without side reflectors (to increase the solar flux). Due to the fact that collector testing in the solar simulator permits control of the variables that affect collector performance, it was possible to obtain information on each of the following: (1) the effect of flow and incidence angle on the efficiency of a flat-plate collector (but only without side reflectors), (2) transient performance under flow and nonflow conditions, (3) the effectiveness of reflectors in increasing collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning, and (4) the limits of applicability of a collector efficiency correlation based on the Hottel-Whillier equation (1958).
Flow field and thermal characteristics induced by a rotationally oscillating heated flat plate
NASA Astrophysics Data System (ADS)
Koffi, Moise
The objective of this dissertation is the study the flow and heat transfer in the vicinity of a rectangular flat heated plate of subject to rotational oscillations. Of interest is the effect of the flow field on the thermal characteristics of the plate's surface. A constant heat flux is applied to both sides while the plate is rotated about a fixed edge at a frequency of 2 rad/s in an infinite domain at atmospheric pressure. A computational simulation of the flow with FLUENT reveals a hooked-shape vortex tube around the free edges of the plate, which is confirmed by the flow visualization with smoke particles. During the flapping cycle, vortices form and grow progressively on one face while they shed from the opposite, until they are completely detached from both surfaces at stroke reversal. A data acquisition system uses a numerical computing and programming software (MATLAB) to track the surface temperature recorded by J- type thermocouples at desired locations on the plate. Both experimental and computational results agree with local surface temperature profiles characterized by a transient unsteady periodic variation followed by a steady periodic phase. These characteristics are symmetrical about the median plane of the plate, which is normal to its axis of rotation. The cooling rate of the surface, proportional to the frequency of rotation, depends on the angular position of the plate and the spatial location on the plate's surface. However, the highest heat transfer coefficient is recorded at free edges, especially in the corners swept by strong tip vortices shedding in two orthogonal directions. Conclusions of the present study are used to explain the role of ear flapping in the metabolic heat regulation of large mammals such as elephants. Flow visualization and surface temperature measurements of full size rigid and flexible elephant ear-shape models were carried out. Results indicate improved interaction between the shedding vortex and the model's boundary layer. Therefore the cooling is enhanced using flexible models by 30 percent. However, the huge size of the elephant pinna combined with its large surface to volume ratio and blood perfusion plays a key role in the enhancement of the animal's heat dissipation.
Three-dimensional recomposition of the absorption field inside a nonbuoyant sooting flame.
Legros, Guillaume; Fuentes, Andrés; Ben-Abdallah, Philippe; Baillargeat, Jacques; Joulain, Pierre; Vantelon, Jean-Pierre; Torero, José L
2005-12-15
A remote scanning retrieval method was developed to investigate the soot layer produced by a laminar diffusion flame established over a flat plate burner in microgravity. Experiments were conducted during parabolic flights. This original application of an inverse problem leads to the three-dimensional recomposition by layers of the absorption field inside the flame. This technique provides a well-defined flame length that substitutes for other subjective definitions associated with emissions.
Three-dimensional recomposition of the absorption field inside a nonbuoyant sooting flame
NASA Astrophysics Data System (ADS)
Legros, Guillaume; Fuentes, Andrés; Ben-Abdallah, Philippe; Baillargeat, Jacques; Joulain, Pierre; Vantelon, Jean-Pierre; Torero, José L.
2005-12-01
A remote scanning retrieval method was developed to investigate the soot layer produced by a laminar diffusion flame established over a flat plate burner in microgravity. Experiments were conducted during parabolic flights. This original application of an inverse problem leads to the three-dimensional recomposition by layers of the absorption field inside the flame. This technique provides a well-defined flame length that substitutes for other subjective definitions associated with emissions.
NASA Technical Reports Server (NTRS)
Rominger, C. G.
1981-01-01
Silicon nitride and nickel pastes are investigated in conjunction with a brush copper plating process for the purpose of identifying one or more fabrication sequences which yield at least 10 percent efficient N(+)/P(+) flat plate solar cells. The adhesion of all nickel pastes is reduced significantly when subjected to acidic and alkaline brush copper plating solutions as a result of a combination of thermally induced stress and chemical attack of the frit, which occurs at the interface with the silicon solar cell. The AgF is penetrating the 800 a of Si3N4 and ohmic contact is occurring at all fire-in tempertures. During the brush plating process, fingers and buss bars tend to spread.
Evaluation of finger plate and flat plate connection design.
DOT National Transportation Integrated Search
2016-01-01
This project investigates the cause(s) of premature deterioration of MoDOT finger plate and flat plate expansion devices : under high traffic volumes and then uses that information to design new Load and Resistance Factor Design (LRFD) : finger plate...
The Thermal Diffusivity Measurement of the Two-layer Ceramics Using the Laser Flash Methodn
NASA Astrophysics Data System (ADS)
Akoshima, Megumi; Ogwa, Mitsue; Baba, Tetsuya; Mizuno, Mineo
Ceramics-based thermal barrier coatings are used as heat and wear shields of gas turbines. There are strong needs to evaluate thermophysical properties of coating, such as thermal conductivity, thermal diffusivity and heat capacity of them. Since the coatings are attached on substrates, it is no easy to measure these properties separately. The laser flash method is one of the most popular thermal diffusivity measurement methods above room temperature for solid materials. The surface of the plate shape specimen is heated by the pulsed laser-beam, then the time variation of the temperature of the rear surface is observed by the infrared radiometer. The laser flash method is non-contact and short time measurement. In general, the thermal diffusivity of solids that are dense, homogeneous and stable, are measured by this method. It is easy to measure thermal diffusivity of a specimen which shows heat diffusion time about 1 ms to 1 s consistent with the specimen thickness of about 1 mm to 5 mm. On the other hand, this method can be applied to measure the specific heat capacity of the solids. And it is also used to estimate the thermal diffusivity of an unknown layer in the layered materials. In order to evaluate the thermal diffusivity of the coating attached on substrate, we have developed a measurement procedure using the laser flash method. The multi-layer model based on the response function method was applied to calculate the thermal diffusivity of the coating attached on substrate from the temperature history curve observed for the two-layer sample. We have verified applicability of the laser flash measurement with the multi-layer model using the measured results and the simulation. It was found that the laser flash measurement for the layered sample using the multi-layer model was effective to estimate the thermal diffusivity of an unknown layer in the sample. We have also developed the two-layer ceramics samples as the reference materials for this procedure.
Design guide for predicting nonlinear random response (including snap-through) of buckled plates
NASA Technical Reports Server (NTRS)
Ng, Chung Fai
1989-01-01
This design guide describes a method for predicting the random response of flat and curved plates which is based on theoretical analyses and experimental results. The plate curvature can be due to postbuckling, in-plane mechanical or thermal stresses. Based on a single mode formula, root mean square values of the strain response to broadband excitation are evaluated for different static buckled configurations using the equivalent linearization technique. The effects on the overall strain response due to instability motion of snap-through are included. Panel parameters include clamped and simply-supported boundaries, aspect ratio, thickness and length. Analytical results are compared with experimental results from tests with 12 in. x 15 in. aluminum plates under thermal loading in a progressive wave facility. Comparisons are also made with results from tests with a 2 in. x 15 in. x 0.032 in. aluminum beam under base mechanical excitation. The comparisons help to assess the accuracy of the theory and the conditions under which deviations from the theory due to effects of imperfection and higher modes are significant.
Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping
2010-01-01
The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.
The Effect of an Isogrid on Cryogenic Propellant Behavior and Thermal Stratification
NASA Technical Reports Server (NTRS)
Oliveira, Justin; Kirk, Daniel R.; Chintalapati, Sunil; Schallhorn, Paul A.; Piquero, Jorge L.; Campbell, Mike; Chase, Sukhdeep
2007-01-01
All models for thermal stratification available in the presentation are derived using smooth, flat plate laminar and turbulent boundary layer models. This study examines the effect of isogrid (roughness elements) on the surface of internal tank walls to mimic the effects of weight-saving isogrid, which is located on the inside of many rocket propellant tanks. Computational Fluid Dynamics (CFD) is used to study the momentum and thermal boundary layer thickness for free convection flows over a wall with generic roughness elements. This presentation makes no mention of actual isogrid sizes or of any specific tank geometry. The magnitude of thermal stratification is compared for smooth and isogrid-lined walls.
NASA Astrophysics Data System (ADS)
Haney, Michael W.
2015-12-01
The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.
Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.
2016-01-01
Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation. PMID:27930331
Lee, Kyu-Tae; Yao, Yuan; He, Junwen; ...
2016-12-05
Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PVmore » conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV + scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.« less
NASA Astrophysics Data System (ADS)
Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Mustafa Hussain, Muhammad; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.
2016-12-01
Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.
Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D; Alivisatos, A Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G; Rogers, John A
2016-12-20
Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV + scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.
2012-07-01
Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the...PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) 12 July 2012 2. REPORT TYPE Final Report 3. DATES COVERED...From – To) 1 October 2008 – 31 January 2012 4. TITLE AND SUBTITLE Experimental Studies on the Effects of Thermal Bumps in the Flow-Field around a
Photovoltaics and solar thermal conversion to electricity - Status and prospects
NASA Technical Reports Server (NTRS)
Alper, M. E.
1979-01-01
Photovoltaic power system technology development includes flat-plate silicon solar arrays and concentrating solar cell systems, which use silicon and other cell materials such as gallium arsenide. System designs and applications include small remote power systems ranging in size from tens of watts to tens of kilowatts, intermediate load-center applications ranging in size from tens to hundreds of kilowatts, and large central plant installations, as well as grid-connected rooftop applications. The thermal conversion program is concerned with large central power systems and small power applications.
Uranium nitride behavior at thermionic temperatures
NASA Technical Reports Server (NTRS)
Phillips, W. M.
1973-01-01
The feasibility of using uranium nitride for in-core thermionic applications was evaluated in electrically heated thermal gradient tests and in flat plate thermionic converters. These tests indicated that grain boundary penetration of uranium nitride into both tungsten and rhenium will occur under thermal gradient conditions. In the case of the tungsten thermionic converter, this led to grain boundary rupture of the emitter and almost total loss of electrical output from the converter. It appears that uranium nitride is unsuitable for thermionic applications at the 2000 K temperatures used in these tests.
NASA Technical Reports Server (NTRS)
Takahashi, Fumiaki; Katta, Viswanath R.
2003-01-01
Diffusion flame stabilization is of essential importance in both Earth-bound combustion systems and spacecraft fire safety. Local extinction, re-ignition, and propagation processes may occur as a result of interactions between the flame zone and vortices or fire-extinguishing agents. By using a computational fluid dynamics code with a detailed chemistry model for methane combustion, the authors have revealed the chemical kinetic structure of the stabilizing region of both jet and flat-plate diffusion flames, predicted the flame stability limit, and proposed diffusion flame attachment and detachment mechanisms in normal and microgravity. Because of the unique geometry of the edge of diffusion flames, radical back-diffusion against the oxygen-rich entrainment dramatically enhanced chain reactions, thus forming a peak reactivity spot, i.e., reaction kernel, responsible for flame holding. The new results have been obtained for the edge diffusion flame propagation and attached flame structure using various C1-C3 hydrocarbons.
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1977-01-01
A test bed for experimental evaluation of a fixed solar collector which combines an evacuated glass tube solar receiver with a flat plate/black chrome plated copper absorber and an asymmetric vee-trough concentrator was designed and constructed. Earlier predictions of thermal performance were compared with test data acquired for a bare vacuum tube receiver; and receiver tubes with Alzak aluminum, aluminized FEP Teflon film laminated sheet metal and second surface ordinary mirror reflectors. Test results and system economics as well as objectives of an ongoing program to obtain long-term performance data are discussed.
Nickel-plating for active metal dissolution resistance in molten fluoride salts
NASA Astrophysics Data System (ADS)
Olson, Luke; Sridharan, Kumar; Anderson, Mark; Allen, Todd
2011-04-01
Ni electroplating of Incoloy-800H was investigated with the goal of mitigating Cr dissolution from this alloy into molten 46.5%LiF-11.5%NaF-42%KF eutectic salt, commonly referred to as FLiNaK. Tests were conducted in graphite crucibles at a molten salt temperature of 850 °C. The crucible material graphite accelerates the corrosion process due to the large activity difference between the graphite and the alloy. For the purposes of providing a baseline for this study, un-plated Incoloy-800H and a nearly pure Ni-alloy, Ni-201 were also tested. Results indicate that Ni-plating has the potential to significantly improve the corrosion resistance of Incoloy-800H in molten fluoride salts. Diffusion of Cr from the alloy through the Ni-plating does occur and if the Ni-plating is thin enough this Cr eventually dissolves into the molten salt. The post-corrosion test microstructure of the Ni-plating, particularly void formation was also observed to depend on the plating thickness. Diffusion anneals in a helium environment of Ni-plated Incoloy-800H and an Fe-Ni-Cr model alloy were also investigated to understand Cr diffusion through the Ni-plating. Further enhancements in the efficacy of the Ni-plating as a protective barrier against Cr dissolution from the alloy into molten fluoride salts can be achieved by thermally forming a Cr 2O 3 barrier film on the surface of the alloy prior to Ni electroplating.
Flow over a traveling wavy foil with a passively flapping flat plate
NASA Astrophysics Data System (ADS)
Liu, Nansheng; Peng, Yan; Liang, Youwen; Lu, Xiyun
2012-05-01
Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The study reveals that the passively oscillating flat plate contributes half of the propulsive force. The flexibility, represented by the nondimensional natural frequency F, plays a very important role in the movement and propulsive force generation of the whole body. When the plate is too flexible, the drag force is observed. As the flat plate becomes more rigid, the propulsive force that is generated when the undulation is confined to last part of the wavy foil becomes larger. The steady movement occurs at F=5. These results are consistent with the observations of some swimming animals in nature.
Collation of quarterly reports on air flat plate collectors
NASA Technical Reports Server (NTRS)
1977-01-01
The solar 2 air flat plate collectors are described. The development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet of collector area are described. Three instrumented panels were completely assembled with glazing and insulation. Manufacture of the last seven prototype collectors was completed in October 1977.
Flat-plate solar array progress and plans
NASA Technical Reports Server (NTRS)
Callaghan, W. T.
1984-01-01
The results of research into the technology of flat-plate solar arrays undertaken in the Flat-Plate Solar Array Project under the sponsorship of the U.S. Department of Energy are surveyed. Topics examined include Si refinement, ribbon-sheet substrate formation, module process sequences, environmental isolation, module engineering and testing, and photovoltaic-array economics.
NASA Astrophysics Data System (ADS)
Gordon, R. G.; Argus, D. F.; DeMets, C.
2017-12-01
Plate tectonic theory has evolved since its birth 50 years ago. In particular, we now recognize that some of the originally proposed plates such as the Indo-Australia plate, the Africa plate, and the America plate are what we term "composite" plates—entities that contain no traditionally defined narrow plate boundaries, but are composed of multiple approximately rigid regions, which we term "component" plates, separated by diffuse plate boundaries. The best example of a composite plate is the Indo-Australia composite plate, which consists of the India, Capricorn, Australia, and Macquarie component plates and multiple intervening diffuse oceanic plate boundaries. The poles of relative rotation between component plates tend to lie in their mutual diffuse plate boundary. Outside of diffuse boundaries, plate rigidity has proven to be an excellent approximation, but the non-closure of some plate circuits indicates that stable plate interiors have a small but significant non-rigidity that may add up to 1 to 2 mm/a across any individual plate and may be partly due to horizontal thermal contraction of oceanic lithosphere. The greatest observational challenge to plate rigidity is posed by the Pacific-Cocos-Nazca plate circuit, which fails closure by 15 ±4 mm/a. The most rapid deformation of the plates observed with space geodesy is generated by solid Earth's viscous response to unloading of the late Pleistocene ice sheets. Differences between different realizations of global plate velocities from space geodesy appear in some cases to be due to differing assumptions about the motion of the geocenter, which affects estimated plate relative angular velocities and estimated vertical motion at geodetic sites. Comparison of space geodetic and marine geophysical plate motion rates and directions has demonstrated that plate motion is nearly steady, which allows plate boundary conditions to be applied to inter-seismic strain accumulation due to locking of specific faults. In detail it appears, however, that plate velocities over the past few decades have in several cases been significantly different from plate motions averaged over geologic time. Some of the largest changes have been decreases in rates across convergent plate boundaries: Nazca-South America and the velocities of Nubia, Arabia, and India relative to Eurasia.
NASA Technical Reports Server (NTRS)
Chellman, D. J.
1985-01-01
The objective of this investigation is to fabricate and evaluate PM 2124 Al alloy plate and sheet materials according to NASA program goals for damage tolerance and fatigue resistance. Previous research has indicated the outstanding strength-toughness relationship available with PM 2124 Al-Zr modified alloy compositions in extruded product forms. The range of processing conditions was explored in the fabrication of plate and sheet gage materials, as well as the resultant mechanical and metallurgical properties. The PM composition based on Al-3.70 Cu-1.85 Mg-0.20 Mn with 0.60 wt. pct. Zr was selected. Flat rolled material consisting of 0.250 in. thick plate was fabricated using selected thermal mechanical treatments (TMT). The schedule of TMT operations was designed to yield the extreme conditions of grain structure normally encountered in the fabrication of flat rolled products, specifically recrystallized and unrecrystallized. The PM Al alloy plate and sheet materials exhibited improved strength properties at thin gages compared to IM Al alloys, as a consequence of their enhanced ability to inhibit recrystallization and grain growth. In addition, the PM 2124 Al alloys offer much better combinations of strength and toughnessover equivalent IM Al. The alloy microstructures were examined by optical metallographic texture techniques in order to establish the metallurgical basis for these significant property improvements.
NASA Astrophysics Data System (ADS)
Olajuwon, B. I.; Oyelakin, I. S.
2012-12-01
The paper investigates convection heat and mass transfer in power law fluid flow with non relaxation time past a vertical porous plate in presence of a chemical reaction, heat generation, thermo diffu- sion and thermal diffusion. The non - linear partial differential equations governing the flow are transformed into ordinary differential equations using the usual similarity method. The resulting similarity equations are solved numerically using Runge-Kutta shooting method. The results are presented as velocity, temperature and concentration profiles for pseudo plastic fluids and for different values of parameters governing the prob- lem. The skin friction, heat transfer and mass transfer rates are presented numerically in tabular form. The results show that these parameters have significant effects on the flow, heat transfer and mass transfer.
Flat slabs seen from above: aeromagnetic data in Central Mexico
NASA Astrophysics Data System (ADS)
Manea, M.; Manea, V. C.
2006-12-01
The aeromagnetic map of Mexico shows a magnetic "quiet zone" in Guerrero and Oaxaca (Central Mexico), characterized by a general lack of short-wavelength magnetic anomalies. In order to investigate the magnetic quiet zone in relation with the thermal sources, spectral analysis has been applied to the aeromagnetic data. The results show the existence of deep magnetic sources (30-40 km) which we consider to be the Currie depth (corresponding to a temperature of 575-600°). Above the Curie temperature spontaneous magnetization vanishes and the minerals exhibit only a small paramagnetic susceptibility. Our estimates of magnetic basal depth are consistent with the heat flow measurements in the area (20-30 mW/m2). In order to explain such deep magnetic source and small heat flow estimates, we infer the thermal structure associated with the subduction of the Cocos plate beneath Central Mexico, using a finite element approach. The modeling results show that the 575-600°C isotherm is subhorisontal due to the flat slab regime in the area. Also, the heat flow estimates from thermal models and spectral analysis of aeromagnetic anomalies are in good agreement. We conclude that the magnetic quiet zone is associated with a flat slab subduction regime in Central Mexico, and proved to be an important constraint for the thermal structure associated with subduction zones.
46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Sighting ports, tubular gauge glasses, and flat plate type gauge glasses. 154.1320 Section 154.1320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary means...
46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Sighting ports, tubular gauge glasses, and flat plate type gauge glasses. 154.1320 Section 154.1320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary means...
Annealing effects in plated-wire memory elements. I - Interdiffusion of copper and Permalloy.
NASA Technical Reports Server (NTRS)
Knudson, C. I.; Kench, J. R.
1971-01-01
Results of investigations using X-ray diffraction and electron-beam microprobe techniques have shown that copper and Permalloy platings interdiffuse at low temperatures when plated-wire memory elements are annealed for times as short as 50 hr. Measurable interdiffusion between Permalloy platings and gold substrates does not occur in similar conditions. Both magnetic and compositional changes during aging are found to occur by a thermally activated process with activation energies around 38 kcal/mol. It is shown, however, that copper-diffusion and magnetic-dispersion changes during aging are merely concurrent processes, neither being the other's cause.
Performance optimization of plate heat exchangers with chevron plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muley, A.; Manglik, R.M.
1999-07-01
The enhanced heat transfer performance of a chevron plate heat exchanger (PHE) is evaluated employing (1) energy-conservation based performance evaluation criteria (PECs), and (2) the second-law based minimization of entropy generation principle. Single-phase laminar and turbulent flow convection for three different chevron-plate arrangements are considered. The influence of plate surface corrugation characteristics and their stack arrangements on the heat exchanger's thermal-hydraulic performance is delineated. Based on the different figures of merit, the results show that the extent of heat transfer enhancement increases with flow Re and chevron angle {beta} in laminar flow, but it diminishes with increasing Re in turbulentmore » flows. With up to 2.9 times higher Q, 48% lower A, and entropy generation number N{sub s,a} {lt} 1, relative to an equivalent flat-plate pack, chevron plates are found to be especially suitable in the low to medium flow rates range (20 {le} Re {le} 2,000). Also, there appears to be no significant advantage of using a mixed-plate over a symmetric-plate arrangement.« less
Experimental investigation of jet-induced loads on a flat plate in hover out-of-ground effect
NASA Technical Reports Server (NTRS)
Kuhlman, J. M.; Warcup, R. W.
1979-01-01
Effects of varying jet decay rate on jet-induced loads on a flat plate located in the plane of the jet exit perpendicular to the jet axis were investigated using a small-scale laboratory facility. Jet decay rate has been varied through use of two cylindrical centerbodies having either a flat or hemispherical tip, which were submerged various distances below the flat plate jet exit plane. Increased jet decay rate, caused by the presence of a center-body or plug in the jet nozzle, led to an increased jet-induced lift loss on the flat plate. Jet-induced lift losses reached 1 percent of the jet thrust for the quickest jet decay rates for plate areas equal to 100 times the effective jet exit area. The observed lift loss versus jet decay rate trend agreed well with results of previous investigations.
Lifetime and diffusion length measurements on silicon material and solar cells
NASA Technical Reports Server (NTRS)
Othmer, S.; Chen, S. C.
1978-01-01
Experimental methods were evaluated for the determination of lifetime and diffusion length in silicon intentionally doped with potentially lifetime-degrading impurities found in metallurgical grade silicon, impurities which may be residual in low-cost silicon intended for use in terrestrial flat-plate arrays. Lifetime measurements were made using a steady-state photoconductivity method. Diffusion length determinations were made using short-circuit current measurements under penetrating illumination. Mutual consistency among all experimental methods was verified, but steady-state photoconductivity was found preferable to photoconductivity decay at short lifetimes and in the presence of traps. The effects of a number of impurities on lifetime in bulk material, and on diffusion length in cells fabricated from this material, were determined. Results are compared with those obtained using different techniques. General agreement was found in terms of the hierarchy of impurities which degrade the lifetime.
Visualization of vortex flow field around a flat plate with noncircular hole
NASA Astrophysics Data System (ADS)
Manigandan, S.; Gunasekar, P.; Sruthisree, N.; Aich, Kaushali; Sathya, K.; Selvan, Alice; Nithya, S.
2018-02-01
In this paper we study the numerical three dimensional simulation of laminar incompressible viscous flow over a flat plate with circular and noncircular hole. The hole is located at the center of the plate. The aim of this paper is to visualize the steady and unsteady vortex dynamics using immersed boundary method. This method takes three variables, viz. velocity, vortices and the pressure to solve the flow field over a specimen. The plate considered is of 0.01 m length and the air is used as the flow medium and hole is made of same area. The analysis are done both circular hole plate and non-circular hole to examine the difference in the force and wake at the trailing part of the flat plate. In this study we measure the magnitude of vortices behind a flat plate and we also study the physical backdrop of how vortex strength is depend on the inner profile of the body. From the results it is evident that the reverse flow is stronger in non circular profile however the strength of vortex is higher in circular holed plate. It’s also found that velocity is inversely proportional to strength of vortices in flat plate with noncircular hole.
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Zhong, Z. W.; Mei, Chuh
1994-01-01
A feasibility study on the use of shape memory alloys (SMA) for suppression of the random response of composite panels due to acoustic loads at elevated temperatures is presented. The constitutive relations for a composite lamina with embedded SMA fibers are developed. The finite element governing equations and the solution procedures for a composite plate subjected to combined acoustic and thermal loads are presented. Solutions include: 1) Critical buckling temperature; 2) Flat panel random response; 3) Thermal postbuckling deflection; 4) Random response of a thermally buckled panel. The preliminary results demonstrate that the SMA fibers can completely eliminate the thermal postbuckling deflection and significantly reduce the random response at elevated temperatures.
1979-08-15
well industry with the use of the plant derivative, Guar Gum . Solutions of the product were used to suspend sand in the high-pressure, sand-water...Polymer Concentration (WPP.) Gum Karaya 850 Guar 400 Polyacrylamide, Polyhall-250 20 Polyox WSR-301 10 Hoyt and Fabula (1964) and Virk (1971) present data...achieved by Elata, Lehner, and Kahanovity (1966) for Guar Gum solutions and Meyer (1966) and Wells (1965) for Polyox. Many authors have described drag
NASA Astrophysics Data System (ADS)
Magyari, Eugen
2011-01-01
In a recent paper published in this Journal the title problem has been investigated numerically. In the present paper the exact solution for the temperature boundary layer is given in terms of the solution of the flow problem (the Blasius problem) in a compact integral form.
Solar-energy heats a transportation test center--Pueblo, Colorado
NASA Technical Reports Server (NTRS)
1981-01-01
Petroleum-base, thermal energy transport fluid circulating through 583 square feet of flat-plate solar collectors accumulates majority of energy for space heating and domestic hot-water of large Test Center. Report describes operation, maintenance, and performance of system which is suitable for warehouses and similar buildings. For test period from February 1979 to January 1980, solar-heating fraction was 31 percent, solar hot-water fraction 79 percent.
Earth Reflected Solar Radiation Incident upon an Arbitrarily Oriented Spinning Flat Plate
NASA Technical Reports Server (NTRS)
Cunningham, Fred G.
1963-01-01
A general derivation is given for the earth reflected solar radiation input to a flat plate--a solar cell paddle, for example--which is spinning about an axis coincident with the axis of symmetry of the satellite to which it is affixed. The resulting equations are written for the general case so that arbitrary orientations of the spin axis with respect to the earth-satellite line and arbitrary orientations of the normal to the plate with respect to the spin axis can be treated. No attempt is made to perform the resulting integrations because of the complexity of the equations; nor is there any attempt to delineate the integration limits for the general case. However, the equations governing these limits are given. The appendixes contain: the results, in graphical form, of two representative examples; the general computer program for the calculation is given in Fortran notation; and the results of a calculation of the distribution of albedo energy on the proposed Echo II satellite. The value of the mean solar constant used is 1.395 times 10 (sup 4) ergs per centimeters-squared per second; the mean albedo of the earth is assumed to be 0.34; and the earth is assumed to be a diffuse reflector.
NASA Astrophysics Data System (ADS)
Libin, M. N.; Balasubramaniam, Krishnan; Maxfield, B. W.; Krishnamurthy, C. V.
2013-01-01
Tone Burst Eddy current Thermography (TBET) is a new hybrid, non-contacting, Non-Destructive Evaluation (NDE) method which employs a combination of Pulsed Eddy current Thermography (PEC) and Thermographic Non-Destructive Evaluation (TNDE). For understanding the influence of cracking and pitting on heat generation and flow within a metallic body, a fundamental knowledge of the detailed induced current density distribution in the component under test is required. This information enables us to calculate the amount of heat produced by the defects and how that heat diffuses to the surface where it is imaged. This paper describes simulation work done for artificial pits and cracks within pits on the far surface of poorly conducting metals like stainless steel. The first phase of this investigation simulates the transient thermal distribution for artificial 2D pit and crack-like defects using the finite element package COMSOL multi-physics with the AC/DC module and general heat transfer. Considering the reflection measurement geometry where thermal excitation and temperature monitoring are on the same surface, pitting reduces the material volume thereby contributing to a larger temperature rise for the same thermal energy input. A crack within a pit gives a further increase in temperature above the pure pit baseline. The tone burst frequency can be changed to obtain approximately uniform heating (low frequency) or heating of a thin region at the observation surface. Although front surface temperature changes due to 10% deep far-side pits in a 6 mm thick plate can be measured, it is not yet clear whether a 20% deep crack within this pit can be discriminated against the background. Both simulations and measurements will be presented. The objective of this work is to determine whether the TBET method is suitable for the detection and characterization of far side pitting, cracking and cracks within those pits.
Two-Dimensional Thermal Boundary Layer Corrections for Convective Heat Flux Gauges
NASA Technical Reports Server (NTRS)
Kandula, Max; Haddad, George
2007-01-01
This work presents a CFD (Computational Fluid Dynamics) study of two-dimensional thermal boundary layer correction factors for convective heat flux gauges mounted in flat plate subjected to a surface temperature discontinuity with variable properties taken into account. A two-equation k - omega turbulence model is considered. Results are obtained for a wide range of Mach numbers (1 to 5), gauge radius ratio, and wall temperature discontinuity. Comparisons are made for correction factors with constant properties and variable properties. It is shown that the variable-property effects on the heat flux correction factors become significant
Design, construction and evaluation of a system of forced solar water heating.
NASA Astrophysics Data System (ADS)
Hernández, E.; Bautista, G. A.; Ortiz, I. L.
2016-07-01
The main purpose of this project was to design, construct and evaluate a system of forced solar water heating for domestic consumption, at the Universidad Pontificia Bolivariana-Bucaramanga, Colombia; using solar energy. This is a totally system independent of the electrical grid and an important characteristic is the heating water doesn't mix with the consumption water. The system receives the solar radiation through a flat-plate collector, which it transmits the heat to the water that it flow with impulse from the centrifugal pump of 12VDC, the water circulates toward helical serpentine it is inside of the tank of the storage whose capacity is 100 liters of water. The temperature of the tank is regulated with a controller in such a way that de-energized the pump when it gets the temperature required. The performance thermal or efficiency of the system was evaluated like a relationship between the delivered energy to the water in storage tank and the incident energy in the flat-plate collector.
Advanced Image Processing for Defect Visualization in Infrared Thermography
NASA Technical Reports Server (NTRS)
Plotnikov, Yuri A.; Winfree, William P.
1997-01-01
Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.
NASA Technical Reports Server (NTRS)
Budweg, H. L.; Shin, Y. S.
1987-01-01
An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior.
Friction factor data for flat plate tests of smooth and honeycomb surfaces. M.S. Thesis
NASA Technical Reports Server (NTRS)
Ha, Tae Woong
1989-01-01
Friction factors for honeycomb surfaces were measured with a flat plate tester. The flat plate test apparatus was described and a method was discussed for determining the friction factor experimentally. The friction factor model was developed for the flat plate test based on the Fanno Line Flow. The comparisons of the friction factor were plotted for smooth surfaces and six-honeycomb surfaces with three-clearances, 6.9 bar to 17.9 bar range of inlet pressures, and 5,000 to 100,000 range of the Reynolds number. The optimum geometries for the maximum friction factor were found as a function of cell width to cell depth and cell width to clearance ratios.
NASA Astrophysics Data System (ADS)
Zernial, W.
1982-12-01
The industrial productibility of a selective absorbing thin film was investigated on the basis of reactive cathodic sputtering of Ni. On substrates of 1.8 sq m of Al, Cu, steel and stainless steel, solar absorption values up to 97% were achieved at emissivities of 5 to 10%. A prototype flat plate collector for high temperatures with two covers and hermetical sealing was developed. The technical data of the collector were measured, dependent on the selectivity of the absorber, gas fillings of dry air, argon or SF6 and the geometry and were compared with those of an evacuated flat plate collector. A hermetical sealed double flat plate collector for low temperatures was developed which has the advantage of lower no load temperatures and higher energy gain for heating swimming pool water compared with a conventional flat plate collector. The insolation values on collectors were measured and were used for a calculation of the energy gains of different collector types.
Investigation of Heat Transfer to a Flat Plate in a Shock Tube.
1987-12-01
2 Objectives and Scope . . . . . .. .. .. .... 5 11. Theory ............... ....... 7 Shock Tube Principles........... 7 Boundary Layer Theory ...in *excess of theory , but the rounded edge flat plate exhibited data which matched or was less than what theory predicted for each Mach number tested...normal shock advancing along an infinite flat plate. For x< Ugt there is a region of interaction between the downstream influence of the leading edge
Elastic Buckling under Combined Stresses of Flat Plates with Integral Waffle-Like Stiffening
NASA Technical Reports Server (NTRS)
Dow, Norris F.; Levin, L. Ross; Troutman, John L.
1953-01-01
Theory and experiment were compared and found in good agreement for the elastic Buckling under combined stresses of long flat plates with integral waffle-like stiffening in a variety of configurations. For such flat plates, 45deg waffle stiffening was found to be the most effective of the configurations for the proportions considered over the widest range of combinations of compression and shear.
Elastic Buckling Under Combined Stresses of Flat Plates with Integral Waffle-like Stiffening
NASA Technical Reports Server (NTRS)
Dow, Norris F; Levin, L Ross; Troutman, John L
1954-01-01
Theory and experiment were compared and found in good agreement for the elastic buckling under combined stresses of long flat plates with integral waffle-like stiffening in a variety of configurations. For such flat plates, 45 degree waffle stiffening was found to be the most effective of the configurations for the proportions considered over the widest range of combinations of compression and shear.
High-Fidelity Numerical Modeling of Compressible Flow
2015-11-01
details on these aspects of the implementation were reported in an earlier paper by Poggie.42 C. Flowfield Two flat - plate turbulent boundary layer flows...work investigated flat plate turbulent boundary layer flows. The baseline case was a flow at Mach 2.3, under conditions similar to those employed in...analyzed. The solutions are compared to a spanwise- periodic flat - plate turbulent boundary layer developed at the same conditions and yield similar
Characterizing Resident Space Object Earthshine Signature Variability
NASA Astrophysics Data System (ADS)
Van Cor, Jared D.
There are three major sources of illumination on objects in the near Earth space environment: Sunshine, Moonshine, and Earthshine. For objects in this environment (satellites, orbital debris, etc.) known as Resident Space Objects (RSOs), the sun and the moon have consistently small illuminating solid angles and can be treated as point sources; this makes their incident illumination easily modeled. The Earth on the other hand has a large illuminating solid angle, is heterogeneous, and is in a constant state of change. The objective of this thesis was to characterize the impact and variability of observed RSO Earthshine on apparent magnitude signatures in the visible optical spectral region. A key component of this research was creating Earth object models incorporating the reflectance properties of the Earth. Two Earth objects were created: a homogeneous diffuse Earth object and a time sensitive heterogeneous Earth object. The homogeneous diffuse Earth object has a reflectance equal to the average global albedo, a standard model used when modeling Earthshine. The time sensitive heterogeneous Earth object was created with two material maps representative of the dynamic reflectance of the surface of the earth, and a shell representative of the atmosphere. NASA's Moderate-resolution Imaging Spectroradiometer (MODIS) Earth observing satellite product libraries, MCD43C1 global surface BRDF map and MOD06 global fractional cloud map, were utilized to create the material maps, and a hybridized version of the Empirical Line Method (ELM) was used to create the atmosphere. This dynamic Earth object was validated by comparing simulated color imagery of the Earth to that taken by: NASAs Earth Polychromatic Imaging Camera (EPIC) located on the Deep Space Climate Observatory (DSCOVR), and by MODIS located on the Terra satellite. The time sensitive heterogeneous Earth object deviated from MODIS imagery by a spectral radiance root mean square error (RMSE) of +/-14.86 [watts/m. 2sr?m]over a sample of ROIs. Further analysis using EPIC imagery found a total albedo difference of +0.03% and a cross correlation of 0.656. Also compared to EPIC imagery it was found our heterogeneous Earth model produced a reflected Earthshine radiance RMSE of +/-28 [watts/m. 2sr?m] incident on diffuse sphericalRSOs, specular spherical RSOs, and diffuse flat plate RSOs with an altitude of 1000km; this resulted in an apparent magnitude error of +/-0.28. Furthermore, it was found our heterogeneous Earthmodel produced a reflected Earthshine radiance RMSE of +/-68 [watts/m. 2sr?m] for specular flat plate RSOs withan altitude of 1000km; this resulted in an apparent magnitude error of +/-0.68. The Earth objects were used in a workflow with the Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool to explore the impact of a range of characteristic RSO geometries, geographies, orientations, and materials on the signatures from an RSO due to Earthshine. An apparent magnitude was calculated and used to quantify RSO Earthshine signature variability; this is discussed in terms of the RMSE and maximum deviations of visible RSO Earthshine apparent magnitude signatures comparing the homogeneous Earth model to heterogeneous Earth model. The homogeneous diffuse Earth object was shown to approximate visible RSO Earthshine apparent magnitude signatures from spheres with a RMSE in reflected Earthshine apparent magnitude of +/-0.4 and a maximum apparent magnitude difference of 1.09 when compared to the heterogeneous Earth model. Similarly for diffuse flat plates, the visible RSO Earthshine apparent magnitude signature RMSE was shown to be +/-0.64, with a maximum apparent magnitude difference of 0.82. For specular flat plates, the visible RSO Earthshine apparent magnitude signature RMSE was shown to be +/-0.97 with maximum apparent magnitude difference of 2.26. This thesis explored only a portion of the parameter dependencies of Earth shine, but has enabled a preliminary understanding of visible RSO Earthshine signature variability and its geometric dependence. This research has demonstrated the impact of Earth heterogeneity on the observed apparent magnitude signatures of RSOs illuminated by Earthshine and the potential for error that comes with approximating the Earth as a diffuse homogeneous object.
