Science.gov

Sample records for flat-top laser pulses

  1. Non-iterative characterization of few-cycle laser pulses using flat-top gates.

    PubMed

    Selm, Romedi; Krauss, Günther; Leitenstorfer, Alfred; Zumbusch, Andreas

    2012-03-12

    We demonstrate a method for broadband laser pulse characterization based on a spectrally resolved cross-correlation with a narrowband flat-top gate pulse. Excellent phase-matching by collinear excitation in a microscope focus is exploited by degenerate four-wave mixing in a microscope slide. Direct group delay extraction of an octave spanning spectrum which is generated in a highly nonlinear fiber allows for spectral phase retrieval. The validity of the technique is supported by the comparison with an independent second-harmonic fringe-resolved autocorrelation measurement for an 11 fs laser pulse.

  2. Beam uniformity of flat top lasers

    NASA Astrophysics Data System (ADS)

    Chang, Chao; Cramer, Larry; Danielson, Don; Norby, James

    2015-03-01

    Many beams that output from standard commercial lasers are multi-mode, with each mode having a different shape and width. They show an overall non-homogeneous energy distribution across the spot size. There may be satellite structures, halos and other deviations from beam uniformity. However, many scientific, industrial and medical applications require flat top spatial energy distribution, high uniformity in the plateau region, and complete absence of hot spots. Reliable standard methods for the evaluation of beam quality are of great importance. Standard methods are required for correct characterization of the laser for its intended application and for tight quality control in laser manufacturing. The International Organization for Standardization (ISO) has published standard procedures and definitions for this purpose. These procedures have not been widely adopted by commercial laser manufacturers. This is due to the fact that they are unreliable because an unrepresentative single-pixel value can seriously distort the result. We hereby propose a metric of beam uniformity, a way of beam profile visualization, procedures to automatically detect hot spots and beam structures, and application examples in our high energy laser production.

  3. Novel beam delivery fibers for delivering flat-top beams with controlled BPP for high power CW and pulsed laser applications

    NASA Astrophysics Data System (ADS)

    Jollivet, C.; Farley, K.; Conroy, M.; Abramczyk, J.; Belke, S.; Becker, F.; Tankala, K.

    2016-03-01

    Single-mode (SM) kW-class fiber lasers are the tools of choice for material processing applications such as sheet metal cutting and welding. However, application requirements include a flat-top intensity profile and specific beam parameter product (BPP). Here, Nufern introduces a novel specialty fiber technology capable of converting a SM laser beam into a flat-top beam suited for these applications. The performances are demonstrated using a specialty fiber with 100 μm pure silica core, 0.22 NA surrounded by a 120 μm fluorine-doped layer and a 360 μm pure silica cladding, which was designed to match the conventional beam delivery fibers. A SM fiber laser operating at a wavelength of 1.07 μm and terminated with a large-mode area (LMA) fiber with 20 μm core and 0.06 NA was directly coupled in the core of the flat-top specialty fiber using conventional splicing technique. The output beam profile and BPP were characterized first with a low-power source and confirmed using a 2 kW laser and we report a beam transformation from a SM beam into a flat-top intensity profile beam with a 3.8 mm*mrad BPP. This is, to the best of our knowledge, the first successful beam transformation from SM to MM flat-top with controlled BPP in a single fiber integrated in a multi-kW all-fiber system architecture.

  4. Flat-top temporal and spatial profiles femtosecond pulse beam generated by phase only modulating

    NASA Astrophysics Data System (ADS)

    Nie, Yong-ming; Liu, Jun-hui; Huang, Pu-hua; Tang, Ji-zhen; Yang, Xuehua; Ma, Hao-tong; Li, Xiu-jian

    2013-09-01

    The method for generating temporal flat-top waveform and spatial flat-top profile femtosecond pulse beam by phase and polarization controlling is proposed and demonstrated. Based on direct wave front phase modulating, flat-top spatial intensity distribution can be obtained. Combining a folded 4f zero-dispersion system with a polarization controlling setup, the temporal flat-top waveform is generated. Experimental results indicate that for the input both temporal and spatial Gaussian pulse beam with 363 fs temporal width and 1.5 mm beam waist, the temporal width of the output shaped pulse beam is 1.2 ps and 1.9mm beam waist, and the rms variation is about 9.2%, which prove that the temporal flat-top and spatial flat-top femtosecond pulse beam can be generated effectively.

  5. Generation of flat-top picosecond pulses by means of a two-stage birefringent filter

    NASA Astrophysics Data System (ADS)

    Will, Ingo

    2008-09-01

    We describe the type of pulse shaper for production of flat-top pulses that is used at the Photo Injector Test Facility (PITZ) at DESY. This shaper consists of a two-stage birefringent filter. Using a simple model, this pulse shaper can be regarded as a system that splits the Gaussian input pulse into four mutually delayed replicas and stacks them in a phase-coherent way. Although a variety of different pulse shapes can be generated by this method, the system is particularly suited for the generation of flat-top output pulses with duration between 10 and 100 ps. When operating in combination with an actively modelocked Nd:YLF oscillator, it can shape picosecond pulses arranged in long trains, as required for photocathode lasers for the TESLA-type linear accelerators. Using trains of equally shaped picosecond pulses has an additional benefit: It permits measuring the shape of these pulses by cross-correlation in real-time using a so-called optical sampling system. Such a system is employed as a measurement tool for appropriate alignment of the individual components of the pulse shaper.

  6. Advanced Flat Top Laser Heating System for High Pressure Research

    NASA Astrophysics Data System (ADS)

    Prakapenka, V.; Kantor, I.; Kuznetsov, A.; Dera, P. K.; Rivers, M. L.; Sutton, S. R.

    2009-12-01

    Double-sided laser heating combined with synchrotron x-ray radiation for in-situ studies in the DAC using diffraction, emission and inelastic scattering methods has been the most productive and widely used high temperature-high pressure technique in past two decades. Equation of state, phase transformations, element partitioning, electronic and optical properties of various materials have been successfully studied at conditions relevant to the Earth’s interior with help of lasers. High temperature data collected in the DAC are mostly consistent, however, there are some discrepancies in reported results among high pressure research groups performing experiments at different facilities, particularly for determinations of melting temperatures, Clapeyron slopes, elastic constants, and thermal expansion coefficients. Although differences in the samples themselves cannot be ruled out, an important contributor to inconsistent results is related to temperature non-uniformity in the analyzed volume. Here we report a new development in on-line, double-sided, laser heating systems based on diode pumped fiber lasers coupled with beam-shaping optics that allows control of the shape of the focused laser beam spot on the sample surface in the DAC with variable diameter from 8 to 40 μm. Varying the settings of the laser heating system, we were able to shape the beam to almost any desired intensity profile and size on the surface of the sample in the DAC including tight focus, flat top, trident and doughnut types. The significant advantages and excellent performance of the flat top laser heating (FTLH) technique will be demonstrated in melting experiments on germanium and iron compounds. During FT laser heating the molten sample doesn’t escape from the homogeneously heated area as is usually observed for Gaussian or doughnut type laser spots in the DAC. The capability to maintain the molten sample in the DAC for a relatively long time (at least 60 s) allowed us to collect high

  7. Generation of flat-top pulsed magnetic fields with feedback control approach.

    PubMed

    Kohama, Yoshimitsu; Kindo, Koichi

    2015-10-01

    We describe the construction of a simple, compact, and cost-effective feedback system that produces flat-top field profiles in pulsed magnetic fields. This system is designed for use in conjunction with a typical capacitor-bank driven pulsed magnet and was tested using a 60-T pulsed magnet. With the developed feedback controller, we have demonstrated flat-top magnetic fields as high as 60.64 T with an excellent field stability of ±0.005 T. The result indicates that the flat-top pulsed magnetic field produced features high field stability and an accessible field strength. These features make this system useful for improving the resolution of data with signal averaging.

  8. Generation of flat-top pulsed magnetic fields with feedback control approach

    NASA Astrophysics Data System (ADS)

    Kohama, Yoshimitsu; Kindo, Koichi

    2015-10-01

    We describe the construction of a simple, compact, and cost-effective feedback system that produces flat-top field profiles in pulsed magnetic fields. This system is designed for use in conjunction with a typical capacitor-bank driven pulsed magnet and was tested using a 60-T pulsed magnet. With the developed feedback controller, we have demonstrated flat-top magnetic fields as high as 60.64 T with an excellent field stability of ±0.005 T. The result indicates that the flat-top pulsed magnetic field produced features high field stability and an accessible field strength. These features make this system useful for improving the resolution of data with signal averaging.

  9. Flat-top beam for laser-stimulated pain

    NASA Astrophysics Data System (ADS)

    McCaughey, Ryan; Nadeau, Valerie; Dickinson, Mark

    2005-04-01

    One of the main problems during laser stimulation in human pain research is the risk of tissue damage caused by excessive heating of the skin. This risk has been reduced by using a laser beam with a flattop (or superGaussian) intensity profile, instead of the conventional Gaussian beam. A finite difference approximation to the heat conduction equation has been applied to model the temperature distribution in skin as a result of irradiation by flattop and Gaussian profile CO2 laser beams. The model predicts that a 15 mm diameter, 15 W, 100 ms CO2 laser pulse with an order 6 superGaussian profile produces a maximum temperature 6 oC less than a Gaussian beam with the same energy density. A superGaussian profile was created by passing a Gaussian beam through a pair of zinc selenide aspheric lenses which refract the more intense central region of the beam towards the less intense periphery. The profiles of the lenses were determined by geometrical optics. In human pain trials the superGaussian beam required more power than the Gaussian beam to reach sensory and pain thresholds.

  10. Scintillation index of flat-topped Gaussian laser beam in strongly turbulent medium.

    PubMed

    Gerçekcioğlu, Hamza; Baykal, Yahya

    2011-08-01

    In a strongly turbulent medium, the scintillation index of flat-topped Gaussian beams is derived and evaluated. In the formulation, unified solution of Rytov method is utilized. Our results correctly reduce to the existing strong turbulence scintillation index of the Gaussian beam, and naturally to spherical and plane wave scintillations. Another checkpoint of our result is the scintillation index of flat-topped Gaussian beams in weak turbulence. Regardless of the order of flatness, scintillations of flat-topped Gaussian beams in strong turbulence are found to be determined mainly by the small-scale effects. For large-sized beams in moderate and strongly turbulent medium, flatter beams exhibit smaller scintillations.

  11. An 808-nm Diode Laser with a Flat-Top Handpiece Positively Photobiomodulates Mitochondria Activities.

    PubMed

    Amaroli, Andrea; Ravera, Silvia; Parker, Steven; Panfoli, Isabella; Benedicenti, Alberico; Benedicenti, Stefano

    2016-11-01

    Photobiomodulation is proposed as a non-linear process. Only the action of light at a low intensity and fluence is assumed to have stimulation on cells; whereas a higher light intensity and fluence generates negative effects, exhausting the cell's energy reserve as a consequence of a too strong stimulation. In our work, we detected the photobiomodulatory effect of an 808-nm higher-fluence diode laser [64 J/cm(2)-1 W, continuous wave (CW)] irradiated by a flat-top handpiece on mitochondria activities, such as oxygen consumption, activity of mitochondria complexes I, II, III, and IV, and cytochrome c as well as ATP synthesis. The experiments are performed by standard procedure on mitochondria purified from bovine liver. Our higher-fluence diode laser positively photobiomodulates the mitochondria oxygen consumption, the activity of the complexes III and IV, and the ATP production, with a P/O = 2.6. The other activities are not influenced. Our data show for the first time that even the higher fluences (64 J/cm(2)-1 W), similar to the low fluences, can photobiostimulate the mitochondria respiratory chain without uncoupling them and can induce an increment in the ATP production. These results suggest that the negative effects of higher fluences observed to date are not unequivocally due to higher fluence per se but might be a consequence of the irradiation carried by handpieces with a Gaussian profile.

  12. A Microflow Cytometer with a Rectangular Quasi-Flat-Top Laser Spot

    PubMed Central

    Zhao, Jingjing; You, Zheng

    2016-01-01

    This work develops a microflow cytometer, based on a microfluidic chip for three-dimensional (3D) hydrodynamic focusing and a binary optical element (BOE) for shaping and homogenizing a laser beam. The microfluidic chip utilizes sheath flows to confine the sample flow along the channel centerline with a narrow cross section. In addition to hydrodynamic focusing, secondary flows are generated to strengthen the focusing in the vertical direction. In experiments, the chip was able to focus the sample flow with cross sections of 15 μm high and 8–30 μm wide at 5 m/s, under the condition of the sample flow rates between 10 and 120 μL/min. Instead of using the conventional elliptical Gaussian spot for optical detection, we used a specially designed BOE and obtained a 50 μm × 10 μm rectangular quasi-flat-top spot. The microflow cytometer combining the chip and the BOE was tested to count 3, 5, and 7 μm fluorescence microbeads, and the experimental results were comparable to or better than those derived from two commercial instruments. PMID:27626428

  13. Ablation depth control with 40 nm resolution on ITO thin films using a square, flat top beam shaped femtosecond NIR laser

    NASA Astrophysics Data System (ADS)

    Kim, Hoon-Young; Yoon, Ji-Wook; Choi, Won-Suk; Kim, Kwang-Ryul; Cho, Sung-Hak

    2016-09-01

    We reported on the ablation depth control with a resolution of 40 nm on indium tin oxide (ITO) thin film using a square beam shaped femtosecond (190 fs) laser (λp=1030 nm). A slit is used to make the square, flat top beam shaped from the Gaussian spatial profile of the femtosecond laser. An ablation depth of 40 nm was obtained using the single pulse irradiation at a peak intensity of 2.8 TW/cm2. The morphologies of the ablated area were characterized using an optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS). Ablations with square and rectangular types with various sizes were demonstrated on ITO thin film using slits with varying x-y axes. The stereo structure of the ablation with the depth resolution of approximately 40 nm was also fabricated successfully using the irradiation of single pulses with different shaped sizes of femtosecond laser.

  14. Quasi-flat-top frequency-doubled Nd:glass laser for pumping of high-power Ti:sapphire amplifiers at a 0.1 Hz repetition rate.

    PubMed

    Yanovsky, Victor; Kalinchenko, Galina; Rousseau, Pascal; Chvykov, Vladimir; Mourou, Gerard; Krushelnick, Karl

    2008-04-20

    A Nd:glass laser based on a novel design delivers up to 120 J energy pulses with a quasi-flat-top spatial profile at a 0.1 Hz repetition rate. The laser output is frequency-doubled with 50% efficiency and used to pump Ti:sapphire amplifiers. The developed design is perspective for use in the currently contemplated next step in ultra-high-intensity laser development.

  15. Flat-topped Gaussian laser beam scintillation in weakly turbulent marine atmospheric medium

    NASA Astrophysics Data System (ADS)

    Gerçekcioğlu, Hamza; Abbas, Ahmed A.; Göktaş, H. Haldun

    2017-09-01

    In a weakly marine turbulent medium, formulation of the on-axis scintillation index of a flat topped Gaussian beam is derived by using the Rytov method and the intensity has log-normal distribution expressed. The scintillation index and average bit error rate with respect to changes in propagation distance, wavelength, beam size, and average signal to noise ratio are exhibited. Our results indicated that small advantage can be achieved in weak atmospheric marine when focal length equals to propagation distance and when the order of flatness is small value.

  16. The Design and Tests of Battery Power Supply System for Pulsed Flat-Top Magnets in WHMFC

    NASA Astrophysics Data System (ADS)

    Ding, T. H.; Lv, Y. L.; Tang, J. X.; Chen, X.; Chen, X. Y.; Li, L.; Pan, Y.

    2013-03-01

    A capacitor bank power supply of 14.8 MJ is built in Wuhan National Pulsed High Magnetic Field Center (WHMFC). Another pulse generator power supply of 100 MJ/100 MVA is expected to be finished by the end of August, 2012. These power supplies can drive pulsed magnets with a magnetic field of 50 T to 80 T and a pulse duration of 15 ms to 1000 ms (Li et al. in IEEE Trans. Appl. Supercond. 18:596, 2008). In addition to that, a new battery bank power supply system is also designed. This system can output a maximum voltage of 1000 V, a maximum current of 40 kA and a pulse duration of 2 s to feed pulsed flat-top magnets of 40 T/2 s. This power supply consists of battery bank and its charger, thyristor DC switch and its forced commutation, DC breaker, control system, Crowbar, PWM controller and magnet. The battery bank uses 945 lead-acid batteries and its modular design makes it easy to modify the voltage and current of the power supply by changing the connections of the batteries based on the requirement of single-coil, double-coil and triple-coil magnets. The design and primary tests of the battery power supply system will be introduced in this paper (Schillig et al. in IEEE Trans. Appl. Supercond. 10:526, 2000).

  17. Flat-topped ultrabroad stimulated emission from chirped InAs/InP quantum dot laser with spectral width of 92 nm

    SciTech Connect

    Gao, Feng; Luo, Shuai; Ji, Hai-Ming; Xu, Feng; Lv, Zun-Ren; Yang, Xiao-Guang; Liang, Ping; Yang, Tao

    2016-05-16

    We demonstrate the generation of 92 nm (−3 dB bandwidth) flat-topped ultrabroad stimulation emission from a chirped InAs/InP quantum dot (QD) laser. A greatly enhanced bandwidth of the gain spectrum is achieved, which is attributed to the additionally broadened quantum dot energy levels utilizing gradually changed height of QDs in the stacked active layers. The laser exhibits a maximum output power of 0.35 W under pulsed conditions, and the average spectral power density of above 3.8 mW/nm is obtained. The ultrabroad lasing spectrum in the wavelength interval of 1.49–1.61 μm covering S-C-L bands makes such a laser potentially useful as an optical source for various applications being compatible with silica fibers.

  18. 808-nm laser therapy with a flat-top handpiece photobiomodulates mitochondria activities of Paramecium primaurelia (Protozoa).

    PubMed

    Amaroli, Andrea; Ravera, Silvia; Parker, Steven; Panfoli, Isabella; Benedicenti, Alberico; Benedicenti, Stefano

    2016-05-01

    Photobiomodulation is proposed as a non-linear process, and only low-level laser therapy (LLLT) is assumed to stimulate exposed cells, whereas high powered laser and fluences can cause negative effects, exhausting the cell's energy reserve as a consequence of excessive photon-based stimulation. In our work, we investigated and compared the effects of 808-nm diode laser (CW) with a new flat-top handpiece. To this purpose, we tested the photobiomodulation effects of 1 and 3 J/cm(2) fluence, both generated by 100 mW or 1 W of laser power and of 64 J/cm(2) of fluence generated by 100 mW, 1 W, 1.5 W or 2 W, as expressed through oxygen consumption and ATP synthesis of Paramecium. Data collected indicates the incremental consumption of oxygen through irradiation with 3 J/cm(2)-100 mW or 64 J/cm(2)-1 W correlates with an increase in Paramecium ATP synthesis. The Paramecium respiration was inhibited by fluences 64 J/cm(2)-100 mW or 64 J/cm(2)-2 W and was followed by a decrease in the endogenous ATP concentration. The 1 J/cm(2)-100 mW or 1 W and 3 J/cm(2)-1 W did not affect mitochondrial activity. The results show that the fluence of 64 J/cm(2)-1 W more than the 3 J/cm(2)-100 mW causes greater efficiency in Paramecium mitochondria respiratory chain activity. Our results suggest that thanks to flat-top handpiece we used, high fluences by high-powered laser have to be reconsidered as an effective and non-invasive therapy. Possible associated benefits of deeper tissue penetration would increase treatment effectiveness and reduced irradiation time.

  19. Technique using axicons for generating flat-top laser-beam profiles

    SciTech Connect

    Viswanathan, V.K.; Woodfin, G.L.; Stahl, D.; Carpenter, J.P.; Kyrala, G.

    1983-01-01

    In certain fusion experiments using CO/sub 2/ lasers, like Helios, it is desired to produce a focal spot several times larger than the nominal focal spot, with a flat beam profile. The typical focal spot in Helios is roughly 70 ..mu..m and just defocussing the beam produces beam breakup, with several hot spots with roughly the original diameter, and a gaussian distribution. A number of schemes were tried to achieve a large spot with desired characteristics. These are described in the article. Axicons were found to produce spots with desired characteristics. Axicons are lenses or mirrors having a cone-shaped surface. The various schemes are described, as well as an experiment in Helios which confirmed that axicons produced the spots with desirable characteristics. Helios is an 8-beam CO/sub 2/ laser which produces 10 kJ at power in excess of 20 TW. It is currently being used for Laser Fusion studies at the Los Alamos National Laboratory.

  20. Analyzing the average intensity distribution and beam width evolution of phase-locked partially coherent radial flat-topped array laser beams in oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Yousefi, M.; Kashani, F. D.; Mashal, A.

    2017-02-01

    In this research, an analytical expression for cross-spectral density matrix elements (and consequently, average intensity) of partially coherent flat-topped (PCFT) radial array laser beams in weak oceanic turbulence are derived based on the extended Huygens-Fresnel principle and the previously developed knowledge of the propagation of a partially coherent beam in atmosphere. Mean-squared beam width is calculated analytically using average intensity formula. The simulation is done by considering the effects of source parameters (such as the radius of the array setup’s circle and effective width of spectral degree of coherence) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature-salinity fluctuations, Kolmogorov micro-scale, and the rate of dissipation of the mean squared temperature) in detail. It is found that when salinity fluctuations in the ocean dominate temperature fluctuations, the average intensity of the PCFT array beam becomes more broad and the array beam profile conversion process to a single wider Gaussian beam profile will occur at a faster rate. For the same turbulent conditions and the same initial beam width, the divergence of a flat-topped array beam is less than the Gaussian array beam. The simulation and calculation results are shown by graphs.

  1. Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence.

    PubMed

    Yousefi, Masoud; Golmohammady, Shole; Mashal, Ahmad; Kashani, Fatemeh Dabbagh

    2015-11-01

    In this paper, on the basis of the extended Huygens-Fresnel principle, a semianalytical expression for describing on-axis scintillation index of a partially coherent flat-topped (PCFT) laser beam of weak to moderate oceanic turbulence is derived; consequently, by using the log-normal intensity probability density function, the bit error rate (BER) is evaluated. The effects of source factors (such as wavelength, order of flatness, and beam width) and turbulent ocean parameters (such as Kolmogorov microscale, relative strengths of temperature and salinity fluctuations, rate of dissipation of the mean squared temperature, and rate of dissipation of the turbulent kinetic energy per unit mass of fluid) on propagation behavior of scintillation index, and, hence, on BER, are studied in detail. Results indicate that, in comparison with a Gaussian beam, a PCFT laser beam with a higher order of flatness is found to have lower scintillations. In addition, the scintillation index and BER are most affected when salinity fluctuations in the ocean dominate temperature fluctuations.

  2. Analyzing the propagation behavior of coherence and polarization degrees of a phase-locked partially coherent radial flat-topped array laser beam in underwater turbulence.

    PubMed

    Kashani, Fatemeh Dabbagh; Yousefi, Masoud

    2016-08-10

    In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs.

  3. Specialty flat-top beam delivery fibers with controlled beam parameter product

    NASA Astrophysics Data System (ADS)

    Jollivet, C.; Farley, K.; Conroy, M.; Abramczyk, J.; Belke, S.; Becker, F.; Tankala, K.

    2016-03-01

    Beam delivery fibers have been used widely for transporting the optical beams from the laser to the subject of irradiation in a variety of markets including industrial, medical and defense applications. Standard beam delivery fibers range from 50 to 1500 μm core diameter and are used to guide CW or pulsed laser light, generated by solid state, fiber or diode lasers. Here, we introduce a novel fiber technology capable of simultaneously controlling the beam profile and the angular divergence of single-mode (SM) and multi-mode (MM) beams using a single-optical fiber. Results of beam transformation from a SM to a MM beam with flat-top intensity profile are presented in the case of a controlled BPP at 3.8 mm*mrad. The scaling capabilities of this flat-top fiber design to achieve a range of BPP values while ensuring a flat-top beam profile are discussed. In addition, we demonstrate, for the first time to the best of our knowledge, the homogenizer capabilities of this novel technology, able to transform random MM beams into uniform flat-top beam profiles with very limited impact on the beam brightness. This study is concluded with a discussion on the scalability of this fiber technology to fit from 50 up to 1500 μm core fibers and its potential for a broader range of applications.

  4. Generation of a flat-top laser beam for gravitational wave detectors by means of a nonspherical Fabry-Perot resonator.

    PubMed

    Tarallo, Marco G; Miller, John; Agresti, J; D'Ambrosio, E; DeSalvo, R; Forest, D; Lagrange, B; Mackowsky, J M; Michel, C; Montorio, J L; Morgado, N; Pinard, L; Remilleux, A; Simoni, B; Willems, P

    2007-09-10

    We have tested a new kind of Fabry-Perot long-baseline optical resonator proposed to reduce the thermal noise sensitivity of gravitational wave interferometric detectors--the "mesa beam" cavity--whose flat top beam shape is achieved by means of an aspherical end mirror. We present the fundamental mode intensity pattern for this cavity and its distortion due to surface imperfections and tilt misalignments, and contrast the higher order mode patterns to the Gauss-Laguerre modes of a spherical mirror cavity. We discuss the effects of mirror tilts on cavity alignment and locking and present measurements of the mesa beam tilt sensitivity.

  5. Gaussian versus flat-top spatial beam profiles for optical stimulation of the prostate nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2010-02-01

    The cavernous nerves (CN) course along the prostate surface and are responsible for erectile function. Improved identification and preservation of the CN's is critical to maintaining sexual potency after prostate cancer surgery. Noncontact optical nerve stimulation (ONS) of the CN's was recently demonstrated in a rat model, in vivo, as a potential alternative to electrical nerve stimulation (ENS) for identification of the CN's during prostate surgery. However, the therapeutic window for ONS is narrow, so optimal design of the fiber optic delivery system is critical for safe, reproducible stimulation. This study describes modeling, assembly, and testing of an ONS probe for delivering a small, collimated, flat-top laser beam for uniform CN stimulation. A direct comparison of the magnitude and response time of the intracavernosal pressure (ICP) for both Gaussian and flat-top spatial beam profiles was performed. Thulium fiber laser radiation (λ=1870 nm) was delivered through a 200-μm fiber, with distal fiber tip chemically etched to convert a Gaussian to flat-top beam profile. The laser beam was collimated to a 1-mm-diameter spot using an aspheric lens. Computer simulations of light propagation were used to optimize the probe design. The 10-Fr (3.4-mm-OD) laparoscopic probe provided a constant radiant exposure at the CN surface. The probe was tested in four rats, in vivo. ONS of the CN's was performed with a 1-mm-diameter spot, 5-ms pulse duration, and pulse rate of 20 Hz for a duration of 15-30 s. The flat-top laser beam profile consistently produced a faster and higher ICP response at a lower radiant exposure than the Gaussian beam profile due, in part, to easier alignment of the more uniform beam with nerve. The threshold for ONS was approximately 0.14 J/cm2, corresponding to a temperature increase of 6-8°C at the CN surface after a stimulation time of 15 s. With further development, ONS may be used as a diagnostic tool for identification of CN's during prostate

  6. Kodiak seamount not flat-topped.

    PubMed

    Hamilton, E L; von Huene, R E

    1966-12-09

    Earlier surveys in the Aleutian Trench southeast of Kodiak Island, Alaska, indicated that Kodiak Seamount had a flat top and was a tablemount or guyot. This seamount is of special significance because it has been supposed that its surface was eroded at the same time as those of a line of guyots to the southeast. If so, its present position in the axis of the Aleutian Trench indicates that the line of guyots was formed before the trench. A two-part survey in 1965 showed that Kodiak Seamount is not flat-topped, and should be eliminated from the category of guyots. Reflection profiling records indicate that the seamount was formed before the adjacent sediments were deposited, and that the small trough, or moat, on the south side is a depositional feature probably formed by a scouring effect or by the acceleration of turbidity currents around the base of the mount.

  7. Flat top solitons on linear gaussian potential

    NASA Astrophysics Data System (ADS)

    Umarov, B. A.; Aklan, N. A. B.; Rosly, M. R.; Hassan, T. H.

    2017-09-01

    The study of Nonlinear Schrodinger Equation has been wide focus from many researchers especially analysing the result of collision as it describes the soliton propagation. This paper considers the soliton scattering of cubic-quintic Nonlinear Schrodinger Equation on localized Gaussian potential. By applying Super-Gaussian ansatz as the trial function for variational approximation (VA) method, the soliton interaction may acquire flat-top shape with appropriate parameters. The result of VA will be compared to numerical analysis to check the accuracy of analytical predictions.

  8. Temporal Laser Pulse Shaping for RF Photocathode Guns: The Cheap and Easy way using UV Birefringent Crystals

    SciTech Connect

    Power, John G.; Jing Chunguang

    2009-01-22

    We report experimental investigations into a new technique for achieving temporal laser pulse shaping for RF photocathode gun applications using inexpensive UV birefringent crystals. Exploiting the group velocity mismatch between the two different polarizations of a birefringent crystal, a stack of UV pulses can be assembled into the desired temporal pulse shape. The scheme is capable of generating a variety of temporal pulse shapes including: (i) flat-top pulses with fast rise-time and variable pulse duration. (ii) microbunch trains, and (iii) ramped pulse generation. We will consider two applications for beam generation at the Argonne Wakefield Accelerator (AWA) including a flat-top laser pulse for low emittance production and matched bunch length for enhanced transformer ratio production. Streak camera measurements of the temporal profiles generated with a 2-crystal set and a 4-crystal set are presented.

  9. Temporal laser pulse shaping for RF photocathode guns : the cheap and easy way using UV birefringent crystals.

    SciTech Connect

    Power, J. G.; Jing, C.; High Energy Physics; Euclid Techlabs, LLC

    2009-01-01

    We report experimental investigations into a new technique for achieving temporal laser pulse shaping for RF photocathode gun applications using inexpensive UV birefringent crystals. Exploiting the group velocity mismatch between the two different polarizations of a birefringent crystal, a stack of UV pulses can be assembled into the desired temporal pulse shape. The scheme is capable of generating a variety of temporal pulse shapes including: (i) flat-top pulses with fast rise-time and variable pulse duration. (ii) microbunch trains, and (iii) ramped pulse generation. We will consider two applications for beam generation at the Argonne Wakefield Accelerator (AWA) including a flat-top laser pulse for low emittance production and matched bunch length for enhanced transformer ratio production. Streak camera measurements of the temporal profiles generated with a 2-crystal set and a 4-crystal set are presented.

  10. Partially coherent flat-topped beam and its propagation.

    PubMed

    Ge, Di; Cai, Yangjian; Lin, Qiang

    2004-08-20

    A partially coherent beam with flat-topped profile is proposed. The cross-spectral density of this beam can be expressed as a finite series of the cross-spectral density of partially coherent Gaussian-Schell-model beams with different parameters. Analytical propagation formulas for partially coherent flat-topped beams are derived through aligned and misaligned optical systems. The propagation property of partially coherent flat-topped beams in free space is illustrated numerically. The fractional Fourier transform of partially coherent fiat-topped beams is also studied. Our method provides a convenient way to describe partially coherent flat-topped beams and treat their propagation and transformation.

  11. Comparing flat top and Gaussian focal beam shapes when micromachining steel

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.; Ohar, Orest

    2011-10-01

    Laser micromachining, drilling and marking is extensively used within the aerospace, automotive and firearms industries. The unique properties of lasers make them ideal tools for micromachining a wide diversity of materials, including steel alloys [1]. We describe the results of micromachining of low carbon steel and stainless steel alloys, using a high powered diode pumped solid state (DPSS) laser operating at a wavelength of 355nm. The laser was configured with beam conditioning optics to produce either a flat top beam or a Gaussian output which was then sent through a galvanometer scanner and telecentric lens beam delivery system. This paper outlines the interrelationship of process variables when micromachining fine features in steel and stainless steel alloys. Process variables measured included the optimum laser focus plane, energy density, galvanometer scan rate, and pulse overlap and focal spot diameter. Optimum process performance was evaluated based on a dimensional comparison of the micromachined features from each test coupon, including uniformity and surface roughness of the micromachined surface and the minimization of surface irregularities (stalagmite type slag / debris / corn row patterns) and taper angle of the micromachined feature side walls.

  12. Flat Top as Viewed by the Rover

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This anaglyph view of Flat Top, southwest of the lander, was produced by combining two right eye frames taken from different viewing angles by Sojourner Rover. One of the right eye frames was distorted using Photoshop to approximate the projection of the left eye view (without this, the stereo pair is painful to view). The left view is assigned to the red color plane and the right view to the green and blue color planes (cyan), to produce a stereo anaglyph mosaic. This mosaic can be viewed in 3-D on your computer monitor or in color print form by wearing red-blue 3-D glasses.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  13. Flat Top as Viewed by the Rover

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This anaglyph view of Flat Top, southwest of the lander, was produced by combining two right eye frames taken from different viewing angles by Sojourner Rover. One of the right eye frames was distorted using Photoshop to approximate the projection of the left eye view (without this, the stereo pair is painful to view). The left view is assigned to the red color plane and the right view to the green and blue color planes (cyan), to produce a stereo anaglyph mosaic. This mosaic can be viewed in 3-D on your computer monitor or in color print form by wearing red-blue 3-D glasses.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  14. Propagation of flat-topped multi-Gaussian beams through a double-lens system with apertures.

    PubMed

    Gao, Yanqi; Zhu, Baoqiang; Liu, Daizhong; Lin, Zunqi

    2009-07-20

    A general model for different apertures and flat-topped laser beams based on the multi-Gaussian function is developed. The general analytical expression for the propagation of a flat-topped beam through a general double-lens system with apertures is derived using the above model. Then, the propagation characteristics of the flat-topped beam through a spatial filter are investigated by using a simplified analytical expression. Based on the Fluence beam contrast and the Fill factor, the influences of a pinhole size on the propagation of the flat-topped multi-Gaussian beam (FMGB) through the spatial filter are illustrated. An analytical expression for the propagation of the FMGB through the spatial filter with a misaligned pinhole is presented, and the influences of the pinhole offset are evaluated.

  15. Ferris Wheel Series Air Vent/Flat Top Events

    DTIC Science & Technology

    1968-09-27

    displacements and horizoe.Wi components of vel.city by direct ground shock. Flat Top I in limestone was ’sub- seismic through most of the range of measurement...cube root. Area 5 playa yielded smaller craters than Area 10 alluvium . Soil moisture was an important factor; Flat Top III, fired in the same soil 60...Results of Surface-Burst Scaling ----------------------- 89 4.5.2 Playa- Alluvium Comparison 90 - 4.5.3 Results, Flat Tops U and III 92 4.5.4 Results

  16. Generation of 8-nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror

    PubMed Central

    Zhao, L. M.; Bartnik, A. C.; Tai, Q. Q.; Wise, F. W.

    2013-01-01

    Theoretical and experimental investigations of the behavior of normal-dispersion fiber lasers with nonlinear-optical loop mirrors are presented. The use of a loop mirror causes the laser to generate relatively long, flat-topped pulses. The pulse energy can be high, but the pulse duration is limited to greater than 300 fs. Experimentally, 8-nJ pulses that can be dechirped to 340 fs duration are obtained. The laser is a step toward an all-fiber, environmentally-stable design. PMID:23722797

  17. Formation of submarine flat-topped volcanic cones in Hawai'i

    NASA Astrophysics Data System (ADS)

    Clague, David A.; Moore, James G.; Reynolds, Jennifer R.

    simultaneously build the rim outward and upward, but also dam and fill in the low point on the rim. The process repeats at the new lowest point, forming a circular structure with a flat horizontal top and steep pillowed margins. There is a delicate balance between lava (heat) supply to the pond and cooling and thickening of the floating crust. Factors that facilitate construction of such landforms include effusive eruption of lava with low volatile contents, moderate to high confining pressure at moderate to great ocean depth, long-lived steady eruption (years to decades), moderate effusion rates (probably ca. 0.1km3/year), and low, but not necessarily flat, slopes. With higher effusion rates, sheet flows flood the slope. With lower effusion rates, pillow mounds form. Hawaiian shield-stage eruptions begin as fissure eruptions. If the eruption is too brief, it will not consolidate activity at a point, and fissure-fed flows will form a pond with irregular levees. The pond will solidify between eruptive pulses if the eruption is not steady. Lava that is too volatile rich or that is erupted in too shallow water will produce fragmental and highly vesicular lava that will accumulate to form steep pointed cones, as occurs during the post-shield stage. The steady effusion of lava on land constructs lava shields, which are probably the subaerial analogs to submarine flat-topped cones but formed under different cooling conditions.

  18. Pulsed IR inductive lasers

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.

    2014-07-01

    Pulsed inductive discharge is a new alternative method of pumping active gas laser media. The work presents results of experimental investigations of near, mid, and far IR inductive gas lasers (H2, HF, and CO2) operating at different transitions of atoms and molecules with different mechanisms of formation of inversion population. The excitation systems of a pulsed inductive cylindrical discharge (pulsed inductively coupled plasma) and pulsed RF inductive discharge in the gases are developed. Various gas mixtures including H2, N2, He, Ne, F2, NF3, and SF6 are used. Characteristics of near IR H2 laser radiation are investigated. Maximal pulse peak power of 7 kW is achieved. The possibility of using a pulsed inductive discharge as a new method of pumping HF laser active medium is demonstrated. The pulsed RF inductive CO2 laser is created and a total efficiency of 17% is achieved.

  19. Laser pulse stacking method

    DOEpatents

    Moses, Edward I.

    1992-01-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

  20. Laser pulse stacking method

    DOEpatents

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  1. Design and test of a flat-top magnetic field system driven by capacitor banks

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Peng, Tao; Xiao, Houxiu; Zhao, Jianlong; Pan, Yuan; Herlach, Fritz; Li, Liang

    2014-04-01

    An innovative method for generating a flat-top pulsed magnetic field by means of capacitor banks is developed at the Wuhan National High Magnetic Field Center (WHMFC). The system consists of two capacitor banks as they are normally used to generate a pulsed field. The two discharge circuits (the magnet circuit and the auxiliary circuit) are coupled by a pulse transformer such that the electromotive force (EMF) induced via the transformer in the magnet circuit containing the magnet coil is opposed to the EMF of the capacitor bank. At a certain point before the current pulse in the coil reaches its peak, the auxiliary circuit is triggered. With optimized parameters for charging voltage and trigger delay, the current in the magnet circuit can be approximately kept constant to obtain a flat-top. A prototype was developed at the WHMFC; the magnet circuit was energized by seven 1 MJ (3.2 mF/25 kV) capacitor modules and the auxiliary circuit by four 1 MJ modules. Fields up to 41 T with 6 ms flat-top have been obtained with a conventional user magnet used at the WHMFC.

  2. Design and test of a flat-top magnetic field system driven by capacitor banks.

    PubMed

    Jiang, Fan; Peng, Tao; Xiao, Houxiu; Zhao, Jianlong; Pan, Yuan; Herlach, Fritz; Li, Liang

    2014-04-01

    An innovative method for generating a flat-top pulsed magnetic field by means of capacitor banks is developed at the Wuhan National High Magnetic Field Center (WHMFC). The system consists of two capacitor banks as they are normally used to generate a pulsed field. The two discharge circuits (the magnet circuit and the auxiliary circuit) are coupled by a pulse transformer such that the electromotive force (EMF) induced via the transformer in the magnet circuit containing the magnet coil is opposed to the EMF of the capacitor bank. At a certain point before the current pulse in the coil reaches its peak, the auxiliary circuit is triggered. With optimized parameters for charging voltage and trigger delay, the current in the magnet circuit can be approximately kept constant to obtain a flat-top. A prototype was developed at the WHMFC; the magnet circuit was energized by seven 1 MJ (3.2 mF/25 kV) capacitor modules and the auxiliary circuit by four 1 MJ modules. Fields up to 41 T with 6 ms flat-top have been obtained with a conventional user magnet used at the WHMFC.

  3. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  4. Pulsed Laser Propulsion.

    DTIC Science & Technology

    1978-10-01

    afforded by a pulsed laser propulsion system over a CW laser propulsion system are 1) simplicity in engine design as a result of permitting the laser...to engineering and weight considerations. The lower boundary of the corridor is set by propellant feed considerations. To the right of this boundary...example, a OOJ -5 per pulse laser operating at 7 x 10 sec between pulses (14, 285 pps) is capable of powering a 30 lb (135 Nt)thrust rocket engine that has

  5. Test results on dual resonant power supply with flat top and flat bottom current

    SciTech Connect

    Schneider, E.

    1987-01-01

    An alternative to the linear increase and decrease of current through the magnets of a circular ring is a dual resonant frequency power supply that can maintain flat bottom and flat top currents in the magnets. This paper deals with the experimental results obtained by operating a model of such a power supply and observing the results of changes in various parameters. The model is first operated in a single-pulse mode starting from an equilibrium dc condition of the magnet flat bottom current. The effects of the circuit losses and the method of replacing energy in the system will be presented. When operating the power supply in continuous mode, it will be shown that the magnet flat bottom current and magnet flat top current can be controlled.

  6. Adjustable magneto-optical isolators with flat-top responses.

    PubMed

    Zamani, Mehdi; Ghanaatshoar, Majid

    2012-10-22

    In order to construct flat-top magneto-optical isolators (MOIs), we have performed a theoretical study on the case of transmission-type one-dimensional magnetophotonic crystals (MPCs). We have introduced high performance MPC structures with flat-top responses and with the capability of adjusting to perfect MOIs. The adjustment is carried out by tuning the applied magnetic field. All introduced MOIs are sufficiently thin with acceptable transmission bandwidth. In the best case, we have achieved a 19.42 μm-thick perfect MOI with the flat-top width of 7.2 nm. For practical purposes, we have also considered the influence of the error in thickness of individual layers on the operational parameters of the MOIs and investigated the possibility of compensating the deviations by the magnetic adjustment.

  7. Electra: durable repetitively pulsed angularly multiplexed KrF laser system

    NASA Astrophysics Data System (ADS)

    Wolford, Matthew F.; Myers, Matthew C.; Giuliani, John L.; Sethian, John D.; Burns, Patrick M.; Hegeler, Frank; Jaynes, Reginald

    2008-02-01

    Electra is a repetitively pulsed, electron beam pumped Krypton Fluoride (KrF) laser at the Naval Research Laboratory that is developing the technologies that can meet the Inertial Fusion Energy (IFE) requirements for durability, efficiency, and cost. The technologies developed on Electra should be directly scalable to a full size fusion power plant beam line. As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system which, consists of a commercial discharge laser (LPX 305i, Lambda Physik), 175 keV electron beam pumped (40 ns flat-top) preamplifier, and 530 keV (100 ns flat-top) main amplifier. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Single shot yield of 452 J has been extracted from the initial shots of the Electra laser system using a relatively low energy preamplifier laser beam. In rep-rate burst of 5 Hz for durations of one second a total energy of 1.585 kJ (average 317 J/pulse) has been attained. Total energy of 2.5 kJ has been attained over a two second period. For comparison, the main amplifier of Electra in oscillator mode has demonstrated at 2.5 Hz rep-rate average laser yield of 270 J over a 2 hour period.

  8. Pulsed inductive HF laser

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.; Demchuk, S. V.

    2016-03-01

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H2 - F2(NF3 or SF66) and He(Ne) - H2 - F2(NF3 or SF6) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% - 6%.

  9. Pulsed excimer laser processing

    NASA Astrophysics Data System (ADS)

    Wong, D.

    1985-06-01

    The status of pulsed excimer laser processing of PV cells is presented. The cost effective feasibility of fabricating high efficiency solar cells on Czochralski wafers using a pulsed excimer laser for junction formation, surface passivation, and front metallization. Laser annealing results were promising with the best AR coated cell having an efficiency of 16.1%. Better results would be expected with larger laser spot size because there was some degradation in open circuit voltage caused by laser spot overlap and edge effects. Surface heating and photolytic decomposition by the laser was used to deposit tungsten from the reaction of tungsten hexafluoride and hydrogen. The line widths were 5 to 10 mils, and the depositions passed the tape adhesion test. Thinner lines are practical using an optimized optical system.

  10. Pulsed excimer laser processing

    NASA Technical Reports Server (NTRS)

    Wong, D.

    1985-01-01

    The status of pulsed excimer laser processing of PV cells is presented. The cost effective feasibility of fabricating high efficiency solar cells on Czochralski wafers using a pulsed excimer laser for junction formation, surface passivation, and front metallization. Laser annealing results were promising with the best AR coated cell having an efficiency of 16.1%. Better results would be expected with larger laser spot size because there was some degradation in open circuit voltage caused by laser spot overlap and edge effects. Surface heating and photolytic decomposition by the laser was used to deposit tungsten from the reaction of tungsten hexafluoride and hydrogen. The line widths were 5 to 10 mils, and the depositions passed the tape adhesion test. Thinner lines are practical using an optimized optical system.

  11. Nanofabrication with pulsed lasers.

    PubMed

    Kabashin, Av; Delaporte, Ph; Pereira, A; Grojo, D; Torres, R; Sarnet, Th; Sentis, M

    2010-02-24

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser-matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  12. Supercontinuum-based 10-GHz flat-topped optical frequency comb generation.

    PubMed

    Wu, Rui; Torres-Company, Victor; Leaird, Daniel E; Weiner, Andrew M

    2013-03-11

    The generation of high-repetition-rate optical frequency combs with an ultra-broad, coherent and smooth spectrum is important for many applications in optical communications, radio-frequency photonics and optical arbitrary waveform generation. Usually, nonlinear broadening techniques of comb-based sources do not provide the required flatness over the whole available bandwidth. Here we present a 10-GHz ultra-broadband flat-topped optical frequency comb (> 3.64-THz or 28 nm bandwidth with ~365 spectral lines within 3.5-dB power variation) covering the entire C-band. The key enabling point is the development of a pre-shaping-free directly generated Gaussian comb-based 10-GHz pulse train to seed a highly nonlinear fiber with normal dispersion profile. The combination of the temporal characteristics of the seed pulses with the nonlinear device allows the pulses to enter into the optical wave-breaking regime, thus achieving a smooth flat-topped comb spectral envelope. To further illustrate the high spectral coherence of the comb, we demonstrate high-quality pedestal-free short pulse compression to the transform-limited duration.

