Sample records for flavin mononucleotide

  1. A biomimetic redox flow battery based on flavin mononucleotide

    PubMed Central

    Orita, Akihiro; Verde, Michael G.; Sakai, Masanori; Meng, Ying Shirley

    2016-01-01

    The versatility in design of redox flow batteries makes them apt to efficiently store energy in large-scale applications at low cost. The discovery of inexpensive organic electroactive materials for use in aqueous flow battery electrolytes is highly attractive, but is thus far limited. Here we report on a flow battery using an aqueous electrolyte based on the sodium salt of flavin mononucleotide. Flavins are highly versatile electroactive molecules, which catalyse a multitude of redox reactions in biological systems. We use nicotinamide (vitamin B3) as a hydrotropic agent to enhance the water solubility of flavin mononucleotide. A redox flow battery using flavin mononucleotide negative and ferrocyanide positive electrolytes in strong base shows stable cycling performance, with over 99% capacity retention over the course of 100 cycles. We hypothesize that this is enabled due to the oxidized and reduced forms of FMN-Na being stabilized by resonance structures. PMID:27767026

  2. A biomimetic redox flow battery based on flavin mononucleotide

    NASA Astrophysics Data System (ADS)

    Orita, Akihiro; Verde, Michael G.; Sakai, Masanori; Meng, Ying Shirley

    2016-10-01

    The versatility in design of redox flow batteries makes them apt to efficiently store energy in large-scale applications at low cost. The discovery of inexpensive organic electroactive materials for use in aqueous flow battery electrolytes is highly attractive, but is thus far limited. Here we report on a flow battery using an aqueous electrolyte based on the sodium salt of flavin mononucleotide. Flavins are highly versatile electroactive molecules, which catalyse a multitude of redox reactions in biological systems. We use nicotinamide (vitamin B3) as a hydrotropic agent to enhance the water solubility of flavin mononucleotide. A redox flow battery using flavin mononucleotide negative and ferrocyanide positive electrolytes in strong base shows stable cycling performance, with over 99% capacity retention over the course of 100 cycles. We hypothesize that this is enabled due to the oxidized and reduced forms of FMN-Na being stabilized by resonance structures.

  3. A biomimetic redox flow battery based on flavin mononucleotide.

    PubMed

    Orita, Akihiro; Verde, Michael G; Sakai, Masanori; Meng, Ying Shirley

    2016-10-21

    The versatility in design of redox flow batteries makes them apt to efficiently store energy in large-scale applications at low cost. The discovery of inexpensive organic electroactive materials for use in aqueous flow battery electrolytes is highly attractive, but is thus far limited. Here we report on a flow battery using an aqueous electrolyte based on the sodium salt of flavin mononucleotide. Flavins are highly versatile electroactive molecules, which catalyse a multitude of redox reactions in biological systems. We use nicotinamide (vitamin B3) as a hydrotropic agent to enhance the water solubility of flavin mononucleotide. A redox flow battery using flavin mononucleotide negative and ferrocyanide positive electrolytes in strong base shows stable cycling performance, with over 99% capacity retention over the course of 100 cycles. We hypothesize that this is enabled due to the oxidized and reduced forms of FMN-Na being stabilized by resonance structures.

  4. Quantitative bioluminescent detection of bacteria

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.

    1976-01-01

    Phosphoflavins in sample are measured using photobacterial luciferase assay technique for flavin mononucleotide (FMN). Boiling perchloric acid is used to rupture cells to free bound flavin and to hydrolyze flavin adenine dinucleotide to FMN. Base-stabilized water solution of sodium borohydride is used as reactant.

  5. Quantification of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in mammalian model cells by CE with LED-induced fluorescence detection.

    PubMed

    Hühner, Jens; Ingles-Prieto, Álvaro; Neusüß, Christian; Lämmerhofer, Michael; Janovjak, Harald

    2015-02-01

    Cultured mammalian cells essential are model systems in basic biology research, production platforms of proteins for medical use, and testbeds in synthetic biology. Flavin cofactors, in particular flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), are critical for cellular redox reactions and sense light in naturally occurring photoreceptors and optogenetic tools. Here, we quantified flavin contents of commonly used mammalian cell lines. We first compared three procedures for extraction of free and noncovalently protein-bound flavins and verified extraction using fluorescence spectroscopy. For separation, two CE methods with different BGEs were established, and detection was performed by LED-induced fluorescence with limit of detections (LODs 0.5-3.8 nM). We found that riboflavin (RF), FMN, and FAD contents varied significantly between cell lines. RF (3.1-14 amol/cell) and FAD (2.2-17.0 amol/cell) were the predominant flavins, while FMN (0.46-3.4 amol/cell) was found at markedly lower levels. Observed flavin contents agree with those previously extracted from mammalian tissues, yet reduced forms of RF were detected that were not described previously. Quantification of flavins in mammalian cell lines will allow a better understanding of cellular redox reactions and optogenetic tools. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Expression, Purification, and Characterization of a Recombinant Flavin Reductase from the Luminescent Marine Bacterium "Photobacterium Leiognathi": A Set of Exercises for Students

    ERIC Educational Resources Information Center

    Crowley, Thomas E.

    2010-01-01

    In "Photobacterium," the flavin reductase encoded by "lux"G regenerates the reduced form of flavin mononucleotide (FMN). Reduced FMN is one of the substrates of the luciferase enzyme that catalyzes a light-emitting reaction. A set of experiments, that employs a "lux"G-expression plasmid construct (pGhis) and is suitable for an undergraduate…

  7. Investigations of blue light-induced reactive oxygen species from flavin mononucleotide on inactivation of E. coli.

    PubMed

    Liang, Ji-Yuan; Cheng, Chien-Wei; Yu, Chin-Hao; Chen, Liang-Yü

    2015-02-01

    The micronutrients in many cellular processes, riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) are photo-sensitive to UV and visible light for generating reactive oxygen species (ROS). Produced from phosphorylation of riboflavin, FMN is more water-soluble and rapidly transformed into free riboflavin after ingestion. This study investigated the application of visible blue light with FMN to development of an effective antimicrobial treatment. The photosensitization of bacterial viability with FMN was investigated by light quality, intensity, time, and irradiation dosage. The blue light-induced photochemical reaction with FMN could inactivate Escherichiacoli by the generated ROS in damaging nucleic acids, which was validated. This novel photodynamic technique could be a safe practice for photo-induced inactivation of environmental microorganism to achieve hygienic requirements in food processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Genetic Control of Biosynthesis and Transport of Riboflavin and Flavin Nucleotides and Construction of Robust Biotechnological Producers†

    PubMed Central

    Abbas, Charles A.; Sibirny, Andriy A.

    2011-01-01

    Summary: Riboflavin [7,8-dimethyl-10-(1′-d-ribityl)isoalloxazine, vitamin B2] is an obligatory component of human and animal diets, as it serves as the precursor of flavin coenzymes, flavin mononucleotide, and flavin adenine dinucleotide, which are involved in oxidative metabolism and other processes. Commercially produced riboflavin is used in agriculture, medicine, and the food industry. Riboflavin synthesis starts from GTP and ribulose-5-phosphate and proceeds through pyrimidine and pteridine intermediates. Flavin nucleotides are synthesized in two consecutive reactions from riboflavin. Some microorganisms and all animal cells are capable of riboflavin uptake, whereas many microorganisms have distinct systems for riboflavin excretion to the medium. Regulation of riboflavin synthesis in bacteria occurs by repression at the transcriptional level by flavin mononucleotide, which binds to nascent noncoding mRNA and blocks further transcription (named the riboswitch). In flavinogenic molds, riboflavin overproduction starts at the stationary phase and is accompanied by derepression of enzymes involved in riboflavin synthesis, sporulation, and mycelial lysis. In flavinogenic yeasts, transcriptional repression of riboflavin synthesis is exerted by iron ions and not by flavins. The putative transcription factor encoded by SEF1 is somehow involved in this regulation. Most commercial riboflavin is currently produced or was produced earlier by microbial synthesis using special selected strains of Bacillus subtilis, Ashbya gossypii, and Candida famata. Whereas earlier RF overproducers were isolated by classical selection, current producers of riboflavin and flavin nucleotides have been developed using modern approaches of metabolic engineering that involve overexpression of structural and regulatory genes of the RF biosynthetic pathway as well as genes involved in the overproduction of the purine precursor of riboflavin, GTP. PMID:21646432

  9. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers.

    PubMed

    Abbas, Charles A; Sibirny, Andriy A

    2011-06-01

    Riboflavin [7,8-dimethyl-10-(1'-d-ribityl)isoalloxazine, vitamin B₂] is an obligatory component of human and animal diets, as it serves as the precursor of flavin coenzymes, flavin mononucleotide, and flavin adenine dinucleotide, which are involved in oxidative metabolism and other processes. Commercially produced riboflavin is used in agriculture, medicine, and the food industry. Riboflavin synthesis starts from GTP and ribulose-5-phosphate and proceeds through pyrimidine and pteridine intermediates. Flavin nucleotides are synthesized in two consecutive reactions from riboflavin. Some microorganisms and all animal cells are capable of riboflavin uptake, whereas many microorganisms have distinct systems for riboflavin excretion to the medium. Regulation of riboflavin synthesis in bacteria occurs by repression at the transcriptional level by flavin mononucleotide, which binds to nascent noncoding mRNA and blocks further transcription (named the riboswitch). In flavinogenic molds, riboflavin overproduction starts at the stationary phase and is accompanied by derepression of enzymes involved in riboflavin synthesis, sporulation, and mycelial lysis. In flavinogenic yeasts, transcriptional repression of riboflavin synthesis is exerted by iron ions and not by flavins. The putative transcription factor encoded by SEF1 is somehow involved in this regulation. Most commercial riboflavin is currently produced or was produced earlier by microbial synthesis using special selected strains of Bacillus subtilis, Ashbya gossypii, and Candida famata. Whereas earlier RF overproducers were isolated by classical selection, current producers of riboflavin and flavin nucleotides have been developed using modern approaches of metabolic engineering that involve overexpression of structural and regulatory genes of the RF biosynthetic pathway as well as genes involved in the overproduction of the purine precursor of riboflavin, GTP.

  10. Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit.

    PubMed

    Campbell, Zachary T; Weichsel, Andrzej; Montfort, William R; Baldwin, Thomas O

    2009-07-07

    Bacterial luciferase from Vibrio harveyi is a heterodimer composed of a catalytic alpha subunit and a homologous but noncatalytic beta subunit. Despite decades of enzymological investigation, structural evidence defining the active center has been elusive. We report here the crystal structure of V. harveyi luciferase bound to flavin mononucleotide (FMN) at 2.3 A. The isoalloxazine ring is coordinated by an unusual cis-Ala-Ala peptide bond. The reactive sulfhydryl group of Cys106 projects toward position C-4a, the site of flavin oxygenation. This structure also provides the first data specifying the conformations of a mobile loop that is crystallographically disordered in both prior crystal structures [(1995) Biochemistry 34, 6581-6586; (1996) J. Biol. Chem. 271, 21956 21968]. This loop appears to be a boundary between solvent and the active center. Within this portion of the protein, a single contact was observed between Phe272 of the alpha subunit, not seen in the previous structures, and Tyr151 of the beta subunit. Substitutions at position 151 on the beta subunit caused reductions in activity and total quantum yield. Several of these mutants were found to have decreased affinity for reduced flavin mononucleotide (FMNH(2)). These findings partially address the long-standing question of how the beta subunit stabilizes the active conformation of the alpha subunit, thereby participating in the catalytic mechanism.

  11. Identification of the gene encoding the major NAD(P)H-flavin oxidoreductase of the bioluminescent bacterium Vibrio fischeri ATCC 7744.

    PubMed Central

    Zenno, S; Saigo, K; Kanoh, H; Inouye, S

    1994-01-01

    The gene encoding the major NAD(P)H-flavin oxidoreductase (flavin reductase) of the luminous bacterium Vibrio fischeri ATCC 7744 was isolated by using synthetic oligonucleotide probes corresponding to the N-terminal amino acid sequence of the enzyme. Nucleotide sequence analysis suggested that the major flavin reductase of V. fischeri consisted of 218 amino acids and had a calculated molecular weight of 24,562. Cloned flavin reductase expressed in Escherichia coli was purified virtually to homogeneity, and its basic biochemical properties were examined. As in the major flavin reductase in crude extracts of V. fischeri, cloned flavin reductase showed broad substrate specificity and served well as a catalyst to supply reduced flavin mononucleotide (FMNH2) to the bioluminescence reaction. The major flavin reductase of V. fischeri not only showed significant similarity in amino acid sequence to oxygen-insensitive NAD(P)H nitroreductases of Salmonella typhimurium, Enterobacter cloacae, and E. coli but also was associated with a low level of nitroreductase activity. The major flavin reductase of V. fischeri and the nitroreductases of members of the family Enterobacteriaceae would thus appear closely related in evolution and form a novel protein family. Images PMID:8206830

  12. Blue light induced reactive oxygen species from flavin mononucleotide and flavin adenine dinucleotide on lethality of HeLa cells.

    PubMed

    Yang, Ming-Yeh; Chang, Chih-Jui; Chen, Liang-Yü

    2017-08-01

    Photodynamic therapy (PDT) is a safe and non-invasive treatment for cancers and microbial infections. Various photosensitizers and light sources have been developed for clinical cancer therapies. Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are the cofactor of enzymes and are used as photosensitizers in this study. Targeting hypoxia and light-triggering reactive oxygen species (ROS) are experimental strategies for poisoning tumor cells in vitro. HeLa cells are committed to apoptosis when treated with FMN or FAD and exposed to visible blue light (the maximum emitted wavelength of blue light is 462nm). Under blue light irradiation at 3.744J/cm 2 (=0.52mW/cm 2 irradiated for 2h), the minimal lethal dose is 3.125μM and the median lethal doses (LD 50 ) for FMN and FAD are 6.5μM and 7.2μM, respectively. Individual exposure to visible blue light irradiation or riboflavin photosensitizers does not produce cytotoxicity and no side effects are observed in this study. The western blotting results also show that an intrinsic apoptosis pathway is activated by the ROS during photolysis of riboflavin analogues. Blue light triggers the cytotoxicity of riboflavins on HeLa cells in vitro. Based on these results, this is a feasible and efficient of PDT with an intrinsic photosensitizer for cancer research. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.

    PubMed

    Masuda, Masaki; Freguia, Stefano; Wang, Yung-Fu; Tsujimura, Seiya; Kano, Kenji

    2010-06-01

    Cyclic voltammograms of yeast extract-containing medium exhibit a clear redox peak around -0.4V vs. Ag|AgCl. Fermentative bacterium Lactococcus lactis was hereby shown to exploit this redox compound for extracellular electron transfer towards a graphite anode using glucose as an electron donor. High performance liquid chromatography revealed that this may be a flavin-type compound. The ability of L. lactis to exploit exogenous flavins for anodic glucose oxidation was confirmed by tests where flavin-type compounds were supplied to the bacterium in well defined media. Based on its mid-point potential, riboflavin can be regarded as a near-optimal mediator for microbially catalyzed anodic electron transfer. Riboflavin derivative flavin mononucleotide (FMN) was also exploited by L. lactis as a redox shuttle, unlike flavin adenine dinucleotide (FAD), possibly due to the absence of a specific transporter for the latter. The use of yeast extract in microbial fuel cell media is herein discouraged based on the related unwanted artificial addition of redox mediators which may distort experimental results. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Comparative study of flavins binding with human serum albumin: a fluorometric, thermodynamic, and molecular dynamics approach.

    PubMed

    Sengupta, Abhigyan; Sasikala, Wilbee D; Mukherjee, Arnab; Hazra, Partha

    2012-06-04

    Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are derivatives of riboflavin (RF), a water-soluble vitamin, more commonly known as vitamin B(2). Flavins have attracted special attention in the last few years because of the recent discovery of a large number of flavoproteins. In this work, these flavins are used as extrinsic fluorescence markers for probing the microheterogeneous environment of a well-known transport protein, human serum albumin (HSA). Steady-state and time-resolved fluorescence experiments confirm that both FMN and FAD bind to the Sudlow's site-1 (SS1) binding pocket of HSA, where Trp214 resides. In the case of RF, a fraction of RF molecules binds at the SS1, whereas the major fraction of RF molecules remains unbound or surface bound to the protein. Moreover, flavin(s)-HSA interactions are monitored with the help of isothermal titration calorimetry, which provides free energy, enthalpy, and entropy changes of binding along with the binding constants. The molecular picture of binding interaction between flavins and HSA is well explored by docking and molecular dynamics studies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. NAD(P)H:Flavin Mononucleotide Oxidoreductase Inactivation during 2,4,6-Trinitrotoluene Reduction

    PubMed Central

    Riefler, R. Guy; Smets, Barth F.

    2002-01-01

    Bacteria readily transform 2,4,6-trinitrotoluene (TNT), a contaminant frequently found at military bases and munitions production facilities, by reduction of the nitro group substituents. In this work, the kinetics of nitroreduction were investigated by using a model nitroreductase, NAD(P)H:flavin mononucleotide (FMN) oxidoreductase. Under mediation by NAD(P)H:FMN oxidoreductase, TNT rapidly reacted with NADH to form 2-hydroxylamino-4,6-dinitrotoluene and 4-hydroxylamino-2,6-dinitrotoluene, whereas 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene were not produced. Progressive loss of activity was observed during TNT reduction, indicating inactivation of the enzyme during transformation. It is likely that a nitrosodinitrotoluene intermediate reacted with the NAD(P)H:FMN oxidoreductase, leading to enzyme inactivation. A half-maximum constant with respect to NADH, KN, of 394 μM was measured, indicating possible NADH limitation under typical cellular conditions. A mathematical model that describes the inactivation process and NADH limitation provided a good fit to TNT reduction profiles. This work represents the first step in developing a comprehensive enzyme level understanding of nitroarene biotransformation. PMID:11916686

  16. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora.

    PubMed Central

    Rafii, F; Franklin, W; Cerniglia, C E

    1990-01-01

    A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly. Images PMID:2202258

  17. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora.

    PubMed

    Rafii, F; Franklin, W; Cerniglia, C E

    1990-07-01

    A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly.

  18. Outer membrane cytochromes/flavin interactions in Shewanella spp.—A molecular perspective

    DOE PAGES

    Babanova, Sofia; Matanovic, Ivana; Cornejo, Jose; ...

    2017-05-31

    Extracellular electron transfer (EET) is intrinsically associated with the core phenomena of energy harvesting/energy conversion in natural ecosystems and biotechnology applications. But, the mechanisms associated with EET are complex and involve molecular interactions that take place at the “bionano interface” where biotic/abiotic interactions are usually explored. Our work provides molecular perspective on the electron transfer mechanism(s) employed by Shewanella oneidensis MR-1. Molecular docking simulations were used to explain the interfacial relationships between two outer-membrane cytochromes (OMC) OmcA and MtrC and riboflavin (RF) and flavin mononucleotide (FMN), respectively. OMC-flavin interactions were analyzed by studying the electrostatic potential, the hydrophilic/hydrophobic surface properties,more » and the van der Waals surface of the OMC proteins. As a result, it was proposed that the interactions between flavins and OMCs are based on geometrical recognition event. The possible docking positions of RF and FMN to OmcA and MtrC were also shown.« less

  19. 1H NMR study of the hetero-association of flavin-mononucleotide with mutagenic dyes: ethidium bromide and proflavine

    NASA Astrophysics Data System (ADS)

    Evstigneev, M. P.; Mukhina, Yu. V.; Davies, D. B.

    The hetero-association of the vitamin B2 derivative, flavin-mononucleotide (FMN), with a mutagenic dye, ethidium bromide (EB) or proflavine (PF), has been studied by 1D and 2D 500 MHz 1H NMR spectroscopy. The variations of proton chemical shifts of both the vitamin and dye as a function of concentration and temperature were analysed in terms of the structural and thermodynamical properties of the FMN-EB and FMN-PF complexes in solution. The structures of the complexes were also investigated by observed intermolecular ROE contacts and molecular mechanics calculations. The results show that the 1 : 1 hetero-association complexes in solution are more stable than the self-association complexes, which is consistent with formation of an intermolecular hydrogen-bond in the hetero-complexes of FMN-EB and FMN-PF. Hence it is possible that the toxicity of aromatic molecules such as EB and PF may be reduced in vitro by the presence of FMN, partly because of the known antimutagenic action of FMN and partly because it has been shown in this work that there is an effective intermolecular association between the mutagens and the vitamin.

  20. A major integral protein of the plant plasma membrane binds flavin.

    PubMed

    Lorenz, Astrid; Kaldenhoff, Ralf; Hertel, Rainer

    2003-05-01

    Abundant flavin binding sites have been found in membranes of plants and fungi. With flavin mononucleotide-agarose affinity columns, riboflavin-binding activity from microsomes of Cucurbita pepoL. hypocotyls was purified and identified as a specific PIP1-homologous protein of the aquaporin family. Sequences such as gi|2149955 in Phaseolus vulgaris, PIP1b of Arabidopsis thaliana, and NtAQP1 of tobacco are closely related. The identification as a riboflavin-binding protein was confirmed by binding tests with an extract of Escherichia coli cells expressing the tobacco NtAQP1 as well as leaves of transgenic tobacco plants that overexpress NtAQP1 or were inhibited in PIP1 expression by antisense constructs. When binding was assayed in the presence of dithionite, the reduced flavin formed a relatively stable association with the protein. Upon dilution under oxidizing conditions, the adduct was resolved, and free flavin reappeared with a half time of about 30 min. Such an association can also be induced photochemically, with oxidized flavin by blue light at 450 nm, in the presence of an electron donor. Several criteria, localization in the plasma membrane, high abundance, affinity to roseoflavin, and photochemistry, argue for a role of the riboflavin-binding protein PIP1 as a photoreceptor.

  1. Uptake and Metabolism of Antibiotics Roseoflavin and 8-Demethyl-8-Aminoriboflavin in Riboflavin-Auxotrophic Listeria monocytogenes.

    PubMed

    Matern, Andreas; Pedrolli, Danielle; Großhennig, Stephanie; Johansson, Jörgen; Mack, Matthias

    2016-12-01

    The riboflavin analogs roseoflavin (RoF) and 8-demethyl-8-aminoriboflavin (AF) are produced by the bacteria Streptomyces davawensis and Streptomyces cinnabarinus Riboflavin analogs have the potential to be used as broad-spectrum antibiotics, and we therefore studied the metabolism of riboflavin (vitamin B 2 ), RoF, and AF in the human pathogen Listeria monocytogenes, a bacterium which is a riboflavin auxotroph. We show that the L. monocytogenes protein Lmo1945 is responsible for the uptake of riboflavin, RoF, and AF. Following import, these flavins are phosphorylated/adenylylated by the bifunctional flavokinase/flavin adenine dinucleotide (FAD) synthetase Lmo1329 and adenylylated by the unique FAD synthetase Lmo0728, the first monofunctional FAD synthetase to be described in bacteria. Lmo1329 generates the cofactors flavin mononucleotide (FMN) and FAD, whereas Lmo0728 produces FAD only. The combined activities of Lmo1329 and Lmo0728 are responsible for the intracellular formation of the toxic cofactor analogs roseoflavin mononucleotide (RoFMN), roseoflavin adenine dinucleotide (RoFAD), 8-demethyl-8-aminoriboflavin mononucleotide (AFMN), and 8-demethyl-8-aminoriboflavin adenine dinucleotide (AFAD). In vivo reporter gene assays and in vitro transcription/translation experiments show that the L. monocytogenes FMN riboswitch Rli96, which controls expression of the riboflavin transport gene lmo1945, is negatively affected by riboflavin/FMN and RoF/RoFMN but not by AF/AFMN. Treatment of L. monocytogenes with RoF or AF leads to drastically reduced FMN/FAD levels. We suggest that the reduced flavin cofactor levels in combination with concomitant synthesis of inactive cofactor analogs (RoFMN, RoFAD, AFMN, and AFAD) explain why RoF and AF contribute to antibiotic activity in L. monocytogenes IMPORTANCE: The riboflavin analogs roseoflavin (RoF) and 8-demethyl-8-aminoriboflavin (AF) are small molecules which are produced by Streptomyces davawensis and Streptomyces cinnabarinus RoF and AF were reported to have antibacterial activity, and we studied how these compounds are metabolized by the human bacterial pathogen Listeria monocytogenes We found that the L. monocytogenes protein Lmo1945 mediates uptake of AF and RoF and that the combined activities of the enzymes Lmo1329 and Lmo0728 are responsible for the conversion of AF and RoF to toxic cofactor analogs. Comparative studies with RoF and AF (a weaker antibiotic) suggest that the reduction in FMN/FAD levels and the formation of inactive FMN/FAD analogs explain to a large extent the antibiotic activity of AF and RoF. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Molecular dynamics simulation of dioxygen pathways through mini singlet oxygen generator (miniSOG), a genetically encoded marker and killer protein.

    PubMed

    Pietra, Francesco

    2014-12-01

    In this work, molecular dynamics (MD) simulations of the permeation of proteins by small gases of biological significance have been extended from gas carrier, sensor, and enzymatic proteins to genetically encoded tags and killer proteins. To this end, miniSOG was taken as an example of current high interest, using a biased form of MD, called random-acceleration MD. Various egress gates and binding pockets for dioxygen, as an indistinguishable mimic of singlet dioxygen, were found on both above and below the isoalloxazine plane of the flavin mononucleotide cofactor in miniSOG. Of such gates and binding pockets, those lying within two opposite cones, coaxial with a line normal to the isoalloxazine plane, and with the vertex at the center of such a plane are those most visited by the escaping gas molecule. Out of residues most capable of quenching (1) O2 , Y30, lying near the base of one such a cone, and H85, near the base of the opposite cone, are held to be most responsible for the reduced quantum yield of (1) O2 with folded miniSOG with respect to free flavin mononucleotide in solution. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  3. A Modified Shuttle Plasmid Facilitates Expression of a Flavin Mononucleotide-Based Fluorescent Protein in Treponema denticola ATCC 35405

    PubMed Central

    Godovikova, Valentina; Goetting-Minesky, M. Paula; Shin, Jae M.; Kapila, Yvonne L.; Rickard, Alexander H.

    2015-01-01

    Oral pathogens, including Treponema denticola, initiate the dysregulation of tissue homeostasis that characterizes periodontitis. However, progress of research on the roles of T. denticola in microbe-host interactions and signaling, microbial communities, microbial physiology, and molecular evolution has been hampered by limitations in genetic methodologies. This is typified by an extremely low transformation efficiency and inability to transform the most widely studied T. denticola strain with shuttle plasmids. Previous studies have suggested that robust restriction-modification (R-M) systems in T. denticola contributed to these problems. To facilitate further molecular genetic analysis of T. denticola behavior, we optimized existing protocols such that shuttle plasmid transformation efficiency was increased by >100-fold over prior reports. Here, we report routine transformation of T. denticola ATCC 35405 with shuttle plasmids, independently of both plasmid methylation status and activity of the type II restriction endonuclease encoded by TDE0911. To validate the utility of this methodological advance, we demonstrated expression and activity in T. denticola of a flavin mononucleotide-based fluorescent protein (FbFP) that is active under anoxic conditions. Addition of routine plasmid-based fluorescence labeling to the Treponema toolset will enable more-rigorous and -detailed studies of the behavior of this organism. PMID:26162875

  4. The prokaryotic FAD synthetase family: a potential drug target.

    PubMed

    Serrano, Ana; Ferreira, Patricia; Martínez-Júlvez, Marta; Medina, Milagros

    2013-01-01

    Disruption of cellular production of the flavin cofactors, flavin adenine mononucleotide (FMN) and flavin adenine dinucleotide(FAD) will prevent the assembly of a large number of flavoproteins and flavoenzymes involved in key metabolic processes in all types of organisms. The enzymes responsible for FMN and FAD production in prokaryotes and eukaryotes exhibit various structural characteristics to catalyze the same chemistry, a fact that converts the prokaryotic FAD synthetase (FADS) in a potential drug target for the development of inhibitors endowed with anti-pathogenic activity. The first step before searching for selective inhibitors of FADS is to understand the structural and functional mechanisms for the riboflavin kinase and FMN adenylyltransferase activities of the prokaryotic enzyme, and particularly to identify their differential functional characteristics with regard to the enzymes performing similar functions in other organisms, particularly humans. In this paper, an overview of the current knowledge of the structure-function relationships in prokaryotic FADS has been presented, as well as of the state of the art in the use of these enzymes as drug targets.

  5. Structure and Mechanism of a Eukaryotic FMN Adenylyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huerta, Carlos; Borek, Dominika; Machius, Mischa

    2009-12-01

    Flavin mononucleotide adenylyltransferase (FMNAT) catalyzes the formation of the essential flavocoenzyme flavin adenine dinucleotide (FAD) and plays an important role in flavocoenzyme homeostasis regulation. By sequence comparison, bacterial and eukaryotic FMNAT enzymes belong to two different protein superfamilies and apparently utilize different sets of active-site residues to accomplish the same chemistry. Here we report the first structural characterization of a eukaryotic FMNAT from the pathogenic yeast Candida glabrata. Four crystal structures of C. glabrata FMNAT in different complexed forms were determined at 1.20-1.95 A resolutions, capturing the enzyme active-site states prior to and after catalysis. These structures reveal a novelmore » flavin-binding mode and a unique enzyme-bound FAD conformation. Comparison of the bacterial and eukaryotic FMNATs provides a structural basis for understanding the convergent evolution of the same FMNAT activity from different protein ancestors. Structure-based investigation of the kinetic properties of FMNAT should offer insights into the regulatory mechanisms of FAD homeostasis by FMNAT in eukaryotic organisms.« less

  6. Flavins in Coastal Marine Sediments: New Perspectives on Diagenetic Electron Transfer

    NASA Astrophysics Data System (ADS)

    Monteverde, D.; Berelson, W.; Baronas, J. J.; Sanudo-Wilhelmy, S. A.

    2016-02-01

    Coastal marine sediments play a critical role in the global cycling of metals and nutrients, many of which undergo diagenetic alteration. Central to these transformations are redox reactions where electron-rich organic matter is oxidized via transfer to terminal electron acceptors (NO3-, MnOx, FeOx, SO42-). The flavins (flavin adenine dinucleotide [FAD], flavin mononucleotide [FMN], and riboflavin [B2]) are microbially synthesized organic coenzymes that perform both single and double electron transfer and are known to mediate reduction of insoluble metal oxides. Culture experiments have found high rates of flavin excretion in metal-reducing Shewanella and Geobacter species, however environmental measurements of these highly labile molecules have not been previously reported. Here we present porewater measurements of FAD, FMN, and B2 from San Pedro Basin. This California Borderland basin is silled, suboxic, 900 m deep, and experiences high sedimentation. Flavin concentrations ranged from pico- (FAD: 0- 60 pM; B2: 40 - 90 pM) to nanomolar (FMN: 0.4 - 1.2 nM). The concentration cascade of FMN>B2>FAD fits well within culture experiments. Interestingly, profiles of all three flavins show a near linear increase with depth from 0-30 cm and a relatively steady concentration from 30-45 cm, supporting likely in situ production. Additionally, the flavins showed a negative correlation with dissolved Fe (R2 = 0.7 for FMN, 0.8 for FAD, and 0.9 for B2), which decreased linearly with depth from 160µM to 65µM. We discuss hypothesized mechanisms controlling flavin concentrations based on a suite of sediment geochemical parameters (dissolved Fe, Mn, TCO2, δ13C, NH3, DOM, and SO42-) as well as implications for microbial redox syntrophy. These data provide a critical link between the extensive culture-based mechanistic understanding of flavin function and the sedimentary environment. Furthermore, these results demonstrate that flavins likely serve as a significant electron transfer intermediaries in the marine sediment carbon cycle.

  7. Purification, Characterization, and Overexpression of Flavin Reductase Involved in Dibenzothiophene Desulfurization by Rhodococcus erythropolis D-1

    PubMed Central

    Matsubara, Toshiyuki; Ohshiro, Takashi; Nishina, Yoshihiro; Izumi, Yoshikazu

    2001-01-01

    The dibenzothiophene (DBT)-desulfurizing bacterium, Rhodococcus erythropolis D-1, removes sulfur from DBT to form 2-hydroxybiphenyl using four enzymes, DszC, DszA, DszB, and flavin reductase. In this study, we purified and characterized the flavin reductase from R. erythropolis D-1 grown in a medium containing DBT as the sole source of sulfur. It is conceivable that the enzyme is essential for two monooxygenase (DszC and DszA) reactions in vivo. The purified flavin reductase contains no chromogenic cofactors and was found to have a molecular mass of 86 kDa and four identical 22-kDa subunits. The enzyme catalyzed NADH-dependent reduction of flavin mononucleotide (FMN), and the Km values for NADH and FMN were 208 and 10.8 μM, respectively. Flavin adenine dinucleotide was a poor substrate, and NADPH was inert. The enzyme did not catalyze reduction of any nitroaromatic compound. The optimal temperature and optimal pH for enzyme activity were 35°C and 6.0, respectively, and the enzyme retained 30% of its activity after heat treatment at 80°C for 30 min. The N-terminal amino acid sequence of the purified flavin reductase was identical to that of DszD of R. erythropolis IGTS8 (K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14:1705–1709, 1996). The flavin reductase gene was amplified with primers designed by using dszD of R. erythropolis IGTS8, and the enzyme was overexpressed in Escherichia coli. The specific activity in crude extracts of the overexpressed strain was about 275-fold that of the wild-type strain. PMID:11229908

  8. Purification and properties of trimethylamine oxide reductase from Salmonella typhimurium.

    PubMed Central

    Kwan, H S; Barrett, E L

    1983-01-01

    The major inducible trimethylamine oxide reductase was purified from Salmonella typhimurium LT2. The molecular weights of the native enzyme were estimated to be 332,000 by gel filtration and 170,000 by nondenaturing disc gel electrophoresis. In sodium dodecyl sulfate-gel electrophoresis, the enzyme formed a single band of molecular weight 84,000. The isoelectric point was 4.28. Maximum activity was at pH 5.65 and 45 degrees C. Reduced flavin mononucleotide, but not reduced flavin adenine dinucleotide, served as an electron donor. The Km for trimethylamine oxide was 0.89 mM and Vmax was 1,450 U/mg of protein. The enzyme reduced chlorate with a Km of 2.2 mM and a Vmax of 350 U/mg of protein. Images PMID:6350272

  9. Coenzyme Recognition and Gene Regulation by a Flavin Mononucleotide Riboswitch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serganov, A.; Huang, L; Patel, D

    2009-01-01

    The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches also known as RFN elements, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B2) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains.more » FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg{sup 2+}-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.« less

  10. Active site residues critical for flavin binding and 5,6-dimethylbenzimidazole biosynthesis in the flavin destructase enzyme BluB.