NASA Astrophysics Data System (ADS)
Meda, Adimurthy; Katti, Vadiraj V.
2017-08-01
The present work experimentally investigates the local distribution of wall static pressure and the heat transfer coefficient on a rough flat plate impinged by a slot air jet. The experimental parameters include, nozzle-to-plate spacing (Z /D h = 0.5-10.0), axial distance from stagnation point ( x/D h ), size of detached rib ( b = 4-12 mm) and Reynolds number ( Re = 2500-20,000). The wall static pressure on the surface is recorded using a Pitot tube and a differential pressure transmitter. Infrared thermal imaging technique is used to capture the temperature distribution on the target surface. It is observed that, the maximum wall static pressure occurs at the stagnation point ( x/D h = 0) for all nozzle-to-plate spacing ( Z/D h ) and rib dimensions studied. Coefficient of wall static pressure ( C p ) decreases monotonically with x/D h . Sub atmospheric pressure is evident in the detached rib configurations for jet to plate spacing up to 6.0 for all ribs studied. Sub atmospheric region is stronger at Z/D h = 0.5 due to the fluid accelerating under the rib. As nozzle to plate spacing ( Z/D h ) increases, the sub-atmospheric region becomes weak and vanishes gradually. Reasonable enhancement in both C p as well as Nu is observed for the detached rib configuration. Enhancement is found to decrease with the increase in the rib width. The results of the study can be used in optimizing the cooling system design.
NASA Astrophysics Data System (ADS)
Lotfy, Kh.
2018-05-01
In this article, theoretical discussions for a novel mathematical-physical Photothermal diffusion (PTD) model in the generalized thermoelasticity theory with photothermal processes and chemical action are introduced. The mean idea of this model depends on the interaction between quasi-particles (plasma waves) that depends on the kind of the used materials, the mechanical forces acting on the surface, the generalized thermo and mass diffusion (due to coupling of temperature fields with thermal waves and chemical potential) and the elastic waves. The one dimensional Laplace transforms is used to obtain the exact solution for some physical and chemical quantities for a thin circular plate of a semiconducting polymer nanocomposite such as silicon (Si). New variables are deduced and discussed. The obtained results of the physical quantities are presented analytically and illustrated graphically with some important applications.
Fuel cell separator plate with bellows-type sealing flanges
Louis, G.A.
1984-05-29
A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which steps just short of the plate, these side walls affording resilient compressibility to the sealing flange in a direction generally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.
Fuel cell separator plate with bellows-type sealing flanges
Louis, George A.
1986-08-05
A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which stops just short of the plate, these side walls affording resilient compressibility to the sealing flange in a directiongenerally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.
Optimization of digitization procedures in cultural heritage preservation
NASA Astrophysics Data System (ADS)
Martínez, Bea; Mitjà, Carles; Escofet, Jaume
2013-11-01
The digitization of both volumetric and flat objects is the nowadays-preferred method in order to preserve cultural heritage items. High quality digital files obtained from photographic plates, films and prints, paintings, drawings, gravures, fabrics and sculptures, allows not only for a wider diffusion and on line transmission, but also for the preservation of the original items from future handling. Early digitization procedures used scanners for flat opaque or translucent objects and camera only for volumetric or flat highly texturized materials. The technical obsolescence of the high-end scanners and the improvement achieved by professional cameras has result in a wide use of cameras with digital back to digitize any kind of cultural heritage item. Since the lens, the digital back, the software controlling the camera and the digital image processing provide a wide range of possibilities, there is necessary to standardize the methods used in the reproduction work leading to preserve as high as possible the original item properties. This work presents an overview about methods used for camera system characterization, as well as the best procedures in order to identify and counteract the effect of the lens residual aberrations, sensor aliasing, image illumination, color management and image optimization by means of parametric image processing. As a corollary, the work shows some examples of reproduction workflow applied to the digitization of valuable art pieces and glass plate photographic black and white negatives.
NASA Astrophysics Data System (ADS)
Zhang, Xin; Huang, Yingqiu; Liu, Xiangyu; Yang, Lei; Shi, Changdong; Wu, Yucheng; Tang, Wenming
2018-03-01
Composites of 40Cu/Ag(Invar) were prepared via pressureless sintering and subsequent thermo-mechanical treatment from raw materials of electroless Ag-plated Invar alloy powder and electrolytic Cu powder. Microstructures and properties of the prepared composites were studied to evaluate the effect of the Ag layer on blocking Cu/Invar interfacial diffusion in the composites. The electroless-plated Ag layer was dense, uniform, continuous, and bonded tightly with the Invar alloy substrate. During sintering of the composites, the Ag layer effectively prevented Cu/Invar interfacial diffusion. During cold-rolling, the Ag layer was deformed uniformly with the Invar alloy particles. The composites exhibited bi-continuous network structure and considerably improved properties. After sintering at 775 °C and subsequent thermo-mechanical treatment, the 40Cu/Ag(Invar) composites showed satisfactory comprehensive properties: relative density of 99.0 pct, hardness of HV 253, thermal conductivity of 55.7 W/(m K), and coefficient of thermal expansion of 11.2 × 10-6/K.
Direct measurement of interaction forces between a single bacterium and a flat plate.
Klein, Jonah D; Clapp, Aaron R; Dickinson, Richard B
2003-05-15
A technique for precisely measuring the equilibrium and viscous interaction forces between a single bacterium and a flat surface as functions of separation distance is described. A single-beam gradient optical trap was used to micromanipulate the bacterium against a flat surface while evanescent wave light scattering was used to measure separation distances. Calibrating the optical trap far from the surface allowed the trapped bacterium to be used as a force probe. Equilibrium force-distance profiles were determined by measuring the deflection of the cell from the center of the optical trap at various trap positions. Simultaneously, viscous forces were determined by measuring the relaxation time for the fluctuating bacterium. Absolute distances were determined using a best-fit approximation to the theoretical prediction for the hindered mobility of a diffusing sphere near a wall. Using this approach, forces in the range from 0.01 to 4 pN were measured at near-nanometer resolution between Staphylococcus aureus and glass that was bare or coated with adsorbed protein.
Effect of leading-edge geometry on boundary-layer receptivity to freestream sound
NASA Technical Reports Server (NTRS)
Lin, Nay; Reed, Helen L.; Saric, W. S.
1991-01-01
The receptivity to freestream sound of the laminar boundary layer over a semi-infinite flat plate with an elliptic leading edge is simulated numerically. The incompressible flow past the flat plate is computed by solving the full Navier-Stokes equations in general curvilinear coordinates. A finite-difference method which is second-order accurate in space and time is used. Spatial and temporal developments of the Tollmien-Schlichting wave in the boundary layer, due to small-amplitude time-harmonic oscillations of the freestream velocity that closely simulate a sound wave travelling parallel to the plate, are observed. The effect of leading-edge curvature is studied by varying the aspect ratio of the ellipse. The boundary layer over the flat plate with a sharper leading edge is found to be less receptive. The relative contribution of the discontinuity in curvature at the ellipse-flat-plate juncture to receptivity is investigated by smoothing the juncture with a polynomial. Continuous curvature leads to less receptivity. A new geometry of the leading edge, a modified super ellipse, which provides continuous curvature at the juncture with the flat plate, is used to study the effect of continuous curvature and inherent pressure gradient on receptivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakan Ozaltun; Pavel Medvedev
The effects of the foil flatness on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation were studied. Monolithic plate-type fuels are a new fuel form being developed for research and test reactors to achieve higher uranium densities. This concept facilitates the use of low-enriched uranium fuel in the reactor. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. To evaluate the effects of the foil flatness on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate frommore » RERTR-12 experiments (Plate L1P756) was considered. Both fabrication and irradiation processes of the plate were simulated by using actual irradiation parameters. The simulations were repeated for various foil curvatures to observe the effects of the foil flatness on the peak stress and strain magnitudes of the fuel elements. Results of fabrication simulations revealed that the flatness of the foil does not have a considerable impact on the post fabrication stress-strain fields. Furthermore, the irradiation simulations indicated that any post-fabrication stresses in the foil would be relieved relatively fast in the reactor. While, the perfectly flat foil provided the slightly better mechanical performance, overall difference between the flat-foil case and curved-foil case was not significant. Even though the peak stresses are less affected, the foil curvature has several implications on the strain magnitudes in the cladding. It was observed that with an increasing foil curvature, there is a slight increase in the cladding strains.« less
Boundary-Layer Bypass Transition Over Large-Scale Bodies
2016-12-16
shape of the streamwise velocity profile compared to the flat- plate boundary layer. The research showed that the streamwise wavenumber plays a key role...many works on the suppression of the transitional boundary layer. Most of the results in the literature are for the flat- plate boundary layer but the...behaviour of the velocity and pressure changes with the curvature. This work aims to extend the results of the flat- plate boundary layer to a Rankine
Flash Diffusivity Technique Applied to Individual Fibers
NASA Technical Reports Server (NTRS)
Mayeaux, Brian; Yowell, Leonard; Wang, Hsin
2007-01-01
A variant of the flash diffusivity technique has been devised for determining the thermal diffusivities, and thus the thermal conductivities, of individual aligned fibers. The technique is intended especially for application to nanocomposite fibers, made from narrower fibers of polyphenylene benzobisthiazole (PBZT) and carbon nanotubes. These highly aligned nanocomposite fibers could exploit the high thermal conductivities of carbon nanotubes for thermal-management applications. In the flash diffusivity technique as practiced heretofore, one or more heat pulse(s) is (are) applied to the front face of a plate or disk material specimen and the resulting time-varying temperature on the rear face is measured. Usually, the heat pulse is generated by use of a xenon flash lamp, and the variation of temperature on the rear face is measured by use of an infrared detector. The flash energy is made large enough to produce a usefully high temperature rise on the rear face, but not so large as to significantly alter the specimen material. Once the measurement has been completed, the thermal diffusivity of the specimen is computed from the thickness of the specimen and the time dependence of the temperature variation on the rear face. Heretofore, the infrared detector used in the flash diffusivity technique has been a single-point detector, which responds to a spatial average of the thermal radiation from the rear specimen surface. Such a detector cannot distinguish among regions of differing diffusivity within the specimen. Moreover, two basic assumptions of the thermaldiffusivity technique as practiced heretofore are that the specimen is homogeneous and that heat flows one-dimensionally from the front to the rear face. These assumptions are not valid for an inhomogeneous (composite) material.
NASA Technical Reports Server (NTRS)
Borden, C. S.; Schwartz, D. L.
1984-01-01
The purpose of this study is to assess the relative economic potentials of concenrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R&D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options.
Near Earth Asteroid Scout Solar Sail Thrust and Torque Model
NASA Technical Reports Server (NTRS)
Heaton, Andy; Ahmad, Naeem; Miller, Kyle
2017-01-01
The Near Earth Asteroid (NEA) Scout is a solar sail mission whose objective is to scout at least one Near Earth Asteroid to help prepare for human missions to Near Earth Asteroids. NEA Scout will launch as a secondary payload on the first SLS-Orion mission. NEA Scout will perform a small trim maneuver shortly after deploy from the spent SLS upper stage using a cold gas propulsion system, but from that point on will depend entirely on the solar sail for thrust. As such, it is important to accurately characterize the thrust of the sail in order to achieve mission success. Additionally, the solar sail creates a relatively large solar disturbance torque that must be mitigated. For early mission design studies a flat plate model of the solar sail with a fixed center of pressure was adequate, but as mission concepts and the sail design matured, greater fidelity was required. Here we discuss the progress to a three-dimensional sail model that includes the effects of tension and thermal deformation that has been derived from a large structural Finite Element Model (FEM) developed by the Langley Research Center. We have found that the deformed sail membrane affects torque relatively much more than thrust; a flat plate model could potentially model thrust well enough to close mission design studies, but a three-dimensional solar sail is essential to control system design. The three-dimensional solar sail model revealed that thermal deformations of unshielded booms would create unacceptably large solar disturbance torques. The original large FEM model was used in control and mission simulations, but was resulted in simulations with prohibitive run times. This led us to adapt the Generalized Sail Model (GSM) of Rios-Reyes. A design reference sail model has been baselined for NEA Scout and has been used to design the mission and control system for the sailcraft. Additionally, since NEA Scout uses reaction wheels for attitude pointing and control, the solar torque model is essentially to successfully design the NEA Scout momentum management control system. We have also updated the estimate of diffusivity used for the aluminized sail material based on optical testing of wrinkled sail material. The model presented here represents the current state of the art of NASA's ability to model solar sail thrust and torque.
NASA Technical Reports Server (NTRS)
1979-01-01
The procedures used and the results obtained during the evaluation test program on a liquid solar collector are presented. The narrow flat plate collector with reflective concentrating mirrors uses water as the working fluid. The double-covered collector weighs 137 pounds and has overall dimensions of about 35" by 77" by 6.75". The test program was conducted to obtain the following information: thermal performance data under simulated conditions, structural behavior under static load, and the effects of long term exposure to natural weathering.
Research on graphite reinforced glass matrix composites
NASA Technical Reports Server (NTRS)
Prewo, K. M.; Thompson, E. R.
1981-01-01
A broad group of fibers and matrices were combined to create a wide range of composite properties. Primary material fabrication procedures were developed which readily permit the fabrication of flat plate and shaped composites. Composite mechanical properties were measured under a wide range of test conditions. Tensile, flexure mechanical fatigue, thermal fatigue, fracture toughness, and fatigue crack growth resistance were evaluated. Selected fiber-matrix combinations were shown to maintain their strength at up to 1300 K when tested in an inert atmosphere. Composite high temperature mechanical properties were shown to be limited primarily by the oxidation resistance of the graphite fibers. Composite thermal dimensional stability was measured and found to be excellent.
1984-04-01
The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.
Long Duration Exposure Facility (LDEF)
NASA Technical Reports Server (NTRS)
1984-01-01
The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.
Notes on the Prediction of Shock-induced Boundary-layer Separation
NASA Technical Reports Server (NTRS)
Lange, Roy H.
1953-01-01
The present status of available information relative to the prediction of shock-induced boundary-layer separation is discussed. Experimental results showing the effects of Reynolds number and Mach number on the separation of both laminar and turbulent boundary layer are given and compared with available methods for predicting separation. The flow phenomena associated with separation caused by forward-facing steps, wedges, and incident shock waves are discussed. Applications of the flat-plate data to problems of separation on spoilers, diffusers, and scoop inlets are indicated for turbulent boundary layers.
Induced velocity field of a jet in a crossflow
NASA Technical Reports Server (NTRS)
Fearn, R. L.; Weston, R. P.
1978-01-01
An experimental investigation of a subsonic round jet exhausting perpendicularly from a flat plate into a subsonic crosswind of the same temperature was conducted. Velocity and pressure measurements were made in planes perpendicular to the path of the jet for ratios of jet velocity to crossflow velocity ranging from 3 to 10. The results of these measurements are presented in tabular and graphical forms. A pair of diffuse contrarotating vortices is identified as a significant feature of the flow, and the characteristics of the vortices are discussed.
Solar thermal collectors using planar reflector
NASA Technical Reports Server (NTRS)
Espy, P. N.
1978-01-01
Specular reflectors have been used successfully with flat-plate collectors to achieve exceptionally high operating temperatures and high delivered energy per unit collector area. Optimal orientation of collectors and reflectors can result in even higher performance with an improved relationship between energy demand and supply. This paper reports on a study providing first order optimization of collector-reflector arrays in which single- and multiple-faceted reflectors in fixed or singly adjustable configurations provide delivered energy maxima in either summer or winter.
NASA Technical Reports Server (NTRS)
1979-01-01
The test procedures and the results obtained during the evaluation of a single-covered liquid solar collector are presented. The tests were performed under outdoor natural conditions. The collector was under stagnation conditions for a total of approximately ten months. The solar collector is a liquid, single-glazed, flat plate collector, and is about 240 inches long, and 3.8 inches in depth.
NASA Astrophysics Data System (ADS)
Taheri, Yaser; Alimardani, Kazem; Ziapour, Behrooz M.
2015-10-01
Solar passive water heaters are potential candidates for enhanced heat transfer. Solar water heaters with an integrated water tank and with the low temperature energy resource are used as the simplest and cheapest recipient devices of the solar energy for heating and supplying hot water in the buildings. The solar thermal performances of one primitive absorber were determined by using both the experimental and the simulation model of it. All materials applied for absorber such as the cover glass, the black colored sands and the V shaped galvanized plate were submerged into the water. The water storage tank was manufactured from galvanized sheet of 0.0015 m in thickness and the effective area of the collector was 0.67 m2. The absorber was installed on a compact solar water heater. The constructed flat-plate collectors were tested outdoors. However the simulation results showed that the absorbers operated near to the gray materials and all experimental results showed that the thermal efficiencies of the collector are over than 70 %.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. M. Perez
2011-05-01
The RERTR-9 experiment was designed to test the effect of modified fuel/clad interfaces in monolithic fuel plates and to demonstrate that the addition of Si to the matrix material in dispersion plates continued to be effective at high loading (~8.5 g U/cc). Several monolithic fuel plates were fabricated by Hot Isostatic Pressing (HIP) and Friction Bonding (FB) with thin layers of Si inserted and by HIP with a Zr diffusion barrier between the fuel and cladding. Si was applied to the interface by thermal spray of Al Si mixtures and by the insertion of thin Si-rich Al alloy foil betweenmore » the fuel/clad interface. The dispersion fuel plates were fabricated by semi-standard rolling techniques (the reduction by rolling was lowered to limit fabrication defects). Matrix materials consisted of Al-Si alloys and mixtures with various levels of Si. The following report summarizes the life of the RERTR-9A/B experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.« less
Comparisons of the Maxwell and CLL gas/surface interaction models using DSMC
NASA Technical Reports Server (NTRS)
Hedahl, Marc O.; Wilmoth, Richard G.
1995-01-01
The behavior of two different models of gas-surface interactions is studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and the Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate represents one of the solar panels on the Magellan spacecraft, and the freestream conditions correspond to those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two-plate system is not representative of the Magellan geometry but is studied to explore possible experiments that might be used to differentiate between the two gas-surface interaction models. The Maxwell and CLL models produce qualitatively similar results for the aerodynamic forces and heat transfer on a single flat plate. However, the flow fields produced with the two models are qualitatively different for both the single-plate and two-plate calculations. These differences in the flowfield lead to predictions of the angle of attack for maximum heat transfer in a two plate configuration that are distinctly different for the two gas-surface interactions models.
Properties of Special Types of Radiators
NASA Technical Reports Server (NTRS)
Parsons, S R
1921-01-01
This report discusses the general performance characteristics of three special classes of radiators: those with flat plate water tubes, fin and tube types, and types that whistle in an air stream. Curves and tables show the performance of representative radiators of each class and compare the flat plate and whistling types. Empirical equations are given for estimating the performance of flat plate radiators of various dimensions. This report also contains a brief discussion, with curves, showing the effect of yawing on the properties of a radiator.
1986-08-01
AD-A174 952 FINITE - DIFFERENCE SOLUTIONS FOR CONPRESSIBLE LANINAR 1/2 BOUNDARY-LAYER FLOUS (U) TORONTO UNIV DOWNSVIEW (ONTARIO) INST FOR AEROSPACE...dilute dusty gas over a semi-infinite flat plate. Details are given of the impliit finite , difference schemes as well as the boundary conditions... FINITE - DIFFERENCE SOLUTIONS FOR COMPRESSIBLE LAMINAR BOUNDARY-LAYER FLOWS OF A DUSTY GAS OVER A SEMI-INFINITE FLAT PLATE by B. Y. Wang and I. I
Lift Production on Flapping and Rotary Wings at Low Reynolds Numbers
2016-02-26
though parameter variations were also performed. For the rotating cases, the wing was an aspect ratio 2 rectangular flat plate , and the root cutout (i.e...rectangular flat plate . 2 U (Side View) (a) 1A: Rectilinear pitch U (Side View) (b) 1B: Rectilinear surge (Top View) (Side View) (c) 2A: Rotational...0.5c φ (b) A=2 flat plate wing Figure 2: Schematic of the AVT-202 rotating wing kinematics and geometry, from Ref. 12. 3.2 Experimental Setup Rotating
PVMirror: A New Concept for Tandem Solar Cells and Hybrid Solar Converters
Yu, Zhengshan J.; Fisher, Kathryn C.; Wheelwright, Brian M.; ...
2015-08-25
As the solar electricity market has matured, energy conversion efficiency and storage have joined installed system cost as significant market drivers. In response, manufacturers of flatplate silicon photovoltaic (PV) cells have pushed cell efficiencies above 25%—nearing the 29.4% detailed-balance efficiency limit— and both solar thermal and battery storage technologies have been deployed at utility scale. This paper introduces a new tandem solar collector employing a “PVMirror” that has the potential to both increase energy conversion efficiency and provide thermal storage. A PVMirror is a concentrating mirror, spectrum splitter, and light-to-electricity converter all in one: It consists of a curved arrangementmore » of PV cells that absorb part of the solar spectrum and reflect the remainder to their shared focus, at which a second solar converter is placed. A strength of the design is that the solar converter at the focus can be of a radically different technology than the PV cells in the PVMirror; another is that the PVMirror converts a portion of the diffuse light to electricity in addition to the direct light. Here, we consider two case studies—a PV cell located at the focus of the PVMirror to form a four-terminal PV–PV tandem, and a thermal receiver located at the focus to form a PV–CSP (concentrating solar thermal power) tandem—and compare the outdoor energy outputs to those of competing technologies. PVMirrors can outperform (idealized) monolithic PV–PV tandems that are under concentration, and they can also generate nearly as much energy as silicon flat-plate PV while simultaneously providing the full energy storage benefit of CSP.« less
Wafer integrated micro-scale concentrating photovoltaics
NASA Astrophysics Data System (ADS)
Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun
2017-09-01
Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.
A numerical simulation of machining glass by dual CO 2-laser beams
NASA Astrophysics Data System (ADS)
Jiao, Junke; Wang, Xinbing
2008-03-01
In the flat panel display (FPD) industry, lasers may be used to cut glass plates. In order to reduce the possibility of fracture in the process of cutting glass by lasers, the thermal stress has to be less than the critical rupture strength. In this paper, a dual-laser-beam method is proposed, where an off-focus CO 2-laser beam was used to preheat the glass sample to reduce the thermal gradients and a focused CO 2-laser beam was used to machine the glass. The distribution of the thermal stress and the temperature was simulated by using finite element analysis software, Ansys. The thermal stress was studied both when the glass sample was machined by a single CO 2-laser beam and by dual CO 2-laser beams. It was concluded that the thermal stress can be reduced by means of the dual-laser-beam method.
Numerical simulation of supersonic water vapor jet impinging on a flat plate
NASA Astrophysics Data System (ADS)
Kuzuu, Kazuto; Aono, Junya; Shima, Eiji
2012-11-01
We investigated supersonic water vapor jet impinging on a flat plate through numerical simulation. This simulation is for estimating heating effect of a reusable sounding rocket during vertical landing. The jet from the rocket bottom is supersonic, M=2 to 3, high temperature, T=2000K, and over-expanded. Atmospheric condition is a stationary standard air. The simulation is base on the full Navier-Stokes equations, and the flow is numerically solved by an unstructured compressible flow solver, in-house code LS-FLOW-RG. In this solver, the transport properties of muti-species gas and mass conservation equations of those species are considered. We employed DDES method as a turbulence model. For verification and validation, we also carried out a simulation under the condition of air, and compared with the experimental data. Agreement between our results and the experimental data are satisfactory. Through this simulation, we calculated the flow under some exit pressure conditions, and discuss the effects of pressure ratio on flow structures, heat transfer and so on. Furthermore, we also investigated diffusion effects of water vapor, and we confirmed that these phenomena are generated by the interaction of atmospheric air and affects the heat transfer to the surrounding environment.
Long Hole Film Cooling Dataset for CFD Development - Flow and Film Effectiveness
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Poinsatte, Phillip; Thurman, Douglas; Ameri, Ali
2014-01-01
An experiment investigating flow and heat transfer of long (length to diameter ratio of 18) cylindrical film cooling holes has been completed. In this paper, the thermal field in the flow and on the surface of the film cooled flat plate is presented for nominal freestream turbulence intensities of 1.5 and 8 percent. The holes are inclined at 30 deg above the downstream direction, injecting chilled air of density ratio 1.0 onto the surface of a flat plate. The diameter of the hole is 0.75 in. (approx. 0.02 m) with center to center spacing (pitch) of 3 hole diameters. Coolant was injected into the mainstream flow at nominal blowing ratios of 0.5, 1.0, 1.5, and 2.0. The Reynolds number of the freestream was approximately 11,000 based on hole diameter. Thermocouple surveys were used to characterize the thermal field. Infrared thermography was used to determine the adiabatic film effectiveness on the plate. Hotwire anemometry was used to provide flowfield physics and turbulence measurements. The results are compared to existing data in the literature. The aim of this work is to produce a benchmark dataset for Computational Fluid Dynamics (CFD) development to eliminate the effects of hole length to diameter ratio and to improve resolution in the near-hole region. In this report, a Time Filtered Navier Stokes (TFNS), also known as Partially Resolved Navier Stokes (PRNS), method that was implemented in the Glenn-HT code is used to model coolant-mainstream interaction. This method is a high fidelity unsteady method that aims to represent large scale flow features and mixing more accurately.
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Thurman, Douglas; Poinsatte, Phillip; Ameri, Ali; Eichele, Peter; Knight, James
2013-01-01
An experiment investigating flow and heat transfer of long (length to diameter ratio of 18) cylindrical film cooling holes has been completed. In this paper, the thermal field in the flow and on the surface of the film cooled flat plate is presented for nominal freestream turbulence intensities of 1.5 and 8 percent. The holes are inclined at 30deg above the downstream direction, injecting chilled air of density ratio 1.0 onto the surface of a flat plate. The diameter of the hole is 0.75 in. (0.01905 m) with center to center spacing (pitch) of 3 hole diameters. Coolant was injected into the mainstream flow at nominal blowing ratios of 0.5, 1.0, 1.5, and 2.0. The Reynolds number of the freestream was approximately 11,000 based on hole diameter. Thermocouple surveys were used to characterize the thermal field. Infrared thermography was used to determine the adiabatic film effectiveness on the plate. Hotwire anemometry was used to provide flowfield physics and turbulence measurements. The results are compared to existing data in the literature. The aim of this work is to produce a benchmark dataset for Computational Fluid Dynamics (CFD) development to eliminate the effects of hole length to diameter ratio and to improve resolution in the near-hole region. In this report, a Time-Filtered Navier Stokes (TFNS), also known as Partially Resolved Navier Stokes (PRNS), method that was implemented in the Glenn-HT code is used to model coolant-mainstream interaction. This method is a high fidelity unsteady method that aims to represent large scale flow features and mixing more accurately.
Tectonic plates, D (double prime) thermal structure, and the nature of mantle plumes
NASA Technical Reports Server (NTRS)
Lenardic, A.; Kaula, W. M.
1994-01-01
It is proposed that subducting tectonic plates can affect the nature of thermal mantle plumes by determining the temperature drop across a plume source layer. The temperature drop affects source layer stability and the morphology of plumes emitted from it. Numerical models are presented to demonstrate how introduction of platelike behavior in a convecting temperature dependent medium, driven by a combination of internal and basal heating, can increase the temperature drop across the lower boundary layer. The temperature drop increases dramatically following introduction of platelike behavior due to formation of a cold temperature inversion above the lower boundary layer. This thermal inversion, induced by deposition of upper boundary layer material to the system base, decays in time, but the temperature drop across the lower boundary layer always remains considerably higher than in models lacking platelike behavior. On the basis of model-inferred boundary layer temperature drops and previous studies of plume dynamics, we argue that generally accepted notions as to the nature of mantle plumes on Earth may hinge on the presence of plates. The implication for Mars and Venus, planets apparently lacking plate tectonics, is that mantle plumes of these planets may differ morphologically from those of Earth. A corollary model-based argument is that as a result of slab-induced thermal inversions above the core mantle boundary the lower most mantle may be subadiabatic, on average (in space and time), if major plate reorganization timescales are less than those acquired to diffuse newly deposited slab material.
NASA Technical Reports Server (NTRS)
1983-01-01
The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.
NASA Astrophysics Data System (ADS)
Zweifel, T.; Palancher, H.; Leenaers, A.; Bonnin, A.; Honkimaki, V.; Tucoulou, R.; Van Den Berghe, S.; Jungwirth, R.; Charollais, F.; Petry, W.
2013-11-01
A new type of high density fuel is needed for the conversion of research and test reactors from high to lower enriched uranium. The most promising one is a dispersion of atomized uranium-molybdenum (U-Mo) particles in an Al matrix. However, during in-pile irradiation the growth of an interaction layer between the U-Mo and the Al matrix strongly limits the fuel's performance. To improve the in-pile behaviour, the U-Mo particles can be coated with protective layers. The SELENIUM (Surface Engineering of Low ENrIched Uranium-Molybdenum) fuel development project consists of the production, irradiation and post-irradiation examination of 2 flat, full-size dispersion fuel plates containing respectively Si and ZrN coated U-Mo atomized powder dispersed in a pure Al matrix. In this paper X-ray diffraction analyses of the Si and ZrN layers after deposition, fuel plate manufacturing and thermal annealing are reported. It was found for the U-Mo particles coated with ZrN (thickness 1 μm), that the layer is crystalline, and exhibits lower density than the theoretical one. Fuel plate manufacturing does not strongly influence these crystallographic features. For the U-Mo particles coated with Si (thickness 0.6 μm), the measurements of the as received material suggest an amorphous state of the deposited layer. Fuel plate manufacturing strongly modifies its composition: Si reacts with the U-Mo particles and the Al matrix to grow U(Al, Si)3 and U3Si5 phases. Finally both coatings have shown excellent performances under thermal treatment by limiting drastically the U-Mo/Al interdiffusion. U(Al,Si)3 with two lattice parameters (4.16 Å and 4.21 Å), A distorted U3Si5 phase. Note that these phases were not present in the U-Mo(Si) powders. These phases are usually found in the Silicon rich diffusion layer (SiRDL) obtained in dispersed fuels (as-manufactured U-Mo/Al(Si) fuel plates [12,3] or annealed UMo(Si)/Al fuel rods [40]) as well as in diffusion couples (U-Mo/Al(Si7) [37-39] or U-Mo/Si [41]). This analysis is furthermore in full agreement with the SEM/EDX characterisations which have highlighted the growth of a SiRDL in these U-Mo(Si)/Al_P fuel plates [30]. However it must be stressed that the amount of these U(Al,Si)3 and U3Si5 crystalline phases (about 0.3 wt%) is lower than the one obtained for fuel plates containing 4-6 wt% Si in the matrix [12]. It equals to the SiRDL amount measured in the IRIS4_2.1%Si fuel plate. Using these HE-XRD measurements, the Si concentration in SiRDLs is evaluated to 51 at%. This value is somewhat higher than when measured by EDX: it has been estimated to 40 at% in [30]. U2Mo and α"-U phase for compacts annealed at 340 °C, U2Mo and α'-U phase for compacts annealed at 450 °C [43], gamma;-U-Mo and α'-U for compacts annealed at 550 °C. These results obtained on compacts are in good agreement with previous works performed on U-8Mo ingots (see Fig. 9A) -even if some differences in the α-U phase structure must be mentioned - and in very close agreement with recent studies on thermally annealed U-Mo/Al fuel plates. Indeed destabilisation products found in this work are identical to those identified after fuel plate annealing at 550 °C [25] and 450 °C [43]. Moreover this work helps establishing that destabilisation products are U2Mo and α"-U at lower temperatures (below 450 °C). This was first demonstrated on fuel plates annealed at 425 °C for more than 50 h [43] and this is confirmed here with the analysis of the compacts annealed at 340 °C during 130 days. Note finally that whatever the presence of a coating, destabilisation ratios are very close in compacts annealed in the same conditions (see Fig. 9B) and that destabilisation ratios show the expected increase between 2 and 4 h annealing at 550 °C. The non-annealed U-Mo(Si)/Al compact has been lost during fabrication.
Impact of current speed on mass flux to a model flexible seagrass blade
NASA Astrophysics Data System (ADS)
Lei, Jiarui; Nepf, Heidi
2016-07-01
Seagrass and other freshwater macrophytes can acquire nutrients from surrounding water through their blades. This flux may depend on the current speed (U), which can influence both the posture of flexible blades (reconfiguration) and the thickness of the flux-limiting diffusive layer. The impact of current speed (U) on mass flux to flexible blades of model seagrass was studied through a combination of laboratory flume experiments, numerical modeling and theory. Model seagrass blades were constructed from low-density polyethylene (LDPE), and 1, 2-dichlorobenzene was used as a tracer chemical. The tracer mass accumulation in the blades was measured at different unidirectional current speeds. A numerical model was used to estimate the transfer velocity (K) by fitting the measured mass uptake to a one-dimensional diffusion model. The measured transfer velocity was compared to predictions based on laminar and turbulent boundary layers developing over a flat plate parallel to flow, for which K∝U0.5 and ∝U, respectively. The degree of blade reconfiguration depended on the dimensionless Cauchy number, Ca, which is a function of both the blade stiffness and flow velocity. For large Ca, the majority of the blade was parallel to the flow, and the measured transfer velocity agreed with laminar boundary layer theory, K∝U0.5. For small Ca, the model blades remained upright, and the flux to the blade was diminished relative to the flat-plate model. A meadow-scale analysis suggests that the mass exchange at the blade scale may control the uptake at the meadow scale.
NASA Astrophysics Data System (ADS)
Kegerise, Michael A.; Rufer, Shann J.
2016-08-01
In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.
Small particle transport across turbulent nonisothermal boundary layers
NASA Technical Reports Server (NTRS)
Rosner, D. E.; Fernandez De La Mora, J.
1982-01-01
The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.
Thermal Boundary Layer Equation for Turbulent Rayleigh-Bénard Convection
NASA Astrophysics Data System (ADS)
Ching, Emily Sc; Shishkina, Olga; Horn, Susanne; Wagner, Sebastian
Turbulent Rayleigh-Bénard convection, consisting of a fluid confined between two horizontal plates, heated from below and cooled from above, is a paradigm system for studying turbulent thermal convection, which is ubiquitous in nature. In turbulent Rayleigh-Bénard convection, there are viscous boundary layers near all rigid walls and two thermal boundary layers, one above the bottom plate and one below the top plate. The classical Prandtl-Blasius-Pohlhausen theory has often been used to describe the mean velocity and temperature boundary layer profiles but systematic deviations are known to exist. These deviations are due to turbulent fluctuations. In this talk, we report a new thermal boundary layer equation for turbulent Rayleigh-Bénard convection derived for Prandtl number (Pr) greater than 1, which takes into account the effects of turbulent fluctuations by using the idea of an eddy thermal diffusivity. Solving this equation, we have obtained two analytical mean temperature profiles for Pr ~ 1 and Pr >> 1 . These two theoretical predictions are shown to be in excellent agreement with the results of our direct numerical simulations for Pr=4.38 (water) and Pr=2547.9 (glycerol). Work of ESCC was supported by the Hong Kong Research Grants Council under Grant No. CUHK-400311.
Kinetics of thermal donor generation in silicon
NASA Technical Reports Server (NTRS)
Mao, B.-Y.; Lagowski, J.; Gatos, H. C.
1984-01-01
The generation kinetics of thermal donors at 450 C in Czochralski-grown silicon was found to be altered by high-temperature preannealing (e.g., 1100 C for 30 min). Thus, when compared with as-grown Si, high-temperature preannealed material exhibits a smaller concentration of generated thermal donors and a faster thermal donor saturation. A unified mechanism of nucleation and oxygen diffusion-controlled growth (based on solid-state plate transformation theory) is proposed to account for generation kinetics of thermal donors at 450 C, in as-grown and high-temperature preannealed Czochralski silicon crystals. This mechanism is consistent with the main features of the models which have been proposed to explain the formation of oxygen thermal donors in silicon.
NASA Astrophysics Data System (ADS)
Cha, B. K.; kim, J. Y.; Kim, T. J.; Sim, C.; Cho, G.; Lee, D. H.; Seo, C.-W.; Jeon, S.; Huh, Y.