  13. Pulsed inductive HF laser

    SciTech Connect

    Razhev, A M; Kargapol'tsev, E S; Churkin, D S; Demchuk, S V

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  14. Pulsed laser beam intensity monitor

    SciTech Connect

    Cason, C.M.; Jones, R.W.

    1982-07-13

    A pulsed laser beam intensity monitor measures the peak power within a selectable cross section of a test laser beam and measures integrated energy of the beam during the pulse period of a test laser. A continuous wave laser and a pulsed ruby laser are coaxially arranged for simultaneously transmitting optical output energy through a crystal flat during the time a test laser pulse is transmitted through the flat. Due to stress birefringence in the crystal, the ruby laser pulse transmitted through the flat is recorded and analyzed to provide peak power information about the test laser output pulse, and the continuous wave laser output reflected from the crystal flat provides a measurement of energy during the test laser pulse.

  15. Flat-top oscillons in an expanding universe

    SciTech Connect

    Amin, Mustafa A.; Shirokoff, David

    2010-04-15

    Oscillons are extremely long lived, oscillatory, spatially localized field configurations that arise from generic initial conditions in a large number of nonlinear field theories. With an eye towards their cosmological implications, we investigate their properties in an expanding universe. We (1) provide an analytic solution for one-dimensional oscillons (for the models under consideration) and discuss their generalization to three dimensions, (2) discuss their stability against long wavelength perturbations, and (3) estimate the effects of expansion on their shapes and lifetimes. In particular, we discuss a new, extended class of oscillons with surprisingly flat tops. We show that these flat-topped oscillons are more robust against collapse instabilities in (3+1) dimensions than their usual counterparts. Unlike the solutions found in the small amplitude analysis, the width of these configurations is a nonmonotonic function of their amplitudes.

  16. Nanofabrication with Pulsed Lasers

    PubMed Central

    2010-01-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics. PMID:20672069

  17. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  18. Laser pulse sampler

    DOEpatents

    Vann, Charles

    1998-01-01

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera.

  19. Laser pulse sampler

    DOEpatents

    Vann, C.

    1998-03-24

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera. 5 figs.

  20. Laser pulse detector

    DOEpatents

    Mashburn, Douglas N.; Akerman, M. Alfred

    1981-01-01

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  1. Laser pulse detector

    DOEpatents

    Mashburn, D.N.; Akerman, M.A.

    1979-08-13

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  2. Design of the flat-top acceleration system for the JAERI AVF cyclotron

    NASA Astrophysics Data System (ADS)

    Kurashima, S.; Fukuda, M.; Nakamura, Y.; Nara, T.; Agematsu, T.; Ishibori, I.; Tamura, H.; Yokota, W.; Okumura, S.; Arakawa, K.; Kumata, Y.; Fukumoto, Y.

    2001-12-01

    A flat-top acceleration system for the JAERI AVF cyclotron has been designed. The fifth harmonic of the fundamental frequency is used to obtain uniform energy gain. To determine optimum parameters of the flat-top system, a cold model test was carried out and flat-top waveforms of the voltages were observed successfully in the whole range of the fundamental frequency. An rf power required for generating a flat-top dee voltage of 30 kV was estimated to be about 1 kW. The design of the flat-top cavity is being modified using the MAFIA code.

  3. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  4. Design and construction of a prototype of a flat top beam interferometer and initial tests.

    NASA Astrophysics Data System (ADS)

    Agresti, J.; D'Ambrosio, E.; DeSalvo, R.; Forest, D.; Lagrange, B.; Mackowski, J. M.; Michel, C.; Montorio, J. L.; Morgado, N.; Pinard, L.; Remillieux, A.; Simoni, B.; Tarallo, M.; Willems, P.

    2006-03-01

    A non-Gaussian, flat-top laser beam profile, also called Mesa Beam Profile, supported by non spherical mirrors known as Mexican Hat (MH) mirrors, has been proposed as a way to depress the mirror thermal noise and thus improve the sensitivity of future interferometric Gravitational Wave detectors, including Advanced LIGO [1]. Non-Gaussian beam configurations have never been tested before [2] hence the main motivation of this project is to demonstrate the feasibility of this new concept. A 7m rigid suspended Fabry-Perot (FP) cavity which can support a scaled version of a Mesa beam applicable to the LIGO interferometers has been developed. The FP cavity prototype is being designed to prove the feasibility of actual MH mirror profiles, determine whether a MH mirror cavity is capable of transforming an incoming Gaussian beam into a flat top beam profile, study the effects of unavoidable mirror imperfections on the resulting beam profile and gauge the difficulties associated with locking and maintaining the alignment of such an optical cavity. We present the design of the experimental apparatus and simulations comparing Gaussian and Mesa beams performed both with ideal and current (measured) mirror profiles. An overview of the technique used to manufacture this kind of mirror and initial results showing Mesa beam properties are presented.

  5. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  6. Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression

    NASA Astrophysics Data System (ADS)

    Varshnay, N. K.; Singh, A.; Benerji, N. S.

    2017-02-01

    Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression suitable for material processing applications are presented here. The laser incorporates in-built compact gas circulation and gas cooling to ensure fresh gas mixture between the electrodes for repetitive operation. A magnetically coupled tangential blower is used for gas circulation inside the laser chamber for repetitive operation. The exciter consists of C-C energy transfer circuit and thyratron is used as a high-voltage main switch with single-stage magnetic pulse compression (MPC) between thyratron and the laser electrodes. Low inductance of the laser head and uniform and intense pre-ionization are the main features of the electric circuit used in the laser. A 250 ns rise time voltage pulse was compressed to 100 ns duration with a single-stage magnetic pulse compressor using Ni-Zn ferrite cores. The laser can generate about 150 mJ at ˜100 Hz rep-rate reliably from a discharge volume of 100 cm 3. 2D spatial laser beam profile generated is presented here. The profile shows that the laser beam is completely filled with flat-top which is suitable for material processing applications. The SEM image of the microhole generated on copper target is presented here.

  7. Production of quasi ellipsoidal laser pulses for next generation high brightness photoinjectors

    NASA Astrophysics Data System (ADS)

    Rublack, T.; Good, J.; Khojoyan, M.; Krasilnikov, M.; Stephan, F.; Hartl, I.; Schreiber, S.; Andrianov, A.; Gacheva, E.; Khazanov, E.; Mironov, S.; Potemkin, A.; Zelenogorskii, V. V.; Syresin, E.

    2016-09-01

    The use of high brightness electron beams in Free Electron Laser (FEL) applications is of increasing importance. One of the most promising methods to generate such beams is the usage of shaped photocathode laser pulses. It has already demonstrated that temporal and transverse flat-top laser pulses can produce very low emittance beams [1]. Nevertheless, based on beam simulations further improvements can be achieved using quasi-ellipsoidal laser pulses, e.g. 30% reduction in transverse projected emittance at 1 nC bunch charge. In a collaboration between DESY, the Institute of Applied Physics of the Russian Academy of Science (IAP RAS) in Nizhny Novgorod and the Joint Institute of Nuclear Research (JINR) in Dubna such a laser system capable of producing trains of laser pulses with a quasi-ellipsoidal distribution, has been developed. The prototype of the system was installed at the Photo Injector Test facility at DESY in Zeuthen (PITZ) and is currently in the commissioning phase. In the following, the laser system will be introduced, the procedure of pulse shaping will be described and the last experimental results will be shown.

  8. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  9. Photocathode rf gun emittance measurements using variable-length laser pulses

    NASA Astrophysics Data System (ADS)

    Schmerge, John F.; Hernandez, Mike; Hogan, Mark J.; Reis, David A.; Winick, Herman

    1999-07-01

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center (SLAC) was created to develop an appropriate injector for the proposed Linac Coherent Light Source (LCLS) at SLAC. The LCLS design requires the injector to produce a beam with at least 1 nC of charge in a 10 ps or shorter pulse with no greater than 1 (pi) mm-mrad normalized rms emittance. The first photoinjector under study at the GTF is a 1.6 cell S-band symmetrized gun with an emittance compensation solenoid. Emittance measurements, reported here, were made as function of the transverse laser pulse shape and the Gaussian longitudinal laser pulse length. The lowest achieved emittance to data with 1 nC of charge is 5.6 (pi) mm-mrad and was obtained with both a Gaussian longitudinal and transverse pulse shape with 5 ps FWHM and 2.4 mm FWHM respectively. The measurement is in agreement with a PARMELA simulation using measured beam parameters. There are indications that the accelerator settings used in the results presented here were not optimal. Simulations indicate that a normalized emittance meeting the LCLS requirement can be obtained using appropriately shaped transverse and temporal laser/electron beam pulses. Work has begun on producing temporal flat top laser pulses which combined with transverse clipping of the laser is expected to lower the emittance to approximately 1 (pi) mm-mrad for 1 nC beams with optimal accelerator settings.

  10. Investigations of structural defects, crystalline perfection, metallic impurity concentration and optical quality of flat-top KDP crystal

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Verma, Sunil; Singh, Yeshpal; Bartwal, K. S.; Tiwari, M. K.; Lodha, G. S.; Bhagavannarayana, G.

    2015-08-01

    KDP crystal grown using flat-top technique has been characterized using X-ray and optical techniques with the aim of correlating the defects structure and impurity concentration in the crystal with its optical properties. Crystallographic defects were investigated using X-ray topography revealing linear and arc like chains of dislocations and to conclude that defects do not originate from the flat-top part of the crystal. Etching was performed to quantify dislocation defects density. The crystalline perfection of the crystal was found to be high as the FWHM of the rocking curves measured at several locations was consistently low 6-9 arc s. The concentration of Fe metallic impurity quantified using X-ray fluorescence technique was approximately 5 times lower in the flat-top part which falls in pyramidal growth sector as compared to the region near to the seed which lies in prismatic sector. The spectrophotometric characterization for plates cut normal to different crystallographic directions in the flat-top potassium dihydrogen phosphate (FT-KDP) crystal was performed to understand the influence of metallic impurity distribution and growth sectors on the optical transmittance. The transmittance of the FT-KDP crystal at 1064 nm and its higher harmonics (2nd, 3rd, 4th and 5th) was determined from the measured spectra and the lower transmission in the UV region was attributed to increased absorption by Fe metallic impurity at these wavelengths. The results are in agreement with the results obtained using X-ray fluorescence and X-ray topography. Birefringence and Mach-Zehnder interferometry show that except for the region near to the seed crystal the optical homogeneity of the entire crystal was good. The laser-induced damage threshold (LDT) values are in the range 2.4-3.9 GW/cm2. The LDT of the plate taken from the flat-top region is higher than that from the bottom of the crystal, indicating that the flat-top technique has good optical quality and is comparable to

  11. Laser system using ultra-short laser pulses

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  12. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  13. A novel miniaturized passively Q-switched pulse-burst laser for engine ignition.

    PubMed

    Ma, Yufei; Li, Xudong; Yu, Xin; Fan, Rongwei; Yan, Renpeng; Peng, Jiangbo; Xu, Xinrui; Sun, Rui; Chen, Deying

    2014-10-06

    A novel miniaturized Cr⁴⁺:YAG passively Q-switched Nd:YAG pulse-burst laser under 808 nm diode-laser pulse-pumping was demonstrated for the purpose of laser-induced plasma ignition, in which pulse-burst mode can realize both high repetition rate and high pulse energy simultaneously in a short period. Side-pumping configuration and two different types of laser cavities were employed. The pumping pulse width was constant at 250 μs. For the plane-plane cavity, the output beam profile was flat-top Gaussian and the measured M² value was 4.1 at the maximum incident pump energy of 600 mJ. The pulse-burst laser contained a maximum of 8 pulses, 7 pulses and 6 pulses for pulse-burst repetition rate of 10 Hz, 50 Hz and 100 Hz, respectively. The energy obtained was 15.5 mJ, 14.9 mJ and 13.9 mJ per pulse for pulse-burst repetition rate of 10 Hz, 50 Hz and 100 Hz, respectively. The maximum repetition rate of laser pulses in pulse-burst was 34.6 kHz for 8 pulses at the incident pump energy of 600 mJ and the single pulse width was 13.3 ns. The thermal lensing effect of Nd:YAG rod was investigated, and an plane-convex cavity was adopted to compensate the thermal lensing effect of Nd:YAG rod and improve the mode matching. For the plane-convex cavity, the output beam profile was quasi-Gaussian and the measured M2 value was 2.2 at the incident pump energy of 600 mJ. The output energy was 10.6 mJ per pulse for pulse-burst repetition rate of 100 Hz. The maximum repetition rate of laser pulses in pulse-burst was 27.4 kHz for 6 pulses at the incident pump energy of 600 mJ and the single pulse width was 14.2 ns. The experimental results showed that this pulse-burst laser can produce high repetition rate (>20 kHz) and high pulse energy (>10 mJ) simultaneously in a short period for both two different cavities.

  14. Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses.

    PubMed

    Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A

    2016-10-01

    We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.

  15. Transverse emittance measurements from a photocathode RF gun with variable laser pulse length

    NASA Astrophysics Data System (ADS)

    Reis, D. A.; Hernandez, M.; Schmerge, J. F.; Winick, H.; Hogan, M. J.

    1999-06-01

    The gun test facility (GTF) at SSRL was started in 1996 to develop an appropriate injector for the proposed linac coherent light source (LCLS) at SLAC. The LCLS design requires the injector to produce a beam with at least 1 nC of charge in a 10 ps or shorter pulse with no greater than 1π mm mrad normalized rms emittance. The photoinjector at the GTF is 1.6 cell S-band symmetrized gun and emittance compensation solenoid. Emittance measurements, reported here, were made as function of laser pulse width using Gaussian longitudinal pulses. The lowest achieved emittance to date with 1 nC of charge is 5.6π mm mrad and was obtained with a pulse width of 5 ps (FWHM) and is in agreement with simulation. There are indications that the accelerator settings for these results may not have been optimal. Simulations also indicate that a normalized emittance meeting the LCLS requirement can be obtained using appropriately shaped transverse and temporal laser/electron beam pulses. Work has begun on producing temporal flat top laser pulses which combined with transverse clipping of the laser is expected to lower the emittance to approximately 1π mm mrad for 1 nC with optimal accelerator settings.

  16. Dual-Laser-Pulse Ignition

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Early, James W.; Thomas, Matthew E.; Bossard, John A.

    2006-01-01

    A dual-pulse laser (DPL) technique has been demonstrated for generating laser-induced sparks (LIS) to ignite fuels. The technique was originally intended to be applied to the ignition of rocket propellants, but may also be applicable to ignition in terrestrial settings in which electric igniters may not be suitable.

  17. Ultrashort laser pulse beam shaping.

    PubMed

    Zhang, Shuyan; Ren, Yuhang; Lüpke, Gunter

    2003-02-01

    We calculated the temporal and spatial characteristics of an ultrashort laser pulse propagating through a diffractive beam-shaping system that converts a Gaussian beam into a beam with a uniform irradiance profile that was originally designed for continuous waves [Proc. SPIE 2863, 237(1996)]. The pulse front is found to be considerably curved for a 10-fs pulse, resulting in a temporal broadening of the pulse that increases with increasing radius. The spatial intensity distribution deviates significantly from a top-hat profile, whereas the fluence shows a homogeneous radial distribution.

  18. Flat-top AWG based on InP deep ridge waveguide

    NASA Astrophysics Data System (ADS)

    Pan, Pan; An, Junming; Zhang, Jiashun; Wang, Yue; Wang, Hongjie; Wang, Liangliang; Yin, Xiaojie; Wu, Yuanda; Li, Jianguang; Han, Qin; Hu, Xiongwei

    2015-11-01

    To relax the requirements on wavelength control of arrayed waveguide grating (AWG) in InP-based photonic integrated circuits (PIC), two kinds of 10-channel InP-based AWGs with flat-top spectral response are designed and fabricated by introducing a rectangle multi-mode interference (MMI) or a parabolic MMI at the end of input waveguide. The test results demonstrate that these two kinds of flat-top AWGs have obtained flattened spectral response with 3 dB-bandwidth of about 1.7 nm, and the parabolic MMI-based flat-top AWG has 0.7 dB superiority in on-chip loss.

  19. Emission of strong Terahertz pulses from laser wakefields in weakly coupled plasma

    NASA Astrophysics Data System (ADS)

    Singh, Divya; Malik, Hitendra K.

    2016-09-01

    The present paper discusses the laser plasma interaction for the wakefield excitation and the role of external magnetic field for the emission of Terahertz radiation in a collisional plasma. Flat top lasers are shown to be more appropriate than the conventional Gaussian lasers for the effective excitation of wakefields and hence, the generation of strong Terahertz radiation through the transverse component of wakefield.

  20. Coaxial short pulsed laser

    DOEpatents

    Nelson, M.A.; Davies, T.J.

    1975-08-01

    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors. (auth)

  1. Short pulse free electron laser amplifier

    DOEpatents

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  2. Flat top liquid crystal tunable filter using coupled Fabry-Perot cavities.

    PubMed

    Alboon, Shadi A; Lindquist, Robert G

    2008-01-07

    In this paper, a coupled Fabry-Perot cavities filter, using the liquid crystal as the tunable medium, is investigate to achieve tunable flat top filtering performance across the C and L bands. A tandem coupled Fabry-Perot is presented for a tunable passband filter with flat top and minimum ripple in the passband. The overall tuning range of the filter is 172 nm. Several designs are shown with comparable performance to the commercial available 100 GHz fixed single channel filters.

  3. Characterization and compression of dissipative-soliton-resonance pulses in fiber lasers

    PubMed Central

    Li, Daojing; Li, Lei; Zhou, Junyu; Zhao, Luming; Tang, Dingyuan; Shen, Deyuan

    2016-01-01

    We report numerical and experimental studies of dissipative-soliton-resonance (DSR) in a fiber laser with a nonlinear optical loop mirror. The DSR pulse presents temporally a flat-top profile and a clamped peak power. Its spectrum has a rectangle profile with characteristic steep edges. It shows a unique behavior as pulse energy increases: The rectangle part of the spectrum is unchanged while the newly emerging spectrum sits on the center part and forms a peak. Experimental observations match well with the numerical results. Moreover, the detailed evolution of the DSR pulse compression is both numerically and experimentally demonstrated for the first time. An experimentally obtained DSR pulse of 63 ps duration is compressed down to 760 fs, with low-intensity pedestals using a grating pair. Before being compressed to its narrowest width, the pulse firstly evolves into a cat-ear profile, and the corresponding autocorrelation trace shows a crown shape, which distinguishes itself from properties of other solitons formed in fiber lasers. PMID:27025189

  4. Ultrashort-pulse laser machining

    SciTech Connect

    Banks, P S; Feit, M D; Nguyen, H T; Perry, M D; Rubenchik, A M; Sefcik, J A; Stuart, B C

    1998-09-01

    A new type of material processing is enabled with ultrashort (t < 10 ps) laser pulses. Cutting, drilling, sculpting of all materials (biologic materials, ceramics, sapphire, silicon carbide, diamond, metals) occurs by new mechanisms that eliminate thermal shock or collateral damage. High-precision machining to submicron tolerances is enabled resulting in high surface quality and negligible heat affected zone.

  5. Ultrashort-pulse lasers machining

    SciTech Connect

    Banks, P S; Feit, M D; Nguyen, H T; Perry, M D, Stuart, B C

    1999-01-22

    A new type of material processing is enabled with ultrashort (t < 10 psec) laser pulses. Cutting, drilling, sculpting of all materials (biologic materials, ceramics, sapphire, silicon carbide, diamond, metals) occurs by new mechanisms which eliminate thermal shock or collateral damage. High precision machining to submicron tolerances is enabled resulting in high surface quality and negligible heat affected zone.

  6. Propagation properties of radial partially coherent flat-topped array beams in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Li, Xiangyin

    2010-11-01

    With the help of the tensor method, the analytical expression for the cross-spectral density of the radial partially coherent flat-topped array (RPCFTA) beams propagating in a turbulent atmosphere is derived, where the correlated superposition and uncorrelated superposition are considered. The average intensity, the spatial coherence properties and power in bucket (PIB) of these kinds of beams are investigated in detail. It is shown by numerical results and analysis that the average intensity and the spatial coherence of the correlated or uncorrelated RPCFTA beams will change on propagation and this change is dependent upon the correlation of the source's beamlets and atmospheric turbulence. In addition, the comparisons of the average intensity and the spatial coherence between the correlated and the uncorrelated RPCFTA beams propagating both in turbulent atmosphere and in free space are also given, and some interesting results are obtained. The laser power of focus ability of the single PCFT beam is worse than that of the correlated RPCFTA beam and but better than that of the uncorrelated RPCFTA beam when propagation distance in turbulent atmosphere is far-field plane.

  7. Flat-top acceleration system for the variable-energy multiparticle AVF cyclotron

    NASA Astrophysics Data System (ADS)

    Fukuda, Mitsuhiro; Kurashima, Satoshi; Okumura, Susumu; Miyawaki, Nobumasa; Agematsu, Takashi; Nakamura, Yoshiteru; Nara, Takayuki; Ishibori, Ikuo; Yoshida, Kenichi; Yokota, Watalu; Arakawa, Kazuo; Kumata, Yukio; Fukumoto, Yasushi; Saito, Katsuhiko

    2003-04-01

    A flat-top acceleration system appropriate to minimization of energy spread in an ion beam was investigated for the JAERI AVF cyclotron. A combination of the fundamental- and the fifth-harmonic voltages to obtain a homogeneous energy gain distribution of accelerated particles is ideally suited to a variable-energy multiparticle cyclotron using acceleration harmonics of 1, 2, and 3. The flat topping of the energy gain distribution using the fifth harmonics has the advantages of minimizing amplifier power, reducing power dissipation in a resonator, and increasing the energy gain per turn. The flat-top acceleration system was designed to reduce the energy spread to 0.02%, which fulfills a beam focusing condition for production of a microbeam with a beam spot diameter of 1 μm. Tolerable fluctuations of acceleration voltages, required to achieve the energy spread of 0.02%, were 2.0×10-4 for the fundamental voltage and 1.0×10-3 for the fifth-harmonic voltage. Both fundamental- and fifth-harmonic phases were required to be stabilized within 0.2 rf degrees. The tolerance of the magnetic excitation was 1.9×10-5. In order to enhance compactness of the flat-topping cavity and to make a substantial saving of the amplifier power, optimum geometric parameters of the flat-topping cavity were determined by a cold model test and a calculation using the MAFIA code. A full range of the fifth-harmonic frequency, 55-110 MHz, was covered by the flat-top system, which enables us to apply the flat-top acceleration to a wide range of energy.

  8. Pulsed Submillimeter Laser Program.

    DTIC Science & Technology

    1979-05-15

    flouride (CH3 F) located in a 7 cm absorption cell. The signal derived from the interaction occurring in this cell is used in conjunction with phase...methyl flouride it appears this technique can be generally applied to optimize the pump frequency for many other optically pumped FIR laser transitions...line of the 9 pm band with CH3 F. In Figure 37 is shown a simplified energy- level diagram of the prolate symmetric top methyl flouride molecule. The

  9. Developing Pulsed Fiber Lasers

    DTIC Science & Technology

    2007-06-15

    moving pupil imaging system. Y. Kawagoe et al. furthered the research in the early 80’s by using a rotating aperture at the Fourier ...dependent terms in Eq. 16 by their respective Fourier Series Eq. 16 can be written in the following form, ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( ) 1 2 0...Asakura, “Speckle reduction by a rotating aperture at the Fourier transform plane,” Opt. Lasers in Eng., 3 197-218, (1982) [8] T. Iwai, N. Takai

  10. Nanosecond component in a femtosecond laser pulse

    SciTech Connect

    Shneider, M. N.; Semak, V. V.; Zhang Zhili

    2012-11-15

    Experimental and computational results show that the coherent microwave scattering from a laser-induced plasma can be used for measuring the quality of a fs laser pulse. The temporal dynamics of the microwave scattered signal from the fs-laser induced plasma can be related to the effect of nanosecond tail of the fs laser pulse.

  11. Pulse transformer for GaAs laser

    NASA Technical Reports Server (NTRS)

    Rutz, E. M.

    1976-01-01

    High-radiance gallium arsenide (GaAs) laser operating at room temperature is utilized in optical navigation system. For efficient transformer-to-laser impedance match, laser should be connected directly to pulse transformer secondary winding.

  12. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  13. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability.

  14. Dark pulse emission of a fiber laser

    SciTech Connect

    Zhang, H.; Tang, D. Y.; Zhao, L. M.; Wu, X.

    2009-10-15

    We report on the dark pulse emission of an all-normal dispersion erbium-doped fiber laser with a polarizer in cavity. We found experimentally that apart from the bright pulse emission, under appropriate conditions the fiber laser could also emit single or multiple dark pulses. Based on numerical simulations we interpret the dark pulse formation in the laser as a result of dark soliton shaping.

  15. Ultrashort-pulse laser calligraphy

    NASA Astrophysics Data System (ADS)

    Yang, Weijia; Kazansky, Peter G.; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Hirao, Kazuyuki

    2008-10-01

    Control of structural modifications inside silica glass by changing the front tilt of an ultrashort pulse is demonstrated, achieving a calligraphic style of laser writing. The phenomena of anisotropic bubble formation at the boundary of an irradiated region and modification transition from microscopic bubbles formation to self-assembled form birefringence are observed, and the physical mechanisms are discussed. The results provide the comprehensive evidence that the light beam with centrosymmetric intensity distribution can produce noncentrosymmetric material modifications.

  16. Random source generating far field with elliptical flat-topped beam profile

    NASA Astrophysics Data System (ADS)

    Zhang, Yongtao; Cai, Yangjian

    2014-07-01

    Circular and rectangular multi-Gaussian Schell-model (MGSM) sources which generate far fields with circular and rectangular flat-topped beam profiles were introduced just recently (Sahin and Korotkova 2012 Opt. Lett. 37 2970; Korotkova 2014 Opt. Lett. 39 64). In this paper, a random source named an elliptical MGSM source is introduced. An analytical expression for the propagation factor of an elliptical MGSM beam is derived. Furthermore, an analytical propagation formula for an elliptical MGSM beam passing through a stigmatic ABCD optical system is derived, and its propagation properties in free space are studied. It is interesting to find that an elliptical MGSM source generates a far field with an elliptical flat-topped beam profile, being qualitatively different from that of circular and rectangular MGSM sources. The ellipticity and the flatness of the elliptical flat-topped beam profile in the far field are determined by the initial coherence widths and the beam index, respectively.

  17. Controllable Si (100) micro/nanostructures by chemical-etching-assisted femtosecond laser single-pulse irradiation

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Xie, Qian; Jiang, Lan; Han, Weina; Wang, Qingsong; Wang, Andong; Hu, Jie; Lu, Yongfeng

    2017-05-01

    In this study, silicon micro/nanostructures of controlled size and shape are fabricated by chemical-etching-assisted femtosecond laser single-pulse irradiation, which is a flexible, high-throughput method. The pulse fluence is altered to create various laser printing patterns for the etching mask, resulting in the sequential evolution of three distinct surface micro/nanostructures, namely, ring-like microstructures, flat-top pillar microstructures, and spike nanostructures. The characterized diameter of micro/nanostructures reveals that they can be flexibly tuned from the micrometer (˜2 μm) to nanometer (˜313 nm) scales by varying the laser pulse fluence in a wide range. Micro-Raman spectroscopy and transmission electron microscopy are utilized to demonstrate that the phase state changes from single-crystalline silicon (c-Si) to amorphous silicon (a-Si) after single-pulse femtosecond laser irradiation. This amorphous layer with a lower etching rate then acts as a mask in the wet etching process. Meanwhile, the on-the-fly punching technique enables the efficient fabrication of large-area patterned surfaces on the centimeter scale. This study presents a highly efficient method of controllably manufacturing silicon micro/nanostructures with different single-pulse patterns, which has promising applications in the photonic, solar cell, and sensors fields.

  18. Wakefield generation via two color laser pulses

    SciTech Connect

    Jha, Pallavi; Saroch, Akanksha; Kumar Verma, Nirmal

    2013-05-15

    The analytical study for the evolution of longitudinal as well as transverse electric wakefields, generated via passage of two color laser pulses through uniform plasma, has been presented in the mildly relativistic regime. The frequency difference between the two laser pulses is assumed to be equal to the plasma frequency, in the present analysis. The relative angle between the directions of polarization of the two laser pulses is varied and the wakefield amplitudes are compared. Further, the amplitude of the excited wakes by two color pulses are compared with those generated by a single laser pulse.

  19. Single-turn extraction from a K110 AVF cyclotron by flat-top acceleration

    NASA Astrophysics Data System (ADS)

    Kurashima, Satoshi; Miyawaki, Nobumasa; Okumura, Susumu; Ishibori, Ikuo; Nara, Takayuki; Agematsu, Takashi; Yoshida, Ken-ichi; Yokota, Watalu; Nakamura, Yoshiteru; Arakawa, Kazuo; Fukuda, Mitsuhiro

    2009-03-01

    Single-turn extraction from the Japan Atomic Energy Agency AVF cyclotron with a K number of 110 using a flat-top (FT) acceleration system has been achieved to reduce the energy spread of an ion beam for microbeam formation with energy up to hundreds of MeV and to increase extraction efficiency from the cyclotron. In order to generate a FT waveform voltage using the fifth-harmonic frequency on a dee electrode, a FT resonator was designed using MAFIA code to achieve downsizing and low power consumption. The FT resonator, coupled to the main resonator through a coupling capacitor, covered the full range of the fifth harmonic frequency from 55 to 110 MHz. Various ion beams, accelerated using different acceleration harmonic modes of h =1 and 2, such as 220 MeV C125+ (h=2), 260 MeV N20e7+ (h =2), and 45 MeV H+ (h =1), were developed by FT acceleration. A clear turn separation of the beam bunches was successfully observed at the extraction region of the large-scale AVF cyclotron with number of revolutions greater than 200. As a result, high extraction efficiency (over 95%) from the cyclotron was achieved. Single-turn extraction was confirmed by counting the number of beam bunches out of the cyclotron for an injected beam pulsed by a beam chopping system in the injection line. The energy spread of the 260 MeV N20e7+ beam was measured using an analyzing magnet, and we verified a reduction in the energy spread from ΔE /E=0.1% to 0.05% by single-turn extraction after FT acceleration.

  20. Single-turn extraction from a K110 AVF cyclotron by flat-top acceleration.

    PubMed

    Kurashima, Satoshi; Miyawaki, Nobumasa; Okumura, Susumu; Ishibori, Ikuo; Nara, Takayuki; Agematsu, Takashi; Yoshida, Ken-ichi; Yokota, Watalu; Nakamura, Yoshiteru; Arakawa, Kazuo; Fukuda, Mitsuhiro

    2009-03-01

    Single-turn extraction from the Japan Atomic Energy Agency AVF cyclotron with a K number of 110 using a flat-top (FT) acceleration system has been achieved to reduce the energy spread of an ion beam for microbeam formation with energy up to hundreds of MeV and to increase extraction efficiency from the cyclotron. In order to generate a FT waveform voltage using the fifth-harmonic frequency on a dee electrode, a FT resonator was designed using MAFIA code to achieve downsizing and low power consumption. The FT resonator, coupled to the main resonator through a coupling capacitor, covered the full range of the fifth harmonic frequency from 55 to 110 MHz. Various ion beams, accelerated using different acceleration harmonic modes of h=1 and 2, such as 220 MeV (12)C(5+) (h=2), 260 MeV (20)Ne(7+) (h=2), and 45 MeV H(+) (h=1), were developed by FT acceleration. A clear turn separation of the beam bunches was successfully observed at the extraction region of the large-scale AVF cyclotron with number of revolutions greater than 200. As a result, high extraction efficiency (over 95%) from the cyclotron was achieved. Single-turn extraction was confirmed by counting the number of beam bunches out of the cyclotron for an injected beam pulsed by a beam chopping system in the injection line. The energy spread of the 260 MeV (20)Ne(7+) beam was measured using an analyzing magnet, and we verified a reduction in the energy spread from DeltaE/E=0.1% to 0.05% by single-turn extraction after FT acceleration.

  1. Single-turn extraction from a K110 AVF cyclotron by flat-top acceleration

    SciTech Connect

    Kurashima, Satoshi; Miyawaki, Nobumasa; Okumura, Susumu; Ishibori, Ikuo; Nara, Takayuki; Agematsu, Takashi; Yoshida, Ken-ichi; Yokota, Watalu; Nakamura, Yoshiteru; Arakawa, Kazuo; Fukuda, Mitsuhiro

    2009-03-15

    Single-turn extraction from the Japan Atomic Energy Agency AVF cyclotron with a K number of 110 using a flat-top (FT) acceleration system has been achieved to reduce the energy spread of an ion beam for microbeam formation with energy up to hundreds of MeV and to increase extraction efficiency from the cyclotron. In order to generate a FT waveform voltage using the fifth-harmonic frequency on a dee electrode, a FT resonator was designed using MAFIA code to achieve downsizing and low power consumption. The FT resonator, coupled to the main resonator through a coupling capacitor, covered the full range of the fifth harmonic frequency from 55 to 110 MHz. Various ion beams, accelerated using different acceleration harmonic modes of h=1 and 2, such as 220 MeV {sup 12}C{sup 5+} (h=2), 260 MeV {sup 20}Ne{sup 7+} (h=2), and 45 MeV H{sup +} (h=1), were developed by FT acceleration. A clear turn separation of the beam bunches was successfully observed at the extraction region of the large-scale AVF cyclotron with number of revolutions greater than 200. As a result, high extraction efficiency (over 95%) from the cyclotron was achieved. Single-turn extraction was confirmed by counting the number of beam bunches out of the cyclotron for an injected beam pulsed by a beam chopping system in the injection line. The energy spread of the 260 MeV {sup 20}Ne{sup 7+} beam was measured using an analyzing magnet, and we verified a reduction in the energy spread from {delta}E/E=0.1% to 0.05% by single-turn extraction after FT acceleration.

  2. Pulse shaping on the Nova laser system

    SciTech Connect

    Lawson, J.K.; Speck, D.R.; Bibeau, C.; Weiland, T.L.

    1989-02-06

    Inertial confinement fusion requires temporally shaped pulses to achieve high gain efficiency. Recently, we demonstrated the ability to produce complex temporal pulse shapes at high power at 0.35 microns on the Nova laser system. 2 refs., 2 figs.

  3. Generation of modulated microchip laser pulses

    NASA Astrophysics Data System (ADS)

    Almabouada, F.; Aiadi, K. E.; Louhibi, D.

    2015-01-01

    Modulated 532 nm laser pulses were generated by a Nd:YVO4 microchip laser and a KTP crystal end-pumped by a 808 nm laser diode. The interest in such works arise from the efficiency of this type of laser in several applications. To obtain the desired type of the modulated laser pulses, the electrical circuit of the laser diode was designed so as to enable varying their driving signal and current values. Different modulated signals were used, such as square wave, sine wave, and burst mode pulses. Varying the peak drive current, the duty cycle, and the number of pulses allowed us to adjust the laser energy. For the burst mode experiment, the pulse energy obtained was about 1.2 μJ.

  4. BER of flat-topped Gaussian beam in slant path turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Lu, Fang; Han, Yanyan; Han, Xiang-e.; Yang, Rui-ke

    2013-08-01

    Based on the theory of optical wave propagation in the slant path and the ITU-R turbulence structure constant model which is dependent on altitude, the on-axis scintillation index of the flat-topped Gaussian beam at the receiver plane in slant path turbulence was given by using Kolmogorov atmospheric turbulence power spectrum model. The influences of the link altitudes, atmospheric refractive index structure constant C0 at the ground,the source size and the beam order on scintillation index of the flat-topped Gaussian beam are discussed in detail. The result shows that the scintillation index increased first and then decreased with the increase of the beam order. The advantage of a flat-topped Gaussian beam over a single Gaussian beam is restricted to small source sizes, which is consistent with the case of the horizontal path. To find the average bit error rate under weak slant path turbulence, the log-normal distribution model of the intensity fluctuation was used. The influence of beam order and source size on BER was discussed. The result indicates that the smaller sized flat-topped Gaussian beam will bring average bit error rate advantage over the same size Gaussian beam. Our results correctly reduce to the result of the horizontal path with atmospheric structure constant fixed.

  5. Generation of skewed laser pulses for laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Toth, C.; Faure, J.; Geddes, C. G. R.; van Tilborg, J.; Leemans, W. P.

    2002-11-01

    The effect of asymmetric laser pulses on electron yield from a laser wakefield accelerator has been experimentally studied (W.P. Leemans et al., submitted to Phys. Rev. Lett.) using > 10^19 cm-3 plasmas and a 10 TW, > 45 fs, Ti:Al_2O3 laser. The non-Gaussian laser pulse shapes were controlled through non-linear chirp with a grating pair compressor. Pulses (76 fs FWHM) with a steep rise (positive skew) were found to significantly enhance the electron yield compared to pulses with a gentle rise (negative skew). These results demonstrate that laser wakefield accelerator can be optimized using skewed laser pulses. Controlling the skewness of laser pulses can be done by appropriate choice of the higher order spectral phase coefficients. Details on how this is done using non-linear chirp using grating compressor, as well as an acousto-optic system (DAZZLER) will be presented.

  6. High efficiency and high-energy intra-cavity beam shaping laser

    NASA Astrophysics Data System (ADS)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-09-01

    We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%.

  7. Photoemission using femtosecond laser pulses

    SciTech Connect

    Srinivasan-Rao, T.; Tsang, T.; Fischer, J.

    1991-10-01

    Successful operation of short wavelength FEL requires an electron bunch of current >100 A and normalized emittance < 1 mm-mrad. Recent experiments show that RF guns with photocathodes as the electron source may be the ideal candidate for achieving these parameters. To reduce the emittance growth due to space charge and RF dynamics effects, the gun may have to operate at high field gradient (hence at high RF frequency) and a spot size small compared to the aperture. This may necessitate the laser pulse duration to be in the subpicosecond regime to reduce the energy spread. We will present the behavior of metal photocathodes upon irradiation with femtosecond laser beams, comparison of linear and nonlinear photoemission, and scalability to high currents. Theoretical estimate of the intrinsic emittance at the photocathode in the presence of the anomalous heating of the electrons, and the tolerance on the surface roughness of the cathode material will be discussed.

  8. Chemical aerosol detection using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Alexander, Dennis R.; Rohlfs, Mark L.; Stauffer, John C.

    1997-07-01

    Many chemical warfare agents are dispersed as small aerosol particles. In the past, most electro-optical excitation and detection schemes have used continuous or pulsed lasers with pulse lengths ranging from nanoseconds to microseconds. In this paper, we present interesting ongoing new results on femtosecond imaging and on the time dependent solutions to the scattering problem of a femtosecond laser pulse interacting with a single small aerosol particle. Results are presented for various incident pulse lengths. Experimental imaging results using femtosecond pulses indicate that the diffraction rings present when using nanosecond laser pulses for imaging are greatly reduced when femtosecond laser pulses are used. Results are presented in terms of the internal fields as a function of time and the optical size parameter.

  9. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments Database

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  10. Ultrashort Laser Pulses in Physics and Chemistry

    SciTech Connect

    Naskrecki, Ryszard

    2007-11-26

    Study of physical and chemical events accompanying light-matter interaction in pico- and femtosecond time scale have become possible with the use of ultrashort laser pulses. With the progress in generation of ultrashort laser pulses, the ultrafast optical spectroscopy, as a tool for dynamic study, is still evolving rapidly.

  11. Flexible pulse-controlled fiber laser

    PubMed Central

    Liu, Xueming; Cui, Yudong

    2015-01-01

    Controlled flexible pulses have widespread applications in the fields of fiber telecommunication, optical sensing, metrology, and microscopy. Here, we report a compact pulse-controlled all-fiber laser by exploiting an intracavity fiber Bragg grating (FBG) system as a flexible filter. The width and wavelength of pulses can be tuned independently by vertically and horizontally translating a cantilever beam, respectively. The pulse width of the laser can be tuned flexibly and accurately from ~7 to ~150 ps by controlling the bandwidth of FBG. The wavelength of pulse can be tuned precisely with the range of >20 nm. The flexible laser is precisely controlled and insensitive to environmental perturbations. This fiber-based laser is a simple, stable, and low-cost source for various applications where the width-tunable and/or wavelength-tunable pulses are necessary. PMID:25801546

  12. Flexible pulse-controlled fiber laser

    NASA Astrophysics Data System (ADS)

    Liu, Xueming; Cui, Yudong

    2015-03-01

    Controlled flexible pulses have widespread applications in the fields of fiber telecommunication, optical sensing, metrology, and microscopy. Here, we report a compact pulse-controlled all-fiber laser by exploiting an intracavity fiber Bragg grating (FBG) system as a flexible filter. The width and wavelength of pulses can be tuned independently by vertically and horizontally translating a cantilever beam, respectively. The pulse width of the laser can be tuned flexibly and accurately from ~7 to ~150 ps by controlling the bandwidth of FBG. The wavelength of pulse can be tuned precisely with the range of >20 nm. The flexible laser is precisely controlled and insensitive to environmental perturbations. This fiber-based laser is a simple, stable, and low-cost source for various applications where the width-tunable and/or wavelength-tunable pulses are necessary.

  13. Heating of solid targets with laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.

    1975-01-01

    Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.

  14. Relativistic laser pulse compression in magnetized plasmas

    SciTech Connect

    Liang, Yun; Sang, Hai-Bo Wan, Feng; Lv, Chong; Xie, Bai-Song

    2015-07-15

    The self-compression of a weak relativistic Gaussian laser pulse propagating in a magnetized plasma is investigated. The nonlinear Schrödinger equation, which describes the laser pulse amplitude evolution, is deduced and solved numerically. The pulse compression is observed in the cases of both left- and right-hand circular polarized lasers. It is found that the compressed velocity is increased for the left-hand circular polarized laser fields, while decreased for the right-hand ones, which is reinforced as the enhancement of the external magnetic field. We find a 100 fs left-hand circular polarized laser pulse is compressed in a magnetized (1757 T) plasma medium by more than ten times. The results in this paper indicate the possibility of generating particularly intense and short pulses.

  15. Pulse shaper assisted short laser pulse characterization

    NASA Astrophysics Data System (ADS)

    Galler, A.; Feurer, T.

    2008-03-01

    We demonstrate that a pulse shaper is able to simultaneously act as an optical waveform generator and a short pulse characterization device when combined with an appropriate nonlinear element. We present autocorrelation measurements and their frequency resolved counterparts. We show that control over the carrier envelope phase allows continuous tuning between an intensity-like and an interferometric autocorrelation. By changing the transfer function other measurement techniques, for example STRUT, are easily realized without any modification of the optical setup.

  16. Nonlinear dynamics of additive pulse modelocked lasers

    SciTech Connect

    Sucha, G.; Bolton, S.R.; Chemla, D.S.

    1995-04-01

    Nonlinear dynamics have been studied in a number of modelocked laser systems, primarily in actively modelocked systems. However, less attention has been paid to the dynamics of passively modelocked laser systems. With the recent revolutionary advances in femtosecond modelocked laser technology, the understanding of instabilities and dynamics in passively modelocked lasers is an important issue. Here, the authors present experimental and numerical studies of the dynamics of an additive-pulse modelocked (APM) color-center laser.

  17. Flat-top electron distributions and wave activities observed near a tailward dipolarization front

    NASA Astrophysics Data System (ADS)

    Fu, Suiyan; Zhao, Duo; Parks, George; Sun, Weijie; Zong, Qiugang; Zhao, Shaojie

    2017-04-01

    Electron flat-top distributions are observed by ARTEMIS spacecraft at 55 Re in the magnetotail near a tailward dipolarization front. These electrons are observed inside a high-speed flow behind the front, occupied a region narrow than the flow channel. The distribution can be classified into three different types relative to the location of the front. Wave activities are also observed together with the appearance of the electron flat-top distributions. These waves are similar to the whistler mode waves, which appear at the local minimum of the fluctuating total magnetic and electric field. Fast flows and associated dipolarization front are believed to be associated with reconnection processes, and the observed electron distribution seems agree with the scenario.The possible forming mechanism and the relations between the wave activities and the electron distribution are discussed.

  18. Photogeological map of the Flat Top Moutain NE quadrangle Carbon County, Wyoming

    USGS Publications Warehouse

    Olson, A.B.

    1958-01-01

    Flat Top Mountain NE quadrangle is on the eastern rim ot the Washakie Basin. The Wasatch and Green River formations crop out in the map area and dip generally to the west. The even and persistent bedding of the Green River formation, combined with the strong benching of a few beds, makes it possible to distinguish easily on photographs stratigraphic units within the formation. Structure contours were drawn on one ot these units.

  19. Flat-top MZI filters: a novel robust design based on MMI splitters

    NASA Astrophysics Data System (ADS)

    Cherchi, Matteo; Harjanne, Mikko; Ylinen, Sami; Kapulainen, Markku; Vehmas, Tapani; Aalto, Timo

    2016-03-01

    Multimode Interferometers (MMIs) are an attractive alternative to directional couplers, ensuring more relaxed tolerances to fabrication errors and broader operation bandwidth. The drawback is that only a limited discrete set of splitting ratios is achievable with MMIs of constant cross section. This issue clearly limits their use in flat-top interferometric filters, which design requires, in general, free choice of the splitting ratios. Here we show for the first time that it is possible to design 4-stage flat-top interferometers using only standard MMIs with 50:50 and 85:15 splitting ratios. The design approach is based on the representation of the system on the Bloch sphere. Flat-top interleavers with different free spectral ranges have been designed and fabricated on the silicon photonics platform of VTT, based on 3 μm thick rib and strip waveguides. Two different layouts have been explored: one where all components are collinear and a more compact one which elements have been folded in a spiral shape. All interleavers have been designed for TE polarization, and they work in a wavelength range comparable with the 100 nm bandwidth of the MMI splitters. Even though fabrication imperfections and non-ideal behaviour of both waveguide bends and MMIs led to reduced extinction compared to simulations, most devices show in-band extinction exceeding 15 dB. The in-band losses of the most central channels did not exceed 1.5 dB compared to the reference straight waveguide. The designed interleavers can be employed in cascaded configurations to achieve broadband and fabrication tolerant flat-top wavelength (de)multiplexers.