    PubMed

    Yu, Ta-Yi; Mok, Kenny C; Kennedy, Kristopher J; Valton, Julien; Anderson, Karen S; Walker, Graham C; Taga, Michiko E

    2012-06-01

    The "flavin destructase" enzyme BluB catalyzes the unprecedented conversion of flavin mononucleotide (FMN) to 5,6-dimethylbenzimidazole (DMB), a component of vitamin B(12). Because of its unusual chemistry, the mechanism of this transformation has remained elusive. This study reports the identification of 12 mutant forms of BluB that have severely reduced catalytic function, though most retain the ability to bind flavin. The "flavin destructase" BluB is an unusual enzyme that fragments the flavin cofactor FMNH(2) in the presence of oxygen to produce 5,6-dimethylbenzimidazole (DMB), the lower axial ligand of vitamin B(12) (cobalamin). Despite the similarities in sequence and structure between BluB and the nitroreductase and flavin oxidoreductase enzyme families, BluB is the only enzyme known to fragment a flavin isoalloxazine ring. To explore the catalytic residues involved in this unusual reaction, mutants of BluB impaired in DMB biosynthesis were identified in a genetic screen in the bacterium Sinorhizobium meliloti. Of the 16 unique point mutations identified in the screen, the majority were located in conserved residues in the active site or in the unique "lid" domain proposed to shield the active site from solvent. Steady-state enzyme assays of 12 purified mutant proteins showed a significant reduction in DMB synthesis in all of the mutants, with eight completely defective in DMB production. Ten of these mutants have weaker binding affinities for both oxidized and reduced FMN, though only two have a significant effect on complex stability. These results implicate several conserved residues in BluB's unique ability to fragment FMNH(2) and demonstrate the sensitivity of BluB's active site to structural perturbations. This work lays the foundation for mechanistic studies of this enzyme and further advances our understanding of the structure-function relationship of BluB. Copyright © 2012 The Protein Society.

  11. On-line focusing of flavin derivatives using Dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Britz-McKibbin, Philip; Otsuka, Koji; Terabe, Shigeru

    2002-08-01

    Simple yet effective methods to enhance concentration sensitivity is needed for capillary electrophoresis (CE) to become a practical method to analyze trace levels of analytes in real samples. In this report, the development of a novel on-line preconcentration technique combining dynamic pH junction and sweeping modes of focusing is applied to the sensitive and selective analysis of three flavin derivatives: riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Picomolar (pM) detectability of flavins by CE with laser-induced fluorescence (LIF) detection is demonstrated through effective focusing of large sample volumes (up to 22% capillary length) using a dual pH junction-sweeping focusing mode. This results in greater than a 1,200-fold improvement in sensitivity relative to conventional injection methods, giving a limit of detection (S/N = 3) of approximately 4.0 pM for FAD and FMN. Flavin focusing is examined in terms of analyte mobility dependence on buffer pH, borate complexation and SDS interaction. Dynamic pH junction-sweeping extends on-line focusing to both neutral (hydrophobic) and weakly acidic (hydrophilic) species and is considered useful in cases when either conventional sweeping or dynamic pH junction techniques used alone are less effective for certain classes of analytes. Enhanced focusing performance by this hyphenated method was demonstrated by greater than a 4-fold reduction in flavin bandwidth, as compared to either sweeping or dynamic pH junction, reflected by analyte detector bandwidths <0.20 cm. Novel on-line focusing strategies are required to improve sensitivity in CE, which may be applied toward more effective biochemical analysis methods for diverse types of analytes.

  12. Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH.

    PubMed

    Okamoto, Akihiro; Kalathil, Shafeer; Deng, Xiao; Hashimoto, Kazuhito; Nakamura, Ryuhei; Nealson, Kenneth H

    2014-07-11

    The variety of solid surfaces to and from which microbes can deliver electrons by extracellular electron transport (EET) processes via outer-membrane c-type cytochromes (OM c-Cyts) expands the importance of microbial respiration in natural environments and industrial applications. Here, we demonstrate that the bifurcated EET pathway of OM c-Cyts sustains the diversity of the EET surface in Shewanella oneidensis MR-1 via specific binding with cell-secreted flavin mononucleotide (FMN) and riboflavin (RF). Microbial current production and whole-cell differential pulse voltammetry revealed that RF and FMN enhance EET as bound cofactors in a similar manner. Conversely, FMN and RF were clearly differentiated in the EET enhancement by gene-deletion of OM c-Cyts and the dependency of the electrode potential and pH. These results indicate that RF and FMN have specific binding sites in OM c-Cyts and highlight the potential roles of these flavin-cytochrome complexes in controlling the rate of electron transfer to surfaces with diverse potential and pH.

  13. Analysis of the bacterial luciferase mobile loop by replica-exchange molecular dynamics.

    PubMed

    Campbell, Zachary T; Baldwin, Thomas O; Miyashita, Osamu

    2010-12-15

    Bacterial luciferase contains an extended 29-residue mobile loop. Movements of this loop are governed by binding of either flavin mononucleotide (FMNH2) or polyvalent anions. To understand this process, loop dynamics were investigated using replica-exchange molecular dynamics that yielded conformational ensembles in either the presence or absence of FMNH2. The resulting data were analyzed using clustering and network analysis. We observed the closed conformations that are visited only in the simulations with the ligand. Yet the mobile loop is intrinsically flexible, and FMNH2 binding modifies the relative populations of conformations. This model provides unique information regarding the function of a crystallographically disordered segment of the loop near the binding site. Structures at or near the fringe of this network were compatible with flavin binding or release. Finally, we demonstrate that the crystallographically observed conformation of the mobile loop bound to oxidized flavin was influenced by crystal packing. Thus, our study has revealed what we believe are novel conformations of the mobile loop and additional context for experimentally determined structures. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. STUDIES ON THE INFLUENCE OF X-RAY IRRADIATION IN VIT. B$sub 2$ METABOLISM. I. INFLUENCE OF VIT. B$sub 2$ DISTRIBUTION IN ORGANS OF RATS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, K.; Kusumoto, T.; Nakamura, J.

    X rays were directed to the liver region of albino rats. The distribution of vitamin B/sub 2/ in the liver, kidney, intestine, heart, spleen, and blood was investigated 6, 12, 18, and 24 hr after the irradiation. Total vitamin B/sub 2/ increased in these organs except in the blood; flavin mononucleotide (FMN) and free riboflavin (FR) increased without exception, and flavin adenine dinucleotide (FAD) decreased except in the spleen, that is, abnormal distribution of vitamin B/sub 2/ fractions was significant except in the spleen. Successive estimations of the fractions suggest that the metabolic disturbances by irradiation occur in the reactionmore » FMN - FAD initially, then in FR - FMN and FR - FAD. (Absts. Japan. Med., 1: No. 7, 1960.)« less

  15. Flavins in Marine Sediments: A Potentially Ubiquitous Intermediary In Microbial Electron Transfer

    NASA Astrophysics Data System (ADS)

    Monteverde, D.; Sylvan, J. B.; Suffridge, C.; Berelson, W.; Sanudo-Wilhelmy, S. A.; Baronas, J. J.

    2016-12-01

    The flavins (riboflavin, flavin mononucleotide [FMN], flavin adenine dinucleotide [FA­­D]) are a class of organic compounds synthesized by organisms to assist in redox reactions. They represent the largest class of required coenzymes, rivaled only by iron in the number of unique enzymes they bind. In addition to internal use, cultured metal-reducing organisms such as Shewanella and Geobacter have been known to release flavins into the extracellular pool to aid in external electron transfer. So called "electron shuttles" can allow organisms to overcome unfavorable geochemical zonation by transferring electrons onto a relatively distant insoluble acceptor. Despite the extensive culture work, flavins have not been systematically measured in the environment. Here we present the first set of flavin profiles from the water column and pore waters of a marine environment. Samples were taken from San Pedro Basin, a 900 meter deep, silled basin, with high seasonal inputs of organic carbon, low bottom water oxygen concentrations, and laminated sediments - making it ideal to explore variations in sediment geochemical zonations. Dissolved flavin concentrations in the water column and pore waters collected from two cores were preconcentrated via solid phase extraction and measured via LC/MS. Flavin profiles are compared to a suite of geochemical parameters as well as sediment microbial 16s rRNA data. Preliminary results show that FMN is typically an order of magnitude higher concentration than riboflavin (800-300pM versus 100-50pM). Porewater concentrations were elevated over water column values for all analytes (ranging from 100-2000pM) and displayed an increasing trend with depth in both cores. This increasing trend correlated with a decrease in dissolved Fe (ranging from 160 µM in surface sediments to 65 µM at 40 cm) and shifts in microbial diversity from sediments shallower than 5 cm depth dominated by Delta- and Gammaproteobacteria to subsurface sediments dominated by Chloroflexi and Archaea at 20-40 cm. These first environmental profiles of flavins in the marine environmental support previous observations of the importance of electron transfer intermediaries in culture and point to an important role for flavins in modern marine microbial communities.

  16. H2O2 Production in Species of the Lactobacillus acidophilus Group: a Central Role for a Novel NADH-Dependent Flavin Reductase

    PubMed Central

    Hertzberger, Rosanne; Arents, Jos; Dekker, Henk L.; Pridmore, R. David; Gysler, Christof; Kleerebezem, Michiel

    2014-01-01

    Hydrogen peroxide production is a well-known trait of many bacterial species associated with the human body. In the presence of oxygen, the probiotic lactic acid bacterium Lactobacillus johnsonii NCC 533 excretes up to 1 mM H2O2, inducing growth stagnation and cell death. Disruption of genes commonly assumed to be involved in H2O2 production (e.g., pyruvate oxidase, NADH oxidase, and lactate oxidase) did not affect this. Here we describe the purification of a novel NADH-dependent flavin reductase encoded by two highly similar genes (LJ_0548 and LJ_0549) that are conserved in lactobacilli belonging to the Lactobacillus acidophilus group. The genes are predicted to encode two 20-kDa proteins containing flavin mononucleotide (FMN) reductase conserved domains. Reductase activity requires FMN, flavin adenine dinucleotide (FAD), or riboflavin and is specific for NADH and not NADPH. The Km for FMN is 30 ± 8 μM, in accordance with its proposed in vivo role in H2O2 production. Deletion of the encoding genes in L. johnsonii led to a 40-fold reduction of hydrogen peroxide formation. H2O2 production in this mutant could only be restored by in trans complementation of both genes. Our work identifies a novel, conserved NADH-dependent flavin reductase that is prominently involved in H2O2 production in L. johnsonii. PMID:24487531

  17. [The release of flavin adenine dinucleotide upon local conformational transition in electron-transferring flavoprotein induced by trimethylamine dehydrogenase].

    PubMed

    Lomtev, A S; Bobrov, A G; Vekshin, N L

    2004-01-01

    The electron-transferring proteins, trimethylamine dehydrogenase (TMAD) and electron-transferring flavoprotein (ETF) from the bacterium Methylophilius methylotrophus, were studied in vitro by fluorescence spectroscopy. Flavin adenine dinucleotide (FAD) was found to be capable of a slow and spontaneous release from ETF, which is accompanied by an increase in flavin fluorescence. At a rather high ionic strength (0.1 M NaCl or 50 mM phosphate), the FAD release is sharply activated by TMAD preparations that induce a local conformational transition in ETF. The values of tryptophan fluorescence polarization and lifetime and the use of the Levshin-Perrin equation helped show that the size of protein particles remain unchanged upon the TMAD and ETF mixing; i.e., these proteins themselves do not form a stable complex with each other. The protein mixture did not release flavin from ETF in the presence of trimethylamine and formaldehyde. In this case, a stable complex between the proteins appeared to be formed under the action of formaldehyde. Upon a short-term incubation of ETF with ferricyanide, FAD was hydrolyzed to flavin mononucleotide (FMN) and AMP. This fact explains the previous detection of AMP in ETF preparations by some researches. A fluorescence method was proposed for distinguishing FAD from FMN in solution using ethylene glycol. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 3; see also http://www.maik.ru.

  18. Identification and cloning of four riboswitches from Burkholderia pseudomallei strain K96243

    NASA Astrophysics Data System (ADS)

    Munyati-Othman, Noor; Fatah, Ahmad Luqman Abdul; Piji, Mohd Al Akmarul Fizree Bin Md; Ramlan, Effirul Ikhwan; Raih, Mohd Firdaus

    2015-09-01

    Structured RNAs referred as riboswitches have been predicted to be present in the genome sequence of Burkholderia pseudomallei strain K96243. Four of the riboswitches were identified and analyzed through BLASTN, Rfam search and multiple sequence alignment. The RNA aptamers belong to the following riboswitch classifications: glycine riboswitch, cobalamin riboswitch, S-adenosyl-(L)-homocysteine (SAH) riboswitch and flavin mononucleotide (FMN) riboswitch. The conserved nucleotides for each aptamer were identified and were marked on the secondary structure generated by RNAfold. These riboswitches were successfully amplified and cloned for further study.

  19. The intrinsic fluorescence of FAD and its application in analytical chemistry: a review

    NASA Astrophysics Data System (ADS)

    Galbán, Javier; Sanz-Vicente, Isabel; Navarro, Jesús; de Marcos, Susana

    2016-12-01

    This review (with 106 references) mainly deals with the analytical applications of flavin-adenine dinucleotide (FAD) fluorescence. In the first section, the spectroscopic properties of this compound are reviewed at the light of his different acid-base, oxidation and structural forms; the chemical and spectroscopic properties of flavin mononucleotide (FMN) and other flavins will be also briefly discussed. The second section discusses how the properties of FAD fluorescence changes in flavoenzymes (FvEs), again considering the different chemical and structural forms; the glucose oxidase (GOx) and the choline oxidase (ChOx) cases will be commented. Since almost certainly the most reported analytical application of FAD fluorescence is as an auto-indicator in enzymatic methods catalysed by FvE oxidoreductases, it is important to know how the concentrations of the different forms of FAD changes along the reaction and, consequently, the fluorescence and the analytical signals. An approach to do this will be presented in section 3. The fourth part of the paper compiles the analytical applications which have been reported until now based in these fluorescence properties. Finally, some suggestions about tentative future research are also given.

  20. Flavin-Dependent Redox Transfers by the Two-Component Diketocamphane Monooxygenases of Camphor-Grown Pseudomonas putida NCIMB 10007

    PubMed Central

    Willetts, Andrew; Kelly, David

    2016-01-01

    The progressive titres of key monooxygenases and their requisite native donors of reducing power were used to assess the relative contribution of various camphor plasmid (CAM plasmid)- and chromosome-coded activities to biodegradation of (rac)-camphor at successive stages throughout growth of Pseudomonas putida NCIMB 10007 on the bicylic monoterpenoid. A number of different flavin reductases (FRs) have the potential to supply reduced flavin mononucleotide to both 2,5- and 3,6-diketocamphane monooxygenase, the key isoenzymic two-component monooxygenases that delineate respectively the (+)- and (−)-camphor branches of the convergent degradation pathway. Two different constitutive chromosome-coded ferric reductases able to act as FRs can serve such as role throughout all stages of camphor-dependent growth, whereas Fred, a chromosome-coded inducible FR can only play a potentially significant role in the relatively late stages. Putidaredoxin reductase, an inducible CAM plasmid-coded flavoprotein that serves an established role as a redox intermediate for plasmid-coded cytochrome P450 monooxygenase also has the potential to serve as an important FR for both diketocamphane monooxygenases (DKCMOs) throughout most stages of camphor-dependent growth. PMID:27754389

  1. The intrinsic fluorescence of FAD and its application in analytical chemistry: a review.

    PubMed

    Galbán, Javier; Sanz-Vicente, Isabel; Navarro, Jesús; de Marcos, Susana

    2016-12-19

    This review (with 106 references) mainly deals with the analytical applications of flavin-adenine dinucleotide (FAD) fluorescence. In the first section, the spectroscopic properties of this compound are reviewed at the light of his different acid-base, oxidation and structural forms; the chemical and spectroscopic properties of flavin mononucleotide (FMN) and other flavins will be also briefly discussed. The second section discusses how the properties of FAD fluorescence changes in flavoenzymes (FvEs), again considering the different chemical and structural forms; the glucose oxidase (GOx) and the choline oxidase (ChOx) cases will be commented. Since almost certainly the most reported analytical application of FAD fluorescence is as an auto-indicator in enzymatic methods catalysed by FvE oxidoreductases, it is important to know how the concentrations of the different forms of FAD changes along the reaction and, consequently, the fluorescence and the analytical signals. An approach to do this will be presented in section 3. The fourth part of the paper compiles the analytical applications which have been reported until now based in these fluorescence properties. Finally, some suggestions about tentative future research are also given.

  2. Sub-millitesla magnetic field effects on the recombination reaction of flavin and ascorbic acid radicals

    NASA Astrophysics Data System (ADS)

    Evans, Emrys W.; Kattnig, Daniel R.; Henbest, Kevin B.; Hore, P. J.; Mackenzie, Stuart R.; Timmel, Christiane R.

    2016-08-01

    Even though the interaction of a <1 mT magnetic field with an electron spin is less than a millionth of the thermal energy at room temperature (kBT), it still can have a profound effect on the quantum yields of radical pair reactions. We present a study of the effects of sub-millitesla magnetic fields on the photoreaction of flavin mononucleotide with ascorbic acid. Direct control of the reaction pathway is achieved by varying the rate of electron transfer from ascorbic acid to the photo-excited flavin. At pH 7.0, we verify the theoretical prediction that, apart from a sign change, the form of the magnetic field effect is independent of the initial spin configuration of the radical pair. The data agree well with model calculations based on a Green's function approach that allows multinuclear spin systems to be treated including the diffusive motion of the radicals, their spin-selective recombination reactions, and the effects of the inter-radical exchange interaction. The protonation states of the radicals are uniquely determined from the form of the magnetic field-dependence. At pH 3.0, the effects of two chemically distinct radical pair complexes combine to produce a pronounced response to ˜500 μT magnetic fields. These findings are relevant to the magnetic responses of cryptochromes (flavin-containing proteins proposed as magnetoreceptors in birds) and may aid the evaluation of effects of weak magnetic fields on other biologically relevant electron transfer processes.

  3. On-line wall-free cell for laser-induced fluorescence detection in capillary electrophoresis.

    PubMed

    Yu, Chang-Zhu; He, You-Zhao; Xie, Hai-Yang; Gao, Yong; Gan, Wu-Er; Li, Jun

    2009-05-15

    A wall-free detection method based on liquid junction in a capillary gap was proposed for laser-induced fluorescence (LIF) of capillary electrophoresis (CE). The capillary gap of the wall-free cell was fabricated by etching a 10-mm x 50-microm I.D. fused-silica capillary to obtain a polyimide coating sleeve, decoating about 6mm at one end of both 50 microm I.D. separation and liquid junction capillary, inserting the treated capillary ends into the coating sleeve oppositely, fixing the capillaries with a gap distance of 140 microm by epoxy glue and removing the coating sleeve by burning. The theoretical model, experimental results and wall-free cell images indicated that the gap distance and applied voltage were main influence factors on the wall-free detection. Since the wall-free cell increased the absorption light path and avoided the stray light from the capillary wall, it improved the ratio of signal to noise and limit of detection (LOD) of CE-LIF. Three flavin compounds of riboflavin (RF), flavin mononucleotide sodium (FMN) and flavin adenine dinucleotide disodium (FAD) were used to evaluate the wall-free detection method. Compared with on-column cell, the LODs of the wall-free cell were improved 15-, 6- and 9-fold for RF, FMN and FAD, respectively. The linear calibration concentrations of the flavins ranged from 0.005 to 5.0 micromol/L. The column efficiency was in the range from 1.0 x 10(5) to 2.5 x 10(5) plates. The wall-free detection of CE-LIF was applied to the analysis of the flavins in spinach and lettuce leaves.

  4. Evidence for Posttranslational Protein Flavinylation in the Syphilis Spirochete Treponema pallidum: Structural and Biochemical Insights from the Catalytic Core of a Periplasmic Flavin-Trafficking Protein

    PubMed Central

    Deka, Ranjit K.; Brautigam, Chad A.; Liu, Wei Z.

    2015-01-01

    ABSTRACT The syphilis spirochete Treponema pallidum is an important human pathogen but a highly enigmatic bacterium that cannot be cultivated in vitro. T. pallidum lacks many biosynthetic pathways and therefore has evolved the capability to exploit host-derived metabolites via its periplasmic lipoprotein repertoire. We recently reported a flavin-trafficking protein in T. pallidum (Ftp_Tp; TP0796) as the first bacterial metal-dependent flavin adenine dinucleotide (FAD) pyrophosphatase that hydrolyzes FAD into AMP and flavin mononucleotide (FMN) in the spirochete’s periplasm. However, orthologs of Ftp_Tp from other bacteria appear to lack this hydrolytic activity; rather, they bind and flavinylate subunits of a cytoplasmic membrane redox system (Nqr/Rnf). To further explore this dichotomy, biochemical analyses, protein crystallography, and structure-based mutagenesis were used to show that a single amino acid change (N55Y) in Ftp_Tp converts it from an Mg2+-dependent FAD pyrophosphatase to an FAD-binding protein. We also demonstrated that Ftp_Tp has a second enzymatic activity (Mg2+-FMN transferase); it flavinylates protein(s) covalently with FMN on a threonine side chain of an appropriate sequence motif using FAD as the substrate. Moreover, mutation of a metal-binding residue (D284A) eliminates Ftp_Tp’s dual activities, thereby underscoring the role of Mg2+ in the enzyme-catalyzed reactions. The posttranslational flavinylation activity that can target a periplasmic lipoprotein (TP0171) has not previously been described. The observed activities reveal the catalytic flexibility of a treponemal protein to perform multiple functions. Together, these findings imply mechanisms by which a dynamic pool of flavin cofactor is maintained and how flavoproteins are generated by Ftp_Tp locally in the T. pallidum periplasm. PMID:25944861

  5. Light production in the luminous fishes Photoblepharon and Anomalops from the Banda Islands.

    PubMed

    Haneda, Y; Tsuji, F I

    1971-07-09

    The unresolved mechanism of light production in Photoblepharon and Anomalops has been reinvestigated in fresh and preserved material. Based on biochemical evidence obtained with emulsions and cell-free extracts of the organs, especially the stimulation of light with reduced flavin mononucleotide, and on electron microscopy of organ sections showing the presence of numerous bacteria, we conclude that the light is produced by symbiotic luminous bacteria. Because of the continuing failure to cultivate the luminous bacteria and because of their morphology, we suggest that the bacteria are of a primitive type called bacteroids.

  6. Structure, recognition and adaptive binding in RNA aptamer complexes.

    PubMed

    Patel, D J; Suri, A K; Jiang, F; Jiang, L; Fan, P; Kumar, R A; Nonin, S

    1997-10-10

    Novel features of RNA structure, recognition and discrimination have been recently elucidated through the solution structural characterization of RNA aptamers that bind cofactors, aminoglycoside antibiotics, amino acids and peptides with high affinity and specificity. This review presents the solution structures of RNA aptamer complexes with adenosine monophosphate, flavin mononucleotide, arginine/citrulline and tobramycin together with an example of hydrogen exchange measurements of the base-pair kinetics for the AMP-RNA aptamer complex. A comparative analysis of the structures of these RNA aptamer complexes yields the principles, patterns and diversity associated with RNA architecture, molecular recognition and adaptive binding associated with complex formation.

  7. Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Marcus J.; White, Gaye F.; Norman, Michael

    2015-07-01

    Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 Å x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX₈C disulfide that, when substituted for AX₈A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation ofmore » a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen.« less

  8. Discovery of antimicrobial compounds targeting bacterial type FAD synthetases.

    PubMed

    Sebastián, María; Anoz-Carbonell, Ernesto; Gracia, Begoña; Cossio, Pilar; Aínsa, José Antonio; Lans, Isaías; Medina, Milagros

    2018-12-01

    The increase of bacterial strains resistant to most of the available antibiotics shows a need to explore novel antibacterial targets to discover antimicrobial drugs. Bifunctional bacterial FAD synthetases (FADSs) synthesise the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These cofactors act in vital processes as part of flavoproteins, making FADS an essential enzyme. Bacterial FADSs are potential antibacterial targets because of differences to mammalian enzymes, particularly at the FAD producing site. We have optimised an activity-based high throughput screening assay targeting Corynebacterium ammoniagenes FADS (CaFADS) that identifies inhibitors of its different activities. We selected the three best high-performing inhibitors of the FMN:adenylyltransferase activity (FMNAT) and studied their inhibition mechanisms and binding properties. The specificity of the CaFADS hits was evaluated by studying also their effect on the Streptococcus pneumoniae FADS activities, envisaging differences that can be used to discover species-specific antibacterial drugs. The antimicrobial effect of these compounds was also evaluated on C. ammoniagenes, S. pneumoniae, and Mycobacterium tuberculosis cultures, finding hits with favourable antimicrobial properties.

  9. The RFK catalytic cycle of the pathogen Streptococcus pneumoniae shows species-specific features in prokaryotic FMN synthesis.

    PubMed

    Sebastián, María; Velázquez-Campoy, Adrián; Medina, Milagros

    2018-12-01

    Emergence of multidrug-resistant bacteria forces us to explore new therapeutic strategies, and proteins involved in key metabolic pathways are promising anti-bacterial targets. Bifunctional flavin-adenine dinucleotide (FAD) synthetases (FADS) are prokaryotic enzymes that synthesise the flavin mononucleotide (FMN) and FAD cofactors. The FADS from the human pathogen Streptococcus pneumoniae (SpnFADS)-causative agent of pneumonia in humans - shows relevant catalytic dissimilarities compared to other FADSs. Here, by integrating thermodynamic and kinetic data, we present a global description of the riboflavin kinase activity of SpnFADS, as well as of the inhibition mechanisms regulating this activity. Our data shed light on biophysical determinants that modulate species-specific conformational changes leading to catalytically competent conformations, as well as binding rates and affinities of substrates versus products. This knowledge paves the way for the development of tools - that taking advantage of the regulatory dissimilarities during FMN biosynthesis in different species - might be used in the discovery of specific anti-pneumococcal drugs.

  10. Kinetic characterization of Vibrio cholerae ApbE: Substrate specificity and regulatory mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Xuan; Liang, Pingdong; Raba, Daniel Alexander

    ApbE is a member of a novel family of flavin transferases that incorporates flavin mononucleotide (FMN) to subunits of diverse respiratory complexes, which fulfill important homeostatic functions. In this work a detailed characterization of Vibrio cholerae ApbE physiologic activity, substrate specificity and pH dependency was carried out. The data obtained show novel characteristics of the regulation and function of this family. For instance, our experiments indicate that divalent cations are essential for ApbE function, and that the selectivity depends largely on size and the coordination sphere of the cation. Our data also show that ApbE regulation by pH, ADP andmore » potassium is an important mechanism that enhances the adaptation, survival and colonization of V. cholerae in the small intestine. Moreover, studies of the pH-dependency of the activity show that the reaction is favored under alkaline conditions, with a pKa of 8.4. These studies, together with sequence and structure analysis allowed us to identify His257, which is absolutely conserved in the family, as a candidate for the residue whose deprotonation controls the activity. Remarkably, the mutant H257G abolished the flavin transfer activity, strongly indicating that this residue plays an important role in the catalytic mechanism of ApbE.« less

  11. Singlet Oxygen Generation by UVA Light Exposure of Endogenous Photosensitizers

    PubMed Central

    Baier, Jürgen; Maisch, Tim; Maier, Max; Engel, Eva; Landthaler, Michael; Bäumler, Wolfgang

    2006-01-01

    UVA light (320–400 nm) has been shown to produce deleterious biological effects in tissue due to the generation of singlet oxygen by substances like flavins or urocanic acid. Riboflavin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), β-nicotinamide adenine dinucleotide (NAD), and β-nicotinamide adenine dinucleotide phosphate (NADP), urocanic acid, or cholesterol in solution were excited at 355 nm. Singlet oxygen was directly detected by time-resolved measurement of its luminescence at 1270 nm. NAD, NADP, and cholesterol showed no luminescence signal possibly due to the very low absorption coefficient at 355 nm. Singlet oxygen luminescence of urocanic acid was clearly detected but the signal was too weak to quantify a quantum yield. The quantum yield of singlet oxygen was precisely determined for riboflavin (ΦΔ = 0.54 ± 0.07), FMN (ΦΔ = 0.51 ± 0.07), and FAD (ΦΔ = 0.07 ± 0.02). In aerated solution, riboflavin and FMN generate more singlet oxygen than exogenous photosensitizers such as Photofrin, which are applied in photodynamic therapy to kill cancer cells. With decreasing oxygen concentration, the quantum yield of singlet oxygen generation decreased, which must be considered when assessing the role of singlet oxygen at low oxygen concentrations (inside tissue). PMID:16751234

  12. Detection and identification of 1-methylethyl and methyl radicals generated by irradiating tea tree (Melaleuca alternifolia) oil with visible light (436 nm) in the presence of flavin mononucleotide and ferrous ion.

    PubMed

    Mori, H-M; Iwahashi, H

    2013-08-01

    Here, we determined the electron spin resonance (ESR) spectra of standard reaction mixtures (I) containing 25 μM flavin mononucleotide (FMN), 0.018% tea tree (Melaleuca alternifolia) oil, 1.9 M acetonitrile, 20 mM phosphate buffer (pH 7.4), 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN), and 1.0 mM FeSO₄(NH₄)₂SO₄ irradiated with 436 nm visible light (7.8 J/cm²). Prominent ESR signals (αN = 1.58 mT and αHβ = 0.26 mT) were detected, suggesting that free radicals form in the standard reaction. In order to know whether singlet oxygen (¹O₂) is involved in the radical formation or not, ESR measurement was performed for the standard D₂O reaction mixture (I) which contained 25 μM FMN, 0.0036% tea tree oil, 1.9 M acetonitrile-d3, 20 mM phosphate buffer (pH 7.4), 0.1 M 4-POBN and 1.0 mM FeSO₄ in D₂O. The ESR peak height of the standard D₂O reaction increased to 169 ± 24% of the control. Thus, ¹O₂ seems to be involved in the formation of the radicals because D₂O increases the lifetime of singlet oxygen. High-performance liquid chromatography-ESR-mass spectrometry analyses detected 1-methylethyl and methyl radicals in the standard reaction. The radicals appear to form through the reaction of ferrous ion with α-terpinene endoperoxide (ascaridole), which generated from the reaction of α-terpinene with ¹O₂. The 1-methylethyl and methyl radicals may exert a pro-oxidant effect under these conditions.

  13. Sub-millitesla magnetic field effects on the recombination reaction of flavin and ascorbic acid radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Emrys W.; Henbest, Kevin B.; Timmel, Christiane R., E-mail: christiane.timmel@chem.ox.ac.uk, E-mail: stuart.mackenzie@chem.ox.ac.uk

    Even though the interaction of a <1 mT magnetic field with an electron spin is less than a millionth of the thermal energy at room temperature (k{sub B}T), it still can have a profound effect on the quantum yields of radical pair reactions. We present a study of the effects of sub-millitesla magnetic fields on the photoreaction of flavin mononucleotide with ascorbic acid. Direct control of the reaction pathway is achieved by varying the rate of electron transfer from ascorbic acid to the photo-excited flavin. At pH 7.0, we verify the theoretical prediction that, apart from a sign change, themore » form of the magnetic field effect is independent of the initial spin configuration of the radical pair. The data agree well with model calculations based on a Green’s function approach that allows multinuclear spin systems to be treated including the diffusive motion of the radicals, their spin-selective recombination reactions, and the effects of the inter-radical exchange interaction. The protonation states of the radicals are uniquely determined from the form of the magnetic field-dependence. At pH 3.0, the effects of two chemically distinct radical pair complexes combine to produce a pronounced response to ∼500 μT magnetic fields. These findings are relevant to the magnetic responses of cryptochromes (flavin-containing proteins proposed as magnetoreceptors in birds) and may aid the evaluation of effects of weak magnetic fields on other biologically relevant electron transfer processes.« less

  14. Structural and thermodynamic analysis of the hetero-association of theophylline with aromatic drug molecules

    NASA Astrophysics Data System (ADS)

    Andrejuk, D. D.; Hernandez Santiago, A. A.; Khomich, V. V.; Voronov, V. K.; Davies, D. B.; Evstigneev, M. P.