2011-01-01
In digital neutron radiography system, a thermal neutron imaging detector based on neutron-sensitive scintillating screens with CMOS(complementary metal oxide semiconductor) flat panel imager is introduced for non-destructive testing (NDT) application. Recently, large area CMOS APS (active-pixel sensor) in conjunction with scintillation films has been widely used in many digital X-ray imaging applications. Instead of typical imaging detectors such as image plates, cooled-CCD cameras and amorphous silicon flat panel detectors in combination with scintillation screens, we tried to apply a scintillator-based CMOS APS to neutron imaging detection systems for high resolution neutron radiography. In this work, two major Gd2O2S:Tb and 6LiF/ZnS:Ag scintillation screens with various thickness were fabricated by a screen printing method. These neutron converter screens consist of a dispersion of Gd2O2S:Tb and 6LiF/ZnS:Ag scintillating particles in acrylic binder. These scintillating screens coupled-CMOS flat panel imager with 25x50mm2 active area and 48μm pixel pitch was used for neutron radiography. Thermal neutron flux with 6x106n/cm2/s was utilized at the NRF facility of HANARO in KAERI. The neutron imaging characterization of the used detector was investigated in terms of relative light output, linearity and spatial resolution in detail. The experimental results of scintillating screen-based CMOS flat panel detectors demonstrate possibility of high sensitive and high spatial resolution imaging in neutron radiography system.
NASA Astrophysics Data System (ADS)
Mahanthesh, B.; Gireesha, B. J.; Athira, P. R.
Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering Maxwell-Garnetts (MG) and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism.
Flat-plate photovoltaic array design optimization
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1980-01-01
An analysis is presented which integrates the results of specific studies in the areas of photovoltaic structural design optimization, optimization of array series/parallel circuit design, thermal design optimization, and optimization of environmental protection features. The analysis is based on minimizing the total photovoltaic system life-cycle energy cost including repair and replacement of failed cells and modules. This approach is shown to be a useful technique for array optimization, particularly when time-dependent parameters such as array degradation and maintenance are involved.
2010-03-10
achieved by setting proper driver and driven pressures. A calibration of the tunnel was done for the decided freestream conditions with a pitot rake ...measurement. A rake of 12 pitot probes spanning the diameter of the nozzle (300 mm) was placed facing the freestream. The pitot pressures were... pitot rake and shock tube measurements, the freestream conditions for each of the observed rupture pressure are estimated. It was observed that of
NASA Astrophysics Data System (ADS)
Wolf, D.
A fully functionally efficient solar-thermal power plant (10 kW electric) was built. The operating principle of thermomechanical conversion of solar energy into mechanical or electrical energy is presented. The equipment is completely automatic. Flat plate collectors absorb solar energy and convert it into heat which is transmitted by water to a heat exchanger. A closed cycle machine uses the heat to boil a working fluid (C2C12F4). A screw, powered by gas expansion in the working fluid, converts mechanical energy into electrical energy.
1986-03-01
93 3.6.5.4 Data Acquisition- Electrical Analog. . 95 3.6.6 Co-axial Thermocouple Gages ...... 97 3.6.6.1 Theory .................... 101 3.6.6.2...Preparation of Liquid Crystal Model . . . 233 Appendix G: Digital Image Processing . ........ 235 Appendix H: Electrical Analog Circuits ....... . 237...m. 232 H.la Thermal Circuit ..... ................. . 237 H.Ib Electrical Circuit ..... ............... 237 H.2 Electrical Analog Using Equal Sections
Lagrangian analysis of the laminar flat plate boundary layer
NASA Astrophysics Data System (ADS)
Gabr, Mohammad
2016-10-01
The flow properties at the leading edge of a flat plate represent a singularity to the Blasius laminar boundary layer equations; by applying the Lagrangian approach, the leading edge velocity profiles of the laminar boundary layer over a flat plate are studied. Experimental observations as well as the theoretical analysis show an exact Gaussian distribution curve as the original starting profile of the laminar flow. Comparisons between the Blasius solution and the Gaussian curve solution are carried out providing a new insight into the physics of the laminar flow.
Similarity theory of the buoyantly interactive planetary boundary layer with entrainment
NASA Technical Reports Server (NTRS)
Hoffert, M. I.; Sud, Y. C.
1976-01-01
A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbulent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coefficients of the boundary layer are given by solutions to a system of ordinary differential equations in the similarity variable. To close the system, a formulation for buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing length throughout the boundary layer. The model is tested in simplified versions which depend only on roughness, surface buoyancy, and Coriolis effects by comparison with planetary-boundary-layer wind- and temperature-profile observations, measurements of flat-plate boundary layers in a thermally stratified wind tunnel and observations of profiles of terms in the turbulent kinetic-energy budget of convective planetary boundary layers. On balance, the simplified model reproduced the trend of these various observations and experiments reasonably well, suggesting that the full similarity formulation be pursued further.
NASA Astrophysics Data System (ADS)
Naseem, Anum; Shafiq, Anum; Zhao, Lifeng; Farooq, M. U.
2018-06-01
This article addresses third grade nanofluidic flow instigated by riga plate and Cattaneo-Christov theory is adopted to investigate thermal and mass diffusions with the incorporation of newly eminent zero nanoparticles mass flux condition. The governing system of equations is nondimensionalized through relevant similarity transformations and significatory findings are attained by using optimal homotopy analysis method. The behaviors of affecting parameters for velocity, temperature and concentration profiles are depicted graphically and also verified through three dimensional patterns for some parameters. Values of skin friction coefficient and Nusselt number with the apposite discussion have been recorded. The current results reveal that temperature and concentration profiles experience decline when thermal and concentration relaxation parameters are augmented respectively.
Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1984-01-01
The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.
Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1986-01-01
The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.
Two-Piece Screens for Decontaminating Granular Material
NASA Technical Reports Server (NTRS)
Backes, Douglas; Poulter, Clay; Godfrey, Max; Dutton, Melinda; Tolman, Dennis
2009-01-01
Two-piece screens have been designed specifically for use in filtering a granular material to remove contaminant particles that are significantly wider or longer than are the desired granules. In the original application for which the twopiece screens were conceived, the granular material is ammonium perchlorate and the contaminant particles tend to be wires and other relatively long, rigid strands. The basic design of the twopiece screens can be adapted to other granular materials and contaminants by modifying critical dimensions to accommodate different grain and contaminant- particle sizes. A two-piece screen of this type consists mainly of (1) a top flat plate perforated with circular holes arranged in a hexagonal pattern and (2) a bottom plate that is also perforated with circular holes (but not in a pure hexagonal pattern) and is folded into an accordion structure. Fabrication of the bottom plate begins with drilling circular holes into a flat plate in a hexagonal pattern that is interrupted, at regular intervals, by parallel gaps. The plate is then folded into the accordion structure along the gaps. Because the folds are along the gaps, there are no holes at the peaks and valleys of the accordion screen. The top flat plate and the bottom accordion plate are secured within a metal frame. The resulting two-piece screen is placed at the bottom opening of a feed hopper containing the granular material to be filtered. Tests have shown that such long, rigid contaminant strands as wires readily can pass through a filter consisting of the flat screen alone and that the addition of the accordion screen below the flat screen greatly increases the effectiveness of removal of wires and other contaminant strands. Part of the reason for increased effectiveness is in the presentation of the contaminant to the filter surface. Testing has shown that wire type contamination will readily align itself parallel to the material direction flow. Since this direction of flow is nearly always perpendicular to the filter surface holes, the contamination is automatically aligned to pass through. The two-filter configuration reduces the likelihood that a given contaminant strand will be aligned with the flow of material by eliminating the perpendicular presentation angle. Thus, for wires of a certain diameter, a two-piece screen is 20 percent more effective than is the corresponding flat perforated plate alone, even if the holes in the flat plate are narrower. An accordion screen alone is similarly effective in catching contaminants, but lumps of agglomerated granules of the desired material often collect in the valleys and clog the screen. The addition of a flat screen above the accordion screen prevents clogging of the accordion screen. Flat wire screens have often been used to remove contaminants from granular materials, and are about as effective as are the corresponding perforated flat plates used alone.
User's guide for the thermal analyst's help desk expert system
NASA Technical Reports Server (NTRS)
Ormsby, Rachel A.
1994-01-01
A guide for users of the Thermal Analyst's Help Desk is provided. Help Desk is an expert system that runs on a DOS based personal computer and operates within the EXSYS expert system shell. Help Desk is an analysis tool designed to provide users having various degrees of experience with the capability to determine first approximations of thermal capacity for spacecraft and instruments. The five analyses supported in Help Desk are: surface area required for a radiating surface, equilibrium temperature of a surface, enclosure temperature and heat loads for a defined position in orbit, enclosure temperature and heat loads over a complete orbit, and selection of appropriate surface properties. The two geometries supported by Help Desk are a single flat plate and a rectangular box enclosure.
Effects of the foil flatness on irradiation performance of U10Mo monolithic mini-plates
Ozaltun, Hakan; Medvedev, Pavel G.; Rabin, Barry H.
2015-09-03
Monolithic plate-type fuels comprise of a high density, low enrichment, U10Mo fuel foil encapsulated in a cladding material. This concept generates several fabrication challenges such as flatness, centering or thickness variation. There are concerns, if these parameters have implications on overall performance. To investigate these inquiries, the effects of the foil flatness were studied. For this, a representative plate was simulated for an ideal case. The simulations were repeated for additional cases with various foil curvatures to evaluate the effects on the irradiation performance. The results revealed that the stresses and strains induced by fabrication process are not affected bymore » the flatness of the foil. Furthermore, fabrication stresses in the foil are relieved relatively fast in the reactor. The effects of the foil flatness on peak irradiation stressstrains are minimal. There is a slight increase in temperature for the case with maximum curvature. The major impact is on the displacement characteristics. Furthermore, while the case with a flat foil produces a symmetrical swelling, if the foil is curved, more swelling occurs on the thin-cladding side and the plate bows during irradiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryson, J.W.; Swinson, W.F.
1975-12-01
The complete test results for a flat plate with two closely spaced nozzles attached are presented. Test loadings were 1:1, 1:2, and 2:1 biaxial planar tension loadings on the plate, axial thrust loadings applied separately to the nozzles, and bending moment loadings applied to the nozzles both within and normal to the plane of symmetry containing the nozzle axes. The test plate was 36 x 36 x 0.375 in., and the attached nozzles had outer diameters of 2.625 in. and wall thicknesses of 0.250 in. The nozzles were located in the center of the plate with their centers 3.0 in.more » apart and were considered to be free of weld distortions and irregularities in the junction region. 6 references. (auth)« less
NASA Astrophysics Data System (ADS)
Rees, D.; Fuller-Rowell, T. J.; Lyons, A.; Killeen, T. L.; Hays, P. B.
1982-11-01
The cemented etalons are shown to be rugged and highly stable for high-resolution spectroscopy and to be well suited to space applications. The etalons will be of considerable value as the tuning elements of dye laser systems and as the stable spectral disperser for pulse and CW laser spectroscopy. Even for etalons 15 cm in diameter, the strength of the cemented bond is greatly in excess of the maximum steady and impulsive forces experienced from the much larger etalon plate mass (2-4 kg rather than 200 g). It is thought that the small but systematic and significant positive increment in the thermal expansion coefficient which occurs when an etalon and its spacers are cemented may be linked to the cessation of the microscopic migration that occurs with an optically contacted bond under thermal or mechanical stress. The etalon comprises two flat plates of fused silica, with spacers constructed of Zerodur (a polycrystalline glass ceramic of extremely low expansion coefficient) which are cemented together using cyanoacrylic adhesives.
Flutter Analysis of the Thermal Protection Layer on the NASA HIAD
NASA Technical Reports Server (NTRS)
Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.
2013-01-01
A combination of classical plate theory and a supersonic aerodynamic model is used to study the aeroelastic flutter behavior of a proposed thermal protection system (TPS) for the NASA HIAD. The analysis pertains to the rectangular configurations currently being tested in a NASA wind-tunnel facility, and may explain why oscillations of the articles could be observed. An analysis using a linear flat plate model indicated that flutter was possible well within the supersonic flow regime of the wind tunnel tests. A more complex nonlinear analysis of the TPS, taking into account any material curvature present due to the restraint system or substructure, indicated that significantly greater aerodynamic forcing is required for the onset of flutter. Chaotic and periodic limit cycle oscillations (LCOs) of the TPS are possible depending on how the curvature is imposed. When the pressure from the base substructure on the bottom of the TPS is used as the source of curvature, the flutter boundary increases rapidly and chaotic behavior is eliminated.
Hybrid thermoelectric solar collector design and analysis
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.; Shaheen, K. E.
1982-01-01
A flat-plate solar collector is conceived where energy cascades through thermoelectric power modules generating direct-current electricity. The intent of this work was to choose a collector configuration and to perform a steady-state thermal performance assessment. A set of energy balance equations were written and solved numerically for the purpose of optimizing collector thermal and electrical performance. The collector design involves finned columns of thermoelectric modules imbedded in the absorber plate (hot junction) over a parallel array of vertical tubes. The thermoelectric power output is limited by the small hot-junction/cold-junction temperature difference which can be maintained under steady-state conditions. The electric power per unit tube pass area is found to have a maximum as a function of a geometric parameter, while electric power is maximized with respect to an electric resistance ratio. Although the electric power efficiency is small, results indicate that there is sufficient electric power production to drive a coolant circulator, suggesting the potential for a stand-alone system.
Fabrication Techniques and Principles for Flat Plate Antennas
DOT National Transportation Integrated Search
1973-09-01
The report documents the fabrication techniques and principles selected to produce one and ten million flat plate antennas per year. An engineering analysis of the reliability, electrical integrity, and repeatability is made, and a cost analysis summ...
NASA Technical Reports Server (NTRS)
Toland, Ronald W.; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.
2003-01-01
We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al 6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(trademark) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.
NASA Astrophysics Data System (ADS)
Diestra Cruz, Heberth Alexander
The Green's functions integral technique is used to determine the conduction heat transfer temperature field in flat plates, circular plates, and solid spheres with saw tooth heat generating sources. In all cases the boundary temperature is specified (Dirichlet's condition) and the thermal conductivity is constant. The method of images is used to find the Green's function in infinite solids, semi-infinite solids, infinite quadrants, circular plates, and solid spheres. The saw tooth heat generation source has been modeled using Dirac delta function and Heaviside step function. The use of Green's functions allows obtain the temperature distribution in the form of an integral that avoids the convergence problems of infinite series. For the infinite solid and the sphere, the temperature distribution is three-dimensional and in the cases of semi-infinite solid, infinite quadrant and circular plate the distribution is two-dimensional. The method used in this work is superior to other methods because it obtains elegant analytical or quasi-analytical solutions to complex heat conduction problems with less computational effort and more accuracy than the use of fully numerical methods.
Investigation to develop a method to apply diffusion barrier to high strength fibers
NASA Technical Reports Server (NTRS)
Veltri, R. D.; Paradis, R. D.; Douglas, F. C.
1975-01-01
A radio frequency powered ion plating process was used to apply the diffusion barriers of aluminum oxide, yttrium oxide, hafnium oxide and titanium carbide to a substrate tungsten fiber. Each of the coatings was examined as to its effect on both room temperature strength and tensile strength of the base tungsten fiber. The coated fibers were then overcoated with a nickel alloy to become single cell diffusion couples. These diffusion couples were exposed to 1093 C for 24 hours, cycled between room temperature and 1093 C, and given a thermal anneal for 100 hours at 1200 C. Tensile testing and metallographic examinations determined that the hafnium oxide coating produced the best high temperature diffusion barrier for tungsten of the four coatings.
Nonperturbative Renormalization Group Approach to Polymerized Membranes
NASA Astrophysics Data System (ADS)
Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique
2014-03-01
Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.
Compressible Fabry-Perot refractometer.
Andersson, M; Eliasson, L; Pendrill, L R
1987-11-15
The use of a long, thermally stable Fabry-Perot etalon as a refractometer is considered in detail in this study of the refractive index of air. The etalon consists of two flat plates of fused silica 60 mm in diameter, with a cylindrical spacer made of Zerodur (a polycrystalline glass ceramic of extremely low thermal expansion) 200 mm long. The interferogram of light from a frequency-stabilized He-Ne laser is imaged with large-diameter mirror optics. The principal result is a demonstration of the effects of changes in atmospheric pressure on the etalon. The measured refractive-index values deviate by 2 parts in 10(7) from calculated values. Possible causes of error are considered in detail.
NASA Astrophysics Data System (ADS)
Jwo, Ching-Song; Cheng, Tseng-Tang; Cho, Hung-Pin; Chiang, Wei-Tang; Chen, Sih-Li; Chen, Chien-Wei; Jian, Ling-You
2011-12-01
This paper presents a reduced fan noise method, with increased fan-benefit analysis of various performances. The experimental approach adopts changes in the outlet in the form of two fans (flat tongue and a V-Type tongue plate) in order to measure the noise under the two forms of value and volume of supply air fan, shaft power consumption, operating current, and static pressure. The results showed that the tongue plate and the V-plane tongue plate noise between the value of the measurement location of 6.7 in the tongue plate in the plane below the noise level is about V-tongue plate 1 ~ 1.5dB (A). Air flow rate testing showed that the flat plate and the V-Type tongue plate between the tongue plate V-Type flow rate value, the measurement location of 3.4 in the tongue plate in the plane was more than the V-Type flow rate tongue plate 5 to 5.5%. Shaft power testing of measurement model 3, and measurement model 4, showed that the tongue plate in the plane V-tongue plate was more than 8%, 5%. The measurement models 3 and 4 and 5 showed more than the V-Type plane tongue plate 1%, 2.7%, and 2.6%. The measurement models 6 and 8 showed that, the flat tongue plate is less than the V-tongue plate of 2.9% and 2.3%. Static pressure testing showed that the flat tongue plate in particular measurement models (3,4,8,9), the static value of V-tongue plate than the 11.1% higher, respectively, 9%, 4.3%, and 3.7%. The results summarized above suggest that, in the specific measurement points, when parallel to the tongue plate the V-tongue board has better performance.
NASA Astrophysics Data System (ADS)
Ganesh Kumar, K.; Archana, M.; Gireesha, B. J.; Krishanamurthy, M. R.; Rudraswamy, N. G.
2018-03-01
A study on magnetohydrodynamic mixed convection flow of Casson fluid over a vertical plate has been modelled in the presence of Cross diffusion effect and nonlinear thermal radiation. The governing partial differential equations are remodelled into ordinary differential equations by using similarity transformation. The accompanied differential equations are resolved numerically by using Runge-Kutta-Fehlberg forth-fifth order along with shooting method (RKF45 Method). The results of various physical parameters on velocity and temperature profiles are given diagrammatically. The numerical values of the local skin friction coefficient, local Nusselt number and local Sherwood number also are shown in a tabular form. It is found that, effect of Dufour and Soret parameter increases the temperature and concentration component correspondingly.
NASA Technical Reports Server (NTRS)
Lee, Henry C.; Klopfer, Goetz
2011-01-01
This report documents how OVERFLOW, a computational fluid dynamics code, predicts plume impingement of underexpanded axisymmetric jets onto both perpendicular and inclined flat plates. The effects of the plume impinging on a range of plate inclinations varying from 90deg to 30deg are investigated and compared to the experimental results in Reference 1 and 2. The flow fields are extremely complex due to the interaction between the shock waves from the free jet and those deflected by the plate. Additionally, complex mixing effects create very intricate structures in the flow. The experimental data is very limited, so these validation studies will focus only on cold plume impingement on flat and inclined plates. This validation study will help quantify the error in the OVERFLOW simulation when applied to stage separation scenarios.
Multilayer material characterization using thermographic signal reconstruction
NASA Astrophysics Data System (ADS)
Shepard, Steven M.; Beemer, Maria Frendberg
2016-02-01
Active-thermography has become a well-established Nondestructive Testing (NDT) method for detection of subsurface flaws. In its simplest form, flaw detection is based on visual identification of contrast between a flaw and local intact regions in an IR image sequence of the surface temperature as the sample responds to thermal stimulation. However, additional information and insight can be obtained from the sequence, even in the absence of a flaw, through analysis of the logarithmic derivatives of individual pixel time histories using the Thermographic Signal Reconstruction (TSR) method. For example, the response of a flaw-free multilayer sample to thermal stimulation can be viewed as a simple transition between the responses of infinitely thick samples of the individual constituent layers over the lifetime of the thermal diffusion process. The transition is represented compactly and uniquely by the logarithmic derivatives, based on the ratio of thermal effusivities of the layers. A spectrum of derivative responses relative to thermal effusivity ratios allows prediction of the time scale and detectability of the interface, and measurement of the thermophysical properties of one layer if the properties of the other are known. A similar transition between steady diffusion states occurs for flat bottom holes, based on the hole aspect ratio.
Pressurized bellows flat contact heat exchanger interface
NASA Technical Reports Server (NTRS)
Voss, Fred E. (Inventor); Howell, Harold R. (Inventor); Winkler, Roger V. (Inventor)
1990-01-01
Disclosed is an interdigitated plate-type heat exchanger interface. The interface includes a modular interconnect to thermally connect a pair or pairs of plate-type heat exchangers to a second single or multiple plate-type heat exchanger. The modular interconnect comprises a series of parallel, plate-type heat exchangers arranged in pairs to form a slot therebetween. The plate-type heat exchangers of the second heat exchanger insert into the slots of the modular interconnect. Bellows are provided between the pairs of fins of the modular interconnect so that when the bellows are pressurized, they drive the plate-type heat exchangers of the modular interconnect toward one another, thus closing upon the second heat exchanger plates. Each end of the bellows has a part thereof a thin, membrane diaphragm which readily conforms to the contours of the heat exchanger plates of the modular interconnect when the bellows is pressurized. This ensures an even distribution of pressure on the heat exchangers of the modular interconnect thus creating substantially planar contact between the two heat exchangers. The effect of the interface of the present invention is to provide a dry connection between two heat exchangers whereby the rate of heat transfer can be varied by varying the pressure within the bellows.
Salinity transfer in double diffusive convection bounded by two parallel plates
NASA Astrophysics Data System (ADS)
Yang, Yantao; van der Poel, Erwin P.; Ostilla-Monico, Rodolfo; Sun, Chao; Verzicco, Roberto; Grossmann, Siegfried; Lohse, Detlef
2014-11-01
The double diffusive convection (DDC) is the convection flow with the fluid density affected by two different components. In this study we numerically investigate DDC between two parallel plates with no-slip boundary conditions. The top plate has higher salinity and temperature than the lower one. Thus the flow is driven by the salinity difference and stabilised by the temperature difference. Our simulations are compared with the experiments by Hage and Tilgner (Phys. Fluids 22, 076603 (2010)) for several sets of parameters. Reasonable agreement is achieved for the salinity flux and its dependence on the salinity Rayleigh number. For all parameters considered, salt fingers emerge and extend through the entire domain height. The thermal Rayleigh number shows minor influence on the salinity flux although it does affect the Reynolds number. We apply the Grossmann-Lohse theory for Rayleigh-Bénard flow to the current problem without introducing any new coefficients. The theory successfully predicts the salinity flux with respect to the scaling for both the numerical and experimental results.
Researcher and Mechanic with Solar Collector in Solar Simulator Cell
1976-08-21
Researcher Susan Johnson and a mechanic examine a flat-plate solar collector in the Solar Simulator Cell in the High Temperature Composites Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Solar Simulator Cell allowed the researchers to control the radiation levels, air temperature, airflow, and fluid flow. The flat-plate collector, seen in a horizontal position here, was directed at the solar simulator, seen above Johnson, during the tests. Lewis researchers were studying the efficiency of various flat- plate solar collector designs in the 1970s for temperature control systems in buildings. The collectors consisted of a cover material, absorber plate, and parallel flow configuration. The collector’s absorber material and coating, covers, honeycomb material, mirrors, vacuum, and tube attachment could all be modified. Johnson’s study analyzed 35 collectors. Johnson, a lifelong pilot, joined NASA Lewis in 1974. The flat-plate solar collectors, seen here, were her first research project. Johnson also investigated advanced heat engines for general aviation and evaluated variable geometry combustors and liners. Johnson earned the Cleveland Technical Society’s Technical Achievement Award in 1984.
NASA Astrophysics Data System (ADS)
Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga
2017-10-01
This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.
Aziz, Asim; Siddique, J I; Aziz, Taha
2014-01-01
In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile.
Aziz, Asim; Siddique, J. I.; Aziz, Taha
2014-01-01
In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile. PMID:25531301
NASA Technical Reports Server (NTRS)
Luthcke, S. B.; Marshall, J. A.
1992-01-01
The TOPEX/Poseidon spacecraft was launched on August 10, 1992 to study the Earth's oceans. To achieve maximum benefit from the altimetric data it is to collect, mission requirements dictate that TOPEX/Poseidon's orbit must be computed at an unprecedented level of accuracy. To reach our pre-launch radial orbit accuracy goals, the mismodeling of the radiative nonconservative forces of solar radiation, Earth albedo an infrared re-radiation, and spacecraft thermal imbalances cannot produce in combination more than a 6 cm rms error over a 10 day period. Similarly, the 10-day drag modeling error cannot exceed 3 cm rms. In order to satisfy these requirements, a 'box-wing' representation of the satellite has been developed in which, the satellite is modelled as the combination of flat plates arranged in the shape of a box and a connected solar array. The radiative/thermal nonconservative forces acting on each of the eight surfaces are computed independently, yielding vector accelerations which are summed to compute the total aggregate effect on the satellite center-of-mass. Select parameters associated with the flat plates are adjusted to obtain a better representation of the satellite acceleration history. This study analyzes the estimation of these parameters from simulated TOPEX/Poseidon laser data in the presence of both nonconservative and gravity model errors. A 'best choice' of estimated parameters is derived and the ability to meet mission requirements with the 'box-wing' model evaluated.
Modeling Deuterium Release from Plasma Implanted Surfaces
NASA Astrophysics Data System (ADS)
Grossman, A. A.; Doerner, R.; Hirooka, Y.; Luckhardt, S. C.; Sze, F. C.
1997-11-01
When energetic ions or atoms of hydrogen isotopes interact with a solid surface, they may either be reflected or they may be implanted, a slowing down process within the subsurface layer of the energetic particles to thermal velocities. Subsequent interactions of the thermalized particles are those of diffusion and trapping within the material and the possibility of re-emission from the solid via desorption. The diffusion equation and its boundary conditions govern the transport of this thermalized hydrogen within the material. Diffusivities obey an Arrhenius law over as much as fourteen orders of magnitude for the temperature range of interest for a fusion reactor first wall and divertor plate. Using TMAP4, a variety of diffusion models are set up for comparison with experiments on PISCES which involve implantation and desorption of deuterium from beryllium, tungsten, carbon and boron carbide. The parameters and characteristics of the models which give the closest fit to the experimental data are reported. At the high fluences of these experiments, it is necessary to take into account saturation effects during implantation using a separate implantation layer with thickness given by TRIM and a higher trapping to lattice ratio than in the bulk in order to model the experimental data.
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.
2004-08-01
Shallow flat subduction is a relatively common feature at present-day subduction zones. Several mechanisms to explain this feature have been proposed, and can be subdivided into three groups: overthrusting of the subducting plate, subduction of a plume-generated oceanic plateau, and slab suction forces. We developed a numerical model to investigate these mechanisms and tested it through a comparison of the model results with the observations of the Peru flat slab where all three mechanisms seem to be contributing. The ratio of contributions of overthrusting continent to plateau subduction is in the range of 1:1 to 1:2, and the role of plate suction forces is likely to be significant. By applying the overthrusting continent and plateau subduction mechanisms separately, we were able to determine the most important model parameters for each of the mechanisms. Overthrusting easily results in flat subduction, and the flat slab length is primarily a function of slab age, overriding plate motion and mantle viscosity. An oceanic plateau is much less likely to cause flat subduction, and favorable conditions for flat subduction include a young slab age, long-lived plateau buoyancy after subduction, a strong mantle, and addition of slab suction forces that are large enough to further reduce the subduction dip angle, once the plateau initiates this flattening. Furthermore, we found that even though today flat subduction can be explained with the dominant model parameters within a reasonable range, for a slightly hotter, younger Earth, these flat subduction conditions are much less favorable, and so this style of subduction was probably not present in the past. This contradicts earlier predictions that flat subduction was a more wide-spread phenomenon in the early stages of plate tectonics in a younger earth.
NASA Astrophysics Data System (ADS)
Diabil, Hayder Azeez; Li, Xin Kai; Abdalla, Ibrahim Elrayah
2017-09-01
Large-scale organized motions (commonly referred to coherent structures) and flow topology of a transitional separated-reattached flow have been visualised and investigated using flow visualisation techniques. Two geometrical shapes including two-dimensional flat plate with rectangular leading edge and three-dimensional square cylinder are chosen to shed a light on the flow topology and present coherent structures of the flow over these shapes. For both geometries and in the early stage of the transition, two-dimensional Kelvin-Helmholtz rolls are formed downstream of the leading edge. They are observed to be twisting around the square cylinder while they stay flat in the case of the two-dimensional flat plate. For both geometrical shapes, the two-dimensional Kelvin-Helmholtz rolls move downstream of the leading edge and they are subjected to distortion to form three-dimensional hairpin structures. The flow topology in the flat plate is different from that in the square cylinder. For the flat plate, there is a merging process by a pairing of the Kelvin-Helmholtz rolls to form a large structure that breaks down directly into many hairpin structures. For the squire cylinder case, the Kelvin-Helmholtz roll evolves topologically to form a hairpin structure. In the squire cylinder case, the reattachment length is much shorter and a forming of the three-dimensional structures is closer to the leading edge than that in the flat plate case.
Llinas’ Phase Reset Mechanism Delays the Onset of Chaos in Shark and Dolphin Wall Turbulence
2014-02-10
eruption due to plate tectonics . (The plate becomes locally thin and is unable to prevent the high-pressure hot magma from erupting.) The vorticity...flat plate value. The spacing between riblet peaks s+= 10 is used unless noted. KM gives the "strength" of the riblets, where the terms "weak" and...exhibit spanwise variations in skin friction coefficients and integral boundary layer properties, even in flat plate experiments where great care has
Design and installation package for the Sunmat Flat Plate solar collector
NASA Technical Reports Server (NTRS)
1978-01-01
The information used in evaluating the design of a liquid flat plate solar collector is reported. Included in this package are subsystem performance specification, installation, operation and maintenance manuals, collector sizing guides, and detailed drawings of the single-glazed collector.
Analysis of turbulent free-convection boundary layer on flat plate
NASA Technical Reports Server (NTRS)
Eckert, E R G; Jackson, Thomas W
1950-01-01
A calculation was made for the flow and heat transfer in the turbulent free-convection boundary layer on a vertical flat plate. Formulas for the heat-transfer coefficient, boundary layer thickness, and the maximum velocity in the boundary layer were obtained.
Certification and verification for Calmac flat plate solar collector
NASA Technical Reports Server (NTRS)
1978-01-01
Information used in the certification and verification of the Calmac Flat Plate Collector is presented. Contained are such items as test procedures and results, information on materials used, installation, operation, and maintenance manuals, and other information pertaining to the verification and certification.
Three-flat test with plates in horizontal posture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vannoni, Maurizio; Molesini, Giuseppe
2008-04-20
Measuring flats in the horizontal posture with interferometers is analyzed in detail, taking into account the sag produced by gravity. A mathematical expression of the bending is provided for a plate supported at three unevenly spaced locations along the edge. It is shown that the azimuthal terms of the deformation can be recovered from a three-flat measuring procedure, while the pure radial terms can only be estimated. The effectiveness of the iterative algorithm for data processing is also demonstrated. Experimental comparison on a set of three flats in horizontal and upright posture is provided.
Cosmological simulations of dwarf galaxies with cosmic ray feedback
NASA Astrophysics Data System (ADS)
Chen, Jingjing; Bryan, Greg L.; Salem, Munier
2016-08-01
We perform zoom-in cosmological simulations of a suite of dwarf galaxies, examining the impact of cosmic rays (CRs) generated by supernovae, including the effect of diffusion. We first look at the effect of varying the uncertain CR parameters by repeatedly simulating a single galaxy. Then we fix the comic ray model and simulate five dwarf systems with virial masses range from 8 to 30 × 1010 M⊙. We find that including CR feedback (with diffusion) consistently leads to disc-dominated systems with relatively flat rotation curves and constant star formation rates. In contrast, our purely thermal feedback case results in a hot stellar system and bursty star formation. The CR simulations very well match the observed baryonic Tully-Fisher relation, but have a lower gas fraction than in real systems. We also find that the dark matter cores of the CR feedback galaxies are cuspy, while the purely thermal feedback case results in a substantial core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kistler, B.L.
DELSOL3 is a revised and updated version of the DELSOL2 computer program (SAND81-8237) for calculating collector field performance and layout and optimal system design for solar thermal central receiver plants. The code consists of a detailed model of the optical performance, a simpler model of the non-optical performance, an algorithm for field layout, and a searching algorithm to find the best system design based on energy cost. The latter two features are coupled to a cost model of central receiver components and an economic model for calculating energy costs. The code can handle flat, focused and/or canted heliostats, and externalmore » cylindrical, multi-aperture cavity, and flat plate receivers. The program optimizes the tower height, receiver size, field layout, heliostat spacings, and tower position at user specified power levels subject to flux limits on the receiver and land constraints for field layout. DELSOL3 maintains the advantages of speed and accuracy which are characteristics of DELSOL2.« less
Comparisons of the Maxwell and CLL Gas/Surface Interaction Models Using DSMC
NASA Technical Reports Server (NTRS)
Hedahl, Marc O.
1995-01-01
Two contrasting models of gas-surface interactions are studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate is that of one of the solar panels on the Magellan spacecraft, and the freestream conditions are one of those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two plate system is not representative of the Magellan geometry, but is studied to explore possible experiments that might be used to differentiate between the two gas surface interaction models.
Free vibration of rectangular plates with a small initial curvature
NASA Technical Reports Server (NTRS)
Adeniji-Fashola, A. A.; Oyediran, A. A.
1988-01-01
The method of matched asymptotic expansions is used to solve the transverse free vibration of a slightly curved, thin rectangular plate. Analytical results for natural frequencies and mode shapes are presented in the limit when the dimensionless bending rigidity, epsilon, is small compared with in-plane forces. Results for different boundary conditions are obtained when the initial deflection is: (1) a polynomial in both directions, and (2) the product of a polynomial and a trigonometric function, and arbitrary. For the arbitrary initial deflection case, the Fourier series technique is used to define the initial deflection. The results obtained show that the natural frequencies of vibration of slightly curved plates are coincident with those of perfectly flat, prestressed rectangular plates. However, the eigenmodes are very different from those of initially flat prestressed rectangular plates. The total deflection is found to be the sum of the initial deflection, the deflection resulting from the solution of the flat plate problem, and the deflection resulting from the static problem.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-19
.... Excluded from the scope of the orders are flat-rolled steel products either plated or coated with tin, lead, chromium, chromium oxides, both tin and lead (``terne plate''), or both chromium and chromium oxides (``tin...
Model 0102 Flat Plate Antenna for Use in Automobile Radar Anticipatory Crash Sensors
DOT National Transportation Integrated Search
1973-09-01
The report analyzed alternative methods of construction and production costs for a flat plate antenna based on the use of etched circuit techniques. The antenna is proposed for use in certain new automotive radar anticipatory crash sensor systems now...
Spallation modeling in the Charring Material Thermal Response and Ablation (CMA) computer program
NASA Astrophysics Data System (ADS)
Sullivan, J. M.; Kobayashi, W. S.
1987-06-01
It has been observed during tests of certain laminated composite materials exposed to relatively high continuous wave laser irradiation, that the heated surface will spall. To model this phenomenon, the Charring Material Thermal Response and Ablation code has been updated. In addition to temperature response, in-depth decomposition, and surface recession, thermal and mechanical stresses are calculated. Spall is modeled as a discrete mass removal event occurring when the stresses exceed the ultimate strength of the char through a critical depth. Comparisons are made with test data for a carbon phenolic cylinder exposed to a shock tube environment and for a flat plate Kevlar epoxy test specimen exposed to high intensity laser irradiation. Good agreement is shown; however, the results indicate a requirement for more comprehensive elevated-temperature material properties for further validation.
NASA Technical Reports Server (NTRS)
Mayers, J; Budiansky, Bernard
1955-01-01
An analysis is presented of the postbuckling behavior of a simply supported square flat plate with straight edges compressed beyond the buckling load into the plastic range. The method of analysis involves the application of a variational principle of the deformation theory of plasticity in conjunction with computations carried out on a high-speed calculating machine. Numerical results are obtained for several plate proportions and for one material. The results indicate plate strengths greater than those that have been found experimentally on plates that do not satisfy straight-edge conditions. (author)
Cadmium biosorption rate in protonated Sargassum biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J.; Volesky, B.