  20. Oil springs and flat top anticlines, Carbon County Wyoming: An unusual fold pair

    SciTech Connect

    Blackstone, D.L. Jr. )

    1994-04-01

    Oil Springs Anticline, northwest of Medicine Bow, Wyoming, and located at the northeast corner of the Hanna Basin, lies near the junction of the Freezeout Hills Anticline, the Shirley thrust fault and the Flat Top Anticline. The surface fold as defined by the outcrop of the Wall Creek Sandstone Member of the Frontier Formation is disharmonic to deeper structure at the level of the Jurassic Sundance Formation. The fold is wedged between two major folds and is the result of a space problem between larger structural elements. The controlling Flat Top Anticline is an excellent example of a fold controlled by a well constrained fault in the Precambrian crystalline basement. The basement is bowed upward and outward to the northwest in the hanging wall of the Flat Top Anticline. The purpose of this paper is to describe the geologic structure of the Oil Springs and Flat Top anticlines and their relationship to the Freezeout Hills and the Hanna Basin. Commercial production of petroleum and natural gas occurs on the west flank of the Laramie-Cooper Lake Basin as far north as the northeast corner of the Hanna Basin. Stone reviewed the producing formations in the Laramie and eastern Hanna basins and noted that 11 commercial accumulations of petroleum and natural gas are directly related to anticlinal structures. Production derived from the Permian-Pennsylvanian Tensleep Sandstone in this region has a special geologic framework. Fields that produce from the Tensleep Sandstone are well defined anticlines bounded by faults or fault systems, a situation also reported by Biggs and Espach, Blackstone and in the Wyoming Geological Association Symposium. The Tensleep Sandstone reservoirs in these faulted anticlines are in juxtaposition to potential source rocks of either Jurassic or Cretaceous age in the footwalls of the faults. 17 refs., 9 figs., 1 tab.

  1. Pulsed laser nitriding of uranium

    NASA Astrophysics Data System (ADS)

    Zhang, Yongbin; Meng, Daqiao; Xu, Qinying; Zhang, Youshou

    2010-02-01

    Pulsed laser nitriding offers several advantages such as high nitrogen concentration, low matrix temperature, fast treatment, simple vacuum chamber and precise position control compare to ion implantation, which is favorable for radioactive material passivation. In this work, uranium metal was nitrided using an excimer laser for the first time. The nitrided layers are characterized by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The nitride layer is composed mainly of UN and U 2N 3 and depends on nitriding process. The amount of nitride increases with energy density and pressure. The irradiated area has a wavy structure which increases the roughness, while scratches and asperities caused by sand paper polishing were eliminated. Scan speed has a profound influence on the nitride layer, at low speed U 2N 3 is more likely to form and the nitride layer tends to crack. XPS analysis shows that nitrogen has diffused into interior, while oxygen is only present on the surface. Ambient and humid-hot corrosion tests show the nitrided sample has good anticorrosion property.

  2. Pulse circuit apparatus for gas discharge laser

    DOEpatents

    Bradley, Laird P.

    1980-01-01

    Apparatus and method using a unique pulse circuit for a known gas discharge laser apparatus to provide an electric field for preconditioning the gas below gas breakdown and thereafter to place a maximum voltage across the gas which maximum voltage is higher than that previously available before the breakdown voltage of that gas laser medium thereby providing greatly increased pumping of the laser.

  3. High-power picosecond laser pulse recirculation.

    PubMed

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  4. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  5. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    SciTech Connect

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-03-15

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  6. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  7. MOPA pulsed fiber laser for silicon scribing

    NASA Astrophysics Data System (ADS)

    Yang, Limei; Huang, Wei; Deng, Mengmeng; Li, Feng

    2016-06-01

    A 1064 nm master oscillator power amplifier (MOPA) pulsed fiber laser is developed with flexible control over the pulse width, repetition frequency and peak power, and it is used to investigate the dependence of mono-crystalline silicon scribe depth on the laser pulse width, scanning speed and repeat times. Experimental results indicate that long pulses with low peak powers lead to deep ablation depths. We also demonstrate that the ablation depth grows fast with the scanning repeat times at first and progressively tends to be saturated when the repeat times reach a certain level. A thermal model considering the laser pulse overlapping effect that predicts the silicon temperature variation and scribe depth is employed to verify the experimental conclusions with reasonably close agreement. These conclusions are of great benefits to the optimization of the laser material processing with high efficiency.

  8. Ultrashort-pulsed laser microstructuring of diamond

    NASA Astrophysics Data System (ADS)

    Shirk, Michael D.; Molian, Pal; Wang, Cai; Ho, Kai M.; Malshe, Ajay P.

    2000-11-01

    Precision microfabrication of diamond has many applications in the fields of microelectronics and cutting tools. In this work, and ultra-short pulsed Ti: Sapphire laser was used to perform patterning, hold drilling, and scribing of synthetic and CVD diamonds. Scanning electron microscopy, atomic force microscopy, profilometry, and Raman spectroscopy were employed to characterize the microstructures. A tight-binding molecular dynamics (TBMD) model was used to investigate atomic movements during ablation and predict thresholds for ablation. The ultra- short pulsed laser generated holes and grooves that were nearly perfect with smooth edges, little collateral thermal damage and recast layer. The most exciting observation was the absence of graphite residue that always occurs in the longer-pulsed laser machining. The ablation threshold for ultra-short pulsed laser was two orders of magnitude lower than that of longer-pulsed laser. Finite-difference thermal modeling showed that ultra-short pulses raised the electron temperatures of diamond in excess of 100,ooo K due to multiphoton absorption, absence of hydrodynamic motion, and lack of time for energy transfer from electrons to the lattice during the pulse duration. TBMD simulations, carried out on (111) and (100) diamond surfaces, revealed that ultra-short pulses peel carbon atoms layer-by -layer from the surface, leaving a smooth surface after ablation. However, longer pulses cause thermal melting resulting in graphite residue that anchors to the diamond surface following ablation.

  9. Picosecond pulsed diode ring laser gyroscope

    SciTech Connect

    Rosker, M.J.; Christian, W.R.; McMichael, I.C.

    1994-12-31

    An external ring cavity containing as its active medium a pair of InGaAsP diodes is modelocked to produce picosecond pulses. In such a laser, a small frequency difference proportional to the nonreciprocal phase shift (resulting from, e.g., the Sagnac effect) can be observed by beating together the counter propagating laser arms; the device therefore acts as a rotating sensor. In contrast to a conventional (cw) ring laser gyroscope, the pulsed gyroscope can avoid gain competition, thereby enabling the use of homogeneously broadened gain media like semiconductor diodes. Temporal separation of the pulses within the cavity also discriminates against frequency locking of the lasers. The picosecond pulsed diode ring laser gyroscope is reviewed. Both active and passive modelocking are discussed.

  10. Injection locked oscillator system for pulsed metal vapor lasers

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  11. Simulation of Double-Pulse Laser Ablation

    NASA Astrophysics Data System (ADS)

    Povarnitsyn, Mikhail E.; Itina, Tatian E.; Khishchenko, Konstantin V.; Levashov, Pavel R.

    2010-10-01

    We investigate the physical reasons of a strange decrease in the ablation depth observed in femtosecond double-pulse experiments with increasing delay between the pulses. Two ultrashort pulses of the same energy produce the crater which is less than that created by a single pulse. Hydrodynamicsimulation shows that the ablation mechanism is suppressed when the delay between the pulses exceeds the electron-ion relaxation time. In this case, the interaction of the second laser pulse with the expanding target material leads to the formation of the second shock wave suppressing the rarefaction wave created by the first pulse. The modeling of the double-pulse ablation for different delays between pulses confirms this explanation.

  12. Pulsed Laser Cladding of Ni Based Powder

    NASA Astrophysics Data System (ADS)

    Pascu, A.; Stanciu, E. M.; Croitoru, C.; Roata, I. C.; Tierean, M. H.

    2017-06-01

    The aim of this paper is to optimize the operational parameters and quality of one step Metco Inconel 718 atomized powder laser cladded tracks, deposited on AISI 316 stainless steel substrate by means of a 1064 nm high power pulsed laser, together with a Precitec cladding head manipulated by a CLOOS 7 axes robot. The optimization of parameters and cladding quality has been assessed through Taguchi interaction matrix and graphical output. The study demonstrates that very good cladded layers with low dilution and increased mechanical proprieties could be fabricated using low laser energy density by involving a pulsed laser.

  13. Numerical study of the wave-break in the vacuum-plasma interface during the interaction of an intense laser pulse

    NASA Astrophysics Data System (ADS)

    Chakhmachi, Amir; Khalilzadeh, Elnaz; Pishdast, Masoud; Yazdanpanah, Jamalaldin

    2017-08-01

    In this paper, the wave break in the plasma-vacuum interface during the intense laser interaction is investigated. Since the nonlinear wave breaking is a non-adiabatic process, the fully kinetic 1D-3V Particle-In-Cell (PIC) simulation experiments are performed to identify whether that the origin of this mechanism is electromagnetic or electrostatic. Our simulation results show that the nonlinear wave breaking on the vacuum-plasma interface has electrostatic origin. In addition, it is found that for pulse lengths exceeding the plasma wavelength this electrostatic phenomenon comes in conjunction with some active electromagnetic effects having the same impact on the electron acceleration. In these regards, we conduct sophisticated simulations isolating these electromagnetic effects and study the effects of the pulse parameters such as the pulse rise time, pulse length, and pulse shape on the boundary nonlinear wave breaking. The study of the pulse rise-time variation effects shows that as the rise time of the laser pulse decreases, the number of the electrons involved in the nonlinear wave breaking, maximum energy of the trapped electrons and the path length of the accelerated electrons in the phase space are increased. Also, the study of phase space and field patterns in our simulation indicates that the reduction of the pulse flat top duration time causes that the smaller part of the electrons and the smaller portion of the wake wave involve in the nonlinear wave breaking.

  14. Fiber Laser Front Ends for High Energy, Short Pulse Lasers

    SciTech Connect

    Dawson, J; Messerly, M; Phan, H; Siders, C; Beach, R; Barty, C

    2007-06-21

    We are developing a fiber laser system for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal for these systems as they are highly reliable and enable long term stable operation.

  15. Short Pulse Laser Applications Design

    SciTech Connect

    Town, R J; Clark, D S; Kemp, A J; Lasinski, B F; Tabak, M

    2008-02-11

    We are applying our recently developed, LDRD-funded computational simulation tool to optimize and develop applications of Fast Ignition (FI) for stockpile stewardship. This report summarizes the work performed during a one-year exploratory research LDRD to develop FI point designs for the National Ignition Facility (NIF). These results were sufficiently encouraging to propose successfully a strategic initiative LDRD to design and perform the definitive FI experiment on the NIF. Ignition experiments on the National Ignition Facility (NIF) will begin in 2010 using the central hot spot (CHS) approach, which relies on the simultaneous compression and ignition of a spherical fuel capsule. Unlike this approach, the fast ignition (FI) method separates fuel compression from the ignition phase. In the compression phase, a laser such as NIF is used to implode a shell either directly, or by x rays generated from the hohlraum wall, to form a compact dense ({approx}300 g/cm{sup 3}) fuel mass with an areal density of {approx}3.0 g/cm{sup 2}. To ignite such a fuel assembly requires depositing {approx}20kJ into a {approx}35 {micro}m spot delivered in a short time compared to the fuel disassembly time ({approx}20ps). This energy is delivered during the ignition phase by relativistic electrons generated by the interaction of an ultra-short high-intensity laser. The main advantages of FI over the CHS approach are higher gain, a lower ignition threshold, and a relaxation of the stringent symmetry requirements required by the CHS approach. There is worldwide interest in FI and its associated science. Major experimental facilities are being constructed which will enable 'proof of principle' tests of FI in integrated subignition experiments, most notably the OMEGA-EP facility at the University of Rochester's Laboratory of Laser Energetics and the FIREX facility at Osaka University in Japan. Also, scientists in the European Union have recently proposed the construction of a new FI

  16. High-performance laser processing using manipulated ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Cheng, Ya; Xu, Zhizhan; Hanada, Yasutaka; Midorikawa, Katsumi

    2012-07-01

    We employ manipulated ultrafast laser pulses to realize microprocessing with high-performance. Efficient microwelding of glass substrates by irradiation by a double-pulse train of ultrafast laser pulses is demonstrated. The bonding strength of two photostructurable glass substrates welded by double-pulse irradiation was evaluated to be 22.9 MPa, which is approximately 22% greater than that of a sample prepared by conventional irradiation by a single pulse train. Additionally, the fabrication of hollow microfluidic channels with a circular cross-sectional shape embedded in fused silica is realized by spatiotemporally focusing the ultrafast laser beam. We show both theoretically and experimentally that the spatiotemporal focusing of ultrafast laser beam allows for the creation of a three-dimensionally symmetric spherical peak intensity distribution at the focal spot.

  17. Pulsed laser irradiation of metal multilayers.

    SciTech Connect

    Adams, David Price; McDonald, Joel Patrick

    2010-11-01

    Vapor-deposited, exothermic metal-metal multilayer foils are an ideal class of materials for detailed investigations of pulsed laser-ignited chemical reactions. Created in a pristine vacuum environment by sputter deposition, these high purity materials have well-defined reactant layer thicknesses between 1 and 1000 nm, minimal void density and intimate contact between layers. Provided that layer thicknesses are made small, some reactive metal-metal multilayer foils can be ignited at a point by laser irradiation and exhibit subsequent high-temperature, self-propagating synthesis. With this presentation, we describe the pulsed laser-induced ignition characteristics of a single multilayer system (equiatomic Al/Pt) that exhibits self-propagating synthesis. We show that the thresholds for ignition are dependent on (i) multilayer design and (ii) laser pulse duration. With regard to multilayer design effects on ignition, there is a large range of multilayer periodicity over which ignition threshold decreases as layer thicknesses are made small. We attribute this trend of decreased ignition threshold to reduced mass transport diffusion lengths required for rapid exothermic mixing. With regard to pulse duration effects, we have determined how ignition threshold of a single Al/Pt multilayer varies with pulse duration from 10{sup -2} to {approx} 10{sup -13} sec (wavelength and spot size are held constant). A higher laser fluence is required for ignition when using a single laser pulse {approx} 100 fs or 1 ps compared with nanosecond or microsecond exposure, and we attribute this, in part, to the effects of reactive material being ablated when using the shorter pulse durations. To further understand these trends and other pulsed laser-based processes, our discussion concludes with an analysis of the heat-affected depths in multilayers as a function of pulse duration.

  18. Multiple laser pulse ignition method and apparatus

    DOEpatents

    Early, James W.

    1998-01-01

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

  19. Laser glass marking: influence of pulse characteristics

    NASA Astrophysics Data System (ADS)

    Rolo, Ana; Coelho, João; Pires, Margarida

    2005-09-01

    Laser glass marking is currently used in several glass materials for different purposes, such as bar codes for product tracking, brand logos or just decoration. Systems with a variety of different laser sources, with inherent power ranges, wavelengths and pulse regimes have been used, namely CO2, Nd:YAG, Excimer, Ti-Sapphire lasers. CO2 Lasers systems, although being a reliable tool for materials processing, and very compact in the case of sealed low power lasers, are usually associated with a localized thermal loading on the material, causing brittle materials like glass to crack around the irradiated area. In this experimental study a pulsed CO2 laser was used to direct marking the glass surface. The temporal characteristics of the laser pulse--pulse length, period and duty cycle were varied, and glass materials with different thermal properties were used in order to correlate the marking process--cracking or softening with or without material removal with the laser and material characteristics. Glass materials with major industrial application, such as soda-lima, borosilicate (PYREX) glasses and crystal have been investigated. Laser marked areas have been characterized in terms of surface optical properties, like diffuse and direct reflectance and transmittance for white light, directly related with marked surface quality.

  20. Pulsed lasers in dentistry: sense or nonsense?

    NASA Astrophysics Data System (ADS)

    Koort, Hans J.; Frentzen, Matthias

    1991-05-01

    The great interest in the field of laser applications in dentistry provokes the question, if all these new techniques may really fulfill advantages, which are expected after initial in-vitro studies. Whereas laser surgery of soft oral tissues has been developed to a standard method, laser treatment of dental hard tissues and the bone are attended with many unsolved problems. Different laser types, especially pulsed lasers in a wide spectrum of wavelengths have been proofed for dental use. Today neither the excimer lasers, emitting in the far uv-range from 193 to 351 nm, nor the mid-infrared lasers like Nd:YAG (1,064 μm), Ho:YAG (2,1 μm) and Er:YAG (2,96 μm) or the C02-laser (10,6 μm) show mechanism of interaction more carefully and faster than a preparation of teeth with diamond drillers. The laser type with the most precise and considerate treatment effects in the moment is the short pulsed (15 ns) ArF-excimer laser with a wavelength of 193 nm. However this laser type has not yet the effectivity of mechanical instruments and it needs a mirror system to deliver the radiation. Histological results point out, that this laser shows no significant pathological alterations in the adjacent tissues. Another interesting excimer laser, filled with XeCI and emitting at a wavelength of 308 nm has the advantage to be good to deliver through quartz fibers. A little more thermal influence is to be seen according to the longer wavelength. Yet the energy density, necessary to cut dental hard tissues will not be reached with the laser systems available now. Both the pulsed Er:YAG- (2,94 μm, pulse duration 250 s) and the Ho:YAG -laser (2,1 μm, pulse duration 250 μs) have an effective coupling of the laser energy to hydrogeneous tissues, but they do not work sufficient on healthy enamel and dentine. The influence to adjacent healthy tissue is not tolerable, especially in regard of the thermal damage dentine and pulp tissues. Moreover, like the 193 nm ArF-excimer laser

  1. Evolution of laser pulse shape in a parabolic plasma channel

    NASA Astrophysics Data System (ADS)

    Kaur, M.; Gupta, D. N.; Suk, H.

    2017-01-01

    During high-intensity laser propagation in a plasma, the group velocity of a laser pulse is subjected to change with the laser intensity due to alteration in refractive index associated with the variation of the nonlinear plasma density. The pulse front sharpened while the back of the pulse broadened due to difference in the group velocity at different parts of the laser pulse. Thus the distortion in the shape of the laser pulse is expected. We present 2D particle-in-cell simulations demonstrating the controlling the shape distortion of a Gaussian laser pulse using a parabolic plasma channel. We show the results of the intensity distribution of laser pulse in a plasma with and without a plasma channel. It has been observed that the plasma channel helps in controlling the laser pulse shape distortion. The understanding of evolution of laser pulse shape may be crucial while applying the parabolic plasma channel for guiding the laser pulse in plasma based accelerators.

  2. Ultrashort pulse generation in semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Auyeung, J.; Johnston, A. R.

    1981-01-01

    Techniques to generate picosecond optical pulses from semiconductor lasers are reviewed. Experimental methods and results of theoretical analysis of active modelocking are presented. It is shown that modelocking will achieve the shortest pulses; but the use of a cumbersome external cavity will probably limit its practical use. Short pulses produced by direct modulation such as gain switching are considerably broader than those obtained by passive modelocking. However, no external cavity is needed; and the simplicity of this method makes it important to be explored further. Recent experimental results are discussed where picosecond pulses from a buried heterostructure laser diode with ultrashort current pulses obtained from a comb generator are generated. Also, 28 ps pulses were obtained at 2.5 GHz repetition frequency, using the gain switching method. An analytical analysis based on the rate equations shows qualitative agreement with our experimental results.

  3. Pulsed Laser Illumination of Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland; Jenkins, Philip; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. The induction FEL and the radio-frequency (RF) FEL both produce pulsed rather than continuous output. In this work, we investigate cell response to pulsed laser light which simulates the RF FEL format, producing 50 ps pulses at a frequency of 78 MHz. A variety of Si, GaAs, CaSb and CdInSe2 (CIS) solar cells are tested at average incident powers between 4 mW/sq cm and 425 mW/sq cm. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced by using a pulsed laser source compared to constant illumination at the same wavelength. Because the pulse separation is less than or approximately equal to the minority carrier lifetime, the illumination conditions are effectively those of a continuous wave laser. The time dependence of the voltage and current response of the cells are also measured using a sampling oscilloscope equipped with a high frequency voltage probe and current transformer. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments shows that the RF FEL pulse format yields much more efficient photovoltaic conversion of light than does an induction FEL pulse format.

  4. Pulsed Laser Illumination of Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland; Jenkins, Philip; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. The induction FEL and the radio-frequency (RF) FEL both produce pulsed rather than continuous output. In this work, we investigate cell response to pulsed laser light which simulates the RF FEL format, producing 50 ps pulses at a frequency of 78 MHz. A variety of Si, GaAs, CaSb and CdInSe2 (CIS) solar cells are tested at average incident powers between 4 mW/sq cm and 425 mW/sq cm. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced by using a pulsed laser source compared to constant illumination at the same wavelength. Because the pulse separation is less than or approximately equal to the minority carrier lifetime, the illumination conditions are effectively those of a continuous wave laser. The time dependence of the voltage and current response of the cells are also measured using a sampling oscilloscope equipped with a high frequency voltage probe and current transformer. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments shows that the RF FEL pulse format yields much more efficient photovoltaic conversion of light than does an induction FEL pulse format.

  5. Pulse laser assist optical tweezers (PLAT) with long-duration pulse laser

    NASA Astrophysics Data System (ADS)

    Maeda, Saki; Sugiura, Tadao; Minato, Kotaro

    2011-07-01

    Optical tweezers is a technique to trap and to manipulate micron sized objects under a microscope by radiation pressure force exerted by a laser beam. Optical tweezers has been utilized for single-molecular measurements of force exerted by molecular interactions and for cell palpation. To extend applications of optical tweezers we have developed a novel optical tweezers system combined with a pulse laser. We utilize a pulse laser (Q-switched Nd: YAG laser, wavelength of 1064 nm) to assist manipulations by conventional optical tweezers with a continuous wave (CW) laser. The pulse laser beam is introduced into the same optics for conventional optical tweezers. In principle, instantaneous radiation force is proportional to instantaneous power of laser beam. As a result, pulse laser beam generates strong instantaneous force on an object to be manipulated. If the radiation force becomes strong enough to get over an obstacle structure and/or to be released from adhesion, the object will be free from these difficulties. We investigate the effect of pulse laser assistance with changing pulse duration of the laser. We report optimum pulse duration of 100 ns to 200 ns deduced from motion analysis of a particle in a beam spot. Our goal is to realize in-vivo manipulation and operation of a cell. For this purpose we need to reduce light energy of pulse laser beam and to avoid laser induced breakdown caused by strong light field. So we have developed a pulse laser with 160-ns pulse duration and have confirmed that availability on manipulation of living cells.

  6. Pulse-shaping circuit for laser excitation

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J.

    1981-01-01

    Narrower, impedence-matched pulses initiate stabler electric discharges for gas lasers. Discharges are more efficient, more compact, capable of high repetition rate, and less expensive than conventional electron-beam apparatus, but gas tends to break down and form localized arcs. Pulse-shaping circuit compresses width of high-voltage pulses from relatively-slow rise-time voltage generator and gradually grades circuit impedance from inherent high impedance of generator to low impedence of gas.

  7. Origin of steep-pointed and flat-topped volcanic cones in Southwest volcanic field

    NASA Astrophysics Data System (ADS)

    Fukui, U.; Hirota, F.; Yokose, H.

    2002-12-01

    KR01-12 cruise of Japan Marine Science and Technology Center using ROV KAIKO and its mother ship R/V KAIREI were carried out around Hawaii islands in the early fall of 2001. During this cruise, two dives of ROV KAIKO were made on southwest Oahu volcanic field (K203 and K206).The new Seabeam bathymetry revealed that there are remarkable topographic features: flat-topped volcanic cone, ca.2.5 in diameter and 200m in height; steep pointed cone, ellipsoidal in plain: major axis 2km, minor axis 0.5km; 200-400 m in height. This volcanic topographies are similar to those described in elsewhere e.g., Clague et al., 2001. Flat-topped cones distributed in this area are different from other area in their occurrence. They are accompanied with steep-pointed cone. In order to study the geological and petrological relationship between flat-topped cone and steep-pointed cone, both K203 and K206 have been analyzed by video image, thin sections and bulk rock chemistry. The rocks recovered from K206 and K203 are trachybasalt and basanite respectibly. There is no critical differences between FTVC and SPVCin their bulk chemistry. For example rocks from FTCV are almost identical to the SPCV in SiO2 contents in the same site. Total AK concentration of rocks from FTCV is lower than those of SPVC in K203, but FTVC is higher than SPCV in K206. This result implies that topographical characters are not correlated with bulk chemistry. Both in K206 or K203, rocks collected from SPVC have higher vesicularity, ranging from 20 to 40%, and higher crystallinity in groundmass than those from FTCV. It is suggest that differences in topographical characteristics between FTVC and SPVC are controlled by physical property of the groundmass. That is, the viscosity of magma lead to rise due to exsolution of gas phase from melt.

  8. Turbulence-induced degradation properties of partially coherent flat-topped beams

    NASA Astrophysics Data System (ADS)

    Alavinejad, M.; Ghafary, B.

    2008-05-01

    Propagation of partially coherent flat-topped (PCFT) beams in a turbulent atmosphere is investigated and analytical formula for the average intensity is derived. Detailed analysis of PCFT beams through atmospheric turbulence with various correlation length indicated that PCFT beams with smaller correlation length are less affected by atmospheric turbulence. Analytical formula for beam width and power in bucket (PIB) of PCFT propagated through turbulence media are derived. The investigation showed that the beam width and PIB of PCFT with higher correlation length are more affected by turbulence.

  9. Pressure wave charged repetitively pulsed gas laser

    DOEpatents

    Kulkarny, Vijay A.

    1982-01-01

    A repetitively pulsed gas laser in which a system of mechanical shutters bracketing the laser cavity manipulate pressure waves resulting from residual energy in the cavity gas following a lasing event so as to draw fresh gas into the cavity and effectively pump spent gas in a dynamic closed loop.

  10. Laser pulse shaping for high gradient accelerators

    NASA Astrophysics Data System (ADS)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  11. Quantifying pulsed laser induced damage to graphene

    SciTech Connect

    Currie, Marc; Caldwell, Joshua D.; Bezares, Francisco J.; Robinson, Jeremy; Anderson, Travis; Chun, Hayden; Tadjer, Marko

    2011-11-21

    As an emerging optical material, graphene's ultrafast dynamics are often probed using pulsed lasers yet the region in which optical damage takes place is largely uncharted. Here, femtosecond laser pulses induced localized damage in single-layer graphene on sapphire. Raman spatial mapping, SEM, and AFM microscopy quantified the damage. The resulting size of the damaged area has a linear correlation with the optical fluence. These results demonstrate local modification of sp{sup 2}-carbon bonding structures with optical pulse fluences as low as 14 mJ/cm{sup 2}, an order-of-magnitude lower than measured and theoretical ablation thresholds.

  12. Pulsed solid state lasers for medicine

    NASA Astrophysics Data System (ADS)

    Kertesz, Ivan; Danileiko, A. Y.; Denker, Boris I.; Kroo, Norbert; Osiko, Vyacheslav V.; Prokhorov, Alexander M.

    1994-02-01

    The effect on living tissues of different pulsed solid state lasers: Nd:YAG ((lambda) equals 1.06 micrometers ) Er:glass (1.54 micrometers ), Ho:YAG (2.1 micrometers ) and Er:YAG (2.94 micrometers ) is compared with the continuous wave Nd:YAG- and CO2-lasers used in operating theaters. Portable Er:glass- and Er:YAG-lasers are developed for surgery/cosmetics and HIV-safe blood testing.

  13. Frequency modulation of semiconductor disk laser pulses

    SciTech Connect

    Zolotovskii, I O; Korobko, D A; Okhotnikov, O G

    2015-07-31

    A numerical model is constructed for a semiconductor disk laser mode-locked by a semiconductor saturable absorber mirror (SESAM), and the effect that the phase modulation caused by gain and absorption saturation in the semiconductor has on pulse generation is examined. The results demonstrate that, in a laser cavity with sufficient second-order dispersion, alternating-sign frequency modulation of pulses can be compensated for. We also examine a model for tuning the dispersion in the cavity of a disk laser using a Gires–Tournois interferometer with limited thirdorder dispersion. (control of radiation parameters)

  14. Classical dynamics of free electromagnetic laser pulses

    NASA Astrophysics Data System (ADS)

    Goto, S.; Tucker, R. W.; Walton, T. J.

    2016-02-01

    We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Landé and Podolsky.

  15. Pulsed infrared laser ablation and clinical applications

    NASA Astrophysics Data System (ADS)

    Chan, Kin Foong

    Sufficient light energy deposited in tissue can result in ablation and excessive thermal and mechanical damage to adjacent tissues. The goals of this research are to investigate the mechanisms of pulsed infrared laser ablation of tissue, to optimize laser parameters for minimizing unnecessary damage to healthy tissue, and to explore the potential of using pulsed infrared lasers for clinical applications, especially laser lithotripsy. A dual-channel optical low coherence reflectometer was implemented to measure the expansion and collapse velocities of a Q-switched Ho:YAG (λ = 2.12 μm) laser-induced cavitation in water. Cavitation wall velocities up to 11 m/s were measured with this technique, and the results were in fair agreement with those calculated from fast-flash photographic images. The dependence of ablation threshold fluence on calculus absorption was examined. Preliminary results indicated that the product of optical absorption and ablation threshold fluence, which is the heat of ablation, remained constant for a given urinary calculus type and laser pulse duration. An extended study examined the influence of optical absorption on pulsed infrared laser ablation. An analytical photothermal ablation model was applied and compared to experimental ablation results using an infrared free-electron laser at selected wavelengths between 2.12 μm and 6.45 μm Results were in good agreement with the model, and the ablation depths of urinary calculi were highly dependent upon the calculus optical absorption as well as light attenuation within the intrapulse ablation plume. An efficient wavelength for ablation corresponded to the wavelength of the Er:YAG laser (λ = 2.94 μm) suggested this laser should be examined for laser lithotripsy. Schlieren flash photography, acoustic transient measurements with a piezoelectric polyvinylidene-fluoride needle-hydrophone, mass loss measurements, and chemical analyses were employed to study the ablation mechanisms of the free

  16. Heat accumulation during pulsed laser materials processing.

    PubMed

    Weber, Rudolf; Graf, Thomas; Berger, Peter; Onuseit, Volkher; Wiedenmann, Margit; Freitag, Christian; Feuer, Anne

    2014-05-05

    Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived.

  17. RF synchronized short pulse laser ion source

    SciTech Connect

    Fuwa, Yasuhiro Iwashita, Yoshihisa; Tongu, Hiromu; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji; Okamura, Masahiro; Yamazaki, Atsushi

    2016-02-15

    A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at the exit of RF resonator by a probe.

  18. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. Both the radio-frequency (RF) and induction FEL provide FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL pulse format.

  19. Flat-top steep-edge response of photodetetors by circuit control method

    NASA Astrophysics Data System (ADS)

    Wang, Li; Huang, Yongqing; Duan, Xiaofeng; Yan, Qiang; Ren, Xiaomin; Huang, Hui; Wang, Qi; Zhang, Xia

    2010-10-01

    This paper proposes a circuit control method achieving the flat-top steep-edge response of photodetectors. The response is realized using three wavelength selective photodetectors and the circuit which consists of amplifiers, comparators and a AND gate. Two groups of experiments were carried out. In group 1, 0.5dB, 3dB, 20dB bandwidths are 2.76nm, 3.29nm, 4.58nm from 1546nm to 1549.3nm. In group 2, 0.5dB, 3dB, 20dB bandwidths are 3.19nm, 2.89nm, 3.06nm from 1554.8nm to 1557.6nm. The results of experiments show that the desirable flat-top steep-edge response can be gained and the response linewidth is adjustable by selecting different photodetectors, so that the requirement of the WDM system and the network can be met. The method is easy to realize with low cost and has wide application in optical measurements and optical processing etc.

  20. Concerted manipulation of laser plasma dynamics with two laser pulses

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Andreev, A. A.; Ehrentraut, L.; Sommer, D.; Schnürer, M.

    2017-05-01

    In this article we present experimental results from a counter-propagating two laser pulse experiment at high intensity and using ultrathin gold and plastic foil targets. We applied one laser pulse as a pre-pulse with an intensity of up to 1x1018 W/cm2. By this method we manipulated the pre-plasma of the foil target with which the stronger laser pulse with an intensity of 6x1019W/cm2 interacts. This alters significantly subsequent processes from the laser plasma interaction which we show the ion acceleration and high harmonic generation. On the one hand, the maximum kinetic ion energy and the maximum charge state for gold ions decline due to the pre-heating of the target in the time range of few ps, on the other hand the number of accelerated ions is increased. For the same parameter range we detected a significant raise of the high harmonic emission. Moreover, we present first experimental observations, that when the second laser pulse is applied as a counter-propagating post-pulse the energy distribution of accelerated carbon ions is charge selective altered. Our findings indicate that using this method a parametric optimization can be achieved, which promises new insights about the concurrent processes of the laser plasma dynamics.

  1. Short-pulse Laser Processing of CFRP

    NASA Astrophysics Data System (ADS)

    Weber, Rudolf; Freitag, Christian; Kononenko, Taras V.; Hafner, Margit; Onuseit, Volkher; Berger, Peter; Graf, Thomas

    Short-pulse lasers allow processing of carbon fiber reinforced plastics (CFRP) with very high quality, i.e. showing thermal damage in the range of only a few micrometers. Due to the usually high intensities and the short interaction times of such short pulses, only a small fraction of the incident laser energy is converted to residual heat which does not contribute to the ablation process. However, if the next pulse arrives before the material had time to cool down, i.e. this residual thermal energy did not sufficiently flow out of the interaction region, it encounters material which is still hot. This remaining energy and temperature is summing up during the sequence of pulses and is commonly referred to as "heat accumulation". Thermal damage in addition to the damage created by the process itself is induced, if the resulting temperature sum exceeds the damage temperatures of either the fibre or the plastic. The current paper presents the influence of the laser parameters such as pulse energy and repetition rate on this heat accumulation. An analytical model was used to describe the heat accumulation for different laser parameters. It describes the heat accumulation process and allows estimating the maximum number of pulses allowed at the same place before a detrimental temperature increase occurs.

  2. Ophthalmic applications of ultrashort pulsed lasers

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Spooner, Greg; Sacks, Zachary S.; Suarez, Carlos G.; Raksi, Ferenc; Zadoyan, Ruben; Sarayba, Melvin; Kurtz, Ronald M.

    2004-06-01

    Ultrashort laser pulses can be used to create high precision incision in transparent and translucent tissue with minimal damage to adjacent tissue. These performance characteristics meet important surgical requirements in ophthalmology, where femtosecond laser flap creation is becoming a widely used refractive surgery procedure. We summarize clinical findings with femtosecond laser flaps as well as early experiments with other corneal surgical procedures such as corneal transplants. We also review laser-tissue interaction studies in the human sclera and their consequences for the treatment of glaucoma.

  3. Inductive gas line for pulsed lasers

    DOEpatents

    Benett, William J.; Alger, Terry W.

    1985-01-01

    A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

  4. Inductive gas line for pulsed lasers

    DOEpatents

    Benett, W.J.; Alger, T.W.

    1982-09-29

    A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

  5. Nonequilibrium Interlayer Transport in Pulsed Laser Deposition

    SciTech Connect

    Tischler, Jonathan Zachary; Eres, Gyula; Larson, Ben C; Rouleau, Christopher M; Zschack, P.; Lowndes, Douglas H

    2006-01-01

    We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes.

  6. Laser and intense pulsed light management of couperose and rosacea.

    PubMed

    Dahan, S

    2011-11-01

    Management of couperosis and rosacea has been totally renewed by laser and vascular laser techniques, with efficacy targeted on the telangiectases and to a lesser extent on the erythrosis. Laser management of hypertrophic rosacea or rhinophyma depends on surgical treatment with decortication, continuous CO(2) ablative laser or Erbium, fractionated at high power, then vascular laser treatment for the telangiectases: lasers with pulsed dye, KTP, or pulsed lights for red laser telangiectases and long pulse Nd-Yag laser for blue telangiectases. For papulopustular rosacea, vascular laser treatment (pulsed dye and KTP) and intense pulsed light will be begun once the inflammation has been treated. The major indication for vascular lasers and intense pulsed light is found in erythematotelangiectatic rosacea, with high efficacy for the telangiectases. Diffuse erythrosis is difficult to treat, requiring a high number of laser and/or intense pulsed light sessions. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  7. [Laser and intense pulsed light management of couperose and rosacea].

    PubMed

    Dahan, S

    2011-09-01

    Management of couperosis and rosacea has been totally renewed by laser and vascular laser techniques, with efficacy targeted on the telangiectases and to a lesser extent on the erythrosis. Laser management of hypertrophic rosacea or rhinophyma depends on surgical treatment with decortication, continuous CO(2) ablative laser or Erbium, fractionated at high power, then vascular laser treatment for the telangiectases: lasers with pulsed dye, KTP, or pulsed lights for red laser telangiectases and long pulse Nd-Yag laser for blue telangiectases. For papulopustular rosacea, vascular laser treatment (pulsed dye and KTP) and intense pulsed light will be begun once the inflammation has been treated. The major indication for vascular lasers and intense pulsed light is found in erythematotelangiectatic rosacea, with high efficacy for the telangiectases. Diffuse erythrosis is difficult to treat, requiring a high number of laser and/or intense pulsed light sessions. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  8. Cornea surgery with nanojoule femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Wang, Bagui; Riemann, Iris; Kobow, Jens

    2005-04-01

    We report on a novel optical method for (i) flap-generation in LASIK procedures as well as (ii) for flap-free intrastromal refractive surgery based on nanojoule femtosecond laser pulses. The near infrared 200 fs pulses for multiphoton ablation have been provided by ultracompact turn-key MHz laser resonators. LASIK flaps and intracorneal cavities have been realized with high precision within living New Zealand rabbits using the system FemtoCutO (JenLab GmbH, Jena, Germany) at 800 nm laser wavelength. Using low-energy sub-2 nJ laser pulses, collateral damage due to photodisruptive and self-focusing effects was avoided. The laser ablation system consists of fast galvoscanners, focusing optics of high numerical aperture as well as a sensitive imaging system and provides also the possibility of 3D multiphoton imaging of fluorescent cellular organelles and SHG signals from collagen. Multiphoton tomography of the cornea was used to determine the exact intratissue beam position and to visualize intraocular post-laser effects. The wound healing process has been investigated up to 90 days after instrastromal laser ablation by histological analysis. Regeneration of damaged collagen structures and the migration of inflammation cells have been detected.

  9. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  10. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    DOE PAGES

    Moody, J. T.; Anderson, S. G.; Anderson, G.; ...

    2016-02-29

    In this paper we discuss the ultrashort pulse high gradient Inverse Free Electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gra- dients exceeding 200 MV/m using a 4 TW 100 fs long 800 nm Ti:Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, non destructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with < 100 fs accuracy. The results of this experiment are expected tomore » pave the way towards the development of future GeV-class IFEL accelerators.« less

  11. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    NASA Astrophysics Data System (ADS)

    Moody, J. T.; Anderson, S. G.; Anderson, G.; Betts, S.; Fisher, S.; Tremaine, A.; Musumeci, P.

    2016-02-01

    In this paper we discuss the ultrashort pulse high gradient inverse free electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gradients exceeding 200 MV /m using a 4 TW 100 fs long 800 nm Ti :Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, nondestructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with <100 fs accuracy. The results of this experiment are expected to pave the way towards the development of future GeV-class IFEL accelerators.

  12. Propagation of chirped laser pulses in a plasma channel

    SciTech Connect

    Jha, Pallavi; Malviya, Amita; Upadhyay, Ajay K.

    2009-06-15

    Propagation of an initially chirped, Gaussian laser pulse in a preformed parabolic plasma channel is analyzed. A variational technique is used to obtain equations describing the evolution of the phase shift and laser spot size. The effect of initial chirp on the laser pulse length and intensity of a matched laser beam propagating in a plasma channel has been analyzed. The effective pulse length and chirp parameter of the laser pulse due to its interaction with plasma have been obtained and graphically depicted. The resultant variation in laser frequency across the laser pulse is discussed.

  13. Ultrashort pulsed laser technology development program

    NASA Astrophysics Data System (ADS)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  14. Modeling Pulsed Laser Melting of Embedded Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sawyer, Carolyn Anne

    A model of pulsed laser melting of embedded nanoparticles is introduced. Pulsed laser melting (PLM) is commonly used to achieve a fast quench rate in nanoparticles; this model enables a better understanding of the influence of PLM on the size distribution of nanoparticles, which is crucial for studying or using their size-dependent properties. The model includes laser absorption according to the Mie theory, a full heat transport model, and rate equations for nucleation, growth, coarsening, and melting and freezing of nanoparticles embedded in a transparent matrix. The effects of varying the laser parameters and sample properties are studied, as well as combining PLM and rapid thermal annealing (RTA) processing steps on the same sample. A general theory for achieving narrow size distributions of nanoparticles is presented, and widths as narrow as 12% are achieved using PLM and RTA.

  15. Ceramic dentures manufactured with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Werelius, Kristian; Weigl, Paul

    2004-06-01

    Conventional manufacturing of individual ceramic dental prosthesis implies a handmade metallic framework, which is then veneered with ceramic layers. In order to manufacture all-ceramic dental prosthesis a CAD/CAM system is necessary due to the three dimensional shaping of high strength ceramics. Most CAD/CAM systems presently grind blocks of ceramic after the construction process in order to create the prosthesis. Using high-strength ceramics, such as Hot Isostatic Pressed (HIP)-zirconia, this is limited to copings. Anatomically shaped fixed dentures have a sculptured surface with small details, which can't be created by existing grinding tools. This procedure is also time consuming and subject to significant loss in mechanical strength and thus reduced survival rate once inserted. Ultra-short laser pulses offer a possibility in machining highly complex sculptured surfaces out of high-strength ceramic with negligible damage to the surface and bulk of the ceramic. In order to determine efficiency, quality and damage, several laser ablation parameters such as pulse duration, pulse energy and ablation strategies were studied. The maximum ablation rate was found using 400 fs at high pulse energies. High pulse energies such as 200μJ were used with low damage in mechanical strength compared to grinding. Due to the limitation of available laser systems in pulse repetition rates and power, the use of special ablation strategies provide a possibility to manufacture fully ceramic dental prosthesis efficiently.

  16. Ultrashort pulse laser deposition of thin films

    DOEpatents

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  17. Compact pulsed laser having improved heat conductance

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (Inventor)

    1977-01-01

    A highly efficient, compact pulsed laser having high energy to weight and volume ratios is provided. The laser utilizes a cavity reflector that operates as a heat sink and is essentially characterized by having a high heat conductivity, by being a good electrical insulator and by being substantially immune to the deleterious effects of ultra-violet radiation. Manual portability is accomplished by eliminating entirely any need for a conventional circulating fluid cooling system.

  18. Laser Cooling with Ultrafast Pulse Trains

    DTIC Science & Technology

    2011-08-08

    of the electron cutoff energy for a laser intensity of ~5.3 x 1014 W/cm2. Record-breaking atomic imaging resolution and first absorption imaging...unprecedented agreement between ab initio theory and experiment in this field by investigating ionisation of atomic hydrogen with few-cycle pulses [1]. Figure 1...2a). We have made a systematic study of the electron energy and laser intensity dependence of the CEP modulation depth and relative phase offset

  19. Tunable pulsed carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Megie, G. J.; Menzies, R. T.

    1981-01-01

    Transverse electrically-excited-atmosphere (TEA) laser is continuously tunable over several hundred megahertz about centers of spectral lines of carbon dioxide. It is operated in single longitudinal mode (SLM) by injection of beam from continuous-wave, tunable-waveguide carbon dioxide laser, which serves as master frequency-control oscillator. Device measures absorption line of ozone; with adjustments, it is applicable to monitoring of atmospheric trace species.

  20. COMANCHE-BIG SOUTH, NEOTA-FLAT TOP, AND NEVER SUMMER WILDERNESS STUDY AREAS, COLORADO.

    USGS Publications Warehouse

    Pearson, R.C.; Patten, L.L.

    1984-01-01

    A mineral-resource assessment was made of three wilderness study areas adjacent to the north and west sides of Rocky Mountain National Park in north-central Colorado. Gold, silver, and uranium prospects in major faults near the Comanche-Big South wilderness study area suggest the possibility that these commodities may also occur along numerous similar faults within the study area, but the lack of evidence for mineralized rock at the surface suggests little chance for deposits along these structures. The Neota-Flat Top wilderness study area shows no evidence of being mineralized and little likelihood for the occurrence of mineral resources. The Never Summer wilderness study area has strong geologic, geochemical, and geophysical evidence indicating probable resource potential for molydenum deposits. The nature of the geologic terrain precludes the occurrence of organic fuels.

  1. Mosaic of Wedge, Shark, Half-Dome, Moe and Flat Top

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The front cameras aboard the rover Sojourner imaged several prominent rocks on Sol 44. The highly-textured rock at left is Wedge, and in the background from left to right are Shark, Half-Dome, and Moe. The rectangular rock at right is Flat Top, which earlier close-up images revealed to be made up of elongated pits, possibly made by vesicles from volcanic outgassing or etches caused by weathering.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  2. The HEB at flat top: Arranging for the HEB to collider beam transfer

    SciTech Connect

    Larson, D.J.

    1994-03-01

    The flat top for the High Energy Booster (HEB) is planned to last for only 6.5 seconds, yet during this time the beam must be made to: (1) have the correct central momentum; (2) have the correct bunch-to-bunch spacing; (3) have the correct central phase; and (4) have the correct momentum spread and longitudinal length. All of these attributes must match what the Collider expects or unwanted emittance growth will occur. This paper outlines the techniques necessary to achieve a proper HEB-to-Collider beam transfer within the 6.5 s time constraint. A novel means for cogging is proposed and evaluated. The hardware necessary to implement the beam manipulation and to achieve the four goals is specified, and tolerances on the hardware are evaluated.