    2008-10-01

    The hetero-association of theophylline (THP) with other biologically-active aromatic molecules ( e.g. the anti-cancer drugs daunomycin and novantrone, the antibiotic norfloxacin, the vitamin flavin-mononucleotide and two mutagens ethidium bromide and proflavine) has been studied by NMR in aqueous-salt solution (0.1 M Na-phosphate buffer, p D 7.1). It was found that THP shows an essentially similar hetero-association ability as caffeine (CAF) towards aromatic drugs, except for novantrone (NOV), which has much less affinity to THP than CAF as a result of energetically unfavourable orthogonal orientation of the chromophores of THP and NOV in the hetero-complex.

  15. Evolutionary and molecular foundations of multiple contemporary functions of the nitroreductase superfamily

    PubMed Central

    Akiva, Eyal; Copp, Janine N.; Tokuriki, Nobuhiko; Babbitt, Patricia C.

    2017-01-01

    Insight regarding how diverse enzymatic functions and reactions have evolved from ancestral scaffolds is fundamental to understanding chemical and evolutionary biology, and for the exploitation of enzymes for biotechnology. We undertook an extensive computational analysis using a unique and comprehensive combination of tools that include large-scale phylogenetic reconstruction to determine the sequence, structural, and functional relationships of the functionally diverse flavin mononucleotide-dependent nitroreductase (NTR) superfamily (>24,000 sequences from all domains of life, 54 structures, and >10 enzymatic functions). Our results suggest an evolutionary model in which contemporary subgroups of the superfamily have diverged in a radial manner from a minimal flavin-binding scaffold. We identified the structural design principle for this divergence: Insertions at key positions in the minimal scaffold that, combined with the fixation of key residues, have led to functional specialization. These results will aid future efforts to delineate the emergence of functional diversity in enzyme superfamilies, provide clues for functional inference for superfamily members of unknown function, and facilitate rational redesign of the NTR scaffold. PMID:29078300

  16. Simultaneous and spectroscopic redox molecular imaging of multiple free radical intermediates using dynamic nuclear polarization-magnetic resonance imaging.

    PubMed

    Hyodo, Fuminori; Ito, Shinji; Yasukawa, Keiji; Kobayashi, Ryoma; Utsumi, Hideo

    2014-08-05

    Redox reactions that generate free radical intermediates are essential to metabolic processes. However, their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. We report here the use of dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) to conduct redox molecular imaging. Using DNP-MRI, we obtained simultaneous images of free radical intermediates generated from the coenzyme Q10 (CoQ10), flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) involved in the mitochondrial electron transport chain as well as the radicals derived from vitamins E and K1. Each of these free radicals was imaged in real time in a phantom comprising a mixture of free radicals localized in either lipophilic or aqueous environments. Changing the frequency of electron spin resonance (ESR) irradiation also allowed each of the radical species to be distinguished in the spectroscopic images. This study is the first to report the spectroscopic DNP-MRI imaging of free radical intermediates that are derived from endogenous species involved in metabolic processes.

  17. Elucidating nitric oxide synthase domain interactions by molecular dynamics.

    PubMed

    Hollingsworth, Scott A; Holden, Jeffrey K; Li, Huiying; Poulos, Thomas L

    2016-02-01

    Nitric oxide synthase (NOS) is a multidomain enzyme that catalyzes the production of nitric oxide (NO) by oxidizing L-Arg to NO and L-citrulline. NO production requires multiple interdomain electron transfer steps between the flavin mononucleotide (FMN) and heme domain. Specifically, NADPH-derived electrons are transferred to the heme-containing oxygenase domain via the flavin adenine dinucleotide (FAD) and FMN containing reductase domains. While crystal structures are available for both the reductase and oxygenase domains of NOS, to date there is no atomic level structural information on domain interactions required for the final FMN-to-heme electron transfer step. Here, we evaluate a model of this final electron transfer step for the heme-FMN-calmodulin NOS complex based on the recent biophysical studies using a 105-ns molecular dynamics trajectory. The resulting equilibrated complex structure is very stable and provides a detailed prediction of interdomain contacts required for stabilizing the NOS output state. The resulting equilibrated complex model agrees well with previous experimental work and provides a detailed working model of the final NOS electron transfer step required for NO biosynthesis. © 2015 The Protein Society.

  18. Photoreduction of Shewanella oneidensis Extracellular Cytochromes by Organic Chromophores and Dye‐Sensitized TiO2

    PubMed Central

    Ainsworth, Emma V.; Lockwood, Colin W. J.; White, Gaye F.; Hwang, Ee Taek; Sakai, Tsubasa; Gross, Manuela A.; Richardson, David J.; Clarke, Thomas A.

    2016-01-01

    Abstract The transfer of photoenergized electrons from extracellular photosensitizers across a bacterial cell envelope to drive intracellular chemical transformations represents an attractive way to harness nature's catalytic machinery for solar‐assisted chemical synthesis. In Shewanella oneidensis MR‐1 (MR‐1), trans‐outer‐membrane electron transfer is performed by the extracellular cytochromes MtrC and OmcA acting together with the outer‐membrane‐spanning porin⋅cytochrome complex (MtrAB). Here we demonstrate photoreduction of solutions of MtrC, OmcA, and the MtrCAB complex by soluble photosensitizers: namely, eosin Y, fluorescein, proflavine, flavin, and adenine dinucleotide, as well as by riboflavin and flavin mononucleotide, two compounds secreted by MR‐1. We show photoreduction of MtrC and OmcA adsorbed on RuII‐dye‐sensitized TiO2 nanoparticles and that these protein‐coated particles perform photocatalytic reduction of solutions of MtrC, OmcA, and MtrCAB. These findings provide a framework for informed development of strategies for using the outer‐membrane‐associated cytochromes of MR‐1 for solar‐driven microbial synthesis in natural and engineered bacteria. PMID:27685371

  19. Camphor Pathway Redux: Functional Recombinant Expression of 2,5- and 3,6-Diketocamphane Monooxygenases of Pseudomonas putida ATCC 17453 with Their Cognate Flavin Reductase Catalyzing Baeyer-Villiger Reactions

    PubMed Central

    Iwaki, Hiroaki; Grosse, Stephan; Bergeron, Hélène; Leisch, Hannes; Morley, Krista; Hasegawa, Yoshie

    2013-01-01

    Whereas the biochemical properties of the monooxygenase components that catalyze the oxidation of 2,5-diketocamphane and 3,6-diketocamphane (2,5-DKCMO and 3,6-DKCMO, respectively) in the initial catabolic steps of (+) and (−) isomeric forms of camphor (CAM) metabolism in Pseudomonas putida ATCC 17453 are relatively well characterized, the actual identity of the flavin reductase (Fred) component that provides the reduced flavin to the oxygenases has hitherto been ill defined. In this study, a 37-kDa Fred was purified from a camphor-induced culture of P. putida ATCC 17453 and this facilitated cloning and characterization of the requisite protein. The active Fred is a homodimer with a subunit molecular weight of 18,000 that uses NADH as an electron donor (Km = 32 μM), and it catalyzes the reduction of flavin mononucleotide (FMN) (Km = 3.6 μM; kcat = 283 s−1) in preference to flavin adenine dinucleotide (FAD) (Km = 19 μM; kcat = 128 s−1). Sequence determination of ∼40 kb of the CAM degradation plasmid revealed the locations of two isofunctional 2,5-DKCMO genes (camE25–1 for 2,5-DKCMO-1 and camE25–2 for 2,5-DKCMO-2) as well as that of a 3,6-DKCMO-encoding gene (camE36). In addition, by pulsed-field gel electrophoresis, the CAM plasmid was established to be linear and ∼533 kb in length. To enable functional assessment of the two-component monooxygenase system in Baeyer-Villiger oxidations, recombinant plasmids expressing Fred in tandem with the respective 2,5-DKCMO- and 3,6-DKCMO-encoding genes in Escherichia coli were constructed. Comparative substrate profiling of the isofunctional 2,5-DCKMOs did not yield obvious differences in Baeyer-Villiger biooxidations, but they are distinct from 3,6-DKCMO in the stereoselective oxygenations with various mono- and bicyclic ketone substrates. PMID:23524667

  20. Evidence for posttranslational protein flavinylation in the syphilis spirochete Treponema pallidum: Structural and biochemical insights from the catalytic core of a periplasmic flavin-trafficking protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deka, Ranjit K.; Brautigam, Chad A.; Liu, Wei Z.

    The syphilis spirochete Treponema pallidum is an important human pathogen but a highly enigmatic bacterium that cannot be cultivated in vitro. T. pallidum lacks many biosynthetic pathways and therefore has evolved the capability to exploit host-derived metabolites via its periplasmic lipoprotein repertoire. We recently reported a flavin-trafficking protein in T. pallidum (Ftp_Tp; TP0796) as the first bacterial metal-dependent flavin adenine dinucleotide (FAD) pyrophosphatase that hydrolyzes FAD into AMP and flavin mononucleotide (FMN) in the spirochete’s periplasm. However, orthologs of Ftp_Tp from other bacteria appear to lack this hydrolytic activity; rather, they bind and flavinylate subunits of a cytoplasmic membrane redoxmore » system (Nqr/Rnf). To further explore this dichotomy, biochemical analyses, protein crystallography, and structure-based mutagenesis were used to show that a single amino acid change (N55Y) in Ftp_Tp converts it from an Mg²⁺-dependent FAD pyrophosphatase to an FAD-binding protein. We also demonstrated that Ftp_Tp has a second enzymatic activity (Mg²⁺-FMN transferase); it flavinylates protein(s) covalently with FMN on a threonine side chain of an appropriate sequence motif using FAD as the substrate. Moreover, mutation of a metal-binding residue (D284A) eliminates Ftp_Tp’s dual activities, thereby underscoring the role of Mg²⁺ in the enzyme-catalyzed reactions. The posttranslational flavinylation activity that can target a periplasmic lipoprotein (TP0171) has not previously been described. The observed activities reveal the catalytic flexibility of a treponemal protein to perform multiple functions. Together, these findings imply mechanisms by which a dynamic pool of flavin cofactor is maintained and how flavoproteins are generated by Ftp_Tp locally in the T. pallidum periplasm.« less

  1. Evidence for posttranslational protein flavinylation in the syphilis spirochete Treponema pallidum: Structural and biochemical insights from the catalytic core of a periplasmic flavin-trafficking protein

    DOE PAGES

    Deka, Ranjit K.; Brautigam, Chad A.; Liu, Wei Z.; ...

    2015-05-05

    The syphilis spirochete Treponema pallidum is an important human pathogen but a highly enigmatic bacterium that cannot be cultivated in vitro. T. pallidum lacks many biosynthetic pathways and therefore has evolved the capability to exploit host-derived metabolites via its periplasmic lipoprotein repertoire. We recently reported a flavin-trafficking protein in T. pallidum (Ftp_Tp; TP0796) as the first bacterial metal-dependent flavin adenine dinucleotide (FAD) pyrophosphatase that hydrolyzes FAD into AMP and flavin mononucleotide (FMN) in the spirochete’s periplasm. However, orthologs of Ftp_Tp from other bacteria appear to lack this hydrolytic activity; rather, they bind and flavinylate subunits of a cytoplasmic membrane redoxmore » system (Nqr/Rnf). To further explore this dichotomy, biochemical analyses, protein crystallography, and structure-based mutagenesis were used to show that a single amino acid change (N55Y) in Ftp_Tp converts it from an Mg²⁺-dependent FAD pyrophosphatase to an FAD-binding protein. We also demonstrated that Ftp_Tp has a second enzymatic activity (Mg²⁺-FMN transferase); it flavinylates protein(s) covalently with FMN on a threonine side chain of an appropriate sequence motif using FAD as the substrate. Moreover, mutation of a metal-binding residue (D284A) eliminates Ftp_Tp’s dual activities, thereby underscoring the role of Mg²⁺ in the enzyme-catalyzed reactions. The posttranslational flavinylation activity that can target a periplasmic lipoprotein (TP0171) has not previously been described. The observed activities reveal the catalytic flexibility of a treponemal protein to perform multiple functions. Together, these findings imply mechanisms by which a dynamic pool of flavin cofactor is maintained and how flavoproteins are generated by Ftp_Tp locally in the T. pallidum periplasm.« less

  2. Evidence for Posttranslational Protein Flavinylation in the Syphilis Spirochete Treponema pallidum: Structural and Biochemical Insights from the Catalytic Core of a Periplasmic Flavin-Trafficking Protein.

    PubMed

    Deka, Ranjit K; Brautigam, Chad A; Liu, Wei Z; Tomchick, Diana R; Norgard, Michael V

    2015-05-05

    The syphilis spirochete Treponema pallidum is an important human pathogen but a highly enigmatic bacterium that cannot be cultivated in vitro. T. pallidum lacks many biosynthetic pathways and therefore has evolved the capability to exploit host-derived metabolites via its periplasmic lipoprotein repertoire. We recently reported a flavin-trafficking protein in T. pallidum (Ftp_Tp; TP0796) as the first bacterial metal-dependent flavin adenine dinucleotide (FAD) pyrophosphatase that hydrolyzes FAD into AMP and flavin mononucleotide (FMN) in the spirochete's periplasm. However, orthologs of Ftp_Tp from other bacteria appear to lack this hydrolytic activity; rather, they bind and flavinylate subunits of a cytoplasmic membrane redox system (Nqr/Rnf). To further explore this dichotomy, biochemical analyses, protein crystallography, and structure-based mutagenesis were used to show that a single amino acid change (N55Y) in Ftp_Tp converts it from an Mg(2+)-dependent FAD pyrophosphatase to an FAD-binding protein. We also demonstrated that Ftp_Tp has a second enzymatic activity (Mg(2+)-FMN transferase); it flavinylates protein(s) covalently with FMN on a threonine side chain of an appropriate sequence motif using FAD as the substrate. Moreover, mutation of a metal-binding residue (D284A) eliminates Ftp_Tp's dual activities, thereby underscoring the role of Mg(2+) in the enzyme-catalyzed reactions. The posttranslational flavinylation activity that can target a periplasmic lipoprotein (TP0171) has not previously been described. The observed activities reveal the catalytic flexibility of a treponemal protein to perform multiple functions. Together, these findings imply mechanisms by which a dynamic pool of flavin cofactor is maintained and how flavoproteins are generated by Ftp_Tp locally in the T. pallidum periplasm. Treponema pallidum, the syphilis spirochete, exploits its periplasmic lipoproteins for a number of essential physiologic processes. One of these, flavin-trafficking protein (Ftp), not only exploits its catalytic center to mediate posttranslational flavinylation of proteins (to create flavoproteins) but also likely maintains the periplasmic flavin pool via its unique ability to hydrolyze FAD. This functional diversity within a single lipoprotein is quite remarkable and reflects the enzymatic versatility of the treponemal lipoproteins, as well as molecular parsimony in an organism with a limited genome. Ftp-mediated protein flavinylation in the periplasm also likely is a key aspect of a predicted flavin-dependent Rnf-based redox homeostasis system at the cytoplasmic membrane of T. pallidum. In addition to its importance in T. pallidum physiology, Ftp homologs exist in other bacteria, thereby expanding our understanding of the bacterial periplasm as a metabolically active subcellular compartment for flavoprotein biogenesis as well as flavin homeostasis. Copyright © 2015 Deka et al.

  3. Purification and characterization of 2-oxoglutarate:ferredoxin oxidoreductase from a thermophilic, obligately chemolithoautotrophic bacterium, Hydrogenobacter thermophilus TK-6.

    PubMed Central

    Yoon, K S; Ishii, M; Igarashi, Y; Kodama, T

    1996-01-01

    2-Oxoglutarate:ferredoxin oxidoreductase from a thermophilic, obligately autotrophic, hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, was purified to homogeneity by precipitation with ammonium sulfate and by fractionation by DEAE-Sepharose CL-6B, polyacrylate-quaternary amine, hydroxyapatite, and Superdex-200 chromatography. The purified enzyme had a molecular mass of about 105 kDa and comprised two subunits (70 kDa and 35 kDa). The activity of the 2-oxoglutarate:ferredoxin oxidoreductase was detected by the use of 2-oxoglutarate, coenzyme A, and one of several electron acceptors in substrate amounts (ferredoxin isolated from H. thermophilus, flavin adenine dinucleotide, flavin mononucleotide, or methyl viologen). NAD, NADP, and ferredoxins from Chlorella spp. and Clostridium pasteurianum were ineffective. The enzyme was extremely thermostable; the temperature optimum for 2-oxoglutarate oxidation was above 80 degrees C, and the time for a 50% loss of activity at 70 degrees C under anaerobic conditions was 22 h. The optimum pH for a 2-oxoglutarate oxidation reaction was 7.6 to 7.8. The apparent Km values for 2-oxoglutarate and coenzyme A at 70 degrees C were 1.42 mM and 80 microM, respectively. PMID:8655524

  4. Effects of soluble flavin on heterogeneous electron transfer between surface-exposed bacterial cytochromes and iron oxides

    NASA Astrophysics Data System (ADS)

    Wang, Zheming; Shi, Zhi; Shi, Liang; White, Gaye F.; Richardson, David J.; Clarke, Thomas A.; Fredrickson, Jim K.; Zachara, John M.

    2015-08-01

    Dissimilatory iron-reducing bacteria can utilize insoluble Fe(Mn)-oxides as a terminal electron acceptor under anaerobic conditions. For Shewanella species specifically, evidence suggests that iron reduction is associated with the secretion of flavin mononucleotide (FMN) and riboflavin. However, the exact mechanism of flavin involvement is unclear; while some indicate that flavins mediate electron transfer (Marsili et al., 2008), others point to flavin serving as co-factors to outer membrane proteins (Okamoto et al., 2013). In this work, we used methyl viologen (MVrad +)-encapsulated, porin-cytochrome complex (MtrCAB) embedded liposomes (MELs) as a synthetic model of the Shewanella outer membrane to investigate the proposed mediating behavior of microbially produced flavins. The reduction kinetics of goethite, hematite and lepidocrocite (200 μM) by MELs ([MVrad +] ∼ 40 μM and MtrABC ⩽ 1 nM) were determined in the presence FMN at pH 7.0 in N2 atmosphere by monitoring the concentrations of MVrad + and FMN through their characteristic UV-visible absorption spectra. Experiments were performed where (i) FMN and Fe(III)-oxide were mixed and then reacted with the reduced MELs and (ii) FMN was reacted with the reduced MELs followed by addition of Fe(III)-oxide. The redox reactions proceeded in two steps: a fast step that was completed in a few seconds, and a slower one lasting over 400 s. For all three Fe(III)-oxides, the initial reaction rate in the presence of a low concentration of FMN (⩽1 μM) was at least a factor of five faster than those with MELs alone, and orders of magnitude faster than those by FMNH2, suggesting that FMN may serve as a co-factor that enhances electron transfer from outer-membrane c-cytochromes to Fe(III)-oxides. The rate and extent of the initial reaction followed the order of lepidocrocite > hematite > goethite, the same as their reduction potentials, implying thermodynamic control on reaction rate. For LEP, with the highest reduction potential among the three Fe(III)-oxides, its reduction by FMNH2 was completed in less than 10 min, suggesting that FMN was capable of mediating electron transfer to LEP. At higher FMN concentrations (>1 μM), the reaction rates for both steps decreased and varied inversely with FMN concentration, indicating that FMN inhibited the MEL to Fe(III)-oxide electron transfer reaction under these conditions. The implications of the observed kinetic behaviors to flavin-mediated Fe(III)-oxide reduction in natural environments are discussed.

  5. Fundamental Role of Methylenetetrahydrofolate Reductase 677 C → T Genotype and Flavin Compounds in Biochemical Phenotypes for Schizophrenia and Schizoaffective Psychosis

    PubMed Central

    Fryar-Williams, Stephanie

    2016-01-01

    The Mental Health Biomarker Project (2010–2016) explored variables for psychosis in schizophrenia and schizoaffective disorder. Blood samples from 67, highly characterized symptomatic cases and 67 gender and age matched control participants were analyzed for methyl tetrahydrofolate reductase (MTHFR) 677C → T gene variants and for vitamin B6, B12 and D, folate, unbound copper, zinc cofactors for enzymes in the methylation cycle, and related catecholamine pathways. Urine samples were analyzed for indole-catecholamines, their metabolites, and oxidative-stress marker, hydroxylpyrolline-2-one (HPL). Rating scales were Brief Psychiatric Rating Scale, Positive and Negative Syndrome Scale, Global Assessment of Function scale, Clinical Global Impression (CGI) score, and Social and Occupational Functioning Assessment Scale (SOFAS). Analysis used Spearman’s correlates, receiver operating characteristics and structural equation modeling (SEM). The correlative pattern of variables in the overall participant sample strongly implicated monoamine oxidase (MAO) enzyme inactivity so the significant role of MAO’s cofactor flavin adenine nucleotide and its precursor flavin adenine mononucleotide (FMN) within the biochemical pathways was investigated and confirmed as 71% on SEM of the total sample. Splitting the data sets for MTHFR 677C → T polymorphism variants coding for the MTHFR enzyme, discovered that biochemistry variables relating to the wild-type enzyme differed markedly in pattern from those coded by the homozygous variant and that the hereozygous-variant pattern resembled the wild-type-coded pattern. The MTHFR 677C → T-wild and -heterozygous gene variants have a pattern of depleted vitamin cofactors characteristic of flavin insufficiency with under-methylation and severe oxidative stress. The second homozygous MTHFR 677TT pattern related to elevated copper:zinc ratio and a vitamin pattern related to flavin sufficiency and risk of over-methylation. The two gene variants and their different biochemical phenotypes govern findings in relationship to case-identification, illness severity, duration of illness, and functional disability in schizophrenia and schizoaffective psychosis, and establish a basis for trials of gene-guided precision treatment for the management of psychosis. PMID:27881965

  6. Fundamental Role of Methylenetetrahydrofolate Reductase 677 C → T Genotype and Flavin Compounds in Biochemical Phenotypes for Schizophrenia and Schizoaffective Psychosis.

    PubMed

    Fryar-Williams, Stephanie

    2016-01-01

    The Mental Health Biomarker Project (2010-2016) explored variables for psychosis in schizophrenia and schizoaffective disorder. Blood samples from 67, highly characterized symptomatic cases and 67 gender and age matched control participants were analyzed for methyl tetrahydrofolate reductase (MTHFR) 677C → T gene variants and for vitamin B6, B12 and D, folate, unbound copper, zinc cofactors for enzymes in the methylation cycle, and related catecholamine pathways. Urine samples were analyzed for indole-catecholamines, their metabolites, and oxidative-stress marker, hydroxylpyrolline-2-one (HPL). Rating scales were Brief Psychiatric Rating Scale, Positive and Negative Syndrome Scale, Global Assessment of Function scale, Clinical Global Impression (CGI) score, and Social and Occupational Functioning Assessment Scale (SOFAS). Analysis used Spearman's correlates, receiver operating characteristics and structural equation modeling (SEM). The correlative pattern of variables in the overall participant sample strongly implicated monoamine oxidase (MAO) enzyme inactivity so the significant role of MAO's cofactor flavin adenine nucleotide and its precursor flavin adenine mononucleotide (FMN) within the biochemical pathways was investigated and confirmed as 71% on SEM of the total sample. Splitting the data sets for MTHFR 677C → T polymorphism variants coding for the MTHFR enzyme, discovered that biochemistry variables relating to the wild-type enzyme differed markedly in pattern from those coded by the homozygous variant and that the hereozygous-variant pattern resembled the wild-type-coded pattern. The MTHFR 677C → T-wild and -heterozygous gene variants have a pattern of depleted vitamin cofactors characteristic of flavin insufficiency with under-methylation and severe oxidative stress. The second homozygous MTHFR 677TT pattern related to elevated copper:zinc ratio and a vitamin pattern related to flavin sufficiency and risk of over-methylation. The two gene variants and their different biochemical phenotypes govern findings in relationship to case-identification, illness severity, duration of illness, and functional disability in schizophrenia and schizoaffective psychosis, and establish a basis for trials of gene-guided precision treatment for the management of psychosis.

  7. A Novel Aerobic Degradation Pathway for Thiobencarb Is Initiated by the TmoAB Two-Component Flavin Mononucleotide-Dependent Monooxygenase System in Acidovorax sp. Strain T1

    PubMed Central

    Chu, Cui-Wei; Liu, Bin; Li, Na; Yao, Shi-Gang; Cheng, Dan; Zhao, Jia-Dong; Qiu, Ji-Guo; Yan, Xin; He, Jian

    2017-01-01

    ABSTRACT Thiobencarb is a thiocarbamate herbicide used in rice paddies worldwide. Microbial degradation plays a crucial role in the dissipation of thiobencarb in the environment. However, the physiological and genetic mechanisms underlying thiobencarb degradation remain unknown. In this study, a novel thiobencarb degradation pathway was proposed in Acidovorax sp. strain T1. Thiobencarb was oxidized and cleaved at the C—S bond, generating diethylcarbamothioic S-acid and 4-chlorobenzaldehyde (4CDA). 4CDA was then oxidized to 4-chlorobenzoic acid (4CBA) and hydrolytically dechlorinated to 4-hydroxybenzoic acid (4HBA). The identification of catabolic genes suggested further hydroxylation to protocatechuic acid (PCA) and finally degradation through the protocatechuate 4,5-dioxygenase pathway. A novel two-component monooxygenase system identified in the strain, TmoAB, was responsible for the initial catabolic reaction. TmoA shared 28 to 32% identity with the oxygenase components of pyrimidine monooxygenase from Agrobacterium fabrum, alkanesulfonate monooxygenase from Pseudomonas savastanoi, and dibenzothiophene monooxygenase from Rhodococcus sp. TmoB shared 25 to 37% identity with reported flavin reductases and oxidized NADH but not NADPH. TmoAB is a flavin mononucleotide (FMN)-dependent monooxygenase and catalyzed the C—S bond cleavage of thiobencarb. Introduction of tmoAB into cells of the thiobencarb degradation-deficient mutant T1m restored its ability to degrade and utilize thiobencarb. A dehydrogenase gene, tmoC, was located 7,129 bp downstream of tmoAB, and its transcription was clearly induced by thiobencarb. The purified TmoC catalyzed the dehydrogenation of 4CDA to 4CBA using NAD+ as a cofactor. A gene cluster responsible for the complete 4CBA metabolic pathway was also cloned, and its involvement in thiobencarb degradation was preliminarily verified by transcriptional analysis. IMPORTANCE Microbial degradation is the main factor in thiobencarb dissipation in soil. In previous studies, thiobencarb was degraded initially via N-deethylation, sulfoxidation, hydroxylation, and dechlorination. However, enzymes and genes involved in the microbial degradation of thiobencarb have not been studied. This study revealed a new thiobencarb degradation pathway in Acidovorax sp. strain T1 and identified a novel two-component FMN-dependent monooxygenase system, TmoAB. Under TmoAB-mediated catalysis, thiobencarb was cleaved at the C—S bond, producing diethylcarbamothioic S-acid and 4CDA. Furthermore, the downstream degradation pathway of thiobencarb was proposed. Our study provides the physiological, biochemical, and genetic foundation of thiobencarb degradation in this microorganism. PMID:28939603

  8. A Novel Aerobic Degradation Pathway for Thiobencarb Is Initiated by the TmoAB Two-Component Flavin Mononucleotide-Dependent Monooxygenase System in Acidovorax sp. Strain T1.

    PubMed

    Chu, Cui-Wei; Liu, Bin; Li, Na; Yao, Shi-Gang; Cheng, Dan; Zhao, Jia-Dong; Qiu, Ji-Guo; Yan, Xin; He, Qin; He, Jian

    2017-12-01

    Thiobencarb is a thiocarbamate herbicide used in rice paddies worldwide. Microbial degradation plays a crucial role in the dissipation of thiobencarb in the environment. However, the physiological and genetic mechanisms underlying thiobencarb degradation remain unknown. In this study, a novel thiobencarb degradation pathway was proposed in Acidovorax sp. strain T1. Thiobencarb was oxidized and cleaved at the C-S bond, generating diethylcarbamothioic S -acid and 4-chlorobenzaldehyde (4CDA). 4CDA was then oxidized to 4-chlorobenzoic acid (4CBA) and hydrolytically dechlorinated to 4-hydroxybenzoic acid (4HBA). The identification of catabolic genes suggested further hydroxylation to protocatechuic acid (PCA) and finally degradation through the protocatechuate 4,5-dioxygenase pathway. A novel two-component monooxygenase system identified in the strain, TmoAB, was responsible for the initial catabolic reaction. TmoA shared 28 to 32% identity with the oxygenase components of pyrimidine monooxygenase from Agrobacterium fabrum , alkanesulfonate monooxygenase from Pseudomonas savastanoi , and dibenzothiophene monooxygenase from Rhodococcus sp. TmoB shared 25 to 37% identity with reported flavin reductases and oxidized NADH but not NADPH. TmoAB is a flavin mononucleotide (FMN)-dependent monooxygenase and catalyzed the C-S bond cleavage of thiobencarb. Introduction of tmoAB into cells of the thiobencarb degradation-deficient mutant T1m restored its ability to degrade and utilize thiobencarb. A dehydrogenase gene, tmoC , was located 7,129 bp downstream of tmoAB , and its transcription was clearly induced by thiobencarb. The purified TmoC catalyzed the dehydrogenation of 4CDA to 4CBA using NAD + as a cofactor. A gene cluster responsible for the complete 4CBA metabolic pathway was also cloned, and its involvement in thiobencarb degradation was preliminarily verified by transcriptional analysis. IMPORTANCE Microbial degradation is the main factor in thiobencarb dissipation in soil. In previous studies, thiobencarb was degraded initially via N -deethylation, sulfoxidation, hydroxylation, and dechlorination. However, enzymes and genes involved in the microbial degradation of thiobencarb have not been studied. This study revealed a new thiobencarb degradation pathway in Acidovorax sp. strain T1 and identified a novel two-component FMN-dependent monooxygenase system, TmoAB. Under TmoAB-mediated catalysis, thiobencarb was cleaved at the C-S bond, producing diethylcarbamothioic S -acid and 4CDA. Furthermore, the downstream degradation pathway of thiobencarb was proposed. Our study provides the physiological, biochemical, and genetic foundation of thiobencarb degradation in this microorganism. Copyright © 2017 American Society for Microbiology.

  9. Riboflavin Responsive Mitochondrial Dysfunction in Neurodegenerative Diseases

    PubMed Central

    Udhayabanu, Tamilarasan; Manole, Andreea; Rajeshwari, Mohan; Varalakshmi, Perumal; Houlden, Henry; Ashokkumar, Balasubramaniem

    2017-01-01

    Mitochondria are the repository for various metabolites involved in diverse energy-generating processes, like the TCA cycle, oxidative phosphorylation, and metabolism of amino acids, fatty acids, and nucleotides, which rely significantly on flavoenzymes, such as oxidases, reductases, and dehydrogenases. Flavoenzymes are functionally dependent on biologically active flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN), which are derived from the dietary component riboflavin, a water soluble vitamin. Riboflavin regulates the structure and function of flavoenzymes through its cofactors FMN and FAD and, thus, protects the cells from oxidative stress and apoptosis. Hence, it is not surprising that any disturbance in riboflavin metabolism and absorption of this vitamin may have consequences on cellular FAD and FMN levels, resulting in mitochondrial dysfunction by reduced energy levels, leading to riboflavin associated disorders, like cataracts, neurodegenerative and cardiovascular diseases, etc. Furthermore, mutations in either nuclear or mitochondrial DNA encoding for flavoenzymes and flavin transporters significantly contribute to the development of various neurological disorders. Moreover, recent studies have evidenced that riboflavin supplementation remarkably improved the clinical symptoms, as well as the biochemical abnormalities, in patients with neuronopathies, like Brown-Vialetto-Van-Laere syndrome (BVVLS) and Fazio-Londe disease. This review presents an updated outlook on the cellular and molecular mechanisms of neurodegenerative disorders in which riboflavin deficiency leads to dysfunction in mitochondrial energy metabolism, and also highlights the significance of riboflavin supplementation in aforementioned disease conditions. Thus, the outcome of this critical assessment may exemplify a new avenue to enhance the understanding of possible mechanisms in the progression of neurodegenerative diseases and may provide new rational approaches of disease surveillance and treatment. PMID:28475111

  10. Biogeochemical Insights into B-Vitamins in the Coastal Marine Sediments of San Pedro Basin, CA

    NASA Astrophysics Data System (ADS)

    Monteverde, D.; Berelson, W.; Baronas, J. J.; Sanudo-Wilhelmy, S. A.

    2015-12-01

    Coastal marine sediments support a high abundance of mircoorganisms which play key roles in the cycling of nutrients, trace metals, and carbon, yet little is known about many of the cofactors essential for their growth, such as the B-vitamins. The suite of B-vitamins (B1, B2, B6, B7, B12) are essential across all domains of life for both primary and secondary metabolism. Therefore, studying sediment concentrations of B-vitamins can provide a biochemical link between microbial processes and sediment geochemistry. Here we present B-vitamin pore water concentrations from suboxic sediment cores collected in September 2014 from San Pedro Basin, a silled, low oxygen, ~900 m deep coastal basin in the California Borderlands. We compare the B-vitamin concentrations (measured via LCMS) to a set of geochemical profiles including dissolved Fe (65-160 μM), dissolved Mn (30-300 nM), TCO2, solid phase organic carbon, and δ13C. Our results show high concentrations (0.8-3nM) of biotin (B7), commonly used for CO2 fixation as a cofactor in carboxylase enzymes. Thiamin (B1) concentrations were elevated (20-700nM), consistent with previous pore water measurements showing sediments could be a source of B1 to the ocean. Cobalamin (B12), a cofactor required for methyl transfers in methanogens, was also detected in pore waters (~4-40pM). The flavins (riboflavin [B2] and flavin mononucleotide[FMN]), molecules utilized in external electron transfer, showed a distinct increase with depth (10-90nM). Interestingly, the flavin profiles showed an inverse trend to dissolved Fe (Fe decreases with depth) providing a potential link to culture experiments which have shown extracellular flavin release to be a common trait in some metal reducers. As some of the first B-vitamin measurements made in marine sediments, these results illustrate the complex interaction between the microbial community and surrounding geochemical environment and provide exciting avenues for future research.