1999-03-01
Biosorption of the heavy metal ion Cd{sup 2+} by protonated nonliving brown alga Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake of cadmium and the release of proton matched each other throughout the biosorption process. The end-point titration methodology was used to maintain the constant pH 4.0 for developing the dynamic sorption rate. The sorption isotherm could be well represented by the Langmuir sorption model. A mass transfer model assuming the intraparticle diffusion in a one-dimensional thin plate as a controlling step was developed to describe the overall biosorption rate of cadmiummore » ions in flat seaweed biomass particles. The overall biosorption mathematical model equations were solved numerically yielding the effective diffusion coefficient D{sub e} about 3.5 {times} 10{sup {minus}6} cm{sup 2}/s. This value matches that obtained for the desorption process and is approximately half of that of the molecular diffusion coefficient for cadmium ions in aqueous solution.« less
Numerical Simulations of Vortex Generator Vanes and Jets on a Flat Plate
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Yao, Chung-Sheng; Lin, John C.
2002-01-01
Numerical simulations of a single low-profile vortex generator vane, which is only a small fraction of the boundary-layer thickness, and a vortex generating jet have been performed for flows over a flat plate. The numerical simulations were computed by solving the steady-state solution to the Reynolds-averaged Navier-Stokes equations. The vortex generating vane results were evaluated by comparing the strength and trajectory of the streamwise vortex to experimental particle image velocimetry measurements. From the numerical simulations of the vane case, it was observed that the Shear-Stress Transport (SST) turbulence model resulted in a better prediction of the streamwise peak vorticity and trajectory when compared to the Spalart-Allmaras (SA) turbulence model. It is shown in this investigation that the estimation of the turbulent eddy viscosity near the vortex core, for both the vane and jet simulations, was higher for the SA model when compared to the SST model. Even though the numerical simulations of the vortex generating vane were able to predict the trajectory of the stream-wise vortex, the initial magnitude and decay of the peak streamwise vorticity were significantly under predicted. A comparison of the positive circulation associated with the streamwise vortex showed that while the numerical simulations produced a more diffused vortex, the vortex strength compared very well to the experimental observations. A grid resolution study for the vortex generating vane was also performed showing that the diffusion of the vortex was not a result of insufficient grid resolution. Comparisons were also made between a fully modeled trapezoidal vane with finite thickness to a simply modeled rectangular thin vane. The comparisons showed that the simply modeled rectangular vane produced a streamwise vortex which had a strength and trajectory very similar to the fully modeled trapezoidal vane.
Edge Stabilized Ribbon (ESR); Stress, Dislocation Density and Electronic Performance
NASA Technical Reports Server (NTRS)
Sachs, E. M.
1984-01-01
The edge stabilized ribbon (ESR) silicon ribbon was grown in widths of 1, 2.2 and 4.0 inches at speeds ranging from .6 to 7 in/min, which result in ribbon thicknesses of 5 to 400 microns. One of the primary problems remaining in ESR growth is that of thermally induced mechanical stresses. This problem is manifested as ribbon with a high degree of residual stress or as ribbon with buckled ribbon. Thermal stresses result in a high dislocation density in the grown material, resulting in compromised electronic performance. Improvements in ribbon flatness were accomplished by modification of the ribbon cooling profile. Ribbon flatness and other experimental observations of ESR ribbon are discussed. Laser scanner measurements show a good correlation between diffusion length and dislocation density which indicates that the high dislocation densities are the primary cause of the poor current performance of ESR materials. Dislocation densities were reduced and improved electronic performance resulted. Laser scanner data on new and old material are presented.
Broadband boundary effects on Brownian motion.
Mo, Jianyong; Simha, Akarsh; Raizen, Mark G
2015-12-01
Brownian motion of particles in confined fluids is important for many applications, yet the effects of the boundary over a wide range of time scales are still not well understood. We report high-bandwidth, comprehensive measurements of Brownian motion of an optically trapped micrometer-sized silica sphere in water near an approximately flat wall. At short distances we observe anisotropic Brownian motion with respect to the wall. We find that surface confinement not only occurs in the long time scale diffusive regime but also in the short time scale ballistic regime, and the velocity autocorrelation function of the Brownian particle decays faster than that of a particle in bulk fluid. Furthermore, at low frequencies the thermal force loses its color due to the reflected flow from the no-slip boundary. The power spectrum of the thermal force on the particle near a no-slip boundary becomes flat at low frequencies. This detailed understanding of boundary effects on Brownian motion opens a door to developing a 3D microscope using particles as remote sensors.
NASA Astrophysics Data System (ADS)
Mohmand, Muhammad Ismail; Mamat, Mustafa Bin; Shah, Qayyum
2017-07-01
This article deals with the time dependent analysis of thermally conducting and Magneto-hydrodynamic (MHD) liquid film flow of a fourth order fluid past a vertical and vibratory plate. In this article have been developed for higher order complex nature fluids. The governing-equations have been modeled in the terms of nonlinear partial differential equations with the help of physical boundary circumstances. Two different analytical approaches i.e. Adomian decomposition method (ADM) and the optimal homotopy asymptotic method (OHAM), have been used for discoveryof the series clarification of the problems. Solutions obtained via two diversemethods have been compared using the graphs, tables and found an excellent contract. Variants of the embedded flow parameters in the solution have been analysed through the graphical diagrams.
NASA Technical Reports Server (NTRS)
Buck, Gregory M.; Powers, Michael A.; Nevins, Stephen C.; Griffith, Mark S.; Wainwright, Gary A.
2006-01-01
Methods, materials and equipment are documented for fabricating flat plate test models at NASA Langley Research Center for Shuttle return-to-flight aeroheating experiments simulating open and closed cavity interactions in Langley s hypersonic 20-Inch Mach 6 air wind tunnel. Approximately 96 silica ceramic flat plate cavity phosphor thermography test models have been fabricated using these methods. On one model, an additional slot is machined through the back of the plate and into the cavity and vented into an evacuated plenum chamber to simulate a further opening in the cavity. After sintering ceramic to 2150 F, and mounting support hardware, a ceramic-based two-color thermographic phosphor coating is applied for global temperature and heat transfer measurements, with fiducial markings for image registration.
Visualization of the contact line during the water exit of flat plates
NASA Astrophysics Data System (ADS)
Tassin, A.; Breton, T.; Forest, B.; Ohana, J.; Chalony, S.; Le Roux, D.; Tancray, A.
2017-08-01
We investigate experimentally the time evolution of the wetted surface during the lifting of a body initially floating at the water surface. This phenomenon is referred to as the water exit problem. The water exit experiments were conducted with transparent (PMMA) mock-ups of two different shapes: a circular disc and a square flat plate. Two different lighting systems were used to diffuse light in the mock-up material: a central high-power LED light normal to the surface and an edge-lighting system featuring an array of LED lights. These setups make it possible to illuminate the contact line, which delimits the surface of contact between the mock-up and the water. The characteristic size of the mock-ups is about 20 cm and the acceleration of the mock-up oscillates between 0 and 25 m/s^2. We show that the central light setup gives satisfactory results for the circular disc and that the edge lighting technique makes it possible to follow a contact line with a time-evolving complex shape (strong changes of convexity) up to 1000 fps. The observations presented in the paper support the possibility of extending this promising technique to more general three-dimensional bodies with arbitrary motion (e.g., including pitch motion).
Computation of Tone Noise From Supersonic Jet Impinging on Flat Plates
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Blech, Richard A. (Technical Monitor)
2005-01-01
A supersonic jet impinging normally on a flat plate has both practical importance and theoretical interests. The physical phenomenon is not fully understood yet. Research concentrates either on the hydrodynamics (e.g., lift loss for STOVL) or on the aeroacoustic loading. In this paper, a finite volume scheme - the space-time conservation element and solution element (CE/SE) method - is employed to numerically study the near-field noise of an underexpanded supersonic jet from a converging nozzle impinging normally on a flat plate. The numerical approach is of the MILES type (monotonically integrated large eddy simulation). The computed results compare favorably with the experimental findings.
NASA Technical Reports Server (NTRS)
Tsou, P.; Stolte, W.
1978-01-01
The paper examines the impact of module and array designs on the balance-of-plant costs for flat-plate terrestrial central station power applications. Consideration is given to the following types of arrays: horizontal, tandem, augmented, tilt adjusted, and E-W tracking. The life-cycle cost of a 20-year plant life serves as the costing criteria for making design and cost tradeoffs. A tailored code of accounts is developed for determining consistent photovoltaic power plant costs and providing credible photovoltaic system cost baselines for flat-plate module and array designs by costing several varying array design approaches.
Turbulent Combustion Study of Scramjet Problem
2015-08-01
boundary layer model for 2D simulations of a supersonic flat plate boundary layer . The inflow O2 has an average density of...flow above the flat plate has a transition from a laminar boundary layer to a turbulent boundary layer at a position downstream from the inlet. The...δ. Chapman [13] estimated the number of cells need to resolve the outer layer is proportional to Re0.4 for flat plat boundary layer and
Airborne Aero-Optics Laboratory - Transonic (AAOL-T)
2016-10-03
122–151. [30] DeGraaff, D. B. and Eaton, J. K., “Reynolds-Number Scaling of the Flat - Plate Turbulent Boundary Layer ,” Journal of Fluid Mechanics, Vol...elevation angle of the turret is fixed at 120 o . The inflow turbulence data are generated by a separate flat - plate boundary layers simulation. The...aero-optical distortion magnitude for turbulent boundary layers . Subsonic Flow over a Cylindrical Turret with a Flat Window. The flow over a
Linking plate reconstructions with deforming lithosphere to geodynamic models
NASA Astrophysics Data System (ADS)
Müller, R. D.; Gurnis, M.; Flament, N.; Seton, M.; Spasojevic, S.; Williams, S.; Zahirovic, S.
2011-12-01
While global computational models are rapidly advancing in terms of their capabilities, there is an increasing need for assimilating observations into these models and/or ground-truthing model outputs. The open-source and platform independent GPlates software fills this gap. It was originally conceived as a tool to interactively visualize and manipulate classical rigid plate reconstructions and represent them as time-dependent topological networks of editable plate boundaries. The user can export time-dependent plate velocity meshes that can be used either to define initial surface boundary conditions for geodynamic models or alternatively impose plate motions throughout a geodynamic model run. However, tectonic plates are not rigid, and neglecting plate deformation, especially that of the edges of overriding plates, can result in significant misplacing of plate boundaries through time. A new, substantially re-engineered version of GPlates is now being developed that allows an embedding of deforming plates into topological plate boundary networks. We use geophysical and geological data to define the limit between rigid and deforming areas, and the deformation history of non-rigid blocks. The velocity field predicted by these reconstructions can then be used as a time-dependent surface boundary condition in regional or global 3-D geodynamic models, or alternatively as an initial boundary condition for a particular plate configuration at a given time. For time-dependent models with imposed plate motions (e.g. using CitcomS) we incorporate the continental lithosphere by embedding compositionally distinct crust and continental lithosphere within the thermal lithosphere. We define three isostatic columns of different thickness and buoyancy based on the tectonothermal age of the continents: Archean, Proterozoic and Phanerozoic. In the fourth isostatic column, the oceans, the thickness of the thermal lithosphere is assimilated using a half-space cooling model. We also define the thickness of the thermal lithosphere for different continental types, with the exception of the deforming areas that are fully dynamic. Finally, we introduce a "slab assimilation" method in which the thermal structure of the slab, derived analytically, is progressively assimilated into the upper mantle through time. This method not only improves the continuity of slabs in forward models with imposed plate motions, but it also allows us to model flat slab segments that are particularly relevant for understanding dynamic surface topography. When it comes to post-processing and visualisation, GPlates allows the user to import time-dependent model output image stacks to visualise mantle properties (e.g. temperature) at a given depth through time, with plate boundaries and other data attached to plates overlain. This approach provides an avenue to simultaneously investigate the contributions of lithospheric deformation and mantle flow to surface topography. Currently GPlates is being used in conjunction with the codes CitcomS, Terra, BEMEarth and the adaptive mesh refinement code Rhea. A GPlates python plugin infrastructure makes it easy to extend interoperability with other geodynamic modelling codes.
Dynamics Impact Tolerance of Shuttle RCC Leading Edge Panels Using LS-DYNA
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.
2005-01-01
This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using physics-based codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which is used because of its thermal properties to protect the shuttle during reentry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of foam cylinders impacting 6- in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.
Dynamic Impact Tolerance of Shuttle RCC Leading Edge Panels using LS-DYNA
NASA Technical Reports Server (NTRS)
Fasanella, Edwin; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.
2008-01-01
This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using 'physics-based- codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which issued because of its thermal properties to protect the shuttle during re-entry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of individual foam cylinders impacting 6-in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.
Outdoor performance results for NBS Round Robin collector no. 1
NASA Technical Reports Server (NTRS)
Miller, D. R.
1976-01-01
The efficiency of a PPG flat-plate solar collector was evaluated utilizing an outdoor solar collector test facility at the NASA-Lewis Research Center, as part of the National Bureau of Standards 'round robin' collector test program. The correlation equation for collector thermal efficiency Eta curve fit of the data was: Eta = 0.666 - 1.003(Btu/hr-sq ft-F) Theta, where the parameter Theta is the difference between the average fluid temperature and the ambient temperature, all divided by the total flux impinging on the collector.
The development of a solar-powered residential heating and cooling system
NASA Technical Reports Server (NTRS)
1974-01-01
Efforts to demonstrate the engineering feasibility of utilizing solar power for residential heating and cooling are described. These efforts were concentrated on the analysis, design, and test of a full-scale demonstration system which is currently under construction at the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama. The basic solar heating and cooling system under development utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating and water heating, and an absorption cycle air conditioner for space cooling.
Separation characteristics of generic stores from lee side of an inclined flat plate at Mach 6
NASA Technical Reports Server (NTRS)
Wilcox, Floyd J., Jr.
1995-01-01
An experimental investigation was conducted to determine the aerodynamic characteristics of a store as it was separated from the lee side of a flat plate inclined at 15 deg to the free-stream flow at Mach 6. Two store models were tested: a cone cylinder and a roof delta. Force and moment data were obtained for both stores as they were moved in 0.5-in. increments away from the flat plate lee-side separated flow region into the free-stream flow while the store angle of attack was held constant at either 0 deg or 15 deg. The results indicate that both stores had adverse separation characteristics (i.e., negative normal force and pitching moment) at an angle of attack of 0 deg, and the cone cylinder had favorable separation characteristics (i.e., positive normal force and pitching moment) at an angle of attack of 15 deg. At an angle of attack of 15 deg, the separation characteristics of the roof delta are indeterminate at small separation distances and favorable at greater separation distances. These characteristics are the result of the local flow inclination relative to the stores as they traversed through the flat plate lee-side flow field. In addition to plotted data, force and moment data are tabulated and schlieren photographs of the stores and flat plate are presented.
NASA Technical Reports Server (NTRS)
Mcgrath, Brian E.; Neuhart, Dan H.; Gatlin, Gregory M.; Oneil, Pat
1994-01-01
A flat-plate wind tunnel model of an advanced fighter configuration was tested in the NASA LaRC Subsonic Basic Research Tunnel and the 16- by 24-inch Water Tunnel. The test objectives were to obtain and evaluate the low-speed longitudinal aerodynamic characteristics of a candidate configuration for the integration of several new innovative wing designs. The flat plate test allowed for the initial evaluation of the candidate planform and was designated as the baseline planform for the innovative wing design study. Low-speed longitudinal aerodynamic data were obtained over a range of freestream dynamic pressures from 7.5 psf to 30 psf (M = 0.07 to M = 0.14) and angles-of-attack from 0 to 40 deg. The aerodynamic data are presented in coefficient form for the lift, induced drag, and pitching moment. Flow-visualization results obtained were photographs of the flow pattern over the flat plate model in the water tunnel for angles-of-attack from 10 to 40 deg. The force and moment coefficients and the flow-visualization photographs showed the linear and nonlinear aerodynamic characteristics due to attached flow and vortical flow over the flat plate model. Comparison between experiment and linear theory showed good agreement for the lift and induced drag; however, the agreement was poor for the pitching moment.
An experimental study of an explosively driven flat plate launcher
NASA Astrophysics Data System (ADS)
Rae, Philip; Haroz, Erik; Armstrong, Chris; Perry, Lee; M Division Team
2017-06-01
For some upcoming experiments it is desired to impact a large explosive assembly with one or more moderate diameter flat metal plates traveling at high velocity (2-3 km s-1). The time of arrival of these plates will need to carefully controlled and delayed (i.e. the time(s) of arrival known to approximately a microsecond). For this reason, producing a flyer plate from more traditional gun assemblies is not possible. Previous researchers have demonstrated the ability to throw reasonably flat metal flyers from the so-called Forest flyer geometry. The defining characteristics of this design are a carefully controlled reduction in explosive area from a larger explosive plane-wave-lens and booster pad to a smaller flyer plate to improve the planarity of the drive available and an air gap between the explosive booster and the plate to reduce the peak tensile stresses generated in the plate to suppress spalling. This experimental series comprised a number of different design variants and plate and explosive drive materials. The aim was to calibrate a predictive computational modeling capability on this kind of system in preparation for later more radical design ideas best tested in a computer before undertaking the expensive business of construction.
Film cooling from inclined cylindrical holes using large eddy simulations
NASA Astrophysics Data System (ADS)
Peet, Yulia V.
2006-12-01
The goal of the present study is to investigate numerically the physics of the flow, which occurs during the film cooling from inclined cylindrical holes, Film cooling is a technique used in gas turbine industry to reduce heat fluxes to the turbine blade surface. Large Eddy Simulation (LES) is performed modeling a realistic film cooling configuration, which consists of a large stagnation-type reservoir, feeding an array of discrete cooling holes (film holes) flowing into a flat plate turbulent boundary layer. Special computational methodology is developed for this problem, involving coupled simulations using multiple computational codes. A fully compressible LES code is used in the area above the flat plate, while a low Mach number LES code is employed in the plenum and film holes. The motivation for using different codes comes from the essential difference in the nature of the flow in these different regions. Flowfield is analyzed inside the plenum, film hole and a crossflow region. Flow inside the plenum is stagnating, except for the region close to the exit, where it accelerates rapidly to turn into the hole. The sharp radius of turning at the trailing edge of the plenum pipe connection causes the flow to separate from the downstream wall of the film hole. After coolant injection occurs, a complex flowfield is formed consisting of coherent vortical structures responsible for bringing hot crossflow fluid in contact with the walls of either the film hole or the blade, thus reducing cooling protection. Mean velocity and turbulent statistics are compared to experimental measurements, yielding good agreement for the mean flowfield and satisfactory agreement for the turbulence quantities. LES results are used to assess the applicability of basic assumptions of conventional eddy viscosity turbulence models used with Reynolds-averaged (RANS) approach, namely the isotropy of an eddy viscosity and thermal diffusivity. It is shown here that these assumptions do not hold for the film cooling flows. Comparison of film cooling effectiveness with experiments shows fair agreement for the centerline and laterally-averaged effectiveness. Lateral growth of the jet as judged from the lateral distribution of effectiveness is predicted correctly.
Aerodynamic properties of a flat plate with cavity for optical-propagation studies
NASA Technical Reports Server (NTRS)
Buell, D. A.
1979-01-01
Transonic wind-tunnel tests were performed on a flat plate with and without a cube-shaped cavity and antiresonance devices. Measurements were made of the optical propagation and aerodynamic properties of the boundary and shear layers. The model and its velocity profiles and pressures are described.
NASA Technical Reports Server (NTRS)
1983-01-01
A photovoltaic Metallization Research forum, under the sponsorship of the Flat-Plate Solar Array Project consisted of five sessions, covering: (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques, and (5) future metallization challenges.
Designing Flat-Plate Photovoltaic Arrays
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1984-01-01
Report presents overview of state of art in design techniques for flat-plate solar photovoltaic modules and arrays. Paper discusses design requirements, design analyses, and test methods identified and developed for this technology over past several years in effort to reduce cost and improve utility and reliability for broad spectrum of terrestrial applications.
Safety review package for University of Central Florida flat-plate heat pipe experiment
NASA Technical Reports Server (NTRS)
Chow, Louis C.
1998-01-01
A flat-plate heat pipe (FPHP) experiment has been set up for micro-gravity tests on a NASA supplied aircraft. This report presents an analysis on various components of the experimental setup to certify that it will satisfy the flight safety and operation requirements.
Effect of an Auxiliary Plate on Passive Heat Dissipation of Carbon Nanotube-Based Materials.
Yu, Wei; Duan, Zheng; Zhang, Guang; Liu, Changhong; Fan, Shoushan
2018-03-14
Carbon nanotubes (CNTs) and other related CNT-based materials with a high thermal conductivity can be used as promising heat dissipation materials. Meanwhile, the miniaturization and high functionality of portable electronics, such as laptops and mobile phones, are achieved at the cost of overheating the high power-density components. The heat removal for hot spots occurring in a relatively narrow space requires simple and effective cooling methods. Here, an auxiliary passive cooling approach by the aid of a flat plate (aluminum-magnesium alloy) is investigated to accommodate heat dissipation in a narrow space. The cooling efficiency can be raised to 43.5%. The cooling performance of several CNT-based samples is compared under such circumstances. Heat dissipation analyses show that, when there is a nearby plate for cooling assistance, the heat radiation is weakened and natural convection is largely improved. Thus, improving heat radiation by increasing emissivity without reducing natural convection can effectively enhance the cooling performance. Moreover, the decoration of an auxiliary cooling plate with sprayed CNTs can further improve the cooling performance of the entire setup.
Imaging the Peruvian flat slab with Rayliegh wave tomography
NASA Astrophysics Data System (ADS)
Knezevic Antonijevic, Sanja
In subduction zones the oceanic plates descend at a broad range of dip angles. A "flat slab" is an oceanic plate that starts to subduct steeply, but bends at 100 km depth and continues almost horizontally for several hundred kilometers. This unusual slab geometry has been linked to various geologic features, including the cessation of arc volcanism, basement core uplifts removed far from subducting margins, and the formation of high plateaus. Despite the prevalence of flat slabs worldwide since the Proterozoic, questions on how flat slabs form, persist, and re-steepen remains a topic of ongoing research. Even less clear is how this phenomenon relates to unusual features observed at the surface. To better understand the causes and consequences of slab flattening I focus on the Peruvian flat slab. This is not only the biggest flat slab region today, but due to the oblique angle at which the Nazca Plate subducts under the South American Plate, it also provides unique opportunity to get insights into the temporal evolution of the flat slab. Using ambient noise and earthquake-generated Rayleigh waves recorded at several contemporary dense seismic networks, I was able to perform unprecedentedly high resolution imaging of the subduction zone in southern Peru. Surprisingly, instead of imaging a vast flat slab region as expected, I found that the flat slab tears and re-steepens north of the subducting Nazca Ridge. The change in slab geometry is associated with variations in the slab's internal strain along strike, as inferred from slab-related anisotropy. Based on newly-discovered features I discuss the critical role of the subducting ridges in the formation and longevity of flat slabs. The slab tear created a new mantle pathway between the torn slab and the flat slab remnant to the east, and is possibly linked to the profound low velocity anomaly located under the eastern corner of the flat slab. Finally, I re-evaluate the connection between slab flattening and volcanic patterns at the surface. These findings have important implications for all present-day and paleo-flat slab regions, such as the one proposed for the western United States during the Laramide orogeny 80-55 Ma.
A molecular Rayleigh scattering setup to measure density fluctuations in thermal boundary layers
NASA Astrophysics Data System (ADS)
Panda, J.
2016-12-01
A Rayleigh scattering-based density fluctuation measurement system was set up inside a low-speed wind tunnel of NASA Ames Research Center. The immediate goal was to study the thermal boundary layer on a heated flat plate. A large number of obstacles had to be overcome to set up the system, such as the removal of dust particles using air filters, the use of photoelectron counting electronics to measure low intensity light, an optical layout to minimize stray light contamination, the reduction in tunnel vibration, and an expanded calibration process to relate photoelectron arrival rate to air density close to the plate surface. To measure spectra of turbulent density fluctuations, a two-PMT cross-correlation system was used to minimize the shot noise floor. To validate the Rayleigh measurements, temperature fluctuations spectra were calculated from density spectra and then compared with temperature spectra measured with a cold-wire probe operated in constant current mode. The spectra from the downstream half of the plate were found to be in good agreement with cold-wire probe, whereas spectra from the leading edge differed. Various lessons learnt are discussed. It is believed that the present effort is the first measurement of density fluctuations spectra in a boundary layer flow.
Unsteady magnetohydrodynamics mixed convection flow in a rotating medium with double diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiann, Lim Yeou; Ismail, Zulkhibri; Khan, Ilyas
2015-05-15
Exact solutions of an unsteady Magnetohydrodynamics (MHD) flow over an impulsively started vertical plate in a rotating medium are presented. The effects of thermal radiative and thermal diffusion on the fluid flow are also considered. The governing equations are modelled and solved for velocity, temperature and concentration using Laplace transforms technique. Expressions of velocity, temperature and concentration profiles are obtained and their numerical results are presented graphically. Skin friction, Sherwood number and Nusselt number are also computed and presented in tabular forms. The determined solutions can generate a large class of solutions as special cases corresponding to different motions withmore » technical relevance. The results obtained herein may be used to verify the validation of obtained numerical solutions for more complicated fluid flow problems.« less
The transference of heat from a hot plate to an air stream
NASA Technical Reports Server (NTRS)
Elias, Franz
1931-01-01
The object of the present study was to define experimentally the field of temperature and velocity in a heated flat plate when exposed to an air stream whose direction is parallel to it, then calculate therefrom the heat transference and the friction past the flat plate, and lastly, compare the test data with the mathematical theory. To ensure comparable results, we were to actually obtain or else approximate: a) two-dimensional flow; b) constant plate temperature in the direction of the stream. To approximate the flow in two dimensions, we chose a relatively wide plate and measured the velocity and temperature in the median plane.
A User’s Guide to the PLTEMP/ANL Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, A. P.; Kalimullah, M.; Feldman, E. E.
2016-07-25
PLTEMP/ANL V4.2 is a program that obtains a steady-state flow and temperature solution for a nuclear reactor core, or for a single fuel assembly. It is based on an evolutionary sequence of codes originally used for plate temperatures, hence “PLTEMP”, developed at Argonne National Laboratory over several decades. Fueled and non-fueled regions are modeled. Each fuel assembly consists of one or more plates or tubes separated by coolant channels. The fuel plates may have one to five layers of different materials, each with heat generation. The width of a fuel plate may be divided into multiple longitudinal stripes, each withmore » its own axial power shape. The temperature solution is effectively 2-dimensional. It begins with a one-dimensional solution across all coolant channels and fuel plates or tubes within a given fuel assembly, at the entrance to the assembly. The temperature solution is repeated for each axial node along the length of the fuel assembly. The geometry may be either slab or radial, corresponding to fuel assemblies made of a series of flat (or slightly curved) plates, or of nested tubes. A variety of thermal-hydraulic correlations are available with which to determine safety margins such as onset-of-nucleate boiling ratio(ONBR), departure from nucleate boiling ratio (DNBR), and onset of flow instability ratio (OFIR). Coolant properties for either light or heavy water are obtained from FORTRAN functions rather than from tables. The code is intended for thermal-hydraulic analysis of research reactor performance in the sub-cooled boiling regime. Both turbulent and laminar flow regimes can be modeled. Options to calculate both forced flow and natural circulation are available. A general search capability is available (Appendix XII) to greatly reduce the reactor analyst’s time.« less
Apparatus and method for rapid cooling of large area substrates in vacuum
Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.
2012-11-06
The present invention is directed to an apparatus and method for rapid cooling of a large substrate in a vacuum environment. A first cooled plate is brought into close proximity with one surface of a flat substrate. The spatial volume between the first cooling plate and the substrate is sealed and brought to a higher pressure than the surrounding vacuum level to increase the cooling efficiency. A second cooled plate is brought into close proximity with the opposite surface of the flat substrate. A second spatial volume between the second cooling plate and the substrate is sealed and the gas pressure is equalized to the gas pressure in the first spatial volume. The equalization of the gas pressure on both sides of the flat substrate eliminates deflection of the substrate and bending stress in the substrate.
Large amplitude flexural vibration of thin elastic flat plates and shells
NASA Technical Reports Server (NTRS)
Pandalia, K. A. V.
1972-01-01
The general equations governing the large amplitude flexural vibration of any thin elastic shell using curvilinear orthogonal coordinates are derived and consist of two coupled, nonlinear, partial differential equations in the normal displacement w and the stress function F. From these equations, the governing equations for the case of shells of revolution or flat plates can be readily obtained as special cases. The material of the shell or plate is isotropic and homogeneous and Hooke's law for the two-dimensional case is valid. It is suggested that the difference between the hardening type of nonlinearity in the case of flat plates and straight beams and the softening type of nonlinearity in the case of shells and rings can, in general, be traced to the amount of curvature present in the underformed median surface of the structure concerned.
NASA Technical Reports Server (NTRS)
Conley, Julianne M.; Leonard, B. P.
1994-01-01
The modified mixing length (MML) turbulence model was installed in the Proteus Navier-Stokes code, then modified to make it applicable to a wider range of flows typical of aerospace propulsion applications. The modifications are based on experimental data for three flat-plate flows having zero, mild adverse, and strong adverse pressure gradients. Three transonic diffuser test cases were run with the new version of the model in order to evaluate its performance. All results are compared with experimental data and show improvements over calculations made using the Baldwin-Lomax turbulence model, the standard algebraic model in Proteus.
Pulsed laser generation of ultrasound in a metal plate between the melting and ablation thresholds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Every, A. G., E-mail: arthur.every@wits.ac.za; Utegulov, Z. N., E-mail: zhutegulov@nu.edu.kz; Veres, I. A., E-mail: istvan.veres@recendt.at
2015-03-31
The generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation, is treated. Consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the evolution of the melt pool, and thermal conduction in the melt and surrounding solid. The excitation of the ultrasound takes place over a few nanoseconds, and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. Because of this, the output of the thermal simulations can be represented as axiallymore » symmetric transient radial and normal surface force distributions. The epicentral displacement response at the opposite surface to these forces is obtained by two methods, the one based on the elastodynamic Green’s functions for plate geometry determined by the Cagniard generalized ray method, and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported of the epicentral displacement response of a 3.12mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold. Comparison is made between results obtained using available temperature dependent thermophysical data, and room temperature materials constants except near the melting point.« less
NASA Astrophysics Data System (ADS)
Khalatov, A. A.; Borisov, I. I.; Dashevsky, Yu. J.; Panchenko, N. A.; Kovalenko, A. S.
2014-12-01
Results of an experimental study of flat-plate film cooling effectiveness achieved with an inlet double jet scheme are reported. At low ( m = 0.5) and medium ( m = 1.0) blowing ratio the average film cooling effectiveness is about 20 % greater of the traditional two-row scheme of round holes data, while at higher m = 1.5 it is close to it. The free-stream turbulence (≈ 7 %) influences weekly on the average flat-plate film cooling effectiveness. The flow acceleration decreases the film cooling effectiveness down to 25 % when the pressure gradient parameter K is ranged from 0.5·10-6 to 3.5·10-6.
NASA Astrophysics Data System (ADS)
Rahbarimanesh, Saeed; Brinkerhoff, Joshua
2017-11-01
The mutual interaction of shear layer instabilities and phase change in a two-dimensional cryogenic cavitating mixing layer is investigated using a numerical model. The developed model employs the homogeneous equilibrium mixture (HEM) approach in a density-based framework to compute the temperature-dependent cavitation field for liquefied natural gas (LNG). Thermal and baroclinic effects are captured via iterative coupled solution of the governing equations with dynamic thermophysical models that accurately capture the properties of LNG. The mixing layer is simulated for vorticity-thickness Reynolds numbers of 44 to 215 and cavitation numbers of 0.1 to 1.1. Attached cavity structures develop on the splitter plate followed by roll-up of the separated shear layer via the well-known Kelvin-Helmholtz mode, leading to streamwise accumulation of vorticity and eventual shedding of discrete vortices. Cavitation occurs as vapor cavities nucleate and grow from the low-pressure cores in the rolled-up vortices. Thermal effects and baroclinic vorticity production are found to have significant impacts on the mixing layer instability and cavitation processes.
Flat Plate Solar Array Project: Proceedings of the 20th Project Integration Meeting
NASA Technical Reports Server (NTRS)
Mcdonald, R. R.
1982-01-01
Progress made by the Flat-Plate Solar Array Project during the period November 1981 to April 1982 is reported. Project analysis and integration, technology research in silicon material, large-area silicon sheet and environmental isolation, cell and module formation, engineering sciences, and module performance and failure analysis are covered.
Temperature measurement of flat glass edge during grinding and effect of wheel and workpiece speeds
NASA Astrophysics Data System (ADS)
Moussa, Tala; Garnier, Bertrand; Peerhossaini, Hassan
2017-06-01
Flat glass temperature at the vicinity of the grinding wheel during grinding can become very high and reach that of the glass transition (typically around 550-600 °C). In such cases, the mechanical strength of glass is greatly affected and the grinding process cannot be carried out properly. Hence, thermal phenomena must be managed by adjusting the machining parameters to avoid overheating. For this purpose, it is very important to be able to measure the glass temperature, especially at the grinding interface. However, measuring the interfacial glass temperature is difficult and none of the existing methods for metal grinding is adequate for glass grinding. This work shows a novel temperature method that uses constantan and copper strips on both sides of the glass plates; thermoelectric contact being provided by the metallic binder of diamond particles in the grinding wheel. This new technique allows the measurement of the glass edge temperature during the wheel displacement around the glass plate. The experimental results show an average glass edge temperature between 300 and 600 °C depending on the value of the machining parameters such as work speed, wheel speed, depth of cut and water coolant flow rate. As this new thermal instrumentation is rather intrusive, glass temperature biases were analysed using a 3D heat transfer model with a moving source. Model computations performed using finite elements show that the temperature biases are less than 70 °C, which is smaller than the standard deviation of the glass edge temperatures measured during grinding.
NASA Astrophysics Data System (ADS)
Puzu, N.; Prasertsan, S.; Nuntadusit, C.
2017-09-01
The aim of this research was to study the effect of jet-mainstream velocity ratio on flow and heat transfer characteristics of jet on flat plate flow. The jet from pipe nozzle with inner diameter of D=14 mm was injected perpendicularly to mainstream on flat plate. The flat plate was blown by mainstream with uniform velocity profile at 10 m/s. The velocity ratio (jet to mainstream velociy) was varied at VR=0.25 and 3.5 by adjusting velocity of jet flow. For heat transfer measurement, a thin foil technique was used to evaluate the heat transfer coefficient by measuring temperature distributions on heat transfer surface with constant heat flux by using infrared camera. Flow characteristics were simulated by using a computational fluid dynamics (CFD) with commercial software ANSYS Fluent (Ver.15.0). The results showed that the enhancement of heat transfer along downstream direction for the case of VR=0.25 was from the effect of jet stream whereas for the case of VR=3.5 was from the effect of mainstream.
NASA Astrophysics Data System (ADS)
Chong, Tze Pei; Vathylakis, Alexandros
2015-10-01
Results of an experimental study on turbulent flow over a flat plate with a serrated sawtooth trailing edge are presented in this paper. After tripping the boundary layer to become turbulent, the broadband noise sources at the sawtooth serrated trailing edge is studied by several experimental techniques. Broadband noise reduction by the serrated sawtooth trailing edge can be realistically achieved in the flat plate configuration. The variations of wall pressure power spectral density and the spanwise coherence (which relates to the spanwise correlation length) in a sawtooth trailing edge play a minor role in the mechanisms underpinning the reduction of self noise radiation. Conditional-averaging technique was applied in the boundary layer data where a pair of pressure-driven oblique vortical structures near the sawtooth side edges is identified. In the current flat plate configuration, the interaction between the vortical structures and the local turbulent boundary layer results in a redistribution of the momentum transport and turbulent shear stress near the sawtooth side edges as well as the sawtooth tip, thus affecting the efficiency of self noise radiation.
NASA Technical Reports Server (NTRS)
Schmidt, Rodney C.; Patankar, Suhas V.
1988-01-01
The use of low Reynolds number (LRN) forms of the k-epsilon turbulence model in predicting transitional boundary layer flow characteristic of gas turbine blades is developed. The research presented consists of: (1) an evaluation of two existing models; (2) the development of a modification to current LRN models; and (3) the extensive testing of the proposed model against experimental data. The prediction characteristics and capabilities of the Jones-Launder (1972) and Lam-Bremhorst (1981) LRN k-epsilon models are evaluated with respect to the prediction of transition on flat plates. Next, the mechanism by which the models simulate transition is considered and the need for additional constraints is discussed. Finally, the transition predictions of a new model are compared with a wide range of different experiments, including transitional flows with free-stream turbulence under conditions of flat plate constant velocity, flat plate constant acceleration, flat plate but strongly variable acceleration, and flow around turbine blade test cascades. In general, calculational procedure yields good agreement with most of the experiments.
Development of Aspherical Active Gratings at NSRRC
NASA Astrophysics Data System (ADS)
Tseng, Tse-Chuan; Wang, Duan Jen; Perng, Shen-Yaw; Chen, Chien-Te; Lin, Chia-Jui; Kuan, Chien-Kuang; Ho, His-Chou; Wang, Jeremy; Fung, H. S.; Chang, Shuo-Hung
2007-01-01
An active grating based on a novel optical concept with bendable polynomial surface profile to reduce the coma and defocus aberrations had been designed and proved by the prototype testing. Due to the low glass transition temperature of the glue and the difference of thermal expansion coefficient between the 17-4 steel bender and silicon, the prototype distorted from flat polished condition when thermally de-blocked the polishing pitch. To improve the thermal deformation of the active grating in the polishing process, a new invar bender and high curing temperature glue were adapted to glue a silicon substrate on the bender. After some tests and manufacturer polishing, it showed acceptable conditions. In this paper we will present the design and preliminary tests of the invar active grating. Meanwhile, the design and analysis of a new 17-4 PH steel bender to be electro-less nickel plating and mechanical ruling for a new beamline will also be discussed.