  3. Propagation of ultrashort laser pulses through water.

    PubMed

    Li, Jianchao; Alexander, Dennis R; Zhang, Haifeng; Parali, Ufuk; Doerr, David W; Bruce, John C; Wang, Hao

    2007-02-19

    In this paper, propagation of ultrashort pulses through a long 3.5 meter water channel was studied. Of particular interest was the attenuation of the beam at various lengths along the variable path length and to find an explanation of why the attenuation deviates from typical Beer Lambert law around 3 meters for ultrashort laser pulse transmission. Laser pulses of 10 fs at 75 MHz, 100 fs at 80 MHz and 300 fs at 1 KHz were employed to investigate the effects of pulse duration, spectrum and repetition rate on the attenuation after propagating through water up to 3 meters. Stretched pulse attenuation measurements produced from 10 fs at a frequency of 75 MHz were compared with the 10 fs attenuation measurements. Results indicate that the broad spectrum of the ultrashort pulse is the dominant reason for the observed decrease in attenuation after 3 meters of travel in a long water channel. The repetition rate is found not to play a significant role at least for the long pulse scenario in this reported attenuation studies.

  4. Radial phased-locked partially coherent flat-topped vortex beam array in non-Kolmogorov medium.

    PubMed

    Liu, Huilong; Lü, Yanfei; Xia, Jing; Chen, Dong; He, Wei; Pu, Xiaoyun

    2016-08-22

    The analytical expressions for the cross-spectral density, the average intensity and the complex degree of spatial coherence of a radial phased-locked partially coherent flat-topped vortex beam array propagating through non-Kolmogorov medium are obtained by using the extended Huygens-Fresnel principle. The evolution behaviors of a radial phased-locked partially coherent flat-topped vortex beam array propagating through non-Kolmogorov medium are studied in detail. It is shown that the evolution behaviors of average intensity depend on beam parameters including the spatial correlation length, the radius of the beam array, as well as the propagation distance. A radial phased-locked partially coherent flat-topped vortex beam array with high coherence evolves more rapidly than that with low coherence.

  5. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, S.A.; Hayden, J.S.

    1997-09-02

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

  6. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, Stephen A.; Hayden, Joseph S.

    1997-01-01

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P.sub.2 O.sub.5, Al.sub.2 O.sub.3 and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules.

  7. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, Jr., C G; Throop, A; Eder, D; Kimbrough, J

    2007-08-28

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dots and D-dots, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetic codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a corresponding broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  8. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, C G; Throop, A; Eder, D; Kimbrough, J

    2008-02-04

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dot and D-dot probes, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from several hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetics codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a correspondingly broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  9. Modulated Pulsed Laser Sources for Imaging Lidars

    DTIC Science & Technology

    2007-10-01

    manufactured by QPC. This C-mount device has a monolithic semiconductor amplifier allowing the package to output up to 1.5 Watts at 1064 nm with linewidths ɘ.1...pulsed driver based on the avalanche transistor circuit being used for gain switching, a 1064 nm DFB laser manufactured by QPC and a DBR -style laser...available now that may provide the needed power. An example of such a laser is the QPC C-mount monolithic oscillator/amplifier which can output 1.5

  10. Chemically-Assisted Pulsed Laser-Ramjet

    NASA Astrophysics Data System (ADS)

    Horisawa, Hideyuki; Kaneko, Tomoki; Tamada, Kazunobu

    2010-10-01

    A preliminary study of a chemically-assisted pulsed laser-ramjet was conducted, in which chemical propellant such as a gaseous hydrogen/air mixture was utilized and detonated with a focused laser beam in order to obtain a higher impulse compared to the case only using lasers. CFD analysis of internal conical-nozzle flows and experimental measurements including impulse measurement were conducted to evaluate effects of chemical reaction on thrust performance improvement. From the results, a significant improvement in the thrust performances was confirmed with addition of a small amount of hydrogen to propellant air, or in chemically-augmented operation.

  11. Lasers and Intense Pulsed Light Hidradenitis Suppurativa.

    PubMed

    Saunte, Ditte M; Lapins, Jan

    2016-01-01

    Lasers and intense pulsed light (IPL) treatment are useful for the treatment of hidradenitis suppurativa (HS). Carbon dioxide lasers are used for cutting or vaporization of the affected area. It is a effective therapy for the management of severe and recalcitrant HS with persistent sinus tract and scarring, and can be performed under local anesthesia. HS has a follicular pathogenesis. Lasers and IPL targeting the hair have been found useful in treating HS by reducing the numbers of hairs in areas with HS. The methods have few side effects, but the studies are preliminary and need to be repeated. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Chemically-Assisted Pulsed Laser-Ramjet

    SciTech Connect

    Horisawa, Hideyuki; Kaneko, Tomoki; Tamada, Kazunobu

    2010-10-13

    A preliminary study of a chemically-assisted pulsed laser-ramjet was conducted, in which chemical propellant such as a gaseous hydrogen/air mixture was utilized and detonated with a focused laser beam in order to obtain a higher impulse compared to the case only using lasers. CFD analysis of internal conical-nozzle flows and experimental measurements including impulse measurement were conducted to evaluate effects of chemical reaction on thrust performance improvement. From the results, a significant improvement in the thrust performances was confirmed with addition of a small amount of hydrogen to propellant air, or in chemically-augmented operation.

  13. Pulse solid state lasers in aesthetic surgery

    NASA Astrophysics Data System (ADS)

    Dobryakov, Boris S.; Greben'kova, Ol'ga B.; Gulev, Valerii S.

    1996-04-01

    The emission of a pulse-periodic laser on alumo-ittrium garnet applied for preventive and medical treatment of a capsule contracture round implanted prostheses in xenoplastics is described in the present paper. The results obtained testify to a high efficiency of suggested method.

  14. Pulsed cyclic laser based on dissociative excitation

    SciTech Connect

    Celto, J.E.; Schimitschek, E.J.

    1980-10-14

    A pulsed laser produces emitted laser energy by dissociative excitation of metal dihalide and cyclic recombination. A metal dihalide selected from subgroup ii-b of the periodic table of elements is contained within an elongate sealed enclosure. Two elongate electrodes having external terminals are supported in parallel relationship within the enclosure, forming a gap parallel to the principal axis of the enclosure. A source of pulsed electric power is connected to the terminals of the two electrodes, producing repetitive transverse electric discharges across the gap. An inert buffer gas is included within the enclosure for aiding electric discharge uniformity, and to provide vibrational relaxation of the lasing medium in its electronic states. The buffer gas is ionized by a third electrode within the enclosure connected to a source of pulses which immediately precede the pulses applied to the first and second electrode so that the lasing medium is preionized immediately prior to the principal electric discharge. Two reflective surfaces, one of which is only partially reflective, are aligned with the principal axis of the laser assembly for producing an optical resonator for the emitted laser energy.

  15. Ultrashort Pulse (USP) Laser-Matter Interactions

    DTIC Science & Technology

    2013-03-05

    unlimited 2D electron wavepacket quantum simulation Source: Luis Plaja, U Salamanca 31 Direct Frequency Comb Spectroscopy in the Extreme...intensity short pulse laser interacting with structured targets yields an enhancement in the number and energy of hot electron. • Monte Carlo

  16. Pulsed laser deposition: Prospects for commercial deposition of epitaxial films

    SciTech Connect

    Muenchausen, R.E.

    1999-03-01

    Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique for the deposition of thin films. The vapor source is induced by the flash evaporation that occurs when a laser pulse of sufficient intensity (about 100 MW/cm{sup 2}) is absorbed by a target. In this paper the author briefly defines pulsed laser deposition, current applications, research directed at gaining a better understanding of the pulsed laser deposition process, and suggests some future directions to enable commercial applications.

  17. Numerical investigation of flat-topped vortex hollow beams and Bessel beams propagating in a turbulent atmosphere.

    PubMed

    Zhang, Yalin; Ma, Donglin; Yuan, Xiuhua; Zhou, Zeyu

    2016-11-10

    In this paper, the aperture averaged scintillation, mean signal-to-noise ratio (SNR), and average bit error rate (BER) for both flat-topped vortex hollow beams and Bessel beams propagating in a turbulent atmosphere are evaluated. Investigations are also made illustrating the variation of aperture averaged scintillation, mean SNR, and average BER against the beam type, propagation distance, and size of the receiver aperture. Compared with the flat-topped vortex hollow beams, the Bessel beams have a smaller aperture averaged scintillation, higher mean SNR, and lower average BER when the receiver aperture is relatively small under the same conditions.

  18. Laser zona dissection using short-pulse ultraviolet lasers

    NASA Astrophysics Data System (ADS)

    Neev, Joseph; Tadir, Yona; Ho, Peter D.; Whalen, William E.; Asch, Richardo H.; Ord, Teri; Berns, Michael W.

    1992-06-01

    The interaction of pulsed ultraviolet radiation with the zona pellucida of human oocytes which had failed to fertilize in standard IVF cycles, was investigated. Two lasers were studied: a 100 ps pulsed Nd:YAG with a nonlinear crystal emitting light at 266 nm, and a 15 ns XeCl excimer laser with 308 nm radiation. Incisions in the zona were made by aiming the beam tangentially to the oocyte. The results indicate superior, high precision performance by the excimer laser creating trenches as narrow as 1 micrometers and as shallow as 1 micrometers . The incision size was found to be sensitive to the laser's energy and to the position of the microscope's objective focal plane, but relatively insensitive to the laser pulse repetition rate. Once the minimum spot size was defined by the system parameters, the laser beam was used to curve out any desired zona shape. This laser microsurgery technique as applied to partial zone dissection or zona drilling could prove very useful as a high-precision, non-contact method for treatments of low fertilization rate and for enhancing embryo implantation rates in patients undergoing IVF treatments.

  19. Spatially modulated laser pulses for printing electronics.

    PubMed

    Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto

    2015-11-01

    The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.

  20. High power parallel ultrashort pulse laser processing

    NASA Astrophysics Data System (ADS)

    Gillner, Arnold; Gretzki, Patrick; Büsing, Lasse

    2016-03-01

    The class of ultra-short-pulse (USP) laser sources are used, whenever high precession and high quality material processing is demanded. These laser sources deliver pulse duration in the range of ps to fs and are characterized with high peak intensities leading to a direct vaporization of the material with a minimum thermal damage. With the availability of industrial laser source with an average power of up to 1000W, the main challenge consist of the effective energy distribution and disposition. Using lasers with high repetition rates in the MHz region can cause thermal issues like overheating, melt production and low ablation quality. In this paper, we will discuss different approaches for multibeam processing for utilization of high pulse energies. The combination of diffractive optics and conventional galvometer scanner can be used for high throughput laser ablation, but are limited in the optical qualities. We will show which applications can benefit from this hybrid optic and which improvements in productivity are expected. In addition, the optical limitations of the system will be compiled, in order to evaluate the suitability of this approach for any given application.

  1. Group velocity and pulse lengthening of mismatched laser pulses in plasma channels

    SciTech Connect

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim

    2011-07-07

    Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in aplasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatchedpropagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of amismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance andsignificantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage isexamined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown tobe in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasmachannel diagnostics are discussed.

  2. Laser-pulse compression using magnetized plasmas

    DOE PAGES

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2017-02-28

    Proposals to reach the next generation of laser intensities through Raman or Brillouin backscattering have centered on optical frequencies. Higher frequencies are beyond the range of such methods mainly due to the wave damping that accompanies the higher-density plasmas necessary for compressing higher frequency lasers. However, we find that an external magnetic field transverse to the direction of laser propagation can reduce the required plasma density. Using parametric interactions in magnetized plasmas to mediate pulse compression, both reduces the wave damping and alleviates instabilities, thereby enabling higher frequency or lower intensity pumps to produce pulses at higher intensities and longermore » durations. Finally, in addition to these theoretical advantages, our method in which strong uniform magnetic fields lessen the need for high-density uniform plasmas also lessens key engineering challenges or at least exchanges them for different challenges.« less

  3. Laser-pulse compression using magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2017-02-01

    Proposals to reach the next generation of laser intensities through Raman or Brillouin backscattering have centered on optical frequencies. Higher frequencies are beyond the range of such methods mainly due to the wave damping that accompanies the higher-density plasmas necessary for compressing higher frequency lasers. However, we find that an external magnetic field transverse to the direction of laser propagation can reduce the required plasma density. Using parametric interactions in magnetized plasmas to mediate pulse compression, both reduces the wave damping and alleviates instabilities, thereby enabling higher frequency or lower intensity pumps to produce pulses at higher intensities and longer durations. In addition to these theoretical advantages, our method in which strong uniform magnetic fields lessen the need for high-density uniform plasmas also lessens key engineering challenges or at least exchanges them for different challenges.

  4. Phase Noise Comparision of Short Pulse Laser Systems

    SciTech Connect

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  5. Double nanosecond pulses generation in ytterbium fiber laser

    SciTech Connect

    Veiko, V. P.; Samokhvalov, A. A. Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N.; Lednev, V. N.; Pershin, S. M.

    2016-06-15

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  6. Double nanosecond pulses generation in ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Lednev, V. N.; Pershin, S. M.; Samokhvalov, A. A.; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N.

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  7. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  8. Dark and bright pulse passive mode-locked laser with in-cavity pulse-shaper.

    PubMed

    Schröder, Jochen B; Coen, Stéphane; Sylvestre, Thibaut; Eggleton, Benjamin J

    2010-10-25

    We demonstrate the integration of a spectral pulse-shaper into a passive mode-locked laser cavity for direct control of the output pulse-shape of the laser. Depending on the dispersion filter applied with the pulse-shaper we either observe a bright or dark "soliton-like" pulse train. The results demonstrate the strong potential of an in-cavity spectral pulse-shaper as an experimental tool for controlling the dynamics of passively mode-locked lasers.

  9. Pulsed Power for Solid-State Lasers

    SciTech Connect

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  10. Laser-Induced Damage with Femtosecond Pulses

    NASA Astrophysics Data System (ADS)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps

  11. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, Laird P. [Livermore, CA; Carder, Bruce M. [Antioch, CA; Gagnon, William L. [Berkeley, CA

    1981-03-17

    Apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse.

  12. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, L.P.; Carder, B.M.; Gagnon, W.L.

    1981-03-17

    Disclosed are an apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse. 13 figs.

  13. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J. )

    1990-07-30

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area.

  14. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J.T.

    1989-01-01

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition if the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research questions still outstanding in this area. 16 refs., 7 figs.

  15. Selective laser melting of copper using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Kaden, Lisa; Matthäus, Gabor; Ullsperger, Tobias; Engelhardt, Hannes; Rettenmayr, Markus; Tünnermann, Andreas; Nolte, Stefan

    2017-09-01

    Within the field of laser-assisted additive manufacturing, the application of ultrashort pulse lasers for selective laser melting came into focus recently. In contrast to conventional lasers, these systems provide extremely high peak power at ultrashort interaction times and offer the potential to control the thermal impact at the vicinity of the processed region by tailoring the pulse repetition rate. Consequently, materials with extremely high melting points such as tungsten or special composites such as AlSi40 can be processed. In this paper, we present the selective laser melting of copper using 500 fs laser pulses at MHz repetition rates emitted at a center wavelength of about 1030 nm. To identify an appropriate processing window, a detailed parameter study was performed. We demonstrate the fabrication of bulk copper parts as well as the realization of thin-wall structures featuring thicknesses below 100 {μ }m. With respect to the extraordinary high thermal conductivity of copper which in general prevents the additive manufacturing of elements with micrometer resolution, this work demonstrates the potential for sophisticated copper products that can be applied in a wide field of applications extending from microelectronics functionality to complex cooling structures.

  16. Comparison of amplified spontaneous emission pulse cleaners for use in chirped pulse amplification front end lasers

    SciTech Connect

    Dawson, J; Siders, C; Phan, H; Kanz, V; Barty, C

    2007-07-02

    We compare various schemes for removing amplified spontaneous emission from seed laser pulses. We focus on compact schemes that are compatible with fiber laser front end systems with pulse energies in the 10nJ-1{micro}J range and pulse widths in the 100fs-10ps range. Pre-pulse contrast ratios greater than 10{sup 9} have been measured.

  17. Pulse energy dependence of subcellular dissection by femtosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Heisterkamp, A.; Maxwell, I. Z.; Mazur, E.; Underwood, J. M.; Nickerson, J. A.; Kumar, S.; Ingber, D. E.

    2005-01-01

    Precise dissection of cells with ultrashort laser pulses requires a clear understanding of how the onset and extent of ablation (i.e., the removal of material) depends on pulse energy. We carried out a systematic study of the energy dependence of the plasma-mediated ablation of fluorescently-labeled subcellular structures in the cytoskeleton and nuclei of fixed endothelial cells using femtosecond, near-infrared laser pulses focused through a high-numerical aperture objective lens (1.4 NA). We find that the energy threshold for photobleaching lies between 0.9 and 1.7 nJ. By comparing the changes in fluorescence with the actual material loss determined by electron microscopy, we find that the threshold for true material ablation is about 20% higher than the photobleaching threshold. This information makes it possible to use the fluorescence to determine the onset of true material ablation without resorting to electron microscopy. We confirm the precision of this technique by severing a single microtubule without disrupting the neighboring microtubules, less than 1 micrometer away. c2005 Optical Society of America.

  18. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    SciTech Connect

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  19. Method and apparatus for the production of pre pulse free smooth laser radiation pulses of variable pulse duration

    SciTech Connect

    Witte, K. J.; Fill, E.; Scrlac, W.

    1985-04-30

    The pulse duration of an iodine laser is adjusted between 400 ps and 20 ns primarily by changing the resonator length in the range of about 2 cm to about 100 cm and secondarily by the ratio of excitation energy to threshold energy of the laser. Iodine laser pulses without pre-pulse and substructure are achieved in that the gas pressure of the laser gas of the iodine laser is adapted to the resonator length in order to limit the band width of the amplification and thus the band width of the pulse to be produced. The longer are the laser pulses to be produced the lower is the pressure chosen. A prerequisite for the above results is that the excitation of the iodine laser occurs extremely rapidly. This is advantageously achieved by photo-dissociation of a perfluoroalkyl iodide as CF/sub 3/I by means of laser providing sufficiently short output pumping pulses, e.g. an excimer laser, as a KrF laser or XeCl laser or a frequency-multiplied Nd-glass or Nd-YAG laser, or a N/sub 2/ laser (in combination with t-C/sub 4/F/sub 9/I as laser medium). In addition to the substantial advantage of the easy variability of the pulse duration the method additionally has a number of further advantages, namely pre-pulse-free rise of the laser pulse up to the maximum amplitude; exchange of the laser medium between two pulses is not necessary at pulse repetition rates below about 1 hertz; high pulse repetion rates obtainable with laser gas regeneration; switching elements for isolating a laser oscillator from a subsequent amplifier cascade for the purpose of avoiding parasitic oscillations are not as critical as with flashlamp-pumped lasers.

  20. Laser-driven hydrothermal process studied with excimer laser pulses

    NASA Astrophysics Data System (ADS)

    Mariella, Raymond; Rubenchik, Alexander; Fong, Erika; Norton, Mary; Hollingsworth, William; Clarkson, James; Johnsen, Howard; Osborn, David L.

    2017-08-01

    Previously, we discovered [Mariella et al., J. Appl. Phys. 114, 014904 (2013)] that modest-fluence/modest-intensity 351-nm laser pulses, with insufficient fluence/intensity to ablate rock, mineral, or concrete samples via surface vaporization, still removed the surface material from water-submerged target samples with confinement of the removed material, and then dispersed at least some of the removed material into the water as a long-lived suspension of nanoparticles. We called this new process, which appears to include the generation of larger colorless particles, "laser-driven hydrothermal processing" (LDHP) [Mariella et al., J. Appl. Phys. 114, 014904 (2013)]. We, now, report that we have studied this process using 248-nm and 193-nm laser light on submerged concrete, quartzite, and obsidian, and, even though light at these wavelengths is more strongly absorbed than at 351 nm, we found that the overall efficiency of LDHP, in terms of the mass of the target removed per Joule of laser-pulse energy, is lower with 248-nm and 193-nm laser pulses than with 351-nm laser pulses. Given that stronger absorption creates higher peak surface temperatures for comparable laser fluence and intensity, it was surprising to observe reduced efficiencies for material removal. We also measured the nascent particle-size distributions that LDHP creates in the submerging water and found that they do not display the long tail towards larger particle sizes that we had observed when there had been a multi-week delay between experiments and the date of measuring the size distributions. This is consistent with transient dissolution of the solid surface, followed by diffusion-limited kinetics of nucleation and growth of particles from the resulting thin layer of supersaturated solution at the sample surface.

  1. Pulsed laser radiation therapy of skin tumors

    SciTech Connect

    Kozlov, A.P.; Moskalik, K.G.

    1980-11-15

    Radiation from a neodymium laser was used to treat 846 patients with 687 precancerous lesions or benign tumors of the skin, 516 cutaneous carcinomas, 33 recurrences of cancer, 51 melanomas, and 508 metastatic melanomas in the skin. The patients have been followed for three months to 6.5 years. No relapses have been observed during this period. Metastases to regional lymph nodes were found in five patients with skin melanoma. Pulsed laser radiation may be successfully used in the treatment of precancerous lesions and benign tumors as well as for skin carcinoma and its recurrences, and for skin melanoma. Laser radiation is more effective in the treatment of tumors inaccessible to radiation therapy and better in those cases in which surgery may have a bad cosmetic or even mutilating effect. Laser beams can be employed in conjunction with chemo- or immunotherapy.

  2. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  3. GEOS-1 laser pulse return shape analysis

    NASA Technical Reports Server (NTRS)

    Felsentreger, T. L.

    1972-01-01

    An attempt has been made to predict the shape of the laser return pulse from the corner cube retroreflectors on the GEOS-1 spacecraft. The study is geometrical only, and neglects factors such as optical interference, atmospheric perturbations, etc. A function giving the intensity of the return signal at any given time has been derived. In addition, figures are given which show the predicted return pulse shape as a function of time, the angle between the beam and the spin axis, and an in-plane angle (designating the orientation of the intersection of the planar waves with the plane of the corner cubes).

  4. Nanosecond laser ablation for pulsed laser deposition of yttria

    NASA Astrophysics Data System (ADS)

    Sinha, Sucharita

    2013-09-01

    A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.

  5. High speed sampling circuit design for pulse laser ranging

    NASA Astrophysics Data System (ADS)

    Qian, Rui-hai; Gao, Xuan-yi; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Guo, Xiao-kang; He, Shi-jie

    2016-10-01

    In recent years, with the rapid development of digital chip, high speed sampling rate analog to digital conversion chip can be used to sample narrow laser pulse echo. Moreover, high speed processor is widely applied to achieve digital laser echo signal processing algorithm. The development of digital chip greatly improved the laser ranging detection accuracy. High speed sampling and processing circuit used in the laser ranging detection system has gradually been a research hotspot. In this paper, a pulse laser echo data logging and digital signal processing circuit system is studied based on the high speed sampling. This circuit consists of two parts: the pulse laser echo data processing circuit and the data transmission circuit. The pulse laser echo data processing circuit includes a laser diode, a laser detector and a high sample rate data logging circuit. The data transmission circuit receives the processed data from the pulse laser echo data processing circuit. The sample data is transmitted to the computer through USB2.0 interface. Finally, a PC interface is designed using C# language, in which the sampling laser pulse echo signal is demonstrated and the processed laser pulse is plotted. Finally, the laser ranging experiment is carried out to test the pulse laser echo data logging and digital signal processing circuit system. The experiment result demonstrates that the laser ranging hardware system achieved high speed data logging, high speed processing and high speed sampling data transmission.

  6. Electron acceleration by a propagating laser pulse in vacuum

    SciTech Connect

    Wang Fengchao; Shen Baifei; Zhang Xiaomei; Li Xuemei; Jin Zhangying

    2007-08-15

    Electrons accelerated by a propagating laser pulse of linear or circular polarization in vacuum have been investigated by one-dimensional particle-in-cell simulations and analytical modeling. A stopping target is used to stop the laser pulse and extract the energetic electrons from the laser field. The effect of the reflected light is taken into account. The maximum electron energy depends on the laser intensity and initial electron energy. There is an optimal acceleration length for electrons to gain maximum energy where electrons meet the peak of the laser pulse. The optimal acceleration length depends strongly on the laser pulse duration and amplitude.

  7. Pulse-burst laser systems for fast Thomson scattering (invited)

    SciTech Connect

    Den Hartog, D. J.; Ambuel, J. R.; Holly, D. J.; Robl, P. E.; Borchardt, M. T.; Falkowski, A. F.; Harris, W. S.; Parke, E.; Reusch, J. A.; Stephens, H. D.; Yang, Y. M.

    2010-10-15

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  8. Pulse-burst laser systems for fast Thomson scattering (invited).

    PubMed

    Den Hartog, D J; Ambuel, J R; Borchardt, M T; Falkowski, A F; Harris, W S; Holly, D J; Parke, E; Reusch, J A; Robl, P E; Stephens, H D; Yang, Y M

    2010-10-01

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  9. Pulsed laser triggered high speed microfluidic switch

    NASA Astrophysics Data System (ADS)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  10. Photostimulation of astrocytes with femtosecond laser pulses.

    PubMed

    Zhao, Yuan; Zhang, Yuan; Liu, Xiuli; Lv, Xiaohua; Zhou, Wei; Luo, Qingming; Zeng, Shaoqun

    2009-02-02

    The involvement of astrocytes in brain functions rather than support has been identified and widely concerned. However the lack of an effective stimulation of astrocytes hampers our understanding of their essential roles. Here, we employed 800-nm near infrared (NIR) femtosecond laser to induce Ca2+ wave in astrocytes. It was demonstrated that photostimulation of astrocytes with femtosecond laser pulses is efficient with the advantages of non-contact, non-disruptiveness, reproducibility, and high spatiotemporal precision. Photostimulation of astrocytes would facilitate investigations on information processing in neuronal circuits by providing effective way to excite astrocytes.

  11. Nanosecond pulsed laser blackening of copper

    NASA Astrophysics Data System (ADS)

    Tang, Guang; Hourd, Andrew C.; Abdolvand, Amin

    2012-12-01

    Nanosecond (12 ns) pulsed laser processing of copper at 532 nm resulted in the formation of homogenously distributed, highly organized microstructures. This led to the fabrication of large area black copper substrates with absorbance of over 97% in the spectral range from 250 nm to 750 nm, and a broadband absorbance of over 80% between 750 nm and 2500 nm. Optical and chemical analyses of the fabricated black metal are presented and discussed. The employed laser is an industrially adaptable source and the presented technique for fabrication of black copper could find applications in broadband thermal radiation sources, solar energy absorbers, irradiative heat transfer devices, and thermophotovoltaics.

  12. Control of XeF laser output by pulse injection

    NASA Technical Reports Server (NTRS)

    Pacala, T. J.; Christensen, C. P.

    1980-01-01

    Injection locking is investigated as a means for control of optical pulse duration and polarization in a XeF laser. Intense short-pulse generation in the ultraviolet is achieved by injection of a low-level 1-ns optical pulse into a XeF oscillator. Control of laser output polarization by injection locking is demonstrated and studied as a function of injected signal level. Enhancement of XeF electric-discharge laser efficiency by injection pulse 'priming' is observed.

  13. Optical reprogramming with ultrashort femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  14. Plasma generated during underwater pulsed laser processing

    NASA Astrophysics Data System (ADS)

    Hoffman, Jacek; Chrzanowska, Justyna; Moscicki, Tomasz; Radziejewska, Joanna; Stobinski, Leszek; Szymanski, Zygmunt

    2017-09-01

    The plasma induced during underwater pulsed laser ablation of graphite is studied both experimentally and theoretically. The results of the experiment show that the maximum plasma temperature of 25000 K is reached 20 ns from the beginning of the laser pulse and decreases to 6500 K after 1000 ns. The observed OH absorption band shows that the plasma plume is surrounded by the thin layer of dissociated water vapour at a temperature around 5500 K. The hydrodynamic model applied shows similar maximum plasma temperature at delay times between 14 ns and 30 ns. The calculations show also that already at 14th ns, the plasma electron density reaches 0.97·1027 m-3, which is the critical density for 1064 nm radiation. At the same time the plasma pressure is 2 GPa, which is consisted with earlier measurements of the peak pressure exerted on a target in similar conditions.

  15. Pulse switching for high energy lasers

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J. (Inventor)

    1981-01-01

    A saturable inductor switch for compressing the width and sharpening the rise time of high voltage pulses from a relatively slow rise time, high voltage generator to an electric discharge gas laser (EDGL) also provides a capability for efficient energy transfer from a high impedance primary source to an intermediate low impedance laser discharge network. The switch is positioned with respect to a capacitive storage device, such as a coaxial cable, so that when a charge build-up in the storage device reaches a predetermined level, saturation of the switch inductor releases or switches energy stored in the capactive storage device to the EDGL. Cascaded saturable inductor switches for providing output pulses having rise times of less than ten nanoseconds and a technique for magnetically biasing the saturable inductor switch are disclosed.

  16. Short-pulse laser materials processing

    SciTech Connect

    Stuart, B.C.; Perry, M.D.; Myers, B.R.; Banks, P.S.; Honea, E.C.

    1997-06-18

    While there is much that we have learned about materials processing in the ultrashort-pulse regime, there is an enormous amount that we don`t know. How short does the pulse have to be to achieve a particular cut (depth, material, quality)? How deep can you cut? What is the surface roughness? These questions are clearly dependent upon the properties of the material of interest along with the short-pulse interaction physics. From a technology standpoint, we are asked: Can you build a 100 W average power system ? A 1000 W average power system? This proposal seeks to address these questions with a combined experimental and theoretical program of study. Specifically, To develop an empirical database for both metals and dielectrics which can be used to determine the pulse duration and wavelength necessary to achieve a specific machining requirement. To investigate Yb:YAG as a potential laser material for high average power short-pulse systems both directly and in combination with titanium doped sapphire. To develop a conceptual design for a lOOW and eventually 5OOW average power short-pulse system.

  17. Predicting yellow toadflax infestations in the Flat Tops Wilderness of Colorado

    USGS Publications Warehouse

    Sutton, J.R.; Stohlgren, T.J.; Beck, K.G.

    2007-01-01

    Understanding species-environment relationships is important to predict the spread of non-native species. Yellow toadflax (Linaria vulgaris Mill.) is an invasive perennial recently found in the Flat Tops Wilderness of the White River National Forest on the western slope of the Colorado Rocky Mountains. We hypothesized yellow toadflax occurrence could be predicted from easily measured site characteristics. We used logistic regression with stepwise selection to generate a model to predict yellow toadflax occurrence on a particular plot based on that site's physical characteristics. The experimental design was a paired-plot study in two locations using circular 1,018-m2 plots. Sixty-eight plots that did not contain yellow toadflax and 65 plots that contained yellow toadflax were sampled at the Ripple Creek site in 1999. In 2000, 54 non-toadflax plots and 55 toadflax-containing plots were sampled in the Marvine Creek site. Site characteristics sampled included: vegetation type; under-canopy light level; slope; aspect; soil properties; presence of disturbance, trails, and/or water; and total species richness. A model that correctly classified >90% of the 242 plots sampled included two vegetation type parameters, the presence of trails, and total species richness. Yellow toadflax is most often found in areas that were open-canopy sites, along trails, and with higher species diversity plots (>23 species). This approach can be used for other species in other areas to rapidly identify areas vulnerable to invasion. ?? 2007 Springer Science+Business Media, Inc.

  18. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere.

    PubMed

    Dan, Youquan; Zhang, Bin

    2008-09-29

    The Wigner distribution function (WDF) has been used to study the beam propagation factor (M(2)-factor) for partially coherent flat-topped (PCFT) beams with circular symmetry in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle and the definition of the WDF, an expression for the WDF of PCFT beams in turbulence has been given. By use of the second-order moments of the WDF, the analytical formulas for the root-mean-square (rms) spatial width, the rms angular width, and the M(2)-factor of PCFT beams in turbulence have been derived, which can be applied to cases of different spatial power spectra of the refractive index fluctuations. The rms angular width and the M(2)-factor of PCFT beams in turbulence have been discussed with numerical examples. It can be shown that the M(2)-factor of PCFT beams in turbulence depends on the beam order, degree of global coherence of the source, waist width, wavelength, spatial power spectrum of the refractive index fluctuations, and propagation distance.

  19. Spectral properties of a random electromagnetic partially coherent flat-topped vortex beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Qian, Xianmei

    2013-03-01

    Based on the extended Huygens-Fresnel principle, we introduced the analytic expression of a random electromagnetic partially coherent flat-topped (PCFT) vortex beam propagating in Kolmogorov atmospheric turbulence. The spectral properties of the random electromagnetic PCFT vortex beam are explored by using the unified theory of coherence and polarization. It is demonstrated by numerical results and found that after propagating through turbulent atmosphere, the spectral density, the spectral degree of polarization as well as the spectral degree of coherence of the random electromagnetic PCFT vortex beam vary. The variations of the spectral properties depend closely on the strength of atmospheric turbulence and the properties of the source beam, i.e. the topological charges, the order of flatness, the waist width as well as the initial spatial coherence. In addition, the distributions of the spectral density and the spectral degree of polarization undergo several stages of evolution and finally tend to Gaussian profile at the receiver plane. Some possible explanations have also been given for these interesting physical phenomena.

  20. Laser pulse stretcher method and apparatus

    DOEpatents

    Hawkins, Jon K.; Williams, William A.

    1990-01-01

    The output of an oscillator stage of a laser system is monitored by a photocell which is coupled to a feedback section to control a Pockels Cell and change the light output of the oscillator stage. A synchronizing pulse is generated in timed relation to the initiation of operation of the oscillator stage and is applied to a forward feed section which cooperates with the feedback section to maintain the light output constant for an extended time interval.

  1. Magnetron Sputtered Pulsed Laser Deposition Scale Up

    DTIC Science & Technology

    2003-08-14

    2:721-726 34 S. J. P. Laube and E. F. Stark, “ Artificial Intellegence in Process Control of Pulsed Laser Deposition”, Proceedings of...The model would be based on mathematical simulation of real process data, neural-networks, or other artificial intelligence methods based on in situ...Laube and E. F. Stark, Proc. Symp. Artificial Intel. Real Time Control, Valencia, Spain, 3-5 Oct. ,1994, p.159-163. International Federation of

  2. Metal-Silicide Formation With Laser Pulses

    NASA Astrophysics Data System (ADS)

    Luches, Armando; Leggieri, Gilberto; D'Anna, Emilia

    1989-05-01

    The most relevant results obtained in the field of the synthesis of metal suicides with pulsed lasers in the nanosecond regime are reviewed. Particular emphasis is given to the results obtained in our laboratories. Formation of stable and metastable compounds, their structure and the surface morphology of the irradiated materials are discussed. The reaction kinetics is investigated through a comparison of the experimental results with the temperatures of the irradiated samples, calculated by solving the heat diffusion equation.

  3. Rectangular Pulsed Laser-Electromagnetic Hybrid Accelerator

    SciTech Connect

    Kishida, Yoshiaki; Katayama, Masahiro; Horisawa, Hideyuki

    2010-10-13

    Experimental investigation of impulse-bit and propellant consumption rate, or mass shot, per single pulse discharge was conducted to characterize the thrust performance of the rectangular laser-electromagnetic hybrid acceleration thruster with various propellant materials. From the result, alumina propellant showed significantly superior performance. The largest values of the measured impulse-bit, specific impulse and thrust efficiency were 49 {mu}Nsec, 6,200 sec and 22%, respectively.

  4. Picosecond pulse measurements using the active laser medium

    NASA Technical Reports Server (NTRS)

    Bernardin, James P.; Lawandy, N. M.

    1990-01-01

    A simple method for measuring the pulse lengths of synchronously pumped dye lasers which does not require the use of an external nonlinear medium, such as a doubling crystal or two-photon fluorescence cell, to autocorrelate the pulses is discussed. The technique involves feeding the laser pulses back into the dye jet, thus correlating the output pulses with the intracavity pulses to obtain pulse length signatures in the resulting time-averaged laser power. Experimental measurements were performed using a rhodamine 6G dye laser pumped by a mode-locked frequency-doubled Nd:YAG laser. The results agree well with numerical computations, and the method proves effective in determining lengths of picosecond laser pulses.

  5. Pulsed-discharge carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  6. Shock profile induced by short laser pulses

    NASA Astrophysics Data System (ADS)

    Couturier, S.; de Rességuier, T.; Hallouin, M.; Romain, J. P.; Bauer, F.

    1996-06-01

    Standard 25-μm-thick polyvinilydene fluoride (PVDF) piezoelectric gauges and new 450-μm-thick P(VDF 70%, TrFE 30%) piezoelectric copolymer have been used to record shock profiles at the back face of metallic targets irradiated by laser pulses of 2.5 and 0.6 ns duration at a 1.06 μm wavelength. The records are fully explained with simplified space-time diagram analysis. The pressure profile applied at the front face of the target has been determined from these records combined with numerical simulations of wave propagation through the target. A numerical code describing the interaction of laser with matter (FILM) has also been used for computing the applied pressure. Both methods lead to very close results. The peak pressure dependence on incident laser intensity is determined up to 30 GPa at 1012 W/cm2.

  7. Pulsed Nd-YAG laser in endodontics

    NASA Astrophysics Data System (ADS)

    Ragot-Roy, Brigitte; Severin, Claude; Maquin, Michel

    1994-12-01

    The purpose of this study was to establish an operative method in endodontics. The effect of a pulsed Nd:YAG laser on root canal dentin has been examined with a scanning electron microscope. Our first experimentation was to observe the impacts carried out perpendicularly to root canal surface with a 200 micrometers fiber optic in the presence of dye. Secondarily, the optical fiber was used as an endodontic instrument with black dye. The irradiation was performed after root canal preparation (15/100 file or 40/100 file) or directly into the canal. Adverse effects are observed. The results show that laser irradiation on root canal dentin surfaces induces a nonhomogeneous modified dentin layer, melted and resolidified dentin closed partially dentinal tubules. The removal of debris is not efficient enough. The laser treatment seems to be indicated only for endodontic and periapical spaces sterilization after conventional root canal preparation.

  8. Ultrafast laser pulses for medical applications

    NASA Astrophysics Data System (ADS)

    Lubatschowski, Holger; Heisterkamp, Alexander; Will, Fabian; Serbin, Jesper; Bauer, Thorsten; Fallnich, Carsten; Welling, Herbert; Mueller, Wiebke; Schwab, Burkard; Singh, Ajoy I.; Ertmer, Wolfgang

    2002-04-01

    Ultrafast lasers have become a promising tool for micromachining and extremely precise ablation of all kinds of materials. Due to the low energy threshold, thermal and mechanical side effects are limited to the bu micrometers range. The neglection of side effects enables the use of ultrashort laser pulses in a broad field of medical applications. Moreover, the interaction process based on nonlinear absorption offers the opportunity to process transparent tissue three dimensionally inside the bulk. We demonstrate the feasibility of surgical procedures in different fields of medical interest: in ophthalmology intrastromal cutting and preparing of cornael flaps for refractive surgery in living animals is presented. Besides, the very low mechanical side effects enables the use of fs- laser in otoralyngology to treat ocecular bones. Moreover, the precise cutting quality can be used in fields of cardiovascular surgery for the treatment of arteriosklerosis as well as in dentistry to remove caries from dental hard tissue.

  9. Enhanced Photoacoustic Beam Profiling of Pulsed Lasers

    NASA Astrophysics Data System (ADS)

    González, M.; Santiago, G.; Paz, M.; Slezak, V.; Peuriot, A.

    2013-09-01

    An improved version of a photoacoustic beam profiler of pulsed lasers is presented. The new model resorts to high-bandwidth condenser microphones to register higher-order, excited acoustic modes, thus enabling more accurate profiling. In addition, Xe was used as a buffer gas since its high atomic weight further reduces the eigenfrequencies. Furthermore, a new gas-handling system makes up for some deficiencies found in the first model. The system was calibrated using the Airy pattern generated with a pinhole illuminated by a frequency-doubled Nd:YAG laser that excited traces. Once calibrated, the beam profile of a TEA laser was obtained, using ethylene as the absorbing species. This profiler returns more accurate profiles than thermal paper.

  10. Corneal and skin laser exposures from 1540-nm laser pulses

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas E.; Mitchell, Michael A.; Rico, Pedro J.; Fletcher, David J.; Eurell, Thomas E.; Roach, William P.

    2000-06-01

    Mechanisms of tissue damage are investigated for skin and cornea exposures from 1540 nm ('eye safe') laser single pulses of 0.8 milli-seconds. New skin model data point out the advantages of using the Yucatan mini-pig versus the Yorkshire pig for in-vivo skin laser exposures. Major advantages found include similarities in thickness and melanin content when compared with human skin. Histology from Yucatan mini-pig skin exposures and the calculation of an initial ED50 threshold indicate that the main photon tissue interaction may not be solely due to water absorption. In-vitro corneal equivalents compared well with in-vivo rabbit cornea exposure under similar laser conditions. In-vivo and in-vitro histology show that initial energy deposition leading to damage occurs intrastromally, while epithelial cells show no direct injury due to laser light absorption.

  11. Electron beam switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, Lyn D.; Murray, John R.; Goldhar, Julius; Bradley, Laird P.

    1981-01-01

    Method and apparatus for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  12. Ultrashort-pulse laser generated nanoparticles of energetic materials

    SciTech Connect

    Welle, Eric J.; Tappan, Alexander S.; Palmer, Jeremy A.

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  13. Pulse shape control in a dual cavity laser: numerical modeling

    NASA Astrophysics Data System (ADS)

    Yashkir, Yuri

    2006-04-01

    We present a numerical model of the laser system for generating a special shape of the pulse: a steep peak at the beginning followed by a long pulse tail. Laser pulses of this nature are required for various applications (laser material processing, optical breakdown spectroscopy, etc.). The laser system consists of two "overlapped" cavities with different round-trip times. The laser crystal, the Q-switching element, the back mirror, and the output coupler are shared. A shorter pulse is generated in a short cavity. A small fraction of this pulse is injected into the long cavity as a seed. It triggers generation of the longer pulse. The output emission from this hybrid laser produces a required pulse shape. Parameters of the laser pulse (ratios of durations and energies of short- and long- pulse components) can be controlled through cavity length and the output coupler reflection. Modelling of the laser system is based on a set of coupled rate equations for dynamic variables of the system: the inverse population in an active laser media and photon densities in coupled cavities. Numerical experiments were provided with typical parameters of a Nd:YAG laser to study the system behaviour for different combinations of parameters.

  14. Tailored terahertz pulses from a laser-modulated electron beam.

    PubMed

    Byrd, J M; Hao, Z; Martin, M C; Robin, D S; Sannibale, F; Schoenlein, R W; Zholents, A A; Zolotorev, M S

    2006-04-28

    We present a new method to generate steady and tunable, coherent, broadband terahertz radiation from a relativistic electron beam modulated by a femtosecond laser. We have demonstrated this in the electron storage ring at the Advanced Light Source. Interaction of an electron beam with a femtosecond laser pulse copropagating through a wiggler modulates the electron energies within a short slice of the electron bunch with about the same duration of the laser pulse. The bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories, and the resulting hole emits short pulses of temporally and spatially coherent terahertz pulses synchronized to the laser. We present measurements of the intensity and spectra of these pulses. This technique allows tremendous flexibility in shaping the terahertz pulse by appropriate modulation of the laser pulse.

  15. Tailored Terahertz Pulses from a Laser-Modulated Electron Beam

    SciTech Connect

    Byrd, J.M.; Hao, Z.; Martin, M.C.; Robin, D.S.; Sannibale, F.; Schoenlein, R.W.; Zholents, A.A.; Zolotorev, M.S.

    2006-04-28

    We present a new method to generate steady and tunable, coherent, broadband terahertz radiation from a relativistic electron beam modulated by a femtosecond laser. We have demonstrated this in the electron storage ring at the Advanced Light Source. Interaction of an electron beam with a femtosecond laser pulse copropagating through a wiggler modulates the electron energies within a short slice of the electron bunch with about the same duration of the laser pulse. The bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories, and the resulting hole emits short pulses of temporally and spatially coherent terahertz pulses synchronized to the laser. We present measurements of the intensity and spectra of these pulses. This technique allows tremendous flexibility in shaping the terahertz pulse by appropriate modulation of the laser pulse.

  16. Pulsed laser fluorometry for environmental monitoring

    SciTech Connect

    Saunders, G. C.; Martin, J. C.; Jett, J. H.; Wilder, M. E.; Martinez, A.; Bentley, B. F.; Lopez, J.; Hutson, L.

    1990-01-01

    A compact pulsed laser fluorometer has been incorporated into a continuous flow system developed to detect acetylcholinesterase (AChE) inhibitors and/or primary amine compounds in air and water. A pulsed nitrogen laser pumped dye laser excites fluorescent reactants which flow continuously through a quartz flow cell. Data are collected, analyzed, and displayed using a Macintosh II personal computer. For detection of cholinesterase inhibitors the fluorogenic substrate N methylindoxyl acetate is used to monitor the activity of immobilized enzyme. Presence of inhibitors results in a decrease of steady state fluorescence. Detection of compounds containing primary amines is based on their reaction with fluorescamine to rapidly produce intensely fluorescent products. Compounds of interest to our research were amino acids, peptides, and proteins. An increase in steady state fluorescence could be cause to evaluate the reasons for the change. The detection limit of the protein, bovine serum albumin (BSA) in water is 10 ppT. Nebulized BSA concentrated by the LANL air sampler can be detected at sub ppT original air concentration. 16 refs., 14 figs., 3 tabs.

  17. Landau damping of a driven plasma wave from laser pulses

    SciTech Connect

    Bu Zhigang; Ji Peiyong

    2012-01-15

    The interaction between a laser pulse and a driven plasma wave with a phase velocity approaching the speed of light is studied, and our investigation is focused on the Gaussian laser pulse. It is demonstrated that when the resonance condition between the plasma wave and the laser pulse is satisfied, the Landau damping phenomenon of the plasma wave originated from the laser pulse will emerge. The dispersion relations for the plasma waves in resonance and non-resonance regions are obtained. It is proved that the Landau damping rate for a driven plasma wave is {gamma}>0 in the resonance region, so the laser pulse can produce an inverse damping effect, namely Landau growth effect, which leads an instability for the plasma wave. The Landau growth means that the energy is transmitted from the laser pulse to the plasma wave, which could be an effective process for enhancing the plasma wave.

  18. Second-order intensity-moment characteristics for broadband partially coherent flat-topped beams in atmospheric turbulence.