  11. Phototropin and light-signaling in phototropism.

    PubMed

    Kimura, Mitsuhiro; Kagawa, Takatoshi

    2006-10-01

    Blue-light-induced phototropism in higher plants is regulated by phototropin, which is a photoreceptor kinase that contains a flavin mononucleotide (FMN). Recently, it was found that this kinase is inhibited by the binding of the LOV2 (light-oxygen-voltage2) domain in the dark but that its activity is increased in the light by the release of the LOV2 domain. Phototropin-associated proteins have been identified, although the proteins that are phosphorylated by phototropin are still unknown. The asymmetrical auxin distribution caused by unilateral irradiation suggests that differential growth is induced by a difference in auxin-regulated gene expression between the shaded and illuminated sides of plant organs. Transcription-related factors, such as NPH4/ARF7, MSG2/IAA19 and SCF(TIR1), play key roles in this process.

  12. Intermolecular hydrogen bonds in hetero-complexes of biologically active aromatic molecules probed by the methods of vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Semenov, M. A.; Blyzniuk, Iu. N.; Bolbukh, T. V.; Shestopalova, A. V.; Evstigneev, M. P.; Maleev, V. Ya.

    2012-09-01

    By the methods of vibrational spectroscopy (Infrared and Raman) the investigation of the hetero-association of biologically active aromatic compounds: flavin-mononucleotide (FMN), ethidium bromide (EB) and proflavine (PRF) was performed in aqueous solutions. It was shown that between the functional groups (Cdbnd O and NH2) the intermolecular hydrogen bonds are formed in the hetero-complexes FMN-EB and FMN-PRF, additionally stabilizing these structures. An estimation of the enthalpy of Н-bonding obtained from experimental shifts of carbonyl vibrational frequencies has shown that the H-bonds do not dominate in the magnitude of experimentally measured total enthalpy of the hetero-association reactions. The main stabilization is likely due to intermolecular interactions of the molecules in these complexes and their interaction with water environment.

  13. [Studies by means of 1H NMR spectroscopy of complex formation of aromatic biologically active compounds with antibiotic topotecan].

    PubMed

    Mosunov, A A; Kostiukov, V V; Evstigneev, M P

    2012-01-01

    The analysis of heteroassociation of antibiotic topotecan (TPT) with aromatic biologically active compounds (BAC): caffeine, mutagens ethidium bromide and proflavine, antibiotic daunomycin, vitamins flavin-mononucleotide and nicotinamide, has been carried out in the work using 1H NMR spectroscopy data. The equilibrium constants of heteroassociation and induced chemical shifts of the protons have been obtained in the complexes with BAC. It is found that the complex formation TPT-BAC has the nature of stacking of the chromophores, additionally stabilized in the case of proflavine by intermolecular hydrogen bond. Calculation of the basic components of the Gibbs free energy of the complexation reactions is carried out, and the factors which stabilize and destabilize the heterocomplexes of molecules are revealed.

  14. Disruption of the LOV-Jalpha helix interaction activates phototropin kinase activity.

    PubMed

    Harper, Shannon M; Christie, John M; Gardner, Kevin H

    2004-12-28

    Light plays a crucial role in activating phototropins, a class of plant photoreceptors that are sensitive to blue and UV-A wavelengths. Previous studies indicated that phototropin uses a bound flavin mononucleotide (FMN) within its light-oxygen-voltage (LOV) domain to generate a protein-flavin covalent bond under illumination. In the C-terminal LOV2 domain of Avena sativa phototropin 1, formation of this bond triggers a conformational change that results in unfolding of a helix external to this domain called Jalpha [Harper, S. M., et al. (2003) Science 301, 1541-1545]. Though the structural effects of illumination were characterized, it was unknown how these changes are coupled to kinase activation. To examine this, we made a series of point mutations along the Jalpha helix to disrupt its interaction with the LOV domain in a manner analogous to light activation. Using NMR spectroscopy and limited proteolysis, we demonstrate that several of these mutations displace the Jalpha helix from the LOV domain independently of illumination. When placed into the full-length phototropin protein, these point mutations display constitutive kinase activation, without illumination of the sample. These results indicate that unfolding of the Jalpha helix is the critical event in regulation of kinase signaling for the phototropin proteins.

  15. Mitochondrial respiratory complex I probed by delayed luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Baran, Irina; Ionescu, Diana; Privitera, Simona; Scordino, Agata; Mocanu, Maria Magdalena; Musumeci, Francesco; Grasso, Rosaria; Gulino, Marisa; Iftime, Adrian; Tofolean, Ioana Teodora; Garaiman, Alexandru; Goicea, Alexandru; Irimia, Ruxandra; Dimancea, Alexandru; Ganea, Constanta

    2013-12-01

    The role of mitochondrial complex I in ultraweak photon-induced delayed photon emission [delayed luminescence (DL)] of human leukemia Jurkat T cells was probed by using complex I targeting agents like rotenone, menadione, and quercetin. Rotenone, a complex I-specific inhibitor, dose-dependently increased the mitochondrial level of reduced nicotinamide adenine dinucleotide (NADH), decreased clonogenic survival, and induced apoptosis. A strong correlation was found between the mitochondrial levels of NADH and oxidized flavin mononucleotide (FMNox) in rotenone-, menadione- and quercetin-treated cells. Rotenone enhanced DL dose-dependently, whereas quercetin and menadione inhibited DL as well as NADH or FMNox. Collectively, the data suggest that DL of Jurkat cells originates mainly from mitochondrial complex I, which functions predominantly as a dimer and less frequently as a tetramer. In individual monomers, both pairs of pyridine nucleotide (NADH/reduced nicotinamide adenine dinucleotide phosphate) sites and flavin (FMN-a/FMN-b) sites appear to bind cooperatively their specific ligands. Enhancement of delayed red-light emission by rotenone suggests that the mean time for one-electron reduction of ubiquinone or FMN-a by the terminal Fe/S center (N2) is 20 or 284 μs, respectively. All these findings suggest that DL spectroscopy could be used as a reliable, sensitive, and robust technique to probe electron flow within complex I in situ.

  16. Riboflavin accumulation and characterization of cDNAs encoding lumazine synthase and riboflavin synthase in bitter melon (Momordica charantia).

    PubMed

    Tuan, Pham Anh; Kim, Jae Kwang; Lee, Sanghyun; Chae, Soo Cheon; Park, Sang Un

    2012-12-05

    Riboflavin (vitamin B2) is the universal precursor of the coenzymes flavin mononucleotide and flavin adenine dinucleotide--cofactors that are essential for the activity of a wide variety of metabolic enzymes in animals, plants, and microbes. Using the RACE PCR approach, cDNAs encoding lumazine synthase (McLS) and riboflavin synthase (McRS), which catalyze the last two steps in the riboflavin biosynthetic pathway, were cloned from bitter melon (Momordica charantia), a popular vegetable crop in Asia. Amino acid sequence alignments indicated that McLS and McRS share high sequence identity with other orthologous genes and carry an N-terminal extension, which is reported to be a plastid-targeting sequence. Organ expression analysis using quantitative real-time RT PCR showed that McLS and McRS were constitutively expressed in M. charantia, with the strongest expression levels observed during the last stage of fruit ripening (stage 6). This correlated with the highest level of riboflavin content, which was detected during ripening stage 6 by HPLC analysis. McLS and McRS were highly expressed in the young leaves and flowers, whereas roots exhibited the highest accumulation of riboflavin. The cloning and characterization of McLS and McRS from M. charantia may aid the metabolic engineering of vitamin B2 in crops.

  17. The family of berberine bridge enzyme-like enzymes: A treasure-trove of oxidative reactions.

    PubMed

    Daniel, Bastian; Konrad, Barbara; Toplak, Marina; Lahham, Majd; Messenlehner, Julia; Winkler, Andreas; Macheroux, Peter

    2017-10-15

    Biological oxidations form the basis of life on earth by utilizing organic compounds as electron donors to drive the generation of metabolic energy carriers, such as ATP. Oxidative reactions are also important for the biosynthesis of complex compounds, i.e. natural products such as alkaloids that provide vital benefits for organisms in all kingdoms of life. The vitamin B 2 -derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) enable an astonishingly diverse array of oxidative reactions that is based on the versatility of the redox-active isoalloxazine ring. The family of FAD-linked oxidases can be divided into subgroups depending on specific sequence features in an otherwise very similar structural context. The sub-family of berberine bridge enzyme (BBE)-like enzymes has recently attracted a lot of attention due to the challenging chemistry catalyzed by its members and the unique and unusual bi-covalent attachment of the FAD cofactor. This family is the focus of the present review highlighting recent advancements into the structural and functional aspects of members from bacteria, fungi and plants. In view of the unprecedented reaction catalyzed by the family's namesake, BBE from the California poppy, recent studies have provided further insights into nature's treasure chest of oxidative reactions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Dimethyl sulfoxide reductase activity by anaerobically grown Escherichia coli HB101.

    PubMed Central

    Bilous, P T; Weiner, J H

    1985-01-01

    Escherichia coli grew anaerobically on a minimal medium with glycerol as the carbon and energy source and dimethyl sulfoxide (DMSO) as the terminal electron acceptor. DMSO reductase activity, measured with an artificial electron donor (reduced benzyl viologen), was preferentially associated with the membrane fraction (77 +/- 10% total cellular activity). A Km for DMSO reduction of 170 +/- 60 microM was determined for the membrane-bound activity. Methyl viologen, reduced flavin mononucleotide, and reduced flavin adenine dinucleotide also served as electron donors for DMSO reduction. Methionine sulfoxide, a DMSO analog, could substitute for DMSO in both the growth medium and in the benzyl viologen assay. DMSO reductase activity was present in cells grown anaerobically on DMSO but was repressed by the presence of nitrate or by aerobic growth. Anaerobic growth on DMSO coinduced nitrate, fumarate, and and trimethylamine-N-oxide reductase activities. The requirement of a molybdenum cofactor for DMSO reduction was suggested by the inhibition of growth and a 60% reduction in DMSO reductase activity in the presence of 10 mM sodium tungstate. Furthermore, chlorate-resistant mutants chlA, chlB, chlE, and chlG were unable to grow anaerobically on DMSO. DMSO reduction appears to be under the control of the fnr gene. PMID:3888958

  19. Purification and characterization of a bacterial nitrophenol oxygenase which converts ortho-nitrophenol to catechol and nitrite.

    PubMed Central

    Zeyer, J; Kocher, H P

    1988-01-01

    A nitrophenol oxygenase which stoichiometrically converted ortho-nitrophenol (ONP) to catechol and nitrite was isolated from Pseudomonas putida B2 and purified. The substrate specificity of the enzyme was broad and included several halogen- and alkyl-substituted ONPs. The oxygenase consisted of a single polypeptide chain with a molecular weight of 58,000 (determined by gel filtration) or 65,000 (determined on a sodium dodecyl sulfate-polyacrylamide gel). The enzymatic reaction was NADPH dependent, and one molecule of oxygen was consumed per molecule of ONP converted. Enzymatic activity was stimulated by magnesium or manganese ions, whereas the addition of flavin adenine dinucleotide, flavin mononucleotide, or reducing agents had no effect. The apparent Kms for ONP and NADPH were 8 and 140 microM, respectively. 2,4-Dinitrophenol competitively (Ki = 0.5 microM) inhibited ONP turnover. The optimal pH for enzyme stability and activity was in the range of 7.5 to 8.0. At 40 degrees C, the enzyme was totally inactivated within 2 min; however, in the presence of 1 mM ONP, 40% of the activity was recovered, even after 10 min. Enzymatic activity was best preserved at -20 degrees C in the presence of 50% glycerol. Images PMID:3350791

  20. Flavin binding to the deca-heme cytochrome MtrC: Insights from computational molecular simulation

    DOE PAGES

    Breuer, Marian; Rosso, Kevin  M.; Blumberger, Jochen

    2015-12-15

    Here, certain dissimilatory bacteria have the remarkable ability to use extracellular metal oxide minerals instead of oxygen as terminal electron sinks, using a process known as “extracellular respiration”. Specialized multiheme cytochromes located on the outer membrane of the microbe were shown to be crucial for electron transfer from the cell surface to the mineral. This process is facilitated by soluble, biogenic flavins secreted by the organism for the purpose of acting as an electron shuttle. However, their interactions with the outer-membrane cytochromes are not established on a molecular scale. Here, we study the interaction between the outer-membrane deca-heme cytochrome MtrCmore » from Shewanella oneidensis and flavin mononucleotide (FMN in fully oxidized quinone form) using computational docking. We find that interaction of FMN with MtrC is significantly weaker than with known FMN-binding proteins, but identify a mildly preferred interaction site close to heme 2 with a dissociation constant (K d) = 490 μM, in good agreement with recent experimental estimates, K d = 255 μM. The weak interaction with MtrC can be qualitatively explained by the smaller number of hydrogen bonds that the planar headgroup of FMN can form with this protein compared to FMN-binding proteins. Molecular dynamics simulation gives indications for a possible conformational switch upon cleavage of the disulphide bond of MtrC, but without concomitant increase in binding affinities according to this docking study. Overall, our results suggest that binding of FMN to MtrC is reversible and not highly specific, which may be consistent with a role as redox shuttle that facilitates extracellular respiration.« less

  1. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling

    PubMed Central

    Förstermann, Ulrich; Li, Huige

    2011-01-01

    Nitric oxide (NO) produced by the endothelium is an important protective molecule in the vasculature. It is generated by the enzyme endothelial NO synthase (eNOS). Similar to all NOS isoforms, functional eNOS transfers electrons from nicotinamide adenine dinucleotide phosphate (NADPH), via the flavins flavin adenine dinucleotide and flavin mononucleotide in the carboxy-terminal reductase domain, to the heme in the amino-terminal oxygenase domain. Here, the substrate L-arginine is oxidized to L-citrulline and NO. Cardiovascular risk factors such as diabetes mellitus, hypertension, hypercholesterolaemia or cigarette smoking reduce bioactive NO. These risk factors lead to an enhanced production of reactive oxygen species (ROS) in the vessel wall. NADPH oxidases represent major sources of this ROS and have been found upregulated in the presence of cardiovascular risk factors. NADPH-oxidase-derived superoxide avidly reacts with eNOS-derived NO to form peroxynitrite (ONOO-). The essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH4) is highly sensitive to oxidation by this ONOO-. In BH4 deficiency, oxygen reduction uncouples from NO synthesis, thereby converting NOS to a superoxide-producing enzyme. Among conventional drugs, compounds interfering with the renin-angiotensin-aldosterone system and statins can reduce vascular oxidative stress and increase bioactive NO. In recent years, we have identified a number of small molecules that have the potential to prevent eNOS uncoupling and, at the same time, enhance eNOS expression. These include the protein kinase C inhibitor midostaurin, the pentacyclic triterpenoids ursolic acid and betulinic acid, the eNOS enhancing compounds AVE9488 and AVE3085, and the polyphenolic phytoalexin trans-resveratrol. Such compounds enhance NO production from eNOS also under pathophysiological conditions and may thus have therapeutic potential. PMID:21198553

  2. Intermolecular hydrogen bonds in hetero-complexes of biologically active aromatic molecules probed by the methods of vibrational spectroscopy.

    PubMed

    Semenov, M A; Blyzniuk, Iu N; Bolbukh, T V; Shestopalova, A V; Evstigneev, M P; Maleev, V Ya

    2012-09-01

    By the methods of vibrational spectroscopy (Infrared and Raman) the investigation of the hetero-association of biologically active aromatic compounds: flavin-mononucleotide (FMN), ethidium bromide (EB) and proflavine (PRF) was performed in aqueous solutions. It was shown that between the functional groups (CO and NH(2)) the intermolecular hydrogen bonds are formed in the hetero-complexes FMN-EB and FMN-PRF, additionally stabilizing these structures. An estimation of the enthalpy of Н-bonding obtained from experimental shifts of carbonyl vibrational frequencies has shown that the H-bonds do not dominate in the magnitude of experimentally measured total enthalpy of the hetero-association reactions. The main stabilization is likely due to intermolecular interactions of the molecules in these complexes and their interaction with water environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Effects of soluble flavin on heterogeneous electron transfer between surface-exposed bacterial cytochromes and iron oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zheming; Shi, Zhi; Shi, Liang

    2015-08-25

    Dissimilatory iron-reducing bacteria can utilize insoluble Fe(Mn)-oxides as a terminal electron acceptor under anaerobic conditions. For Shewanella species specifically, some evidence suggests that iron reduction is associated with the secretion of flavin mononucleotide (FMN) and riboflavin that are proposed to mediate electron transfer (Marsili et al., 2008). In this work, we used methyl viologen (MV•+)-encapsulated, porin-cytochrome complex (MtrCAB) embedded liposomes (MELs) as a synthetic model of the Shewanella outer membrane to investigate the proposed mediating behavior of secreted flavins. The reduction kinetics of goethite, hematite and lepidocrocite (200 µM) by MELs ([MV•+] ~ 42 µM and MtrABC ≤ 1 nM)more » were determined in the presence FMN at pH 7.0 in N2 atmosphere by monitoring the concentrations of MV•+ and FMN through their characteristic UV-visible absorption spectra. Experiments were performed where i) FMN and Fe(III)-oxide were mixed and then reacted with the reduced MELs and ii) FMN was reacted with the reduced MELs followed by addition of Fe(III)-oxide. The redox reactions proceeded in two steps: a fast step that was completed in a few seconds, and a slower one lasting over 400 seconds. For all three Fe(III)-oxides, the initial reaction rate in the presence of a low concentration of FMN (≤ 1 µM) was at least a factor of five faster than those with MELs alone, and orders of magnitude faster than those by FMNH2, suggesting that FMN may serve as a co-factor that enhances electron transfer from outer-membrane c-cytochromes to Fe(III)-oxides. The rate and extent of the initial reaction followed the order of lepidocrocite > hematite > goethite, the same as their reduction potentials, implying thermodynamic control on reaction rate. However, at higher FMN concentrations (> 1 µM), the reaction rates for both steps decreased and varied inversely with FMN concentration, indicating that FMN inhibited the MEL to Fe(III)-oxide electron transfer reaction. The implications of the observed kinetic behaviors to flavin-mediated Fe(III) oxide reduction in natural environments are discussed.« less

  4. The NADH:flavin oxidoreductase Nox from Rhodococcus erythropolis MI2 is the key enzyme of 4,4'-dithiodibutyric acid degradation.

    PubMed

    Khairy, H; Wübbeler, J H; Steinbüchel, A

    2016-12-01

    The reduction of the disulphide bond is the initial catabolic step of the microbial degradation of the organic disulphide 4,4'-dithiodibutyric acid (DTDB). Previously, an NADH:flavin oxidoreductase from Rhodococcus erythropolis MI2 designated as Nox MI2 , which belongs to the old yellow enzyme (OYE) family, was identified. In the present study, it was proven that Nox MI2 has the ability to cleave the sulphur-sulphur bond in DTDB. In silico analysis revealed high sequence similarities to proteins of the flavin mononucleotide (FMN) reductase family identified in many strains of R. erythropolis. Therefore, nox was heterologously expressed in the pET23a(+) expression system using Escherichia coli strain BL21(DE3) pLysS, which effectively produces soluble active Nox MI2 . Nox MI2 showed a maximum specific activity (V max ) of 3·36 μmol min -1  mg -1 corresponding to a k cat of 2·5 s -1 and an apparent substrate K m of 0·6 mmol l -1 , when different DTDB concentrations were applied. No metal cofactors were required. Moreover, Nox MI2 had very low activity with other sulphur-containing compounds like 3,3'-dithiodipropionic acid (8·0%), 3,3'-thiodipropionic acid (7·6%) and 5,5'-dithiobis(2-nitrobenzoic acid) (8·0%). The UV/VIS spectrum of Nox MI2 revealed the presence of the cofactor FMN. Based on results obtained, Nox MI2 adds a new physiological substrate and mode of action to OYE members. It was unequivocally demonstrated in this study that an NADH:flavin oxidoreductase from Rhodococcus erythropolis MI2 (Nox MI2 ) is able to cleave the xenobiotic disulphide 4,4'-dithiodibutyric acid (DTDB) into two molecules of 4-mercaptobutyric acid (4MB) with concomitant consumption of NADH. Nox MI2 showed a high substrate specificity as well as high heat stability. This study provides the first detailed characterization of the initial cleavage of DTDB, which is considered as a promising polythioester precursor. © 2016 The Society for Applied Microbiology.

  5. Evidence for the generation of myristylated FMN by bacterial luciferase.

    PubMed

    Tabib, Chaitanya R; Brodl, Eveline; Macheroux, Peter

    2017-06-01

    The genes responsible for the light production in bioluminescent bacteria are present as an operon, luxCDABEG. Many strains of Photobacteria carry an additional gene, termed luxF. X-ray crystallographic analysis of LuxF revealed the presence of four molecules of a flavin derivative, i.e. 6-(3'-(R)-myristyl) flavin adenine mononucleotide (myrFMN) non-covalently bound to the homodimer. In the present study, we exploited the binding of myrFMN to recombinant apo-LuxF to explore the occurrence of myrFMN in various bioluminescent bacteria. MyrFMN was detected in all bacterial strains tested including Vibrio and Aliivibrio indicating that it is more widely occurring in bioluminescent bacteria than previously assumed. We also show that apo-LuxF captures myrFMN and thereby relieves the inhibitory effect on luciferase activity. Thus our results provide support for the hypothesis that LuxF acts as a scavenger of myrFMN in bioluminescent bacteria. However, the source of myrFMN remained obscure. To address this issue, we established a cofactor regeneration enzyme-catalyzed cascade reaction that supports luciferase activity in vitro for up to 3 days. This approach enabled us to unambiguously demonstrate that myrFMN is generated in the bacterial bioluminescent reaction. Based on this finding we postulate a reaction mechanism for myrFMN generation that is based on the luciferase reaction. © 2017 The Authors Molecular Microbiology Published by John Wiley & Sons Ltd.

  6. Crowding Shifts the FMN Recognition Mechanism of Riboswitch Aptamer from Conformational Selection to Induced Fit.

    PubMed

    Rode, Ambadas B; Endoh, Tamaki; Sugimoto, Naoki

    2018-06-04

    In bacteria, the binding between the riboswitch aptamer domain and ligand is regulated by environmental cues, such as low Mg 2+ in macrophages during pathogenesis to ensure spatiotemporal expression of virulence genes. Binding was investigated between the flavin mononucleotide (FMN) riboswitch aptamer and its anionic ligand in the presence of molecular crowding agent without Mg 2+ ion, which mimics pathogenic conditions. Structural, kinetic, and thermodynamic analyses under the crowding revealed more dynamic conformational rearrangements of the FMN riboswitch aptamer compared to dilute Mg 2+ -containing solution. It is hypothesized that under crowding conditions FMN binds through an induced fit mechanism in contrast to the conformational selection mechanism previously demonstrated in dilute Mg 2+ solution. Since these two mechanisms involve different conformational intermediates and rate constants, these findings have practical significance in areas such as drug design and RNA engineering. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Novel Functions of an Iron-Sulfur Flavoprotein from Trichomonas vaginalis Hydrogenosomes

    PubMed Central

    Smutná, Tamara; Pilarová, Katerina; Tarábek, Ján; Tachezy, Jan

    2014-01-01

    Iron-sulfur flavoproteins (Isf) are flavin mononucleotide (FMN)- and FeS cluster-containing proteins commonly encountered in anaerobic prokaryotes. However, with the exception of Isf from Methanosarcina thermophila, which participates in oxidative stress management by removing oxygen and hydrogen peroxide, none of these proteins has been characterized in terms of function. Trichomonas vaginalis, a sexually transmitted eukaryotic parasite of humans, was found to express several iron-sulfur flavoprotein (TvIsf) homologs in its hydrogenosomes. We show here that in addition to having oxygen-reducing activity, the recombinant TvIsf also functions as a detoxifying reductase of metronidazole and chloramphenicol, both of which are antibiotics effective against a variety of anaerobic microbes. TvIsf can utilize both NADH and reduced ferredoxin as electron donors. Given the prevalence of Isf in anaerobic prokaryotes, we propose that these proteins are central to a novel defense mechanism against xenobiotics. PMID:24663020

  8. Preparation, crystallization and preliminary crystallographic analysis of old yellow enzyme from Trypanosoma cruzi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, Shigeru; Tokuoka, Keiji; Uchiyama, Nahoko

    2007-10-01

    Old yellow enzyme from Trypanosoma cruzi, has been crystallized using the hanging-drop vapour-diffusion method. Old yellow enzyme (OYE) is an NADPH oxidoreductase that contains a flavin mononucleotide as a prosthetic group. The OYE from Trypanosoma cruzi, which produces prostaglandin F{sub 2α}, a potent mediator of various physiological and pathological processes, from prostaglandin H2. The protein was recombinantly expressed and purified from Escherichia coli and was crystallized using the hanging-drop vapour-diffusion method. The crystal belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 56.3, b = 78.8, c = 78.8 Å, β = 93.4° and two moleculesmore » per asymmetric unit. The crystals were suitable for X-ray crystallographic studies and diffracted to 1.70 Å resolution. A Patterson search method is in progress using the structure of OYE from Pseudomonas putida as a starting model.« less

  9. Dechlorination of 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane by Aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1967-01-01

    Whole cells or cell-free extracts of Aerobacter aerogenes catalyze the degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in vitro to at least seven metabolites: 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE); 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD); 1-chloro-2,2-bis(p-chlorophenyl)ethylene (DDMU); 1-chloro-2,2-bis(p-chlorophenyl)ethane (DDMS); unsym-bis(p-chlorophenyl)ethylene (DDNU); 2,2-bis(p-chlorophenyl)acetate (DDA); and 4,4′-dichlorobenzophenone (DBP). The use of metabolic inhibitors together with pH and temperature studies indicated that discrete enzymes are involved. By use of the technique of sequential analysis, the metabolic pathway was shown to be: DDT → DDD →DDMU →DDMS → DDNU → DDA → DBP, or DDT → DDE. Dechlorination was marginally enhanced by light-activated flavin mononucleotide.

  10. Quenching of triplet-excited flavins by flavonoids. Structural assessment of antioxidative activity.

    PubMed

    Huvaere, Kevin; Olsen, Karsten; Skibsted, Leif H

    2009-10-02

    The mechanism of flavin-mediated photooxidation of flavonoids was investigated for aqueous solutions. Interaction of triplet-excited flavin mononucleotide with phenols, as determined by laser flash photolysis, occurred at nearly diffusion-controlled rates (k approximately 1.6 x 10(9) L mol(-1) s(-1) for phenol at pH 7, 293 K), but protection of the phenolic function by methylation inhibited reaction. Still, electron transfer was proposed as the dominating mechanism due to the lack of primary kinetic hydrogen/deuterium isotope effect and the low activation enthalpy (<20 kJ mol(-1)) for photooxidation. Activation entropy worked compensating in a series of phenolic derivatives, supporting a common oxidation mechanism. An ortho-hydroxymethoxy pattern was equally reactive (k approximately 2.3 x 10(9) L mol(-1) s(-1) for guaiacol at pH 7) as compounds with ortho-dihydroxy substitution (k approximately 2.4 x 10(9) L mol(-1) s(-1) for catechol at pH 7), which are generally referred to as good antioxidants. This refutes the common belief that stabilization of incipient phenoxyl radicals through intramolecular hydrogen bonding is the driving force behind the reducing activity of catechol-like compounds. Instead, such bonding improves ionization characteristics of the substrates, hence the differences in reactivity with (photo)oxidation of isolated phenols. Despite the similar reactivity, radicals from ortho-dihydroxy compounds are detected in high steady-state concentrations by electron paramagnetic resonance (EPR) spectroscopy, while those resulting from oxidation of ortho-hydroxymethoxy (or isolated phenolic) patterns were too reactive to be observed. The ability to deprotonate and form the corresponding radical anions at neutral pH was proposed as the decisive factor for stabilization and, consequently, for antioxidative action. Thus, substituting other ionizable functions for the ortho- or para-hydroxyl in phenolic compounds resulted in stable radical anion formation, as demonstrated for para-hydroxybenzoic acid, in contrast to its methyl ester.

  11. Evidence for the Involvement of Acid/Base Chemistry in the Reaction Catalyzed by the Type II Isopentenyl Diphosphate/Dimethylallyl Diphosphate Isomerase from Staphylococcus aureus†

    PubMed Central

    Thibodeaux, Christopher J.; Mansoorabadi, Steven O.; Kittleman, William; Chang, Wei-chen; Liu, Hung-wen

    2011-01-01

    The type II isopentenyl diphosphate/dimethylallyl diphosphate isomerase (IDI-2) is a flavin mononucleotide (FMN)-dependent enzyme that catalyzes the reversible isomerization of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP), a reaction with no net change in redox state of the coenzyme or substrate. Here, UV-vis spectral analysis of the IDI-2 reaction revealed the accumulation of a reduced neutral dihydroflavin intermediate when the reduced enzyme was incubated with IPP or DMAPP. When IDI-2 was reconstituted with 1-deazaFMN and 5-deazaFMN, similar reduced neutral forms of the deazaflavin analogues were observed in the presence of IPP. Single turnover stopped-flow absorbance experiments indicated that this flavin intermediate formed and decayed at kinetically competent rates in the pre-steady-state and, thus, most likely represents a true intermediate in the catalytic cycle. UV-vis spectra of the reaction mixtures reveal trace amounts of a neutral semiquinone, but evidence for the presence of IPP-based radicals could not be obtained by EPR spectroscopy. Rapid-mix chemical quench experiments show no burst in DMAPP formation, suggesting that the rate determining step in the forward direction (IPP to DMAPP) occurs prior to DMAPP formation. A solvent deuterium kinetic isotope effect (D2OVmax = 1.5) was measured on vo in steady-state kinetic experiments at saturating substrate concentrations. A substrate deuterium kinetic isotope effect was also measured on the initital velocity (DVmax = 1.8) and on the decay rate of the flavin intermediate (Dks = 2.3) in single-turnover stopped-flow experiments using (R)-[2-2H]-IPP. Taken together, these data suggest that the C2–H bond of IPP is cleaved in the rate determining step and that general acid/base catalysis may be involved during turnover. Possible mechanisms for the IDI-2 catalyzed reaction are presented and discussed in terms of the available X-ray crystal structures. PMID:18229948

  12. Phylogenetic analysis of proteins associated in the four major energy metabolism systems: photosynthesis, aerobic respiration, denitrification, and sulfur respiration.

    PubMed

    Tomiki, Takeshi; Saitou, Naruya

    2004-08-01

    The four electron transfer energy metabolism systems, photosynthesis, aerobic respiration, denitrification, and sulfur respiration, are thought to be evolutionarily related because of the similarity of electron transfer patterns and the existence of some homologous proteins. How these systems have evolved is elusive. We therefore conducted a comprehensive homology search using PSI-BLAST, and phylogenetic analyses were conducted for the three homologous groups (groups 1-3) based on multiple alignments of domains defined in the Pfam database. There are five electron transfer types important for catalytic reaction in group 1, and many proteins bind molybdenum. Deletions of two domains led to loss of the function of binding molybdenum and ferredoxin, and these deletions seem to be critical for the electron transfer pattern changes in group 1. Two types of electron transfer were found in group 2, and all its member proteins bind siroheme and ferredoxin. Insertion of the pyridine nucleotide disulfide oxidoreductase domain seemed to be the critical point for the electron transfer pattern change in this group. The proteins belonging to group 3 are all flavin enzymes, and they bind flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN). Types of electron transfer in this group are divergent, but there are two common characteristics. NAD(P)H works as an electron donor or acceptor, and FAD or FMN transfers electrons from/to NAD(P)H. Electron transfer functions might be added to these common characteristics by the addition of functional domains through the evolution of group 3 proteins. Based on the phylogenetic analyses in this study and previous studies, we inferred the phylogeny of the energy metabolism systems as follows: photosynthesis (and possibly aerobic respiration) and the sulfur/nitrogen assimilation system first diverged, then the sulfur/nitrogen dissimilation system was produced from the latter system.

  13. Identification and Characterization of the Missing Pyrimidine Reductase in the Plant Riboflavin Biosynthesis Pathway1[W][OA

    PubMed Central

    Hasnain, Ghulam; Frelin, Océane; Roje, Sanja; Ellens, Kenneth W.; Ali, Kashif; Guan, Jiahn-Chou; Garrett, Timothy J.; de Crécy-Lagard, Valérie; Gregory, Jesse F.; McCarty, Donald R.; Hanson, Andrew D.