Climate specific thermomechanical fatigue of flat plate photovoltaic module solder joints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosco, Nick; Silverman, Timothy J.; Kurtz, Sarah
FEM simulations of PbSn solder fatigue damage are used to evaluate seven cities that represent a variety of climatic zones. It is shown that the rate of solder fatigue damage is not ranked with the cities' climate designations. For an accurate ranking, the mean maximum daily temperature, daily temperature change and a characteristic of clouding events are all required. A physics-based empirical equation is presented that accurately calculates solder fatigue damage according to these three factors. An FEM comparison of solder damage accumulated through service and thermal cycling demonstrates the number of cycles required for an equivalent exposure. For anmore » equivalent 25-year exposure, the number of thermal cycles (-40 degrees C to 85 degrees C) required ranged from roughly 100 to 630 for the cities examined. It is demonstrated that increasing the maximum cycle temperature may significantly reduce the number of thermal cycles required for an equivalent exposure.« less
NASA Astrophysics Data System (ADS)
Veziroglu, T. N.
1982-10-01
Aspects of solar measurements, solar collectors, selective coatings, thermal storage, phase change storage, and heat exchangers are discussed. The analysis and testing of flat-plate solar collectors are addressed. The development and uses of plastic collectors, a solar water heating system, solar energy collecting oil barrels, a glass collector panel, and a two-phase thermosyphon system are considered. Studies of stratification in thermal storage, of packed bed and fluidized bed systems, and of thermal storage in solar towers, in wall passive systems, and in reversible chemical reactions are reported. Phase change storage by direct contact processes and in residential solar space heating and cooling is examined, as are new materials and surface characteristics for solar heat storage. The use of R-11 and Freon-113 in heat exchange is discussed. No individual items are abstracted in this volume
Survey of solar thermal test facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masterson, K.
The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilitiesmore » is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.« less
Guarded Flat Plate Cryogenic Test Apparatus and Calorimeter
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Johnson, Wesley L. (Inventor)
2017-01-01
A test apparatus for thermal energy measurement of disk-shaped test specimens has a cold mass assembly locatable within a sealable chamber with a guard vessel having a guard chamber to receive a liquid fluid and a bottom surface to contact a cold side of a test specimen, and a test vessel having a test chamber to receive a liquid fluid and encompassed on one side by a center portion of the bottom surface shared with the guard vessel. A lateral wall assembly of the test vessel is closed by a vessel top, the lateral wall assembly comprising an outer wall and an inner wall having opposing surfaces that define a thermal break including a condensable vapor pocket to inhibit heat transfer through the lateral wall from the guard vessel to the test vessel. A warm boundary temperature surface is in thermal communication with a lower surface of the test specimen.
NASA Astrophysics Data System (ADS)
Flowers, R. M.; Ault, A. K.; Wolin, E.; Kelley, S.; Bowring, S. A.
2009-12-01
The radiation damage accumulation and annealing model (RDAAM) for apatite He diffusion helps resolve previously enigmatic characteristics of apatite (U-Th)/He data in cratonic regions. First, nonlinear positive date-eU correlations are predicted for many T-t paths, thus explaining excessive scatter in some (U-Th)/He datasets. Second, under common circumstances, the RDAAM predicts (U-Th)/He dates that are older than corresponding apatite fission-track (AFT) dates, helping reconcile previous data in which (U-Th)/He dates were older than expected using Durango He diffusion kinetics. We present five apatite (U-Th)/He datasets, three with co-existing AFT data, from the North American craton that can quantitatively be explained by the RDAAM. These datasets include three from the Canadian shield (Trans-Hudson Orogen, Lake Athabasca region, Slave Craton) and two from the U.S. midcontinent (Kansas, Texas panhandle). All samples are Precambrian (4.0-1.6 Ga) basement, except for Triassic-Jurassic sandstones analyzed in the Texas study. We use the results of these studies to evaluate broad thermal history patterns across the North American craton. Although each dataset yields a distinct thermal history, all can be accounted for by varying the magnitudes of two well-documented episodes of burial and unroofing in Paleozoic-Mesozoic and Cretaceous-Tertiary times. The oldest consistent (U-Th)/He and AFT dates of these studies are early Paleozoic and are preserved in the Trans-Hudson Orogen. Together with a strong (U-Th)/He date-eU correlation and dates as young as Jurassic in the Lake Athabasca region, as well as widespread Permo-Triassic dates from the Slave craton, the three Canadian shield datasets are most simply explained by increased magnitudes of burial toward the northwest in Paleozoic-Mesozoic time, with less significant burial in the Cretaceous. In contrast, (U-Th)/He data from Kansas yield a date-eU correlation and a cluster of Cretaceous dates, (U-Th)/He dates from the Texas panhandle are Cretaceous-Tertiary, and AFT dates from both areas are Permo-Triassic. Thus, the U.S. midcontinent datasets preserve a significant Cretaceous-Tertiary signal, requiring more substantial burial and unroofing during this time than the Canadian results. These younger dates in Texas and Kansas are likely related to flat slab evolution beneath the western U.S. in Cretaceous-Tertiary time, while the absence of this strong signal in the Canadian shield data is consistent with the lack of a flat slab beneath that region. The NW-SE trend in Paleozoic-Mesozoic thermal histories in the Canadian shield may be related to earlier spatial variability in plate margin subduction processes. The ability of the RDAAM to account for otherwise inexplicable aspects of the data presented here suggests that we can now reliably couple (U-Th)/He and AFT techniques to decipher low temperature cratonic histories in unprecedented detail, permitting insight into how cratons respond to external tectonic forces in the billions of years following their stabilization.
Airfoil noise reductions through leading edge serrations
NASA Astrophysics Data System (ADS)
Narayanan, S.; Chaitanya, P.; Haeri, S.; Joseph, P.; Kim, J. W.; Polacsek, C.
2015-02-01
This paper provides an experimental investigation into the use of leading edge (LE) serrations as a means of reducing the broadband noise generated due to the interaction between the aerofoil's LE and impinging turbulence. Experiments are performed on a flat plate in an open jet wind tunnel. Grids are used to generate isotropic homogeneous turbulence. The leading edge serrations are in the form of sinusoidal profiles of wavelengths, λ, and amplitudes, 2h. The frequency and amplitude characteristics are studied in detail in order to understand the effect of LE serrations on noise reduction characteristics and are compared with straight edge baseline flat plates. Noise reductions are found to be insignificant at low frequencies but significant in the mid frequency range (500 Hz-8 kHz) for all the cases studied. The flat plate results are also compared to the noise reductions obtained on a serrated NACA-65 aerofoil with the same serration profile. Noise reductions are found to be significantly higher for the flat plates with a maximum noise reduction of around 9 dB compared with about 7 dB for the aerofoil. In general, it is observed that the sound power reduction level (ΔPWL) is sensitive to the amplitude, 2h of the LE serrations but less sensitive to the serration wavelength, λ. Thus, this paper sufficiently demonstrates that the LE amplitude acts as a key parameter for enhancing the noise reduction levels in flat plates and aerofoils.
Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechant, Lawrence; Smith, Justin
Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow ormore » simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by« less
Protein-crystal growth experiment (planned)
NASA Technical Reports Server (NTRS)
Fujita, S.; Asano, K.; Hashitani, T.; Kitakohji, T.; Nemoto, H.; Kitamura, S.
1988-01-01
To evaluate the effectiveness of a microgravity environment on protein crystal growth, a system was developed using 5 cubic feet Get Away Special payload canister. In the experiment, protein (myoglobin) will be simultaneously crystallized from an aqueous solution in 16 crystallization units using three types of crystallization methods, i.e., batch, vapor diffusion, and free interface diffusion. Each unit has two compartments: one for the protein solution and the other for the ammonium sulfate solution. Compartments are separated by thick acrylic or thin stainless steel plates. Crystallization will be started by sliding out the plates, then will be periodically recorded up to 120 hours by a still camera. The temperature will be passively controlled by a phase transition thermal storage component and recorded in IC memory throughout the experiment. Microgravity environment can then be evaluated for protein crystal growth by comparing crystallization in space with that on Earth.
Air cycle machine for an aircraft environmental control system
NASA Technical Reports Server (NTRS)
Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)
2010-01-01
An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.
Ohta, Haruhiko; Ohno, Toshiyuki; Hioki, Fumiaki; Shinmoto, Yasuhisa
2004-11-01
A two-phase flow loop is a promising method for application to thermal management systems for large-scale space platforms handling large amounts of energy. Boiling heat transfer reduces the size and weight of cold plates. The transportation of latent heat reduces the mass flow rate of working fluid and pump power. To develop compact heat exchangers for the removal of waste heat from electronic devices with high heat generation density, experiments on a method to increase the critical heat flux for a narrow heated channel between parallel heated and unheated plates were conducted. Fine grooves are machined on the heating surface in a transverse direction to the flow and liquid is supplied underneath flattened bubbles by the capillary pressure difference from auxiliary liquid channels separated by porous metal plates from the main heated channel. The critical heat flux values for the present heated channel structure are more than twice those for a flat surface at gap sizes 2 mm and 0.7 mm. The validity of the present structure with auxiliary liquid channels is confirmed by experiments in which the liquid supply to the grooves is interrupted. The increment in the critical heat flux compared to those for a flat surface takes a maximum value at a certain flow rate of liquid supply to the heated channel. The increment is expected to become larger when the length of the heated channel is increased and/or the gravity level is reduced.
Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J. I.
2015-01-01
In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined. PMID:26407162
Mixed convection-radiation interaction in boundary-layer flow over horizontal surfaces
NASA Astrophysics Data System (ADS)
Ibrahim, F. S.; Hady, F. M.
1990-06-01
The effect of buoyancy forces and thermal radiation on the steady laminar plane flow over an isothermal horizontal flat plate is investigated within the framework of first-order boundary-layer theory, taking into account the hydrostatic pressure variation normal to the plate. The fluid considered is a gray, absorbing-emitting but nonscattering medium, and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. Both a hot surface facing upward and a cold surface facing downward are considered in the analysis. Numerical results for the local Nusselt number, the local wall shear stress, the local surface heat flux, as well as the velocity and temperature distributions are presented for gases with a Prandtl number of 0.7 for various values of the radiation-conduction parameter, the buoyancy parameter, and the temperature ratio parameter.
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Soong, T.; Miller, R. E., Jr.
1971-01-01
A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked plate and beam elements. Plates are idealized as multilayered orthotropic elements. Structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply-supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections, and stiffened plates is investigated. Buckling loads are the lowest of all possible general and local failure modes, and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections, and stiffened plates including boron-reinforced structures are discussed. In general correlations are reasonably good.
Analytical analysis of solar thermal collector with glass and Fresnel lens glazing
NASA Astrophysics Data System (ADS)
Zulkifle, Idris; Ruslan, Mohd Hafidz Hj; Othman, Mohd Yusof Hj; Ibarahim, Zahari
2018-04-01
Solar thermal collector is a system that converts solar radiation to heat. The heat will raise the temperature higher than the ambient temperature. Absorber and glazing are two important components in order to increase the temperature of the collector. The thermal absorber will release heat by convection and as radiation to the surrounding. These losses will be reduced by glazing. Other than that, glazing is beneficial for protecting the collector from dust and water. This study discusses about modelling of solar thermal collector effects of different mass flow rates with different glazing for V-groove flat plate solar collectors. The glazing used was the glass and linear Fresnel lens. Concentration ratio in this modelling was 1.3 for 0.1m solar collector thickness. Results show that solar collectors with linear Fresnel lens has the highest efficiency value of 71.18% compared to solar collectors with glass which has efficiency 54.10% with same operation conditions.
2013-07-01
plates usually experiences separation near or at the leading-edge, creating an aerodynamic shear layer that either reattaches to form a separation...blunt-body shedding. At low angle-of-attack, however, flat plates do not exhibit strong blunt-body shedding, thus, is an unlikely driver. Additionally...range from 0 – 10% for typical flat plate membrane models in low-Re flow. Two distinct regions of membrane vibration relative to the tensioning
NASA Technical Reports Server (NTRS)
Rodkiewicz, C. M.; Gupta, R. N.
1971-01-01
The laminar two-dimensional flow over a stepwise accelerated flat plate moving with hypersonic speed at zero angle of attack is analysed. The governing equations in the self-similar form are linearized and solved numerically for small times. The solutions obtained are the deviations of the velocity and the temperature profiles from those of steady state. The presented results may be used to find the first order boundary layer induced pressure on the plate.
Flat Plate Wake Velocity Statistics Obtained With Circular And Elliptic Trailing Edges
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2016-01-01
The near wake of a flat plate with circular and elliptic trailing edges is investigated with data from direct numerical simulations. The plate length and thickness are the same in both cases. The separating boundary layers are turbulent and statistically identical. Therefore the wake is symmetric in the two cases. The emphasis in this study is on a comparison of the wake-distributions of velocity components, normal intensity and fluctuating shear stress obtained in the two cases.
2015-12-02
layer , the non-reflecting boundary condition suggested by Poinsot and Lele is adopted.38 On the flat – plate surface, the no-penetration (v = 0) and the no...generator plate is emulated to create an oblique shock that impinges on the boundary layer causing separation. This is similar to the experimental...without SBLI and with SBLI. To calculate the steady flat – plate solution with no shock, a characteristic boundary condition according to Harris is used.39
A Didactic Experiment and Model of a Flat-Plate Solar Collector
ERIC Educational Resources Information Center
Gallitto, Aurelio Agliolo; Fiordilino, Emilio
2011-01-01
We report on an experiment performed with a home-made flat-plate solar collector, carried out together with high-school students. To explain the experimental results, we propose a model that describes the heating process of the solar collector. The model accounts quantitatively for the experimental data. We suggest that solar-energy topics should…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-08
... measuring at least 10 times the thickness. Universal mill plate (i.e., flat-rolled products rolled on four... determinations. If the Department chooses as facts available a calculated dumping margin from the investigation... questionnaire. See Certain Cut-to-Length Carbon-Quality Steel Plate Products from the Republic of Korea: Final...
NASA Technical Reports Server (NTRS)
Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.
2006-01-01
The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Broder, J. D.; Brandhorst, H. W., Jr.; Forestieri, A. F.
1982-01-01
A model is presented that explains the "flat-spot" (FS) power loss phenomenon observed in silicon solar cells operating deep space (low temperature, low intensity) conditions. Evidence is presented suggesting that the effect is due to localized metallurgical interactions between the silicon substrate and the contact metallization. These reactions are shown to result in localized regions in which the PN junction is destroyed and replaced with a metal-semiconductor-like interface. The effects of thermal treatment, crystallographic orientation, junction depth, and metallurization are presented along with a method of preventing the effect through the suppression of vacancy formation at the free surface of the contact metallization. Preliminary data indicating the effectiveness of a TiN diffusion barrier in preventing the effect are also given.
A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile
NASA Astrophysics Data System (ADS)
Constantin Manea, Vlad; Manea, Marina; Ferrari, Luca; Orozco, María Teresa; Wong Valenzuela, Raul; Husker, Allen Leroy; Kostoglodovc, Vlad; Ionescu, Constantin
2017-04-01
Subducting plates around the globe display a large variability in terms of slab geometry, including regions where smooth and little variation in subduction parameters is observed. While the vast majority of subduction slabs plunge into the mantle at different, but positive dip angles, the end-member case of flat-slab subduction seems to strongly defy this rule and move horizontally several hundreds of kilometers before diving into the surrounding hotter mantle. By employing a comparative assessment for the Mexican, Peruvian and Chilean flat-slab subduction zones we find a series of parameters that apparently facilitate slab flattening. Among them, trench roll-back, as well as strong variations and discontinuities in the structure of oceanic and overriding plates seem to be the most important. However, we were not able to find the necessary and sufficient conditions that provide an explanation for the formation of flat slabs in all three subduction zones. In order to unravel the origin of flat-slab subduction, it is probably necessary a numerical approach that considers also the influence of surrounding plates, and their corresponding geometries, on 3D subduction dynamics.
A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile
NASA Astrophysics Data System (ADS)
Manea, V. C.; Manea, M.; Ferrari, L.; Orozco-Esquivel, T.; Valenzuela, R. W.; Husker, A.; Kostoglodov, V.
2017-01-01
Subducting plates around the globe display a large variability in terms of slab geometry, including regions where smooth and little variation in subduction parameters is observed. While the vast majority of subduction slabs plunge into the mantle at different, but positive dip angles, the end-member case of flat-slab subduction seems to strongly defy this rule and move horizontally several hundreds of kilometers before diving into the surrounding hotter mantle. By employing a comparative assessment for the Mexican, Peruvian and Chilean flat-slab subduction zones we find a series of parameters that apparently facilitate slab flattening. Among them, trench roll-back, as well as strong variations and discontinuities in the structure of oceanic and overriding plates seem to be the most important. However, we were not able to find the necessary and sufficient conditions that provide an explanation for the formation of flat slabs in all three subduction zones. In order to unravel the origin of flat-slab subduction, it is probably necessary a numerical approach that considers also the influence of surrounding plates, and their corresponding geometries, on 3D subduction dynamics.
A quantitative method for photovoltaic encapsulation system optimization
NASA Technical Reports Server (NTRS)
Garcia, A., III; Minning, C. P.; Cuddihy, E. F.
1981-01-01
It is pointed out that the design of encapsulation systems for flat plate photovoltaic modules requires the fulfillment of conflicting design requirements. An investigation was conducted with the objective to find an approach which will make it possible to determine a system with optimum characteristics. The results of the thermal, optical, structural, and electrical isolation analyses performed in the investigation indicate the major factors in the design of terrestrial photovoltaic modules. For defect-free materials, minimum encapsulation thicknesses are determined primarily by structural considerations. Cell temperature is not strongly affected by encapsulant thickness or thermal conductivity. The emissivity of module surfaces exerts a significant influence on cell temperature. Encapsulants should be elastomeric, and ribs are required on substrate modules. Aluminum is unsuitable as a substrate material. Antireflection coating is required on cell surfaces.
Thermal Insulation System Analysis Tool (TISTool) User's Manual. Version 1.0.0
NASA Technical Reports Server (NTRS)
Johnson, Wesley; Fesmire, James; Leucht, Kurt; Demko, Jonathan
2010-01-01
The Thermal Insulation System Analysis Tool (TISTool) was developed starting in 2004 by Jonathan Demko and James Fesmire. The first edition was written in Excel and Visual BasIc as macros. It included the basic shapes such as a flat plate, cylinder, dished head, and sphere. The data was from several KSC tests that were already in the public literature realm as well as data from NIST and other highly respectable sources. More recently, the tool has been updated with more test data from the Cryogenics Test Laboratory and the tank shape was added. Additionally, the tool was converted to FORTRAN 95 to allow for easier distribution of the material and tool. This document reviews the user instructions for the operation of this system.
NASA Astrophysics Data System (ADS)
Wu, J. E.; Suppe, J.; Renqi, L.; Lin, C.; Kanda, R. V.
2013-12-01
The past locations, shapes and polarity of subduction trenches provide first-order constraints for plate tectonic reconstructions. Analogue and numerical models of subduction zones suggest that relative subducting (Vs) and overriding (Vor) plate velocities may strongly influence final subducted slab geometries. Here we have mapped the 3D geometries of subducted slabs in the upper and lower mantle of Asia from global seismic tomography. We have incorporated these slabs into plate tectonic models, which allows us to infer the subducting and overriding plate velocities. We describe two distinct slab geometry styles, ';flat slabs' and ';slab curtains', and show their implications for paleo-trench positions and subduction geometries in plate tectonic reconstructions. When compared to analogue and numerical models, the mapped slab styles show similarities to modeled slabs that occupy very different locations within Vs:Vor parameter space. ';Flat slabs' include large swaths of sub-horizontal slabs in the lower mantle that underlie the well-known northward paths of India and Australia from Eastern Gondwana, viewed in a moving hotspot reference. At India the flat slabs account for a significant proportion of the predicted lost Ceno-Tethys Ocean since ~100 Ma, whereas at Australia they record the existence of a major 8000km by 2500-3000km ocean that existed at ~43 Ma between East Asia, the Pacific and Australia. Plate reconstructions incorporating the slab constraints imply these flat slab geometries were generated when continent overran oceanic lithosphere to produce rapid trench retreat, or in other words, when subducting and overriding velocities were equal (i.e. Vs ~ Vor). ';Slab curtains' include subvertical Pacific slabs near the Izu-Bonin and Marianas trenches that extend from the surface down to 1500 km in the lower mantle and are 400 to 500 km thick. Reconstructed slab lengths were assessed from tomographic volumes calculated at serial cross-sections. The ';slab curtain' geometry and restored slab lengths indicate a nearly stationary Pacific trench since ~43 Ma. In contrast to the flat slabs, here the reconstructed subduction zone had large subducting plate velocities relative to very small overriding plate velocities (i.e. Vs >> Vor). In addition to flat slabs and slab curtains, we also find other less widespread local subduction settings that lie at other locations in Vs:Vor parameter space or involved other processes. Slabs were mapped using Gocad software. Mapped slabs were restored to a spherical model Earth surface by two approaches: unfolding (i.e. piecewise flattening) to minimize shape and area distortions, and by evaluated mapped slab volumes. Gplates software was used to integrate the mapped slabs with plate tectonic reconstructions.
Flat-plate solar array project process development area, process research of non-CZ silicon material
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1984-01-01
The program is designed to investigate the fabrication of solar cells on N-type base material by a simultaneous diffusion of N-type and P-type dopants to form an P(+)NN(+) structure. The results of simultaneous diffusion experiments are being compared to cells fabricated using sequential diffusion of dopants into N-base material in the same resistivity range. The process used for the fabrication of the simultaneously diffused P(+)NN(+) cells follows the standard Westinghouse baseline sequence for P-base material except that the two diffusion processes (boron and phosphorus) are replaced by a single diffusion step. All experiments are carried out on N-type dendritic web grown in the Westinghouse pre-pilot facility. The resistivities vary from 0.5 (UC OMEGA)cm to 5 (UC OMEGA)cm. The dopant sources used for both the simultaneous and sequential diffusion experiments are commercial metallorganic solutions with phosphorus or boron components. After these liquids are applied to the web surface, they are baked to form a hard glass which acts as a diffusion source at elevated temperatures. In experiments performed thus far, cells produced in sequential diffusion tests have properties essentially equal to the baseline N(+)PP(+) cells. However, the simultaneous diffusions have produced cells with much lower IV characteristics mainly due to cross-doping of the sources at the diffusion temperature. This cross-doping is due to the high vapor pressure phosphorus (applied as a metallorganic to the back surface) diffusion through the SiO2 mask and then acting as a diffusant source for the front surface.
Buckling analysis for structural sections and stiffened plates reinforced with laminated composites.
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Soong, T.-C.; Miller, R. E., Jr.
1972-01-01
A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked flat plate and beam elements. Plates are idealized as multilayered orthotropic elements; structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections and stiffened plates is investigated. Buckling loads are found as the lowest of all possible general and local failure modes and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections and stiffened plates including boron-reinforced structures are discussed. In general, correlations are reasonably good.
Solar energy system performance evaluation: Seasonal report for fern, Tunkhannock, Pennsylvania
NASA Technical Reports Server (NTRS)
1980-01-01
The operational and thermal performance of a variety of solar systems installed in operational test sites are described. The analysis is based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system is reported, and technical contributions to the definition of techniques and requirements for solar energy system design are made. The solar energy system was designed to supply space heating and domestic hot water for single-family residences. The system consists of air flat plate collectors, storage tank, pumps, heat exchangers, associated plumbing, and controls.
Solar energy system performance evaluation: Seasonal report for SEMCO, Loxahatchee, Florida
NASA Technical Reports Server (NTRS)
1980-01-01
The operational and thermal performance of a variety of solar systems installed in operational test sites are described. The analysis used is based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system and the technical contributions to the definition of techniques and requirements solar energy system design are analyzed. The solar energy system was designed to supply domestic hot water for a family of four, single-family residences. It consists of two liquid flat plate collectors, single tank, controls, and transport lines.
Simulation of the main physical processes in remote laser penetration with large laser spot size
Khairallah, S. A.; Anderson, A.; Rubenchik, A. M.; ...
2015-04-10
A 3D model is developed to simulate remote laser penetration of a 1mm Aluminum metal sheet with large laser spot size (~3x3cm²), using the ALE3D multi-physics code. The model deals with the laser-induced melting of the plate and the mechanical interaction between the solid and the melted part through plate elastic-plastic response. The effect of plate oscillations and other forces on plate rupture, the droplet formation mechanism and the influence of gravity and high laser power in further breaking the single melt droplet into many more fragments are analyzed. In the limit of low laser power, the numerical results matchmore » the available experiments. The numerical approach couples mechanical and thermal diffusion to hydrodynamics melt flow and accounts for temperature dependent material properties, surface tension, gravity and vapor recoil pressure.« less
Forced Convection and Sedimentation Past a Flat Plate
NASA Technical Reports Server (NTRS)
Pelekasis, Nikolaos A.; Acrivos, Andreas
1995-01-01
The steady laminar flow of a well-mixed suspension of monodisperse solid spheres, convected steadily past a horizontal flat plate and sedimenting under the action of gravity, is examined. It is shown that, in the limit as Re approaches infinity and epsilon approaches 0, where Re is the bulk Reynolds number and epsilon is the ratio of the particle radius a to the characteristic length scale L, the analysis for determining the particle concentration profile has several aspects in common with that of obtaining the temperature profile in forced-convection heat transfer from a wall to a fluid stream moving at high Reynolds and Prandtl numbers. Specifically, it is found that the particle concentration remains uniform throughout the O(Re(exp -1/2)) thick Blasius boundary layer except for two O(epsilon(exp 2/3)) thin regions on either side of the plate, where the concentration profile becomes non-uniform owing to the presence of shear-induced particle diffusion which balances the particle flux due to convection and sedimentation. The system of equations within this concentration boundary layer admits a similarity solution near the leading edge of the plate, according to which the particle concentration along the top surface of the plate increases from its value in the free stream by an amount proportional to X(exp 5/6), with X measuring the distance along the plate, and decreases in a similar fashion along the underside. But, unlike the case of gravity settling on an inclined plate in the absence of a bulk flow at infinity considered earlier, here the concentration profile remains continuous everywhere. For values of X beyond the region near the leading edge, the particle concentration profile is obtained through the numerical solution of the relevant equations. It is found that, as predicted from the similarity solution, there exists a value of X at which the particle concentration along the top side of the plate attains its maximum value phi(sub m) and that, beyond this point, a stagnant sediment layer will form that grows steadily in time. This critical value of X is computed as a function of phi(sub s), the particle volume fraction in the free stream. In contrast, but again in conformity with the similarity solution, for values of X sufficiently far removed from the leading edge along the underside of the plate, a particle-free region is predicted to form adjacent to the plate. This model, with minor modifications, can be used to describe particle migration in other shear flows, as, for example, in the case of crossflow microfiltration.
Optimization of Regional Geodynamic Models for Mantle Dynamics
NASA Astrophysics Data System (ADS)
Knepley, M.; Isaac, T.; Jadamec, M. A.
2016-12-01
The SubductionGenerator program is used to construct high resolution, 3D regional thermal structures for mantle convection simulations using a variety of data sources, including sea floor ages and geographically referenced 3D slab locations based on seismic observations. The initial bulk temperature field is constructed using a half-space cooling model or plate cooling model, and related smoothing functions based on a diffusion length-scale analysis. In this work, we seek to improve the 3D thermal model and test different model geometries and dynamically driven flow fields using constraints from observed seismic velocities and plate motions. Through a formal adjoint analysis, we construct the primal-dual version of the multi-objective PDE-constrained optimization problem for the plate motions and seismic misfit. We have efficient, scalable preconditioners for both the forward and adjoint problems based upon a block preconditioning strategy, and a simple gradient update is used to improve the control residual. The full optimal control problem is formulated on a nested hierarchy of grids, allowing a nonlinear multigrid method to accelerate the solution.
NASA Astrophysics Data System (ADS)
Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.
2017-06-01
An analysis is carried out to investigate the effects of variable viscosity, thermal radiation, absorption of radiation and cross diffusion past an inclined exponential accelerated plate under the influence of variable heat and mass transfer. A set of suitable transformations has been used to obtain the non-dimensional coupled governing equations. Explicit finite difference technique has been used to solve the obtained numerical solutions of the present problem. Stability and convergence of the finite difference scheme have been carried out for this problem. Compaq Visual Fortran 6.6a has been used to calculate the numerical results. The effects of various physical parameters on the fluid velocity, temperature, concentration, coefficient of skin friction, rate of heat transfer, rate of mass transfer, streamlines and isotherms on the flow field have been presented graphically and discussed in details.
NASA Astrophysics Data System (ADS)
Cherepanov, A. N.; Orishich, A. M.; Ovcharenko, V. E.; Malikov, A. G.; Drozdov, V. O.; Pshenichnikov, A. P.
2017-10-01
The paper presents the results of numerical and experimental studies of the process of obtaining a permanent joint of two plates of heterogeneous metals that cannot be welded in the usual way: alloy Grade 4 and steel AISI 321 using a laser beam and an intermediate composite insert. The composite insert was obtained by explosion welding of four thin plates of titanium (Grade 4), niobium, copper, and steel (AISI 321). The insert was placed between the welded plates of titanium and steel, and the steel plate was welded with the steel part of the insert, and the titanium plate was welded with the titanium part of the insert. The plates were welded using a CO2 laser. The connection of metals with the help of explosion is carried out without their melting, so the formation of the brittle intermetallics does not occur in most cases. This ensures the greatest strength of the joints as compared to the joints obtained by other welding methods. To analyze the distribution of thermal fields in the composite insert and welded plates, a numerical study was conducted of the laser welding of steel and titanium plates with the corresponding parts of the insert. The purpose of the study was to determine the rational parameters of welding (laser beam power, speed of its movement, size and position of the focal spot), at which there was no complete melting of the steel and titanium parts of the insert during through penetration of the welded plates. The experimental part of the work is devoted to analysis of formation of the internal boundaries and microstructure of the composite insert and the strength of the permanent joint. It is shown that as a result of the explosion welding, weld seams of different wavelike configuration are formed. The most pronounced wavelike boundary is observed in the steel-copper connection, since these materials have a face-centered cubic lattice and are easily subjected to plastic deformation. At the contact boundaries of the plates, transition diffusion zones with different widths (from 5 to 40 μm) and element concentrations are formed. The hardness in the boundary diffusion zones is higher than in the connected metals, which is due to the diffusion interaction of the materials adjacent to each other. It has been established that the tensile strength of the composite insert is comparable to the maximum strength of Grade 4 alloy (456-511 MPa), and the failure in most cases occurred over the least durable component of the composite material, which is the copper plate, whose strength was significantly increased by cold hardening during explosion welding and diffusion of elements of the contacting plates.
Quantitative characterization of brazing performance for Sn-plated silver alloy fillers
NASA Astrophysics Data System (ADS)
Wang, Xingxing; Peng, Jin; Cui, Datian
2017-12-01
Two types of AgCuZnSn fillers were prepared based on BAg50CuZn and BAg34CuZnSn alloy through a combinative process of electroplating and thermal diffusion. The models of wetting entropy and joint strength entropy of AgCuZnSn filler metals were established. The wetting entropy of the Sn-plated silver brazing alloys are lower than the traditional fillers, and its joint strength entropy value is slightly higher than the latter. The wetting entropy value of the Sn-plated brazing alloys and traditional filler metal are similar to the change trend of the wetting area. The trend of the joint strength entropy value with those fillers are consisted with the tensile strength of the stainless steel joints with the increase of Sn content.
NASA Astrophysics Data System (ADS)
Rehman, Naveed ur; Siddiqui, Mubashir Ali
2018-05-01
This work theoretically and experimentally investigated the performance of an arrayed solar flat-plate thermoelectric generator (ASFTEG). An analytical model, based on energy balances, was established for determining load voltage, power output and overall efficiency of ASFTEGs. An array consists of TEG devices (or modules) connected electrically in series and operating in closed-circuit mode with a load. The model takes into account the distinct temperature difference across each module, which is a major feature of this model. Parasitic losses have also been included in the model for realistic results. With the given set of simulation parameters, an ASFTEG consisting of four commercially available Bi2Te3 modules had a predicted load voltage of 200 mV and generated 3546 μW of electric power output. Predictions from the model were in good agreement with field experimental outcomes from a prototype ASFTEG, which was developed for validation purposes. Later, the model was simulated to maximize the performance of the ASFTEG by adjusting the thermal and electrical design of the system. Optimum values of design parameters were evaluated and discussed in detail. Beyond the current limitations associated with improvements in thermoelectric materials, this study will eventually lead to the successful development of portable roof-top renewable TEGs.
NASA Technical Reports Server (NTRS)
Melis, Matthew E.; Brand, Jeremy H.; Pereira, J. Michael; Revilock, Duane M.
2007-01-01
Following the tragedy of the Space Shuttle Columbia on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the Space Shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize Reinforced Carbon-Carbon (RCC) and various debris materials which could potentially shed on ascent and impact the Orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS DYNA to predict damage by potential and actual impact events on the Orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: fundamental tests to obtain independent static and dynamic material model properties of materials of interest, sub-component impact tests to provide highly controlled impact test data for the correlation and validation of the models, and full-scale impact tests to establish the final level of confidence for the analysis methodology. This paper discusses the second level subcomponent test program in detail and its application to the LS DYNA model validation process. The level two testing consisted of over one hundred impact tests in the NASA Glenn Research Center Ballistic Impact Lab on 6 by 6 in. and 6 by 12 in. flat plates of RCC and evaluated three types of debris projectiles: BX 265 External Tank foam, ice, and PDL 1034 External Tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile. The information obtained from this testing validated the LS DYNA damage prediction models and provided a certain level of confidence to begin performing analysis for full-size RCC test articles for returning NASA to flight with STS 114 and beyond.
Quantitative computational infrared imaging of buoyant diffusion flames
NASA Astrophysics Data System (ADS)
Newale, Ashish S.
Studies of infrared radiation from turbulent buoyant diffusion flames impinging on structural elements have applications to the development of fire models. A numerical and experimental study of radiation from buoyant diffusion flames with and without impingement on a flat plate is reported. Quantitative images of the radiation intensity from the flames are acquired using a high speed infrared camera. Large eddy simulations are performed using fire dynamics simulator (FDS version 6). The species concentrations and temperature from the simulations are used in conjunction with a narrow-band radiation model (RADCAL) to solve the radiative transfer equation. The computed infrared radiation intensities rendered in the form of images and compared with the measurements. The measured and computed radiation intensities reveal necking and bulging with a characteristic frequency of 7.1 Hz which is in agreement with previous empirical correlations. The results demonstrate the effects of stagnation point boundary layer on the upstream buoyant shear layer. The coupling between these two shear layers presents a model problem for sub-grid scale modeling necessary for future large eddy simulations.
Unsteady Heat-Flux Measurements of Second-Mode Instability Waves in a Hypersonic Boundary Layer
NASA Technical Reports Server (NTRS)
Kergerise, Michael A.; Rufer, Shann J.
2016-01-01
In this paper we report on the application of the atomic layer thermopile (ALTP) heat- flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are in agreement with data previously reported in the literature. Heat flux time series, and the Morlet-wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was developed to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.
Experimental investigation of a jet inclined to a subsonic crossflow
NASA Technical Reports Server (NTRS)
Aoyagi, K.; Snyder, P. K.
1981-01-01
Experimental investigations have been conducted to determine the surface-pressure distribution on a flat plate and a body of revolution with a jet issuing at a large angle to the free stream and to obtain a better understanding of the entrainment mechanism close to the jet exit by quantitative mean velocity surveys. Pressure data were obtained with a flat plate model at several nozzle injection angles using a single round nozzle. For the body of revolution model, data were obtained with a round jet exhausting perpendicular to the crossflow and with two round jets spaced two to six nozzle diameters apart. Mean velocity measurements were obtained with laser velocimeter surveys near the base of a round jet exhausting normal to a flat plate. For the flat plate model, the pressure field shifts downstream and the entrainment effect decreases with decreasing nozzle injection angle. For the body of revolution model with two jets, the jet-induced effect of the rear jet on the surface-pressure distribution was less than the front jet. The flow regions close to the jet are defined by the laser surveys, but further mean velocity surveys are required to understand the entrainment mechanism.