    PubMed

    Mao, Haidan; Zhao, Daomu

    2010-01-18

    Based on the intensity moments and Wigner distribution function, the second-order moments for broadband partially coherent flat-topped (BPCFT) beams in atmospheric turbulence are studied. The beam width of BPCFT beams in atmospheric turbulence is larger than that in free space. The beam width of BPCFT beams in atmospheric turbulence is larger than that of broadband fully coherent flat-topped (BFCFT) beams in atmospheric turbulence. The broader the bandwidth is, the larger the beam width of BPCFT beams becomes. Similar conclusion can be obtained by analyzing the divergence angle and beam propagation factor of BPCFT beams. The beam width of BPCFT beams in atmospheric turbulence is less affected by the broad spectral bandwidth than that in free space. The beam width of BFCFT beams in atmospheric turbulence is less affected by the broad spectral bandwidth than that of BPCFT beams in atmospheric turbulence.

  19. Nanosecond double-pulse fiber laser with arbitrary sub-pulse combined based on a spectral beam combining system

    NASA Astrophysics Data System (ADS)

    Hu, Man; Zheng, Ye; Yang, Yifeng; Chen, Xiaolong; Liu, Kai; Zhao, Chun; Wang, Jianhua; Qi, Yunfeng; He, Bing; Zhou, Jun

    2017-05-01

    In order to improve the processing efficiency and quality of nanosecond pulse laser drilling, a new double-pulse technique is put forward. Two single pulse lasers with different pulse duration or different repetition rate are spectrally combined by a home-made polarization-independent multilayer dielectric reflective diffraction grating. The pulse energy of single lasers and the inter-pulse separation can both be set at one's option. Then, double-pulse lasers represent two closely conjoint pulses with tunable pulse duration and tunable repetition rate and tunable pulse energy and tunable inter-pulse separation are obtained.

  20. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    SciTech Connect

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  1. Transportation of megawatt millijoule laser pulses via optical fibers?

    NASA Astrophysics Data System (ADS)

    Tauer, Johannes; Kofler, Heinrich; Schwarz, Elisabeth; Wintner, Ernst

    2010-04-01

    Laser ignition is considered to be one of the most promising future concepts for internal combustion engines. It combines the legally required reduction of pollutant emissions and higher engine efficiencies. The igniting plasma is generated by a focused pulsed laser beam. Having pulse durations of a few nanoseconds, the pulse energy E p for reliable ignition amounts to the order of 10 mJ. Different methods of laser ignition with an emphasis on fiber-based systems will be discussed and evaluated.

  2. Pulsed holmium laser ablation of cardiac valves

    SciTech Connect

    Lilge, L.; Radtke, W.; Nishioka, N.S. )

    1989-01-01

    Ablation efficiency and residual thermal damage produced by pulsed holmium laser radiation were investigated in vitro for bovine mitral valves and human calcified and noncalcified cardiac valves. Low-OH quartz fibers (200 and 600 microns core diameter) were used in direct contact perpendicular to the specimen under saline or blood. Etch rate was measured with a linear motion transducer. Radiant exposure was varied from 0 to 3 kJ/cm{sup 2}. For 200-microns fibers, the energy of ablation was approximately 5 kJ/cm{sup 3} in noncalcified and 15 kJ/cm{sup 3} in calcified valves. Etch rates were dependent on mechanical tissue properties. Maximum etch rate at 1,000 J/cm{sup 2} was 1-2 mm/pulse at 3 Hz repetition rate. Microscopic examination revealed a zone of thermal damage extending 300 microns lateral into adjacent tissue. Thermal damage was independent of radiant exposure beyond twice threshold.

  3. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular, we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond(s) pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of- cavity pulse-stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two- photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two-photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond lasers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  4. Investigation of a Pulsed 1550 nm Fiber Laser System

    DTIC Science & Technology

    2015-12-15

    14. ABSTRACT There is a strong need for a pulsed laser system at eye safe wavelengths for illuminator applications . High power pulsed 1550 nm fiber...system at eye safe wavelengths for illuminator applications . High power pulsed 1550 nm fiber lasers systems are able to generate, shaped, pulses at...for illuminator applications . Considerations which impact the wavelength to be used are the transmissivity of the atmosphere and the responsivity of

  5. Flat-top and patterned-topped cone gratings for visible and mid-infrared antireflective properties.

    PubMed

    Brückner, Jean-Baptiste; Le Rouzo, Judikaël; Escoubas, Ludovic; Berginc, Gérard; Gourgon, Cécile; Desplats, Olivier; Simon, Jean-Jacques

    2013-07-01

    Achieving a broadband antireflection property from material surfaces is one of the highest priorities for those who want to improve the efficiency of solar cells or the sensitivity of photo-detectors. To lower the reflectance of a surface, we are concerned with the study of the optical response of flat-top and patterned-topped cone shaped silicon gratings, based on previous work exploring pyramid gratings. Through rigorous numerical methods such as Finite Different Time Domain, we first designed several flat-top structures that theoretically demonstrate an antireflective character within the middle infrared region. From the opto-geometrical parameters such as period, depth and shape of the pattern determined by numerical analysis, these structures have been fabricated using controlled slope plasma etching processes. In order to extend the antireflective properties up to the visible wavelengths, patterned-topped cones have been fabricated as well. Afterwards, optical characterizations of several samples were carried out. Thus, the performances of the flat-top and patterned-topped cones have been compared in the visible and mid infrared range.

  6. Optical penetration sensor for pulsed laser welding

    DOEpatents

    Essien, Marcelino; Keicher, David M.; Schlienger, M. Eric; Jellison, James L.

    2000-01-01

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  7. Pulsed laser deposition—invention or discovery?

    NASA Astrophysics Data System (ADS)

    Venkatesan, T.

    2014-01-01

    The evolution of pulsed laser deposition had been an exciting process of invention and discovery, with the development of high Tc superconducting films as the main driver. It has become the method of choice in research and development for rapid prototyping of multicomponent inorganic materials for preparing a variety of thin films, heterostructures and atomically sharp interfaces, and has become an indispensable tool for advancing oxide electronics. In this paper I will give a personal account of the invention and development of this process at Bellcore/Rutgers, the opportunity, challenges and mostly the extraordinary excitement that was generated, typical of any disruptive technology.

  8. Metallic Clusters in Strong Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Suraud, Eric; Reinhard, P.-G.; Ullrich, Carsten A.

    1998-03-01

    We present a theoretical study of the electron response of a Na_9^+ cluster excited by strong femtosecond laser pulses.(C. A. Ullrich, P.-G. Reinhard, and E. Suraud, J. Phys. B 30), 5043 (1997) Our approach is based on time-dependent density functional theory within the adiabatic local density approximation, including a recently developed self-interaction correction scheme. We investigate numerically the full electronic dipolar response and multiphoton ionization of the cluster and discuss the ionization mechanism. A strong correlation between induced electronic dipole oscillations and electron emission is observed, leading to a pronounced resonant enhancement of ionization at the frequency of the Mie plasmon.

  9. Generating Submillimeter-Wave Frequencies From Laser Pulses

    NASA Technical Reports Server (NTRS)

    Spencer, Michael G.; Maserjian, Joseph

    1994-01-01

    Semiconductor photoconductive switches generate electrical pulses containing submillimeter-wavelength carrier signals (frequency between 300 and 3,000 GHz) and harmonics thereof when illuminated with short-rise-time pulses from lasers. Device of this type used as local oscilator in heterodyne submillimeter-wave receiver. Electrical output of device coupled via transmission line, waveguide, or antenna to mixer circuitry of receiver. Phase delays between optically activated semiconductor switches determine output carrier frequencies. N electrical pulses generated by each laser pulse. Thus, fundamental output frequency is N times laser-pulse-repetition rate.

  10. Improved pulse laser ranging algorithm based on high speed sampling

    NASA Astrophysics Data System (ADS)

    Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang

    2016-10-01

    Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.

  11. Long pulse chemical laser. Final technical report

    SciTech Connect

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R.

    1989-02-01

    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  12. Pulsed laser surface hardening of ferrous alloys.

    SciTech Connect

    Xu, Z.; Reed, C. B.; Leong, K. H.; Hunter, B. V.

    1999-09-30

    A high power pulsed Nd:YAG laser and special optics were used to produce surface hardening on 1045 steel and gray cast iron by varying the process parameters. Unlike CO{sub 2} lasers, where absorptive coatings are required, the higher absorptivity of ferrous alloys at the Nd:YAG laser wavelength eliminates the necessity of applying a coating before processing. Metallurgical analysis of the treated tracks showed that very fine and hard martensitic microstructure (1045 steel) or inhomogeneous martensite (gray cast iron) were obtained without surface melting, giving maximum hardness of HRC 61 and HRC 40 for 1045 steel and gray cast iron respectively. The corresponding maximum case depths for both alloys at the above hardness are 0.6 mm. Gray cast iron was more difficult to harden without surface melting because of its lower melting temperature and a significantly longer time-at-temperature required to diffuse carbon atoms from the graphite flakes into the austenite matrix during laser heating. The thermal distortion was characterized in term of flatness changes after surface hardening.

  13. Pulsed HF laser ablation of dentin

    NASA Astrophysics Data System (ADS)

    Papagiakoumou, Eirini I.; Papadopoulos, Dimitris N.; Makropoulou, Mersini I.; Khabbaz, Maruan G.; Serafetinides, Alexander A.

    2005-03-01

    The interaction of a TEA (Transversally Excited Atmospheric pressure) corona preionized oscillator double amplifier HF (hydrogen fluoride) laser beam with dentin tissue is reported. Pulses of 39 ns in the wavelength range of 2.65-3.35 μm and output energies in the range of 10-45 mJ, in a predominantly TEM00 beam were used to interact with dentin tissue. Ablation experiments were conducted with the laser beam directly focused on the tissue. Several samples of freshly extracted human teeth were used, cut longitudinally in facets of about 1mm thick and stored in phosphate buffered saline after being cleaned from the soft tissue remains. The experimental data (ablation thresholds, ablation rates) are discussed with respect to the ablation mechanism(s). Adequate tissue removal was observed and the ablation behavior was, in the greates part of the available fluences, almost linear. From the microscopic examination of teh samples, in a scanning electron microscope (SEM), the irradiated surfaces displayed oval craters (reflecting the laser beam shape) with absence of any melting or carbonization zone. It is suggested that the specific laser removes hard tissue by a combined photothermal and plasma mediated ablation mechanism, leaving a surface free from thermal damage and with a well-shaped crater.

  14. Laser-Based Pulsed Photoacoustic Ammonia Detection

    NASA Astrophysics Data System (ADS)

    Vallespi, Arturo; Slezak, Verónica; Peuriot, Alejandro; Santiago, Guillermo

    2013-09-01

    Detecting ammonia traces is relevant in health, manufacturing, and security areas, among others. As ammonia presents a strong absorption band (the mode) around 10 m, some of the physical properties which may influence its detection by means of pulsed photoacoustic (PA) spectroscopy with a TEA laser have been studied. The characteristics of the ammonia molecule and the laser intensity may result in a nonlinear dependence of the PA signal amplitude on the laser fluence. Ammonia absorption can be described as a simple two-level system with power broadening. As is a polar molecule, it strongly undergoes adsorption phenomena in contact with different surfaces. Therefore, physical adsorption-desorption at the cell’s wall is studied. A theoretical model, based on Langmuir’s assumptions, fits well to the experimental results with stainless steel. Related to these studies, measurements led to the conclusion that, at the used fluenced values, dissociation by multiphotonic absorption at the 10P(32) laser line may be discarded. A calibration of the system was performed, and a detection limit around 190 ppb (at 224 ) was achieved.

  15. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared (NIR) ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of-cavity pulse- stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two-photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two- photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond layers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  16. 25 years of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  17. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    SciTech Connect

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  18. Reshaping of intense laser pulse with a capillary

    SciTech Connect

    Cao Lihua; Yu Wei; Yu, M. Y.; Wang Xin; Gu Yuqiu; He, X. T.

    2009-09-15

    The reshaping of intense laser pulse by vacuum capillary is studied by particle-in-cell simulation. It is shown that as an intense laser pulse propagates from free space into a capillary, its profile is reshaped due to laser-plasma interaction near the entrance of capillary. As a result, the free-space mode is self-consistently converted into a capillary mode. Only the relatively low-intensity periphery of the reshaped pulse interacts with the capillary-wall plasma, so that the high-intensity center of the pulse can propagate in the narrow vacuum channel over a distance much larger than the Rayleigh length. The mechanism is then applied to reshape a radially imperfect laser pulse having two wings around the center spot. Most of the output light energy is concentrated in the center spot, and the wings are almost completely removed. That is, the quality of the laser pulse can be greatly improved by a capillary.

  19. Stabilization of CO2 laser short-pulse oscillation by tickle pulse for dot processing

    NASA Astrophysics Data System (ADS)

    Tokita, Daisaku; Sakurada, Noriyo; Ishii, Yoshio; Kubota, Yuzuru; Watanabe, Kazuhiro

    2005-03-01

    Image drawing using a laser system has been attempted by Segmented Pixel Drawing (SPD) method and Laser Plastic Coloring (LPC) method in our laboratory. Laser dot processing by a short pulse oscillation of a CO2 laser is used for these laser methods. Stable short pulse oscillation is required for an accurate image drawing. That oscillation has a tendency to be unstable because of its long oscillation interval. A tickle pulse is known as one of a technique which is conventionally used for a continuous pulse oscillation of a CO2 laser in order to make rising rate of laser oscillation quick. In this study, this tickle pulse has been improved and applied to the short pulse oscillation in order to stable short pulse oscillation and high accurate laser dot processing. In the result, processed dots are appeared bigger with less variation in their sizes with the improved tickle pulse case compared with the conventional case. Short pulse oscillation is stabilized by these improved tickle pulse. Reproducibility and accuracy ofthe SPD method and LPC method might be realized by this stabilized dot processing.

  20. Production of Picosecond, Kilojoule, and Petawatt Laser Pulses via Raman Amplification of Nanosecond Pulses

    SciTech Connect

    Trines, R. M. G. M.; Bingham, R.; Norreys, P. A.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.

    2011-09-02

    Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump pulse to probe pulse, implying that multikilojoule ultraviolet petawatt laser pulses can be produced using this scheme. This has important consequences for the demonstration of fast-ignition inertial confinement fusion.

  1. Pulsed laser deposition of pepsin thin films

    NASA Astrophysics Data System (ADS)

    Kecskeméti, G.; Kresz, N.; Smausz, T.; Hopp, B.; Nógrádi, A.

    2005-07-01

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ( λ = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm 2. The pressure in the PLD chamber was 2.7 × 10 -3 Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm 2. The protein digesting capacity of the transferred pepsin was tested by adapting a modified "protein cube" method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  2. Nanosecond pulsed laser texturing of optical diffusers

    NASA Astrophysics Data System (ADS)

    Alqurashi, Tawfiq; Sabouri, Aydin; Yetisen, Ali K.; Butt, Haider

    2017-02-01

    High-quality optical glass diffusers have applications in aerospace, displays, imaging systems, medical devices, and optical sensors. The development of rapid and accurate fabrication techniques is highly desirable for their production. Here, a micropatterning method for the fast fabrication of optical diffusers by means of nanosecond pulsed laser ablation is demonstrated (λ=1064 nm, power=7.02, 9.36 and 11.7 W and scanning speed=200 and 800 mm s-1). The experiments were carried out by point-to-point texturing of a glass surface in spiral shape. The laser machining parameters, the number of pulses and their power had significant effect on surface features. The optical characteristics of the diffusers were characterized at different scattering angles. The features of the microscale structures influenced average roughness from 0.8 μm to 1.97 μm. The glass diffusers scattered light at angles up to 20° and their transmission efficiency were measured up to ˜97% across the visible spectrum. The produced optical devices diffuse light less but do so with less scattering and energy losses as compared to opal diffusing glass. The presented fabrication method can be applied to any other transparent material to create optical diffusers. It is anticipated that the optical diffusers presented in this work will have applications in the production of LED spotlights and imaging devices.

  3. Relation Between Discharge Length and Laser Pulse Characteristics in Longitudinally Excited CO2 Laser

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Dobashi, Kazuma; Akitsu, Tetsuya; Jitsuno, Takahisa

    2013-04-01

    A longitudinally excited CO2 laser pumped by a fast discharge emits a short laser pulse, similarly to TEA and Q-switched CO2 lasers. We investigated the relation between the discharge length and the laser pulse characteristics to develop a longitudinally excited CO2 laser producing a high spike laser pulse. We examined discharge lengths of 30, 45, and 60 cm, using the same mirrors and the same excitation circuit with the same input energy. A longer discharge length increased the discharge volume and improved the laser output energy. However, the longer discharge length caused a long discharge formation time (a slow fall time of the discharge voltage) due to the higher discharge impedance, which resulted in a long laser pulse tail. Therefore, the longitudinally excited CO2 laser had optimum conditions for obtaining a high spike laser pulse effectively.

  4. Stimulated brillouin backscatter of a short-pulse laser

    SciTech Connect

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-11-03

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x{prime} = x {minus} V{sub g}t, t{prime} = t, where V{sub g} is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency).

  5. A new pulsed laser deposition technique: Scanning multi-component pulsed laser deposition method

    SciTech Connect

    Fischer, D.; Jansen, M.; Fuente, G. F. de la

    2012-04-15

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 deg. C.

  6. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    PubMed

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C.

  7. New methods of generation of ultrashort laser pulses for ranging

    NASA Technical Reports Server (NTRS)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  8. Analysis on the characteristics of pulsed laser proximity fuze's echo

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Chen, Huimin

    2011-06-01

    With the rapid development of semiconductor technology and laser technology, a kind of proximity fuze named pulsed laser proximity fuze has been applied. Compared with other fuzes, pulsed laser proximity fuze has high ranging precision and strong resistance to artificial active interference. It is an important development tendency of proximity fuze. The paper analyze the characteristic of target echo of laser signal, and then make theoretical analysis and calculation on the laser signal transmission in the smog. Firstly, use the pulse width of 10ns semiconductor laser fuze to do typical targets experiment, to get the echo information of target distance is 5m; then to do smog interference experiment, by comparing the pulse width amplitude and backscattering signal amplitude of laser fuze in simulation and experiment, analyzing the effect of anti-clutter, providing the evidence for the subsequent of circuit of signal amplification and processing.

  9. Generation of ultrashort electron bunches by colliding laser pulses.

    PubMed

    Schroeder, C B; Lee, P B; Wurtele, J S; Esarey, E; Leemans, W P

    1999-05-01

    A proposed laser-plasma-based relativistic electron source [E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997)] using laser-triggered injection of electrons is investigated. The source generates ultrashort electron bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited plasma wake. The plasma electrons are dephased by colliding two counterpropagating laser pulses which generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses.

  10. Glass drilling by longitudinally excited CO2 laser with short laser pulse

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Yamamoto, Takuya; Akitsu, Tetsuya; Jitsuno, Takahisa

    2015-03-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse and a pulse tail. The energy of the pulse tail was controlled by adjusting medium gas. Using three types of CO2 laser pulse with the same spike-pulse energy and the different pulse-tail energy, the characteristics of the hole drilling of synthetic silica glass was investigated. Higher pulse-tail energy gave deeper ablation depth. In the short laser pulse with the spike-pulse energy of 1.2 mJ, the spike pulse width of 162 ns, the pulse-tail energy of 24.6 mJ, and the pulse-tail length of 29.6 μs, 1000 shots irradiation produced the ablation depth of 988 μm. In the hole drilling of synthetic silica glass by the CO2 laser, a crack-free process was realized.

  11. System for rapidly tuning a low pressure pulsed laser

    SciTech Connect

    Fox, J.A.; Ahl, J.L.

    1989-09-19

    This patent describes a system for rapidly tuning a low pressure pulsed laser over multiple wavelengths. The system comprising: a low pressure one electrode pair discharge region in a laser cavity having a laser trigger means connected to the electrode pair for initiating low pressure discharge within the discharge region; a quarterwave plate and a Q-switch in optical alignment with the one electrode pair discharge region along the laser optical axis; a fixed laser output coupler at the discharge region end of the laser cavity; and a rotatable grating means for wavelength switching the at least two high gain Q-switched pulses.

  12. Pulse front adaptive optics: a new method for control of ultrashort laser pulses.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-07-27

    Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements - a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) - decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers.

  13. Solitary Nanostructures Produced by Ultrashort Laser Pulse.

    PubMed

    Inogamov, Nail A; Zhakhovsky, Vasily V; Khokhlov, Viktor A; Petrov, Yury V; Migdal, Kirill P

    2016-12-01

    Laser-produced surface nanostructures show considerable promise for many applications while fundamental questions concerning the corresponding mechanisms of structuring are still debated. Here, we present a simple physical model describing those mechanisms happened in a thin metal film on dielectric substrate irradiated by a tightly focused ultrashort laser pulse. The main ingredients included into the model are (i) the film-substrate hydrodynamic interaction, melting and separation of the film from substrate with velocity increasing with increase of absorbed fluence; (ii) the capillary forces decelerating expansion of the expanding flying film; and (iii) rapid freezing into a solid state if the rate of solidification is comparable or larger than hydrodynamic velocities. The developed model and performed simulations explain appearance of microbump inside the focal spot on the film surface. The model follows experimental findings about gradual transformation of the bump from small parabolic to a conical shape and to the bump with a jet on its tip with increasing fluence. Disruption of the bump as a result of thinning down the liquid film to a few interatomic distances or due to mechanical break-off of solid film is described together with the jetting and formation of one or many droplets. Developed theory opens door for optimizing laser parameters for intended nanostructuring in applications.

  14. Optical gene transfer by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  15. Quasi-monoenergetic proton beam from a proton-layer embedded metal foil irradiated by an intense laser pulse

    SciTech Connect

    Kim, Kyung Nam; Lee, Kitae Kumar, Manoj; Kim, Ha-Na; Park, Seong Hee; Jeong, Young Uk; Vinokurov, Nikolay; Kim, Yong Gi

    2016-03-15

    A target structure, ion-layer embedded foil (ILEF) is proposed for producing a quasi-monoenergetic proton beam by utilizing a bulk electrostatic field, which is generated by irradiating the target with an ultra-intense laser pulse, inside the plasma. Compared with the case of a single metal foil in which the proton layer is initially present on the surface, in the ILEF target, the proton layer is initially located inside a metal foil. A two-dimensional particle-in-cell (PIC) simulation shows that the target generates a proton beam with a narrow energy spread. With a laser intensity of 2 × 10{sup 19 }W/cm{sup 2}, a 22-MeV proton beam with an energy spread of 8% at the full-width-half-maximum (FWHM) is obtained when the proton layer is located at 0.4 μm inside the rear surface of a 2.4 μm-thick copper foil. When the proton layer moves toward the front side, a proton beam with a flat-top energy distribution ranging from 15 MeV to 35 MeV is obtained. Further, with a higher laser intensity of 10{sup 21 }W/cm{sup 2}, a proton beam with the maximum energy of 345 MeV and FWHM energy spread of 7.2% is obtained. The analysis of the PIC simulation with an aid of a fluid analysis shows that the spectrum is affected by the initial position of the proton layer, its initial spread during the formation of the sheath field, and the space charge effect.

  16. Pulse-shaping of gain-switched pulse from multimode laser diode using fiber Sagnac interferometer.

    PubMed

    Wada, Kenji; Takamatsu, Shuji; Watanebe, Hideyuki; Matsuyama, Tetsuya; Horinaka, Hiromichi

    2008-11-24

    We propose a pulse-tail elimination and pulse shortening method using an optical interferometer, which is effective for picosecond chirped pulses from gain-switched multimode laser diodes. In a numerical simulation, when the delay distance between a chirped pulse and its replica in an optical interferometer matches two times the round-trip optical length of the laser cavity, the pulse-front and -rear tail parts are effectively eliminated from the input chirped pulse after passing through the optical interferometer. Using this method with a fiber Sagnac interferometer, a 33 ps pulse with a long-tail emitted from a gain-switched 1540 nm multimode laser diode was linearly transformed into a 20 ps pulse with a substantially reduced tail.

  17. Clutter discrimination algorithm simulation in pulse laser radar imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Su, Xuan; Zhu, Fule

    2015-10-01

    Pulse laser radar imaging performance is greatly influenced by different kinds of clutter. Various algorithms are developed to mitigate clutter. However, estimating performance of a new algorithm is difficult. Here, a simulation model for estimating clutter discrimination algorithms is presented. This model consists of laser pulse emission, clutter jamming, laser pulse reception and target image producing. Additionally, a hardware platform is set up gathering clutter data reflected by ground and trees. The data logging is as clutter jamming input in the simulation model. The hardware platform includes a laser diode, a laser detector and a high sample rate data logging circuit. The laser diode transmits short laser pulses (40ns FWHM) at 12.5 kilohertz pulse rate and at 905nm wavelength. An analog-to-digital converter chip integrated in the sample circuit works at 250 mega samples per second. The simulation model and the hardware platform contribute to a clutter discrimination algorithm simulation system. Using this system, after analyzing clutter data logging, a new compound pulse detection algorithm is developed. This new algorithm combines matched filter algorithm and constant fraction discrimination (CFD) algorithm. Firstly, laser echo pulse signal is processed by matched filter algorithm. After the first step, CFD algorithm comes next. Finally, clutter jamming from ground and trees is discriminated and target image is produced. Laser radar images are simulated using CFD algorithm, matched filter algorithm and the new algorithm respectively. Simulation result demonstrates that the new algorithm achieves the best target imaging effect of mitigating clutter reflected by ground and trees.

  18. Spectral compression of single-photon-level laser pulse

    PubMed Central

    Li, Yuanhua; Xiang, Tong; Nie, Yiyou; Sang, Minghuang; Chen, Xianfeng

    2017-01-01

    We experimentally demonstrate that the bandwidth of single photons laser pulse is compressed by a factor of 58 in a periodically poled lithium niobate (PPLN) waveguide chip. A positively chirped single photons laser pulse and a negatively chirped classical laser pulse are employed to produce a narrowband single photon pulse with new frequency through sum-frequency generation. In our experiment, the frequency and bandwidth of single photons at 1550 nm are simultaneously converted. Our results mark a critical step towards the realization of coherent photonic interface between quantum communication at 1550 nm and quantum memory in the near-visible window. PMID:28240245

  19. Spectral compression of single-photon-level laser pulse

    NASA Astrophysics Data System (ADS)

    Li, Yuanhua; Xiang, Tong; Nie, Yiyou; Sang, Minghuang; Chen, Xianfeng

    2017-02-01

    We experimentally demonstrate that the bandwidth of single photons laser pulse is compressed by a factor of 58 in a periodically poled lithium niobate (PPLN) waveguide chip. A positively chirped single photons laser pulse and a negatively chirped classical laser pulse are employed to produce a narrowband single photon pulse with new frequency through sum-frequency generation. In our experiment, the frequency and bandwidth of single photons at 1550 nm are simultaneously converted. Our results mark a critical step towards the realization of coherent photonic interface between quantum communication at 1550 nm and quantum memory in the near-visible window.

  20. Evolution of chirped laser pulses in a magnetized plasma channel

    SciTech Connect

    Jha, Pallavi; Hemlata,; Mishra, Rohit Kumar

    2014-12-15

    The propagation of intense, short, sinusoidal laser pulses in a magnetized plasma channel has been studied. The wave equation governing the evolution of the radiation field is set up and a variational technique is used to obtain the equations describing the evolution of the laser spot size, pulse length and chirp parameter. Numerical methods are used to analyze the simultaneous evolution of these parameters. The effect of the external magnetic field on initially chirped as well as unchirped laser pulses on the spot size, pulse length and chirping has been analyzed.

  1. Ultrashort-pulse laser system for hard dental tissue procedures

    NASA Astrophysics Data System (ADS)

    Neev, Joseph; Da Silva, Luiz B.; Feit, Michael D.; Perry, Michael D.; Rubenchik, Alexander M.; Stuart, Brent C.

    1996-04-01

    In spite of intensive research, lasers have not replaced conventional tools in many hard tissue applications. Ultrashort pulse lasers offer several advantages in their highly per-pulse-efficient operation, negligible thermal and mechanical damage and low noise operation. Possible development of optimal laser systems to replace the high-speed dental drill is discussed. Applications of ultrashort pulse systems for dental procedures are outlined. Selection criteria and critical parameters are considered, and are compared to the conventional air-turbine drill and to long and short pulsed systems.

  2. Tailored terahertz pulses from a laser-modulated electronbeam

    SciTech Connect

    Byrd, J.M.; Hao, Z.; Martin, M.C.; Robin, D.S.; Sannibale, F.; Schoenlein, R.W.; Zholents, A.A.; Zolotorev, M.S.

    2006-03-06

    We present a new method to generate steady and tunable,coherent, broadband terahertz radiation from a relativistic electron beammodulated by a femtosecond laser. We have demonstrated this in theelectron storage ring at the Advanced Light Source. Interaction of anelectron beam with a femtosecond laser pulse copropagating through awiggler modulates the electron energies within a short slice of theelectron bunch with about the same duration of the laser pulse. The bunchdevelops a longitudinal density perturbation due to the dispersion ofelectron trajectories, and the resulting hole emits short pulses oftemporally and spatially coherent terahertz pulses synchronized to thelaser. We present measurements of the intensity and spectra of thesepulses. This technique allows tremendous flexibility in shaping theterahertz pulse by appropriate modulation of the laser pulse.

  3. Laser Pulse-Stretching Using Multiple Optical Ring-Cavities

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.

  4. Mid-ultraviolet pulsed laser micromachining of SiC

    NASA Astrophysics Data System (ADS)

    Qi, Litao; Li, Mingxing; Lin, Haipeng; Hu, Jinping; Tang, Qingju; Liu, Chunsheng

    2014-11-01

    This paper provides an investigation of the ablation behavior of single crystal 4H-SiC and 6H-SiC wafer to improve the manufacturability and high-temperature performance of SiC using laser applications. 266nm pulsed laser micromachining of SiC was investigated. The purpose is to establish suitable laser parametric regime for the fabrication of high accuracy, high spatial resolution and thin diaphragms for high-temperature MEMS pressure sensor applications. Etch rate, ablation threshold and quality of micromachined features were evaluated. The governing ablation mechanisms, such as thermal vaporization, phase explosion, and photomechanical fragmentation, were correlated with the effects of pulse energy. The ablation threshold is obtained with ultraviolet pulsed laser ablation. The results suggested ultraviolet pulsed laser's potential for rapid manufacturing. Excellent quality of machined features with little collateral thermal damage was obtained in the lower pulse energy range. The leading material removal mechanisms under these conditions were discussed.

  5. Wavelength Effects In Femtosecond Pulsed Laser Ablation And Deposition

    SciTech Connect

    Castillejo, Marta; Nalda, Rebeca de; Oujja, Mohamed; Sanz, Mikel

    2010-10-08

    Ultrafast pulsed laser irradiation of solid materials is highly attractive for the micro-and nanostructuring of substrates and for the fabrication of nanostructured deposits. Femtosecond laser pulses promote efficient material removal with reduced heat transfer and high deposition rates of nanometer scale particles free of microscopic particulates. Most of the studies to date have been performed with light pulses centered around the peak wavelength of the Titanium:Sapphire laser, around 800 nm. Analysis of the process over a broader range of wavelengths can provide important information about the processes involved and serve as experimental tests for advanced theoretical models. We report on our current investigations on the effect that laser wavelength of femtosecond pulses has on the superficial nanostructuring induced on biopolymer substrates, and on the characteristics of nanostructured deposits grown by pulsed laser deposition from semiconductor targets.

  6. Ultrafast pulse lasers jump to macro applications

    NASA Astrophysics Data System (ADS)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  7. Single-grating laser pulse stretcher and compressor.

    PubMed

    Lai, M; Lai, S T; Swinger, C

    1994-10-20

    Stretching and compressing of laser pulses is demonstrated with a single-grating apparatus. A laser pulse of 110 fs is stretched to 250 ps and then recompressed to 115 fs. The apparatus exploits a two-level structure: one level for stretching and the other for compressing. This single-grating configuration shows significant simplification in structure and alignment over existing multiple-grating systems. Such a stretcher-compressor is particularly suitable for use with chirped-pulse amplification in which laser wavelength tuning is desirable. Only one rotational adjustment is rquired to restore the alignment of the entire stretcher and compressor when the laser wavelength is changed.

  8. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    PubMed

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.

  9. Method and circuit for shaping laser output pulses

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor)

    1990-01-01

    The invention is a method and circuit for shaping laser pulses 17' in which a laser medium 12' in a laser resonator 10' that includes a Q-switch 14' and polarizer 13' which act in combination to control the loss of the resonator 10' and provide the laser output 17' representative of such loss. An optical diode 22' senses the level of the output pulse 17' and provides an output signal 23' that when amplified is used with a control voltage from a supply 29' provide a control signal 19' which is applied to Q-switch 14' to control the shape of the output pulse 17' by adjusting its length.

  10. Simultaneous phase, amplitude, and polarization control of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lindinger, A.; Weber, S. M.; Plewicki, M.; Weise, F.

    2012-12-01

    We present a serial pulse shaper design which allows us to shape the phase, amplitude, and polarization of fs laser pulses independently and simultaneously. The capabilities of this setup are demonstrated by implementing a method for generating parametrically tailored laser pulses. This method is applied on the ionization of NaK molecules by feedback loop optimization, employing a temporal sub pulse encoding. Moreover, we introduce and characterize a further development of this common path pulse shaper scheme for full control of all light field parameters.

  11. High energy protons generation by two sequential laser pulses

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  12. Pulsed laser deposition vs. matrix assisted pulsed laser evaporation for growth of biodegradable polymer thin films

    NASA Astrophysics Data System (ADS)

    Mercado, A. L.; Allmond, C. E.; Hoekstra, J. G.; Fitz-Gerald, J. M.

    2005-08-01

    Thin films of poly (lactide-co-glycolide) (PLGA), a biodegradable polymer, were deposited on Si wafers by both conventional pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) using chloroform (CHCl3) as a matrix solvent. This research represents an initial study to investigate the deposition characteristics of each technique at comparable conditions to gain insight into the transport and degradation mechanisms of each approach. The deposited materials were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), and gel permeation chromatography (GPC) with refractive index (RI) detection. While FTIR and NMR results do not show a measurable departure from the native, in sharp contrast GPC results show a significant change (up to 95%) in molecular weight for both deposition methods. This result makes it clear that it is possible to overlook substantial degradation when incomplete chemical analysis is conducted.

  13. Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses

    SciTech Connect

    Fourmaux, S.; Gnedyuk, S.; Lassonde, P.; Payeur, S.; Pepin, H.; Kieffer, J. C.; Buffechoux, S.; Albertazzi, B.; Capelli, D.; Antici, P.; Levy, A.; Fuchs, J.; Lecherbourg, L.; Marjoribanks, R. S.

    2013-01-15

    We report optimization of laser-driven proton acceleration, for a range of experimental parameters available from a single ultrafast Ti:sapphire laser system. We have characterized laser-generated protons produced at the rear and front target surfaces of thin solid targets (15 nm to 90 {mu}m thicknesses) irradiated with an ultra-intense laser pulse (up to 10{sup 20} W Dot-Operator cm{sup -2}, pulse duration 30 to 500 fs, and pulse energy 0.1 to 1.8 J). We find an almost symmetric behaviour for protons accelerated from rear and front sides, and a linear scaling of proton energy cut-off with increasing pulse energy. At constant laser intensity, we observe that the proton cut-off energy increases with increasing laser pulse duration, then roughly constant for pulses longer than 300 fs. Finally, we demonstrate that there is an optimum target thickness and pulse duration.

  14. Studies of Photosynthesis Using a Pulsed Laser

    PubMed Central

    De Vault, Don; Chance, Britton

    1966-01-01

    The rate of oxidation of cytochrome following absorption of a short pulse of light from a ruby laser in the photosynthetic bacterium Chromatium has been measured spectrophotometrically. The half-time is about 2 μsec at room temperature increasing to 2.3 msec at about 100°K and constant at the latter value to 35°K or below. The temperature dependence above 120°K corresponds to an activation energy of 3.3 kcal/mole; that below 100°K to less than 80 cal/mol: essentially a temperature-independent electron transport reaction. Since the slowness below 100°K indicates the presence of a barrier, the lack of activation energy is taken to mean penetration by quantum-mechanical “tunneling.” PMID:5972381

  15. Computer Modeling of Pulsed Chemical Lasers.

    DTIC Science & Technology

    1983-12-31

    laser pulse was by photolysis of molecular fluorine using flashlamps. The initiation reaction pro- ceeded as: F2 + hvP = 2F (1.4) with Vp being an... MEN a~ji -U-O--- C C, ca. 04 ( i’ c4 CL viM m0 LA 04 016 166 Elm1 E FI ozF LA- 10 --- - -6’~ 167 =VE 0.ik 0ww 1 68 -wl MAIN t...# r Al w YVfaia we. a...0m NoJ IS-90I IRA -. OEM 179 180 MIN im, IUAINNE Ililm MINE 17i mmm mums NOW1911mmoImm, man .AKE-# 0 ON1 INA 0 Suffillan Ellmmm MEN IFIRM 0 W-mv- um I

  16. Approaches to solar cell design for pulsed laser power receivers

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1993-01-01

    Using a laser to beam power from Earth to a photovoltaic receiver in space could be a technology with applications to many space missions. Extremely high average-power lasers would be required in a wavelength range of 700-1000 nm. However, high-power lasers inherently operate in a pulsed format. Existing solar cells are not well designed to respond to pulsed incident power. To better understand cell response to pulsed illumination at high intensity, the PC-1D finite-element computer model was used to analyze the response of solar cells to continuous and pulsed laser illumination. Over 50 percent efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modeled, and the effect of laser intensity, wavelength, and bias point was studied. Three main effects decrease the efficiency of a solar cell under pulsed laser illumination: series resistance, L-C 'ringing' with the output circuit, and current limiting due to the output inductance. The problems can be solved either by changing the pulse shape or designing a solar cell to accept the pulsed input. Cell design possibilities discussed are a high-efficiency, light-trapping silicon cell, and a monolithic, low-inductance GaAs cell.

  17. Laser nanoablation of diamond surface at high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Kononenko, V. V.; Gololobov, V. M.; Pashinin, V. P.; Konov, V. I.

    2016-10-01

    The chemical etching of the surface of a natural diamond single crystal irradiated by subpicosecond laser pulses with a high repetition rate (f ≤slant 500 {\\text{kHz}}) in air is experimentally investigated. The irradiation has been performed by the second-harmonic (515 {\\text{nm}}) radiation of a disk Yb : YAG laser. Dependences of the diamond surface etch rate on the laser energy density and pulse repetition rate are obtained.

  18. Electron beam-switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, L.D.; Murray, J.R.; Goldhar, J.; Bradley, L.P.

    1979-12-11

    A method and apparatus are designed for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  19. Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Leung, Loh-Shan; Leng, Theodore; Brown, Jefferson; Paulus, Yannis M.; Schuele, Georg; Palanker, Daniel

    2011-02-01

    Decreasing the pulse duration helps confine damage, shorten treatment time, and minimize pain during retinal photocoagulation. However, the safe therapeutic window (TW), the ratio of threshold powers for thermomechanical rupture of Bruch's membrane and mild coagulation, also decreases with shorter exposures. Two potential approaches toward increasing TW are investigated: (a) decreasing the central irradiance of the laser beam and (b) temporally modulating the pulse. An annular beam with adjustable central irradiance was created by coupling a 532-nm laser into a 200-μm core multimode optical fiber at a 4-7 deg angle to normal incidence. Pulse shapes were optimized using a computational model, and a waveform generator was used to drive a PASCAL photocoagulator (532 nm), producing modulated laser pulses. Acute thresholds for mild coagulation and rupture were measured in Dutch-Belted rabbit in vivo with an annular beam (154-163 μm retinal diameter) and modulated pulse (132 μm, uniform irradiance ``flat-top'' beam) with 2-50 ms pulse durations. Thresholds with conventional constant-power pulse and a flat-top beam were also determined. Both annular beam and modulated pulse provided a 28% increase in TW at 10-ms duration, affording the same TW as 20-ms pulses with conventional parameters.

  20. CO{sub 2} laser pulse shortening by laser ablation of a metal target

    SciTech Connect

    Donnelly, T.; Mazoyer, M.; Lynch, A.; O'Sullivan, G.; O'Reilly, F.; Dunne, P.; Cummins, T.

    2012-03-15

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO{sub 2} laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to {approx}2 ns and to remove the low power, long duration tails that are present in TEA CO{sub 2} pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is {approx}10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  1. CO2 laser pulse shortening by laser ablation of a metal target.

    PubMed

    Donnelly, T; Mazoyer, M; Lynch, A; O'Sullivan, G; O'Reilly, F; Dunne, P; Cummins, T

    2012-03-01

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO(2) laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to ~2 ns and to remove the low power, long duration tails that are present in TEA CO(2) pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is ~10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  2. CO2 laser pulse shortening by laser ablation of a metal target

    NASA Astrophysics Data System (ADS)

    Donnelly, T.; Mazoyer, M.; Lynch, A.; O'Sullivan, G.; O'Reilly, F.; Dunne, P.; Cummins, T.

    2012-03-01

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO2 laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to ˜2 ns and to remove the low power, long duration tails that are present in TEA CO2 pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is ˜10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  3. Dielectric breakdown induced by picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1976-01-01

    The damage thresholds of transparent optical materials were investigated. Single picosecond pulses at 1.06 microns, 0.53 microns and 0.35 microns were obtained from a mode locked Nd-YAG oscillator-amplifier-frequency multiplier system. The pulses were Gaussian in space and time and permitted the determination of breakdown thresholds with a reproducibility of 15%. It was shown that the breakdown thresholds are characteristic of the bulk material, which included nine alkali halides, five different laser host materials, KDP, quartz, sapphire and calcium fluoride. The extension of the damage data to the ultraviolet is significant, because some indication was obtained that two- and three-photon absorption processes begin to play a role in determining the threshold. Throughout the visible region of the spectrum the threshold is still an increasing function of frequency, indicating that avalanche ionization is the dominant factor in determining the breakdown threshold. This was confirmed by a detailed study of the damage morphology with a high resolution microscope just above the threshold. The influence of self focusing is discussed, and evidence for beam distortion below the power threshold for complete self focusing is presented, confirming the theory of Marburger.

  4. Comparison of Atmospheric Deposition Among Three Sites In and Near the Flat Tops Wilderness Area, Colorado, 2003-2005

    USGS Publications Warehouse

    Ingersoll, George P.; Campbell, Donald H.; Mast, M. Alisa

    2008-01-01

    Atmospheric deposition was monitored for ammonium, nitrate, and sulfate concentrations and precipitation amounts in the Flat Tops Wilderness Area of northwestern Colorado at Ned Wilson Lake beginning in 1984 to detect changes that might result from future emissions associated with development of oil-shale resources in northwestern Colorado. Renewed monitoring, by the U.S. Geological Survey, in cooperation with Rio Blanco County, to determine the current status of atmospheric deposition has been ongoing since 2003 at Ned Wilson Lake. Two new monitoring sites were located near Ripple Creek Pass near the Flat Tops Wilderness area and about 12 kilometers north of Ned Wilson Lake because access to the area near Ripple Creek Pass is less difficult and less expensive, particularly in winter and spring. The intent of this study was to establish whether the new deposition data being collected near Ripple Creek Pass, near the northern boundary of the Flat Tops Wilderness Area, would be representative of deposition at sensitive sites within the wilderness such as Ned Wilson Lake and to compare more current (2003 through 2005) deposition data with earlier data (1984 through 1991). At Ned Wilson Lake, bulk ammonium and nitrate concentrations collected from 1984 through 1991 were similar to those from 2003 through 2005. However, in the same comparison significant differences in sulfate concentrations were observed, indicating a decrease consistent with other regional findings for similar periods. Comparison of concentrations of constituents at two bulk-deposition sites located at Ned Wilson Lake (NWLB) and near Ripple Creek Pass (RCPB) showed only one significant difference (p = 0.05) with the winter bulk nitrate concentrations for NWLB significantly lower than winter concentrations from RCPB. Another comparison of concentrations of constituents between the bulk deposition site RCPB and a wet deposition site 100 meters away (RCPW) showed no significant differences for

  5. Laser ablation of borosilicate glass with high power shaped UV nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    von Witzendorff, Philipp; Bordin, Andrea; Suttmann, Oliver; Patel, Rajesh S.; Bovatsek, James; Overmeyer, Ludger

    2016-03-01

    The application of thin borosilicate glass as interposer material requires methods for separation and drilling of this material. Laser processing with short and ultra-short laser pulses have proven to enable high quality cuts by either direct ablation or internal glass modification and cleavage. A recently developed high power UV nanosecond laser source allows for pulse shaping of individual laser pulses. Thus, the pulse duration, pulse bursts and the repetition rate can be set individually at a maximum output power of up to 60 W. This opens a completely new process window, which could not be entered with conventional Q-switched pulsed laser sources. In this study, the novel pulsed UV laser system was used to study the laser ablation process on 400 μm thin borosilicate glass at different pulse durations ranging from 2 - 10 ns and a pulse burst with two 10 ns laser pulses with a separation of 10 ns. Single line scan experiments were performed to correlate the process parameters and the laser pulse shape with the ablation depth and cutting edge chipping. Increasing the pulse duration within the single pulse experiments from 2 ns to longer pulse durations led to a moderate increase in ablation depth and a significant increase in chipping. The highest material removal was achieved with the 2x10 ns pulse burst. Experimental data also suggest that chipping could be reduced, while maintaining a high ablation depth by selecting an adequate pulse overlap. We also demonstrate that real-time combination of different pulse patterns during drilling a thin borosilicate glass produced holes with low overall chipping at a high throughput rate.

  6. Laser pulsing in linear Compton scattering

    DOE PAGES

    Krafft, G. A.; Johnson, E.; Deitrick, K.; ...