    2013-01-01

    Riboflavin (vitamin B2) is the precursor of the flavin coenzymes flavin mononucleotide and flavin adenine dinucleotide. In Escherichia coli and other bacteria, sequential deamination and reduction steps in riboflavin biosynthesis are catalyzed by RibD, a bifunctional protein with distinct pyrimidine deaminase and reductase domains. Plants have two diverged RibD homologs, PyrD and PyrR; PyrR proteins have an extra carboxyl-terminal domain (COG3236) of unknown function. Arabidopsis (Arabidopsis thaliana) PyrD (encoded by At4g20960) is known to be a monofunctional pyrimidine deaminase, but no pyrimidine reductase has been identified. Bioinformatic analyses indicated that plant PyrR proteins have a catalytically competent reductase domain but lack essential zinc-binding residues in the deaminase domain, and that the Arabidopsis PyrR gene (At3g47390) is coexpressed with riboflavin synthesis genes. These observations imply that PyrR is a pyrimidine reductase without deaminase activity. Consistent with this inference, Arabidopsis or maize (Zea mays) PyrR (At3g47390 or GRMZM2G090068) restored riboflavin prototrophy to an E. coli ribD deletant strain when coexpressed with the corresponding PyrD protein (At4g20960 or GRMZM2G320099) but not when expressed alone; the COG3236 domain was unnecessary for complementing activity. Furthermore, recombinant maize PyrR mediated NAD(P)H-dependent pyrimidine reduction in vitro. Import assays with pea (Pisum sativum) chloroplasts showed that PyrR and PyrD are taken up and proteolytically processed. Ablation of the maize PyrR gene caused early seed lethality. These data argue that PyrR is the missing plant pyrimidine reductase, that it is plastid localized, and that it is essential. The role of the COG3236 domain remains mysterious; no evidence was obtained for the possibility that it catalyzes the dephosphorylation that follows pyrimidine reduction. PMID:23150645

  14. RNA interference of NADPH-cytochrome P450 reductase of the rice brown planthopper, Nilaparvata lugens, increases susceptibility to insecticides.

    PubMed

    Liu, Su; Liang, Qing-Mei; Zhou, Wen-Wu; Jiang, Yan-Dong; Zhu, Qing-Zi; Yu, Hang; Zhang, Chuan-Xi; Gurr, Geoff M; Zhu, Zeng-Rong

    2015-01-01

    NADPH-cytochrome P450 reductase (CPR) is essential for numerous biological reactions catalysed by microsomal cytochrome P450 monooxygenases (P450s). Knockdown of CPR in several insects leads to developmental defects and increased susceptibility to insecticides. However, information about the role of CPR in the brown planthopper, Nilaparvata lugens, is still unavailable. A full-length cDNA encoding CPR was cloned from N. lugens (NlCPR). The deduced amino acid sequence showed marked features of classical CPRs, such as an N-terminus membrane anchor, conserved domains for flavin mononucleotide, flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate binding, as well as an FAD-binding motif and catalytic residues. Phylogenetic analysis revealed that NlCPR was located in a branch along with bed bug and pea aphid hemipteran insects. NlCPR mRNA was detectable in all tissues and developmental stages of N. lugens, as determined by real-time quantitative PCR. NlCPR transcripts were most abundant in the abdomen in adults, and in first-instar nymphs. Injection of N. lugens with double-strand RNA (dsRNA) against NlCPR significantly reduced the transcription level of the mRNA, and silencing of NlCPR resulted in increased susceptibility in N. lugens to beta-cypermethrin and imidacloprid. The results provide first evidence that NlCPR contributes to the susceptibility to beta-cypermethrin and imidacloprid in N. lugens. © 2014 Society of Chemical Industry.

  15. Anaerobic Aryl Reductive Dehalogenation of Halobenzoates by Cell Extracts of “Desulfomonile tiedjei”

    PubMed Central

    DeWeerd, Kim A.; Suflita, Joseph M.

    1990-01-01

    We studied the transformation of halogenated benzoates by cell extracts of a dehalogenating anaerobe, “Desulfomonile tiedjei.” We found that cell extracts possessed aryl reductive dehalogenation activity. The activity was heat labile and dependent on the addition of reduced methyl viologen, but not on that of reduced NAD, NADP, flavin mononucleotide, flavin adenine dinucleotide, desulfoviridin, cytochrome c3, or benzyl viologen. Dehalogenation activity in extracts was stimulated by formate, CO, or H2, but not by pyruvate plus coenzyme A or by dithionite. The pH and temperature optima for aryl dehalogenation were 8.2 and 35°C, respectively. The rate of dehalogenation was proportional to the amount of protein in the assay mixture. The substrate specificity of aryl dehalogenation activity for various aromatic compounds in “D. tiedjei” cell extracts was identical to that of whole cells, except differences were observed in the relative rates of halobenzoate transformation. Dehalogenation was 10-fold greater in “D. tiedjei” extracts prepared from cells cultured in the presence of 3-chlorobenzoate, suggesting that the activity was inducible. Aryl reductive dehalogenation in extracts was inhibited by sulfite, sulfide, and thiosulfate, but not sulfate. Experiments with combinations of substrates suggested that cell extracts dehalogenated 3-iodobenzoate more readily than either 3,5-dichlorobenzoate or 3-chlorobenzoate. Dehalogenation activity was found to be membrane associated. This is the first report characterizing aryl dehalogenation activity in cell extracts of an obligate anaerobe. PMID:16348308

  16. Flavodiiron Protein from Trichomonas vaginalis Hydrogenosomes: the Terminal Oxygen Reductase▿

    PubMed Central

    Smutná, Tamara; Gonçalves, Vera L.; Saraiva, Lígia M.; Tachezy, Jan; Teixeira, Miguel; Hrdý, Ivan

    2009-01-01

    Trichomonas vaginalis is one of a few eukaryotes that have been found to encode several homologues of flavodiiron proteins (FDPs). Widespread among anaerobic prokaryotes, these proteins are believed to function as oxygen and/or nitric oxide reductases to provide protection against oxidative/nitrosative stresses and host immune responses. One of the T. vaginalis FDP homologues is equipped with a hydrogenosomal targeting sequence and is expressed in the hydrogenosomes, oxygen-sensitive organelles that participate in carbohydrate metabolism and assemble iron-sulfur clusters. The bacterial homologues characterized thus far have been dimers or tetramers; the trichomonad protein is a dimer of identical 45-kDa subunits, each noncovalently binding one flavin mononucleotide. The protein reduces dioxygen to water but is unable to utilize nitric oxide as a substrate, similarly to its closest homologue from another human parasite Giardia intestinalis and related archaebacterial proteins. T. vaginalis FDP is able to accept electrons derived from pyruvate or NADH via ferredoxin and is proposed to play a role in the protection of hydrogenosomes against oxygen. PMID:19011120

  17. Fluorescein: a Photo-CIDNP Sensitizer Enabling Hyper-Sensitive NMR Data Collection in Liquids at Low Micromolar Concentration

    PubMed Central

    Okuno, Yusuke; Cavagnero, Silvia

    2016-01-01

    Photochemically induced dynamic nuclear polarization (photo-CIDNP) is a powerful approach for sensitivity enhancement in NMR spectroscopy. In liquids, inter-molecular photo-CIDNP depends on the transient bimolecular reaction between photoexcited dye and sample of interest. Hence the extent of polarization is sample-concentration dependent. This study introduces fluorescein (FL) as a photo-CIDNP dye whose performance is exquisitely tailored to data collection at extremely low sample concentrations. The photo-CIDNP resonance intensities of tryptophan in the presence of either FL or FMN (i.e., the routinely employed flavin mononucleotide photosensitizer) in the liquid state show that FL yields superior sensitivity and enables rapid data collection down to an unprecedented 1 micromolar concentration. This result was achieved on a conventional spectrometer operating at 14.1 Tesla, and equipped with a room-temperature probe (i.e., non-cryogenic). Kinetic simulations show that the excellent behavior of FL arises from its long excited-state triplet lifetime and superior photostability relative to conventional photo-CIDNP sensitizers. PMID:26744790

  18. Modulation of Mitochondrial Complex I Activity Averts Cognitive Decline in Multiple Animal Models of Familial Alzheimer's Disease

    PubMed Central

    Zhang, Liang; Zhang, Song; Maezawa, Izumi; Trushin, Sergey; Minhas, Paras; Pinto, Matthew; Jin, Lee-Way; Prasain, Keshar; Nguyen, Thi D.T.; Yamazaki, Yu; Kanekiyo, Takahisa; Bu, Guojun; Gateno, Benjamin; Chang, Kyeong-Ok; Nath, Karl A.; Nemutlu, Emirhan; Dzeja, Petras; Pang, Yuan-Ping; Hua, Duy H.; Trushina, Eugenia

    2015-01-01

    Development of therapeutic strategies to prevent Alzheimer's disease (AD) is of great importance. We show that mild inhibition of mitochondrial complex I with small molecule CP2 reduces levels of amyloid beta and phospho-Tau and averts cognitive decline in three animal models of familial AD. Low-mass molecular dynamics simulations and biochemical studies confirmed that CP2 competes with flavin mononucleotide for binding to the redox center of complex I leading to elevated AMP/ATP ratio and activation of AMP-activated protein kinase in neurons and mouse brain without inducing oxidative damage or inflammation. Furthermore, modulation of complex I activity augmented mitochondrial bioenergetics increasing coupling efficiency of respiratory chain and neuronal resistance to stress. Concomitant reduction of glycogen synthase kinase 3β activity and restoration of axonal trafficking resulted in elevated levels of neurotrophic factors and synaptic proteins in adult AD mice. Our results suggest that metabolic reprogramming induced by modulation of mitochondrial complex I activity represents promising therapeutic strategy for AD. PMID:26086035

  19. The insecticide target in the PSST subunit of complex I.

    PubMed

    Schuler, F; Casida, J E

    2001-10-01

    Current insecticides have been selected by sifting and winnowing hundreds of thousands of synthetic chemicals and natural products to obtain commercial preparations of optimal effectiveness and safety. This process has often ended up with compounds of high potency as inhibitors of the electron transport chain and more specifically of complex I (NADH:ubiquinone oxidoreductase). Many classes of chemicals are involved and the enzyme is one of the most complicated known, with 43 subunits catalyzing electron transfer from NADH to ubiquinone through flavin mononucleotide and up to eight iron-sulfur clusters. We used a potent photoaffinity ligand, (trifluoromethyl)diazirinyl[3H]pyridaben, to localize the insecticide target to a single high-affinity site in the PSST subunit that couples electron transfer from iron-sulfur cluster N2 to ubiquinone. Most importantly, all of the potent complex I-inhibiting pesticides, despite their great structural diversity, compete for this same specific binding domain in PSST. Finding their common mode of action and target provides insight into shared toxicological features and potential selection for resistant pests.

  20. The Effect of ACP₁-ADA₁ Genetic Interaction on Human Life Span.

    PubMed

    Lucarini, Nazzareno; Napolioni, Valerio; Magrini, Andrea; Gloria, Fulvia

    2012-12-01

    Acid phosphatase (ACP₁) is a polymorphic enzyme that catalyzes the conversion of flavin-mononucleotide (FMN) to riboflavin and regulates the cellular concentration of flavin-adenine-dinucleotide (FAD) and, consequently, energy metabolism. Its activity is modulated by adenosine deaminase locus 1 (ADA₁) genotype. The aim of our work is to verify whether individuals with a high proportion of ACP₁ f-isozyme and carrying the ADA₁*2 allele, displaying the highest phosphatase activity, may have a higher life expectancy. Genomic DNA was extracted from the peripheral blood of 569 females and 509 males (18 to 106 years of age) randomly recruited from Central Italy. These samples were subdivided into three sex-specific age groups (the ages of women are in square bracket): Class 1: age <66 [<73]; Class 2: ages 66 to 88 [73 to 91]; Class 3: age >88 [>91]. ACP₁and ADA₁ singlenucleotide polymorphisms (SNPs) were genotyped by restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) methods and statistical analyses were performed with SPSS 14.0. The results showed a larger proportion of Class 3 individuals displaying high ACP₁ f-isozyme concentration and carrying the ADA₁*2 allele than those individuals of Class 2 and Class 2 plus Class 1. Thus, we postulate that in Class 3 individuals the high phosphatase activity, resulting from the combined presence of high ACP₁ f-isozyme concentration and the ADA₁*2 allele, lowers the rate of glycolysis that may reduce the amount of metabolic calories and, in turn, activate Sirtuin genes that protect cells against age-related diseases. Copyright © 2013 Wayne State University Press, Detroit, Michigan 48201-1309.

  1. Evolutionary divergence of chloroplast FAD synthetase proteins

    PubMed Central

    2010-01-01

    Background Flavin adenine dinucleotide synthetases (FADSs) - a group of bifunctional enzymes that carry out the dual functions of riboflavin phosphorylation to produce flavin mononucleotide (FMN) and its subsequent adenylation to generate FAD in most prokaryotes - were studied in plants in terms of sequence, structure and evolutionary history. Results Using a variety of bioinformatics methods we have found that FADS enzymes localized to the chloroplasts, which we term as plant-like FADS proteins, are distributed across a variety of green plant lineages and constitute a divergent protein family clearly of cyanobacterial origin. The C-terminal module of these enzymes does not contain the typical riboflavin kinase active site sequence, while the N-terminal module is broadly conserved. These results agree with a previous work reported by Sandoval et al. in 2008. Furthermore, our observations and preliminary experimental results indicate that the C-terminus of plant-like FADS proteins may contain a catalytic activity, but different to that of their prokaryotic counterparts. In fact, homology models predict that plant-specific conserved residues constitute a distinct active site in the C-terminus. Conclusions A structure-based sequence alignment and an in-depth evolutionary survey of FADS proteins, thought to be crucial in plant metabolism, are reported, which will be essential for the correct annotation of plant genomes and further structural and functional studies. This work is a contribution to our understanding of the evolutionary history of plant-like FADS enzymes, which constitute a new family of FADS proteins whose C-terminal module might be involved in a distinct catalytic activity. PMID:20955574

  2. The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists.

    PubMed

    Balcazar, Darío E; Vanrell, María Cristina; Romano, Patricia S; Pereira, Claudio A; Goldbaum, Fernando A; Bonomi, Hernán R; Carrillo, Carolina

    2017-04-01

    Trypanosomatid parasites represent a major health issue affecting hundreds of million people worldwide, with clinical treatments that are partially effective and/or very toxic. They are responsible for serious human and plant diseases including Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (Sleeping sickness), Leishmania spp. (Leishmaniasis), and Phytomonas spp. (phytoparasites). Both, animals and trypanosomatids lack the biosynthetic riboflavin (vitamin B2) pathway, the vital precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors. While metazoans obtain riboflavin from the diet through RFVT/SLC52 transporters, the riboflavin transport mechanisms in trypanosomatids still remain unknown. Here, we show that riboflavin is imported with high affinity in Trypanosoma cruzi, Trypanosoma brucei, Leishmania (Leishmania) mexicana, Crithidia fasciculata and Phytomonas Jma using radiolabeled riboflavin transport assays. The vitamin is incorporated through a saturable carrier-mediated process. Effective competitive uptake occurs with riboflavin analogs roseoflavin, lumiflavin and lumichrome, and co-factor derivatives FMN and FAD. Moreover, important biological processes evaluated in T. cruzi (i.e. proliferation, metacyclogenesis and amastigote replication) are dependent on riboflavin availability. In addition, the riboflavin competitive analogs were found to interfere with parasite physiology on riboflavin-dependent processes. By means of bioinformatics analyses we identified a novel family of riboflavin transporters (RibJ) in trypanosomatids. Two RibJ members, TcRibJ and TbRibJ from T. cruzi and T. brucei respectively, were functionally characterized using homologous and/or heterologous expression systems. The RibJ family represents the first riboflavin transporters found in protists and the third eukaryotic family known to date. The essentiality of riboflavin for trypanosomatids, and the structural/biochemical differences that RFVT/SLC52 and RibJ present, make the riboflavin transporter -and its downstream metabolism- a potential trypanocidal drug target.

  3. A hydrophobic ionic liquid compartmentalized sampling/labeling and its separation techniques in polydimethylsiloxane microchip capillary electrophoresis.

    PubMed

    Quan, Hong Hua; Li, Ming; Huang, Yan; Hahn, Jong Hoon

    2017-01-01

    This paper demonstrates a novel compartmentalized sampling/labeling method and its separation techniques using a hydrophobic ionic liquid (IL)-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imidate (BmimNTf 2 )-as the immiscible phase, which is capable of minimizing signal losses during microchip capillary electrophoresis (MCE). The MCE device consists of a silica tube connected to a straight polydimethylsiloxane (PDMS) separation channel. Poly(diallyldimethylammonium chloride) (PDDAC) was coated on the inner surface of channel to ease the introduction of IL plugs and enhance the IL wetting on the PDMS surface for sample releasing. Electroosmotic flow (EOF)-based sample compartmentalization was carried out through a sequenced injection into sampling tubes with the following order: leading IL plug/sample segment/terminal IL plug. The movement of the sample segment was easily controlled by applying an electrical voltage across both ends of the chip without a sample volume change. This approach effectively prevented analyte diffusion before injection into MCE channels. When the sample segment was manipulated to the PDDAC-modified PDMS channel, the sample plug then was released from isolation under EOF while IL plugs adsorbed onto channel surfaces owing to strong adhesion. A mixture of flavin adenine nucleotides (FAD) and flavin mononucleotides (FMN) was successfully separated on a 2.5 cm long separation channel, for which the theoretical numbers of plates were 15 000 and 17 000, respectively. The obtained peak intensity was increased 6.3-fold over the corresponding value from conventional electrokinetic injection with the same sampling time. Furthermore, based on the compartmented sample segment serving as an interim reactor, an on-chip fluorescence labeling is demonstrated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists

    PubMed Central

    Balcazar, Darío E.; Vanrell, María Cristina; Romano, Patricia S.; Pereira, Claudio A.; Goldbaum, Fernando A.; Bonomi, Hernán R.; Carrillo, Carolina

    2017-01-01

    Background Trypanosomatid parasites represent a major health issue affecting hundreds of million people worldwide, with clinical treatments that are partially effective and/or very toxic. They are responsible for serious human and plant diseases including Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (Sleeping sickness), Leishmania spp. (Leishmaniasis), and Phytomonas spp. (phytoparasites). Both, animals and trypanosomatids lack the biosynthetic riboflavin (vitamin B2) pathway, the vital precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors. While metazoans obtain riboflavin from the diet through RFVT/SLC52 transporters, the riboflavin transport mechanisms in trypanosomatids still remain unknown. Methodology/Principal findings Here, we show that riboflavin is imported with high affinity in Trypanosoma cruzi, Trypanosoma brucei, Leishmania (Leishmania) mexicana, Crithidia fasciculata and Phytomonas Jma using radiolabeled riboflavin transport assays. The vitamin is incorporated through a saturable carrier-mediated process. Effective competitive uptake occurs with riboflavin analogs roseoflavin, lumiflavin and lumichrome, and co-factor derivatives FMN and FAD. Moreover, important biological processes evaluated in T. cruzi (i.e. proliferation, metacyclogenesis and amastigote replication) are dependent on riboflavin availability. In addition, the riboflavin competitive analogs were found to interfere with parasite physiology on riboflavin-dependent processes. By means of bioinformatics analyses we identified a novel family of riboflavin transporters (RibJ) in trypanosomatids. Two RibJ members, TcRibJ and TbRibJ from T. cruzi and T. brucei respectively, were functionally characterized using homologous and/or heterologous expression systems. Conclusions/Significance The RibJ family represents the first riboflavin transporters found in protists and the third eukaryotic family known to date. The essentiality of riboflavin for trypanosomatids, and the structural/biochemical differences that RFVT/SLC52 and RibJ present, make the riboflavin transporter -and its downstream metabolism- a potential trypanocidal drug target. PMID:28406895

  5. Inhibition of riboflavin metabolism in rat tissues by chlorpromazine, imipramine, and amitriptyline.

    PubMed

    Pinto, J; Huang, Y P; Rivlin, R S

    1981-05-01

    Prompted by recognition of the similar structures of riboflavin (vitamin B(2)), phenothiazine drugs, and tricyclic antidepressants, our studies sought to determine effects of drugs of these two types upon the conversion of riboflavin into its active coenzyme derivative, flavin adenine dinucleotide (FAD) in rat tissues. Chlorpromazine, a phenothiazine derivative, and imipramine and amitriptyline, both tricyclic antidepressants, each inhibited the incorporation of [(14)C]riboflavin into [(14)C]FAD in liver, cerebrum, cerebellum, and heart. A variety of psychoactive drugs structurally unrelated to riboflavin were ineffective. Chlorpromazine, imipramine, and amitriptyline in vitro inhibited hepatic flavokinase, the first of two enzymes in the conversion of riboflavin to FAD. Evidence was obtained that chlorpromazine administration for a 3- or 7-wk period at doses comparable on a weight basis to those used clinically has significant effects upon riboflavin metabolism in the animal as a whole: (a) the activity coefficient of erythrocyte glutathione reductase, an FAD-containing enzyme used as an index of riboflavin status physiologically, was elevated, a finding compatible with a deficiency state, (b) the urinary excretion of riboflavin was more than twice that of age- and sex-matched pair-fed control rats, and (c) after administration of chlorpromazine for a 7-wk period, tissue levels of flavin mononucleotide and FAD were significantly lower than those of pair-fed littermates, despite consumption of a diet estimated to contain 30 times the recommended dietary allowance. The present study suggests that certain psychotropic drugs interfere with riboflavin metabolism at least in part by inhibiting the conversion of riboflavin to its coenzyme derivatives, and that as a consequence of such inhibition, the overall utilization of the vitamin is impaired.

  6. Reductive Dissolution of Goethite and Hematite by Reduced Flavins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhi; Zachara, John M.; Wang, Zheming

    2013-10-02

    The abiotic reductive dissolution of goethite and hematite by the reduced forms of flavin mononucleotide (FMNH2) and riboflavin (RBFH2), electron transfer mediators (ETM) secreted by the dissimilatory iron-reducing bacterium Shewanella, was investigated under stringent anaerobic conditions. In contrast to the rapid redox reaction rate observed for ferrihydrite and lepidocrocite (Shi et al., 2012), the reductive dissolution of crystalline goethite and hematite was slower, with the extent of reaction limited by the thermodynamic driving force at circumneutral pH. Both the initial reaction rate and reaction extent increased with decreasing pH. On a unit surface area basis, goethite was less reactive thanmore » hematite between pH 4.0 and 7.0. AH2DS, the reduced form of the well-studied synthetic ETM anthraquinone-2,6-disulfonate (AQDS), yielded higher rates than FMNH2 under most reaction conditions, despite the fact that FMNH2 was a more effective reductant than AH2DS for ferryhydrite and lepidocrocite. Two additional model compounds, methyl viologen and benzyl viologen, were investigated under similar reaction conditions to explore the relationship between reaction rate and thermodynamic properties. Relevant kinetic data from the literature were also included in the analysis to span a broad range of half-cell potentials. Other conditions being equal, the surface area normalized initial reaction rate (ra) increased as the redox potential of the reductant became more negative. A non-linear, parabolic relationship was observed between log ra and the redox potential for eight reducants at pH 7.0, as predicted by Marcus theory for electron transfer. When pH and reductant concentration were fixed, log ra was positively correlated to the redox potential of four Fe(III) oxides over a wide pH range, following a non-linear parabolic relationship as well.« less

  7. Novel Riboswitch-Binding Flavin Analog That Protects Mice against Clostridium difficile Infection without Inhibiting Cecal Flora

    PubMed Central

    Megyola, Cynthia; Plummer, Mark; Osterman, David; O'Connell, Tim; Aristoff, Paul; Quinn, Cheryl; Chrusciel, R. Alan; Poel, Toni J.; Schostarez, Heinrich J.; Stewart, Catherine A.; Walker, Daniel P.; Wuts, Peter G. M.

    2015-01-01

    Novel mechanisms of action and new chemical scaffolds are needed to rejuvenate antibacterial drug discovery, and riboswitch regulators of bacterial gene expression are a promising class of targets for the discovery of new leads. Herein, we report the characterization of 5-(3-(4-fluorophenyl)butyl)-7,8-dimethylpyrido[3,4-b]quinoxaline-1,3(2H,5H)-dione (5FDQD)—an analog of riboflavin that was designed to bind riboswitches that naturally recognize the essential coenzyme flavin mononucleotide (FMN) and regulate FMN and riboflavin homeostasis. In vitro, 5FDQD and FMN bind to and trigger the function of an FMN riboswitch with equipotent activity. MIC and time-kill studies demonstrated that 5FDQD has potent and rapidly bactericidal activity against Clostridium difficile. In C57BL/6 mice, 5FDQD completely prevented the onset of lethal antibiotic-induced C. difficile infection (CDI). Against a panel of bacteria representative of healthy bowel flora, the antibacterial selectivity of 5FDQD was superior to currently marketed CDI therapeutics, with very little activity against representative strains from the Bacteroides, Lactobacillus, Bifidobacterium, Actinomyces, and Prevotella genera. Accordingly, a single oral dose of 5FDQD caused less alteration of culturable cecal flora in mice than the comparators. Collectively, these data suggest that 5FDQD or closely related analogs could potentially provide a high rate of CDI cure with a low likelihood of infection recurrence. Future studies will seek to assess the role of FMN riboswitch binding to the mechanism of 5FDQD antibacterial action. In aggregate, our results indicate that riboswitch-binding antibacterial compounds can be discovered and optimized to exhibit activity profiles that merit preclinical and clinical development as potential antibacterial therapeutic agents. PMID:26169403

  8. Membrane Topology Mapping of the Na+-Pumping NADH: Quinone Oxidoreductase from Vibrio cholerae by PhoA- Green Fluorescent Protein Fusion Analysis▿

    PubMed Central

    Duffy, Ellen B.; Barquera, Blanca

    2006-01-01

    The membrane topologies of the six subunits of Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae were determined by a combination of topology prediction algorithms and the construction of C-terminal fusions. Fusion expression vectors contained either bacterial alkaline phosphatase (phoA) or green fluorescent protein (gfp) genes as reporters of periplasmic and cytoplasmic localization, respectively. A majority of the topology prediction algorithms did not predict any transmembrane helices for NqrA. A lack of PhoA activity when fused to the C terminus of NqrA and the observed fluorescence of the green fluorescent protein C-terminal fusion confirm that this subunit is localized to the cytoplasmic side of the membrane. Analysis of four PhoA fusions for NqrB indicates that this subunit has nine transmembrane helices and that residue T236, the binding site for flavin mononucleotide (FMN), resides in the cytoplasm. Three fusions confirm that the topology of NqrC consists of two transmembrane helices with the FMN binding site at residue T225 on the cytoplasmic side. Fusion analysis of NqrD and NqrE showed almost mirror image topologies, each consisting of six transmembrane helices; the results for NqrD and NqrE are consistent with the topologies of Escherichia coli homologs YdgQ and YdgL, respectively. The NADH, flavin adenine dinucleotide, and Fe-S center binding sites of NqrF were localized to the cytoplasm. The determination of the topologies of the subunits of Na+-NQR provides valuable insights into the location of cofactors and identifies targets for mutagenesis to characterize this enzyme in more detail. The finding that all the redox cofactors are localized to the cytoplasmic side of the membrane is discussed. PMID:17041063

  9. Structural basis for the substrate selectivity of a HAD phosphatase from Thermococcus onnurineus NA1.

    PubMed

    Ngo, Tri Duc; Van Le, Binh; Subramani, Vinod Kumar; Thi Nguyen, Chi My; Lee, Hyun Sook; Cho, Yona; Kim, Kyeong Kyu; Hwang, Hye-Yeon

    2015-05-22

    Proteins in the haloalkaloic acid dehalogenase (HAD) superfamily, which is one of the largest enzyme families, is generally composed of a catalytic core domain and a cap domain. Although proteins in this family show broad substrate specificities, the mechanisms of their substrate recognition are not well understood. In this study, we identified a new substrate binding motif of HAD proteins from structural and functional analyses, and propose that this motif might be crucial for interacting with hydrophobic rings of substrates. The crystal structure of TON_0338, one of the 17 putative HAD proteins identified in a hyperthermophilic archaeon, Thermococcus onnurineus NA1, was determined as an apo-form at 2.0 Å resolution. In addition, we determined the crystal structure TON_0338 in complex with Mg(2+) or N-cyclohexyl-2-aminoethanesulfonic acid (CHES) at 1.7 Å resolution. Examination of the apo-form and CHES-bound structures revealed that CHES is sandwiched between Trp58 and Trp61, suggesting that this Trp sandwich might function as a substrate recognition motif. In the phosphatase assay, TON_0338 was shown to have high activity for flavin mononucleotide (FMN), and the docking analysis suggested that the flavin of FMN may interact with Trp58 and Trp61 in a way similar to that observed in the crystal structure. Moreover, the replacement of these tryptophan residues significantly reduced the phosphatase activity for FMN. Our results suggest that WxxW may function as a substrate binding motif in HAD proteins, and expand the diversity of their substrate recognition mode. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Mutations in the FMN domain modulate MCD spectra of the heme site in the oxygenase domain of inducible nitric oxide synthase.

    PubMed

    Sempombe, Joseph; Elmore, Bradley O; Sun, Xi; Dupont, Andrea; Ghosh, Dipak K; Guillemette, J Guy; Kirk, Martin L; Feng, Changjian

    2009-05-27

    The nitric oxide synthase (NOS) output state for NO production is a complex of the flavin mononucleotide (FMN)-binding domain and the heme domain, and thereby it facilitates the interdomain electron transfer from the FMN to the catalytic heme site. Emerging evidence suggests that interdomain FMN-heme interactions are important in the formation of the output state because they guide the docking of the FMN domain to the heme domain. In this study, notable effects of mutations in the adjacent FMN domain on the heme structure in a human iNOS bidomain oxygenase/FMN construct have been observed by using low-temperature magnetic circular dichroism (MCD) spectroscopy. The comparative MCD study of wild-type and mutant proteins clearly indicates that a properly docked FMN domain contributes to the observed L-Arg perturbation of the heme MCD spectrum in the wild-type protein and that the conserved surface residues in the FMN domain (E546 and E603) play key roles in facilitating a productive alignment of the FMN and heme domains in iNOS.

  11. Atomic resolution mechanistic studies of ribocil: A highly selective unnatural ligand mimic of the E. coli FMN riboswitch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, John A.; Xiao, Li; Fischmann, Thierry O.

    2016-08-02

    Bacterial riboswitches are non-coding RNA structural elements that direct gene expression in numerous metabolic pathways. The key regulatory roles of riboswitches, and the urgent need for new classes of antibiotics to treat multi-drug resistant bacteria, has led to efforts to develop small-molecules that mimic natural riboswitch ligands to inhibit metabolic pathways and bacterial growth. Recently, we reported the results of a phenotypic screen targeting the riboflavin biosynthesis pathway in the Gram-negative bacteria Escherichia coli that led to the identification of ribocil, a small molecule inhibitor of the flavin mononucleotide (FMN) riboswitch controlling expression of this biosynthetic pathway. Although ribocil ismore » structurally distinct from FMN, ribocil functions as a potent and highly selective synthetic mimic of the natural ligand to repress riboswitch-mediated ribB gene expression and inhibit bacterial growth both in vitro and in vivo. Herein, we expand our analysis of ribocil; including mode of binding in the FMN binding pocket of the riboswitch, mechanisms of resistance and structure-activity relationship guided efforts to generate more potent analogs.« less

  12. Genetic tools for the investigation of Roseobacter clade bacteria

    PubMed Central

    2009-01-01

    Background The Roseobacter clade represents one of the most abundant, metabolically versatile and ecologically important bacterial groups found in marine habitats. A detailed molecular investigation of the regulatory and metabolic networks of these organisms is currently limited for many strains by missing suitable genetic tools. Results Conjugation and electroporation methods for the efficient and stable genetic transformation of selected Roseobacter clade bacteria including Dinoroseobacter shibae, Oceanibulbus indolifex, Phaeobacter gallaeciensis, Phaeobacter inhibens, Roseobacter denitrificans and Roseobacter litoralis were tested. For this purpose an antibiotic resistance screening was performed and suitable genetic markers were selected. Based on these transformation protocols stably maintained plasmids were identified. A plasmid encoded oxygen-independent fluorescent system was established using the flavin mononucleotide-based fluorescent protein FbFP. Finally, a chromosomal gene knockout strategy was successfully employed for the inactivation of the anaerobic metabolism regulatory gene dnr from D. shibae DFL12T. Conclusion A genetic toolbox for members of the Roseobacter clade was established. This provides a solid methodical basis for the detailed elucidation of gene regulatory and metabolic networks underlying the ecological success of this group of marine bacteria. PMID:20021642

  13. Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors

    NASA Astrophysics Data System (ADS)

    Meyer, Andreas; Pellaux, René; Potot, Sébastien; Becker, Katja; Hohmann, Hans-Peter; Panke, Sven; Held, Martin

    2015-08-01

    Microcompartmentalization offers a high-throughput method for screening large numbers of biocatalysts generated from genetic libraries. Here we present a microcompartmentalization protocol for benchmarking the performance of whole-cell biocatalysts. Gel capsules served as nanolitre reactors (nLRs) for the cultivation and analysis of a library of Bacillus subtilis biocatalysts. The B. subtilis cells, which were co-confined with E. coli sensor cells inside the nLRs, converted the starting material cellobiose into the industrial product vitamin B2. Product formation triggered a sequence of reactions in the sensor cells: (1) conversion of B2 into flavin mononucleotide (FMN), (2) binding of FMN by a RNA riboswitch and (3) self-cleavage of RNA, which resulted in (4) the synthesis of a green fluorescent protein (GFP). The intensity of GFP fluorescence was then used to isolate B. subtilis variants that convert cellobiose into vitamin B2 with elevated efficiency. The underlying design principles of the assay are general and enable the development of similar protocols, which ultimately will speed up the optimization of whole-cell biocatalysts.