Numerical modeling of the transitional boundary layer over a flat plate
NASA Astrophysics Data System (ADS)
Ivanov, Dimitry; Chorny, Andrei
2015-11-01
Our example is connected with fundamental research on understanding how an initially laminar boundary layer becomes turbulent. We have chosen the flow over a flat plate as a prototype for boundary-layer flows around bodies. Special attention was paid to the near-wall region in order to capture all levels of the boundary layer. In this study, the numerical software package OpenFOAM has been used in order to solve the flow field. The results were used in a comparative study with data obtained from Large Eddy Simulation (LES). The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. Presently this model is extended to the LES of the zero-pressure gradient, flat-plate turbulent boundary layer. In current study the time discretization is based on a second order Crank-Nicolson/Adams-Bashforth method. LES solver using Smagorinsky and the one-equation LES turbulence models. The transition models significantly improve the prediction of the onset location compared to the fully turbulent models.LES methods appear to be the most promising new tool for the design and analysis of flow devices including transition regions of the turbulent flow.
Experimental and numerical study of water-filled vessel impacted by flat projectiles
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ren, Peng; Huang, Wei; Gao, Yu Bo
2014-05-01
To understand the failure modes and impact resistance of double-layer plates separated by water, a flat-nosed projectile was accelerated by a two-stage light gas gun against a water-filled vessel which was placed in an air-filled tank. Targets consisted of a tank made of two flat 5A06 aluminum alloy plates held by a high strength steel frame. The penetration process was recorded by a digital high-speed camera. The same projectile-target system was also used to fire the targets placed directly in air for comparison. Parallel numerical tests were also carried out. The result indicated that experimental and numerical results were in good agreement. Numerical simulations were able to capture the main physical behavior. It was also found that the impact resistance of double layer plates separated by water was lager than that of the target plates in air. Tearing was the main failure models of the water-filled vessel targets which was different from that of the target plates in air where the shear plugging was in dominate.
A Parametric Study of Jet Interactions with Rarefied Flow
NASA Technical Reports Server (NTRS)
Glass, C. E.
2004-01-01
Three-dimensional computational techniques, in particular the uncoupled CFD-DSMC of the present study, are available to be applied to problems such as jet interactions with variable density regions ranging from a continuum jet to a rarefied free stream. When the value of the jet to free stream momentum flux ratio approximately greater than 2000 for a sharp leading edge flat plate forward separation vortices induced by the jet interaction are present near the surface. Also as the free stream number density n (infinity) decreases, the extent and magnitude of normalized pressure increases and moves upstream of the nozzle exit. Thus for the flat plate model the effect of decreasing n (infinity) is to change the sign of the moment caused by the jet interaction on the flat plate surface.
Hot air impingement on a flat plate using Large Eddy Simulation (LES) technique
NASA Astrophysics Data System (ADS)
Plengsa-ard, C.; Kaewbumrung, M.
2018-01-01
Impinging hot gas jets to a flat plate generate very high heat transfer coefficients in the impingement zone. The magnitude of heat transfer prediction near the stagnation point is important and accurate heat flux distribution are needed. This research studies on heat transfer and flow field resulting from a single hot air impinging wall. The simulation is carried out using computational fluid dynamics (CFD) commercial code FLUENT. Large Eddy Simulation (LES) approach with a subgrid-scale Smagorinsky-Lilly model is present. The classical Werner-Wengle wall model is used to compute the predicted results of velocity and temperature near walls. The Smagorinsky constant in the turbulence model is set to 0.1 and is kept constant throughout the investigation. The hot gas jet impingement on the flat plate with a constant surface temperature is chosen to validate the predicted heat flux results with experimental data. The jet Reynolds number is equal to 20,000 and a fixed jet-to-plate spacing of H/D = 2.0. Nusselt number on the impingement surface is calculated. As predicted by the wall model, the instantaneous computed Nusselt number agree fairly well with experimental data. The largest values of calculated Nusselt number are near the stagnation point and decrease monotonically in the wall jet region. Also, the contour plots of instantaneous values of wall heat flux on a flat plate are captured by LES simulation.
Preliminary Test Results of a Non-Contacting Finger Seal on a Herringbone-Grooved Rotor
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Delgado, Irebert R.
2009-01-01
The baseline non-contacting finger seal is a NASA patented design. The primary difference between it and Gul Aroras design patented by AlliedSignal is that there are no lift pads on the high pressure fingers. The baseline non-contacting finger seal is comprised of a back plate, aft spacer, aft (or low pressure) finger element, forward (or high pressure) finger element, forward spacer, and front plate. The components are held together with 20 flat head screws. A typical seal would have a back plate of approximately the same thickness as the front plate and would be riveted together. The thicker back plate allows use of threaded fasteners so that different finger elements can be tested without having to replace all the individual seal components. The finger elements are essentially washers made of thin sheet stock with multiple curved slots machined around the inner diameter to form the fingers. They are clocked so that the fingers of one cover the slots of the other. The aft finger element fingers have axial extensions or "lift pads" at the seal id that are concentric to the rotor. The fingers act as cantilever beams and flex in response to rotor dynamic motion and radial growth of the rotor due to centrifugal or thermal forces.
NASA Astrophysics Data System (ADS)
Jendras, P.; Lötsch, K.; von Unwerth, T.
2017-03-01
To reduce emissions and to substitute combustion engines automotive manufacturers, legislature and first users aspire hydrogen fuel cell vehicles. Up to now the focus of research was set on ensuring functionality and increasing durability of fuel cell components. Therefore, expensive materials were used. Contemporary research and development try to substitute these substances by more cost-effective material combinations. The bipolar plate is a key component with the greatest influence on volume and mass of a fuel cell stack and they have to meet complex requirements. They support bending sensitive components of stack, spread reactants over active cell area and form the electrical contact to another cell. Furthermore, bipolar plates dissipate heat of reaction and separate one cell gastight from the other. Consequently, they need a low interfacial contact resistance (ICR) to the gas diffusion layer, high flexural strength, good thermal conductivity and a high durability. To reduce costs stainless steel is a favoured material for bipolar plates in automotive applications. Steel is characterized by good electrical and thermal conductivity but the acid environment requires a high chemical durability against corrosion as well. On the one hand formation of a passivating oxide layer increasing ICR should be inhibited. On the other hand pitting corrosion leading to increased permeation rate may not occur. Therefore, a suitable substrate lamination combination is wanted. In this study material testing methods for bipolar plates are considered.
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.
1974-01-01
A method is presented to predict theoretical buckling loads of long, rectangular flat and curved laminated plates with arbitrary orientation of orthotropic axes each lamina. The plate is subjected to combined inplane normal and shear loads. Arbitrary boundary conditions may be stipulated along the longitudinal sides of the plate. In the absence of inplane shear loads and extensional-shear coupling, the analysis is also applicable to finite length plates. Numerical results are presented for curved laminated composite plates with boundary conditions and subjected to various loadings. These results indicate some of the complexities involved in the numerical solution of the analysis for general laminates. The results also show that the reduced bending stiffness approximation when applied to buckling problems could lead to considerable error in some cases and therefore must be used with caution.
Retaining latch for a water pit gate
Beale, A.R.
1997-11-18
A retaining latch is described for use in a hazardous materials storage or handling facility to adjustably retain a water pit gate in a gate frame. A retaining latch is provided comprising a latch plate which is rotatably mounted to each end of the top of the gate and a recessed opening, formed in the gate frame, for engaging an edge of the latch plate. The latch plate is circular in profile with one side cut away or flat, such that the latch plate is D-shaped. The remaining circular edge of the latch plate comprises steps of successively reduced thickness. The stepped edge of the latch plate fits inside a recessed opening formed in the gate frame. As the latch plate is rotated, alternate steps of the latch plate are engaged by the recessed opening. When the latch plate is rotated such that the flat portion of the latch plate faces the recessed opening in the gate frame, there is no connection between the opening and the latch plate and the gate is unlatched from the gate frame. 4 figs.
NASA Astrophysics Data System (ADS)
Grose, C. J.; Afonso, J. C.
2013-12-01
We have developed new physically comprehensive thermal plate models of the oceanic lithosphere which incorporate temperature- and pressure-dependent heat transport properties and thermal expansivity, melting beneath ridges, hydrothermal circulation near ridge axes, and insulating oceanic crust. These models provide good fits to global databases of seafloor topography and heat flow, and seismic evidence of thermal structure near ridge axes. We couple these thermal plate models with thermodynamic models to predict the petrology of oceanic lithosphere. Geoid height predictions from our models suggest that there is a strong anomaly in geoid slope (over age) above ~25 Ma lithosphere due to the topography of garnet-field mantle. A similar anomaly is also present in geoid data over fracture zones. In addition, we show that a new assessment of a large database of ocean island basalt Sm/Yb systematics indicates that there is an unmistakable step-like increase in Sm/Yb values around 15-20 Ma, indicating the presence of garnet. To explain this feature, we have attempted to couple our thermo-petrological models of oceanic upper mantle with an open system, non-modal, dynamic melting model with diffusion kinetics to investigate trace element partitioning in an ascending mantle column.
NASA Technical Reports Server (NTRS)
Librescu, L.; Chandiramani, N. K.
1989-01-01
Some recent results obtained by the authors are summarized concerning the stability of transversely isotropic flat panels whose materials exhibit a viscoelastic behavior and whose edges are subjected to in-plane biaxial compressive loads. Two transversely isotropic type materials, largely used in advanced technology, are considered: (1) the pyrolytic-graphite type, used in the thermal protection of aerospace vehicles, and (2) the type corresponding to unidirectional fiber-reinforced composites. In the former case, the planes of isotropy are parallel at each point to the midplane of the plate. In the latter case, they are normal to the fiber directions. The micromechanical relations developed by Aboudi (1984, 1986, 1987) are considered in conjunction with the correspondence principle of linear viscoelastic theory in order to predict the macroscopic viscoelastic properties of a material composed of uniaxial elastic fibers embedded in a linear viscoelastic matrix.
Droplet Impact Onto A Flat Plate: Inclined Verses Moving Surfaces
NASA Astrophysics Data System (ADS)
Tsai, Scott; Bird, James C.; Stone, Howard A.
2008-11-01
Much research has been conducted on the impact of droplets normal to flat surfaces. However, very little research has been carried out on oblique impacts, even though they occur frequently in nature and industry. We experiment with the effects of tangential and normal impact velocities on the behavior of a droplet as it impacts a flat plate. The plate is inclined in the first case, and in the second case the plate is rotated via an electric motor. The asymmetric nature of the impact causes asymmetric splashing, such that under certain conditions only part of the rim splashes. Using a high-speed camera, we demonstrate that the splash threshold of inclined and moving surfaces are quantitatively similar, with only small differences. We also develop a phase diagram of splashing showing which phase occurs given a tangential and normal impact velocity. Such a phase diagram is useful for both engineering design and for the evaluation of splash-prediction models.
2009 Insensitive Munitions and Energetic Materials Technology Symposium
2009-05-14
Multilayer Structure 1D STIMULI Flat end rod Round end rod Flat cookie -cutter Spherical fragment Simple shaped charge jet Real shaped charge jet Thin plate... cookie -cutter Spherical fragment Simple shaped charge jet Real shaped charge jet Thin plate Constant Temperature Rising Temperature Multilayer...Propellants Plasticizer mixed into the Propellant - Dough NO SURFACE COATING Formulation Impetus (J/g) Flame Temp (K) Mw (g/mole) A
Testing flat plate photovoltaic modules for terrestrial environment
NASA Technical Reports Server (NTRS)
Hoffman, A. R.; Arnett, J. C.; Ross, R. G., Jr.
1979-01-01
New qualification tests have been developed for flat plate photovoltaic modules. Temperature cycling, cyclic pressure load, and humidity exposure are especially useful for detecting design and fabrication deficiencies. There is positive correlation between many of the observed field effects, such as power loss, and qualification test induced degradation. The status of research efforts for the development of test methodology for field-related problems is reviewed.
NASA Astrophysics Data System (ADS)
Goyal, M.; Goyal, R.; Bhargava, R.
2017-12-01
In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. The boundary layer equations are transformed into a set of ordinary differential equations with the help of group theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and ceramics, production of plastic films, insulation of wires and liquid packaging.
Development of electromagnetic welding facility of flat plates for nuclear industry
NASA Astrophysics Data System (ADS)
Kumar, Rajesh; Sahoo, Subhanarayan; Sarkar, Biswanath; Shyam, Anurag
2017-04-01
Electromagnetic pulse welding (EMPW) process, one of high speed welding process uses electromagnetic force from discharged current through working coil, which develops a repulsive force between the induced current flowing parallel and in opposite direction. For achieving the successful weldment using this process the design of working coil is the most important factor due to high magnetic field on surface of work piece. In case of high quality flat plate welding factors such as impact velocity, angle of impact standoff distance, thickness of flyer and overlap length have to be chosen carefully. EMPW has wide applications in nuclear industry, automotive industry, aerospace, electrical industries. However formability and weldability still remain major issues. Due to ease in controlling the magnetic field enveloped inside tubes, the EMPW has been widely used for tube welding. In case of flat components control of magnetic field is difficult. Hence the application of EMPW gets restricted. The present work attempts to make a novel contribution by investigating the effect of process parameters on welding quality of flat plates. The work emphasizes the approaches and engineering calculations required to effectively use of actuator in EMPW of flat components.
Investigating wake patterns and propulsive frequencies of a flat plate under pitching motion
NASA Astrophysics Data System (ADS)
Moubogha Moubogha, Joseph; Astolfi, Jacques Andre
Fundamental mechanisms of swimming are explored using a simple geometry device - flat plate - in pure-pitching motion in a hydrodynamic tunnel. The experiments are carried out at different Reynolds numbers based on the plate length c. Pitching motion is generated for reduced frequencies k between 0 and 2 and for an angular amplitude of 10 deg. Velocity fields are obtained in the wake of the plate using Particle Image Velocimetry and measurements of drag coefficients are estimated from mean velocity profiles. This study confirms the occurrence of a threshold oscillation frequency beyond which the plate enters a propulsive regime and the wake features organized structures. In this case an inversion of the typical Karman vortex street is observed. The evolution of mean transverse velocity profiles in the wake of the plate shows that the usual wake profile with velocity deficit - plate with drag - can be transformed into a jet - plate with thrust - above a certain reduced frequency. Phd Student Mechanical Engineering Departement.
History and evolution of Subduction in the Precambrium
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2013-12-01
Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g. Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic subduction is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further subduction history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction changes to shallow underplating and buckling. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere starts to delaminate and drip-off. But the subduction style is not only a function of upper-mantle temperature but also strongly depends on the thickness of the subducting plate. If thinner present day oceanic plates are used in the Precambrian models, no shallow underplating is observed but steep subduction can be found up to an upper-mantle temperature of 200 K above present day values. Increasing oceanic plate thickness introduces a transition from steep to flat subduction at lower temperatures of around 150 K. Thicker oceanic plates in the Precambrium also agree with results from earlier studies, e.g. Abbott (1994). References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370. Subduction depends strongly on upper-mantle temperature. (a) Modern subduction with present day temperature gradients in upper-mantle and lithosphere. (b) Increase of temperature by 100 K at the lithosphere-asthenosphere boundary (LAB) leads to melting and drip-off of the of the slab-tip. (c) A temperature increase of 200 K leads to buckling of the subducting slab and Rayleigh-Taylor instabilities not only at the slab-tip but the whole LAB. At this stage subduction is no longer possible as the slab melts or breaks before it can be subducted into the mantle.
Influence of end plates on aerodynamic characteristics of bluff bodies
NASA Astrophysics Data System (ADS)
Shmigirilov, Rodion; Ryabinin, Anatoly
2018-05-01
Aerodynamic characteristics of flat plate oriented normally to the flow are studied in the wind tunnel. The experiments are carried out without end plates and with round end plates of different diameter. We obtain that end plates increase the base pressure, the drag coefficient and decrease the length of recirculation region.
LARGO hot water system thermal performance test report
NASA Technical Reports Server (NTRS)
1978-01-01
The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions is presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The Solar Hot Water system is termed a Dump-type because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.
Experiment to verify the permeability of Hele-Shaw cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartline, B.K.; Lister, C.R.B.
1978-04-01
A fluid layer sandwiched between 2 flat plates (Hele-Shaw cell) has been assumed to model a saturated porous medium with permeability, D2/12, dependent only on the gap width, D. For situations where the properties of the porous matrix are important, such as thermal convection, the total cross section (Y) of the sandwich should enter into the computation of permeability. To decide which of these approaches is valid, the onset of convection was observed in a Hele-Shaw cell with constant gap width but spatially varying wall thickness. Convection begins in the thin-walled section at a lower temperature difference than it doesmore » where the walls are thick. Data confirm that D3/12Y is the permeability of Hele-Shaw cells used to model thermal convection in porous layers.« less
Thermal performance evaluation of the Suncatcher SH-11 (liquid) solar collector
NASA Technical Reports Server (NTRS)
1980-01-01
The procedures used and the results obtained during the evaluation test program on the Solar Unlimited, Inc., Suncatcher SH-11 (liquid) solar collector are presented. The flat-plate collector case assembly is made of .08 inch aluminum 3003 H14 riveted with fiberglass board insulation. The absorber consists of collared aluminum fins mechanically bonded to 3/8 inch copper tubing and coated with 3M Nextel black. Water is used as the working fluid. The glazing is made of a single glass, 1/8 inch water white, tempered and antireflective. The collector weight is 85 pounds with overall external dimensions of about 35.4 in x 82.0 in x 4.0 in. Thermal performance data on the Solar Unlimited Suncatcher SH-11 solar collector under simulated conditions were conducted using the MSFC Solar Simulator.
On the role of subducting oceanic plateaus in the development of shallow flat subduction
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.
2002-08-01
Oceanic plateaus, aseismic ridges or seamount chains all have a thickened crust and their subduction has been proposed as a possible mechanism to explain the occurrence of flat subduction and related absence of arc magmatism below Peru, Central Chile and at the Nankai Trough (Japan). Their extra compositional buoyancy could prohibit the slab from sinking into the mantle. With a numerical thermochemical convection model, we simulated the subduction of an oceanic lithosphere that contains an oceanic crustal plateau of 18-km thickness. With a systematic variation, we examined the required physical parameters to obtain shallow flat subduction. Metastability of the basaltic crust in the eclogite stability field is of crucial importance for the slab to remain buoyant throughout the subduction process. In a 44-Ma-old subducting plate, basalt must be able to survive a temperature of 600-700 °C to keep the plate buoyant sufficiently long to cause a flat-slab segment. We found that the maximum yield stress in the slab must be limited to about 600 MPa to allow for the necessary bending to the horizontal. Young slabs show flat subduction for larger parameter ranges than old slabs, since they are less gravitationally unstable and show less resistance against bending. Hydrous weakening of the mantle wedge area and lowermost continent are required to allow for the necessary deformation of a change in subduction style from steep to flat. The maximum flat slab extent is about 300 km, which is sufficient to explain the observed shallow flat subduction near the Nankai Trough (Japan). However, additional mechanisms, such as active overthrusting by an overriding continental plate, need to be invoked to explain the flat-slab segments up to 500 km long below Peru and Central Chile.
Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis
NASA Technical Reports Server (NTRS)
Granon, L. A.; Coleman, M. G.
1980-01-01
The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.
Performance of a three-dimensional Navier-Stokes code on CYBER 205 for high-speed juncture flows
NASA Technical Reports Server (NTRS)
Lakshmanan, B.; Tiwari, S. N.
1987-01-01
A vectorized 3D Navier-Stokes code has been implemented on CYBER 205 for solving the supersonic laminar flow over a swept fin/flat plate junction. The code extends MacCormack's predictor-corrector finite volume scheme to a generalized coordinate system in a locally one dimensional time split fashion. A systematic parametric study is conducted to examine the effect of fin sweep on the computed flow field. Calculated results for the pressure distribution on the flat plate and fin leading edge are compared with the experimental measurements of a right angle blunt fin/flat plate junction. The decrease in the extent of the separated flow region and peak pressure on the fin leading edge, and weakening of the two reversed supersonic zones with increase in fin sweep have been clearly observed in the numerical simulation.
NASA Astrophysics Data System (ADS)
Yamamoto, Takashi
2018-06-01
A new acoustic metamaterial plate (AMP) is proposed herein. The plate incorporates Helmholtz resonators that are periodically embedded at intervals shorter than acoustic wavelengths. This metamaterial plate exhibits extraordinary sound transmission loss (STL) at the resonance frequency of the Helmholtz resonators compared to a conventional flat plate. The STL of the AMP can be theoretically analyzed using the effective mass density and flexural rigidity. At the resonant frequency, the dynamic density of the AMP becomes much larger than that of a conventional solid flat plate with the same mass. When the Helmholtz resonant frequency is tuned to the coincidence frequency of the AMP, the dip in transmission loss owing to the coincidence effect is not observed. The frequency band, wherein high STL occurs, is narrow; however, the frequency band can be widened by embedding multiple resonators with slightly different resonant frequencies. Numerical experiments are also performed to demonstrate the acoustic performance of the proposed system. In the simulation, Helmholtz resonators with the 2.1-kHz resonant frequency are embedded at 20-mm intervals inside a 6-mm-thick flat glass plate. Analytical solutions of this system agree well with numerical solutions for various incidence angles of incoming plane waves. In this configuration, we find that the degradation of STL caused by the coincidence effect is nearly eliminated for waves that are incident at random angles.
Subduction zone evolution and low viscosity wedges and channels
NASA Astrophysics Data System (ADS)
Manea, Vlad; Gurnis, Michael
2007-12-01
Dehydration of subducting lithosphere likely transports fluid into the mantle wedge where the viscosity is decreased. Such a decrease in viscosity could form a low viscosity wedge (LVW) or a low viscosity channel (LVC) on top of the subducting slab. Using numerical models, we investigate the influence of low viscosity wedges and channels on subduction zone structure. Slab dip changes substantially with the viscosity reduction within the LVWs and LVCs. For models with or without trench rollback, overthickening of slabs is greatly reduced by LVWs or LVCs. Two divergent evolutionary pathways have been found depending on the maximum depth extent of the LVW and wedge viscosity. Assuming a viscosity contrast of 0.1 with background asthenosphere, models with a LVW that extends down to 400 km depth show a steeply dipping slab, while models with an LVW that extends to much shallower depth, such as 200 km, can produce slabs that are flat lying beneath the overriding plate. There is a narrow range of mantle viscosities that produces flat slabs (5 to10 × 10 19 Pa s) and the slab flattening process is enhanced by trench rollback. Slab can be decoupled from the overriding plate with a LVC if the thickness is at least a few 10 s of km, the viscosity reduction is at least a factor of two and the depth extent of the LVC is several hundred km. These models have important implications for the geochemical and spatial evolution of volcanic arcs and the state of stress within the overriding plate. The models explain the poor correlation between traditional geodynamic controls, subducting plate age and convergence rates, on slab dip. We predict that when volcanic arcs change their distance from the trench, they could be preceded by changes in arc chemistry. We predict that there could be a larger volatile input into the wedge when arcs migrate toward the trench and visa-versa. The transition of a subduction zone into the flat-lying regime could be preceded by changes in the volatile budget such that the dehydration front moves to shallower depths. Our flat-slab models shed some light on puzzling flat subduction systems, like in Central Mexico, where there is no deformation within the overriding plate above the flat segment. The lack of in-plane compression in Central Mexico suggests the presence of a low viscosity shear zone above the flat slab.
NASA Astrophysics Data System (ADS)
Grose, C. J.
2007-12-01
The Trans-Mexican Volcanic Belt (TMVB) is a system where the age range of subducting plates is typically thought of as critical in their relation to lithospheric thermal structure (~10-20 Ma). I refer to this age range as "critical" because it is in this range where thermal lithospheres begin to rapidly decrease their correlative influence on the thermal state of the subduction system above the crust/mantle wedge interface for most systems. After ~20 Ma the cool upper portion of downgoing lithosphere becomes sufficiently thick so that crustal reheating and corresponding heat flow in the time between trench subduction and the zone of melt generation, due to the accumulation of conductive and frictional heating, behaves somewhat similarly with little regard to age. Typical slab travel times are on the order of 1.5-2.5 My. However, low dip angles and flat-slab behavior in the Eastern end of the TMVB facilitates anomalously long travel times exceeding 6.5 My! Here I show that while the influence of plate age is clearly significant in determining the holistic thermal geodynamics of subduction systems, the influence can be dampened or enhanced by auxiliary factors. I present thermal modeling cases using a solution for the conduction of heat into an evolving semi-infinite half-space with variable boundary conditions. Preliminary results indicate that extraordinary slab travel times and flat-slab behavior, mantle wedge advection regimes, and plate age thermally enhance and dampen each other. Geochemically, the TMVB shows consistent along-arc changes in light element abundance systematics (B/Be, Li/Yb, Be/Zr). Moderately elevated B/Be (Easterly increases from ~4 to ~12 ppm B/Be) observed in the eastern shallow subduction region is thought to correlate with subduction of an older, cooler portion of the slab. However, greater slab travel times in the Eastern TVMB should simultaneously act to warm the slab and depreciate these values which may partly explain the minimal consistency and magnitude of the TMVB along-arc variations. Li/Yb has a more impressive range of correlative along-arc variation, argued to be the result of greater extents of melting in the east. This can be explained by increased dehydration melting (due to a cooler slab and longer H20 residence times in the slab), a warmer slab affect, or changes in the mean depth of amphibole and garnet crystallization. While elevated B and B/Be values in the eastern TMVB correlate with increased hydration melting, it is likely that the affect is dampened by the positive thermal affects of greater travel times. Comparison to arc rocks in subduction further to the east in Central America, particularly Guatemala, whose B abundance and B/Be ratios are much more elevated (20-70 ppm B/Be) and show convergence on those in the Eastern TMVB. I suggest that the minimal range of B/Be variation seen in the TMVB arc is a result of the extraordinary slab travel times associated with shallow subduction in the eastern TMVB. Furthermore, similar to the B/Be data, the depleted Li/Yb (relative to the rifting region encompassing the Jalisco block) of the Eastern end also continues to converge on values represented in the Central American arc, indicating that the strong variations seen in the TMVB are primarily due to crystallization instead of extents of melting. Thermal modeling results presented here show that sources aside from plate age are capable and likely have influenced the systematic correlations observed in the TMVB and this hypothesis is consistent with the LREE data.
NASA Technical Reports Server (NTRS)
Wilson, John C.
1995-01-01
Aerodynamic plates stop litter from spinning during hoisting by helicopter. Features of proposed litter-spinning retarders include convenience of deployment and independence from ground restraint. Retarder plate(s) folded flat against bottom of litter during storage or while litter is loaded. Plate(s) held in storage position by latch that releases manually or automatically as litter is hoisted. Upon release, springs move plates into deployed position.
Film Condensation with and Without Body Force in Boundary-Layer Flow of Vapor Over a Flat Plate
NASA Technical Reports Server (NTRS)
Chung, Paul M.
1961-01-01
Laminar film condensation under the simultaneous influence of gas-liquid interface shear and body force (g force) is analyzed over a flat plate. Important parameters governing condensation and heat transfer of pure vapor are determined. Mixtures of condensable vapor and noncondensable gas are also analyzed. The conditions under which the body force has a significant influence on condensation are determined.
In-Flight Boundary-Layer Transition of a Large Flat Plate at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Banks, D. W.; Frederick, M. A.; Tracy, R. R.; Matisheck, J. R.; Vanecek, N. D.
2012-01-01
A flight experiment was conducted to investigate the pressure distribution, local-flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.00. The tests used a NASA testbed aircraft with a bottom centerline mounted test fixture. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating. Boundary-layer transition was captured in both analog and digital formats using an onboard infrared imaging system. Surface pressures were measured on the surface of the flat plate. Flow field measurements near the leading edge of the test fixture revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration.
Flow-Field Survey in the Test Region of the SR-71 Aircraft Test Bed Configuration
NASA Technical Reports Server (NTRS)
Mizukami, Masashi; Jones, Daniel; Weinstock, Vladimir D.
2000-01-01
A flat plate and faired pod have been mounted on a NASA SR-71A aircraft for use as a supersonic flight experiment test bed. A test article can be placed on the flat plate; the pod can contain supporting systems. A series of test flights has been conducted to validate this test bed configuration. Flight speeds to a maximum of Mach 3.0 have been attained. Steady-state sideslip maneuvers to a maximum of 2 deg have been conducted, and the flow field in the test region has been surveyed. Two total-pressure rakes, each with two flow-angle probes, have been placed in the expected vicinity of an experiment. Static-pressure measurements have been made on the flat plate. At subsonic and low supersonic speeds with no sideslip, the flow in the surveyed region is quite uniform. During sideslip maneuvers, localized flow distortions impinge on the test region. Aircraft sideslip does not produce a uniform sidewash over the test region. At speeds faster than Mach 1.5, variable-pressure distortions were observed in the test region. Boundary-layer thickness on the flat plate at the rake was less than 2.1 in. For future experiments, a more focused and detailed flow-field survey than this one would be desirable.
Baran, Timothy M; Foster, Thomas H
2014-02-01
For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. Treatment planning software for iPDT was developed based on graphics processing unit enhanced Monte Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D90) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180-8080 J in order to deposit 90 J/cm(2) in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270-2350 J (333-1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485-3600 J were required, compared to ten flat cleaved fibers delivering 2780-3600 J. For the same number of fibers, cylindrical diffusers allow for a shorter treatment duration compared to flat cleaved fibers. For the same energy delivered per fiber, diffusers allow for the insertion of fewer fibers in order to deliver the same light dose to a target volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baran, Timothy M., E-mail: timothy.baran@rochester.edu; Foster, Thomas H.
Purpose: For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. Methods: Treatment planning software for iPDT was developed based on graphics processing unit enhanced Montemore » Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D{sub 90}) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. Results: When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180–8080 J in order to deposit 90 J/cm{sup 2} in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270–2350 J (333–1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485–3600 J were required, compared to ten flat cleaved fibers delivering 2780–3600 J. Conclusions: For the same number of fibers, cylindrical diffusers allow for a shorter treatment duration compared to flat cleaved fibers. For the same energy delivered per fiber, diffusers allow for the insertion of fewer fibers in order to deliver the same light dose to a target volume.« less
NASA Technical Reports Server (NTRS)
Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.
2009-01-01
Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1--fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2--subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3--full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with ice projectile impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated three types of debris projectiles: Single-crystal, polycrystal, and "soft" ice. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the ice and RCC models for use in LS-DYNA.
NASA Technical Reports Server (NTRS)
Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.
2009-01-01
Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1-fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2-subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3-full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with external tank foam impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated two types of debris projectiles: BX-265 and PDL-1034 external tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the foam and RCC models for use in LS-DYNA.
Electrochemical Device Comprising Composite Bipolar Plate and Method of Using the Same
NASA Technical Reports Server (NTRS)
Mittelsteadt, Cortney K. (Inventor); Braff, William A. (Inventor)
2013-01-01
An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.
Electrochemical Device Comprising Composite Bipolar Plate and Method of Using the Same
NASA Technical Reports Server (NTRS)
Mittelsteadt, Cortney K. (Inventor); Braff, William A. (Inventor)
2017-01-01
An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.
Peppler, Mark S.
1982-01-01
Four different serotype strains of Bordetella pertussis, 3779BL2S4, Tohama I, 353/Z, and 2753, were plated on Bordet-Gengou agar, where they grew as domed, hemolytic (D+H+) wild-type colonies. Cloned D+H+ colony types of all four strains were passed onto modified Stainer-Scholte medium solidified with 1% Noble Agar. Colonies were selected from Stainer-Scholte agar, and these subsequently grew as flat, nonhemolytic (D−H−) colonies when transferred back onto Bordet-Gengou agar. The frequency of D−H− organisms within a population of cloned D+H+ was determined to be between 5 × 10−5 and 5 × 10−6. The D−H− colony types maintained their flat, nonhemolytic characteristics for over 80 single-colony passages on Bordet-Gengou agar. The isogenic pairs of D+H+ and D−H− colony types from the four strains were compared for hemagglutination titer, lymphocytosis-promoting activity, adenylate cyclase activity, and presence of agglutinogens by agglutination. In all cases the D−H− colony types showed reduced activities or amounts of antigen compared with their D+H+ parents. Freely diffusible antigens were markedly different between the two phenotypes as noted by double diffusion of antisera added to plates on which colonies of the variants were growing. Antigens solubilized from the two colony types by Triton X-100 were also markedly different as judged by radial immunodiffusion with antifimbrial hemagglutinin, antilymphocytosis-promoting factor, and anti-353/Z adsorbed with autoclaved 353/Z. In addition, autoradiographs of 125I-surface-labeled whole cells separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed unique banding patterns for each colony type. Since all organisms, regardless of colony type, were grown on Bordet-Gengou agar, the differences reported could not be due to medium composition. Differences between phenotypes were also independent of passage number on Bordet-Gengou agar. By analogy to previous studies, the D−H− organisms appear to fulfill the criteria for phase III or phase IV in the system of Leslie and Gardner (P. H. Leslie and A. D. Gardner, J. Hyg. 31:423-434, 1931) or phase III in the system of Kasuga et al. (T. Kasuga, Y. Nakase, K. Ukishima, and K. Takatsu, Kitasato Arch. Exp. Med. 26:121-134, 1954). Images PMID:6279517
Curved channel MCP improvement program
NASA Technical Reports Server (NTRS)
Laprade, Bruce N.; Corbett, Michael B.
1987-01-01
Blowholes and blemishes were determined to start at two stages of manufacturing. Sperical blowholes resulted from trapped gas between the high melting temperature bond glass and the MCP wafer. During thermal processing, the trapped gas expanded and displaced the softened channel glass to form a spherical inclusion. This defect was eliminated by grinding the prefritted bond wafer and channel plate wafer to a flatness which ensured intimate contact prior to fusion. Elliptical blowholes or blemishes were introduced during the fiber draw stage. Contaminants trapped between the core bar and clad tubing volatized providing large quantities of expanding gas. These pockets of gas became elongated to an ellipsoidal shape during fiber draw. Special cleanliness procedures were developed for the grinding, polishing, and acid etching of core bars. Improvements in channel curvature fabrication were implemented. The design of the shearing fixture was evaluated. A new design was developed which eliminated an off-axis moment. The shearing furnace design was evaluated. Steady state thermal conditions instead of thermal transient conditions were determined to reduce curvature nonuniformity.
NASA Astrophysics Data System (ADS)
Araya, Guillermo; Jansen, Kenneth
2017-11-01
DNS of compressible spatially-developing turbulent boundary layers is performed at a Mach number of 2.5 over an isothermal flat plate. Turbulent inflow information is generated by following the concept of the rescaling-recycling approach introduced by Lund et al. (J. Comp. Phys. 140, 233-258, 1998); although, the proposed methodology is extended to compressible flows. Furthermore, a dynamic approach is employed to connect the friction velocities at the inlet and recycle stations (i.e., there is no need of an empirical correlation as in Lund et al.). Additionally, the Morkovin's Strong Reynolds Analogy (SRA) is used in the rescaling process of the thermal fluctuations from the recycle plane. Low/high order flow statistics is compared with direct simulations of an incompressible isothermal ZPG boundary layer at similar Reynolds numbers and temperature regarded as a passive scalar. Focus is given to the effect assessment of flow compressibility on the dynamics of thermal coherent structures. AFOSR #FA9550-17-1-0051.
Electroless-plating technique for fabricating thin-wall convective heat-transfer models
NASA Technical Reports Server (NTRS)
Avery, D. E.; Ballard, G. K.; Wilson, M. L.
1984-01-01
A technique for fabricating uniform thin-wall metallic heat-transfer models and which simulates a Shuttle thermal protection system tile is described. Two 6- by 6- by 2.5-in. tiles were fabricated to obtain local heat transfer rates. The fabrication process is not limited to any particular geometry and results in a seamless thin-wall heat-transfer model which uses a one-wire thermocouple to obtain local cold-wall heat-transfer rates. The tile is relatively fragile because of the brittle nature of the material and the structural weakness of the flat-sided configuration; however, a method was developed and used for repairing a cracked tile.
OFF-Stagnation point testing in plasma facility
NASA Astrophysics Data System (ADS)
Viladegut, A.; Chazot, O.
2015-06-01
Reentry space vehicles face extreme conditions of heat flux when interacting with the atmosphere at hypersonic velocities. Stagnation point heat flux is normally used as a reference for Thermal Protection Material (TPS) design; however, many critical phenomena also occur at off-stagnation point. This paper adresses the implementation of an offstagnation point methodology able to duplicate in ground facility the hypersonic boundary layer over a flat plate model. The first analysis using two-dimensional (2D) computational fluid dynamics (CFD) simulations is carried out to understand the limitations of this methodology when applying it in plasma wind tunnel. The results from the testing campaign at VKI Plasmatron are also presented.
NASA Technical Reports Server (NTRS)
Johnson, C. B.; Kaufman, L. G., II
1978-01-01
Surface heat transfer distributions are presented for swept wing semispan models having trailing edge elevon ramp angles of 0, 10, 20, and 30 degrees. The wing sweepback angles are 0, 50, and 70 degrees. The models have attachable cylindrical and flat plate center bodies and various attachable wing-tip fins. The data, obtained for a 0 degree angle of attack, a free stream Mach number of 6, and a wing root chord Reynolds number of about 17,000,000, reveal considerably larger regions of elevon induced thermal loads on adjacent surfaces than would be suggested by fully attached flow analyses.
On the rotation and pitching of flat plates
NASA Astrophysics Data System (ADS)
Jin, Yaqing; Ji, Sheng; Chamorro, Leonardo P.