    2016-12-16

    Previous work on calculating energy spectra from Compton scattering events has either neglected considering the pulsed structure of the incident laser beam, or has calculated these effects in an approximate way subject to criticism. In this paper, this problem has been reconsidered within a linear plane wave model for the incident laser beam. By performing the proper Lorentz transformation of the Klein-Nishina scattering cross section, a spectrum calculation can be created which allows the electron beam energy spread and emittance effects on the spectrum to be accurately calculated, essentially by summing over the emission of each individual electron. Such anmore » approach has the obvious advantage that it is easily integrated with a particle distribution generated by particle tracking, allowing precise calculations of spectra for realistic particle distributions in collision. The method is used to predict the energy spectrum of radiation passing through an aperture for the proposed Old Dominion University inverse Compton source. In addition, as discussed in the body of the paper, many of the results allow easy scaling estimates to be made of the expected spectrum. A misconception in the literature on Compton scattering of circularly polarized beams is corrected and recorded.« less

  7. Laser pulsing in linear Compton scattering

    NASA Astrophysics Data System (ADS)

    Krafft, G. A.; Johnson, E.; Deitrick, K.; Terzić, B.; Kelmar, R.; Hodges, T.; Melnitchouk, W.; Delayen, J. R.

    2016-12-01

    Previous work on calculating energy spectra from Compton scattering events has either neglected considering the pulsed structure of the incident laser beam, or has calculated these effects in an approximate way subject to criticism. In this paper, this problem has been reconsidered within a linear plane wave model for the incident laser beam. By performing the proper Lorentz transformation of the Klein-Nishina scattering cross section, a spectrum calculation can be created which allows the electron beam energy spread and emittance effects on the spectrum to be accurately calculated, essentially by summing over the emission of each individual electron. Such an approach has the obvious advantage that it is easily integrated with a particle distribution generated by particle tracking, allowing precise calculations of spectra for realistic particle distributions "in collision." The method is used to predict the energy spectrum of radiation passing through an aperture for the proposed Old Dominion University inverse Compton source. Many of the results allow easy scaling estimates to be made of the expected spectrum.

  8. Hemocompatible, pulsed laser deposited coatings on polymers.

    PubMed

    Lackner, Juergen M; Waldhauser, Wolfgang; Major, Roman; Major, Boguslaw; Bruckert, Franz

    2010-02-01

    State-of-the-art non-thrombogenic blood contacting surfaces are based on heparin and struggle with the problem of bleeding. However, appropriate blood flow characteristics are essential for clinical application. Thus, there is increasing demand to develop new coating materials for improved human body acceptance. Materials deposited by vacuum coating techniques would be an excellent alternative if the coating temperatures can be kept low because of the applied substrate materials of low temperature resistance (polymers). Most of the recently used plasma-based deposition techniques cannot fulfill this demand. However, adequate film structure and high adhesion can be reached by the pulsed laser deposition at room temperature, which was developed to an industrial-scaled process at Laser Center Leoben. Here, this process is described in detail and the resulting structural film properties are shown for titanium, titanium nitride, titanium carbonitride, and diamond-like carbon on polyurethane, titanium and silicon substrates. Additionally, we present the biological response of blood cells and the kinetic mechanism of eukaryote cell attachment. In conclusion, high biological acceptance and distinct differences for the critical delamination shear stress were found for the coatings, indicating higher adhesion at higher carbon contents.

  9. Ablation of steel using picosecond laser pulses in burst mode

    NASA Astrophysics Data System (ADS)

    Lickschat, Peter; Demba, Alexander; Weissmantel, Steffen

    2017-02-01

    Results obtained in picosecond laser processing of steel applying the burst mode are presented. Using the burst mode, pulse trains, i.e., bursts, consisting of a number of picosecond pulses with an inter-pulse delay of 12.5 ns and 10 ps pulse duration are applied for material processing. Small cavities with sizes in the range of the laser beam diameter made by single-burst ablation are compared to quadratic cavities of 0.5 × 0.5 mm² produced by multiburst ablation and simultaneous scanning of the laser beam across the steel sample surface. The ablated volume per pulse within the burst was calculated either from the ablated volume per burst or from the ablation depth of the quadratic cavities. With the second to fourth pulses in the bursts, a reduction of the ablated volume per pulse in comparison with the first pulse in the bursts (i.e., to the use of single pulses) was found for both single- and multiburst ablation, which is assumed to be due to plasma shielding. By contrast, the ablated volume per pulse within the bursts increases for the fifth to eighth pulses. Heat accumulation effect and the influence of the heated plasma can be assumed to be the reason for these higher ablation rates. SEM micrographs also show that there is a higher melt ejection out of the laser processed area. This is indicated by the formation of bulges about the ablated area.

  10. Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser.

    PubMed

    Haxsen, Frithjof; Wandt, Dieter; Morgner, Uwe; Neumann, Jörg; Kracht, Dietmar

    2012-03-15

    We report on monotonically positively chirped pulse operation of a hybridly mode-locked thulium fiber laser. Dispersion management was realized with a small-core, high-NA fiber providing normal dispersion in the 2 μm wavelength region. The laser delivered pulses with 0.7 nJ energy at the 1927 nm center wavelength and sub-500-fs pulse duration after compression.

  11. Optimizing Atom Probe Analysis with Synchronous Laser Pulsing and Voltage Pulsing.

    PubMed

    Zhao, Lu; Normand, Antoine; Houard, Jonathan; Blum, Ivan; Delaroche, Fabien; Latry, Olivier; Ravelo, Blaise; Vurpillot, Francois

    2017-04-01

    Atom probe has been developed for investigating materials at the atomic scale and in three dimensions by using either high-voltage (HV) pulses or laser pulses to trigger the field evaporation of surface atoms. In this paper, we propose an atom probe setup with pulsed evaporation achieved by simultaneous application of both methods. This provides a simple way to improve mass resolution without degrading the intrinsic spatial resolution of the instrument. The basic principle of this setup is the combination of both modes, but with a precise control of the delay (at a femtosecond timescale) between voltage and laser pulses. A home-made voltage pulse generator and an air-to-vacuum transmission system are discussed. The shape of the HV pulse presented at the sample apex is experimentally measured. Optimizing the delay between the voltage and the laser pulse improves the mass spectrum quality.

  12. Multichannel optoacoustic spectroscopy of molecular gases with pulsed lasers

    NASA Astrophysics Data System (ADS)

    Ponomarev, Iu. N.

    1989-05-01

    The linear and nonlinear absorption of laser radiation by H20 and CO2 is studied using dual-channel optoacoustic spectroscopy (OAS) with pulsed ruby and CO2 lasers. The possibility of VT-relaxation time determination is studied with allowance made for its dependence on laser radiation intensity. The advantages of the OAS method are outlined.

  13. Optical pulse generation using fiber lasers and integrated optics

    SciTech Connect

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-03-27

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics.

  14. Bismuth thin films obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Flores, Teresa; Arronte, Miguel; Rodriguez, Eugenio; Ponce, Luis; Alonso, J. C.; Garcia, C.; Fernandez, M.; Haro, E.

    1999-07-01

    In the present work Bi thin films were obtained by Pulsed Laser Deposition, using Nd:YAG lasers. The films were characterized by optical microscopy. Raman spectroscopy and X-rays diffraction. It was accomplished the real time spectral emission characterization of the plasma generated during the laser evaporation process. Highly oriented thin films were obtained.

  15. Pulsed Laser Deposition of Gallium Arsenide.

    NASA Astrophysics Data System (ADS)

    Leppert, Valerie Jean

    Recent applications of pulsed laser deposition to the growth of various types of thin films suggest that it may be successfully used for III-V semiconductors. The goal of this work is to characterize the growth of GaAs using PLD and to determine the scope of the technique for this material. Therefore, laser ablation of GaAs is characterized here using spectroscopic analysis of the optical emission lines from the laser plasma plume. Additionally, the influence of growth conditions on GaAs films grown on a range of substrates is examined. In-situ analysis of the GaAs plume revealed that atomic, rather than molecular, arsenic is a major constituent of the GaAs plume. This may explain why no arsenic overpressure was needed to grow stoichiometric material. Nonlinear behavior of Ga emission intensity with laser power density indicated that several ablation mechanisms may be at work. EDAX studies indicate that deposited material is stoichiometric. Single crystal GaAs was grown on GaAs, Si and InP using PLD. A deposition rate of 0.65 mu m/hr was obtained. Defects consisting of dislocations, twinning and stacking faults were observed. An increase in laser power density decreased the minimum temperature for good film growth. Films were smooth overall, but suffered from an occasional inclusion of macroparticulates. Methods for screening particles were examined. The optimum growth temperature for GaAs/GaAs growth was 470^circC, but good films could be obtained as low as 335^circ C. GaAs/Si underwent a transition from a (110) oriented film to single crystal (100) film at 470 ^circC. Photoluminescence was obtained for the GaAs/GaAs and GaAs/InP systems. Well oriented films of GaAs (110) on an amorphous substrate (fused silica) were obtained for the first time using PLD at temperatures as low as 288^ circC. The effects of deposition temperature, deposition time, background gas, annealing, MOCVD overlayer and shadow masking were examined.

  16. Measurements of Intense Femtosecond Laser Pulse Propagation in Air

    NASA Astrophysics Data System (ADS)

    Ting, Antonio

    2004-11-01

    Intense femtosecond pulses generated from chirped pulse amplification (CPA) lasers can deliver laser powers many times above the critical power for self-focusing in air. Catastrophic collapse of the laser pulse is usually prevented by the defocusing of the plasma column formed when the laser intensity gets above the threshold for multiphoton ionization. The resultant laser/plasma filament can extend many meters as the laser pulse propagates in the atmosphere. We have carried out a series of experiments both for understanding the formation mechanisms of the filaments and the nonlinear effects such as white light and harmonics generation associated with them. Many applications of these filaments such as remote atmospheric breakdown, laser induced electrical discharge and femtosecond laser material interactions require direct measurements of their characteristics. Direct measurements of these filaments had been difficult because the high laser intensity ( ˜10^13 W/cm^2) can damage practically any optical diagnostics. A novel technique was invented to obtain the first absolute measurements of laser energy, transverse profile, fluence and spectral content of the filaments. We are investigating a ``remote atmospheric breakdown'' concept of remotely sensing chemical and biological compounds. A short intense laser pulse can be generated at a remote position by using the group velocity dispersion (GVD) of the air to compress an initially long, frequency negatively chirped laser pulse to generate the air breakdown and filaments. We have observed that nonlinear contributions to the laser spectrum through self-phase modulation can lead to modification of the linear GVD compression. We have also observed the generation of ultraviolet (UV) radiations from these filaments in air and the induced fluorescence by the UV radiation of a surrogate biological agent. These and other results such as laser induced electrical discharges will be presented.

  17. Ultrashort laser pulse interaction with photo-thermo-refractive glass

    NASA Astrophysics Data System (ADS)

    Siiman, Leo A.

    Photo-thermo-refractive (PTR) glass is an ideal photosensitive material for recording phase volume holograms. It is a homogeneous multi-component silicate glass that demonstrates all the advantages of optical glass: thermal stability, high laser damage threshold, and a wide transparency range. Moreover the ability to record phase patterns (i.e. spatial refractive index variations) into PTR glass has resulted in the fabrication of volume holograms with diffraction efficiency greater than 99%. The conventional method of recording a hologram in PTR glass relies on exposure to continuous-wave ultraviolet laser radiation. In this dissertation the interaction between infrared ultrashort laser pulses and PTR glass is studied. It is shown that photosensitivity in PTR glass can be extended from the UV region to longer wavelengths (near-infrared) by exposure to ultrashort laser pulses. It is found that there exists a focusing geometry and laser pulse intensity interval for which photoionization and refractive index change in PTR glass after thermal development occur without laser-induced optical damage. Photoionization of PTR glass by IR ultrashort laser pulses is explained in terms of strong electric field ionization. This phenomenon is used to fabricate phase optical elements in PTR glass. The interaction between ultrashort laser pulses and volume holograms in PTR glass is studied in two laser intensity regimes. At intensities below ˜10 12 W/cm2 properties such as diffraction efficiency, angular divergence, selectivity, and pulse front tilt are shown to agree with the theory of linear diffraction for broad spectral width lasers. A volume grating pair arrangement is shown to correct the laser pulse distortions arising from pulse front tilt and angular divergence. At higher intensities of irradiation, nonlinear generation and diffraction of third harmonic is observed for three types of interactions: sum-frequency generation, front-surface THG generation, and THG due to

  18. Generation of 1.5 cycle 0.3 TW laser pulses using a hollow-fiber pulse compressor.

    PubMed

    Park, Juyun; Lee, Jae-Hwan; Nam, Chang Hee

    2009-08-01

    Pulse compression in a differentially pumped neon-filled hollow fiber was used to generate high-power few-cycle laser pulses. The pulse compression process was optimized by adjusting gas pressure and laser chirp to produce the shortest laser pulses. Precise dispersion control enabled the generation of laser pulses with duration of 3.7 fs and energy of 1.2 mJ. This corresponds to an output of 1.5 cycle, 0.3 TW pulses at a 1 kHz repetition rate using positively chirped 33 fs laser pulses.

  19. Application of Yb:YAG short pulse laser system

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Crane, John K.; Telford, Steve; Perry, Michael D.

    2004-07-06

    A diode pumped, high power (at least 20W), short pulse (up to 2 ps), chirped pulse amplified laser using Yb:YAG as the gain material is employed for material processing. Yb:YAG is used as the gain medium for both a regenerative amplifier and a high power 4-pass amplifier. A single common reflective grating optical device is used to both stretch pulses for amplification purposes and to recompress amplified pulses before being directed to a workpiece.

  20. Fiber Optic Solutions for Short Pulse Lasers

    SciTech Connect

    Beach, R; Dawson, J; Liao, Z; Jovanovic, I; Wattellier, B; Payne, S; Barty, C P

    2003-01-29

    For applications requiring high beam quality radiation from efficient, compact and rugged sources, diffraction limited fiber lasers are ideal, and to date have been demonstrated at average CW power levels exceeding 100 W with near diffraction limited: output. For conventional single-core step-index single-mode fibers, this power level represents the sealing limit because of nonlinear and laser damage considerations. Higher average powers would exceed nonlinear process thresholds such as the Raman and stimulated Brillouin scattering limit, or else damage the fiber due to the high intensity level in the fiber's core. The obvious way to increase the average power capability of fibers is to increase the area of their core. Simply expanding the core dimensions of the fiber allows a straightforward power sealing due to enhanced nonlinear and power handling characteristics that scale directly with the core area. Femtosecond, chirped-pulse, fiber lasers with pulse energies greater than 1mJ have been demonstrated in the literature [2] using this technique. This output energy was still limited by the onset of stimulated Raman scattering. We have pursued an alternative and complimentary approach which is to reduce the intensity of light propagating in the core by distributing it more evenly across the core area via careful design of the refractive index profile [3]. We have also sought to address the primary issue that results from scaling the core. The enhanced power handling capability comes at the expense of beam quality, as increasing the core diameter in standard step index fibers permits multiple transverse modes to lase simultaneously. Although this problem of multimode operation can be mitigated to some extent by appropriately designing the fiber's waveguide structure, limitations such as bend radius loss, sensitivity to thermally induced perturbations of the waveguide structure, and refractive index control, all become more stringent as the core diameter grows

  1. A laser spectrometer and wavemeter for pulsed lasers

    NASA Technical Reports Server (NTRS)

    Mckay, J. A.; Laufer, P. M.; Cotnoir, L. J.

    1989-01-01

    The design, construction, calibration, and evaluation of a pulsed laser wavemeter and spectral analyzer are described. This instrument, called the Laserscope for its oscilloscope-like display of laser spectral structure, was delivered to NASA Langley Research Center as a prototype of a laboratory instrument. The key component is a multibeam Fizeau wedge interferometer, providing high (0.2 pm) spectral resolution and a linear dispersion of spectral information, ideally suited to linear array photodiode detectors. Even operating alone, with the classic order-number ambiguity of interferometers unresolved, this optical element will provide a fast, real-time display of the spectral structure of a laser output. If precise wavelength information is also desired then additional stages must be provided to obtain a wavelength measurement within the order-number uncertainty, i.e., within the free spectral range of the Fizeau wedge interferometer. A Snyder (single-beam Fizeau) wedge is included to provide this initial wavelength measurement. Difficulties in achieving the required wide-spectrum calibration limit the usefulness of this function.

  2. Generation of high-power nanosecond pulses from laser diode-pumped Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Chan, Kinpui

    1988-01-01

    Simulation results are used to compare the pulse energy levels and pulse energy widths that can be achieved with LD-pumped Nd:YAG lasers for both the pulse-transmission mode (PTM) and pulse-reflection mode (PRM) Q-switching methods for pulse energy levels up to hundreds of microjoules and pulse widths as short as 1 ns. It is shown that high-power pulses with pulse widths as short as 1 ns can be generated with PTM Q-switched in LD-pumped Nd:YAG lasers. With the PRM Q-switching method, pulse widths as short as 2 ns and pulse energy at the level of a few hundred microjoules can also be achieved but require pumping with 8-10-mJ AlGaAs laser diode arrays.

  3. Recent progress in picosecond pulse generation from semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  4. Prepulse effect on intense femtosecond laser pulse propagation in gas

    SciTech Connect

    Giulietti, Antonio; Tomassini, Paolo; Galimberti, Marco; Giulietti, Danilo; Gizzi, Leonida A.; Koester, Petra; Labate, Luca; Ceccotti, Tiberio; D'Oliveira, Pascal; Auguste, Thierry; Monot, Pascal; Martin, Philippe

    2006-09-15

    The propagation of an ultrashort laser pulse can be affected by the light reaching the medium before the pulse. This can cause a serious drawback to possible applications. The propagation in He of an intense 60-fs pulse delivered by a Ti:sapphire laser in the chirped pulse amplification (CPA) mode has been investigated in conditions of interest for laser-plasma acceleration of electrons. The effects of both nanosecond amplified spontaneous emission and picosecond pedestals have been clearly identified. There is evidence that such effects are basically of refractive nature and that they are not detrimental for the propagation of a CPA pulse focused to moderately relativistic intensity. The observations are fully consistent with numerical simulations and can contribute to the search of a stable regime for laser acceleration.

  5. Recent progress in picosecond pulse generation from semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  6. Short-pulse laser interactions with disordered materials and liquids

    SciTech Connect

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L.

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  7. Response of silicon solar cell to pulsed laser illumination

    NASA Technical Reports Server (NTRS)

    Willowby, D.; Alexander, D.; Edge, T.; Herren, K.

    1993-01-01

    The response of silicon solar cell(s) to pulsed laser illumination is discussed. The motivation was due to the interest of Earth to space/Moon power beaming applications. When this work began, it was not known if solar cells would respond to laser light with pulse lengths in the nanosecond range and a repetition frequency in the kHz range. This is because the laser pulse would be shorter than the minority carrier lifetime of silicon. A 20-nanosecond (ns) full width half max (FWHM) pulse from an aluminum-gallium/arsenide (Al-Ga-As) diode laser was used to illuminate silicon solar cells at a wavelength of 885 nanometers (nm). Using a high-speed digital oscilloscope, the response of the solar cells to individual pulses across various resistive loads was observed and recorded.

  8. LIBS using dual- and ultra-short laser pulses.

    PubMed

    Angel, S M; Stratis, D N; Eland, K L; Lai, T; Berg, M A; Gold, D M

    2001-02-01

    Pre-ablation dual-pulse LIBS enhancement data for copper, brass and steel using ns laser excitation are reported. Although large enhancements are observed for all samples, the magnitude of the enhancement is matrix dependent. Whereas all of the dual-pulse studies used ns laser excitation we see interesting effects when using ps and fs laser excitation for single-pulse LIBS. LIBS spectra of copper using 1.3 ps and 140 fs laser pulses show much lower background signals compared to ns pulse excitation. Also, the atomic emission decays much more rapidly with time. Because of relatively low backgrounds when using ps and fs pulses, non-gated detection of LIBS is shown to be very effective. The plasma dissipates quickly enough using ps and fs laser pulses, that high pulse rates, up to 1,000 Hz, are effective for increasing the LIBS signal, for a given measurement time. Finally, a simple near-collinear dual-pulse fiber-optic LIBS probe is shown to be useful for enhanced LIBS measurements.

  9. Laser induced breakdown spectroscopy with picosecond pulse train

    NASA Astrophysics Data System (ADS)

    Lednev, Vasily N.; Pershin, Sergey M.; Sdvizhenskii, Pavel A.; Grishin, Mikhail Ya; Davydov, Mikhail A.; Stavertiy, Anton Ya; Tretyakov, Roman S.

    2017-02-01

    Picosecond pulse train and nanosecond pulse were compared for laser ablation and laser induced breakdown spectroscopy (LIBS) measurements. A detailed study revealed that the picosecond pulse train ablation improved the quality of laser craters (symmetric crater walls and the absence of large redeposited droplets), which was explained by a smaller heat affected zone and suppression of melt splash. Greater plasma dimensions and brighter plasma emission were observed by gated imaging for picosecond pulse train compared to nanosecond pulse ablation. Increased intensity of atomic and ionic lines in gated and time integrated spectra provided better signal-to-noise ratio for picosecond pulse train sampling. Higher temperature and electron density were detected during first microsecond for the plasma induced by the picosecond pulse train. Improved shot-to-shot reproducibility for atomic/ionic line intensity in the case of picosecond pulse train LIBS was explained by more effective atomization of target material in plasma and better quality of laser craters. Improved precision and limits of detections were determined for picosecond pulse train LIBS due to better reproducibility of laser sampling and increased signal-to-noise ratio.

  10. Synchronous pulse generation in a multicavity fiber laser system

    NASA Astrophysics Data System (ADS)

    Gómez-Pavón, L. C.; Martí-Panameño, E.; Gómez-de la Fuente, O.; Luis-Ramos, A.

    2006-09-01

    We report the experimental synchronous pulse generation in a multicavity fiber laser system with two Erbium-doped fiber laser cavities. We have demonstrated that through the evanescent fields interaction between one cavity with active modulation and other one in continuous wave it is possible to generate more intense pulses in both cavities. Moreover, the synchronous pulse generation between cavities is achieved with an appropriate selection of pump intensity, modulation frequency and coupling ratio. We found that the pulse intensity is 2.5 times greater and the pulse duration lowers than a single Erbium-doper fiber laser. Furthermore, by means of the synchronous diagram we determined the synchronization strength in temporal pulse emission between cavities.

  11. Ponderomotive acceleration of electrons by a self focused laser pulse

    SciTech Connect

    Singh, Rohtash; Sharma, A. K.

    2010-12-15

    Ponderomotive acceleration of electrons by a short laser pulse undergoing relativistic self-focusing in a plasma is investigated. The saturation in nonlinear plasma permittivity causes periodic self-focusing of the laser. The periodicity lengths are different for different axial segments of the pulse. As a result, pulse shape is distorted. An electron initially on the laser axis and at the front of the self-focusing pulse gains energy from the pulse until it is run over by the pulse peak. By the time electron reaches the tail, if pulse begins diverging, the deceleration of the electron is slower and the electron is left with net energy gain. The electrons slightly off the laser axis see a radial ponderomotive force too. Initially, when they are accelerated by the pulse front the acceleration is strong as they are closer to the axis. When they see the tail of the pulse (after being run by the pulse), they are farther from the axis and the retardation ponderomotive force is weaker. Thus, there is net energy gain.

  12. Electron flat-top distributions and cross-scale wave modulations observed in the current sheet of geomagnetic tail

    NASA Astrophysics Data System (ADS)

    Zhao, Duo; Fu, Suiyan; Parks, George K.; Sun, Weijie; Zong, Qiugang; Pan, Dongxiao; Wu, Tong

    2017-08-01

    We present new observations of electron distributions and the accompanying waves during the current sheet activities at ˜60 RE in the geomagnetic tail detected by the ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) spacecraft. We find that electron flat-top distribution is a common feature near the neutral sheet of the tailward flowing plasmas, consistent with the electron distributions that are shaped in the reconnection region. Whistler mode waves are generated by the anisotropic electron temperature associated with the electron flat-top distributions. These whistler mode waves are modulated by low frequency ion scale waves that are possibly excited by the high-energy ions injected during the current sheet instability. The magnetic and electric fields of the ion scale waves are in phase with electron density variations, indicating that they are compressional ion cyclotron waves. Our observations present examples of the dynamical processes occurring during the current sheet activities far downstream of the geomagnetic tail.

  13. Efficient spectral-step expansion of a filamenting laser pulse.

    PubMed

    Théberge, Francis; Lassonde, Philippe; Payeur, Stéphane; Châteauneuf, Marc; Dubois, Jacques; Kieffer, Jean-Claude

    2013-05-01

    We report an efficient transfer of 800 nm energy into both the ultraviolet and the far infrared (IR) during the filamentation in air of an appropriately shaped laser pulse. The multiorder enhancement of the IR supercontinuum in the 3-5 μm atmospheric transmission windows was achieved thanks to spectral-step cascaded four-wave mixing occurring within the spectrum of the shaped femtosecond laser pulse. These results also point out the limit of the self-phase modulation model to explain the spectral broadening of a filamenting laser pulse.

  14. Efficient photoassociation with a train of asymmetric laser pulses

    SciTech Connect

    Zhang Wei; Wang Gaoren; Cong Shulin

    2011-04-15

    The photoassociation (PA) dynamics implemented by a train of asymmetric slowly turned-on and rapidly turned-off (STRT) laser pulses is investigated theoretically with Cs{sub 2} as an example. A higher PA efficiency is achieved by optimizing the parameters of the STRT pulse train. The PA reaction goes partly beyond the scope of the PA window. Numerical calculations show that an efficient population accumulation in the PA process can be realized with the STRT laser-pulse train which is available in the current experiment based on laser mode-lock and shaping technology.

  15. Airborne bathymetric charting using pulsed blue-green lasers

    NASA Technical Reports Server (NTRS)

    Kim, H. H.

    1977-01-01

    Laboratory and airborne experiments have proven the feasibility and demonstrated the techniques of an airborne pulsed laser system for rapidly mapping coastal water bathymetry. Water depths of 10 plus or minus 0.25 m were recorded in waters having an effective attenuation coefficient of 0.175 m. A 2-MW peak power Nd:YAG pulsed laser was flown at an altitude of 600 m. An advanced system, incorporating a mirror scanner, a high pulsed rate laser, and a good signal processor, could survey coastal zones at the rate of several square miles per hour.

  16. Airborne bathymetric charting using pulsed blue-green lasers.

    PubMed

    Kim, H H

    1977-01-01

    Laboratory and airborne experiments have proven the feasibility and demonstrated the techniques of an airborne pulsed laser system for rapidly mapping coastal water bathymetry. Water depths of 10 +/- 0.25 m were recorded in waters having an effective attenuation coefficient of 0.175 m(-1). A2-MW peak power Nd:YAG pulsed laser was flown at an altitude of 600 m. An advanced system, incorporating a mirror scanner, a high pulsed rate laser, and a good signal processor, could survey coastal zones at the rate of several square miles per hour.

  17. Safe Operation and Alignment of the Variable Pulse Width Laser at the US Army Research Laboratory

    DTIC Science & Technology

    2016-02-01

    pulse at pulse widths between 50 µs to 10 ms. Maximum energy output is only achieved by proper alignment and laser operation. This report provides...not included in the operator’s manual. 15. SUBJECT TERMS pulse width, laser energy , laser alignment, peak power, laser operation 16. SECURITY...Acknowledgments v 1. Introduction 1 2. Energy Output of the Variable Pulse Width Laser 1 3. Operation of the Variable Pulse Width Laser 2 4

  18. All-fiber ring Raman laser generating parabolic pulses

    SciTech Connect

    Kruglov, V. I.; Mechin, D.; Harvey, J. D.

    2010-02-15

    We present theoretical and numerical results for an all-fiber laser using self-similar parabolic pulses ('similaritons') designed to operate using self-similar propagation regimes. The similariton laser features a frequency filter and a Sagnac loop which operate together to generate an integrated all-fiber mode-locked laser. Numerical studies show that this laser generates parabolic pulses with linear chirp in good agreement with analytical predictions. The period for propagating similariton pulses in stable regimes can vary from one to two round trips for different laser parameters. Two-round-trip-period operation in the mode-locked laser appears at bifurcation points for certain cavity parameters. The stability of the similariton regimes has been confirmed by numerical simulations for large numbers of round trips.

  19. Velocity measurement using frequency domain interferometer and chirped pulse laser

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.

    2017-02-01

    An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.

  20. High-charge energetic ions generated by intersecting laser pulses

    SciTech Connect

    Yang, L.; Deng, Z. G.; Yu, M. Y.; Wang, X. G.

    2016-08-15

    Ion acceleration from the interaction of two intersecting intense laser pulses with an overdense plasma is investigated using a three-dimensional particle-in-cell simulation. It is found that, comparing with the single-pulse case, the charge of the resulting energetic ion bunch can be increased by more than an order of magnitude without much loss of quality. Dependence of the ion charge on the interaction parameters, including separation distance and incidence angles of the lasers, is considered. It is shown that the charge of the accelerated ion bunch can be optimized by controlling the degree of laser overlapping. The improved performance can be attributed to the enhanced laser intensity as well as stochastic heating of the accelerated electrons. Since at present the intensity of readily available lasers is limited, the two pulse scheme should be useful for realizing higher laser intensity in order to achieve higher-energy target normal sheath acceleration ions.

  1. Delicate scale multipeak and flat-top structures of solitary waves in multi-component plasmas

    NASA Astrophysics Data System (ADS)

    Ding, LU; Ziliang, LI; Haibo, SANG; Baisong, XIE

    2017-03-01

    Numerically the delicate scale multipeak structures of the electrostatic solitary waves are found for the three-component (electron-positron-ion, i.e., EPI) plasmas. The complicated homoclinic phase portraits for this two-degree-of-freedom system are presented, which indicate that the system exhibits more abundant nonlinear phenomena. This finding is very useful to unveil the coherent dynamical behavior in laser-plasma interaction. It has an implication of electron acceleration by a laser with soliton wave mechanism.

  2. Pulse Splitting in Short Wavelength Seeded Free Electron Lasers

    SciTech Connect

    Labat, M.; Couprie, M. E.; Joly, N.; Bruni, C.

    2009-12-31

    We investigate a fundamental limitation occurring in vacuum ultraviolet and extreme ultraviolet seeded free electron lasers (FELs). For a given electron beam and undulator configuration, an increase of the FEL output energy at saturation can be obtained via an increase of the seed pulse duration. We put in evidence a complex spatiotemporal deformation of the amplified pulse, leading ultimately to a pulse splitting effect. Numerical studies of the Colson-Bonifacio FEL equations reveal that slippage length and seed laser pulse wings are core ingredients of the dynamics.

  3. Propagation of Complex Laser Pulses in Optically Dense Media

    NASA Astrophysics Data System (ADS)

    Fetterman, M. R.; Davis, J. C.; Goswami, D.; Yang, W.; Warren, W. S.

    1999-05-01

    Ultrafast laser pulses with complex envelopes (amplitude and frequency modulated) are used to excite an optically dense column of rubidium vapor. Pulse reshaping, stimulated emission dynamics, and residual electronic excitation in the Rb vapor are all shown to depend strongly on the laser pulse shape. Pulses that produce adiabatic passage in the optically thin limit exhibit more complex behavior in optically thick samples, including an unexpected dependence on the sign of the frequency sweep. Numerical solutions of the Maxwell-Bloch equations are shown to account for our results.

  4. High pulse energy 2 µm femtosecond fiber laser.

    PubMed

    Wan, Peng; Yang, Lih-Mei; Liu, Jian

    2013-01-28

    In the paper, a 2 µm high energy fs fiber laser and amplification system is presented based on Tm doped fibers. The seed laser was designed to generate pulse train at 2024 nm at a repetition rate of 2.5 MHz. An AOM was used as a pulse picker to further lower the repetition rate down to 100 kHz. Two-stage fiber pre-amplifiers and a high energy large mode area (LMA) fiber amplifier were used to boost pulse energy up to 54 µJ before pulse compressor with chirped pulse amplification technique. After compressor, pulse energy of 36.7µJ and pulse duration of 910 fs and were obtained.

  5. Optimization and control of electron beams from laser wakefield accelerations using asymmetric laser pulses

    NASA Astrophysics Data System (ADS)

    Gopal, K.; Gupta, D. N.

    2017-10-01

    Optimization and control of electron beam quality in laser wakefield acceleration are explored by using a temporally asymmetric laser pulse of the sharp rising front portion. The temporally asymmetric laser pulse imparts stronger ponderomotive force on the ambient plasma electrons. The stronger ponderomotive force associated with the asymmetric pulse significantly affects the injection of electrons into the wakefield and consequently the quality of the injected bunch in terms of injected charge, mean energy, and emittance. Based on particle-in-cell simulations, we report to generate a monoenergetic electron beam with reduced emittance and enhanced charge in laser wakefield acceleration using an asymmetric pulse of duration 30 fs.

  6. LASERS: Electric-discharge XeCl laser emitting 10-J, 300-ns pulses

    NASA Astrophysics Data System (ADS)

    Konovalov, I. N.; Losev, V. F.; Panchenko, Yu N.; Ivanov, N. G.; Sukhov, M. Yu

    2005-03-01

    The development of a long-pulse electric-discharge XeCl laser with the 9 × 6 × 100 cm active volume is reported. Laser is excited by using a double circuit with a pulsed charged storage capacitor consisting of paper-oil capacitors forming the pulse-shaping line. The storage capacitor is switched by a multichannel extended gap. The laser mixture was preionised by X-rays. The laser generated the 10-J output pulses with the FWHM of 300 ns, and a uniform intensity distribution over the exit aperture.

  7. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    DOEpatents

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  8. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study

    NASA Astrophysics Data System (ADS)

    Popescu-Pelin, G.; Sima, F.; Sima, L. E.; Mihailescu, C. N.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I. N.

    2017-10-01

    Pulsed Laser Deposition (PLD) and Matrix Assisted Pulsed Laser Evaporation (MAPLE) techniques were applied for growing hydroxyapatite (HA) thin films on titanium substrates. All experiments were conducted in a reaction chamber using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 25 ns). Half of the samples were post-deposition thermally treated at 500 °C in a flux of water vapours in order to restore crystallinity and improve adherence. Coating surface morphologies and topographies specific to the deposition method were evidenced by scanning electron, atomic force microscopy investigations and profilometry. They were shown to depend on deposition technique and also on the post-deposition treatment. Crystalline structure of the coatings evaluated by X-ray diffraction was improved after thermal treatment. Biocompatibility of coatings, cellular adhesion, proliferation and differentiation tests were conducted using human mesenchymal stem cells (MSCs). Results showed that annealed MAPLE deposited HA coatings were supporting MSCs proliferation, while annealed PLD obtained films were stimulating osteogenic differentiation.

  9. Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser

    NASA Astrophysics Data System (ADS)

    Zheng, Lihe; Taira, Takunori

    2016-03-01

    A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.

  10. Ablation characteristics of quantum square pulse mode dental erbium laser

    NASA Astrophysics Data System (ADS)

    Lukač, Nejc; Suhovršnik, Tomaž; Lukač, Matjaž; Jezeršek, Matija

    2016-01-01

    Erbium lasers are by now an accepted tool for performing ablative medical procedures, especially when minimal invasiveness is desired. Ideally, a minimally invasive laser cutting procedure should be fast and precise, and with minimal pain and thermal side effects. All these characteristics are significantly influenced by laser pulse duration, albeit not in the same manner. For example, high cutting efficacy and low heat deposition are characteristics of short pulses, while vibrations and ejected debris screening are less pronounced at longer pulse durations. We report on a study of ablation characteristics on dental enamel and cementum, of a chopped-pulse Er:YAG [quantum square pulse (QSP)] mode, which was designed to reduce debris screening during an ablation process. It is shown that in comparison to other studied standard Er:YAG and Er,Cr:YSGG laser pulse duration modes, the QSP mode exhibits the highest ablation drilling efficacy with lowest heat deposition and reduced vibrations, demonstrating that debris screening has a considerable influence on the ablation process. By measuring single-pulse ablation depths, we also show that tissue desiccation during the consecutive delivery of laser pulses leads to a significant reduction of the intrinsic ablation efficacy that cannot be fully restored under clinical settings by rehydrating the tooth using an external water spray.

  11. Transient thermal analysis of semiconductor diode lasers under pulsed operation

    NASA Astrophysics Data System (ADS)

    Veerabathran, G. K.; Sprengel, S.; Karl, S.; Andrejew, A.; Schmeiduch, H.; Amann, M.-C.

    2017-02-01

    Self-heating in semiconductor lasers is often assumed negligible during pulsed operation, provided the pulses are `short'. However, there is no consensus on the upper limit of pulse width for a given device to avoid-self heating. In this paper, we present an experimental and theoretical analysis of the effect of pulse width on laser characteristics. First, a measurement method is introduced to study thermal transients of edge-emitting lasers during pulsed operation. This method can also be applied to lasers that do not operate in continuous-wave mode. Secondly, an analytical thermal model is presented which is used to fit the experimental data to extract important parameters for thermal analysis. Although commercial numerical tools are available for such transient analyses, this model is more suitable for parameter extraction due to its analytical nature. Thirdly, to validate this approach, it was used to study a GaSb-based inter-band laser and an InP-based quantum cascade laser (QCL). The maximum pulse-width for less than 5% error in the measured threshold currents was determined to be 200 and 25 ns for the GaSb-based laser and QCL, respectively.

  12. Pulsed infrared laser irradiation of biological tissue: effect of pulse duration and repetition rate

    NASA Astrophysics Data System (ADS)

    Jansen, E. Duco; Chundru, Ravi K.; Samanani, Salim A.; Tibbetts, Todd A.; Welch, Ashley J.

    1993-07-01

    Pulsed laser ablation is a trade off between minimizing thermal damage (for relatively long pulses) and mechanical damage (for relatively short pulses) to tissue adjacent to the ablation crater. Often it is not known what the optimal laser parameters are for a specific application, since clinically used parameters have at least partially been dictated by physical limitations of the laser devices. We recently obtained a novel type of cryogenic continuous wave holmium:YAG laser ((lambda) equals 2.09 micrometers ) with a galvanometric drive outcouple mirror that acts as a Q-switch. This unique device provides pulse repetition rates from a few Hz up to kHz and the pulse length is variable from microsecond(s) to ms. The effect of pulse duration and repetition rate on the thermal response of chicken breast is documented using temperature measurements with a thermal camera. We varied the pulse width from 10 microsecond(s) to 5 ms and fond that these pulse durations can be considered impulses of thermalized optical energy. In this paper some theoretical considerations of the pulse length will be described that support the experimental data. It was also found that even at 1 pulse per second thermal superposition occurs, indicating a much longer thermal relaxation time than predicted by a simple time constant model.

  13. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-07-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) {copyright} {ital 1999 American Institute of Physics.}

  14. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J. B.; Le Sage, G. P.

    1999-07-12

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail.

  15. Acceleration Mechanism Of Pulsed Laser-Electromagnetic Hybrid Thruster

    SciTech Connect

    Horisawa, Hideyuki; Mashima, Yuki; Yamada, Osamu

    2011-11-10

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the ablated mass per pulse and impulse bit. As results, significantly high specific impulses up to 7,200 s were obtained at charge energies of 8.6 J. Moreover, from the Faraday cup measurement, it was confirmed that the speed of ions was accelerated with addition of electric energy.

  16. Excitation and Control of Plasma Wakefields by Multiple Laser Pulses

    NASA Astrophysics Data System (ADS)

    Cowley, J.; Thornton, C.; Arran, C.; Shalloo, R. J.; Corner, L.; Cheung, G.; Gregory, C. D.; Mangles, S. P. D.; Matlis, N. H.; Symes, D. R.; Walczak, R.; Hooker, S. M.

    2017-07-01

    We demonstrate experimentally the resonant excitation of plasma waves by trains of laser pulses. We also take an important first step to achieving an energy recovery plasma accelerator by showing that a plasma wave can be damped by an out-of-resonance trailing laser pulse. The measured laser wakefields are found to be in excellent agreement with analytical and numerical models of wakefield excitation in the linear regime. Our results indicate a promising direction for achieving highly controlled, GeV-scale laser-plasma accelerators operating at multikilohertz repetition rates.

  17. Parabolic similariton Yb-fiber laser with triangular pulse evolution

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Wang, Lei

    2016-04-01

    We propose a novel mode-locked fiber laser design which features a passive nonlinear triangular pulse formation and self-similar parabolic pulse amplification intra cavity. Attribute to the nonlinear reshaping progress in the passive fiber, a triangular-profiled pulse with negative-chirp is generated and paved the way for rapid and efficient self-similar parabolic evolution in a following short-length high-gain fiber. In the meanwhile, the accompanied significantly compressed narrow spectrum from this passive nonlinear reshaping also gives the promise of pulse stabilization and gain-shaping robustness without strong filtering. The resulting short average intra-cavity pulse duration, low amplified spontaneous emission (ASE) and low intra-cavity power loss are essential for the low-noise operation. Simulations predict this modelocked fiber laser allows for high-energy ultra-short transform-limited pulse generation exceeding the gain bandwidth. The output pulse has a de-chirped duration (full-width at half maximum, FWHM) of 27 fs. In addition to the ultrafast laser applications, the proposed fiber laser scheme can support low-noise parabolic and triangular pulse trains at the same time, which are also attractive in optical pulse shaping, all-optical signal processing and high-speed communication applications.

  18. Refractive beam shapers for focused laser beams

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2016-09-01

    Focusing of laser radiation is most often used approach in various industrial micromachining applications like scribing, PCB drilling, and is important in scientific researches like laser heating in geophysics experiments with diamond anvil cells (DAC). Control of intensity distribution in focal spot is important task since optimum intensity profiles are rather flat-top, doughnut or "inverse-Gauss" than typical for lasers Gaussian profile. Because of high intensity of modern CW and pulsed lasers it is advisable to use refractive beam shaping optics with smooth optical surfaces providing high radiation resistance. Workable optical solutions can be built on the base of diffraction theory conclusion that flat-top intensity profile in focal plane of a lens is created when input beam has Airy-disk intensity distribution. It is suggested to apply refractive beam shapers converting, with minimum wavefront deformation, Gaussian profile of TEM00 beam to a beam with Airy disk intensity distribution, thereby optimizing conditions of interference near the focal plane of a lens after the beam shaper and providing flat-top, doughnut, "inverse-Gauss" profiles. This approach allows operation with CW and ultra-short pulse lasers, using F-theta lenses and objectives, mirror scanners, provides extended depth of field similar to Rayleigh length of comparable TEM00 beam, easy integration in industrial equipment, simple adjustment procedure and switching between profiles, telescope and collimator implementations. There will be considered design basics of beam shapers, analysis of profile behaviour near focal plane, examples of implementations in micromachining systems and experimental DAC setups, results of profile measurements and material processing.

  19. Metal Processing with Ultra-Short Laser Pulses

    SciTech Connect

    Banks, P S; Feit, M D; Komashko, A M; Perry, M D; Rubenchik, A M; Stuart, B C

    2000-05-01

    Femtosecond laser ablation has been shown to produce well-defined cuts and holes in metals with minimal heat effect to the remaining material. Ultrashort laser pulse processing shows promise as an important technique for materials processing. We will discuss the physical effects associated with processing based experimental and modeling results. Intense ultra-short laser pulse (USLP) generates high pressures and temperatures in a subsurface layer during the pulse, which can strongly modify the absorption. We carried out simulations of USLP absorption versus material and pulse parameters. The ablation rate as function of the laser parameters has been estimated. Since every laser pulse removes only a small amount of material, a practical laser processing system must have high repetition rate. We will demonstrate that planar ablation is unstable and the initially smooth crater bottom develops a corrugated pattern after many tens of shots. The corrugation growth rate, angle of incidence and the polarization of laser electric field dependence will be discussed. In the nonlinear stage, the formation of coherent structures with scales much larger than the laser wavelength was observed. Also, there appears to be a threshold fluence above which a narrow, nearly perfectly circular channel forms after a few hundred shots. Subsequent shots deepen this channel without significantly increasing its diameter. The role of light absorption in the hole walls will be discussed.

  20. Pulsed laser deposition of ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Sengupta, Somnath; McKnight, Steven H.; Sengupta, Louise C.

    1997-05-01

    It has been shown that in bulk ceramic form, the barium to strontium ratio in barium strontium titanium oxide (Ba1- xSrxTiO3, BSTO) affects the voltage tunability and electronic dissipation factor in an inverse fashion; increasing the strontium content reduces the dissipation factor at the expense of lower voltage tunability. However, the oxide composites of BSTO developed at the Army Research Laboratory still maintain low electronic loss factors for all compositions examined. The intent of this study is to determine whether such effects can be observed in the thin film form of the oxide composites. The pulsed laser deposition (PLD) method has been used to deposit the thin films. The different compositions of the compound (with 1 wt% of the oxide additive) chosen were: Ba0.3Sr0.7TiO3, Ba0.4Sr0.6TiO3, Ba0.5Sr0.5TiO3, Ba0.6Sr0.4TiO3, and Ba0.7Sr0.3TiO3. The electronic properties investigated in this study were the dielectric constant and the voltage tunability. The morphology of the thin films were examined using the atomic force microscopy. Fourier transform Raman spectroscopy was also utilized for optical characterization of the thin films. The electronic and optical properties of the thin films and the bulk ceramics were compared. The results of these investigations are discussed.

  1. Power Enhancement Cavity for Burst-Mode Laser Pulses

    SciTech Connect

    Liu, Yun

    2015-01-01

    We demonstrate a novel optical cavity scheme and locking method that can realize the power enhancement of picosecond UV laser pulses operating at a burst mode with arbitrary burst (macropulse) lengths and repetition rates.

  2. Schwinger vacuum pair production in chirped laser pulses

    SciTech Connect

    Dumlu, Cesim K.

    2010-08-15

    The recent developments of high intensity ultrashort laser pulses have raised the hopes of observing Schwinger vacuum pair production which is one of the important nonperturbative phenomena in QED. The quantitative analysis of realistic high intensity laser pulses is vital for understanding the effect of the field parameters on the momentum spectrum of the produced particles. In this study, we analyze chirped laser pulses with a subcycle structure, and investigate the effects of the chirp parameter on the momentum spectrum of the produced particles. The combined effect of the chirp and carrier phase of the laser pulse is also analyzed. These effects are qualitatively explained by investigating the turning-point structure of the potential within the framework of the complex WKB scattering approach to pair production.