  14. SAR202 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant Dissolved Organic Matter

    PubMed Central

    Landry, Zachary; Swan, Brandon K.; Herndl, Gerhard J.; Stepanauskas, Ramunas

    2017-01-01

    ABSTRACT Deep-ocean regions beyond the reach of sunlight contain an estimated 615 Pg of dissolved organic matter (DOM), much of which persists for thousands of years. It is thought that bacteria oxidize DOM until it is too dilute or refractory to support microbial activity. We analyzed five single-amplified genomes (SAGs) from the abundant SAR202 clade of dark-ocean bacterioplankton and found they encode multiple families of paralogous enzymes involved in carbon catabolism, including several families of oxidative enzymes that we hypothesize participate in the degradation of cyclic alkanes. The five partial genomes encoded 152 flavin mononucleotide/F420-dependent monooxygenases (FMNOs), many of which are predicted to be type II Baeyer-Villiger monooxygenases (BVMOs) that catalyze oxygen insertion into semilabile alicyclic alkanes. The large number of oxidative enzymes, as well as other families of enzymes that appear to play complementary roles in catabolic pathways, suggests that SAR202 might catalyze final steps in the biological oxidation of relatively recalcitrant organic compounds to refractory compounds that persist. PMID:28420738

  15. Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting.

    PubMed

    Wang, Hao; Mann, Paul A; Xiao, Li; Gill, Charles; Galgoci, Andrew M; Howe, John A; Villafania, Artjohn; Barbieri, Christopher M; Malinverni, Juliana C; Sher, Xinwei; Mayhood, Todd; McCurry, Megan D; Murgolo, Nicholas; Flattery, Amy; Mack, Matthias; Roemer, Terry

    2017-05-18

    Riboswitches are bacterial-specific, broadly conserved, non-coding RNA structural elements that control gene expression of numerous metabolic pathways and transport functions essential for cell growth. As such, riboswitch inhibitors represent a new class of potential antibacterial agents. Recently, we identified ribocil-C, a highly selective inhibitor of the flavin mononucleotide (FMN) riboswitch that controls expression of de novo riboflavin (RF, vitamin B2) biosynthesis in Escherichia coli. Here, we provide a mechanistic characterization of the antibacterial effects of ribocil-C as well as of roseoflavin (RoF), an antimetabolite analog of RF, among medically significant Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis. We provide genetic, biophysical, computational, biochemical, and pharmacological evidence that ribocil-C and RoF specifically inhibit dual FMN riboswitches, separately controlling RF biosynthesis and uptake processes essential for MRSA growth and pathogenesis. Such a dual-targeting mechanism is specifically required to develop broad-spectrum Gram-positive antibacterial agents targeting RF metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Requirement of a Functional Flavin Mononucleotide Prenyltransferase for the Activity of a Bacterial Decarboxylase in a Heterologous Muconic Acid Pathway in Saccharomyces cerevisiae.

    PubMed

    Weber, Heike E; Gottardi, Manuela; Brückner, Christine; Oreb, Mislav; Boles, Eckhard; Tripp, Joanna

    2017-05-15

    Biotechnological production of cis , cis -muconic acid from renewable feedstocks is an environmentally sustainable alternative to conventional, petroleum-based methods. Even though a heterologous production pathway for cis , cis -muconic acid has already been established in the host organism Saccharomyces cerevisiae , the generation of industrially relevant amounts of cis , cis -muconic acid is hampered by the low activity of the bacterial protocatechuic acid (PCA) decarboxylase AroY isomeric subunit C iso (AroY-C iso ), leading to secretion of large amounts of the intermediate PCA into the medium. In the present study, we show that the activity of AroY-C iso in S. cerevisiae strongly depends on the strain background. We could demonstrate that the strain dependency is caused by the presence or absence of an intact genomic copy of PAD1 , which encodes a mitochondrial enzyme responsible for the biosynthesis of a prenylated form of the cofactor flavin mononucleotide (prFMN). The inactivity of AroY-C iso in strain CEN.PK2-1 could be overcome by plasmid-borne expression of Pad1 or its bacterial homologue AroY subunit B (AroY-B). Our data reveal that the two enzymes perform the same function in decarboxylation of PCA by AroY-C iso , although coexpression of Pad1 led to higher decarboxylase activity. Conversely, AroY-B can replace Pad1 in its function in decarboxylation of phenylacrylic acids by ferulic acid decarboxylase Fdc1. Targeting of the majority of AroY-B to mitochondria by fusion to a heterologous mitochondrial targeting signal did not improve decarboxylase activity of AroY-C iso , suggesting that mitochondrial localization has no major impact on cofactor biosynthesis. IMPORTANCE In Saccharomyces cerevisiae , the decarboxylation of protocatechuic acid (PCA) to catechol is the bottleneck reaction in the heterologous biosynthetic pathway for production of cis , cis -muconic acid, a valuable precursor for the production of bulk chemicals. In our work, we demonstrate the importance of the strain background for the activity of a bacterial PCA decarboxylase in S. cerevisiae Inactivity of the decarboxylase is due to a nonsense mutation in a gene encoding a mitochondrial enzyme involved in the biosynthesis of a cofactor required for decarboxylase function. Our study reveals functional interchangeability of Pad1 and a bacterial homologue, irrespective of their intracellular localization. Our results open up new possibilities to improve muconic acid production by engineering cofactor supply. Furthermore, the results have important implications for the choice of the production strain. Copyright © 2017 American Society for Microbiology.

  17. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome

    PubMed Central

    Mills, Philippa B.; Camuzeaux, Stephane S.M.; Footitt, Emma J.; Mills, Kevin A.; Gissen, Paul; Fisher, Laura; Das, Krishna B.; Varadkar, Sophia M.; Zuberi, Sameer; McWilliam, Robert; Stödberg, Tommy; Plecko, Barbara; Baumgartner, Matthias R.; Maier, Oliver; Calvert, Sophie; Riney, Kate; Wolf, Nicole I.; Livingston, John H.; Bala, Pronab; Morel, Chantal F.; Feillet, François; Raimondi, Francesco; Del Giudice, Ennio; Chong, W. Kling; Pitt, Matthew

    2014-01-01

    The first described patients with pyridox(am)ine 5’-phosphate oxidase deficiency all had neonatal onset seizures that did not respond to treatment with pyridoxine but responded to treatment with pyridoxal 5’-phosphate. Our data suggest, however, that the clinical spectrum of pyridox(am)ine 5’-phosphate oxidase deficiency is much broader than has been reported in the literature. Sequencing of the PNPO gene was undertaken for a cohort of 82 individuals who had shown a reduction in frequency and severity of seizures in response to pyridoxine or pyridoxal 5’-phosphate. Novel sequence changes were studied using a new cell-free expression system and a mass spectrometry-based assay for pyridoxamine phosphate oxidase. Three groups of patients with PNPO mutations that had reduced enzyme activity were identified: (i) patients with neonatal onset seizures responding to pyridoxal 5’-phosphate (n = 6); (ii) a patient with infantile spasms (onset 5 months) responsive to pyridoxal 5’-phosphate (n = 1); and (iii) patients with seizures starting under 3 months of age responding to pyridoxine (n = 8). Data suggest that certain genotypes (R225H/C and D33V) are more likely to result in seizures that to respond to treatment with pyridoxine. Other mutations seem to be associated with infertility, miscarriage and prematurity. However, the situation is clearly complex with the same combination of mutations being seen in patients who responded and did not respond to pyridoxine. It is possible that pyridoxine responsiveness in PNPO deficiency is affected by prematurity and age at the time of the therapeutic trial. Other additional factors that are likely to influence treatment response and outcome include riboflavin status and how well the foetus has been supplied with vitamin B6 by the mother. For some patients there was a worsening of symptoms on changing from pyridoxine to pyridoxal 5’-phosphate. Many of the mutations in PNPO affected residues involved in binding flavin mononucleotide or pyridoxal 5’-phosphate and many of them showed residual enzyme activity. One sequence change (R116Q), predicted to affect flavin mononucleotide binding and binding of the two PNPO dimers, and with high residual activity was found in Groups (ii) and (iii). This sequence change has been reported in the 1000 Genomes project suggesting it could be a polymorphism but alternatively it could be a common mutation, perhaps responsible for the susceptibility locus for genetic generalized epilepsy on 17q21.32 (close to rs72823592). We believe the reduction in PNPO activity and B6-responsive epilepsy in the patients reported here indicates that it contributes to the pathogenesis of epilepsy. PMID:24645144

  18. WrpA Is an Atypical Flavodoxin Family Protein under Regulatory Control of the Brucella abortus General Stress Response System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrou, Julien; Czyż, Daniel M.; Willett, Jonathan W.

    ABSTRACT The general stress response (GSR) system of the intracellular pathogenBrucella abortuscontrols the transcription of approximately 100 genes in response to a range of stress cues. The core genetic regulatory components of the GSR are required forB. abortussurvival under nonoptimal growth conditionsin vitroand for maintenance of chronic infection in anin vivomouse model. The functions of the majority of the genes in the GSR transcriptional regulon remain undefined.bab1_1070is among the most highly regulated genes in this regulon: its transcription is activated 20- to 30-fold by the GSR system under oxidative conditionsin vitro. We have solved crystal structures of Bab1_1070 and demonstratemore » that it forms a homotetrameric complex that resembles those of WrbA-type NADH:quinone oxidoreductases, which are members of the flavodoxin protein family. However,B. abortusWrbA-relatedprotein (WrpA) does not bind flavin cofactors with a high affinity and does not function as an NADH:quinone oxidoreductasein vitro. Soaking crystals with flavin mononucleotide (FMN) revealed a likely low-affinity binding site adjacent to the canonical WrbA flavin binding site. Deletion ofwrpA(ΔwrpA) does not compromise cell survival under acute oxidative stressin vitroor attenuate infection in cell-based or mouse models. However, a ΔwrpAstrain does elicit increased splenomegaly in a mouse model, suggesting that WrpA modulatesB. abortusinteraction with its mammalian host. Despite high structural homology with canonical WrbA proteins, we propose thatB. abortusWrpA represents a functionally distinct member of the diverse flavodoxin family. IMPORTANCEBrucella abortusis an etiological agent of brucellosis, which is among the most common zoonotic diseases worldwide. The general stress response (GSR) regulatory system ofB. abortuscontrols the transcription of approximately 100 genes and is required for maintenance of chronic infection in a murine model; the majority of GSR-regulated genes remain uncharacterized. We presentin vitroandin vivofunctional and structural analyses of WrpA, whose expression is strongly induced by GSR under oxidative conditions. Though WrpA is structurally related to NADH:quinone oxidoreductases, it does not bind redox cofactors in solution, nor does it exhibit oxidoreductase activityin vitro. However, WrpA does affect spleen inflammation in a murine infection model. Our data provide evidence that WrpA forms a new functional class of WrbA/flavodoxin family proteins.« less

  19. Solving Kinetic Equations for the Laser Flash Photolysis Experiment on Nitric Oxide Synthases: Effect of Conformational Dynamics on the Interdomain Electron Transfer.

    PubMed

    Astashkin, Andrei V; Feng, Changjian

    2015-11-12

    The production of nitric oxide by the nitric oxide synthase (NOS) enzyme depends on the interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme domains. Although the rate of this IET has been measured by laser flash photolysis (LFP) for various NOS proteins, no rigorous analysis of the relevant kinetic equations was performed so far. In this work, we provide an analytical solution of the kinetic equations underlying the LFP approach. The derived expressions reveal that the bulk IET rate is significantly affected by the conformational dynamics that determines the formation and dissociation rates of the docking complex between the FMN and heme domains. We show that in order to informatively study the electron transfer across the NOS enzyme, LFP should be used in combination with other spectroscopic methods that could directly probe the docking equilibrium and the conformational change rate constants. The implications of the obtained analytical expressions for the interpretation of the LFP results from various native and modified NOS proteins are discussed. The mathematical formulas derived in this work should also be applicable for interpreting the IET kinetics in other modular redox enzymes.

  20. An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.: functional expression and enzymatic characterization.

    PubMed

    Ooi, Toshihiko; Shibata, Takeshi; Sato, Reiko; Ohno, Hiroaki; Kinoshita, Shinichi; Thuoc, Tran Linh; Taguchi, Seiichi

    2007-05-01

    The gene coding for an azoreductase, designated as an azrA, was cloned by polymerase chain reaction amplification from the genomic DNA of Bacillus sp. strain B29 isolated from soil. The azrA encoded a protein of 208 amino acids with calculated molecular mass of 22,766 Da. The enzyme was heterologously expressed in Escherichia coli with a strong band of 23 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Purified recombinant AzrA was a homodimer with a native molecular mass of 48 kDa containing two molecules of flavin mononucleotide (FMN; oxidized). This activity was oxygen insensitive and was nicotinamide adenine dinucleotide (reduced form; NADH) dependent. Recombinant AzrA exhibited a broad pH stability between 6 and 10 with a temperature optimum of 60-80 degrees C. The enzyme cleaved the model azo compound of methyl red [MR, 4'-(dimethylamino)-azobenzene-2-carboxylic acid] into 2-aminobenzoic acid and N, N'-dimethyl-p-phenylenediamine by ping-pong mechanism. The enzyme was not only able to decolorize MR but also able to decolorize sulfonated azo dyes such as Orange I and Acid Red 88.

  1. NADP-Specific Electron-Bifurcating [FeFe]-Hydrogenase in a Functional Complex with Formate Dehydrogenase in Clostridium autoethanogenum Grown on CO

    PubMed Central

    Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Mueller, Alexander P.; Köpke, Michael

    2013-01-01

    Flavin-based electron bifurcation is a recently discovered mechanism of coupling endergonic to exergonic redox reactions in the cytoplasm of anaerobic bacteria and archaea. Among the five electron-bifurcating enzyme complexes characterized to date, one is a heteromeric ferredoxin- and NAD-dependent [FeFe]-hydrogenase. We report here a novel electron-bifurcating [FeFe]-hydrogenase that is NADP rather than NAD specific and forms a complex with a formate dehydrogenase. The complex was found in high concentrations (6% of the cytoplasmic proteins) in the acetogenic Clostridium autoethanogenum autotrophically grown on CO, which was fermented to acetate, ethanol, and 2,3-butanediol. The purified complex was composed of seven different subunits. As predicted from the sequence of the encoding clustered genes (fdhA/hytA-E) and from chemical analyses, the 78.8-kDa subunit (FdhA) is a selenocysteine- and tungsten-containing formate dehydrogenase, the 65.5-kDa subunit (HytB) is an iron-sulfur flavin mononucleotide protein harboring the NADP binding site, the 51.4-kDa subunit (HytA) is the [FeFe]-hydrogenase proper, and the 18.1-kDa (HytC), 28.6-kDa (HytD), 19.9-kDa (HytE1), and 20.1-kDa (HytE2) subunits are iron-sulfur proteins. The complex catalyzed both the reversible coupled reduction of ferredoxin and NADP+ with H2 or formate and the reversible formation of H2 and CO2 from formate. We propose the complex to have two functions in vivo, namely, to normally catalyze CO2 reduction to formate with NADPH and reduced ferredoxin in the Wood-Ljungdahl pathway and to catalyze H2 formation from NADPH and reduced ferredoxin when these redox mediators get too reduced during unbalanced growth of C. autoethanogenum on CO (E0′ = −520 mV). PMID:23893107

  2. The mitochondrial outer membrane protein mitoNEET is a redox enzyme catalyzing electron transfer from FMNH2 to oxygen or ubiquinone.

    PubMed

    Wang, Yiming; Landry, Aaron P; Ding, Huangen

    2017-06-16

    Increasing evidence suggests that mitoNEET, a target of the type II diabetes drug pioglitazone, is a key regulator of energy metabolism in mitochondria. MitoNEET is anchored to the mitochondrial outer membrane via its N-terminal α helix domain and hosts a redox-active [2Fe-2S] cluster in its C-terminal cytosolic region. The mechanism by which mitoNEET regulates energy metabolism in mitochondria, however, is not fully understood. Previous studies have shown that mitoNEET specifically interacts with the reduced flavin mononucleotide (FMNH 2 ) and that FMNH 2 can quickly reduce the mitoNEET [2Fe-2S] clusters. Here we report that the reduced mitoNEET [2Fe-2S] clusters can be readily oxidized by oxygen. In the presence of FMN, NADH, and flavin reductase, which reduces FMN to FMNH 2 using NADH as the electron donor, mitoNEET mediates oxidation of NADH with a concomitant reduction of oxygen. Ubiquinone-2, an analog of ubiquinone-10, can also oxidize the reduced mitoNEET [2Fe-2S] clusters under anaerobic or aerobic conditions. Compared with oxygen, ubiquinone-2 is more efficient in oxidizing the mitoNEET [2Fe-2S] clusters, suggesting that ubiquinone could be an intrinsic electron acceptor of the reduced mitoNEET [2Fe-2S] clusters in mitochondria. Pioglitazone or its analog NL-1 appears to inhibit the electron transfer activity of mitoNEET by forming a unique complex with mitoNEET and FMNH 2 The results suggest that mitoNEET is a redox enzyme that may promote oxidation of NADH to facilitate enhanced glycolysis in the cytosol and that pioglitazone may regulate energy metabolism in mitochondria by inhibiting the electron transfer activity of mitoNEET. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Modeling of Anopheles minimus Mosquito NADPH-Cytochrome P450 Oxidoreductase (CYPOR) and Mutagenesis Analysis

    PubMed Central

    Sarapusit, Songklod; Lertkiatmongkol, Panida; Duangkaew, Panida; Rongnoparut, Pornpimol

    2013-01-01

    Malaria is one of the most dangerous mosquito-borne diseases in many tropical countries, including Thailand. Studies in a deltamethrin resistant strain of Anopheles minimus mosquito, suggest cytochrome P450 enzymes contribute to the detoxification of pyrethroid insecticides. Purified A. minimus CYPOR enzyme (AnCYPOR), which is the redox partner of cytochrome P450s, loses flavin-adenosine di-nucleotide (FAD) and FLAVIN mono-nucleotide (FMN) cofactors that affect its enzyme activity. Replacement of leucine residues at positions 86 and 219 with phenylalanines in FMN binding domain increases FMN binding, enzyme stability, and cytochrome c reduction activity. Membrane-Bound L86F/L219F-AnCYPOR increases A. minimus P450-mediated pyrethroid metabolism in vitro. In this study, we constructed a comparative model structure of AnCYPOR using a rat CYPOR structure as a template. Overall model structure is similar to rat CYPOR, with some prominent differences. Based on primary sequence and structural analysis of rat and A. minimus CYPOR, C427R, W678A, and W678H mutations were generated together with L86F/L219F resulting in three soluble Δ55 triple mutants. The C427R triple AnCYPOR mutant retained a higher amount of FAD binding and increased cytochrome c reduction activity compared to wild-type and L86F/L219F-Δ55AnCYPOR double mutant. However W678A and W678H mutations did not increase FAD and NAD(P)H bindings. The L86F/L219F double and C427R triple membrane-bound AnCYPOR mutants supported benzyloxyresorufin O-deakylation (BROD) mediated by mosquito CYP6AA3 with a two-to three-fold increase in efficiency over wild-type AnCYPOR. The use of rat CYPOR in place of AnCYPOR most efficiently supported CYP6AA3-mediated BROD compared to all AnCYPORs. PMID:23325047

  4. NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO.

    PubMed

    Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Mueller, Alexander P; Köpke, Michael; Thauer, Rudolf K

    2013-10-01

    Flavin-based electron bifurcation is a recently discovered mechanism of coupling endergonic to exergonic redox reactions in the cytoplasm of anaerobic bacteria and archaea. Among the five electron-bifurcating enzyme complexes characterized to date, one is a heteromeric ferredoxin- and NAD-dependent [FeFe]-hydrogenase. We report here a novel electron-bifurcating [FeFe]-hydrogenase that is NADP rather than NAD specific and forms a complex with a formate dehydrogenase. The complex was found in high concentrations (6% of the cytoplasmic proteins) in the acetogenic Clostridium autoethanogenum autotrophically grown on CO, which was fermented to acetate, ethanol, and 2,3-butanediol. The purified complex was composed of seven different subunits. As predicted from the sequence of the encoding clustered genes (fdhA/hytA-E) and from chemical analyses, the 78.8-kDa subunit (FdhA) is a selenocysteine- and tungsten-containing formate dehydrogenase, the 65.5-kDa subunit (HytB) is an iron-sulfur flavin mononucleotide protein harboring the NADP binding site, the 51.4-kDa subunit (HytA) is the [FeFe]-hydrogenase proper, and the 18.1-kDa (HytC), 28.6-kDa (HytD), 19.9-kDa (HytE1), and 20.1-kDa (HytE2) subunits are iron-sulfur proteins. The complex catalyzed both the reversible coupled reduction of ferredoxin and NADP(+) with H2 or formate and the reversible formation of H2 and CO2 from formate. We propose the complex to have two functions in vivo, namely, to normally catalyze CO2 reduction to formate with NADPH and reduced ferredoxin in the Wood-Ljungdahl pathway and to catalyze H2 formation from NADPH and reduced ferredoxin when these redox mediators get too reduced during unbalanced growth of C. autoethanogenum on CO (E0' = -520 mV).

  5. Isolation and Expression Analysis of CYP9A11 and Cytochrome P450 Reductase Gene in the Beet Armyworm (Lepidoptera: Noctuidae)

    PubMed Central

    Zhao, Chunqing; Feng, Xiaoyun; Tang, Tao; Qiu, Lihong

    2015-01-01

    Cytochrome P450 monooxygenases (CYPs), as an enzyme superfamily, is widely distributed in organisms and plays a vital function in the metabolism of exogenous and endogenous compounds by interacting with its obligatory redox partner, CYP reductase (CPR). A novel CYP gene (CYP9A11) and CPR gene from the agricultural pest insect Spodoptera exigua were cloned and characterized. The complete cDNA sequences of SeCYP9A11 and SeCPR are 1,931 and 3,919 bp in length, respectively, and contain open reading frames of 1,593 and 2,070 nucleotides, respectively. Analysis of the putative protein sequences indicated that SeCYP9A11 contains a heme-binding domain and the unique characteristic sequence (SRFALCE) of the CYP9 family, in addition to a signal peptide and transmembrane segment at the N-terminal. Alignment analysis revealed that SeCYP9A11 shares the highest sequence similarity with CYP9A13 from Mamestra brassicae, which is 66.54%. The putative protein sequence of SeCPR has all of the classical CPR features, such as an N-terminal membrane anchor; three conserved domain flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and nicotinamide adenine dinucleotide phosphate (NADPH) domain; and characteristic binding motifs. Phylogenetic analysis revealed that SeCPR shares the highest identity with HaCPR, which is 95.21%. The SeCYP9A11 and SeCPR genes were detected in the midgut, fat body, and cuticle tissues, and throughout all of the developmental stages of S. exigua. The mRNA levels of SeCYP9A11 and SeCPR decreased remarkably after exposure to plant secondary metabolites quercetin and tannin. The results regarding SeCYP9A11 and SeCPR genes in the current study provide foundation for the further study of S. exigua P450 system. PMID:26320261

  6. Tracking gene expression and oxidative damage of O2-stressed Clostridioides difficile by a multi-omics approach.

    PubMed

    Neumann-Schaal, Meina; Metzendorf, Nicole G; Troitzsch, Daniel; Nuss, Aaron Mischa; Hofmann, Julia Danielle; Beckstette, Michael; Dersch, Petra; Otto, Andreas; Sievers, Susanne

    2018-05-31

    Clostridioides difficile is the major pathogen causing diarrhea following antibiotic treatment. It is considered to be a strictly anaerobic bacterium, however, previous studies have shown a certain and strain-dependent oxygen tolerance. In this study, the model strain C. difficile 630Δerm was shifted to micro-aerobiosis and was found to stay growing to the same extent as anaerobically growing cells with only few changes in the metabolite pattern. However, an extensive change in gene expression was determined by RNA-Seq. The most striking adaptation strategies involve a change in the reductive fermentation pathways of the amino acids proline, glycine and leucine. But also a far-reaching restructuring in the carbohydrate metabolism was detected with changes in the phosphotransferase system (PTS) facilitated uptake of sugars and a repression of enzymes of glycolysis and butyrate fermentation. Furthermore, a temporary induction in the synthesis of cofactor riboflavin was detected possibly due to an increased demand for flavin mononucleotid (FMN) and flavin adenine dinucleotide (FAD) in redox reactions. However, biosynthesis of the cofactors thiamin pyrophosphate and cobalamin were repressed deducing oxidation-prone enzymes and intermediates in these pathways. Micro-aerobically shocked cells were characterized by an increased demand for cysteine and a thiol redox proteomics approach revealed a dramatic increase in the oxidative state of cysteine in more than 800 peptides after 15 min of micro-aerobic shock. This provides not only a catalogue of oxidation-prone cysteine residues in the C. difficile proteome but also puts the amino acid cysteine into a key position in the oxidative stress response. Our study suggests that tolerance of C. difficile towards O 2 is based on a complex and far-reaching adjustment of global gene expression which leads to only a slight change in phenotype. Copyright © 2018. Published by Elsevier Ltd.

  7. Brassica juncea nitric oxide synthase like activity is stimulated by PKC activators and calcium suggesting modulation by PKC-like kinase.

    PubMed

    Talwar, Pooja Saigal; Gupta, Ravi; Maurya, Arun Kumar; Deswal, Renu

    2012-11-01

    Nitric oxide (NO) is an important signaling molecule having varied physiological and regulatory roles in biological systems. The fact that nitric oxide synthase (NOS) is responsible for NO generation in animals, prompted major search for a similar enzyme in plants. Arginine dependent NOS like activity (BjNOSla) was detected in Brassica juncea seedlings using oxyhemoglobin and citrulline assays. BjNOSla showed 25% activation by NADPH (0.4 mM) and 40% by calcium (0.4 mM) but the activity was flavin mononucleotide (FMN), flavin dinucleotide (FAD) and calmodulin (CaM) independent. Pharmacological approach using mammalian NOS inhibitors, NBT (300 μM) and l-NAME (5 mM), showed significant inhibition (100% and 67% respectively) supporting that the BjNOSla operates via the oxidative pathway. Most of the BjNOSla activity (80%) was confined to shoot while root showed only 20% activity. Localization studies by NADPH-diaphorase and DAF-2DA staining showed the presence of BjNOSla in guard cells. Kinetic analysis showed positive cooperativity with calcium as reflected by a decreased K(m) (∼13%) and almost two fold increase in V(max). PMA (438 nM), a kinase activator, activated BjNOSla ∼1.9 fold while its inactive analog 4αPDD was ineffective. Calcium and PMA activated the enzyme to ∼3 folds. Interestingly, 1,2-DG6 (2.5 μM) and PS (1 μM) with calcium activated the enzyme activity to ∼7 fold. A significant inhibition of BjNOSla by PKC inhibitors-staurosporine (∼90%) and calphostin-C (∼40%), further supports involvement of PKC-like kinase. The activity was also enhanced by abiotic stress conditions (7-46%). All these findings suggest that BjNOSla generates NO via oxidative pathway and is probably regulated by phosphorylation. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Crystal structures of two nitroreductases from hypervirulent Clostridium difficile and functionally related interactions with the antibiotic metronidazole

    PubMed Central

    Wang, Bing; Powell, Samantha M.; Hessami, Neda; Najar, Fares Z.; Thomas, Leonard M.; Karr, Elizabeth A.; West, Ann H.; Richter-Addo, George B.

    2016-01-01

    Nitroreductases (NRs) are flavin mononucleotide (FMN)-dependent enzymes that catalyze the biotransformation of organic nitro compounds (RNO2; R = alkyl, aryl) to the nitroso RN=O, hydroxylamino RNHOH, or amine RNH2 derivatives. Metronidazole (Mtz) is a nitro-containing antibiotic that is commonly prescribed for lower-gut infections caused by the anaerobic bacterium Clostridium difficile. C. difficile infections rank number one among hospital acquired infections, and can result in diarrhea, severe colitis, or even death. Although NRs have been implicated in Mtz resistance of C. difficile, no NRs have been characterized from the hypervirulent R20291 strain of C. difficile. We report the first expression, purification, and three-dimensional X-ray crystal structures of two NRs from the C. difficile R20291 strain. The X-ray crystal structures of the two NRs were solved to 2.1 Å resolution. Their homodimeric structures exhibit the classic NR α+β fold, with each protomer binding one FMN cofactor near the dimer interface. Functional assays demonstrate that these two NRs metabolize Mtz with associated re-oxidation of the proteins. Importantly, these results represent the first isolation and characterization of NRs from the hypervirulent R20291 strain of relevance to organic RNO2 (e.g., Mtz) metabolism. PMID:27623089

  9. Ammonia assimilation and synthesis of alanine, aspartate, and glutamate in Methanosarcina barkeri and Methanobacterium thermoautotrophicum.

    PubMed Central

    Kenealy, W R; Thompson, T E; Schubert, K R; Zeikus, J G

    1982-01-01

    The mechanism of ammonia assimilation in Methanosarcina barkeri and Methanobacterium thermoautotrophicum was documented by analysis of enzyme activities, 13NH3 incorporation studies, and comparison of growth and enzyme activity levels in continuous culture. Glutamate accounted for 65 and 52% of the total amino acids in the soluble pools of M. barkeri and M. thermoautotrophicum. Both organisms contained significant activities of glutamine synthetase, glutamate synthase, glutamate oxaloacetate transaminase, and glutamate pyruvate transaminase. Hydrogen-reduced deazaflavin-factor 420 or flavin mononucleotide but not NAD, NADP, or ferredoxin was used as the electron donor for glutamate synthase in M. barkeri. Glutamate dehydrogenase activity was not detected in either organism, but alanine dehydrogenase activity was present in M. thermoautotrophicum. The in vivo activity of the glutamine synthetase was verified in M. thermoautotrophicum by analysis of 13NH3 incorporation into glutamine, glutamate, and alanine. Alanine dehydrogenase and glutamine synthetase activity varied in response to [NH4+] when M. thermoautotrophicum was cultured in a chemostat with cysteine as the sulfur source. Alanine dehydrogenase activity and growth yield (grams of cells/mole of methane) were highest when the organism was cultured with excess ammonia, whereas growth yield was lower and glutamine synthetase was maximal when ammonia was limiting. PMID:6122678

  10. Time-resolved fluorescence spectroscopic study of flavin fluorescence in purified enzymes of bioluminescent bacteria

    NASA Astrophysics Data System (ADS)

    Vetrova, Elena; Kudryasheva, N.; Cheng, K.

    2006-10-01

    Time-resolved fluorescence intensity and anisotropy decay measurements have been used to study the environment and rotational mobility of endogenous flavin in two purified enzymes of bioluminescent bacteria, Luciferase from Photobacterium leiognathi and NAD(P)H:FMN-oxidoreductase from Vibrio fischeri. We compared the time-resolved fluorescence parameters, intensity decay lifetimes, rotational correlation times, and their fractional contribution, of the endogeneous flavin fluorescence in each of the two enzymes in the presence or absence of quinones of different structures and redox potentials. The endogeneous flavin exhibited multi-exponential decay characteristics as compared to a single decay lifetime of around 5 ns for free flavin, suggesting a complex and heterogeneous environment of flavin bound to the enzyme. In addition, a significant increase in the rotational correlation time and a certain degree of ordering of the molecule were observed for endogenous flavin when compared to a single and fast rotational correlation time of 150 ps of free flavin. Quinone significantly altered both the lifetime and rotational characteristics of endogenous flavin suggesting specific interactions of quinones to the endogeneous flavin in the bacterial enzyme.

  11. Effect of xenon on the excited states of phototropic receptor flavin in corn seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vierstra, R.D.; Poff, K.L.; Walker, E.B.

    1981-05-01

    The chemically inert, water-soluble heavy atom gas, xenon, at millimolar concentrations specifically quenches the triplet excited state of flavin in solution without quenching the flavin singlet excited state. The preferential quenching of the flavin triplet over the singlet excited state by Xe has been established by showing that the flavin triplet-sensitized photooxidation of NADH is inhibited while the fluorescence intensity and lifetime of flavin are not affected by Xe. No significant inhibition of phototropism and geotropism by Xe was observed, suggesting that a flavin singlet state is more likely involved than the triplet state in the primary photoprocess of phototropismmore » in corn.« less

  12. Kinetic mechanism and quaternary structure of Aminobacter aminovorans NADH:flavin oxidoreductase: an unusual flavin reductase with bound flavin.

    PubMed

    Russell, Thomas R; Demeler, Borries; Tu, Shiao-Chun

    2004-02-17

    The homodimeric NADH:flavin oxidoreductase from Aminobacter aminovorans is an NADH-specific flavin reductase herein designated FRD(Aa). FRD(Aa) was characterized with respect to purification yields, thermal stability, isoelectric point, molar absorption coefficient, and effects of phosphate buffer strength and pH on activity. Evidence from this work favors the classification of FRD(Aa) as a flavin cofactor-utilizing class I flavin reductase. The isolated native FRD(Aa) contained about 0.5 bound riboflavin-5'-phosphate (FMN) per enzyme monomer, but one bound flavin cofactor per monomer was obtainable in the presence of excess FMN or riboflavin. In addition, FRD(Aa) holoenzyme also utilized FMN, riboflavin, or FAD as a substrate. Steady-state kinetic results of substrate titrations, dead-end inhibition by AMP and lumichrome, and product inhibition by NAD(+) indicated an ordered sequential mechanism with NADH as the first binding substrate and reduced FMN as the first leaving product. This is contrary to the ping-pong mechanism shown by other class I flavin reductases. The FMN bound to the native FRD(Aa) can be fully reduced by NADH and subsequently reoxidized by oxygen. No NADH binding was detected using 90 microM FRD(Aa) apoenzyme and 300 microM NADH. All results favor the interpretation that the bound FMN was a cofactor rather than a substrate. It is highly unusual that a flavin reductase using a sequential mechanism would require a flavin cofactor to facilitate redox exchange between NADH and a flavin substrate. FRD(Aa) exhibited a monomer-dimer equilibrium with a K(d) of 2.7 microM. Similarities and differences between FRD(Aa) and certain flavin reductases are discussed.