2016-11-01
Wind tunnel experiments were performed to characterize the flow-induced rotation and pitching of various flat plates as a function of the thickness ratio, the location of the axis of rotation and turbulence levels. High-resolution telemetry, laser tachometer, and hotwire were used to get time series of the plates motions and the signature of the wake flow at a specific location. Results show that a minor axis offset can induce high-order modes in the plate rotation under low turbulence due to torque unbalance. The spectral decomposition of the flow velocity in the plate wake reveals the existence of a dominating high-frequency mode that corresponds to a static-like vortex shedding occurring at the maximum plate pitch, where the characteristic length scale is the projected width at maximum pitch. The plate thickness ratio shows inverse relation with the angular velocity. A simple model is derived to explain the linear relation between pitching frequency and wind speed. The spectra of the plate rotation show nonlinear relation with the incoming turbulence, and the dominating role of the generated vortices in the plate motions.
Reducing cylinder drag by adding a plate
NASA Astrophysics Data System (ADS)
Frolov, Vladimir A.; Kozlova, Anna S.
2017-10-01
Reducing the drag of bodies is a central problem of modern aerohydrodynamics. The paper presents theoretical and experimental studies of a new method for reducing the drag of a circular cylinder. To reduce the drag we propose to install a flat plate along the flow in front of the cylinder. The theoretical investigation of the drag was carried out using FlowSimulation software. An experimental study of the body drag was performed in an open wind tunnel. The drag coefficient results of the cylinder depended on the different locations of the flat plate relative to the cylinder. The following geometric characteristics of the cylinder/plate are studied: the width of the gap between the cylinder and the plate and the meridional angle of the plate with respect to the cylinder. On the basis of Numerical and Physical Modeling, the values of the drag coefficient for the cylinder/plate are presented. The results included establishment the locations of the cylinder/plate which give the value of the drag coefficient for the combination of the two bodies. That total drag coefficient of the cylinder/plate can be less than the cylinder alone.
Dehumidification System with Steam Permeability Films
NASA Astrophysics Data System (ADS)
Ishikwa, Masaaki; Sekimori, Souji; Ogiwara, Shigeaki; Ochiai, Tetsunari; Hirata, Tetsuo
In a factory with a clean room facility in cold regions, dew-condensation on walls of the facility is one of the most serious problems in winter. In this study, a new dehumidification system in which a steam permeability film is located between humid air in a clean room and dry air from outside to exchange steam is proposed. This system can treat a lot of humid air with small energy only for driving fans to flow air. Some films are examined in two kinds of steam exchangers; double tube type and flat p1ate type. Steam permeability resistance and therma1 resistance of each film are first obtained in a double tube type exchanger. An analytica1 model for a flat plate type exchanger is then proposed, which shows good agreement with experimental data. Steam and heat transfer characteristics of a flat plate type exchanger are also evaluated experimentally. One film on a flat plate type exchanger shows dehumidification capacity of 0.033g/s(=120g/h )with its area of 2.232m2.
Schepers, Gerben; van Hinsbergen, Douwe J J; Spakman, Wim; Kosters, Martha E; Boschman, Lydian M; McQuarrie, Nadine
2017-05-16
At two trench segments below the Andes, the Nazca Plate is subducting sub-horizontally over ∼200-300 km, thought to result from a combination of buoyant oceanic-plateau subduction and hydrodynamic mantle-wedge suction. Whether the actual conditions for both processes to work in concert existed is uncertain. Here we infer from a tectonic reconstruction of the Andes constructed in a mantle reference frame that the Nazca slab has retreated at ∼2 cm per year since ∼50 Ma. In the flat slab portions, no rollback has occurred since their formation at ∼12 Ma, generating 'horse-shoe' slab geometries. We propose that, in concert with other drivers, an overpressured sub-slab mantle supporting the weight of the slab in an advancing upper plate-motion setting can locally impede rollback and maintain flat slabs until slab tearing releases the overpressure. Tear subduction re-establishes a continuous slab and allows the process to recur, providing a mechanism for the transient character of flat slabs.
Near Earth Asteroid Scout Thrust and Torque Model
NASA Technical Reports Server (NTRS)
Heaton, Andrew; Ahmad, Naeem; Miller, Kyle
2017-01-01
The Near Earth Asteroid (NEA) Scout is a solar sail mission whose objective is to scout at least one Near Earth Asteroid in preparation for manned missions to asteroids. NEA Scout will use a solar sail as the primary means of propulsion. Thus it is important for mission planning to accurately characterize the thrust of the sail. Additionally, the solar sail creates a relatively large solar disturbance torque that must be mitigated. For early mission design studies a flat plate model of the solar sail with a fixed center of pressure was adequate, but as mission concepts and the sail design matured, greater fidelity was required. Here we discuss the progress to a three-dimensional sail model that includes the effects of tension and thermal deformation that has been derived from a large structural Finite Element Model (FEM) developed by the Langley Research Center. We have found that the deformed sail membrane affects torque relatively much more than thrust. We have also found that other than uncertainty over the precise shape, the effect of small (approximately millimeter scale) wrinkles on the diffusivity of the sail is the leading remaining source of uncertainty. We demonstrate that millimeter-scale wrinkles can be modeled analytically as a change in the fraction of specular reflection. Finally we discuss the implications of these results for the NEA Scout mission.
NASA Technical Reports Server (NTRS)
Rossow, Vernon J
1958-01-01
The use of a magnetic field to control the motion of electrically conducting fluids is studied. The incompressible boundary-layer solutions are found for flow over a flat plate when the magnetic field is fixed relative to the plate or to the fluid. The equations are integrated numerically for the effect of the transverse magnetic field on the velocity and temperature profiles, and hence, the skin friction and rate of heat transfer. It is concluded that the skin friction and the heat-transfer rate are reduced when the transverse magnetic field is fixed relative to the plate and increased when fixed relative to the fluid. The total drag is increased in all of the areas.
Weak incident shock interactions with Mach 8 laminar boundary layers. [of flat plate
NASA Technical Reports Server (NTRS)
Kaufman, L. G., II; Johnson, C. B.
1974-01-01
Weak shock-wave interactions with boundary layers on a flat plate were investigated experimentally in Mach 8 variable-density tunnel for plate-length Reynolds numbers. The undisturbed boundary layers were laminar over the entire plate length. Pressure and heat-transfer distributions were obtained for wedge-generated incident shock waves that resulted in pressure rises ranging from 1.36 to 4.46 (both nonseparated and separated boundary-layer flows). The resulting heat-transfer amplifications ranged from 1.45 to 14. The distributions followed established trends for nonseparated flows, for incipient separation, and for laminar free-interaction pressure rises. The experimental results corroborated established trends for the extent of the pressure rise and for certain peak heat-transfer correlations.
Accretionary orogens through Earth history
Cawood, Peter A.; Kroner, A.; Collins, W.J.; Kusky, T.M.; Mooney, W.D.; Windley, B.F.
2009-01-01
Accretionary orogens form at intraoceanic and continental margin convergent plate boundaries. They include the supra-subduction zone forearc, magmatic arc and back-arc components. Accretionary orogens can be grouped into retreating and advancing types, based on their kinematic framework and resulting geological character. Retreating orogens (e.g. modern western Pacific) are undergoing long-term extension in response to the site of subduction of the lower plate retreating with respect to the overriding plate and are characterized by back-arc basins. Advancing orogens (e.g. Andes) develop in an environment in which the overriding plate is advancing towards the downgoing plate, resulting in the development of foreland fold and thrust belts and crustal thickening. Cratonization of accretionary orogens occurs during continuing plate convergence and requires transient coupling across the plate boundary with strain concentrated in zones of mechanical and thermal weakening such as the magmatic arc and back-arc region. Potential driving mechanisms for coupling include accretion of buoyant lithosphere (terrane accretion), flat-slab subduction, and rapid absolute upper plate motion overriding the downgoing plate. Accretionary orogens have been active throughout Earth history, extending back until at least 3.2 Ga, and potentially earlier, and provide an important constraint on the initiation of horizontal motion of lithospheric plates on Earth. They have been responsible for major growth of the continental lithosphere through the addition of juvenile magmatic products but are also major sites of consumption and reworking of continental crust through time, through sediment subduction and subduction erosion. It is probable that the rates of crustal growth and destruction are roughly equal, implying that net growth since the Archaean is effectively zero. ?? The Geological Society of London 2009.
Frost Growth and Densification in Laminar Flow Over Flat Surfaces
NASA Technical Reports Server (NTRS)
Kandula, Max
2011-01-01
One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.
NASA Technical Reports Server (NTRS)
Lundquist, Eugene E; Stowell, Elbridge Z
1942-01-01
A chart is presented for the values of the coefficient in the formula for the critical compressive stress at which buckling may be expected to occur in flat rectangular plates supported along all edges and, in addition, elastically restrained against rotation along the unloaded edges. The mathematical derivations of the formulas required in the construction of the chart are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1983-11-15
A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.
OUT Success Stories: Solar Hot Water Technology
DOE R&D Accomplishments Database
Clyne, R.
2000-08-01
Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.
UTD analysis of electromagnetic scattering by flat structures. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Sikta, F. A.; Peters, L., Jr.
1981-01-01
The different scattering mechanisms that contribute to the radar cross of finite flat plates were identified and analyzed. The geometrical theory of diffraction, the equivalent current and the corner diffraction are used for this study. A study of the cross polarized field for a monopole mounted on a plate is presented, using novel edge wave mechanism in the analysis. The results are compared with moment method solutions as well as measured data.
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.
2002-07-01
Flat subduction near Peru occurs only where the thickened crust of the Nazca Ridge subducts. Furthermore, the South-America continent shows a westward absolute plate motion. Both the overriding motion of South-America and the subduction of the Nazca Ridge have been proposed to explain the flat slab segment below South Peru. We have conducted a series of numerical model experiments to investigate the relative importance of both mechanisms. Results suggest that the average upper mantle viscosity should be about 3.5 × 1020 Pa s or less and basaltic crust should be able to survive 600 to 800°C ambient temperature before transforming into eclogite to explain the slab geometry below Peru. The effect of the overriding plate is estimated to be as large or twice as large as that of the plateau subduction.
Accuracy of the Kirchoff formula in determining acoustic shielding with the use of a flat plate
NASA Technical Reports Server (NTRS)
Gabrielsen, R. E.; Davis, J. E.
1977-01-01
It has been suggested that if jet engines of aircraft were placed at above the wing instead of below it, the wing would provide a partial shielding of the noise generated by the engines relative to observers on the ground. The shielding effects of an idealized three-dimensional barrier in the presence of an idealized engine noise source was predicted by the Kirchoff formula. Based on the good agreement between experimental measurements and the numerical results of the current study, it was concluded that the Kirchoff approximation provides a good qualitative estimate of the acoustic shielding of a point source by a rectangular flat plate for measurements taken in the far field of the flat plate at frequencies ranging from 1 kHz to 20 kHz. At frequencies greater than 4 kHz the Kirchoff approximation provides accurate quantitative predictions of acoustic shielding.
NASA Technical Reports Server (NTRS)
Stallings, R. L., Jr.
1984-01-01
Longitudinal aerodynamic characteristics of a Sparrow 3 wing control missile model were measured through a range of separation distances relative to a flat plate surface that represented the parent-body configuration. Measurements were obtained with and without two dimensional circular arc protuberances attached to the flat plate surface. The tests were conducted at a Mach number of 2.86 and a Reynolds number per meter of 6.56 million. The behavior of these longitudinal characteristics with varying separation distance in the flow field created by the flat plate and protuberance was generally as would be expected on the basis of flow field boundaries determined from the second order approximation of Friedrich. In general, varying roll angle from 0 deg to 45 deg caused no significant effect on the store separation characteristics.
Sharp acoustic vortex focusing by Fresnel-spiral zone plates
NASA Astrophysics Data System (ADS)
Jiménez, Noé; Romero-García, Vicent; García-Raffi, Luis M.; Camarena, Francisco; Staliunas, Kestutis
2018-05-01
We report the optimal focusing of acoustic vortex beams by using flat lenses based on a Fresnel-spiral diffraction grating. The flat lenses are designed by spiral-shaped Fresnel zone plates composed of one or several arms. The constructive and destructive interferences of the diffracted waves by the spiral grating result in sharp acoustic vortex beams, following the focal laws obtained in analogy with the Fresnel zone plate lenses. In addition, we show that the number of arms determines the topological charge of the vortex, allowing the precise manipulation of the acoustic wave field by flat lenses. The experimental results in the ultrasonic regime show excellent agreement with the theory and full-wave numerical simulations. A comparison with beam focusing by Archimedean spirals also showing vortex focusing is given. The results of this work may have potential applications for particle trapping, ultrasound therapy, imaging, or underwater acoustic transmitters.
The Effect of Turbulence on the Drag of Flat Plates
NASA Technical Reports Server (NTRS)
Schubauer, G B; Dryden, H L
1937-01-01
in determining the effect of turbulence on the forces exerted on bodies in the air stream of a wind tunnel, it is commonly assumed that the indications of the standard Pitot-static tube used to determine the air speed are not dependent on the turbulence. To investigate the truth of this assumption, the drag of a normally exposed flat plate, the difference in pressure between the front and rear of a thin circular disk, the rate of rotation of a vane anemometer, and the pressure developed by a standard Pitot-static tube were measured in an air stream for several conditions of turbulence. The results may be interpreted as indicating that there is no appreciable effect of turbulence on the vane anemometer and the standard pitot-static tube, but that there is small effect on the drag of a flat plate and the pressure difference between front and rear of a disk.
Accurate stratospheric particle size distributions from a flat plate collection surface
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Mackinnon, I. D. R.
1985-01-01
Flat plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere. It is found that the ratio of terrestrial to extraterrestrial material and the nature of the material collected may vary significantly over short time scales. These fluctuations may be related to massive injections of volcanic ash, emissions from solid fuel rockets, or variations in the micrometeoroid flux. The variations in particle number density can be of great importance to the earth's atmospheric radiation balance, and, therefore, its climate. With the objective to assess the number density of solid particles in the stratosphere, an examination has been conducted of all particles exceeding 1 micron in average diameter for a representative suite of particles obtained from a single flat plate collection surface. Attention is given to solid particle size distributions in the stratosphere, and the origin of important stratospheric particle types.
Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity
NASA Technical Reports Server (NTRS)
Takahashi, F.; Katta, V. R.
2001-01-01
Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.
Performance of a low-pressure-ratio centrifugal compressor with four diffuser designs
NASA Technical Reports Server (NTRS)
Klassen, H. A.
1973-01-01
A low-pressure-ratio centrifugal compressor was tested with four different diffuser configurations. One diffuser had airfoil vanes. Two were pipe diffusers. One pipe diffuser had 7.5 deg cone diffusing passages. The other had trumpet-shaped passages designed for linear static-pressure rise from throat to exit. The fourth configuration had flat vanes with elliptical leading edges similar to those of pipe diffusers. The side walls were contoured to produce a linear pressure rise. Peak compressor efficiencies were 0.82 with the airfoil vane and conical pipe diffusers, 0.80 with the trumpet, and 0.74 with the flat-vane design. Surge margin and useful range were greater for the airfoil-vane diffuser than for the other three.
NASA Astrophysics Data System (ADS)
Fetecau, Constatin; Shah, Nehad Ali; Vieru, Dumitru
2017-12-01
The problem of hydromagnetic free convection flow over a moving infinite vertical plate with Newtonian heating, mass diffusion and chemical reaction in the presence of a heat source is completely solved. Radiative and porous effects are not taken into consideration but they can be immediately included by a simple rescaling of Prandtl number and magnetic parameter. Exact general solutions for the dimensionless velocity and concentration fields and the corresponding Sherwood number and skin friction coefficient are determined under integral form in terms of error function or complementary error function of Gauss. They satisfy all imposed initial and boundary conditions and can generate exact solutions for any problem with technical relevance of this type. As an interesting completion, uncommon in the literature, the differential equations which describe the thermal, concentration and momentum boundary layer, as well as the exact expressions for the thicknesses of thermal, concentration or velocity boundary layers were determined. Numerical results have shown that the thermal boundary layer thickness decreases for increasing values of Prandtl number and the concentration boundary layer thickness is decreasing with Schmidt number. Finally, for illustration, three special cases are considered and the influence of physical parameters on some fundamental motions is graphically underlined and discussed. The required time to reach the flow according with post-transient solution (the steady-state), for cosine/sine oscillating concentrations on the boundary is graphically determined. It is found that, the presence of destructive chemical reaction improves this time for increasing values of chemical reaction parameter.
Multilayer based lab-on-a-chip-systems for substance testing
NASA Astrophysics Data System (ADS)
Sonntag, Frank; Grünzner, Stefan; Schmieder, Florian; Busek, Mathias; Klotzbach, Udo; Franke, Volker
2015-03-01
An integrated technology chain for laser-microstructuring and bonding of polymer foils for fast, flexible and low-cost manufacturing of multilayer lab-on-a-chip devices especially for complex cell and tissue culture applications, which provides pulsatile fluid flow within physiological ranges at low media-to-cells ratio, was developed and established. Initially the microfluidic system is constructively divided into individual layers which are formed by separate foils or plates. Based on the functional boundary conditions and the necessary properties of each layer the corresponding foils and plates are chosen. In the third step the foils and plates are laser microstructured and functionalized from both sides. In the fourth and last manufacturing step the multiple plates and foils are joined using thermal diffusion bonding. Membranes for pneumatically driven valves and micropumps where bonded via chemical surface modification. Based on the established lab-on-a-chip platform for perfused cell-based assays, a multilayer microfluidic system with two parallel connected cell culture chambers was successfully implemented.
Transition boiling heat transfer and the film transition regime
NASA Technical Reports Server (NTRS)
Ramilison, J. M.; Lienhard, J. H.
1987-01-01
The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.
Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity
NASA Technical Reports Server (NTRS)
Kandula, M.
2012-01-01
Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.
Line shape of 57Co sources exhibiting self absorption
NASA Astrophysics Data System (ADS)
Spiering, H.; Ksenofontov, V.; Leupold, O.; Kusz, J.; Deák, L.; Németh, Z.; Bogdán, C.; Bottyán, L.; Nagy, D. L.
2016-12-01
The effect of selfabsorption in Mössbauer sources is studied in detail. Spectra were measured using an old 57 C o/ R h source of 74 M B q activity with an original activity of ca. 3.7 G B q and a 0.15 G B q 57 C o/ α - F e source magnetized by an in-plane magnetic field of 0.2 T. The 57 C o/ α - F e source of a thickness of 25 μ was used both from the active and the inactive side giving cause to very different selfabsorption effects. The absorber was a single crystal of ferrous ammonium sulphate hexahydrate (FAS). Its absorption properties were taken over from a detailed study (Bull et al., Hyperfine Interact. 94(1-3), 1; Spiering et al. 2). FAS (space group P21/c) crystallizes as flat plates containing the (overline {2}01) plane. The γ-direction was orthogonal to the crystal plate. The 57 C o atoms of the 57 C o/ R h source were assumed to be homogeneously distributed over a 6 μ thick Rh foil and to follow a one dimensional diffusion profile in the 25 μ Fe-foil. The diffusion length was fitted to 10 μ. The theory follows the Blume-Kistner equations for forward scattering (Blume and Kistner, Phys. Rev. 171, 417, 3) by integrating over the source sampled up to 128 layers.
NASA Astrophysics Data System (ADS)
Ishiyama, T.; Sato, H.; Van Horne, A.
2015-12-01
We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century, ca. 65 % of all intraplate M>6.5 earthquakes have been concentrated in the area above the PHS flat slab. This also suggests that mechanical interaction between the slab and the overriding plate plays an important role in intraplate seismicity over shorter timescales as well.
A new concept of hybrid photovoltaic thermal (PVT) collector with natural circulation
NASA Astrophysics Data System (ADS)
Lu, Longsheng; Wang, Xiaowu; Wang, Shuai; Liu, Xiaokang
2017-07-01
Hybrid photovoltaic thermal (PVT) technology refers to the integration of a photovoltaic module into a conventional solar thermal collector. Generally, the traditional design of a PVT collector has solar cells fixed on the top surface of an absorber in a flat-plate solar thermal collector. In this work, we presented a new concept of water-based PVT collector in which solar cells were directly placed on the bottom surface of its glass cover. A dynamic numerical model of this new PVT is developed and validated by experimental tests. With numerical analysis, it is found that at same covering factor, the electricity conversion efficiency of solar cells of the new PVT exceed that of the traditional PVT by nearly 10% while its thermal efficiency is approximately 30% lower than that of the traditional PVT. When the covering factor changes from 0.05 to 1, the thermal efficiency of the new PVT drops nearly 70%. The thermal efficiency of both the new PVT and the traditional PVT rise up as the water mass in tank increases. Meanwhile, the final water temperature in tank of the traditional PVT collector declines more than 17 °C, whereas that of the new PVT declines less than 6 °C, when the water mass increases from 100 to 300 kg.
Cryogenic Insulation Standard Data and Methodologies Project
NASA Technical Reports Server (NTRS)
Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam
2015-01-01
Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system for applications at sub-ambient to cryogenic temperatures. A growing need for energy efficiency and cryogenic applications is creating a worldwide demand for improved thermal insulation systems for low temperatures. The need for thermal characterization of these systems and materials raises a corresponding need for insulation test standards and thermal data targeted for cryogenic-vacuum applications. Such standards have a strong correlation to energy, transportation, and environment and the advancement of new materials technologies in these areas. In conjunction with this project, two new standards on cryogenic insulation were recently published by ASTM International: C1774 and C740. Following the requirements of NPR 7120.10, Technical Standards for NASA Programs and Projects, the appropriate information in this report can be provided to the NASA Chief Engineer as input for NASA's annual report to NIST, as required by OMB Circular No. A-119, describing NASA's use of voluntary consensus standards and participation in the development of voluntary consensus standards and bodies.
Evidence of lower-mantle slab penetration phases in plate motions.
Goes, Saskia; Capitanio, Fabio A; Morra, Gabriele
2008-02-21
It is well accepted that subduction of the cold lithosphere is a crucial component of the Earth's plate tectonic style of mantle convection. But whether and how subducting plates penetrate into the lower mantle is the subject of continuing debate, which has substantial implications for the chemical and thermal evolution of the mantle. Here we identify lower-mantle slab penetration events by comparing Cenozoic plate motions at the Earth's main subduction zones with motions predicted by fully dynamic models of the upper-mantle phase of subduction, driven solely by downgoing plate density. Whereas subduction of older, intrinsically denser, lithosphere occurs at rates consistent with the model, younger lithosphere (of ages less than about 60 Myr) often subducts up to two times faster, while trench motions are very low. We conclude that the most likely explanation is that older lithosphere, subducting under significant trench retreat, tends to lie down flat above the transition to the high-viscosity lower mantle, whereas younger lithosphere, which is less able to drive trench retreat and deforms more readily, buckles and thickens. Slab thickening enhances buoyancy (volume times density) and thereby Stokes sinking velocity, thus facilitating fast lower-mantle penetration. Such an interpretation is consistent with seismic images of the distribution of subducted material in upper and lower mantle. Thus we identify a direct expression of time-dependent flow between the upper and lower mantle.
NASA Astrophysics Data System (ADS)
Roy Chowdhury, Prabudhya; Vikram, Ajit; Phillips, Ryan K.; Hoorfar, Mina
2016-07-01
The gas diffusion layer (GDL) is a thin porous layer sandwiched between a bipolar plate (BPP) and a catalyst coated membrane in a fuel cell. Besides providing passage for water and gas transport from and to the catalyst layer, it is responsible for electron and heat transfer from and to the BPP. In this paper, a method has been developed to measure the GDL bulk thermal conductivity and the contact resistance at the GDL/BPP interface under inhomogeneous compression occurring in an actual fuel cell assembly. Toray carbon paper GDL TGP-H-060 was tested under a range of compression pressure of 0.34 to 1.71 MPa. The results showed that the thermal contact resistance decreases non-linearly (from 3.8 × 10-4 to 1.17 × 10-4 Km2 W-1) with increasing pressure due to increase in microscopic contact area between the GDL and BPP; while the effective bulk thermal conductivity increases (from 0.56 to 1.42 Wm-1 K-1) with increasing the compression pressure. The thermal contact resistance was found to be greater (by a factor of 1.6-2.8) than the effective bulk thermal resistance for all compression pressure ranges applied here. This measurement technique can be used to identify optimum GDL based on minimum bulk and contact resistances measured under inhomogeneous compression.
NASA Astrophysics Data System (ADS)
Linkimer, L.; Beck, S. L.; Zandt, G.; Alvarado, P. M.; Anderson, M. L.; Gilbert, H. J.; Zhang, H.
2011-12-01
We obtain earthquake locations and a detailed three-dimensional model of the subduction zone velocity structure in west-central Argentina by applying a regional-scale double-difference tomography algorithm to earthquake data recorded by the SIEMBRA (2007-2009) and ESP (2008-2010) broadband seismic networks. In this region, the flat subduction of the Nazca Plate including the Juan Fernandez Ridge is spatially correlated in the overriding South America Plate with a gap in the arc volcanism and the thick-skinned, basement-cored uplifts of the Sierras Pampeanas. Our model shows the subducting Nazca Plate as a mostly continuous band of increased (2-6%) P- and S- wave velocities (Vp and Vs). The lithospheric mantle of the South America Plate appears to be heterogeneous but mostly characterized by Vp of 8.0-8.2 km/s, Vs of 4.5-4.7 km/s, and Vp/Vs ratio of 1.75-1.78, which is consistent with either a depleted lherzolite or harzburgite. We observe a region of higher Vp/Vs ratio (1.78-1.80) that we correlated with up to 10% hydration of mantle peridotites above the flat slab. In addition, we observe localized regions of lower Vp/Vs ratio (1.71-1.73) in the mantle above the westernmost part of the flat slab, suggesting orthopyroxene enrichment. Our velocity observations are consistent with the presence of Paleozoic carbonate rocks in the Precordillera and the differences in composition for the Sierras Pampeanas basement: a more mafic composition for Cuyania Terrane in the west and a more felsic composition for the Pampia Terrane in the east. Additionally, we present new contours for the Wadati-Benioff Zone (WBZ). The top of the WBZ of the Nazca Plate is nearly flat at ~100 km depth approximately within the region of latitude 28-32°S and longitude 70-68.5°W. We determined that WBZ is a single layer of seismicity with thickness of 10-15 km, which may correspond to the dehydration of the subducting oceanic mantle. We found that the flat slab region is wider (~240 km) than the Juan Fernandez Ridge offshore (~100 km), and together with the shape of the slab contours may reflect the response of the geometry of the slab to the southward migration of the buoyant ridge. The non-uniform spatial distribution of the slab seismicity may reflect the variability in the hydration state of the subducting Nazca Plate with greater release of water from the subducted ridge region.
NASA Astrophysics Data System (ADS)
Linkimer, L.; Beck, S. L.; Zandt, G.; Alvarado, P. M.; Anderson, M. L.; Gilbert, H. J.; Zhang, H.
2013-05-01
We obtain earthquake locations and a detailed three-dimensional model of the subduction zone velocity structure in west-central Argentina by applying a regional-scale double-difference tomography algorithm to earthquake data recorded by the SIEMBRA (2007-2009) and ESP (2008-2010) broadband seismic networks. In this region, the flat subduction of the Nazca Plate including the Juan Fernandez Ridge is spatially correlated in the overriding South America Plate with a gap in the arc volcanism and the thick-skinned, basement-cored uplifts of the Sierras Pampeanas. Our model shows the subducting Nazca Plate as a mostly continuous band of increased (2-6%) P- and S- wave velocities (Vp and Vs). The lithospheric mantle of the South America Plate appears to be heterogeneous but mostly characterized by Vp of 8.0-8.2 km/s, Vs of 4.5-4.7 km/s, and Vp/Vs ratio of 1.75-1.78, which is consistent with either a depleted lherzolite or harzburgite. We observe a region of higher Vp/Vs ratio (1.78-1.80) that we correlated with up to 10% hydration of mantle peridotites above the flat slab. In addition, we observe localized regions of lower Vp/Vs ratio (1.71-1.73) in the mantle above the westernmost part of the flat slab, suggesting orthopyroxene enrichment. Our velocity observations are consistent with the presence of Paleozoic carbonate rocks in the Precordillera and the differences in composition for the Sierras Pampeanas basement: a more mafic composition for Cuyania Terrane in the west and a more felsic composition for the Pampia Terrane in the east. Additionally, we present new contours for the Wadati-Benioff Zone (WBZ). The top of the WBZ of the Nazca Plate is nearly flat at ~100 km depth approximately within the region of latitude 28-32°S and longitude 70-68.5°W. We determined that WBZ is a single layer of seismicity with thickness of 10-15 km, which may correspond to the dehydration of the subducting oceanic mantle. We found that the flat slab region is wider (~240 km) than the Juan Fernandez Ridge offshore (~100 km), and together with the shape of the slab contours may reflect the response of the geometry of the slab to the southward migration of the buoyant ridge. The non-uniform spatial distribution of the slab seismicity may reflect the variability in the hydration state of the subducting Nazca Plate with greater release of water from the subducted ridge region.
Investigation of Low-Pressure Turbine Endwall Flows: Simulations and Experiments (Postprint)
2015-01-01
direction) minor semiaxis of 0.0417Cx (0.25in). Measured in the axial direction, the flat plate leading edge was located at x=-3.958Cx (23.75in) where...for public release; distribution unlimited. plate boundary layer is δ∗ = 1.721s/Re0.5s . For s = 4.833Cx, Reδ∗ = 1.721 √ s/CxRe = 1, 200. At this...boundary which was located at x=-1.4Cx. The following approximations hold for a turbulent flat plate boundary layer: δ99 = 0.37s Re0.2s , δ∗ = 0.046s
Are Lithium Ion Cells Intrinsically Safe?
Dubaniewicz, Thomas H.; DuCarme, Joseph P.
2015-01-01
National Institute for Occupational Safety and Health researchers are studying the potential for Li-ion-battery thermal runaway from an internal short circuit in equipment approved as permissible for use in underground coal mines. Researchers used a plastic wedge to induce internal short circuits for thermal runaway susceptibility evaluation purposes, which proved to be a more severe test than the flat plate method for selected Li-ion cells. Researchers conducted cell crush tests within a 20-L chamber filled with 6.5% CH4–air to simulate the mining hazard. Results indicate that LG Chem ICR18650S2 LiCoO2 cells pose a CH4 explosion hazard from a cell internal short circuit. Under specified test conditions, A123 Systems 26650 LiFePO4 cells were safer than the LG Chem ICR18650S2 LiCoO2 cells at a conservative statistical significance level. PMID:26166911
Application of dynamic slip wall modeling to a turbine nozzle guide vane
NASA Astrophysics Data System (ADS)
Bose, Sanjeeb; Talnikar, Chaitanya; Blonigan, Patrick; Wang, Qiqi
2015-11-01
Resolution of near-wall turbulent structures is computational prohibitive necessitating the need for wall-modeled large-eddy simulation approaches. Standard wall models are often based on assumptions of equilibrium boundary layers, which do not necessarily account for the dissimilarity of the momentum and thermal boundary layers. We investigate the use of the dynamic slip wall boundary condition (Bose and Moin, 2014) for the prediction of surface heat transfer on a turbine nozzle guide vane (Arts and de Rouvroit, 1992). The heat transfer coefficient is well predicted by the slip wall model, including capturing the transition to turbulence. The sensitivity of the heat transfer coefficient to the incident turbulence intensity will additionally be discussed. Lastly, the behavior of the thermal and momentum slip lengths will be contrasted between regions where the strong Reynolds analogy is invalid (near transition on the suction side) and an isothermal, zero pressure gradient flat plate boundary layer (Wu and Moin, 2010).
Aerothermal tests of quilted dome models on a flat plate at a Mach number of 6.5
NASA Technical Reports Server (NTRS)
Glass, Christopher E.; Hunt, L. Roane
1988-01-01
Aerothermal tests were conducted in the NASA Langley 8 Foot High Temperature Tunnel (8'HTT) at a Mach number of 6.5 on simulated arrays of thermally bowed metallic thermal protection system (TPS) tiles at an angle of attack of 5 deg. Detailed surface pressures and heating rates were obtained for arrays aligned with the flow and skewed 45 deg diagonally to the flow with nominal bowed heights of 0.1, 0.2, and 0.4 inch submerged in both laminar and turbulent boundary layers. Aerothermal tests were made at a nominal total temperature of 3300 R, a total pressure of 400 psia, a total enthalpy of 950 Btu/lbm, a dynamic pressure of 2.7 psi, and a unit Reynolds number of 400,000 per foot. The experimental results form a data base that can be used to help protect aerothermal load increases from bowed arrays of TPS tiles.
NASA Technical Reports Server (NTRS)
Keller, C. W.; Cunnington, G. R.; Glassford, A. P.
1974-01-01
Experimental and analytical studies were conducted in order to extend previous knowledge of the thermal performance and gas evacuation characteristics of three selected multilayer insulation (MLI) composites. Flat plate calorimeter heat flux measurements were obtained for 20- and 80- shield specimens using three representative layer densities over boundary temperatures ranging from 39 K (70 R) to 389 K (700 R). Laboratory gas evacuation tests were performed on representative specimens of each MLI composite after initially purging them with helium, nitrogen, or argon gases. In these tests, the specimens were maintained at temperatures between 128 K (230 R) and 300 K (540 R). Based on the results of the laboratory-scale tests, a composite MLI system consisting of 112 unperforated, double-aluminized Mylar reflective shields and 113 water preconditioned silk net spacer pairs was fabricated and installed on a 1.22-m-(4-ft-) diameter calorimeter tank.
Controlled thermal expansion printed wiring boards based on liquid crystal polymer dielectrics
NASA Technical Reports Server (NTRS)
Knoll, Thomas E.; Blizard, Kent; Jayaraj, K.; Rubin, Leslie S.
1994-01-01
Dielectric materials based on innovative Liquid Crystal Polymers (LCP's) have been used to fabricate surface mount printed wiring boards (PWB's) with a coefficient of thermal expansion matched to leadless ceramic chip carriers. Proprietary and patented polymer processing technology has resulted in self reinforcing material with balanced in-plane mechanical properties. In addition, LCP's possess excellent electrical properties, including a low dielectric constant (less than 2.9) and very low moisture absorption (less than 0.02%). LCP-based multilayer boards processed with conventional drilling and plating processes show improved performance over other materials because they eliminate the surface flatness problems of glass or aramid reinforcements. Laser drilling of blind vias in the LCP dielectric provides a very high density for use in direct chip attach and area array packages. The material is ideally suited for MCM-L and PCMCIA applications fabricated with very thin dielectric layers of the liquid crystal polymer.
RERTR-10 Irradiation Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. M. Perez
2011-05-01
The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-10 was designed to further test the effectiveness of modified fuel/clad interfaces in monolithic fuel plates. The experiment was conducted in two campaigns: RERTR-10A and RERTR-10B. The fuel plates tested in RERTR-10A were all fabricated by Hot Isostatic Pressing (HIP) and were designed to evaluate the effect of various Si levels in the interlayer and the thickness of the Zr interlayer (0.001”) using 0.010” and 0.020” nominal foil thicknesses. The fuel plates in RERTR-10B were fabricated by Friction Bonding (FB) with two different thickness Si layers and Nb and Zrmore » diffusion barriers.1 The following report summarizes the life of the RERTR-10A/B experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.« less
Recommendations for the performance rating of flat plate terrestrial photovoltaic solar panels
NASA Technical Reports Server (NTRS)
Treble, F. C.
1976-01-01
A review of recommendations for standardizing the performance rating of flat plate terrestrial solar panels is given to develop an international standard code of practice for performance rating. Required data to characterize the performance of a solar panel are listed. Other items discussed are: (1) basic measurement procedures; (2) performance measurement in natural sunlight and simulated sunlight; (3) standard solar cells; (4) the normal incidence method; (5) global method and (6) definition of peak power.
Qualification testing of flat-plate photovoltaic modules
NASA Technical Reports Server (NTRS)
Hoffman, A. R.; Griffith, J. S.; Ross, R. G., Jr.
1982-01-01
The placement of photovoltaic modules in various applications, in climates and locations throughout the world, results in different degrees and combinations of environmental and electrical stress. Early detection of module reliability deficiencies via laboratory testing is necessary for achieving long, satisfactory field service. This overview paper describes qualification testing techniques being used in the US Department of Energy's flat-plate terrestrial photovoltaic development program in terms of their significance, rationale for specified levels and durations, and test results.
NASA Technical Reports Server (NTRS)
Simon, F.
1975-01-01
A Soltex flat plate solar collector was tested with a solar simulator for inlet temperatures of 77 to 201 F, flux levels of 240 and 350 Btu/hr-sq ft, a collant flow rate of 10.5 lb/hr sq ft, and incident angles of 0 deg, 41.5 deg, and 65.2 deg. Collector performance is correlated in terms of inlet temperature, flux level, and incident angle.
Progress in hypersonic turbulence modeling
NASA Technical Reports Server (NTRS)
Wilcox, David C.