  3. Vector self-pulsing in erbium-doped fiber lasers.

    PubMed

    Sergeyev, Sergey V

    2016-10-15

    Insight into instabilities of fiber laser regimes leading to complex self-pulsing operations is an opportunity to unlock the high power and dynamic operation tunability of lasers. Though many models have been suggested, there is no complete covering of self-pulsing complexity observed experimentally. Here, I further generalized our previous vector model of erbium-doped fiber laser and, for the first time, to the best of my knowledge, map tunability of complex vector self-pulsing on Poincare sphere (limit cycles and double scroll polarization attractors) for laser parameters, e.g., power, ellipticity of the pump wave, and in-cavity birefringence. Analysis validated by extensive numerical simulations demonstrates good correspondence to the experimental results on complex self-pulsing regimes obtained by many authors during the last 20 years.

  4. Study of ambient air ionization with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Wang, Xiaolei; Zhang, Nan; Zhai, Hongchen; Zhu, Xiaonong

    2005-01-01

    The laser induced ionization of ambient air is studied experimentally with laser pulses whose durations range from 50 fs up to 10 ps at 800 nm. It is found that the minimum pulse energy for detectable air ionization follows the scaling law of ɛth varies direct as tpx, with 0.23 < x < 0.5, and x tends to rise for longer pulses within the range of 50 fs - 500 fs. For laser pulses from 0.7 ps to 10 ps, however, x is approximately equal to 0.8. The dependence of the critical intensity for air ionization on the beam spot size is also examined with a variety of focused laser beam spot sizes in the experiments.

  5. Pulsed excimer laser processing for cost-effective solar cells

    NASA Technical Reports Server (NTRS)

    Wong, D.

    1984-01-01

    The goal was to demonstrate the cost effectiveness feasibility of fabricating 16% efficient solar cells on 125 mm diameter Cz wafers using pulsed excimer laser for junction formation, surface passivation, and front metallization.

  6. Pulse laser assisted optical tweezers for biomedical applications.

    PubMed

    Sugiura, Tadao; Maeda, Saki; Honda, Ayae

    2012-01-01

    Optical tweezers which enables to trap micron to nanometer sized objects by radiation pressure force is utilized for manipulation of particles under a microscope and for measurement of forces between biomolecules. Weak force of optical tweezers causes some limitations such as particle adhesion or steric barrier like lipid membrane in a cell prevent further movement of objects. For biomedical applications we need to overcome these difficulties. We have developed a technique to exert strong instantaneous force by use of a pulse laser beam and to assist conventional optical tweezers. A pulse laser beam has huge instantaneous laser power of more than 1000 times as strong as a conventional continuous-wave laser beam so that the instantaneous force is strong enough to break chemical bonding and molecular force between objects and obstacles. We derive suitable pulse duration for pulse assist of optical tweezers and demonstrate particle manipulation in difficult situations through an experiment of particle removal from sticky surface of glass substrate.

  7. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  8. Pulsed lasers on plasmas produced by electron beams and discharges

    SciTech Connect

    Tarasenko, Viktor F; Yakovlenko, Sergei I

    2003-02-28

    The use of electron beams for pumping dense gases made it possible to obtain lasing on atomic and molecular transitions in different spectral ranges and to develop high-power pulsed lasers. N.G. Basov and coworkers made a substantial contribution to the formation and advancement of this field. A brief review of the research on efficient elevated-pressure active media and high-power pulsed lasers utilising plasmas produced both by an electron beam and an electron-beam-controlled discharge is presented. These are excimer and exciplex lasers, lasers utilising atomic transitions in xenon and neon, an Ar -N{sub 2} mixture laser, a molecular nitrogen ion laser, and a high-pressure CO{sub 2} laser. Data obtained in the investigation of the radiation of rare-gas halide complexes are given. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  9. Longitudinally excited CO2 laser with short laser pulse for hard tissue drilling

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Hayashi, Hiroyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2014-02-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse with a circular beam and a low divergence angle. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse width of 103 ns and a pulse tail length of 32.6 μs. The beam cross-section was circular and the full-angle beam divergence was 1.7 mrad. The laser was used to drill ivory samples without carbonization at fluences of 2.3-7.1 J/cm2. The drilling depth of the dry ivory increased with the fluence. The drilling mechanism of the dry ivory was attributed to absorption of the laser light by the ivory.

  10. Laser shaping of a relativistic circularly polarized pulse by laser foil interaction

    SciTech Connect

    Zou, D. B.; Zhuo, H. B.; Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ouyang, J. M.; Ge, Z. Y.; Zhang, G. B.; Wang, P.

    2013-07-15

    Laser shaping of a relativistic circularly polarized laser pulse in ultra-intense laser thin-foil interaction is investigated by theoretical analysis and particle-in-cell simulations. It is found that the plasma foil as a nonlinear optical shutter has an obvious cut-out effect on the laser temporal and spatial profiles. Two-dimensional particle-in-cell simulations show that the high intensity part of a Gaussian laser pulse can be well extracted from the whole pulse. The transmitted pulse with longitudinal steep rise front and transverse super-Gaussian profile is thus obtained which would be beneficial for the radiation pressure acceleration regime. The Rayleigh-Taylor-like instability is observed in the simulations, which destroys the foil and results in the cut-out effect of the pulse in the rise front of a circularly polarized laser.

  11. Effect of Pulse Length on Engraving Efficiency in Nanosecond Pulsed Laser Engraving of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Manninen, Matti; Hirvimäki, Marika; Poutiainen, Ilkka; Salminen, Antti

    2015-10-01

    Dependency of laser pulse length on the effectiveness of laser engraving 304 stainless steel with nanosecond pulses was investigated. Ytterbium fiber laser with pulse lengths from 4 to 200 ns was used at a constant average power of 20 W. Measured criteria for effective laser engraving were high material removal rate (MRR), good visual quality of the engraved surface, and low processing temperature. MRR was measured by weighing the samples prior and after the engraving process. Visual quality was evaluated from magnified images. Surface temperature of the samples was measured by two laser spot-welded K-type thermocouples near the laser-processed area. It was noticed that MRR increases significantly with longer pulse lengths, while the quality decreases and processing temperature increases. Some peculiar process behavior was noticed. With short pulses (<20 ns), the process temperature steadily increased as the engraving process continued, whereas with longer pulses the process temperature started to decrease after initially jumping to a specific level. From visually analyzing the samples, it was noticed that the melted and resolidified bottom structure had cracks and pores on the surface when 50 ns or longer pulse lengths were used.

  12. Effect of pulse duty cycle on Inconel 718 laser welds

    NASA Technical Reports Server (NTRS)

    McCay, M. H.; McCay, T. D.; Dahotre, N. B.; Sharp, C. M.; Sedghinasab, A.; Gopinathan, S.

    1989-01-01

    Crack sensitive Inconel 718 was laser pulse welded using a 3.0 kW CO2 laser. Weld shape, structure, and porosity were recorded as a function of the pulse duty cycle. Within the matrix studied, the welds were found to be optimized at a high (17 ms on, 7 ms off) duty cycle. These welds were superior in appearance and lack of porosity to both low duty cycle and CW welds.

  13. Long Pulse Narrowband XeCl Laser Studies

    DTIC Science & Technology

    1990-03-15

    longest pulse width obtained with an e-beam pumped excimer laser . The kinetics processes of the long pulse narrowband were investigated by measurements...electrically triggered switch driven by a small Marx bank which produces the high voltage trigger required. This allows a high standoff voltage and...Phys. Lett 45, p. 507 (1984). 13 M. W. Taylor, J. Goldhar, and J. R. Murray, "Dylux: an instant image photographic material suitable for UV laser beam

  14. Repetitively pulsed Cr:LiSAF laser for lidar applications

    SciTech Connect

    Shimada, Tsutomu; Early, J.W.; Lester, C.S.; Cockroft, N.J.

    1994-03-01

    A Cr:LiSAF laser has been successfully operated at time averaged powers up to 11 W and at pulse repetition rates to 12 Hz. During Q-switch operation, output energy as high as 450 mJ (32 ns FWHM) was obtained. Finally, line narrowed Q-switched pulses (< 0.1 nm) from the Cr:LiSAF laser were successfully used as a tunable light source for lidar to measure atmospheric water content.

  15. Rapid scanning autocorrelator for measurements of picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Harde, H.; Burggraf, H.

    1981-08-01

    A rapid scanning autocorrelation interferometer for measurements of picosecond laser pulses is described which uses a rotating prism as scanning device in one arm of the interferometer to permit continuous display of autocorrelation traces at audio frequencies on an oscilloscope. Scan widths of more than 500 ps with high linearity can be achieved. Autocorrelation measurements of picosecond pulses from a synchronously pumped mode-locked dye laser are presented.

  16. Incorporation of fiber optic beam shaping into a laparoscopic probe for laser stimulation of the cavernous nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Lagoda, Gwen A.; Mayeh, Mona; Burnett, Arthur L.; Farahi, Faramarz; Fried, Nathaniel M.

    2010-02-01

    The cavernous nerves (CN) course along the prostate surface and are responsible for erectile function. Improved identification and preservation of the CN's is critical to maintaining sexual potency after prostate cancer surgery. Noncontact optical nerve stimulation (ONS) of the CN's was recently demonstrated in a rat model, in vivo, as a potential alternative to electrical nerve stimulation (ENS) for identification of the CN's during prostate surgery. However, the therapeutic window for ONS is narrow, so optimal design of the fiber optic delivery system is critical for safe, reproducible stimulation. This study describes modeling, assembly, and testing of an ONS probe for delivering a small, collimated, flat-top laser beam for uniform CN stimulation. A direct comparison of the magnitude and response time of the intracavernosal pressure (ICP) for both Gaussian and flat-top spatial beam profiles was performed. Thulium fiber laser radiation (λ=1870 nm) was delivered through a 200-μm fiber, with distal fiber tip chemically etched to convert a Gaussian to flat-top beam profile. The laser beam was collimated to a 1-mm-diameter spot using an aspheric lens. Computer simulations of light propagation were used to optimize the probe design. The 10-Fr (3.4-mm-OD) laparoscopic probe provided a constant radiant exposure at the nerve surface. The probe was tested in four rats, in vivo. ONS of the CN's was performed with a 1-mm-diameter spot, 5- ms pulse duration, and pulse rate of 20 Hz for a duration of 15-30 s. The flat-top laser beam profile consistently produced a faster and higher ICP response at a lower radiant exposure than the Gaussian beam profile due, in part, to easier alignment of the more uniform beam with nerve. With further development, ONS may be used as a diagnostic tool for identification of the CN's during laparoscopic and robotic nerve-sparing prostate cancer surgery.

  17. Supression of laser breakdown by pulsed nonequilibrium ns discharge

    NASA Astrophysics Data System (ADS)

    Starikovskiy, A. Y.; Semenov, I. E.; Shneider, M. N.

    2016-10-01

    The avalanche ionization induced by infrared laser pulses was investigated in a pre-ionized argon gas. Pre-ionization was created by a high-voltage pulsed nanosecond discharge developed in the form of a fast ionization wave. Then, behind the front of ionization wave additional avalanche ionization was initiated by the focused Nd-YAG laser pulse. It was shown that the gas pre-ionization inhibits the laser spark generation. It was demonstrated that the suppression of laser spark development in the case of strong gas pre-ionization is because of fast electron energy transfer from the laser beam focal region. The main mechanism of this energy transfer is free electrons diffusion.

  18. Interaction of cold atoms with short laser pulses.

    NASA Astrophysics Data System (ADS)

    Chamberlin, Karen; Lilla, Derek; Taylor, Kyle; Zick, Kevin; Taft, Greg; Nguyen, Hai

    2006-05-01

    We present a powerful diagnostic system to observe the interaction of ultrafast laser pulses with trapped ^87Rb atoms. The ionization of cold atoms and the formation of cold molecules in an intense laser field in the μK temperature range open new branches of research in chemistry, metrology, and quantum physics. However, the interaction of cold atoms with short laser pulses and the subsequent ionization or molecule formation are processes which are not well understood and can be easily misinterpreted. In our proposed experimental setup, an existing ultrafast laser system at the University of Wisconsin-Stevens Point will be used in conjunction with Magneto Optical Trap Recoil Ion Momentum Spectroscopy (MOTRIMS) to directly measure the products formed by the interaction of ultrafast laser pulses with the cold trapped ^87Rb atoms.

  19. High power repetitive TEA CO2 pulsed laser

    NASA Astrophysics Data System (ADS)

    Yang, Guilong; Li, Dianjun; Xie, Jijiang; Zhang, Laiming; Chen, Fei; Guo, Jin; Guo, Lihong

    2012-07-01

    A high power repetitive spark-pin UV-preionized TEA CO2 laser system is presented. The discharge for generating laser pulses is controlled by a rotary spark switch and a high voltage pulsed trigger. Uniform glow discharge between two symmetrical Chang-electrodes is realized by using an auto-inversion circuit. A couple of high power axial-flow fans with the maximum wind speed of 80 m/s are used for gas exchange between the electrodes. At a repetitive operation, the maximum average output laser power of 10.4 kW 10.6 μm laser is obtained at 300 Hz, with an electro-optical conversion efficiency of 15.6%. At single pulsed operation, more pumping energy and higher gases pressures can be injected, and the maximum output laser energy of 53 J is achieved.

  20. Three-stage compression of nanosecond laser pulses

    SciTech Connect

    Akulinichev, V.V.; Mavrichev, M.E.; Pivinskii, E.G.

    1994-04-01

    Three-stage compression of 8-ns pulses of a Nd:YAG laser was investigated. One of the stages used SBS (Stimulated Brillouin Scattering) in CCl4 and the other two used backward SRS (Stimulated Raman Scattering) in compressed methane. Conditions for substantial enhancement of the energy stability of picosecond pulses formed by the output compression stage were found. 8 refs.

  1. Magnetization in ruby induced by a short laser pulse

    SciTech Connect

    Usmanov, R.G.; Khaimovich, E.P.

    1995-09-01

    Specific features of formation of nonequilibrium magnetization in ruby crystal excited by a laser pulse are experimentally studied. It is shown theoretically that the circularly polarized light pulse induces orientation of the medium and its magnetization. Changes of the magnetization direction induced by an external magnetic field are analyzed. 11 refs., 3 figs.

  2. Experimental verification of physical model of pulsed laser welding

    SciTech Connect

    Jellison, J.L.; Keicher, D.M.

    1990-01-01

    Whereas most experimental and theoretical studies of the role of convection in fusion welding have been concerned with continuous heat sources, a pulsed heat source is the focus of this study. This is primarily an experimental study of the pulsed Nd:YAG laser welding of austenitic stainless steels. 12 refs., 9 figs.

  3. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  4. Fabrication of micro-convex domes using long pulse laser

    NASA Astrophysics Data System (ADS)

    Wang, Xingsheng; Zhang, Yongnian; Wang, Ling; Xian, Jieyu; Jin, Meifu; Kang, Min

    2017-01-01

    Micro-convex domes inspired from nature can be machined by chemical and physical routes to achieve specific functions. Laser surface texturing (LST) is the front runner among the current material micro-processing technologies. However, most of the studies relating to LST dealt with the formation of micro-dimples. In this paper, LST using long pulse laser was used to create micro-convex domes on 304L stainless steel. Spherical-cap-shaped domes with diameters of 30-75 μm and height of 0.9-5.5 μm were created through LST. The effects of laser-processing parameters on surface morphologies of the created convex domes were investigated. The height of the convex dome increased at first and then decreased with the increasing laser power. The change tendency of the height with the pulse duration varied at different laser powers. The diameter of the convex dome increased almost linearly with the laser power or pulse duration. The superior micro-convex domes were achieved at a pulse energy of 5.6 mJ with a laser power of 80 W and pulse duration of 70 μs.

  5. Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization

    SciTech Connect

    Gelens, L.; Coomans, W.; Van der Sande, G.; Verschaffelt, G.; Mashal, L.; Beri, S.; Danckaert, J.

    2010-12-15

    We characterize the operation of semiconductor microring lasers in an excitable regime. Our experiments reveal a statistical distribution of the characteristics of noise-triggered optical pulses that is not observed in other excitable systems. In particular, an inverse correlation exists between the pulse amplitude and duration. Numerical simulations and an interpretation in an asymptotic phase space confirm and explain these experimentally observed pulse characteristics.

  6. Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output.

    PubMed

    Wei, Kaihua; Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Wu, Bo; Shen, Yonghang

    2013-10-21

    We report a novel quasi-synchronously pumped PPMgLN-based high power mid-infrared (MIR) laser with picosecond pulse bunch output. The pump laser is a linearly polarized MOPA structured all fiberized Yb fiber laser with picosecond pulse bunch output. The output from a mode-locked seed fiber laser was directed to pass through a FBG reflector via a circulator to narrow the pulse duration from 800 ps to less than 50 ps and the spectral FWHM from 9 nm to 0.15 nm. The narrowed pulses were further directed to pass through a novel pulse multiplier through which each pulse was made to become a pulse bunch composing of 13 sub-pulses with pulse to pulse time interval of 1.26 ns. The pulses were then amplified via two stage Yb fiber amplifiers to obtain a linearly polarized high average power output up to 85 W, which were then directed to pass through an isolator and to pump a PPMgLN-based optical parametric oscillator via quasi-synchronization pump scheme for ps pulse bunch MIR output. High MIR output with average power up to 4 W was obtained at 3.45 micron showing the feasibility of such pump scheme for ps pulse bunch MIR output.

  7. Synchronization of Sub-Picosecond Electron and Laser Pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage G.P.

    2000-08-15

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is subpicosecond, with tens of femtosecond synchronization implied for next-generation experiments. Typically, an RF electron accelerator is synchronized to a short pulse laser system by detecting the repetition signal of a laser oscillator, adjusted to an exact subharmonic of the linac RF frequency, and multiplying or phase locking this signal to produce the master RF clock. Pulse-to-pulse jitter characteristic of self-mode-locked laser oscillators represents a direct contribution to the ultimate timing jitter between a high intensity laser focus and electron beam at the interaction point, or a photocathode drive laser in an RF photoinjector. This timing jitter problem has been addressed most seriously in the context of the RF photoinjector, where the electron beam properties are sensitive functions of relative timing jitter. The timing jitter achieved in synchronized photocathode drive laser systems is near, or slightly below one picosecond. The ultimate time of arrival jitter of the beam at the photoinjector exit is typically a bit smaller than the photocathode drive-laser jitter due to velocity compression effects in the first RF cell of the gun. This tendency of the timing of the electron beam arrival at a given spatial point to lock to the RF lock is strongly reinforced by use of magnetic compression.

  8. ULTRASHORT LIGHT PULSES: Formation of subfemtosecond laser pulses in aperiodically poled nonlinear-optical crystals

    NASA Astrophysics Data System (ADS)

    Shutov, I. V.; Novikov, A. A.; Chirkin, A. S.

    2008-03-01

    The method of synthesis of ultrashort laser pulses in nonlinear aperiodically poled crystals based on the simultaneous generation of several higher optical harmonics is considered. The interaction of four waves with multiple frequencies involving three mutually coupled nonlinear three-frequency processes is studied. It is shown that by introducing intense laser radiation into a crystal, pulses of duration of the order of a few hundreds of attoseconds can be produced at the crystal output.

  9. Pulsed laser processing of electronic materials in micro/nanoscale

    NASA Astrophysics Data System (ADS)

    Hwang, David Jen

    2005-08-01

    Time-resolved pump-and-probe side-view imaging has been performed to investigate the energy coupling to the target specimen over a wide range of fluences. Plasmas generated during the laser ablation process are visualized and the decrease of the ablation efficiency in the high fluence regime (>10 J/cm2) is attributed to the strong interaction of the laser pulse with the laser-induced plasmas. The high intensity ultra-short laser pulses also trigger volumetric multi-photon absorption (MPA) processes that can be beneficial in applications such as three-dimensional bulk modification of transparent materials. Femtosecond laser pulses were used to fabricate straight and bent through-channels in the optical glass. Drilling was initiated from the rear surface to preserve consistent absorbing conditions of the laser pulse. Machining in the presence of a liquid solution assisted the debris ejection. Drilling process was further enhanced by introducing ultrasonic waves, thereby increasing the aspect ratio of drilled holes and improving the quality of the holes. In conventional lens focusing schemes, the minimum feature size is determined by the diffraction limit. Finer resolution is accomplished by combining pulsed laser radiation with Near-field Scanning Optical Microscopy (NSOM) probes. Short laser pulses are coupled to a fiber-based NSOM probes in order to ablate thin metal films. A detailed parametric study on the effects of probe aperture size, laser pulse energy, temporal width and environment gas is performed. The significance of lateral thermal diffusion is highlighted and the dependence of the ablation process on the imparted near-field distribution is revealed. As a promising application of laser ablation in nanoscale, laser induced breakdown spectroscopy (LIBS) system has been built up based on NSOM ablation configuration. NSOM-LIBS is demonstrated with nanosecond pulsed laser excitation on Cr sample. Far-field collecting scheme by top objective lens was chosen as

  10. Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer.

    PubMed

    Akca, B I; Doerr, C R; Sengo, G; Wörhoff, K; Pollnau, M; de Ridder, R M

    2012-07-30

    We present a new synchronized design for flattening the passband of an arrayed-waveguide grating (AWG) over a broad wavelength range of 90 nm. A wavelength-insensitive 3-dB balanced coupler is designed to be used in duplicate in a Mach-Zehnder interferometer (MZI); the phase deviation created by one of the balanced couplers is cancelled by flipping the other coupler around. This MZI is arranged in tandem with the AWG such that the output signal of the MZI is the input signal of the AWG. We demonstrate a 5-channel, 18-nm-spacing AWG with a 0.5-dB bandwidth of 12 nm over a 90-nm spectral range. A low-loss cascaded AWG system is demonstrated by using the MZI-synchronized flat-top AWG as a primary filter.

  11. Congenital self-healing reticulohistiocytosis presented with multiple hypopigmented flat-topped papules: a case report and review of literatures.

    PubMed

    Uaratanawong, Rawipan; Kootiratrakarn, Tanawatt; Sudtikoonaseth, Poonnawis; Issara, Atjima; Kattipathanapong, Pinnaree

    2014-09-01

    Congenital self-healing reticulohistiocytosis, also known as Hashimoto-Pritzker disease, is a single system Langerhans cell histiocytosis that typically presents in healthy newborns and spontaneously regresses. In the present report, we described a 2-month-old Thai female newborn with multiple hypopigmented flat-topped papules without any internal organ involvement including normal blood cell count, urinary examination, liver and renal functions, bone scan, chest X-ray, abdominal ultrasound, and bone marrow biopsy. The histopathology revealed typical findings of Langerhans cell histiocytosis, which was confirmed by the immunohistochemical staining CDla and S100. Our patient's lesions had spontaneously regressed within afew months, and no new lesion recurred afterfour months follow-up.

  12. Phase and Frequency Control of Laser Arrays for Pulse Synthesis

    DTIC Science & Technology

    2015-01-02

    passively mode-locked vertical-external-cavity surface- emitting lasers ( VECSELs ) [5, 6], quantum dot lasers with tapered gain sections [7], and...Ritchie, B. Kunert, B. Heinen, and W. Stolz, Ř.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation," Opt. Express 21

  13. Profile of Laser-Produced Acoustic Pulse in a Liquid.

    DTIC Science & Technology

    1983-10-12

    Tam, AppL Phys. Lett. 40, 310 (1982). 7. G. C. Wetsel , Jr., in Acoustic Imaging, Vol. 12, edited by E. A. Ash and C. R. Hill (Plenum, New York, 1982...p. 137. 8. G. C. Wetsel , "Photothermal Excitation of Elastic Waves by 10 ns Laser Pulses and Detection by Photoelastic Laser Beam Deflection," to

  14. CONTROLLING THE CHARACTERISTICS OF LASER LIGHT: Possibility of generating femtosecond laser pulses by a deflection method

    NASA Astrophysics Data System (ADS)

    Isaakyan, A. R.; Kolchin, K. V.; Makshantsev, B. I.

    1993-05-01

    The transmission of a laser beam through a multiple-prism traveling-wave deflector is examined theoretically. Femtosecond laser pulses can be generated through the use of such a deflector. Possibilities for using a deflector to measure the shape of pulses with a femtosecond time resolution are discussed.

  15. Applying laser pulse stretching technique on photoacoustic imaging for efficiently delivering laser energy

    NASA Astrophysics Data System (ADS)

    Wang, Tianheng; Kumavor, Patrick D.; Zhu, Quing

    2012-02-01

    High-energy and short-duration outputs from lasers are desirable to improve the photoacoustic image quality when imaging deeply-seated lesions. In many clinical applications, optical fibers are used to couple the high-energy laser pulse to tissue. These high peak intensity pulses can damage an optical fiber input face if the damage threshold is exceeded. It is necessary to reduce the peak intensity to minimize the fiber damage and to delivery sufficient light for imaging. In this paper, a laser-pulse-stretching technique is introduced to reduce the peak intensity of laser pulses. To demonstrate the technique, an initial 17ns pulse was stretched to 37ns by a ring-cavity laser-pulse-stretching system, and the laser peak power reduced to 42%. The stretched pulse increased the fiber damage threshold by 1.5-fold. Three ultrasound transducers centered at 1.3MHz, 3.5MHz, 6MHz frequencies were simulated and the results showed that the photoacoustic signal of 0.5mm-diameter target obtained with 37ns pulse was about 98%, 91% and 80% respectively using the same energy as with the 17ns pulse. Simulations were validated using a broadband hydrophone. Quantitative comparisons of photoacoustic images obtained with three corresponding ultrasound transducers showed that the image quality was not affected by stretching the pulse.

  16. Pulse-duration dependent sequential double ionization by elliptically polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Tong, Aihong; Deng, Yongju; Liu, Dan

    2016-05-01

    Using a fully classical model, we have studied sequential double ionization of argon driven by elliptically polarized laser pulses at intensities well in the over-barrier ionization region. The results show that the joint electron momentum distributions in the minor elliptical direction depend strongly on the pulse duration. From pulse number N = 4 to 10, the clustering regions of the joint electron momentum increase with the pulse duration. For even larger pulse durations, the clustering region does not increase further but the population of the joint electron momentum in these regions changes with the pulse duration. Back analysis of double ionization trajectories shows the phenomenon of multiple ionization bursts and the pulse duration-dependent multiple ionization bursts of the second electron is responsible for the evolution of the joint electron momentum distribution with the pulse duration.

  17. Pulsed CO laser for isotope separation of uranium

    SciTech Connect

    Baranov, Igor Y.; Koptev, Andrey V.

    2012-07-30

    This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

  18. Plasma detector for TEA CO2 laser pulse measurement

    NASA Astrophysics Data System (ADS)

    Ichikawa, Y.; Yamanaka, M.; Mitsuishi, A.; Fujita, S.; Yamanaka, T.; Yamanaka, C.; Tsunawaki, Y.; Iwasaki, T.; Takai, M.

    1983-10-01

    Laser-pulse evolution can be detected by measuring the emf generated by fast electrons in a laser-produced plasma when the laser radiation is focused onto a solid metal target in a vacuum. Using this phenomenon a 'plasma detector' is constructed, and its characteristics for the TEA CO2 laser radiation of intensity 10 to the 9th to 10 to the 10th W/sq cm are investigated experimentally. The plasma detector operates at room temperature and is strong against laser damages. For the evacuated plasma detector down to 0.1 torr, a maximum output voltage of 90 V and a rise time shorter than 1 ns are observed. The plasma detector, therefore, can be used as a power monitor for laser pulses and as a trigger voltage source.

  19. O2^+ dissociation caused by an ultrashort intense laser pulse

    NASA Astrophysics Data System (ADS)

    Sayler, A. M.

    2005-05-01

    Laser-induced dissociation of O2^+ has been experimentally studied with ultrashort (˜50 fs) intense (10^14 to 10^15 W/cm^2) laser pulses at 790 nm using kinematically complete coincidence 3D momentum imaging. The resulting kinetic energy release (KER) distribution has several distinct peaks, each of which has a unique angular distribution. The lower KER features are peaked around the laser polarization, while at higher KER, dissociation perpendicular to the laser polarization is significant. For comparison, a theoretical study of O2^+ dissociation using the Electron-Nuclear Dynamics (END) approach with a laser pulse included in the time-dependent dynamics is underway. Preliminary results also indicate that ionization, which occurs predominantly at the high end of the intensity range, is strongly peaked along the laser polarization.

  20. Precision machining of pig intestine using ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  1. Pulsed UV and ultrafast laser micromachining of surface structures

    NASA Astrophysics Data System (ADS)

    Apte, Paul; Sykes, Neil

    2015-07-01

    We describe and compare the cutting and patterning of various "difficult" materials using pulsed UV Excimer, picosecond and femtosecond laser sources. Beam delivery using both fast galvanometer scanners and scanning mask imaging are described. Each laser source has its own particular strengths and weaknesses, and the optimum choice for an application is also decided by financial constraints. With some materials notable improvements in process quality have been observed using femtosecond lasers compared to picosecond lasers, which makes for an interesting choice now that cost effective reliable femtosecond systems are increasingly available. By contrast Pulsed UV Excimer lasers offer different imaging characteristics similar to mask based Lithographic systems and are particularly suited to the processing of polymers. We discuss optimized beam delivery techniques for these lasers.

  2. Pulse duration dependence of atomic sequential double ionization by circular laser pulses

    NASA Astrophysics Data System (ADS)

    Tong, Aihong; Chen, Liangyuan; Li, Yingbin

    2016-09-01

    Using classical ensemble method, we have investigated the pulse duration dependence of sequential double ionization (SDI) of Ar atoms driven by circularly polarized laser pulses. The results show that the ion momentum distribution of Ar atoms depends strongly on the pulse duration. As the pulse duration increases, the ion momentum distribution changes from single-ring to double-ring structure, and finally to the single-ring structure. Back analysis of double ionization trajectories shows that the variation of the ring structure originates from the dependence of the ionization time of the second electron on the pulse duration. Moreover, our calculations clearly manifest the subcycle electron emission in sequential double ionization by circularly polarized laser pulses.

  3. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    DOEpatents

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  4. Ultrashort pulsed fiber laser welding and sealing of transparent materials.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2012-05-20

    In this paper, methods of welding and sealing optically transparent materials using an ultrashort pulsed (USP) fiber laser are demonstrated which overcome the limit of small area welding of optical materials. First, the interaction of USP fiber laser radiation inside glass was studied and single line welding results with different laser parameters were investigated. Then multiline scanning was used to obtain successful area bonding. Finally, complete four-edge sealing of fused silica substrates with a USP laser was demonstrated and the hermetic seal was confirmed by water immersion test. This laser microwelding technique can be extended to various applications in the semiconductor industry and precision optic manufacturing.

  5. Applications of Ultra-Intense, Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Ledingham, Ken W. D.

    The high intensity laser production of electron, proton, ion and photon beams is reviewed particularly with respect to the laser-plasma interaction which drives the acceleration process. A number of applications for these intense short pulse beams is discussed e.g. ion therapy, PET isotope production and laser driven transmutation studies. The future for laser driven nuclear physics at the huge new, multi-petawatt proposed laser installation ELI in Bucharest is described. Many people believe this will take European nuclear research to the next level.

  6. The Chirped-Pulse Inverse Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Hartemann, F. V.; Landahl, E. C.; Song, L.; Troha, A. L.; van Meter, J. R.; Gibson, D. J.; Baldis Luhmann, H. A., Jr.

    1999-11-01

    The inverse free-electron laser (IFEL) concept has been demonstrated as a viable vacuum laser acceleration process; it is shown here that by using an ultrahigh-intensity chirped laser pulse, the dephasing length can be increased considerably, thus yielding high gradient IFEL acceleration. In addition, using negative dispersion focusing optics allows one to take advantage of the laser optical bandwidth and produce a chromatic line focus to maximize the accelerating field. The combination of these two novel ideas results in a compact, efficient, vacuum laser accelerator.

  7. Analysis on volume grating induced by femtosecond laser pulses.

    PubMed

    Zhou, Keya; Guo, Zhongyi; Ding, Weiqiang; Liu, Shutian

    2010-06-21

    We report on a kind of self-assembled volume grating in silica glass induced by tightly focused femtosecond laser pulses. The formation of the volume grating is attributed to the multiple microexplosion in the transparent materials induced by the femtosecond pulses. The first order diffractive efficiency is in dependence on the energy of the pulses and the scanning velocity of the laser greatly, and reaches as high as 30%. The diffraction pattern of the fabricated grating is numerically simulated and analyzed by a two dimensional FDTD method and the Fresnel Diffraction Integral. The numerical results proved our prediction on the formation of the volume grating, which agrees well with our experiment results.

  8. Fast gas switch for characterizing laser output pulses.

    PubMed

    Anderholm, N C

    1972-09-01

    A device is described that allows detailed and sensitive examination of the precursors to both nanosecond and possibly picosecond laser pulses without damaging detectors. A one-to-one telescope, constructed with lenses with focal lengths 5.0 cm and which may be pressurized to 800-Torr argon gas, is used to demonstrate the operation. It is shown that breakdown in the gas, at times before the peak power of the pulses, absorbs the energy allowing only the early portion of the laser pulse to pass unattenuated. Energy loss is observed at argon pressures below the threshold for observation of nonlinear transmission (gas breakdown).

  9. Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser

    NASA Astrophysics Data System (ADS)

    Honea, Eric; Savage-Leuchs, Matthias; Bowers, Mark S.; Yilmaz, Tolga; Mead, Roy

    2013-03-01

    We describe a pulsed blue (485 nm) laser source based on frequency quadrupling a pulsed Tm fiber laser. Up to 1.2 W at 485 nm was generated with an M2 of 1.3. At 10 kHz pulse repetition frequency, the output pulse at 485 nm was 65 ns FWHM resulting in an estimated peak power of 1.8 kW. We anticipate further improvements in power scaling with higher power Tm fiber lasers and improved conversion efficiency to the blue with optimized AR coatings and nonlinear optical crystals.

  10. Control of laser induced molecular fragmentation of n-propyl benzene using chirped femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Goswami, Tapas; Karthick Kumar, S. K.; Dutta, Aveek; Goswami, Debabrata

    2009-06-01

    We present the effect of chirping a femtosecond laser pulse on the fragmentation of n-propyl benzene. An enhancement of an order of magnitude for the relative yields of C3H 3 + and C5H 5 + in the case of negatively chirped pulses and C6H 5 + in the case of positively chirped pulses with respect to the transform-limited pulse indicates that in some fragmentation channel, coherence of the laser field plays an important role. For the relative yield of all other heavier fragment ions, resulting from the interaction of the intense laser field with the molecule, there is no such enhancement effect with the sign of chirp, within experimental errors. The importance of the laser phase is further reinforced through a direct comparison of the fragmentation results with the second harmonic of the chirped laser pulse with identical bandwidth.

  11. Control of laser induced molecular fragmentation of n-propyl benzene using chirped femtosecond laser pulses.

    PubMed

    Goswami, Tapas; Karthick Kumar, S K; Dutta, Aveek; Goswami, Debabrata

    2009-06-12

    We present the effect of chirping a femtosecond laser pulse on the fragmentation of n-propyl benzene. An enhancement of an order of magnitude for the relative yields of C3H3+ and C5H5+ in the case of negatively chirped pulses and C6H5+ in the case of positively chirped pulses with respect to the transform-limited pulse indicates that in some fragmentation channel, coherence of the laser field plays an important role. For the relative yield of all other heavier fragment ions, resulting from the interaction of the intense laser field with the molecule, there is no such enhancement effect with the sign of chirp, within experimental errors. The importance of the laser phase is further reinforced through a direct comparison of the fragmentation results with the second harmonic of the chirped laser pulse with identical bandwidth.

  12. Retinal Injuries From Single and Multiple Picosecond Laser Pulses

    DTIC Science & Technology

    1994-04-30

    cell diameter -10 pm) can experience a pressure transient of >22 Kbar when the melanin granules contained within the cells are exposed to these laser...0719 Bolling AFB DC 20332-0001 Dr Walter KozumboF 11. SUPPLEMENTARY NOTES 60iia oontais~u solar -, plates: All D210 Mproduot- ioins ull. be 12 blaokSn...Maximum 200 words) We investigate laser-induced shock waves from melanin particles as a possible cause of retinal injury from ultrashort pulse laser

  13. Power-scalable subcycle pulses from laser filaments

    PubMed Central

    Voronin, A.A.; Zheltikov, A.M.

    2017-01-01

    Compression of optical pulses to ultrashort pulse widths using methods of nonlinear optics is a well-established technology of modern laser science. Extending these methods to pulses with high peak powers, which become available due to the rapid progress of laser technologies, is, however, limited by the universal physical principles. With the ratio P/Pcr of the peak power of an ultrashort laser pulse, P, to the critical power of self-focusing, Pcr, playing the role of the fundamental number-of-particles integral of motion of the nonlinear Schrödinger equation, keeping this ratio constant is a key principle for the power scaling of laser-induced filamentation. Here, we show, however, that, despite all the complexity of the underlying nonlinear physics, filamentation-assisted self-compression of ultrashort laser pulses in the regime of anomalous dispersion can be scaled within a broad range of peak powers against the principle of constant P/Pcr. We identify filamentation self-compression scaling strategies whereby subcycle field waveforms with almost constant pulse widths can be generated without a dramatic degradation of beam quality within a broad range of peak powers, varying from just a few to hundreds of Pcr. PMID:28367980

  14. Power-scalable subcycle pulses from laser filaments

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Zheltikov, A. M.

    2017-04-01

    Compression of optical pulses to ultrashort pulse widths using methods of nonlinear optics is a well-established technology of modern laser science. Extending these methods to pulses with high peak powers, which become available due to the rapid progress of laser technologies, is, however, limited by the universal physical principles. With the ratio P/Pcr of the peak power of an ultrashort laser pulse, P, to the critical power of self-focusing, Pcr, playing the role of the fundamental number-of-particles integral of motion of the nonlinear Schrödinger equation, keeping this ratio constant is a key principle for the power scaling of laser-induced filamentation. Here, we show, however, that, despite all the complexity of the underlying nonlinear physics, filamentation-assisted self-compression of ultrashort laser pulses in the regime of anomalous dispersion can be scaled within a broad range of peak powers against the principle of constant P/Pcr. We identify filamentation self-compression scaling strategies whereby subcycle field waveforms with almost constant pulse widths can be generated without a dramatic degradation of beam quality within a broad range of peak powers, varying from just a few to hundreds of Pcr.

  15. Short pulse generation by laser slicing at NSLSII

    SciTech Connect

    Yu, L.; Blednykh, A.; Guo, W.; Krinsky, S.; Li, Y.; Shaftan, T.; Tchoubar, O.; Wang, G.; Willeke, F.; Yang, L.

    2011-03-28

    We discuss an upgrade R&D project for NSLSII to generate sub-pico-second short x-ray pulses using laser slicing. We discuss its basic parameters and present a specific example for a viable design and its performance. Since the installation of the laser slicing system into the storage ring will break the symmetry of the lattice, we demonstrate it is possible to recover the dynamical aperture to the original design goal of the ring. There is a rapid growth of ultrafast user community interested in science using sub-pico-second x-ray pulses. In BNL's Short Pulse Workshop, the discussion from users shows clearly the need for a sub-pico-second pulse source using laser slicing method. In the proposal submitted following this workshop, NSLS team proposed both hard x-ray and soft x-ray beamlines using laser slicing pulses. Hence there is clearly a need to consider the R&D efforts of laser slicing short pulse generation at NSLSII to meet these goals.

  16. Power-scalable subcycle pulses from laser filaments.

    PubMed

    Voronin, A A; Zheltikov, A M

    2017-04-03

    Compression of optical pulses to ultrashort pulse widths using methods of nonlinear optics is a well-established technology of modern laser science. Extending these methods to pulses with high peak powers, which become available due to the rapid progress of laser technologies, is, however, limited by the universal physical principles. With the ratio P/Pcr of the peak power of an ultrashort laser pulse, P, to the critical power of self-focusing, Pcr, playing the role of the fundamental number-of-particles integral of motion of the nonlinear Schrödinger equation, keeping this ratio constant is a key principle for the power scaling of laser-induced filamentation. Here, we show, however, that, despite all the complexity of the underlying nonlinear physics, filamentation-assisted self-compression of ultrashort laser pulses in the regime of anomalous dispersion can be scaled within a broad range of peak powers against the principle of constant P/Pcr. We identify filamentation self-compression scaling strategies whereby subcycle field waveforms with almost constant pulse widths can be generated without a dramatic degradation of beam quality within a broad range of peak powers, varying from just a few to hundreds of Pcr.

  17. Pulsed frequency-shifted feedback laser for laser guide stars: intracavity preamplifier.

    PubMed

    Pique, Jean-Paul; Fesquet, Vincent; Jacob, Sylvie

    2011-11-20

    Intensive use of laser guide stars with the new generation of extremely large telescopes and hypertelescopes will require the use of more efficient lasers to surmount novel limitations and aberrations. The pulsed frequency-shifted feedback (FSF) laser we have developed overcomes the saturation of sodium atoms and solves the new problems. This work presents a highly efficient solution for operating pulsed FSF lasers. For the first time, an intracavity preamplifier achieves a gain of 10(4) and more than 40 μJ per pulse, with a near-diffraction-limited beam and without amplified spontaneous emission. Endurance tests have shown that good performance is maintained over several hundred hours.

  18. Laser ablation of iron: A comparison between femtosecond and picosecond laser pulses

    SciTech Connect

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2013-08-28

    In this study, a comparison between femtosecond (fs) and picosecond (ps) laser ablation of electrolytic iron was carried out in ambient air. Experiments were conducted using a Ti:sapphire laser that emits radiation at 785 nm and at pulse widths of 110 ps and 130 fs, before and after pulse compression, respectively. Ablation rates were calculated from the depth of craters produced by multiple laser pulses incident normally to the target surface. Optical and scanning electron microscopy showed that picosecond laser pulses create craters that are deeper than those created by the same number of femtosecond laser pulses at the same fluence. Most of the ablated material was ejected from the ablation site in the form of large particles (few microns in size) in the case of picosecond laser ablation, while small particles (few hundred nanometers) were produced in femtosecond laser ablation. Thermal effects were apparent at high fluence in both femtosecond and picosecond laser ablation, but were less prevalent at low fluence, closer to the ablation threshold of the material. The quality of craters produced by femtosecond laser ablation at low fluence is better than those created at high fluence or using picosecond laser pulses.

  19. Development of pulse laser processing for mounting fiber Bragg grating

    SciTech Connect

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  20. Control of relativistic ionization by polarization of short laser pulses

    NASA Astrophysics Data System (ADS)

    Krajewska, K.; Cajiao Vélez, F.; Kamiński, J. Z.

    2017-07-01

    The Born approximation is applied to study the high-energy ionization that is driven by short, relativistically intense laser pulses. Assuming the fixed radiation flow through a surface of the laser focus, we investigate the optimal conditions for generating most energetic photoelectrons. We demonstrate that, under such constraint, one can control the photoelectron spectra using the polarization of the driving field. More precisely, the most energetic electrons are produced for a nearly linear polarization of the laser field. At the same time, the resulting electrons are detected in a narrow angular window which is of great importance for their potential applications; one of them being the generation of attosecond electron pulses.

  1. Interaction of repetitively pulsed high energy laser radiation with matter

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, M.

    1986-05-01

    Laser target interaction processes and methods of improving the overall energy balance are discussed. This can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed using a pulsed CO2 laser at mean powers up to 2 KW and repetition rates up to 100 Hz. The rates of temperature rise of aluminum for example are increased by more than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements are found for the overall absorptivities, that are increased by more than an order of magnitude.

  2. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    PubMed

    Kemp, A J; Divol, L

    2012-11-09

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.

  3. Mechanism study of skin tissue ablation by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin

    Understanding the fundamental mechanisms in laser tissue ablation is essential to improve clinical laser applications by reducing collateral damage and laser pulse energy requirement. The motive of this dissertation is to study skin tissue ablation by nanosecond laser pulses in a wide spectral region from near-infrared to ultraviolet for a clear understanding of the mechanism that can be used to improve future design of the pulsed lasers for dermatology and plastic surgery. Multiple laser and optical configurations have been constructed to generate 9 to 12ns laser pulses with similar profiles at 1064. 532, 266 and 213nm for this study of skin tissue ablation. Through measurements of ablation depth as a function cf laser pulse energy, the 589nm spectral line in the secondary radiation from ablated skin tissue samples was identified as the signature of the occurrence of ablation. Subsequently, this spectral signature has been used to investigate the probabilistic process of the ablation near the threshold at the four wavelengths. Measurements of the ablation probability were conducted as a function of the electrical field strength of the laser pulse and the ablation thresholds in a wide spectral range from 1064nm to 213nm were determined. Histology analysis and an optical transmission method were applied in assessing of the ablation depth per pulse to study the ablation process at irradiance levels higher than threshold. Because more than 70% of the wet weight of the skin tissue is water, optical breakdown and backscattering in water was also investigated along with a nonlinear refraction index measurement using a z-scan technique. Preliminary studies on ablation of a gelatin based tissue phantom are also reported. The current theoretical models describing ablation of soft tissue ablation by short laser pulses were critically reviewed. Since none of the existing models was found capable of explaining the experimental results, a new plasma-mediated model was developed

  4. Propagation of intense laser pulses in strongly magnetized plasmas

    SciTech Connect

    Yang, X. H. Ge, Z. Y.; Xu, B. B.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q.; Yu, W.; Xu, H.; Yu, M. Y.; Borghesi, M.

    2015-06-01

    Propagation of intense circularly polarized laser pulses in strongly magnetized inhomogeneous plasmas is investigated. It is shown that a left-hand circularly polarized laser pulse propagating up the density gradient of the plasma along the magnetic field is reflected at the left-cutoff density. However, a right-hand circularly polarized laser can penetrate up the density gradient deep into the plasma without cutoff or resonance and turbulently heat the electrons trapped in its wake. Results from particle-in-cell simulations are in good agreement with that from the theory.