  13. Multi-Ligand-Binding Flavoprotein Dodecin as a Key Element for Reversible Surface Modification in Nano-biotechnology.

    PubMed

    Gutiérrez Sánchez, Cristina; Su, Qiang; Schönherr, Holger; Grininger, Martin; Nöll, Gilbert

    2015-01-01

    In this paper the multiple (re)programming of protein-DNA nanostructures comprising generation, deletion, and reprogramming on the same flavin-DNA-modified surface is introduced. This work is based on a systematic study of the binding affinity of the multi-ligand-binding flavoprotein dodecin on flavin-terminated DNA monolayers by surface plasmon resonance and quartz crystal microbalance with dissipation (QCM-D) measurements, surface plasmon fluorescence spectroscopy (SPFS), and dynamic AFM force spectroscopy. Depending on the flavin surface coverage, a single apododecin is captured by one or more surface-immobilized flavins. The corresponding complex binding and unbinding rate constants kon(QCM) = 7.7 × 10(3) M(-1)·s(-1) and koff(QCM) = 4.5 × 10(-3) s(-1) (Kd(QCM) = 580 nM) were determined by QCM and were found to be in agreement with values for koff determined by SPFS and force spectroscopy. Even though a single apododecin-flavin bond is relatively weak, stable dodecin monolayers were formed on flavin-DNA-modified surfaces at high flavin surface coverage due to multivalent interactions between apododecin bearing six binding pockets and the surface-bound flavin-DNA ligands. If bi- or multivalent flavin ligands are adsorbed on dodecin monolayers, stable sandwich-type surface-DNA-flavin-apododecin-flavin ligand arrays are obtained. Nevertheless, the apododecin flavin complex is easily and quantitatively disassembled by flavin reduction. Binding and release of apododecin are reversible processes, which can be carried out alternatingly several times to release one type of ligand by an external redox trigger and subsequently replace it with a different ligand. Hence the versatile concept of reprogrammable functional biointerfaces with the multi-ligand-binding flavoprotein dodecin is demonstrated.

  14. A base-catalyzed mechanism for dark state recovery in the Avena sativa phototropin-1 LOV2 domain.

    PubMed

    Alexandre, Maxime T A; Arents, Jos C; van Grondelle, Rienk; Hellingwerf, Klaas J; Kennis, John T M

    2007-03-20

    Phototropins are autophosphorylating serine/threonine kinases responsible for blue-light perception in plants; their action gives rise to phototropism, chloroplast relocation, and opening of stomatal guard cells. The kinase domain constitutes the C-terminal part of Avena sativa phototropin 1. The N-terminal part contains two light, oxygen, or voltage (LOV) sensing domains, LOV1 and LOV2; each binds a flavin mononucleotide (FMN) chromophore (lambdamax = 447 nm, termed D447) and forms the light-sensitive domains, of which LOV2 is the principal component. Blue-light absorption produces a covalent adduct between a very conserved nearby cysteine residue and the C(4a) atom of the FMN moiety via the triplet state of the flavin. The covalent adduct thermally decays to regenerate the D447 dark state, with a rate that may vary by several orders of magnitude between different species. We report that the imidazole base can act as a very efficient enhancer of the dark recovery of A. sativa phot1 LOV2 (AsLOV2) and some other well-characterized LOV domains. Imidazole accelerates the thermal decay of AsLOV2 by 3 orders of magnitude in the submolar concentration range, via a base-catalyzed mechanism involving base abstraction of the FMN N(5)-H adduct state and subsequent reprotonation of the reactive cysteine. The LOV2 crystal structure suggests that the imidazole molecules may act from a cavity located in the vicinity of the FMN, explaining its high efficiency, populated through a channel connecting the cavity to the protein surface. Use of pH titration and chemical inactivation by diethyl pyrocarbonate (DEPC) suggests that histidines located at the surface of the LOV domain act as base catalysts via an as yet unidentified H-bond network, operating at a rate of (55 s)-1 at pH 8. In addition, molecular processes other than histidine-mediated base catalysis contibute significantly to the total thermal decay rate of the adduct and operate at a rate constant of (65 s)-1, leading to a net adduct decay time constant of 30 s at pH 8.

  15. The Membrane-Bound C Subunit of Reductive Dehalogenases: Topology Analysis and Reconstitution of the FMN-Binding Domain of PceC

    PubMed Central

    Buttet, Géraldine F.; Willemin, Mathilde S.; Hamelin, Romain; Rupakula, Aamani; Maillard, Julien

    2018-01-01

    Organohalide respiration (OHR) is the energy metabolism of anaerobic bacteria able to use halogenated organic compounds as terminal electron acceptors. While the terminal enzymes in OHR, so-called reductive dehalogenases, are well-characterized, the identity of proteins potentially involved in electron transfer to the terminal enzymes remains elusive. Among the accessory genes identified in OHR gene clusters, the C subunit (rdhC) could well code for the missing redox protein between the quinol pool and the reductive dehalogenase, although it was initially proposed to act as transcriptional regulator. RdhC sequences are characterized by the presence of multiple transmembrane segments, a flavin mononucleotide (FMN) binding motif and two conserved CX3CP motifs. Based on these features, we propose a curated selection of RdhC proteins identified in general sequence databases. Beside the Firmicutes from which RdhC sequences were initially identified, the identified sequences belong to three additional phyla, the Chloroflexi, the Proteobacteria, and the Bacteriodetes. The diversity of RdhC sequences mostly respects the phylogenetic distribution, suggesting that rdhC genes emerged relatively early in the evolution of the OHR metabolism. PceC, the C subunit of the tetrachloroethene (PCE) reductive dehalogenase is encoded by the conserved pceABCT gene cluster identified in Dehalobacter restrictus PER-K23 and in several strains of Desulfitobacterium hafniense. Surfaceome analysis of D. restrictus cells confirmed the predicted topology of the FMN-binding domain (FBD) of PceC that is the exocytoplasmic face of the membrane. Starting from inclusion bodies of a recombinant FBD protein, strategies for successful assembly of the FMN cofactor and refolding were achieved with the use of the flavin-trafficking protein from D. hafniense TCE1. Mass spectrometry analysis and site-directed mutagenesis of rFBD revealed that threonine-168 of PceC is binding FMN covalently. Our results suggest that PceC, and more generally RdhC proteins, may play a role in electron transfer in the metabolism of OHR. PMID:29740408

  16. Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms.

    PubMed

    Sisó-Terraza, Patricia; Rios, Juan J; Abadía, Javier; Abadía, Anunciación; Álvarez-Fernández, Ana

    2016-01-01

    Iron (Fe) is abundant in soils but generally poorly soluble. Plants, with the exception of Graminaceae, take up Fe using an Fe(III)-chelate reductase coupled to an Fe(II) transporter. Whether or not nongraminaceous species can convert scarcely soluble Fe(III) forms into soluble Fe forms has deserved little attention so far. We have used Beta vulgaris, one among the many species whose roots secrete flavins upon Fe deficiency, to study whether or not flavins are involved in Fe acquisition. Flavins secreted by Fe-deficient plants were removed from the nutrient solution, and plants were compared with Fe-sufficient plants and Fe-deficient plants without flavin removal. Solubilization of a scarcely soluble Fe(III)-oxide was assessed in the presence or absence of flavins, NADH (nicotinamide adenine dinucleotide, reduced form) or plant roots, and an Fe(II) trapping agent. The removal of flavins from the nutrient solution aggravated the Fe deficiency-induced leaf chlorosis. Flavins were able to dissolve an Fe(III)-oxide in the presence of NADH. The addition of extracellular flavins enabled roots of Fe-deficient plants to reductively dissolve an Fe(III)-oxide. We concluded that root-secretion of flavins improves Fe nutrition in B. vulgaris. Flavins allow B. vulgaris roots to mine Fe from Fe(III)-oxides via reductive mechanisms. © 2015 CSIC New Phytologist © 2015 New Phytologist Trust.

  17. NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase

    PubMed Central

    Kostyrko, Vitaly A.; Bertsova, Yulia V.; Serebryakova, Marina V.; Baykov, Alexander A.

    2015-01-01

    ABSTRACT Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na+ translocation across the membrane. Na+-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na+-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na+-NQR, resulted in an enzyme incapable of Na+-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na+-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na+-NQR, which could be recovered by an nqrM-containing plasmid. The Na+-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na+-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na+-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na+-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na+-translocating NADH:quinone oxidoreductase complex (Na+-NQR) is a unique primary Na+ pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio parahaemolyticus, Haemophilus influenzae, Neisseria gonorrhoeae, Pasteurella multocida, Porphyromonas gingivalis, Enterobacter aerogenes, and Yersinia pestis. Production of Na+-NQR in bacteria requires Na+-NQR-specific maturation factors. We earlier identified one such factor (ApbE) that covalently attaches flavin residues to Na+-NQR. Here we identify the other protein factor, designated NqrM, and show that NqrM and ApbE suffice to produce functional Na+-NQR from the Vibrio harveyi nqr operon. NqrM may be involved in Fe delivery to a unique Cys4[Fe] center during Na+-NQR assembly. Besides highlighting Na+-NQR biogenesis, these findings suggest a novel drug target to combat Na+-NQR-containing bacteria. PMID:26644436

  18. Infrared multiple photon dissociation action spectroscopy of deprotonated RNA mononucleotides: gas-phase conformations and energetics.

    PubMed

    Nei, Y-w; Crampton, K T; Berden, G; Oomens, J; Rodgers, M T

    2013-10-17

    The IRMPD action spectra of the deprotonated forms of the four common RNA mononucleotides, adenosine-5'-monophosphate (A5'p), guanosine-5'-monophosphate (G5'p), cytidine-5'-monophosphate (C5'p), and uridine-5'-monophosphate (U5'p), are measured to probe their gas-phase structures. The IRMPD action spectra of all four deprotonated RNA mononucleotides exhibit distinct IR signatures in the frequency region investigated, 570-1900 cm(-1), that allows these deprotonated mononucleotides to be easily differentiated from one other. Comparison of the measured IRMPD action spectra to the linear IR spectra calculated at the B3LYP/6-31+G(d,p) level of theory finds that the most stable conformations of the deprotonated forms of A5'p, C5'p, and U5'p are accessed in the experiments, and these conformers adopt the C3' endo conformation of the ribose moiety and the anti conformation of the nucleobase. In the case of deprotonated G5'p, the most stable conformer is also accessed in the experiments. However, the ground-state conformer differs from the other three deprotonated RNA mononucleotides in that it adopts the syn rather than anti conformation for the nucleobase. Present results are compared to results previously obtained for the deprotonated forms of the four common DNA mononucleotides to examine the fundamental conformational differences between these species, and thus elucidate the effects of the 2'-hydroxyl group on their structure, stability, and fragmentation behavior.

  19. Following radical pair reactions in solution: a step change in sensitivity using cavity ring-down detection.

    PubMed

    Maeda, Kiminori; Neil, Simon R T; Henbest, Kevin B; Weber, Stefan; Schleicher, Erik; Hore, P J; Mackenzie, Stuart R; Timmel, Christiane R

    2011-11-09

    The study of radical pair intermediates in biological systems has been hampered by the low sensitivity of the optical techniques usually employed to investigate these highly reactive species. Understanding the physical principles governing the spin-selective and magneto-sensitive yields and kinetics of their reactions is essential in identifying the mechanism governing bird migration, and might have significance in the discussion of potential health hazards of electromagnetic radiation. Here, we demonstrate the powerful capabilities of optical cavity-enhanced techniques, such as cavity ring-down spectroscopy (CRDS) in monitoring radical recombination reactions and associated magnetic field effects (MFEs). These include submicrosecond time-resolution, high sensitivity (baseline noise on the order of 10(-6) absorbance units) and small (μL) sample volumes. Combined, we show that these represent significant advantages over the single-pass flash-photolysis techniques conventionally applied. The studies described here focus on photoinduced radical pair reactions involving the protein lysozyme and one of two possible photosensitizers: anthraquinone-2,6-disulphonate and flavin mononucleotide. CRDS-measured MFEs are observed in pump-probe experiments and discussed in terms of the sensitivity gains and sample-volume minimization afforded by CRDS when compared with flash photolysis methods. Finally, CRDS is applied to an in vitro MFE study of intramolecular electron transfer in the DNA-repair enzyme, Escherichia coli photolyase, a protein closely related to cryptochrome which has been proposed to mediate animal magnetoreception.

  20. Photochemistry of Arabidopsis phototropin 1 LOV1: transient tetramerization.

    PubMed

    Nakasone, Yusuke; Zikihara, Kazunori; Tokutomi, Satoru; Terazima, Masahide

    2013-07-01

    The photochemical reaction of the LOV1 (light-oxygen-voltage 1) domain of phototropin 1 from Arabidopsis thaliana was investigated by the time-resolved transient grating method. As with other LOV domains, an absorption spectral change associated with an adduct formation between its chromophore (flavin mononucleotide) and a cysteine residue was observed with a time constant of 1.1 μs. After this reaction, a significant diffusion coefficient (D) change (D of the reactant = 8.2 × 10(-11) m(2) s(-1), and D of the photoproduct = 6.4 × 10(-11) m(2) s(-1)) was observed with a time constant of 14 ms at a protein concentration of 270 μM. From the D value of the ground state and the peak position in size exclusion chromatography, we have confirmed that the phot1LOV1 domain exists as a dimer in the dark. The D-value and the concentration dependence of the rate indicated that the phot1LOV1 domain associates to form a tetramer (dimerization of the dimer) upon photoexcitation. We also found that the chromophore is released from the binding pocket of the LOV domain when it absorbs two photons within a pulse duration, which occurs in addition to the normal photocycle reaction. On the basis of these results, we discuss the molecular mechanism of the light dependent role of the phot1LOV1 domain.

  1. Intraprotein electron transfer between the FMN and heme domains in endothelial nitric oxide synthase holoenzyme

    PubMed Central

    Feng, Changjian; Taiakina, Valentina; Ghosh, Dipak K.; Guillemette, J. Guy; Tollin, Gordon

    2011-01-01

    Intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is an essential step in nitric oxide (NO) synthesis by NO synthase (NOS). The IET kinetics in neuronal and inducible NOS (nNOS and iNOS) holoenzymes have been previously determined in our laboratories by laser flash photolysis [reviewed in: C.J. Feng, G. Tollin, Dalton Trans., (2009) 6692-6700]. Here we report the kinetics of the IET in a bovine endothelial NOS (eNOS) holoenzyme in the presence and absence of added calmodulin (CaM). The IET rate constant in the presence of CaM is estimated to be ~ 4.3 s-1. No IET was observed in the absence of CaM, indicating that CaM is the primary factor in controlling the FMN–heme IET in the eNOS enzyme. The IET rate constant value for the eNOS holoenzyme is approximately 10 times smaller than those obtained for the iNOS and CaM-bound nNOS holoenzymes. Possible mechanisms underlying the difference in IET kinetics among the NOS isoforms are discussed. Because the rate-limiting step in the IET process in these enzymes is the conformational change from input state to output state, a slower conformational change (than in the other isoforms) is most likely to cause the slower IET in eNOS. PMID:21864726

  2. Fe(III) reduction and U(VI) immobilization by Paenibacillus sp. strain 300A, isolated from Hanford 300A subsurface sediments.

    PubMed

    Ahmed, Bulbul; Cao, Bin; McLean, Jeffrey S; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K; Beyenal, Haluk

    2012-11-01

    A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N'-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.

  3. Fe(III) Reduction and U(VI) Immobilization by Paenibacillus sp. Strain 300A, Isolated from Hanford 300A Subsurface Sediments

    PubMed Central

    Ahmed, Bulbul; Cao, Bin; McLean, Jeffrey S.; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K.

    2012-01-01

    A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N′-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments. PMID:22961903

  4. Fe(III) Reduction and U(VI) Immobilization by Paenibacillus sp. Strain 300A, Isolated from Hanford 300A Subsurface Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, B.; Cao, B.; McLean, Jeffrey S.

    2012-11-07

    A facultative iron-reducing (Fe(III)-reducing) Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes (Fe(III)-NTA and Fe(III)-citrate) but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 µM) of either of electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 µM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We found that Paenibacillus sp. 300A alsomore » could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ~7:3 in PIPES and ~1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.« less

  5. Camphor revisited: studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453.

    PubMed Central

    Taylor, D G; Trudgill, P W

    1986-01-01

    The oxygenating component of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453 was purified to homogeneity by a combination of ammonium sulfate fractionation and chromatography on DEAE-cellulose and polyanion SI-17 columns. It had an Mr of 78,000, bound one molecule of nonautooxidizable flavin mononucleotide (FMN), consisted of two subunits of equal molecular weight, and existed in two electrophoretically distinguishable active forms. The oxygenating complex was constructed from equimolecular amounts of an NADH oxidase, which could be purified separately (Mr, 36,000), and the oxygenating component. Most of the NADH oxidase dissociated from the oxygenating component during purification, although traces remained, to give the final preparation of the oxygenating component significant oxygenase activity. FMN did not dissociate significantly from the oxygenating component during purification, but it was not covalently bound and could be removed under a variety of conditions. Binding between the two proteins that made up the active complex was fairly weak and freely reversible. It probably occurred through the FMN which was strongly bound to the oxygenating component and for which the NADH had a weak binding site. Iron was not present at a significant level in the oxygenating component, and in common with other characterized Baeyer Villiger monooxygenases, 2,5-diketocamphane 1,2-monooxygenase was found to be a simple flavoprotein. Images PMID:3944058

  6. Camphor revisited: studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453.

    PubMed

    Taylor, D G; Trudgill, P W

    1986-02-01

    The oxygenating component of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453 was purified to homogeneity by a combination of ammonium sulfate fractionation and chromatography on DEAE-cellulose and polyanion SI-17 columns. It had an Mr of 78,000, bound one molecule of nonautooxidizable flavin mononucleotide (FMN), consisted of two subunits of equal molecular weight, and existed in two electrophoretically distinguishable active forms. The oxygenating complex was constructed from equimolecular amounts of an NADH oxidase, which could be purified separately (Mr, 36,000), and the oxygenating component. Most of the NADH oxidase dissociated from the oxygenating component during purification, although traces remained, to give the final preparation of the oxygenating component significant oxygenase activity. FMN did not dissociate significantly from the oxygenating component during purification, but it was not covalently bound and could be removed under a variety of conditions. Binding between the two proteins that made up the active complex was fairly weak and freely reversible. It probably occurred through the FMN which was strongly bound to the oxygenating component and for which the NADH had a weak binding site. Iron was not present at a significant level in the oxygenating component, and in common with other characterized Baeyer Villiger monooxygenases, 2,5-diketocamphane 1,2-monooxygenase was found to be a simple flavoprotein.

  7. Phosphorylation of mononucleotides and formation of cytidine 5'-diphosphate-choline and sugar nucleotides by respiration-deficient mutants of yeasts.

    PubMed Central

    Kimura, A; Hirose, K; Kariya, Y; Nagai, S

    1976-01-01

    Respiration-deficient mutants (Rho-, petite) of Saccharomyces carlsbergensis were obtained by treatment with trypaflavin (euflavine). Dried cells of these mutants phosphorylated mononucleotides to their triphosphates and further formed not only cytidine 5'-diphosphate-choline, but also sugar nucleotides, such as uridine 5'-diphosphate-glucose, guanosine 5'-diphosphate-mannose, etc. The activities were the same or slightly greater than those of the wild strain. These results showed that energy (adenosine 5'-triphosphate) necessary for phosphorylation of mononucleotides was sufficiently supplied by the glycolysis system. PMID:1245470

  8. Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway.

    PubMed

    Yang, Yun; Ding, Yuanzhao; Hu, Yidan; Cao, Bin; Rice, Scott A; Kjelleberg, Staffan; Song, Hao

    2015-07-17

    Flavins regulate the rate and direction of extracellular electron transfer (EET) in Shewanella oneidensis. However, low concentration of endogenously secreted flavins by the wild-type S. oneidensis MR-1 limits its EET efficiency in bioelectrochemical systems (BES). Herein, a synthetic flavin biosynthesis pathway from Bacillus subtilis was heterologously expressed in S. oneidensis MR-1, resulting in ∼25.7 times' increase in secreted flavin concentration. This synthetic flavin module enabled enhanced bidirectional EET rate of MR-1, in which its maximum power output in microbial fuel cells increased ∼13.2 times (from 16.4 to 233.0 mW/m(2)), and the inward current increased ∼15.5 times (from 15.5 to 255.3 μA/cm(2)).

  9. Simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and nicotinamide adenine dinucleotide in milk by a novel enzyme-coupled assay.

    PubMed

    Ummarino, Simone; Mozzon, Massimo; Zamporlini, Federica; Amici, Adolfo; Mazzola, Francesca; Orsomando, Giuseppe; Ruggieri, Silverio; Raffaelli, Nadia

    2017-04-15

    Nicotinamide riboside, the most recently discovered form of vitamin B3, and its phosphorylated form nicotinamide mononucleotide, have been shown to be potent supplements boosting intracellular nicotinamide adenine dinucleotide (NAD) levels, thus preventing or ameliorating metabolic and mitochondrial diseases in mouse models. Here we report for the first time on the simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and NAD in milk by means of a fluorometric, enzyme-coupled assay. Application of this assay to milk from different species revealed that the three vitamers were present in human and donkey milk, while being selectively distributed in the other milks. Human milk was the richest source of nicotinamide mononucleotide. Overall, the three vitamers accounted for a significant fraction of total vitamin B3 content. Pasteurization did not affect the bovine milk content of nicotinamide riboside, whereas UHT processing fully destroyed the vitamin. In human milk, NAD levels were significantly affected by the lactation time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Synthesis of rigidified flavin-guanidinium ion conjugates and investigation of their photocatalytic properties.

    PubMed

    Schmaderer, Harald; Bhuyan, Mouchumi; König, Burkhard

    2009-05-28

    Flavin chromophores can mediate redox reactions upon irradiation by blue light. In an attempt to increase their catalytic efficacy, flavin derivatives bearing a guanidinium ion as oxoanion binding site were prepared. Chromophore and substrate binding site are linked by a rigid Kemp's acid structure. The molecular structure of the new flavins was confirmed by an X-ray structure analysis and their photocatalytic activity was investigated in benzyl ester cleavage, nitroarene reduction and a Diels-Alder reaction. The modified flavins photocatalyze the reactions, but the introduced substrate binding site does not enhance their performance.

  11. Ultrafast Excited-state Deactivation of Flavins Bound to Dodecin*

    PubMed Central

    Staudt, Heike; Oesterhelt, Dieter; Grininger, Martin; Wachtveitl, Josef

    2012-01-01

    Dodecins, a group of flavin-binding proteins with a dodecameric quaternary structure, are able to incorporate two flavins within each of their six identical binding pockets building an aromatic tetrade with two tryptophan residues. Dodecin from the archaeal Halobacterium salinarum is a riboflavin storage device. We demonstrate that unwanted side reactions induced by reactive riboflavin species and degradation of riboflavin are avoided by ultrafast depopulation of the reactive excited state of riboflavin. Intriguingly, in this process, the staggered riboflavin dimers do not interact in ground and photoexcited states. Rather, within the tetrade assembly, each riboflavin is kept under the control of the respective adjacent tryptophan, which suggests that the stacked arrangement is a matter of optimizing the flavin load. We further identify an electron transfer in combination with a proton transfer as a central element of the effective excited state depopulation mechanism. Structural and functional comparisons of the archaeal dodecin with bacterial homologs reveal diverging evolution. Bacterial dodecins bind the flavin FMN instead of riboflavin and exhibit a clearly different binding pocket design with inverse incorporations of flavin dimers. The different adoption of flavin changes photochemical properties, making bacterial dodecin a comparably less efficient quencher of flavins. This supports a functional role different for bacterial and archaeal dodecins. PMID:22451648

  12. Evidence for Formation of a Radical-Mediated Flavin-N5 Covalent Intermediate.

    PubMed

    Dai, Yumin; Valentino, Hannah R; Sobrado, Pablo

    2018-05-18

    The redox-neutral reaction catalyzed by 2-haloacrylate hydratase (2-HAH) leads to the conversion of 2-chloroacrylate to pyruvate. Previous mechanistic studies demonstrated formation of a flavin-iminium ion as an important intermediate in the 2-HAH catalytic cycle. Time-resolved flavin absorbance studies were performed in this study and the data showed that the enzyme is capable of stabilizing both anionic and neutral flavin semiquinone species. The presence of a radical scavenger decreases the activity in a concentration-dependent manner. These data are consistent with the flavin iminium intermediate occurring via radical recombination. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Tryptophan fluorescence in the Bacillus subtilis phototropin-related protein YtvA as a marker of interdomain interaction.

    PubMed

    Losi, Aba; Ternelli, Elena; Gärtner, Wolfgang

    2004-01-01

    The Bacillus subtilis protein YtvA, related to plant phototropins (phot), binds flavin mononucleotide (FMN) within the N-terminal light, oxygen and voltage (LOV) domain. The blue light-triggered photocycle of YtvA and phot involves the reversible formation of a covalent photoadduct between FMN and a cysteine (cys) residue. YtvA contains a single tryptophan, W103, localized on the LOV domain and conserved in all phot-LOV domains. In this study, we show that the fluorescence parameters of W103 in YtvA-LOV are markedly different from those observed in the full-length YtvA. The fluorescence quantum yields are ca 0.03 and 0.08, respectively. In YtvA-LOV, the maximum is redshifted (ca 345 vs 335 nm) and the average fluorescence lifetime shorter (2.7 vs 4.7 ns). These data indicate that W103 is located in a site of tight contact between the two domains of YtvA. In the FMN-cys adduct, selective excitation of W103 at 295 nm results in minimal changes of the fluorescence parameters with respect to the dark state. On 280 nm excitation, however, there is a detectable decrease in the fluorescence emitted from tyrosines, with concomitant increase in W103 fluorescence. This effect is reversible in the dark and might arise from a light-regulated energy transfer process from a yet unidentified tyrosine to W103.

  14. The mechanism of water/ion exchange at a protein surface: a weakly bound chloride in Helicobacter pylori apoflavodoxin.

    PubMed

    Galano-Frutos, Juan J; Morón, M Carmen; Sancho, Javier

    2015-11-21

    Binding/unbinding of small ligands, such as ions, to/from proteins influences biochemical processes such as protein folding, enzyme catalysis or protein/ligand recognition. We have investigated the mechanism of chloride/water exchange at a protein surface (that of the apoflavodoxin from Helicobacter pylori) using classical all-atom molecular dynamics simulations. They reveal a variety of chloride exit routes and residence times; the latter is related to specific coordination modes of the anion. The role of solvent molecules in the mechanism of chloride unbinding has been studied in detail. We see no temporary increase in chloride coordination along the release process. Instead, the coordination of new water molecules takes place in most cases after the chloride/protein atom release event has begun. Moreover, the distribution function of water entrance events into the first chloride solvation shell peaks after chloride protein atom dissociation events. All these observations together seem to indicate that water molecules simply fill the vacancies left by the previously coordinating protein residues. We thus propose a step-by-step dissociation pathway in which protein/chloride interactions gradually break down before new water molecules progressively fill the vacant positions left by protein atoms. As observed for other systems, water molecules associated with bound chloride or with protein atoms have longer residence times than those bound to the free anion. The implications of the exchange mechanism proposed for the binding of the FMN (Flavin Mononucleotide) protein cofactor are discussed.

  15. Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer

    NASA Astrophysics Data System (ADS)

    Yang, Haw; Luo, Guobin; Karnchanaphanurach, Pallop; Louie, Tai-Man; Rech, Ivan; Cova, Sergio; Xun, Luying; Xie, X. Sunney

    2003-10-01

    Electron transfer is used as a probe for angstrom-scale structural changes in single protein molecules. In a flavin reductase, the fluorescence of flavin is quenched by a nearby tyrosine residue by means of photo-induced electron transfer. By probing the fluorescence lifetime of the single flavin on a photon-by-photon basis, we were able to observe the variation of flavin-tyrosine distance over time. We could then determine the potential of mean force between the flavin and the tyrosine, and a correlation analysis revealed conformational fluctuation at multiple time scales spanning from hundreds of microseconds to seconds. This phenomenon suggests the existence of multiple interconverting conformers related to the fluctuating catalytic reactivity.

  16. Time- and spectrally resolved characteristics of flavin fluorescence in U87MG cancer cells in culture

    NASA Astrophysics Data System (ADS)

    Horilova, Julia; Cunderlikova, Beata; Marcek Chorvatova, Alzbeta

    2015-05-01

    Early detection of cancer is crucial for the successful diagnostics of its presence and its subsequent treatment. To improve cancer detection, we tested the progressive multimodal optical imaging of U87MG cells in culture. A combination of steady-state spectroscopic methods with the time-resolved approach provides a new insight into the native metabolism when focused on endogenous tissue fluorescence. In this contribution, we evaluated the metabolic state of living U87MG cancer cells in culture by means of endogenous flavin fluorescence. Confocal microscopy and time-resolved fluorescence imaging were employed to gather spectrally and time-resolved images of the flavin fluorescence. We observed that flavin fluorescence in U87MG cells was predominantly localized outside the cell nucleus in mitochondria, while exhibiting a spectral maximum under 500 nm and fluorescence lifetimes under 1.4 ns, suggesting the presence of bound flavins. In some cells, flavin fluorescence was also detected inside the cell nuclei in the nucleoli, exhibiting longer fluorescence lifetimes and a red-shifted spectral maximum, pointing to the presence of free flavin. Extra-nuclear flavin fluorescence was diminished by 2-deoxyglucose, but failed to increase with 2,4-dinitrophenol, the uncoupler of oxidative phosphorylation, indicating that the cells use glycolysis, rather than oxidative phosphorylation for functioning. These gathered data are the first step toward monitoring the metabolic state of U87MG cancer cells.

  17. Knockdown of NADPH-cytochrome P450 reductase results in reduced resistance to buprofezin in the small brown planthopper, Laodelphax striatellus (fallén).

    PubMed

    Zhang, Yueliang; Wang, Yaming; Wang, Lihua; Yao, Jing; Guo, Huifang; Fang, Jichao

    2016-02-01

    NADPH-cytochrome P450 reductase (CPR) plays an important role in cytochrome P450 function, and CPR knockdown in several insects leads to increased susceptibility to insecticides. However, a putative CPR gene has not yet been fully characterized in the small brown planthopper Laodelphax striatellus, a notorious agricultural pest in rice that causes serious damage by transmitting rice stripe and rice black-streaked dwarf viruses. The objective of this study was to clone the cDNA and to knock down the expression of the gene that encodes L. striatellus CPR (LsCPR) to further determine whether P450s are involved in the resistance of L. striatellus to buprofezin. First, the full-length cDNA of LsCPR was cloned and found to contain an open reading frame (ORF) encoding a polypeptide of 679 amino acids with a calculated molecular mass and isoelectric point of 76.92kDa and 5.37, respectively. The deduced amino acid sequence shares high identity with the CPRs of other insects (98%, 97%, 75% and 68% for Sogatella furcifera, Nilaparvata lugens, Cimex lectularius and Anopheles gambiae, respectively) and possesses the characteristic features of classical CPRs, such as an N-terminal membrane anchor and conserved domains for flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) binding. Phylogenetic analysis revealed that LsCPR is located in a branch along with the CPRs of other hemipteran insects. LsCPR mRNA was detectable in all examined body parts and developmental stages of L. striatellus, as determined by real-time quantitative PCR (qPCR), and transcripts were most abundant in the adult abdomen and in first-instar nymphs and adults. Ingestion of 200μg/mL of LsCPR double-stranded RNA (dsLsCPR) by the planthopper for 5days significantly reduced the transcription level of LsCPR. Moreover, silencing of LsCPR caused increased susceptibility to buprofezin in a buprofezin-resistant (YN-BPF) strain but not in a susceptible (YN) strain. These data further suggested that the P450-mediated metabolic detoxification of xenobiotics might be an important mechanism for buprofezin resistance in L. striatellus. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase

    NASA Astrophysics Data System (ADS)

    Golden, Emily; Yu, Li-Juan; Meilleur, Flora; Blakeley, Matthew P.; Duff, Anthony P.; Karton, Amir; Vrielink, Alice

    2017-01-01

    The protein microenvironment surrounding the flavin cofactor in flavoenzymes is key to the efficiency and diversity of reactions catalysed by this class of enzymes. X-ray diffraction structures of oxidoreductase flavoenzymes have revealed recurrent features which facilitate catalysis, such as a hydrogen bond between a main chain nitrogen atom and the flavin redox center (N5). A neutron diffraction study of cholesterol oxidase has revealed an unusual elongated main chain nitrogen to hydrogen bond distance positioning the hydrogen atom towards the flavin N5 reactive center. Investigation of the structural features which could cause such an unusual occurrence revealed a positively charged lysine side chain, conserved in other flavin mediated oxidoreductases, in a second shell away from the FAD cofactor acting to polarize the peptide bond through interaction with the carbonyl oxygen atom. Double-hybrid density functional theory calculations confirm that this electrostatic arrangement affects the N-H bond length in the region of the flavin reactive center. We propose a novel second-order partial-charge interaction network which enables the correct orientation of the hydride receiving orbital of N5. The implications of these observations for flavin mediated redox chemistry are discussed.