1991-01-01
A compressibility modification is developed for k-omega (Wilcox, 1988) and k-epsilon (Jones and Launder, 1972) models, that is similar to those of Sarkar et al. (1989) and Zeman (1990). Results of the perturbation solution for the compressible wall layer demonstrate why the Sarkar and Zeman terms yield inaccurate skin friction for the flat-plate boundary layer. A new compressibility term is developed which permits accurate predictions of the compressible mixing layer, flat-plate boundary layer, and shock separated flows.
Skin friction and heat transfer correlations for high-speed low-density flow past a flat plate
NASA Technical Reports Server (NTRS)
Woronowicz, Michael S.; Baganoff, Donald
1991-01-01
The independent and dependent variables associated with drag and heat transfer to a flat plate at zero incidence in high-speed, rarefied flow are analyzed anew to reflect the importance of kinetic effects occurring near the plate surface on energy and momentum transfer, rather than following arguments normally used to describe continuum, higher density flowfields. A new parameter, the wall Knudsen number Knx,w, based on an estimate of the mean free path length of molecules having just interacted with the surface of the plate, is introduced and used to correlate published drag and heat transfer data. The new parameter is shown to provide better correlation than either the viscous interaction parameter X or the widely-used slip parameter Voo for drag and heat transfer data over a wide range of Mach numbers, Reynolds numbers, and plate-to-freestream stagnation temperature ratios.
Bistatic radar cross section of a perfectly conducting rhombus-shaped flat plate
NASA Astrophysics Data System (ADS)
Fenn, Alan J.
1990-05-01
The bistatic radar cross section of a perfectly conducting flat plate that has a rhombus shape (equilateral parallelogram) is investigated. The Ohio State University electromagnetic surface patch code (ESP version 4) is used to compute the theoretical bistatic radar cross section of a 35- x 27-in rhombus plate at 1.3 GHz over the bistatic angles 15 deg to 142 deg. The ESP-4 computer code is a method of moments FORTRAN-77 program which can analyze general configurations of plates and wires. This code has been installed and modified at Lincoln Laboratory on a SUN 3 computer network. Details of the code modifications are described. Comparisons of the method of moments simulations and measurements of the rhombus plate are made. It is shown that the ESP-4 computer code provides a high degree of accuracy in the calculation of copolarized and cross-polarized bistatic radar cross section patterns.
Resonant Interaction of a Rectangular Jet with a Flat-Plate
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Fagan, A. F.; Clem, M. M.; Brown, C. A.
2014-01-01
A resonant interaction between a large aspect ratio rectangular jet and a flat-plate is addressed in this experimental study. The plate is placed parallel to but away from the direct path of the jet. At high subsonic conditions and for certain relative locations of the plate, the resonance accompanied by an audible tone is encountered. The trends of the tone frequency variation exhibit some similarities to, but also marked differences from, corresponding trends of the well-known edge-tone phenomenon. Under the resonant condition flow visualization indicates a periodic flapping motion of the jet column. Phase-averaged Mach number data obtained near the plate's trailing edge illustrate that the jet cross-section goes through large contortions within the period of the tone. Farther downstream a clear 'axis switching' takes place. These results suggest that the assumption of two-dimensionality should be viewed with caution in any analysis of the flow.
Bremicker, K; Gosch, D; Kahn, T; Borte, G
2015-11-01
Chest radiography is the most common diagnostic modality in intensive care units with new mobile flat-panels gaining more attention and availability in addition to the already used storage phosphor plates. Comparison of the image quality of mobile flat-panels and needle-image plate storage phosphor system in terms of bedside chest radiography. Retrospective analysis of 84 bedside chest radiographs of 42 intensive care patients (20 women, 22 men, average age: 65 years). All images were acquired during daily routine. For each patient, two images were analyzed, one from each system mentioned above. Two blinded radiologists evaluated the image quality based on ten criteria (e.g., diaphragm, heart contour, tracheal bifurcation, thoracic spine, lung structure, consolidations, foreign material, and overall impression) using a 5-point visibility scale (1 = excellent, 5 = not usable). There was no significant difference between the image quality of the two systems (p < 0.05). Overall some anatomical structures such as the diaphragm, heart, pulmonary consolidations and foreign material were considered of higher diagnostic quality compared to others, e.g., tracheal bifurcation and thoracic spine. Mobile flat-panels achieve an image quality which is as good as those of needle-image plate storage phosphor systems. In addition, they allow immediate evaluation of the image quality but in return are much more expensive in terms of purchase and maintenance.
NASA Technical Reports Server (NTRS)
Woods, Jody L.
2015-01-01
This paper describes work accomplished to predict the service life of a flexure joint design which is a component of a diffuser duct in the A3 Test Stand, an altitude simulation rocket engine test facility at NASA's Stennis Space Center. The duct has two pressure shells separated by cooling water passages and connected by stiffening ribs and flexure joints. Rocket exhaust flows within the duct and heats the inner pressure shell while the outer pressure shell remains at ambient temperature. The flexure joints allow for differential thermal expansion of the inner and outer pressure shells and are subject to in-service loading by this thermal expansion along with water pressure in the cooling water passage, atmospheric pressure outside the duct, near vacuum conditions within the duct, and vibrational loads from operation of the facility and rocket engine. Figure 1 shows a schematic axisymmetric cross section of the diffuser pressure shells and flexure joints with a zoomed in view of the flexure joint. The flexure joints are expected to eventually fail by fatigue cracking leading to leaks from the cooling water passages to the outside. The zoomed in view in Figure 1 indicates where cracking is expected to occur, namely through a weld bead between two plates of SA-516 Grade 70 steel. This weld bead acts as the fulcrum of the flexure joint and it is clear from inspection of the geometry and loading represented in the zoomed in portion of Figure 1 that inherent in the design there is a severe notch formed between the flexure plate, weld bead, and stiffening ring that will be the site of crack initiation and location from which the crack grows to the outer surface of the weld bead.
Flow past a Flat Plate with a Vortex/sink Combination
NASA Technical Reports Server (NTRS)
Mourtos, N. J.
1984-01-01
An attempt was made to model the so called leading edge vortex which forms over the leading edge of delta wings at high angles of attack. A simplified model was considered, namely that of a two-dimensional, inviscid, incompressible steady flow around a flat plate at an angle of attack with a stationary vortex detached on top, as well as a sink to simulate the strong spanwise flow. The results appear to agree qualitatively with experiments. A comparison was also made between the lift and the drag of this model and the corresponding results for two classical solutions: (1) that of totally attached flow over the plate with the Kutta condition satisfied at the trailing edge only: and (2) the Helmholtz solution of totally separated flow over the plate.
Acoustic radiation damping of flat rectangular plates subjected to subsonic flows
NASA Technical Reports Server (NTRS)
Lyle, Karen Heitman
1993-01-01
The acoustic radiation damping for various isotropic and laminated composite plates and semi-infinite strips subjected to a uniform, subsonic and steady flow has been predicted. The predictions are based on the linear vibration of a flat plate. The fluid loading is characterized as the perturbation pressure derived from the linearized Bernoulli and continuity equations. Parameters varied in the analysis include Mach number, mode number and plate size, aspect ratio and mass. The predictions are compared with existing theoretical results and experimental data. The analytical results show that the fluid loading can significantly affect realistic plate responses. Generally, graphite/epoxy and carbon/carbon plates have higher acoustic radiation damping values than similar aluminum plates, except near plate divergence conditions resulting from aeroelastic instability. Universal curves are presented where the acoustic radiation damping normalized by the mass ratio is a linear function of the reduced frequency. A separate curve is required for each Mach number and plate aspect ratio. In addition, acoustic radiation damping values can be greater than or equal to the structural component of the modal critical damping ratio (assumed as 0.01) for the higher subsonic Mach numbers. New experimental data were acquired for comparison with the analytical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
< 9 A < 2 6 < 7 4 8 9 6 2 6 equalizing vent valves on air locks 2, 4, and 5 was completed. An evaluation of the failed main coolant pump No. 1-80-F-737 was completed. The design for installing combination ball check and manual stop valves on the boiler water level sight glasses, to prevent the escape of steam should a defective sight glass develop, was completed. The main coolant pumps No. 80 and No. 79 were modified by increasing the radial clearance of the impeller wear ring and by removing the upper labyrinth ring. A designmore » for relocating the cooling water flow orifice 17-J4-17 was completed. Metallurgy: Preliminary data from the Bett 69-1 in-pile thermal conductivity capsules indicate that the thermal conductivity of as-sintered ZrO/sub 2/ 34 wt.% UO/sub 2/ appears to decrease from an initial value of about 1.6 Btu/hr-ft- deg F to about 0.7 Btu/hr-ft- deg F after 17 days irradiation in an estimated perturbed flux of 4 x 10/sup 13/. The thermal conductivities of UO/sub 2/ and BeO 51 wt.% UO/sub 2/ fuel remained unchanged during this time. Examination of the two failed X-3-1 fuel plates and the two failed CR-V-m fuel plates showed that a definite burnup limitation exists for bulk UO/sub 2/i of about 16 x 10/sup 20/ to 21.5 x 10/sup 20/ fissions/cc at which point the fuel increases in volume about 4- -5%. Irradiation of both fine and coarse dis-persions of 28 wt.% UO/sub 2/in BeO to exposures of about 11 x 10/sup 20/ fissions/cc shows this material has very poor dimensional stabllity and poor fission gas retention ability. The fine particles dispersion showed approximately 4.8 times the thickness increase as did the coarse particles. Interim examination of a bulk B/sub 4/ burnable poison plate irradiated in the HB-1 loop to about 60 at.% B/sup 10/ burnup showed a 17% increase in plate thickness. The technical feasibility of fabricating blanket receptacles with full length fuel channels and an integral cover plate by form rolling was established. Hack-pressure-bonding appears to be a suitable means of incorporating void volume in fuel compartments of oxide plates. High density (99% T.D.) and improved microstructure of B/sub 4/C-SiC burnable poisons are achieved when small (2 micron) B/sub 4/C particle size powder is used ia hot pressing compacts. Measurements of the self-diffusion coefficients of uranium in UO/sub 2/ by the method of surface activity decrease were completed. Experiments on the diffusion of Xe/sup 133/ in Core 2--type UO/sup 2/ fuel platelets were completed. Diffusion anaeals carried out at 1000 deg C on samples from the X-3-1 and the 14-28 irradiation tests show that the apparent diffusion coefficient for Kr/sup 85/ incresses considerably with burnup. An average activation energy for thoron emanation in UO/sub 2/ was estimated to be 44 kcal/mole. An initial experiment on the release of helium from slightly irradiated B/sub 4/C at 900 deg C resulted in a diffusion coefficient for helium of 3.5 x 10/sup -8/ Physics: Calculatad values for seed-blanket power sharing as a function of PWR-1 Seed 1 life were compared with measured data obtained from thermal instrumentation at Shippingport. Two-dimensional depletion studies in the PWR-2 "composite cell" geometry were completed for seed assembly configurations having different radial fuel zoning. An eighth core representation is being employed for a two- dimensional depletion calculation of PWR-2. An analysis of the effect on the axial power distribution of the nonuniform temperature distribution in an 8 ft PWR-2 core loaded with 295 kg of U/sup 235/ indicated that local variations in power density of as much as 15% may occur, relative to the distribution that would exist if the axial temperature distribution were uniform. A technique was developed which makes possible an approximately correct description of the neutron capture rate within small rectangular boron wafers in diffusion theory calculations. Seed peaking factors measured in a five-cluster slab of PWR-2 mock- up materials were measured and compared with calculated peaking factors obtained using the nuclear« less
NASA Astrophysics Data System (ADS)
Wang, Chunbai; Mitra, Ambar K.
2016-01-01
Any boundary surface evolving in viscous fluid is driven with surface capillary currents. By step function defined for the fluid-structure interface, surface currents are found near a flat wall in a logarithmic form. The general flat-plate boundary layer is demonstrated through the interface kinematics. The dynamics analysis elucidates the relationship of the surface currents with the adhering region as well as the no-slip boundary condition. The wall skin friction coefficient, displacement thickness, and the logarithmic velocity-defect law of the smooth flat-plate boundary-layer flow are derived with the advent of the forced evolving boundary method. This fundamental theory has wide applications in applied science and engineering.
Sentelhas, Paulo C; Gillespie, Terry J; Santos, Eduardo A
2007-03-01
In general, leaf wetness duration (LWD) is a key parameter influencing plant disease epidemiology, since it provides the free water required by pathogens to infect foliar tissue. LWD is used as an input in many disease warning systems, which help growers to decide the best time to spray their crops against diseases. Since there is no observation standard either for sensor or exposure, LWD measurement is often problematic. To assess the performance of electronic sensors, LWD measurements obtained with painted cylindrical and flat plate sensors were compared under different field conditions in Elora, Ontario, Canada, and in Piracicaba, São Paulo, Brazil. The sensors were tested in four different crop environments--mowed turfgrass, maize, soybean, and tomatoes--during the summer of 2003 and 2004 in Elora and during the winter of 2005 in Piracicaba. Flat plate sensors were deployed facing north and at 45 degrees to horizontal, and cylindrical sensors were deployed horizontally. At the turfgrass site, both sensors were installed 30 cm above the ground, while at the crop fields, the sensors were installed at the top and inside the canopy (except for maize, with a sensor only at the top). Considering the flat plate sensor as a reference (Sentelhas et al. Operational exposure of leaf wetness sensors. Agric For Meteorol 126:59-72, 2004a), the results in the more humid climate at Elora showed that the cylindrical sensor overestimated LWD by 1.1-4.2 h, depending on the crop and canopy position. The main cause of the overestimation was the accumulation of big water drops along the bottom of the cylindrical sensors, which required much more energy and, consequently, time to evaporate. The overall difference between sensors when evaporating wetness formed during the night was around 1.6 h. Cylindrical sensors also detected wetness earlier than did flat plates--around 0.6 h. Agreement between plate and cylinder sensors was much better in the drier climate at Piracicaba. These results allow us to caution that cylindrical sensors may overestimate wetness for operational LWD measurements in humid climates and that the effect of other protocols for angling or positioning this sensor should be investigated for different crops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, George Thompson III; Hull, Lawrence Mark; Livescu, Veronica
Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress,more » the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research to quantify the combined effects of sweeping-wave loading with increasingly complex sample geometries on the shockwave response of materials is clearly crucial to providing the basis for developing and thereafter validation of predictive modeling capability.« less
Bovine dedifferentiated adipose tissue (DFAT) cells
Wei, Shengjuan; Du, Min; Jiang, Zhihua; Duarte, Marcio S; Fernyhough-Culver, Melinda; Albrecht, Elke; Will, Katja; Zan, Linsen; Hausman, Gary J; Elabd, Elham M Youssef; Bergen, Werner G; Basu, Urmila; Dodson, Michael V
2013-01-01
Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid-assimilating adipocytes in the DMI media, with distinct lipid-droplets in the cytoplasm and with no observable lipid-free vesicles inside. Moreover, a high confluence level promoted the redifferentiation efficiency of DFAT cells. Wagyu IMF dedifferentiated DFAT cells exhibited unique adipogenesis modes in vitro, revealing a useful cell model for studying adipogenesis and lipid metabolism. PMID:23991361
Optical processing furnace with quartz muffle and diffuser plate
Sopori, Bhushan L.
1995-01-01
An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.
Large Angle Unsteady Aerodynamic Theory of a Flat Plate
NASA Astrophysics Data System (ADS)
Manar, Field; Jones, Anya
2016-11-01
A purely analytical approach is taken for the evaluation of the unsteady loads on a flat plate. This allows for an extremely low cost theoretical prediction of the plate loads in the style of Wagner and Theodorsen, without making the assumption of small angle of attack or small disturbance flow. The forces and moments are evaluated using the time rate of change of fluid momentum, expressed as an integral of the vorticity field. The flow is taken as inviscid and incompressible with isolated vorticity bound to the plate and in the shed wake. The bound vorticity distribution on the plate is solved exactly using conformal mapping of the plate to a cylinder. In keeping with the original assumption of Wagner, the wake vorticity is assumed to remain stationary in an inertial reference frame and convection is disregarded. Formulation in this manner allows for a closed form solution of Wagner's problem valid at all angles of attack. Separation from the leading edge of the plate can also be included to further increase the fidelity of the model at high angles.
Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane
NASA Technical Reports Server (NTRS)
Laicer, Castro S. T. (Inventor); Mittelsteadt, Cortney K. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)
2017-01-01
An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.
Verification of the proteus two-dimensional Navier-Stokes code for flat plate and pipe flows
NASA Technical Reports Server (NTRS)
Conley, Julianne M.; Zeman, Patrick L.
1991-01-01
The Proteus Navier-Stokes Code is evaluated for 2-D/axisymmetric, viscous, incompressible, internal, and external flows. The particular cases to be discussed are laminar and turbulent flows over a flat plate, laminar and turbulent developing pipe flows, and turbulent pipe flow with swirl. Results are compared with exact solutions, empirical correlations, and experimental data. A detailed description of the code set-up, including boundary conditions, initial conditions, grid size, and grid packing is given for each case.
2015-09-28
release. Rotary encoder Brushless servo motor Wind tunnel bottom wall Stainless steel shaft Shaft coupling Wind tunnel top wall Titanium flat plate...illustrating the flat plate mounted to a virtual spring-damper system in the wind tunnel test section. 2 DISTRIBUTION A: Distribution approved for...non-dimensional ratios. For example the non-dimensional stiffness, k∗ = 2k/(ρU2∞c 2h), can be kept constant even if the wind speed, U∞, chord, c, and
Effect of Dielectric Barrier Discharge Plasma Actuators on Non-equilibrium Hypersonic Flows
2014-10-28
goes into the kinetic energy of the electrons rather than heating of the surrounding gas.24 The examples of these include corona discharge and micro...Moreau, G. Artana, and G. Touchard, “Influence of a DC corona discharge on the airflow along an inclined flat plate,” J. Electrostat. 51–52, 300 306...10), 2554 2564 (2007). 42E. Moreau, G. Artana, and G. Touchard, “Surface corona discharge along an insulating flat plate in air applied to
Visualization of leading edge vortices on a series of flat plate delta wings
NASA Technical Reports Server (NTRS)
Payne, Francis M.; Ng, T. Terry; Nelson, Robert C.
1991-01-01
A summary of flow visualization data obtained as part of NASA Grant NAG2-258 is presented. During the course of this study, many still and high speed motion pictures were taken of the leading edge vortices on a series of flat plate delta wings at varying angles of attack. The purpose is to present a systematic collection of photographs showing the state of vortices as a function of the angle of attack for the four models tested.
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
Heat transfer and fluid mechanics measurements in transitional boundary layer flows
NASA Technical Reports Server (NTRS)
Wang, T.; Simon, T. W.; Buddhavarapu, J.
1985-01-01
Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68% and 2.0% free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.
A computational study on the influence of insect wing geometry on bee flight mechanics
Feaster, Jeffrey; Bayandor, Javid
2017-01-01
ABSTRACT Two-dimensional computational fluid dynamics (CFD) is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee (Bombus pensylvanicus) wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics. PMID:29061734
A computational study on the influence of insect wing geometry on bee flight mechanics.
Feaster, Jeffrey; Battaglia, Francine; Bayandor, Javid
2017-12-15
Two-dimensional computational fluid dynamics (CFD) is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee ( Bombus pensylvanicus ) wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics. © 2017. Published by The Company of Biologists Ltd.
Experimental investigation on IXV TPS interface effects in Plasmatron
NASA Astrophysics Data System (ADS)
Ceglia, Giuseppe; Trifoni, Eduardo; Gouriet, Jean-Baptiste; Chazot, Olivier; Mareschi, Vincenzo; Rufolo, Giuseppe; Tumino, Giorgio
2016-06-01
An experimental investigation related to the thermal protection system (TPS) interfaces of the intermediate experimental vehicle has been carried out in the Plasmatron facility at the von Karman Institute for fluid dynamics. The objective of this test campaign is to qualify the thermal behaviours of two different TPS interfaces under flight representative conditions in terms of heat flux and integral heat load ( 180 kW/m2 for 700 s). Three test samples are tested in off-stagnation configuration installed on an available flat plate holder under the same test conditions. The first junction is composed of an upstream ceramic matrix composite (CMC) plate and an ablative P50 cork composite block separated by a gap of 2 mm. The second one is made of an upstream P50 block and a downstream ablative SV2A silicon elastomer block with silicon-based filler in between. A sample composed of P50 material is tested in order to obtain reference results without TPS interface effect. The overheating at the CMC-P50 interface due to the jump of the catalytic properties of the materials, and the recession/swelling behaviour of the P50-SV2A interface are under investigation. All the test samples withstand relatively well the imposed heat flux for the test duration. As expected, both the ablative materials undergo a thermal degradation. The P50 exhibits the formation of a porous char layer and its recession; on the other hand, the SV2A swells and forms a fragile char layer.
Directional emittance surface measurement system and process
NASA Technical Reports Server (NTRS)
Puram, Chith K. (Inventor); Daryabeigi, Kamran (Inventor); Wright, Robert (Inventor); Alderfer, David W. (Inventor)
1994-01-01
Apparatus and process for measuring the variation of directional emittance of surfaces at various temperatures using a radiometric infrared imaging system. A surface test sample is coated onto a copper target plate provided with selective heating within the desired incremental temperature range to be tested and positioned onto a precision rotator to present selected inclination angles of the sample relative to the fixed positioned and optically aligned infrared imager. A thermal insulator holder maintains the target plate on the precision rotator. A screen display of the temperature obtained by the infrared imager, and inclination readings are provided with computer calculations of directional emittance being performed automatically according to equations provided to convert selected incremental target temperatures and inclination angles to relative target directional emittance values. The directional emittance of flat black lacquer and an epoxy resin measurements obtained are in agreement with the predictions of the electromagnetic theory and with directional emittance data inferred from directional reflectance measurements made on a spectrophotometer.
Global geodynamic models constrained by tectonic reconstructions including plate deformation
NASA Astrophysics Data System (ADS)
Gurnis, M.; Flament, N.; Spasojevic, S.; Williams, S.; Seton, M.; Müller, R. D.
2011-12-01
In order to investigate the effect of mantle flow on the Earth's surface, imposing the kinematics predicted by plate reconstructions in global convection models has become common practice. Such models are valuable to investigate the effect of the mantle flow beneath the lithosphere on surface topography. Changes in surface topography due to lithospheric deformation are so far not part of top-down tectonic models in which plates are treated as rigid in traditional tectonic reconstructions. We introduce a new generation of geodynamic models that are based on tectonic reconstructions with deforming plates at both passive and convergent margins. These models allow us to investigate the relationships between lithospheric deformation and mantle flow, and their combined effects on surface topography. In traditional tectonic reconstructions, continents are represented as rigid blocks that either overlap or are separated by gaps in full-fit reconstructions. Reconstructions that include a global network of topological plate polygons avoid continental overlaps and gaps, but velocities are still derived on the basis of the Euler poles for rigid blocks. To resolve these issues, we developed a series of deforming plate models using the open source plate modeling software GPlates. For a given area, our methodology requires the relative motions between major rigid continental blocks, and a definition of the regions in which continental lithosphere deformed between these blocks. We use geophysical and geological data to define the limit between rigid and deforming areas, and the deformation history of non-rigid blocks. The velocity field predicted by these reconstructions is then used as a time-dependent surface boundary condition in global 3-D geodynamic models. To incorporate the continental lithosphere in our global models, we embed compositionally distinct crust and continental lithosphere within the thermal lithosphere. We define three isostatic columns of different thickness and buoyancy based on the tectonothermal age of the continents: Archean, Proterozoic and Phanerozoic. In the fourth isostatic column, the oceans, the thickness of the thermal lithosphere is assimilated using the half-space cooling model. We also use this capacity to define the thickness of the thermal lithosphere for different continental types, with the exception of the deforming areas that are fully dynamic. Finally, we introduce a new slab assimilation method in which the thermal structure of the slab, derived analytically, is progressively assimilated in the upper mantle into the dynamic models. This method not only improves the continuity of slabs in our models, but it also allows us to model flat slab segments that are particularly relevant for dynamic topography. This new generation of models allows us to analyse the contributions of continental deformation and of mantle flow to surface topography. We compare our results to geological and geophysical data, including stratigraphy, paleo-altimetry, paleo-environment and mantle tomography. This allows us to place constraints on key model parameters and to refine our knowledge of plate-mantle interactions during continental deformation.
Modelling of hydrothermal instabilities in a capillary bridge
NASA Astrophysics Data System (ADS)
Pillai, Dipin; Wray, Alex; Narayanan, Ranga
2017-11-01
We examine the behaviour of a capillary bridge/boat suspended between two heated plates. Such systems are common in many physical situations such as crystal growth processes. However, as shown experimentally by Messmer et al., the system exhibits a complex array of behaviours driven by a Marangoni instability. While qualitative arguments have been advanced for these behaviours in the past, we develop a complete low-order model to elucidate the mechanisms at work. The model takes into account viscosity, surface tension, Marangoni stress and inertia as well as a full convection-diffusion equation for the thermal effects. Detailed comparisons of flow fields and thermal distributions are made with experiments. NASA NNX17AL27G and NSF 0968313.
Ion-plasma gun for ion-milling machine
Kaminsky, Manfred S.; Campana, Jr., Thomas J.
1976-01-01
An ion gun includes an elongated electrode with a hollow end portion closed by a perforated end plate. The end plate is positioned parallel to a perforated flat electrode of opposite electrical polarity. An insulated sleeve encompasses the elongated electrode and extends outwardly from the perforated end towards the flat electrode. The sleeve length is separated into two portions of different materials. The first is formed of a high-temperature material that extends over the hollow portion of the elongated electrode where the arc is initiated by a point source electrode. The second sleeve portion extending over the remainder of the elongated electrode is of a resilient material for enhanced seal-forming ability and retention of plasma gas. Perforations are arranged in the flat electrode in a mutually opposing triangular pattern to project a plasma beam having a generally flat current profile towards a target requiring precision milling.
Laminar natural convection from a vertical plate with a step change in wall temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.; Yovanovich, M.M.
1991-05-01
The study of natural convection heat transfer from a vertical flat plate in a quiescent medium has attracted a great deal of interest from many investigators in the past few decades. The plate with various thermal conditions that allow similarity transformations as well as those that are continuous and well defined have been examined. However, practical problems often involve wall conditions that are arbitrary and unknown a priori. To understand and solve problems involving general nonsimilar conditions at the wall, it is useful to investigate problems subjected to a step change in wall temperature. The problems impose a mathematical singularitymore » and severe nonsimilar conditions at the wall. In this paper, a new analytical model that can deal with a discontinuous wall temperature variation is presented. The method results in a set of approximate solutions for temperature and velocity distributions. The validity and accuracy of the model is demonstrated by comparisons with the results of the aforementioned investigators. The agreement is excellent and the results obtained with the solution of this work are remarkably close to existing numerical data of Hayday et al. and the perturbation series solution of Kao.« less
78 FR 25666 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
...) sensor blockage. The existing AD also provides for optional terminating action for the AFM revision, which involves replacing AoA sensor conic plates with AoA sensor flat plates. Since we issued that AD, we have determined that the replacement of AoA sensor conic plates is necessary to address the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
.... On its domestic sales, Benteler would be able to choose the duty rate during customs entry procedures...: Metal stampings (crash cans, reinforcement plates, flange plates); bumper beams; toe hooks; cross member shells; side tubes; steel blanks; brackets; gussets; closing plates; castings of aluminum; flat-rolled...
COATING URANIUM FROM CARBONYLS
Gurinsky, D.H.; Storrs, S.S.
1959-07-14
Methods are described for making adherent corrosion resistant coatings on uranium metal. According to the invention, the uranium metal is heated in the presence of an organometallic compound such as the carbonyls of nickel, molybdenum, chromium, niobium, and tungsten at a temperature sufficient to decompose the metal carbonyl and dry plate the resultant free metal on the surface of the uranium metal body. The metal coated body is then further heated at a higher temperature to thermally diffuse the coating metal within the uranium bcdy.
Mixing, Combustion, and Other Interface Dominated Flows; Paragraphs 3.2.1 A, B, C and 3.2.2 A
2014-04-09
Condensed Matter Physics , (12 2010): 43401. doi: H. Lim, Y. Yu, J. Glimm, X. L. Li, D.H. Sharp. Subgrid Models for Mass and Thermal Diffusion in...zone and a series of radial cracks in solid plates hit by high velocity projectiles). • Only 2D dimensional models • Serial codes for running on single ...exter- nal parallel packages TAO and Global Arrays, developed within DOE high performance computing initiatives. A Schwartz-type overlapping domain
Enabling fast charging – A battery technology gap assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; and thermal management and pack designs to accommodate the higher operating voltage.
Enabling fast charging – A battery technology gap assessment
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; ...
2017-10-23
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; and thermal management and pack designs to accommodate the higher operating voltage.
Plate tectonics hiati as the cause of global glaciations: 2. The late Proterozoic 'Snowball Earth'
NASA Astrophysics Data System (ADS)
Osmaston, M. F.
2003-04-01
A fundamental reappraisal of the mechanisms that drive plate tectonics has yielded the remarkable conclusion that, for at least the past 130 Ma, the principal agent has not been ridge-push or slab-pull but a CW-directed torque (probably of electromagnetic origin at the CMB) reaching the deep (>600 km, e.g.[1]) tectospheric keel of the Antarctica craton. Major changes in spreading direction marked both ends of the 122--85 Ma Cretaceous Superchron and started by forming the Ontong Java Plateau. Action of MORs as gearlike linkages has driven Africa and India CCW since Gondwana breakup and continues to drive the Pacific plate CCW. In the Arctic there is now no cratonic keel to pick up any corresponding polar torque, so northern hemisphere plate tectonics is far less active. The thesis of this contribution is that in the Neoproterozoic the lack of cratons at high latitudes would have deprived plate tectonics of this motivation, causing MORs to die (see below) and a major fall in sea-level, leading to global glaciation as outlined in Part 1 for the Huronian events. Like that seen during that first hiatus, dyke-swarm volcanism could have arisen from thermal shrinkage of the global lithosphere, providing CO2 and ash-covering that interrrupted glacial episodes. In oceanic settings this volcanism would have lowered pH and supplied Fe2+ for shallow bio-oxygenic action to deposit as BIF. My multifacet studies of the subduction process convince me that the rapid development of "flat-slab" interface profiles involves the physical removal of hanging-wall material in front of the downbend by basal subduction tectonic erosion (STE). Historically this, and its inferred ubiquity in the Archaean as the precursor to PSM (Part 1), suggests that the required subducting-plate buoyancy is thermal. Accordingly, a redesign [2] of the MOR process has incorporated the heat-containing LVZ as an integral part of the plate and luckily provides a lot more ridge-push to ensure the subduction of buoyant plates. But its action is not indefinitely self-sustaining, so could die out if not "nudged" occasionally. Wholly untrumpeted by seismologists, this built-in ocean-plate-heat is indeed evident as slab-reheating during active subduction. Nearly 100 circum-Pacific tomographic transects kindly provided by E.R.Engdahl consistently show the "slab" high-Vp signature peters out at between 200 and 350 km (plate age-dependent and even at 130 Ma) and a second high-Vp signature then begins close to the top of the TZ and goes on into the lower mantle. This latter signature must be mineralogical, not thermal, and arguably is not mantle but is only a stream of dense stishovitic lumps derived from the TZ-depth partial melting of subducted oceanic crust. Where now is the slab-pull to sustain plate tectonics?
NASA Astrophysics Data System (ADS)
Comte, D.; Farías, M.; Roecker, S. W.; Brandon, M. T.
2017-12-01
The 2015 Illapel interplate earthquake Mw 8.4 generated a large amount of aftershocks that was recorded by the Chile-Illapel Aftershock Experiment (CHILLAX) during a year after the mainshock. Using this database, along with previous seismological campaigns, an improved 3D body wave tomographic image was obtained, allowing us to visualize first-order lithospheric discontinuities. This new analysis confirms not only the presence of this dense block, but also that the Benioff zone extends with a 30° dip even below the 100 km depth, where the Nazca plate has been interpreted to be flat. Recent results of seismic anisotropy show that the oceanic plate has been detached at depths greater than 300 km. We propose that: i) The dry, cold mantle beneath the continental crust is an entrapped mantle, cooled by the slab flattening, while the western part would be hydrated by slab-derived fluid; ii) The Nazca plate would be faulted and is now subducting with a normal dip beneath the flattened slab segment. Considering that the slab segment is detached from deeper part of the subducted plate, slab pull on the flat segment would be reduced, decreasing its eastward advance. In the western side, the flat segment of the slab has been observed to be slightly folded. We propose that the current normal subduction is related to the slab break-off resulting from the loss of a slab-pull force, producing the accretion of the slab beneath the dry and cold mantle. Considering that the flat slab segment does not occur at depths shallower than 100 km, rollback of the slab is not expected. In turn, suction forces would have induced the shortening in the flat segment considering its eastward slowing down due to slab break-off, thus producing a breakthrough faulting. This proposition implies that the underplated flat slab segment, along with the overlying dense and dry mantle may be delaminated by gravitional instabilities and ablative subduction effects.
High-speed laser-launched flyer impacts studied with ultrafast photography and velocimetry
Banishev, Alexandr A.; Shaw, William L.; Bassett, Will P.; ...
2016-02-16
Pulsed lasers can launch thin metal foils at km s -1, but for precision measurements in shock compression science and shock wave spectroscopy, where one-dimensional shock compression is vital, flyer plate impacts with targets must have a high degree of flatness and minimal tilt, and the flyer speeds and impact times at the target must be highly reproducible. We have developed an apparatus that combines ultrafast stroboscopic optical microscopy with photon Doppler velocimetry to study impacts of laser-launched Al and Cu flyer plates with flat, transparent glass targets. The flyer plates were 0.5 mm in diameter, and ranged from 12-100more » μm thick, with flyer speeds up to 6.25 km s -1. The velocity variations over 30-60 launches from the same flyer plate optic can be as low as 0.6%, and the impact time variations can be as low as 0.8 ns. Stroboscopic image streams (reconstructed movies) show uniform, flat impacts with a glass target. As a result, these stroboscopic images can be used to estimate the tilt in the flyer-target impact to be <1mrad.« less
NASA Technical Reports Server (NTRS)
Masiulaniec, K. Cyril; Vanfossen, G. James, Jr.; Dewitt, Kenneth J.; Dukhan, Nihad
1995-01-01
A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Nine flat plates, 18 inches square, were obtained from which aluminum castings were made that gave good ice shape characterizations. Test strips taken from these plates were outfitted with heat flux gages, such that when placed in a dry wind tunnel, can be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for both parallel and accelerating flow will be studied. The smooth plate model verification baseline data as well as one ice roughened test case are presented.
NASA Technical Reports Server (NTRS)
Geissler, W.
1983-01-01
A finite difference method has been developed to calculate the unsteady boundary layer over an oscillating flat plate. Low- and high frequency approximations were used for comparison with numerical results. Special emphasis was placed on the behavior of the flow and on the numerical calculation procedure as soon as reversed flow has occurred over part of the oscillation cycle. The numerical method displayed neither problems nor singular behavior at the beginning of or within the reversed flow region. Calculations, however, came to a limit where the back-flow region reached the plate's leading edge in the case of high oscillation amplitudes. It is assumed that this limit is caused by the special behavior of the flow at the plate's leading edge where the boundary layer equations are not valid.
NASA Technical Reports Server (NTRS)
Vaughan, Victor L , Jr; Ramsen, John A
1957-01-01
Results of an investigation of the hydrodynamic characteristics over an extended speed range of a rectangular modified flat plate having an aspect ratio of 0.25 and operating at several depths of submersion are presented. Comparisons between these data and data over a lower speed range on a similar aspect-ratio-0.25 flat plate but having one-half the thickness are presented. These comparisons show no significant differences at the low speeds. At high speeds and high angles of attack, where extensive cavitation was present, the lift coefficients were lower than would have been indicated by the results of the previous investigations and the present investigation at the lower angles of attack. A brief discussion and comparison of ventilation are presented which shows two types of planing bubble formation and the effect of increasing the thickness of the model on the ventilation boundary.
Growth of Dunaliella tertiolecta and associated bacteria in photobioreactors.
Lakaniemi, Aino-Maija; Intihar, Veera M; Tuovinen, Olli H; Puhakka, Jaakko A
2012-09-01
The aim of this study was to test three flat-plate photobioreactor configurations for cultivation of marine green alga Dunaliella tertiolecta under non-axenic growth conditions and to characterize and quantify the associated bacteria. The photobioreactor cultivations were conducted using tap water-based media. Static mixers intended to enhance mixing and light utilization did not generally increase algal growth at the low light intensities used. The maximum biomass concentration (measured as volatile suspended solids) and maximum specific growth rate achieved in the flat plate with no mixer were 2.9 g l⁻¹ and 1.3 day⁻¹, respectively. Based on quantitative polymerase chain reaction, bacterial growth followed the growth of D. tertiolecta. Based on 16S rDNA amplification and denaturing gradient gel electrophoresis profiling, heterotrophic bacteria in the D. tertiolecta cultures mainly originated from the non-axenic algal inocula, and tap water heterotrophs were not enriched in high chloride media (3 % salinity). Bacterial communities were relatively stable and reproducible in all flat-plate cultivations and were dominated by Gammaproteobacteria, Flavobacteria, and Alphaproteobacteria.