  5. Development of pulse laser processing for mounting fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-01

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  6. Size control of nanoparticles by multiple-pulse laser ablation

    NASA Astrophysics Data System (ADS)

    Yu, Jiaxin; Nan, Junyi; Zeng, Heping

    2017-04-01

    Bare nanoparticles synthesized by laser ablation in water have found their application in catalysis, spectroscopy and biomedical research fields. In this perspective, how to efficiently produce stable nanoparticles with controllable size is an important topic and has attracted a lot of interests. Here, we introduce a multiple-pulse laser as the ablation source. By changing the number of sub-pulses, the average size of nanoparticles can be tuned in a broad range from ∼120 nm to ∼4 nm. The demonstration in this article may offer a new approach to fabricate ultrafine nanostructures and also help the scientific study of the mechanism in laser ablation.

  7. Transforming graphite to nanoscale diamonds by a femtosecond laser pulse

    SciTech Connect

    Nueske, R.; Jurgilaitis, A.; Enquist, H.; Harb, M.; Larsson, J.; Fang, Y.; Haakanson, U.

    2012-01-23

    Formation of cubic diamond from graphite following irradiation by a single, intense, ultra-short laser pulse has been observed. Highly oriented pyrolytic graphite (HOPG) samples were irradiated by a 100 fs pulse with a center wavelength of 800 nm. Following laser exposure, the HOPG samples were studied using Raman spectroscopy of the sample surface. In the laser-irradiated areas, nanoscale cubic diamond crystals have been formed. The exposed areas were also studied using grazing incidence x-ray powder diffraction showing a restacking of planes from hexagonal graphite to rhombohedral graphite.

  8. Xenon plasma sustained by pulse-periodic laser radiation

    SciTech Connect

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu.

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  9. The efficiency of photovoltaic cells exposed to pulsed laser light

    NASA Technical Reports Server (NTRS)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  10. Pulsed delivery of laser energy in experimental thermal retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Pankratov, Michail M.

    1990-06-01

    Retinal lesions produced with a pulsed laser beam of 1-20 kHz frequency and 10-100% duty cycle were compared with lesions produced with a continuous wave (cw) laser of the same peak power and total energy. Photocoagulation was applied to the retina of three black pigmented rabbits using krypton red laser (647.1 nm) equipped with an acousto-optical modulator to convert cw laser emission to a pulsating beam. An optical fiber fed the laser beam into an optical system delivering a collimated beam of predetermined divergence; the animal's eye focused this beam to a 50-pm spot on the retina. Peak power was kept constant at 0.2 W, and energy was kept constant at 20 mJ. After 7 months the animals were sacrificed and retinal tissue examined by light microscopy. The central section of each lesion was identified and photographed. For lesions with the same energy per pulse and the same pulse duration, the most influential factor, in the frequency range of 1-20 kHz, appeared to be the duty cycle: the smaller the duty cycle, the smaller the lesion, and vice versa. In other words, the shorter the time interval between consecutive pulses, the larger were the pulsed laser lesions.

  11. Femtosecond pulsed laser ablation of thin gold film

    NASA Astrophysics Data System (ADS)

    Venkatakrishnan, K.; Tan, B.; Ngoi, B. K. A.

    2002-04-01

    Laser micromachining on 1000 nm-thick gold film using femtosecond laser has been studied. The laser pulses that are used for this study are 400 nm in central wavelength, 150 fs in pulse duration, and the repetition rate is 1 kHz. Plano-concave lens with a focal length of 19 mm focuses the laser beam into a spot of 3 μm (1/ e2 diameter). The sample was translated at a linear speed of 400 μm/ s during machining. Grooves were cut on gold thin film with laser pulses of various energies. The ablation depths were measured and plotted. There are two ablation regimes. In the first regime, the cutting is very shallow and the edges are free of molten material. While in the second regime, molten material appears and the cutting edges are contaminated. The results suggest that clean and precise microstructuring can be achieved with femtosecond pulsed laser by controlling the pulse energy in the first ablation regime.

  12. Laser hazard analysis for various candidate diode lasers associated with the high resolution pulsed scanner.

    SciTech Connect

    Augustoni, Arnold L.

    2004-10-01

    A laser hazard analysis and safety assessment was performed for each various laser diode candidates associated with the High Resolution Pulse Scanner based on the ANSI Standard Z136.1-2000, American National Standard for the Safe Use of Lasers. A theoretical laser hazard analysis model for this system was derived and an Excel{reg_sign} spreadsheet model was developed to answer the 'what if questions' associated with the various modes of operations for the various candidate diode lasers.

  13. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect

    Coverdale, Christine Ann

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  14. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses

    SciTech Connect

    Watanabe, Wataru; Onda, Satoshi; Tamaki, Takayuki; Itoh, Kazuyoshi; Nishii, Junji

    2006-07-10

    We report on the joining of dissimilar transparent materials based on localized melting and resolidification of the materials only around the focal volume due to nonlinear absorption of focused femtosecond laser pulses. We demonstrate the joining of borosilicate glass and fused silica, whose coefficients of thermal expansion are different. The joint strength and the transmittance through joint volume were investigated by varying the translation velocity of the sample and the pulse energy of the irradiated laser pulses.

  15. Measuring the effective pulse duration of nanosecond and femtosecond laser pulses for laser-induced damage experiments

    NASA Astrophysics Data System (ADS)

    Zorila, Alexandru; Rusen, Laurentiu; Stratan, Aurel; Nemes, George

    2013-05-01

    We report on our approach to measure the quantity named effective pulse duration as defined in the ISO 21254-1:2011 standard, which deals with laser-induced damage (LID) threshold measurements. The approach is applied to measure pulses from two laser sources: an injection-seeded electro-optically Q-switched Nd:YAG nanosecond system with 10-Hz pulse repetition frequency, and a fully integrated Ti:sapphire laser with 150-400 fs and 2-kHz pulse repetition frequency. For comparison, the full-width-half-maximum (FWHM) of the same pulses is also measured. The analysis and description of the measurement process, the experimental results, and the corresponding uncertainties are presented. A smaller combined uncertainty is obtained for the effective pulse duration than for the FWHM-defined pulse duration for each time scale involved in experiments. This suggests that the effective pulse duration is the appropriate parameter to characterize the pulse duration in LID experiments.

  16. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology

    NASA Astrophysics Data System (ADS)

    Mohanraj, J.; Velmurugan, V.; Sivabalan, S.

    2016-10-01

    Ultrashort pulsed laser is an indispensable tool for the evolution of photonic technology in the present and future. This laser has been progressing tremendously with new pulse regimes and incorporating novel devices inside its cavity. Recently, a nanomaterial based saturable absorber (SA) was used in ultrafast laser that has improved the lasing performance and caused a reduction in the physical dimension when compared to conventional SAs. To date, the nanomaterials that are exploited for the development of SA devices are carbon nanotubes, graphene, topological insulators, transition metal dichalcogenides (TMDs) and black phosphorous. These materials have unique advantages such as high nonlinear optical response, fiber compatibility and ease of fabrication. In these, TMDs are prominent and an emerging two-dimensional nanomaterial for photonics and optoelectronics applications. Therefore, we review the reports of Q-switched and mode-locked pulsed lasers using TMDs (specifically MoS2, MoSe2, WS2 and WSe2) based SAs.

  17. Short-pulse, high-intensity lasers at Los Alamos

    SciTech Connect

    Taylor, A.J.; Roberts, J.P.; Rodriguez, G.; Fulton, R.D.; Kyrala, G.A.; Schappert, G.T.

    1994-03-01

    Advances in ultrafast lasers and optical amplifiers have spurred the development of terawatt-class laser systems capable of delivering focal spot intensities approaching 10{sup 20} W/cm{sup 2}. At these extremely high intensities, the optical field strength is more than twenty times larger than the Bohr electric field, permitting investigations of the optical properties of matter in a previously unexplored regime. The authors describe two laser systems for high intensity laser interaction experiments: The first is a terawatt system based on amplification of femtosecond pulses in XeCl which yields 250 mJ in 275 fs and routinely produces intensifies on target in excess of 10{sup 18} W/cm{sup 2}. The second system is based on chirped pulse amplification of 100-fs pulses in Ti:sapphire.

  18. Ultrashort Pulse Laser Accelerated Proton Beams for First Radiobiological Applications

    SciTech Connect

    Schramm, U.; Zeil, K.; Beyreuther, E.; Bussmann, M.; Cowan, T. E.; Kluge, T.; Kraft, S.; Metzkes, J.; Sauerbrey, R.; Richter, C.; Enghardt, W.; Pawelke, J.; Karsch, L.; Laschinsky, L.; Naumburger, D.

    2010-11-04

    We report on the generation of proton pulses with maximum energies exceeding 15 MeV by means of the irradiation of few micron thick metal foils by ultrashort (30 fs) laser pulses at a power level of 100 TW. In contrast to the well known situation for longer laser pulses, here, a near linear scaling of the maximum proton energy with laser power can be found. Aiming for radiobiological applications the long and short term stability of the laser plasma accelerator as well as a compact energy selection and dosimetry system is presented. The first irradiation of in vitro tumour cells showing dose dependent biological damage is demonstrated paving the way for systematic radiobiological studies.

  19. Medical applications of ultra-short pulse lasers

    SciTech Connect

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment community perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.

  20. Automatic Rejection Of Multimode Laser Pulses

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.; Esproles, Carlos

    1991-01-01

    Characteristic modulation detected, enabling rejection of multimode signals. Monitoring circuit senses multiple longitudinal mode oscillation of transversely excited, atmospheric-pressure (TEA) CO2 laser. Facility developed for inclusion into coherent detection laser radar (LIDAR) system. However, circuit described of use in any experiment where desireable to record data only when laser operates in single longitudinal mode.

  1. Device For Trapping Laser Pulses In An Optical Delay Line

    DOEpatents

    Yu, David U. L.; Bullock, Donald L.

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  2. High stability breakdown of noble gases with femtosecond laser pulses.

    PubMed

    Heins, A M; Guo, Chunlei

    2012-02-15

    In the past, laser-induced breakdown spectroscopy (LIBS) signals have been reported to have a stability independent of the pulse length in solids. In this Letter, we perform the first stability study of femtosecond LIBS in gases (to our best knowledge) and show a significant improvement in signal stability over those achieved with longer pulses. Our study shows that ultrashort-pulse LIBS has an intrinsically higher stability in gas compared to nanosecond-pulse LIBS because of a deterministic ionization process at work in the femtosecond pulse. Relative standard deviations below 1% are demonstrated and are likely only limited by our laser output fluctuations. This enhanced emission stability may open up possibilities for a range of applications, from monitoring rapid gas dynamics to high-quality broadband light sources.

  3. Intracavity frequency doubling of {mu}s alexandrite laser pulses

    SciTech Connect

    Brinkmann, R.; Schoof, K.

    1994-12-31

    Intracavity second harmonic generation (SHG) with a three mirror folded cavity configuration was investigated with a flashlamp pumped, Q-switched Alexandrite laser. The authors therefore used different nonlinear optical crystals to convert the fundamental 750 nm radiation into the near UV spectral ,range (3 75 nm). The laser pulses were stretched into the {mu}s time domain by an electronic feedback system regulating the losses of the resonator. They investigated the conversion efficiency for different pulse lengths as well as the effect of pulse-lengthening due to the nonlinearity of the intracavity losses introduced by the optical crystal used. Working with BBO-crystals, they were able to achieve a second harmonic output of 25 mJ per pulse at 375 mn with a temporal rectangular pulse of 1 {mu}s in length and a stable nearly gaussian shaped beam profile.

  4. Electron acceleration by a chirped Gaussian laser pulse in vacuum

    SciTech Connect

    Sohbatzadeh, F.; Mirzanejhad, S.; Ghasemi, M.

    2006-12-15

    Electron acceleration by a chirped Gaussian laser pulse is investigated numerically. A linear and negative chirp is employed in this study. At first, a simple analytical description for the chirp effect on the electron acceleration in vacuum is provided in one-dimensional model. The chirp mechanism is then extended to the interaction of a femtosecond laser pulse and electron. The electron final energy is obtained as a function of laser beam waist, laser intensity, chirp parameter, and initial phase of the laser pulse. It is shown that the electron final energy depends strongly on the chirp parameter and the initial phase of the laser pulse. There is an optimal value for the chirp parameter in which the electron acceleration takes place effectively. The energy gain increases with laser beam waist and intensity. It is also shown that the electron is accelerated within a few degrees to the axial direction. Emphasis is on the important aspect of the chirp effect on the energy gained by an electron from the electromagnetic wave.

  5. Fiber Laser Front Ends for High-Energy Short Pulse Lasers

    SciTech Connect

    Dawson, J W; Liao, Z M; Mitchell, S; Messerly, M; Beach, R; Jovanovic, I; Brown, C; Payne, S A; Barty, C J

    2005-01-18

    We are developing an all fiber laser system optimized for providing input pulses for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal solutions for these systems as they are highly reliable and once constructed they can be operated with ease. Furthermore, they offer an additional benefit of significantly reduced footprint. In most labs containing equivalent bulk laser systems, the system occupies two 4'x8' tables and would consist of 10's if not a 100 of optics which would need to be individually aligned and maintained. The design requirements for this application are very different those commonly seen in fiber lasers. High energy lasers often have low repetition rates (as low as one pulse every few hours) and thus high average power and efficiency are of little practical value. What is of high value is pulse energy, high signal to noise ratio (expressed as pre-pulse contrast), good beam quality, consistent output parameters and timing. Our system focuses on maximizing these parameters sometimes at the expense of efficient operation or average power. Our prototype system consists of a mode-locked fiber laser, a compressed pulse fiber amplifier, a ''pulse cleaner'', a chirped fiber Bragg grating, pulse selectors, a transport fiber system and a large flattened mode fiber amplifier. In our talk we will review the system in detail and present theoretical and experimental studies of critical components. We will also present experimental results from the integrated system.

  6. Ultrashort Laser Pulse Propagation in Water

    DTIC Science & Technology

    2008-01-01

    of pulse shaping for coherent Raman spectroscopy. More complex pulse shapes will be particularly important for the studies of nonlinear pulse...Stokes Raman scattering (CARS) signal (measured in methanol-water solutions) varying in magnitude over many decades15 . At a further stage of the...explore the possibility of using the pseudospectral time domain (PSTD) method 6 which we feel will run much faster than the conventional FDTD method

  7. Active lamp pulse driver circuit. [optical pumping of laser media

    NASA Technical Reports Server (NTRS)

    Logan, K. E. (Inventor)

    1983-01-01

    A flashlamp drive circuit is described which uses an unsaturated transistor as a current mode switch to periodically subject a partially ionized gaseous laser excitation flashlamp to a stable, rectangular pulse of current from an incomplete discharge of an energy storage capacitor. A monostable multivibrator sets the pulse interval, initiating the pulse in response to a flash command by providing a reference voltage to a non-inverting terminal of a base drive amplifier; a tap on an emitter resistor provides a feedback signal sensitive to the current amplitude to an inverting terminal of amplifier, thereby controlling the pulse amplitude. The circuit drives the flashlamp to provide a squarewave current flashlamp discharge.

  8. Moving chirped soliton under laser pulse interaction with gold nanorods

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Lysak, Tatiana M.

    2017-05-01

    We investigate splitting and self-trapping of the femtosecond pulse by nanorods reshaping front at optical radiation propagation in a medium containing gold nanorods. We take into account multi-photon absorption of laser radiation by nanorods, and time-dependent nanorod aspect ratio changing due to their reshaping. On the basis of computer simulation we demonstrate appearance of slowing down soliton and superluminality effect simultaneously for various sub-pulses which form from incident Gaussian un-chirped pulse. These sub-pulses possess chirp and soliton shape which differs from a classical soliton of Schrödinger equation with cubic nonlinearity.

  9. Simulation of ultrashort double-pulse laser ablation

    NASA Astrophysics Data System (ADS)

    Povarnitsyn, Mikhail E.; Itina, Tatiana E.; Levashov, Pavel R.; Khishchenko, Konstatntin V.

    2011-04-01

    In this paper, we study the mechanisms of femtosecond double-pulse laser ablation of metals. It was previously shown experimentally that the crater depth monotonically drops when the delay between two successive pulses increases. For delays longer than the time of electron-ion relaxation the crater depth can be even smaller than that produced by a single pulse. The results of the performed hydrodynamic simulation show that the ablation can be suppressed due to the formation of the second shock wave. The modeling results of the double-pulse ablation obtained for different delays correlate with the experimental findings.

  10. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    SciTech Connect

    Ellison, Chad M.; Perricone, Matthew J.; Faraone, Kevin M.; Norris, Jerome T.

    2007-10-01

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  11. Vascular spasm complicates continuous wave but not pulsed laser irradiation

    SciTech Connect

    Gal, D.; Steg, P.G.; Rongione, A.J.; DeJesus, S.T.; Clarke, R.H.; Isner, J.M. )

    1989-11-01

    Preliminary clinical experience with laser angioplasty has suggested that arterial spasm may complicate attempts to employ laser light to accomplish vascular recanalization. The present study was designed to investigate the role of energy profile on the development of arterial spasm during laser angioplasty. Laser irradiation was delivered percutaneously in vivo to New Zealand white rabbits and to Yucatan microswine with or without atherosclerotic lesions induced by a combination of balloon endothelial denudation and atherogenic diet. Continuous wave (CW) laser irradiation from an argon ion gas laser (wavelength 488 to 514 nm) was applied to 23 arteries, while 16 arteries were irradiated using a pulsed xenon chloride (308 nm) or xenon fluoride (351 nm) excimer laser. Arterial spasm, defined as greater than 50% reduction in luminal diameter narrowing, complicated delivery of laser light to 17 (74%) of the 23 arteries irradiated with the CW argon laser. Spasm was consistently observed at powers greater than 2 W, at cumulative exposures greater than 200 seconds, and at total energy greater than 200 joules. Spasm was typically diffuse (including the length of the vessel) and protracted (lasting up to 120 minutes). Intra-arterial nitroglycerin (up to 300 micrograms) produced only temporary and incomplete resolution of laser-induced spasm. In contrast, spasm was never observed in any of the 16 arteries in which laser angioplasty was performed using a pulsed laser (0.95 to 6.37 joules/cm2, 10 to 50 Hz, 48 to 370 seconds). Thus CW but not pulsed laser angioplasty may be complicated by arterial spasm

  12. Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses

    SciTech Connect

    Xu Bingwei; Coello, Yves; Lozovoy, Vadim V.; Dantus, Marcos

    2010-11-10

    A fast and automated approach to measuring two-photon fluorescence excitation (TPE) spectra of fluorophores with high resolution ({approx}2 nm ) by pulse shaping ultrabroad-bandwidth femtosecond laser pulses is demonstrated. Selective excitation in the range of 675-990 nm was achieved by imposing a series of specially designed phase and amplitude masks on the excitation pulses using a pulse shaper. The method eliminates the need for laser tuning and is, thus, suitable for non-laser-expert use. The TPE spectrum of Fluorescein was compared with independent measurements and the spectra of the pH-sensitive dye 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) in acidic and basic environments were measured for the first time using this approach.

  13. Experimental investigation of a unique airbreathing pulsed laser propulsion concept

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Nagamatsu, H. T.; Manka, C.; Lyons, P. W.; Jones, R. A.

    1991-01-01

    Investigations were conducted into unique methods of converting pulsed laser energy into propulsive thrust across a flat impulse surface under atmospheric conditions. The propulsion experiments were performed with a 1-micron neodymium-glass laser at the Space Plasma Branch of the Naval Research Laboratory. Laser-induced impulse was measured dynamically by ballistic pendulums and statically using piezoelectric pressure transducers on a stationary impulse surface. The principal goal was to explore methods for increasing the impulse coupling performance of airbreathing laser-propulsion engines. A magnetohydrodynamic thrust augmentation effect was discovered when a tesla-level magnetic field was applied perpendicular to the impulse surface. The impulse coupling coefficient performance doubled and continued to improve with increasing laser-pulse energies. The resultant performance of 180 to 200 N-s/MJ was found to be comparable to that of the earliest afterburning turbojets.

  14. Nanosecond pulsed laser generation of holographic structures on metals

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.

    2016-03-01

    A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.

  15. Experimental investigation of a unique airbreathing pulsed laser propulsion concept

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Nagamatsu, H. T.; Manka, C.; Lyons, P. W.; Jones, R. A.

    1991-01-01

    Investigations were conducted into unique methods of converting pulsed laser energy into propulsive thrust across a flat impulse surface under atmospheric conditions. The propulsion experiments were performed with a 1-micron neodymium-glass laser at the Space Plasma Branch of the Naval Research Laboratory. Laser-induced impulse was measured dynamically by ballistic pendulums and statically using piezoelectric pressure transducers on a stationary impulse surface. The principal goal was to explore methods for increasing the impulse coupling performance of airbreathing laser-propulsion engines. A magnetohydrodynamic thrust augmentation effect was discovered when a tesla-level magnetic field was applied perpendicular to the impulse surface. The impulse coupling coefficient performance doubled and continued to improve with increasing laser-pulse energies. The resultant performance of 180 to 200 N-s/MJ was found to be comparable to that of the earliest afterburning turbojets.

  16. Femtosecond Pulse Generation in Solid-State Lasers.

    NASA Astrophysics Data System (ADS)

    Paye, Malini

    Femtosecond laser technology has seen rapid advances over the last five years due to the emergence of reliable, broad-band solid-state laser media in particular the Ti:sapphire gain medium. This thesis deals with various aspects of femtosecond pulse generation in solid-state lasers, with particular emphasis on the Ti:sapphire laser system. A novel passive modelocking technique called Microdot mirror modelocking was implemented. It is a passive, all -solid-state, intracavity modelocking mechanism based on self-focussing due to the Kerr nonlinearity. This technique was applied to the modelocking of a medium power, laser -pumped Ti:sapphire system, to produce 190fs pulses. It was also extended to a higher power, arc-lamp-pumped Nd:YLF laser system to produce 2.3 ps pulses. A numerical procedure for modeling the nonlinear behaviour of resonators was implemented. This iterative procedure solves for self-consistent nonlinear resonator modes using a description of self-focussing as a nonlinear scaling of the Gaussian beam q parameter. It was used to provide an exemplary, intuitive understanding of nonlinear effects in a simple resonator closely related to the high -repetition rate femtosecond source that was subsequently implemented. A novel, compact, femtosecond, Kerr Lens Modelocked laser geometry was designed and implemented. 111 fs pulses were produced from a Ti:sapphire oscillator at a repetition rate of 1 GHz and 54 fs pulses at a repetition rate of 385 MHz. To realize this source, a novel method for dispersion compensation was conceived, analyzed and implemented. Negative dispersion was shown to be achievable using resonator geometries that enforce the spatial separation of propagation axes corresponding to monochromatic Gaussian modes that compose the total broad-band beam in a femtosecond oscillator. This work serves to demonstrate the scalability of Kerr lens modelocking techniques to very high repetition rates. The compact, high-repetition rate source has

  17. Compact pulsed high-energy Er:glass laser

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Liu, Jian

    2012-03-01

    Bulk Erbium-doped lasers are widely used for long-distance telemetry and ranging. In some applications such as coherent Doppler radars, laser outputs with a relatively long pulse width, good beam profile and pulse shape are required. High energy Q-switched Er:glass lasers were demonstrated by use of electro-optic (E/O) Q-switching or frustrated total internal reflection (FTIR) Q-switching. However, the output pulse durations in these lasers were fixed to relatively small values and extremely hard to tune. We report here on developing a novel and compact Q-switched Er:Yb co-doped phosphate glass laser at an eye-safe wavelength of 1.5 μm. A rotating mirror was used as a Q-switch. Co-linear pump scheme was used to maintain a good output beam profile. Near-perfect Gaussian temporal shape was obtained in our experiment. By changing motor rotation speed, pulse duration was tunable and up to 240 ns was achieved. In our preliminary experiment, output pulse energies of 44 mJ and 4.5 mJ were obtained in free-running and Q-switched operation modes respectively.

  18. Interaction of UV laser pulses with reactive dusty plasmas

    NASA Astrophysics Data System (ADS)

    van de Wetering, Ferdi; Beckers, Job; Nijdam, Sander; Oosterbeek, Wouter; Kovacevic, Eva; Berndt, Johannes

    2016-09-01

    This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75 mJ pulse energy, repetition frequency 10Hz) can have a large effect on the global discharge characteristics. One particular example concerns the formation of a dust void in the center of the discharge. At sufficiently high pulse energies, this formation of a dust free region - which occurs without laser irradiation-is totally suppressed. Moreover the experiments indicate that the laser pulses influence the early stages of the particle formation. Although the interaction between the laser and the plasma is not yet fully understood, it is remarkable that these localized nanosecond laser pulses can influence the plasma on a global scale. Besides new insights into fundamental problems, this phenomenon opens also new possibilities for the controlled manipulation of particle growth and particle transport in reactive plasmas.

  19. Short-pulse CO₂ laser with longitudinal tandem discharge tube.

    PubMed

    Uno, K; Akitsu, T; Jitsuno, T

    2014-10-01

    We developed a longitudinally excited CO2 laser with a tandem discharge tube. The tandem scheme was constituted of two 30-cm long discharge tubes connected with an intermediate electrode. Two parts, each consisting of a charged capacitance and a 30-cm long discharge tube, were electrically connected in parallel and switched by a spark gap. The tandem scheme produced a short laser pulse like that of a TEA-CO2 laser with a charging voltage of -24.8 kV, which was smaller than the -40.0 kV charging voltage of our previous CO2 laser. At a gas pressure of 3.8 kPa, the spike pulse width was 145 ns, the pulse tail length was 58.8 μs, the output energy was 52.0 mJ, and the spike pulse energy was 2.4 mJ. We also investigated the dependence of the laser pulse and the discharge voltage on gas pressure.

  20. Investigation of Early Plasma Evolution Induced by Ultrashort Laser Pulses

    PubMed Central

    Hu, Wenqian; Shin, Yung C.; King, Galen B.

    2012-01-01

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment1-11. Early plasma evolution has been captured through pump-probe shadowgraphy1-3 and interferometry1,4-7. However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 1014 W/cm2. Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions12. The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. 12 to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators. PMID:22806170

  1. Investigation of early plasma evolution induced by ultrashort laser pulses.

    PubMed

    Hu, Wenqian; Shin, Yung C; King, Galen B

    2012-07-02

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment(1-11). Early plasma evolution has been captured through pump-probe shadowgraphy(1-3) and interferometry(1,4-7). However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 10(14) W/cm(2). Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions(12). The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. (12) to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators.

  2. Control of multiphoton molecular excitation with shaped femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Xu, Bingwei

    The work presented in this dissertation describes the use of shaped femtosecond laser pulses to control the outcome of nonlinear optical process and thus to achieve the selectivity for multiphoton molecular transitions. This research could lead to applications in various fields including nonlinear optical spectroscopy, chemical identification, biological imaging, communications, photodynamic therapy, etc. In order to realize accurate pulse shaping of the femtosecond laser pulses, it is essential to measure and correct the spectral phase distortion of such pulses. A method called multiphoton intrapulse interference phase scan is used to do so throughout this dissertation. This method is highly accurate and reproducible, and has been proved in this work to be compatible with any femtosecond pulses regardless of bandwidth, intensity and repetition rate of the laser. The phase control of several quasi-octave laser sources is demonstrated in this dissertation, with the generation of 4.3 fs and 5.9 fs pulses that reach the theoretically predicted transform-limited pulse duration. The excellent phase control achieved also guarantees the reproducibility for selective multiphoton excitations by accurate phase and/or amplitude shaping. Selective two-photon excitation, stimulated Raman scattering and coherent anti-Stokes Raman scattering with a single broadband laser source are demonstrated in this dissertation. Pulse shaping is used to achieve a fast and robust approach to measure the two-photon excitation spectrum from fluorescent molecules, which provide important information for two-photon biological imaging. The selective excitation concept is also applied in the field of remote chemical identification. Detection of characteristic Raman lines for several chemicals using a single beam coherent anti-Stokes Raman scattering spectroscopy from a 12 meter standoff distance is shown, providing a promising approach to standoff detection of chemicals, hazardous contaminations

  3. Plasma mediated ablation of biological tissues with ultrashort laser pulses

    SciTech Connect

    Oraevsky, A.A. |; DaSilva, L.B.; Feit, M.D.

    1995-03-08

    Plasma mediated ablation of collagen gels and porcine cornea was studied at various laser pulse durations in the range from 350 fs to 1 ns at 1,053 nm wavelength. A time resolved stress detection technique was employed to measure transient stress profiles and amplitudes. Optical microscopy was used to characterize ablation craters qualitatively, while a wide band acoustic transducer helped to quantify tissue mechanical response and the ablation threshold. The ablation threshold was measured as a function of laser pulse duration and linear absorption coefficient. For nanosecond pulses the ablation threshold was found to have a strong dependence on the linear absorption coefficient of the material. As the pulse length decreased into the subpicosecond regime the ablation threshold became insensitive to the linear absorption coefficient. The ablation efficiency was found to be insensitive to both the laser pulse duration and the linear absorption coefficient. High quality ablation craters with no thermal or mechanical damage to surrounding material were obtained with 350 fs laser pulses. The mechanism of optical breakdown at the tissue surface was theoretically investigated. In the nanosecond regime, optical breakdown proceeds as an electron collisional avalanche ionization initiated by thermal seed electrons. These seed electrons are created by heating of the tissue by linear absorption. In the ultrashort pulse range, optical breakdown is initiated by the multiphoton ionization of the irradiated medium (6 photons in case of tissue irradiated at 1,053 nm wavelength), and becomes less sensitive to the linear absorption coefficient. The energy deposition profile is insensitive to both the laser pulse duration and the linear absorption coefficient.

  4. ±25 ppm repeatable measurement of trapezoidal pulses with 5 MHz bandwidth

    NASA Astrophysics Data System (ADS)

    Arpaia, P.; Baccigalupi, C.; Cerqueira Bastos, M.; Martino, M.

    2014-06-01

    High-quality measurements of pulses are nowadays widely used in fields such as radars, pulsed lasers, electromagnetic pulse generators, and particle accelerators. Whilst literature is mainly focused on fast systems for nanosecond regime with relaxed metrological requirements, in this paper, the high-performance measurement of slower pulses in microsecond regime is faced. In particular, the experimental proof demonstration for a 15 MS/s, ±25 ppm repeatable acquisition system to characterize the flat-top of 3 μs rise-time trapezoidal pulses is given. The system exploits a 5 MHz bandwidth circuit for analogue signal processing based on the concept of flat-top removal. The requirements, as well as the conceptual and physical designs are illustrated. Simulation results aimed at assessing the circuit performance are also presented. Finally, an experimental case study on the characterization of a pulsed power supply for the klystrons modulators of the Compact Linear Collider (CLIC) under study at CERN is reported. In particular, the metrological characterization of the prototype in terms of bandwidth, repeatability, and linearity is presented.

  5. Computer modeling of pulsed CO2 lasers for lidar applications

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1993-01-01

    The object of this effort is to develop code to enable the accurate prediction of the performance of pulsed transversely excited (TE) CO2 lasers prior to their construction. This is of particular benefit to the NASA Laser Atmospheric Wind Sounder (LAWS) project. A benefit of the completed code is that although developed specifically for the pulsed CO2 laser much of the code can be modified to model other laser systems of interest to the lidar community. A Boltzmann equation solver has been developed which enables the electron excitation rates for the vibrational levels of CO2 and N2, together with the electron ionization and attachment coefficients to be determined for any CO2 laser gas mixture consisting of a combination of CO2, N2, CO, He and CO. The validity of the model has been verified by comparison with published material. The results from the Boltzmann equation solver have been used as input to the laser kinetics code which is currently under development. A numerical code to model the laser induced medium perturbation (LIMP) arising from the relaxation of the lower laser level has been developed and used to determine the effect of LIMP on the frequency spectrum of the LAWS laser output pulse. The enclosed figures show representative results for a laser operating at 0.5 atm. with a discharge cross-section of 4.5 cm to produce a 20 J pulse with aFWHM of 3.1 microns. The first four plots show the temporal evolution of the laser pulse power, energy evolution, LIMP frequency chirp and electric field magnitude. The electric field magnitude is taken by beating the calculated complex electric field and beating it with a local oscillator signal. The remaining two figures show the power spectrum and energy distribution in the pulse as a function of the varying pulse frequency. The LIMP theory has been compared with experimental data from the NOAA Windvan Lidar and has been found to be in good agreement.

  6. Influence of pulse duration on ultrashort laser pulse ablation of biological tissues.

    PubMed

    Kim, B M; Feit, M D; Rubenchik, A M; Joslin, E J; Celliers, P M; Eichler, J; Da Silva, L B

    2001-07-01

    Ablation characteristics of ultrashort laser pulses were investigated for pulse durations in the range of 130 fs-10 ps. Tissue samples used in the study were dental hard tissue (dentin) and water. We observed differences in ablation crater morphology for craters generated with pulse durations in the 130 fs-1 ps and the 5 ps-10 ps range. For the water experiment, the surface ablation and subsequent propagation of stress waves were monitored using Mach-Zehnder interferometry. For 130 fs-1 ps, energy is deposited on the surface while for longer pulses the beam penetrates into the sample. Both studies indicate that a transition occurs between 1 and 5 ps.

  7. Electron yield enhancement in a laser wakefield accelerator driven by asymmetric laser pulses

    SciTech Connect

    Leemans, W.P.; Catravas, P.; Esarey, E.; Geddes, C.G.R.; Toth, C.; Trines, R.; Schroeder, C.B.; Shadwick, B.A.; van Tilborg, J.; Faure, J.

    2002-08-01

    The effect of asymmetric laser pulses on electron yield from a laser wakefield accelerator has been experimentally studied using > 10{sup 19} cm{sup -3} plasmas and a 10 TW, > 45 fs, Ti:Al{sub 2}O{sub 3} laser. Laser pulse shape was controlled through non-linear chirp with a grating pair compressor. Pulses (76 fs FWHM) with a steep rise and positive chirp were found to significantly enhance the electron yield compared to pulses with a gentle rise and negative chirp. Theory and simulation show that fast rising pulses can generate larger amplitude wakes that seed the growth of the self-modulation instability and that frequency chirp is of minimal importance for the experimental parameters.

  8. LASERS: Pulse-periodic iodine photodissociation laser with a high output energy

    NASA Astrophysics Data System (ADS)

    Abashev, R. T.; Kamrukov, A. S.; Kozlov, N. P.; Korolenko, V. G.; Ovchinnikov, P. A.; Protasov, Yu S.; Rychkov, M. L.; Telenkov, I. I.

    1991-05-01

    A description is given of a pulse-periodic iodine laser pumped by high-power nonmagnetic plasma-dynamic flashlamps and incorporating a thermal closed circulation system for the active medium (n-C4F9I-C6F14 mixture) based on a condensation-evaporation cycle. An investigation was made of the energy balance and the output characteristics of the laser under single-pulse and pulse-periodic conditions at a repetition frequency of 17-50 mHz. The laser output energy was ~ 0.5 kJ, the pulse duration was 35-40 μs, the angular divergence was ~ 0.56 mrad, and the efficiency in terms of the electrical energy deposited in the pumping system was ~ 1 %. Stimulated emission during the complete laser pulse was achieved at the frequency of the unperturbed F' = 3 →F = 4 electronic transition in the hyperfine structure of the iodine atom.

  9. Classical effect for enhanced high harmonic yield in ultrashort laser pulses with a moderate laser intensity

    NASA Astrophysics Data System (ADS)

    Shi, Y. Z.; Wang, S.; Dong, F. L.; Li, Y. P.; Chen, Y. J.

    2017-03-01

    We study the influence of pulse duration on high harmonic generation (HHG) by exploring a wide laser-parameter region theoretically. Previous studies have shown that for high laser intensities close to saturation ionization intensity, the HHG inversion efficiency is higher for shorter pulses since the ground-state depletion is weaker in short pulses. Our simulations show that this high efficiency also appears for a moderate laser intensity at which the ionization is not very strong. A classical effect relating to shorter travel distances of the rescattering electron in shorter pulses is shown to contribute importantly to this high efficiency. The effect can be amplified significantly if a two-color laser field is used, suggesting a potential approach to increasing the HHG yield and generating short and bright attosecond pulses.

  10. Laser Cooling with Ultrafast Pulse Trains

    DTIC Science & Technology

    2008-08-06

    supercontinuum light source for seeding the cooling laser system • designed an efficient, robust nonlinear upconverter, a key part of the cooling laser... supercontinuum source that we have constructed from telecom fiber components. We have also designed an optimized upconversion system for generating >2...the cooling laser system from an all-fiber supercontinuum source We have constructed an all-fiber supercontinuum source in order to derive the 1944

  11. Laser Cooling With Ultrafast Pulse Trains

    DTIC Science & Technology

    2005-09-30

    have led to great advances in precision spectroscopy and cold collision studies. These conditions also provide a suitable starting point for evaporative...atomic species to laser cooling, leading in the near term to improved spectroscopy and collision studies in hydrogen and deuterium. Furthermore, it...home-built titanium:sapphire (Ti:S) ring laser operating near 739.0 nm. Later we developed a novel ultraviolet diode laser operating at a fundamen - tal

  12. A pulsed-laser calibration system for the laser backscatter diagnostics at the Omega laser

    SciTech Connect

    Neumayer, P; Sorce, C; Froula, D H; Rekow, V; Loughman, K; Knight, R; Glenzer, S H; Bahr, R; Seka, W

    2008-04-29

    A calibration system has been developed that allows a direct determination of the sensitivity of the laser backscatter diagnostics at the Omega laser. A motorized mirror at the target location redirects individual pulses of a mJ-class laser onto the diagnostic to allow the in-situ measurement of the local point response of the backscatter diagnostics. Featuring dual wavelength capability at the 2nd and 3rd harmonic of the Nd:YAG laser, both spectral channels of the backscatter diagnostics can be directly calibrated. In addition, channel cross-talk and polarization sensitivity can be determined. The calibration system has been employed repeatedly over the last two years and has enabled precise backscatter measurements of both stimulated Brillouin scattering and stimulated Raman scattering in gas-filled hohlraum targets that emulate conditions relevant to those in inertial confinement fusion targets.

  13. A pulsed-laser calibration system for the laser backscatter diagnostics at the Omega laser

    SciTech Connect

    Neumayer, P; Sorce, C; Froula, D H; Rekow, V; Loughman, K; Knight, R; Glenzer, S H; Bahr, R; Seka, W

    2009-10-09

    A calibration system has been developed that allows a direct determination of the sensitivity of the laser backscatter diagnostics at the Omega laser. A motorized mirror at the target location redirects individual pulses of a mJ-class laser onto the diagnostic to allow the in-situ measurement of the local point response of the backscatter diagnostics. Featuring dual wavelength capability at the 2nd and 3rd harmonic of the Nd:YAG laser, both spectral channels of the backscatter diagnostics can be directly calibrated. In addition, channel cross-talk and polarization sensitivity can be determined. The calibration system has been employed repeatedly over the last two years and has enabled precise backscatter measurements of both stimulated Brillouin scattering and stimulated Raman scattering in gas-filled hohlraum targets that emulate conditions relevant to those in inertial confinement fusion targets.

  14. Thermal effects of pulsed pumping in semiconductor disk lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Dai, Teli; Liang, Yiping; Fan, Siqiang; Zhang, Yu

    2012-11-01

    It has been demonstrated experimentally that pulsed pumping can significantly improve the thermal management in an optically-pumped semiconductor disk laser, and the output power of semiconductor disk lasers under pulsed pumping can be upgraded to times of those under continuous pumping. This paper presents numerical analysis of the thermal effects of pulsed pumping in semiconductor disk lasers, so to theoretically disclose the details of the thermal processes of pulsed pumping. In the simulation, the parabolic heat conduction equation, which is widely employed to describe the transient thermal transfer processes, is solved under cylindrical coordinates by the use of the finite element method, a periodic pump pulses train is assumed, and the maximum temperature rise in the multiple quantum wells active region is focused. The influences of the duty cycle, the repetition rate, and the pulse width of the pump pulses on the maximum temperature rise are investigated, and the results are compared with the case of continuous-wave pumping. Some simulation results are compared with reported data, and the theoretical results are in good agreement with the experiments.

  15. Free space optical communication based on pulsed lasers

    NASA Astrophysics Data System (ADS)

    Drozd, Tadeusz; Mierczyk, Zygmunt; Zygmunt, Marek; Wojtanowski, Jacek

    2016-12-01

    Most of the current optical data transmission systems are based on continuous wave (cw) lasers. It results from the tendency to increase data transmission speed, and from the simplicity in implementation (straightforward modulation). Pulsed lasers, which find many applications in a variety of industrial, medical and military systems, in this field are not common. Depending on the type, pulsed lasers can generate instantaneous power which is many times greater when compared with cw lasers. As such, they seem to be very attractive to be used in data transmission technology, especially due to the potentially larger ranges of transmission, or in adverse atmospheric conditions where low power cw-lasersbased transmission is no longer feasible. It is also a very practical idea to implement data transmission capability in the pulsed laser devices that have been around and already used, increasing the functionality of this type of equipment. At the Institute of Optoelectronics at Military University of Technology, a unique method of data transmission based on pulsed laser radiation has been developed. This method is discussed in the paper in terms of both data transmission speed and transmission range. Additionally, in order to verify the theoretical assumptions, modules for voice and data transmission were developed and practically tested which is also reported, including the measurements of Bit Error Rate (BER) and performance vs. range analysis.

  16. Laser Thomson scattering in a pulsed atmospheric arc discharge

    NASA Astrophysics Data System (ADS)

    Sommers, Bradley; Adams, Steven

    2015-09-01

    Laser scattering measurements, including Rayleigh, Raman, and Thomson scattering have been performed on an atmospheric pulsed arc discharge. Such laser scattering techniques offer a non-invasive diagnostic to measure gas temperature, electron temperature, and electron density in atmospheric plasma sources, particularly those with feature sizes approaching 1 mm. The pulsed discharge is ignited in a pin to pin electrode geometry using a 6 kV pulse with 10 ns duration. The electrodes are housed in a glass vacuum chamber filled with argon gas. The laser signal is produced by a Nd:Yag laser supply, repetitively pulsed at 10 Hz and frequency quadrupled to operate at 266 nm. The scattered laser signal is imaged onto a triple grating spectrometer, which is used to suppress the Rayleigh scatter signal in order to measure the low amplitude Thomson and Raman signals. Preliminary results include measurements of electron temperature and electron density in the plasma column taken during the evolution of the discharge. The laser system is also used to measure the Rayleigh scattering signal, which provides space and time resolved measurements of gas temperature in the arc discharge.

  17. Effects of pulsed CO2 laser in caries selective ablation

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; David, Ion; Marinovici, Mariana

    1995-03-01

    We have evaluated the effect of pulsed carbon dioxide laser in the treatment for deep carious decay. The so called `caries profonda' is still a problem for conservative dentistry. A `Valvfivre' Master 20S carbon dioxide laser was pulsed to determine the effects on dentine and for testing the properties of softened dentine in selective ablation. Laser treatment parameters were from 1 to 2 W, 50 to 150 ms, 200 to 320 Hz. Fifteen human teeth samples were exposed to irradiation: extracted third molar were exposed to CO2 pulsed laser to determine in vitro the effects on pulp morphology. The tissue samples were analyzed histologically and by means of scanning electron microscopy for evidence of thermal damage. Next, we have evaluated the morphologic changes in vivo on 10 cases in patients with deep carious decay. Pulsed infrared lasers are capable of inducing physical and chemical changes in dentine structure. The results showed an artificially sclerosing and micro-hardness on the remaining dentine. CO2 laser can vaporized carious dentine.

  18. Monolithic hybrid optics for focusing ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Fuchs, U.

    2014-03-01

    Almost any application of ultrashort laser pulses involves focusing them in order to reach high intensities and/or small spot sizes as needed for micro-machining or Femto-LASIK. Hence, it is indispensable to be able to understand pulse front distortion caused by real world optics. Focusing causes pulse front distortion due to aberrations, dispersion and diffraction. Thus, the spatio-temporal profile of ultrashort laser is altered, which increases automatically the pulse duration and the focusing spot. Consequently, the main advantage of having ultrashort laser pulses - pulse durations way below 100 fs - can be lost in that one last step of the experimental set-up by focusing them unfavorable. Since compensating for dispersion, aberration and diffraction effects is quite complicated and not always possible, we pursue a different approach. We present a specially designed monolithic hybrid optics comprising refraction and diffraction effects for tight spatial and temporal focusing of ultrashort laser pulses. Both aims can be put into practice by having a high numerical aperture (NA = 0.35) and low internal dispersion at the same time. The focusing properties are very promising, due to a design, which provides diffraction limited focusing for 100 nm bandwidth at 780 nm center wavelength. Thus, pulses with durations as short as 10 fs can be focused without pulse front distortion. The outstanding performance of this optics is shown in theory and experimentally. Above that, such focusing optics are easily adapted to their special purpose - changing the center wavelength, achromatic bandwidth or even correcting for focusing into material is possible.

  19. Crystallization of silicon carbide thin films by pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    De Cesare, G.; La Monica, S.; Maiello, G.; Masini, G.; Proverbio, E.; Ferrari, A.; Chitica, N.; Dinescu, M.; Alexandrescu, R.; Morjan, I.; Rotiu, E.

    1996-10-01

    Pulsed laser irradiation at low incident fluences was demonstrated to be effective for the crystallization of amorphous hydrogenated silicon carbide (a-SiC:H) films deposited on Si wafers. The amorphous films, with a carbon content in the range 30-50%, were deposited on (100) Si wafers by low temperature plasma enhanced chemical vapor deposition (PECVD). The crystallization treatment was carried out by a multipulse KrF excimer laser. The crystallinity modifications induced by the laser treatment were evidenced by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction. An important increase of the microhardness was evidenced as an effect of the laser treatment.

  20. Pulsed neodymium-YAG laser trabeculotomy: energy requirements and replicability.

    PubMed Central

    Dutton, G N; Allan, D; Cameron, S A

    1989-01-01

    Short pulsed laser trabeculotomy has been shown to reduce intraocular pressure in patients with primary open angle glaucoma. This study seeks to determine the energy levels required to produce a fistula into the canal of Schlemm for four different Q-switched neodymium-YAG lasers. The laser was fired at fixed human trabecular meshwork specimens at a range of energy settings for each laser and the characteristics and replicability of the lesions produced were analysed. Energy levels between 3 and 5 mJ were sufficient to produce fistulae into the canal of Schlemm with an approximately 50% success rate for each instrument. Images PMID:2706207