  19. On the interpretation of quantitative structure–function activity relationship data for lactate oxidase

    PubMed Central

    Yorita, Kazuko; Misaki, Hideo; Palfey, Bruce A.; Massey, Vincent

    2000-01-01

    The native flavin, FMN, has been removed from the l-lactate oxidase of Aerococcus viridans, and the apoprotein reconstituted with 12 FMN derivatives with various substituents at the flavin 6- and 8-positions. Impressive linear relationships are exhibited between the sum of the Hammett σpara and σortho parameters and the redox potentials of the free flavins, and between the redox potentials of the free and enzyme-bound flavins. Rapid reaction kinetics studies of the reconstituted enzymes with the substrates l-lactate and l-mandelate show an increase in the reduction rate constant with increasing redox potential, except that, with lactate, a limiting rate constant of ≈700 s−1 is obtained with flavins of high potential. Similar breakpoints are found in plots of the rate constants for flavin N5-sulfite adduct formation and for the reaction of the reduced enzymes with molecular oxygen. These results are interpreted in terms of a two-step equilibrium preceding the chemical reaction step, in which the second equilibrium step provides an upper limit to the rate with which the particular substrate or ligand is positioned with the flavin in the correct fashion for the observed chemical reaction to occur. The relationship of rate constants for flavin reduction and N5-sulfite adduct formation with flavin redox potential below the observed breakpoint indicate development of significant negative charge in the transition states of the reactions. In the case of reduction by substrate, the results are consistent either with a hydride transfer mechanism or with the so called “carbanion” mechanism, in which the substrate α-proton is abstracted by an enzyme base protected from exchange with solvent. These conclusions are supported by substrate α-deuterium isotope effects and by solvent viscosity effects on sulfite binding. PMID:10706608

  20. Biomimetics with a self-assembled monolayer of catalytically active tethered isoalloxazine on Au.

    PubMed

    Calvo, Ernesto J; Rothacher, M Silvina; Bonazzola, Cecilia; Wheeldon, Ian R; Salvarezza, Roberto C; Vela, Maria Elena; Benitez, Guillermo

    2005-08-16

    A new biomimetic nanostructured electrocatalyst comprised of a self-assembled monolayer (SAM) of flavin covalently attached to Au by reaction of methylformylisoalloxazine with chemisorbed cysteamine is introduced. Examinations by Fourier transform infrared spectroscopy and scanning tunneling microscopy (STM) show that the flavin molecules are oriented perpendicular to the surface with a 2 nm separation between flavin molecules. As a result of the contrast observed in the STM profiles between areas only covered by unreacted cysteamine and those covered by flavin-cysteamine moieties, it can be seen that the flavin molecules rise 0.7 nm above the chemisorbed cysteamines. The SAM flavin electrocatalyst undergoes fast electron transfer with the underlying Au and shows activity toward the oxidation of enzymatically active beta-NADH at pH 7 and very low potential (-0.2 V vs Ag/AgCl), a requirement for use in an enzymatic biofuel cell, and a 100-fold increase in activity with respect to the collisional reaction in solution.

  1. Biochemical establishment and characterization of EncM's flavin-N5-oxide cofactor

    PubMed Central

    Teufel, Robin; Stull, Frederick; Meehan, Michael J.; Michaudel, Quentin; Dorrestein, Pieter C.; Palfey, Bruce; Moore, Bradley S.

    2016-01-01

    The ubiquitous flavin-dependent monooxygenases commonly catalyze oxygenation reactions by means of a transient C4a-peroxyflavin. A recent study, however, suggested an unprecedented flavin-oxygenating species - proposed as the flavin-N5-oxide (FlN5[O]) - as key to an oxidative Favorskii-type rearrangement in the biosynthesis of the bacterial polyketide antibiotic enterocin. This stable superoxidized flavin is covalently tethered to the enzyme EncM and converted into FADH2 (Flred) during substrate turnover. Subsequent reaction of Flred with molecular oxygen restores the postulated FlN5[O] via an unknown pathway. Here we provide direct evidence for the FlN5[O] species via isotope labeling, proteolytic digestion, and high-resolution tandem mass spectrometry of EncM. We propose that formation of this species occurs by hydrogen-transfer from Flred to molecular oxygen, allowing radical coupling of the formed protonated superoxide and anionic flavin semiquinone at N5, before elimination of water affords the FlN5[O] cofactor. Further biochemical and spectroscopic investigations reveal important features of the FlN5[O] species and the EncM catalytic mechanism. We speculate that flavin-N5-oxides may be intermediates or catalytically active species in other flavoproteins that form the anionic semiquinone and promote access of oxygen to N5. PMID:26067765

  2. Flavin-N5 Covalent Intermediate in a Nonredox Dehalogenation Reaction Catalyzed by an Atypical Flavoenzyme.

    PubMed

    Dai, Yumin; Kizjakina, Karina; Campbell, Ashley C; Korasick, David A; Tanner, John J; Sobrado, Pablo

    2018-01-04

    The flavin-dependent enzyme 2-haloacrylate hydratase (2-HAH) catalyzes the conversion of 2-chloroacrylate, a major component in the manufacture of acrylic polymers, to pyruvate. The enzyme was expressed in Escherichia coli, purified, and characterized. 2-HAH was shown to be monomeric in solution and contained a non-covalent, yet tightly bound, flavin adenine dinucleotide (FAD). Although the catalyzed reaction was redox-neutral, 2-HAH was active only in the reduced state. A covalent flavin-substrate intermediate, consistent with the flavin-acrylate iminium ion, was trapped with cyanoborohydride and characterized by mass spectrometry. Small-angle X-ray scattering was consistent with 2-HAH belonging to the succinate dehydrogenase/fumarate reductase family of flavoproteins. These studies establish 2-HAH as a novel noncanonical flavoenzyme. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis of rigidified flavin–guanidinium ion conjugates and investigation of their photocatalytic properties

    PubMed Central

    Schmaderer, Harald; Bhuyan, Mouchumi

    2009-01-01

    Summary Flavin chromophores can mediate redox reactions upon irradiation by blue light. In an attempt to increase their catalytic efficacy, flavin derivatives bearing a guanidinium ion as oxoanion binding site were prepared. Chromophore and substrate binding site are linked by a rigid Kemp’s acid structure. The molecular structure of the new flavins was confirmed by an X-ray structure analysis and their photocatalytic activity was investigated in benzyl ester cleavage, nitroarene reduction and a Diels–Alder reaction. The modified flavins photocatalyze the reactions, but the introduced substrate binding site does not enhance their performance. PMID:19590745

  4. Unusual flavoenzyme catalysis in marine bacteria

    PubMed Central

    Teufel, Robin; Agarwal, Vinayak; Moore, Bradley S.

    2016-01-01

    Ever since the discovery of the flavin cofactor more than 80 years ago, flavin-dependent enzymes have emerged as ubiquitous and versatile redox catalysts in primary metabolism. Yet, the recent advances in the discovery and characterization of secondary metabolic pathways exposed new roles for flavin-mediated catalysis in the generation of structurally complex natural products. Here, we review a selection of key biosynthetic flavoenzymes from marine bacterial secondary metabolism and illustrate how their functional and mechanistic investigation expanded our view of the cofactor's chemical repertoire and led to the discovery of a previously unknown flavin redox state. PMID:26803009

  5. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    ERIC Educational Resources Information Center

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  6. Assimilation of nicotinamide mononucleotide requires periplasmic AphA phosphatase in Salmonella enterica.

    PubMed

    Grose, Julianne H; Bergthorsson, Ulfar; Xu, Yaping; Sterneckert, Jared; Khodaverdian, Behzad; Roth, John R

    2005-07-01

    Salmonella enterica can obtain pyridine from exogenous nicotinamide mononucleotide (NMN) by three routes. In route 1, nicotinamide is removed from NMN in the periplasm and enters the cell as the free base. In route 2, described here, phosphate is removed from NMN in the periplasm by acid phosphatase (AphA), and the produced nicotinamide ribonucleoside (NmR) enters the cell via the PnuC transporter. Internal NmR is then converted back to NMN by the NmR kinase activity of NadR. Route 3 is seen only in pnuC* transporter mutants, which import NMN intact and can therefore grow on lower levels of NMN. Internal NMN produced by either route 2 or route 3 is deamidated to nicotinic acid mononucleotide and converted to NAD by the biosynthetic enzymes NadD and NadE.

  7. Do microbial exudates control EH electrode measurements?

    NASA Astrophysics Data System (ADS)

    Markelova, E.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2017-12-01

    Redox electrodes are widely used as simple, inexpensive monitoring devices to rapidly measure redox potentials (EH) of waterlogged soils, sediments, and aquifers. While a variety of physicochemical and biogeochemical factors have been involved to explain measured EH values, the role of microorganisms remains comparatively understudied and uncertain. Besides catalyzing many inorganic redox reactions (e.g., nitrate reduction), microorganisms produce a variety of redox-active organic compounds (e.g., NAD+/NADH, GSSG/2GSH, FAD/FADH2), which can be released into the surrounding environment via active secretion, passive diffusion, or cell lysis. To isolate different microbial effects on EH measurements, we performed batch experiments using S. oneidensis MR-I as a model heterotrophic microorganism and flavins as example microbial exudates [1]. We monitored EH and pH along with flavin production (fluorescence measurements) during dissimilatory nitrate reduction to ammonium (DNRA). Dissolved flavins increased to 0.2 mM (riboflavin equivalent) under anoxic conditions during complete consumption of 1 mM nitrate by DNRA at pH 7.4 and 30 °C over 80 hours. The observed redox cascade from +255 to -250 mV did not follow the EH predicted for the reduction of NO3- to NO2- and NO2- to NH4+ by the Nernst equation. However, a set of separate abiotic experiments on the photoreduction of synthetic flavins (LMC, RF, FMN, and FAD, Sigma Aldrich) under the same conditions indicated that measured EH values are buffered at +270 ± 20 mV and -230 ± 50 mV when oxidized and reduced flavin species dominate, respectively. Moreover, based on the temporal changes in EH, we speculate that NO3- reduction by S. oneidensis consumes reduced flavins (i.e., NO3- accepts electrons from reduced flavins) and generates oxidized flavins, thus buffering EH at +255 mV. By contrast, NO2- reduction to NH4+ is independent of flavin speciation, which leads to the accumulation of reduced flavins in the solution and lowering of EH to -250 mV. Overall, the experiments demonstrate that microbial exudates do affect EH measurements, however, their importance in natural water-saturated systems has to be further evaluated. [1] Von Canstein, H., et al., 2008. Appl. Environ. Microbiol. 74, 615-623.

  8. Covalent Binding of Flavins to RnfG and RnfD in the Rnf Complex from Vibrio cholerae

    PubMed Central

    Backiel, Julianne; Juárez, Oscar; Zagorevski, Dmitri V.; Wang, Zhenyu; Nilges, Mark J.; Barquera, Blanca

    2009-01-01

    Enzymes of the Rnf family are believed to be bacterial redox-driven ion pumps, coupling an oxidoreduction process to the translocation of Na+ across the cell membrane. Here we show for the first time that Rnf is a flavoprotein, with FMN covalently bound to threonine-175 in RnfG and a second flavin bound to threonine-187 in RnfD. Rnf subunits D and G are homologous to subunits B and C of Na+-NQR, respectively. Each of these Na+-NQR subunits includes a conserved S(T)GAT motif, with FMN covalently bound to the final threonine. RnfD and RnfG both contain the same motif, suggesting that they bind flavins in a similar way. In order to investigate this, the genes for RnfD and RnfG from Vibrio cholerae were cloned and expressed individually in that organism. In both cases the produced protein fluoresced under UV illumination on an SDS gel, further indicating the presence of flavin. However, analysis of the mutants RnfG-T175L, RnfD-T278L, and RnfD-T187V showed that RnfG-T175 and RnfD-T187 are the likely flavin ligands. This indicates that, in the case of RnfD, the flavin is bound, not to the SGAT sequence but to the final residues of a TMAT sequence, a novel variant of the flavin binding motif. In the case of RnfG, flavin analysis, followed by MALDI-TOF-TOF mass spectrometry, showed that an FMN is covalently attached to threonine-175, the final threonine of the S(T)GAT sequence. Studies by visible, EPR, and ENDOR spectroscopy showed that, upon partial reduction, the isolated RnfG produces a neutral semiquinone intermediate. The semiquinone species disappeared upon full reduction and was not observed in the denatured protein. A topological analysis combining reporter protein fusion and computer predictions indicated that the flavins in RnfG and RnfD are localized in the periplasmic space. In contrast, in NqrC and NqrB the flavins are located in a cytoplasmic loop. This topological analysis suggests that there may be mechanistic differences between the Rnf and Na+-NQR complexes. PMID:18831535

  9. Purification and Characterization of EDTA Monooxygenase from the EDTA-Degrading Bacterium BNC1

    PubMed Central

    Payne, Jason W.; Bolton, Harvey; Campbell, James A.; Xun, Luying

    1998-01-01

    The synthetic chelating agent EDTA can mobilize radionuclides and heavy metals in the environment. Biodegradation of EDTA should reduce this mobilization. Although several bacteria have been reported to mineralize EDTA, little is known about the biochemistry of EDTA degradation. Understanding the biochemistry will facilitate the removal of EDTA from the environment. EDTA-degrading activities were detected in cell extracts of bacterium BNC1 when flavin mononucleotide (FMN), NADH, and O2 were present. The degradative enzyme system was separated into two different enzymes, EDTA monooxygenase and an FMN reductase. EDTA monooxygenase oxidized EDTA to glyoxylate and ethylenediaminetriacetate (ED3A), with the coconsumption of FMNH2 and O2. The FMN reductase provided EDTA monooxygenase with FMNH2 by reducing FMN with NADH. The FMN reductase was successfully substituted in the assay mixture by other FMN reductases. EDTA monooxygenase was purified to greater than 95% homogeneity and had a single polypeptide with a molecular weight of 45,000. The enzyme oxidized both EDTA complexed with various metal ions and uncomplexed EDTA. The optimal conditions for activity were pH 7.8 and 35°C. Kms were 34.1 μM for uncomplexed EDTA and 8.5 μM for MgEDTA2−; this difference in Km indicates that the enzyme has greater affinity for MgEDTA2−. The enzyme also catalyzed the release of glyoxylate from nitrilotriacetate and diethylenetriaminepentaacetate. EDTA monooxygenase belongs to a small group of FMNH2-utilizing monooxygenases that attack carbon-nitrogen, carbon-sulfur, and carbon-carbon double bonds. PMID:9683478

  10. Kinetic modeling of storage effects on biomarkers related to B vitamin status and one-carbon metabolism.

    PubMed

    Hustad, Steinar; Eussen, Simone; Midttun, Øivind; Ulvik, Arve; van de Kant, Puck M; Mørkrid, Lars; Gislefoss, Randi; Ueland, Per M

    2012-02-01

    Biomarkers and metabolites related to B vitamin function and one-carbon metabolism have been studied as predictors of chronic diseases in studies based on samples stored in biobanks. For most biomarkers, stability data are lacking or fragmentary. Degradation and accumulation kinetics of 32 biomarkers were determined at 23 °C in serum and plasma (EDTA, heparin, and citrate) collected from 16 individuals and stored for up to 8 days. In frozen serum (-25 °C), stability was studied cross-sectionally in 650 archival samples stored for up to 29 years. Concentration vs time curves were fitted to monoexponential, biexponential, linear, and nonlinear models. For many biomarkers, stability was highest in EDTA plasma. Storage effects were similar at room temperature and at -25 °C; notable exceptions were methionine, which could be recovered as methionine sulfoxide, and cystathionine, which decreased in frozen samples. Cobalamin, betaine, dimethylglycine, sarcosine, total homocysteine, total cysteine, tryptophan, asymetric and symmetric dimethyl argenine, creatinine, and methylmalonic acid were essentially stable under all conditions. Most B vitamins (folate and vitamins B2 and B6) were unstable; choline increased markedly, and some amino acids also increased, particularly in serum. The kynurenines showed variable stability. For many biomarkers, degradation (folate and flavin mononucleotide) or accumulation (pyridoxal, riboflavin, choline, amino acids) kinetics at room temperature were non-first order. Data on stability and deterioration kinetics for individual biomarkers are required to optimize procedures for handling serum and plasma, and for addressing preanalytical bias in epidemiological and clinical studies.

  11. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation.

    PubMed

    Sakai, T; Kagawa, T; Kasahara, M; Swartz, T E; Christie, J M; Briggs, W R; Wada, M; Okada, K

    2001-06-05

    UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1 npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1 npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner.

  12. Structural and Functional Characterization of a Short-Chain Flavodoxin Associated with a Noncanonical 1,2-Propanediol Utilization Bacterial Microcompartment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plegaria, Jefferson S.; Sutter, Markus; Ferlez, Bryan

    Bacterial microcompartments (BMCs) are proteinaceous organelles that encapsulate enzymes involved in CO2 fixation (carboxysomes). or carbon catabolism (metabolosomes). Metabolosomes share a common core of enzymes and a distinct signature enzyme for substrate degradation that defines the function of the BMC (e,g., propanediol or ethanolamine utilization BMCs, or glycyl-radical enzyme microcompartments). Loci encoding metabolosomes also typically contain genes for proteins that support organelle function, such as regulation, transport of substrate, and cofactor (e.g., vitamin B-12) synthesis and recycling. Flavoproteins are frequently among these ancillary gene products, suggesting that these redox active proteins play an undetermined function in many metabolosomes. Here, wemore » report the first characterization of a BMC-associated flavodoxin (Fld1C), a small flavoprotein, derived from the noncanonical 1,2-propanediol utilization BMC locus (PDU1C) of Lactobacillus reuteri. The 2.0 angstrom X-ray structure of Fld1C displays the alpha/beta flavodoxin fold, which noncovalently binds a single flavin mononucleotide molecule. Fld1C is a short-chain flavodoxin with redox potentials of -240 +/- 3 mV oxidized/semiquinone and -344 +/- 1 mV semiquinone/hydroquinone versus the standard hydrogen electrode at pH 7.5. It can participate in an electron transfer reaction with a photoreductant to form a stable semiquinone species. Collectively, our structural and functional results suggest that PDU1C BMCs encapsulate Fld1C to store and transfer electrons for the reactivation and/or recycling of the B-12 cofactor utilized by the signature enzyme.« less

  13. Isolation, characterization, and amino acid sequences of auracyanins, blue copper proteins from the green photosynthetic bacterium Chloroflexus aurantiacus

    NASA Technical Reports Server (NTRS)

    McManus, J. D.; Brune, D. C.; Han, J.; Sanders-Loehr, J.; Meyer, T. E.; Cusanovich, M. A.; Tollin, G.; Blankenship, R. E.

    1992-01-01

    Three small blue copper proteins designated auracyanin A, auracyanin B-1, and auracyanin B-2 have been isolated from the thermophilic green gliding photosynthetic bacterium Chloroflexus aurantiacus. All three auracyanins are peripheral membrane proteins. Auracyanin A was described previously (Trost, J. T., McManus, J. D., Freeman, J. C., Ramakrishna, B. L., and Blankenship, R. E. (1988) Biochemistry 27, 7858-7863) and is not glycosylated. The two B forms are glycoproteins and have almost identical properties to each other, but are distinct from the A form. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis apparent monomer molecular masses are 14 (A), 18 (B-2), and 22 (B-1) kDa. The amino acid sequences of the B forms are presented. All three proteins have similar absorbance, circular dichroism, and resonance Raman spectra, but the electron spin resonance signals are quite different. Laser flash photolysis kinetic analysis of the reactions of the three forms of auracyanin with lumiflavin and flavin mononucleotide semiquinones indicates that the site of electron transfer is negatively charged and has an accessibility similar to that found in other blue copper proteins. Copper analysis indicates that all three proteins contain 1 mol of copper per mol of protein. All three auracyanins exhibit a midpoint redox potential of +240 mV. Light-induced absorbance changes and electron spin resonance signals suggest that auracyanin A may play a role in photosynthetic electron transfer. Kinetic data indicate that all three proteins can donate electrons to cytochrome c-554, the electron donor to the photosynthetic reaction center.

  14. UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis

    PubMed Central

    White, Mark D.; Payne, Karl A.P.; Fisher, Karl; Marshall, Stephen A.; Parker, David; Rattray, Nicholas J.W.; Trivedi, Drupad K.; Goodacre, Royston; Rigby, Stephen E.J.; Scrutton, Nigel S.; Hay, Sam; Leys, David

    2016-01-01

    Ubiquinone, or coenzyme Q, is a ubiquitous lipid-soluble redox cofactor that is an essential component of electron transfer chains1. Eleven genes have been implicated in bacterial ubiquinone biosynthesis, including ubiX and ubiD, which are responsible for decarboxylation of the 3-octaprenyl-4-hydroxybenzoate precursor2. Despite structural and biochemical characterization of UbiX as an FMN-binding protein, no decarboxylase activity has been detected3–4. We report here that UbiX produces a novel flavin-derived cofactor required for the decarboxylase activity of UbiD5. UbiX acts as a flavin prenyltransferase, linking a dimethylallyl moiety to the flavin N5 and C6 atoms. This adds a fourth non-aromatic ring to the flavin isoalloxazine group. In contrast to other prenyltransferases6–7, UbiX is metal-independent and requires dimethylallyl-monophosphate as substrate. Kinetic crystallography reveals that the prenyl transferase mechanism of UbiX resembles that of the terpene synthases8. The active site environment is dominated by π-systems, which assist phosphate-C1’ bond breakage following FMN reduction, leading to formation of the N5-C1’ bond. UbiX then acts as a chaperone for adduct reorientation, via transient carbocation species, leading ultimately to formation of the dimethylallyl C3’-C6 bond. The study establishes the mechanism for formation of a new flavin-derived cofactor, extending both flavin and terpenoid biochemical repertoire. PMID:26083743

  15. From flavoenzymes to devices: The role of electronic effects in recognition

    NASA Astrophysics Data System (ADS)

    Deans, Robert

    Acylated aminopyridines provide models for specific flavoenzyme-cofactor interactions, allowing isolation and observation of the effects of hydrogen bonding on flavin NMR. To determine the relative hydrogen bond affinities of O(2) and O(4) of the flavin, a 2-aminopyridine based receptor was investigated. Additionally, this receptor allowed the effects of hydrogen bonding at O(2) and O(4) on the electron distribution in the flavin nucleus to be determined using sp{13}C NMR. A new family of receptors for flavins based on 6-aryl-2,4-(acyldiamino)-s-triazines was synthesized. In these synthetic hosts, systematic variation of the spatially remote substituents on the 6-aryl ring altered the hydrogen bond donating abilities of the amide functionality and the hydrogen bond accepting properties of the triazine N(3). This variation resulted in a strong modulation of the efficiency of flavin binding, with association constants for the receptor flavin complexes ranging over an 8-fold range. In addition, the communication of electronic information over extended distances was also investigated. Polymers can provide relevant media for the modeling of biological processes, including molecular recognition. To explore this possibility, a diaminotriazine-functionalized polymer was synthesized, starting from Merrifield's peptide resin. This polymer selectively bound a flavin derivative through hydrogen bonding, efficiently extracting it from a chloroform solution, as monitored by UV-vis extraction studies. The temperature profile of this polymer-flavin binding was also investigated and compared to the analogous solution-phase triazine-flavin dyad. Hydrogen bonding and aromatic stacking are fundamental interactions in molecular recognition. These interactions are sensitive to the redox states of the components of the host-guest complex. To explore the interplay of recognition and redox processes, a system consisting of two hosts and one guest, where guest binding interactions (hydrogen bonding and aromatic stacking) were modulated via choice of redox state was examined. Proper choice of receptors then provided a device where the competition between the two hosts was controlled by the redox state of the guest. The efficient reversal of host preference in this assembly provided an electrochemically-controlled three-component, two-pole, molecular switch.

  16. The 1.6 Å Crystal Structure of Pyranose Dehydrogenase from Agaricus meleagris Rationalizes Substrate Specificity and Reveals a Flavin Intermediate

    PubMed Central

    Wongnate, Thanyaporn; Sucharitakul, Jeerus; Krondorfer, Iris; Sygmund, Christoph; Haltrich, Dietmar; Chaiyen, Pimchai; Peterbauer, Clemens K.; Divne, Christina

    2013-01-01

    Pyranose dehydrogenases (PDHs) are extracellular flavin-dependent oxidoreductases secreted by litter-decomposing fungi with a role in natural recycling of plant matter. All major monosaccharides in lignocellulose are oxidized by PDH at comparable yields and efficiencies. Oxidation takes place as single-oxidation or sequential double-oxidation reactions of the carbohydrates, resulting in sugar derivatives oxidized primarily at C2, C3 or C2/3 with the concomitant reduction of the flavin. A suitable electron acceptor then reoxidizes the reduced flavin. Whereas oxygen is a poor electron acceptor for PDH, several alternative acceptors, e.g., quinone compounds, naturally present during lignocellulose degradation, can be used. We have determined the 1.6-Å crystal structure of PDH from Agaricus meleagris. Interestingly, the flavin ring in PDH is modified by a covalent mono- or di-atomic species at the C(4a) position. Under normal conditions, PDH is not oxidized by oxygen; however, the related enzyme pyranose 2-oxidase (P2O) activates oxygen by a mechanism that proceeds via a covalent flavin C(4a)-hydroperoxide intermediate. Although the flavin C(4a) adduct is common in monooxygenases, it is unusual for flavoprotein oxidases, and it has been proposed that formation of the intermediate would be unfavorable in these oxidases. Thus, the flavin adduct in PDH not only shows that the adduct can be favorably accommodated in the active site, but also provides important details regarding the structural, spatial and physicochemical requirements for formation of this flavin intermediate in related oxidases. Extensive in silico modeling of carbohydrates in the PDH active site allowed us to rationalize the previously reported patterns of substrate specificity and regioselectivity. To evaluate the regioselectivity of D-glucose oxidation, reduction experiments were performed using fluorinated glucose. PDH was rapidly reduced by 3-fluorinated glucose, which has the C2 position accessible for oxidation, whereas 2-fluorinated glucose performed poorly (C3 accessible), indicating that the glucose C2 position is the primary site of attack. PMID:23326459

  17. Catalytically important flavin linked through a phosphoester bond in a eukaryotic fumarate reductase.

    PubMed

    Serebryakova, Marina V; Bertsova, Yulia V; Sokolov, Svyatoslav S; Kolesnikov, Alexander A; Baykov, Alexander A; Bogachev, Alexander V

    2018-06-01

    One of the three domains of kinetoplastid NADH:fumarate oxidoreductase (FRD) is homologous to bacterial flavin transferase that catalyzes transfer of FMN residue from FAD to threonine in flavoproteins. Leptomonas pyrrhocoris FRD produced in yeast cells, which lack flavin transferase gene in their proteome, reduces fumarate in the presence of NADH and contains an FMN residue covalently linked to a Ser9 residue. The conserved flavinylation motif of FRD, D 3 (g/s)x(s/t)(s/g)AS 9 , is similar to the Dxx(s/t)gAT motif recognized by flavin transferase in prokaryotic proteins. Ser9 replacement abolished the flavinylation and fumarate reductase activity of FRD. These findings suggest that the flavinylation is important for the activity of FRD and that this post-translational modification is carried out by the own flavin transferase domain. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement

    PubMed Central

    Louie, Gordon; Noel, Joseph P.; Baran, Phil S.; Palfey, Bruce; Moore, Bradley S.

    2013-01-01

    Flavoproteins catalyze a diversity of fundamental redox reactions and are one of the most studied enzyme families1,2. As monooxygenases, they are universally thought to control oxygenation by means of a peroxyflavin species that transfers a single atom of molecular oxygen to an organic substrate1,3,4. Here we report that the bacterial flavoenzyme EncM5,6 catalyzes the peroxyflavin-independent oxygenation-dehydrogenation dual oxidation of a highly reactive poly(β-carbonyl). The crystal structure of EncM with bound substrate mimics coupled with isotope labeling studies reveal previously unknown flavin redox biochemistry. We show that EncM maintains an unanticipated stable flavin oxygenating species, proposed to be a flavin-N5-oxide, to promote substrate oxidation and trigger a rare Favorskii-type rearrangement that is central to the biosynthesis of the antibiotic enterocin. This work provides new insight into the fine-tuning of the flavin cofactor in offsetting the innate reactivity of a polyketide substrate to direct its efficient electrocyclization. PMID:24162851

  19. Flavin-catalyzed redox tailoring reactions in natural product biosynthesis.

    PubMed

    Teufel, Robin

    2017-10-15

    Natural products are distinct and often highly complex organic molecules that constitute not only an important drug source, but have also pushed the field of organic chemistry by providing intricate targets for total synthesis. How the astonishing structural diversity of natural products is enzymatically generated in biosynthetic pathways remains a challenging research area, which requires detailed and sophisticated approaches to elucidate the underlying catalytic mechanisms. Commonly, the diversification of precursor molecules into distinct natural products relies on the action of pathway-specific tailoring enzymes that catalyze, e.g., acylations, glycosylations, or redox reactions. This review highlights a selection of tailoring enzymes that employ riboflavin (vitamin B2)-derived cofactors (FAD and FMN) to facilitate unusual redox catalysis and steer the formation of complex natural product pharmacophores. Remarkably, several such recently reported flavin-dependent tailoring enzymes expand the classical paradigms of flavin biochemistry leading, e.g., to the discovery of the flavin-N5-oxide - a novel flavin redox state and oxygenating species. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Absorption and emission spectroscopic characterization of photo-dynamics of photoactivated adenylyl cyclase mutant bPAC-Y7F of Beggiatoa sp.

    PubMed

    Penzkofer, Alfons; Stierl, Manuela; Mathes, Tilo; Hegemann, Peter

    2014-11-01

    The photoactivated cyclase bPAC of the microbial mats bacterium Beggiatoa sp. consists of a BLUF domain and an adenylyl cyclase domain. It has strong activity of photo-induced cyclic adenylyl monophosphate (cAMP) formation and is therefore an important optogenetic tool in neuroscience applications. The SUMO-bPAC-Y7F mutant where Tyr-7 is replaced by Phe-7 in the BLUF domain has lost the typical BLUF domain photo-cycle dynamics. Instead, the investigated SUMO-bPAC-Y7F mutant consisted of three protein conformations with different triplet based photo-dynamics: (i) reversible flavin quinone (Fl) cofactor reduction to flavin semiquinone (FlH), (ii) reversible violet/near ultraviolet absorbing flavin photoproduct (FlA) formation, and (iii) irreversible red absorbing flavin photoproduct (FlC) formation. Absorption and emission spectroscopic measurements on SUMO-bPAC-Y7F were carried out before, during and after light exposure. Flavin photo-dynamics schemes are developed for the SUMO-bPAC-Y7F fractions performing photo-induced FlH, FlA, and FlC formation. Quantitative parameters of the flavin cofactor excitation, relaxation and recovery dynamics in SUMO-bPAC-Y7F are determined. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Trichomonas vaginalis Flavin Reductase 1 and its Role in Metronidazole Resistance

    PubMed Central

    Leitsch, David; Janssen, Brian D.; Kolarich, Daniel; Johnson, Patricia J.; Duchêne, Michael

    2015-01-01

    Summary The enzyme flavin reductase 1 (FR1) from Trichomonas vaginalis, formerly known as NADPH oxidase, was isolated and identified. Flavin reductase is part of the antioxidative defense in T. vaginalis and indirectly reduces molecular oxygen to hydrogen peroxide via free flavins. Importantly, a reduced or absent flavin reductase activity has been reported in metronidazole-resistant T. vaginalis, resulting in elevated intracellular oxygen levels and futile cycling of metronidazole. Interestingly, FR1 has no close homologue in any other sequenced genome, but seven full-length and three truncated isoforms exist in the T. vaginalis genome. However, out of these, only FR1 has an affinity for flavins, i.e. FMN, FAD, and riboflavin, which is high enough to be of physiological relevance. Although there are no relevant changes in the gene sequence or any alterations of the predicted FR1-mRNA structure in any of the strains studied, FR1 is not expressed in highly metronidazole-resistant strains. Transfection of a metronidazole-resistant clinical isolate (B7268), which does not express any detectable amounts of FR, with a plasmid bearing a functional FR1 gene nearly completely restored metronidazole sensitivity. Our results indicate that FR1 has a significant role in the emergence of metronidazole resistance in T. vaginalis. PMID:24256032

  2. Did template-directed nucleation precede molecular replication?

    NASA Technical Reports Server (NTRS)

    Orgel, Leslie E.

    1986-01-01

    It is proposed that mononucleotides incorporated into the surfaces of microcrystals of inorganic phosphates such as hydroxyapatite can act as templates to assemble complementary mononucleotides from solution, and that the phosphate groups of the assembled nucleotides can facilitate nucleation of a second hydroxyapatite crystal. This would provide a mechanism of replication that is subject to natural selection. The possible role of a replicating system of this kind in the origins of life on the earth is discussed.

  3. The return of the Scarlet Pimpernel: cobalamin in inflammation II — cobalamins can both selectively promote all three nitric oxide synthases (NOS), particularly iNOS and eNOS, and, as needed, selectively inhibit iNOS and nNOS

    PubMed Central

    Wheatley, Carmen

    2007-01-01

    The up-regulation of transcobalamins [hitherto posited as indicating a central need for cobalamin (Cbl) in inflammation], whose expression, like inducible nitric oxide synthase (iNOS), is Sp1- and interferondependent, together with increased intracellular formation of glutathionylcobalamin (GSCbl), adenosylcobalamin (AdoCbl), methylcobalamin (MeCbl), may be essential for the timely promotion and later selective inhibition of iNOS and concordant regulation of endothelial and neuronal NOS (eNOS/nNOS.) Cbl may ensure controlled high output of nitric oxide (NO) and its safe deployment, because: (1) Cbl is ultimately responsible for the synthesis or availability of the NOS substrates and cofactors heme, arginine, BH4 flavin adenine dinucleotide/flavin mononucleotide (FAD/FMN) and NADPH, via the far-reaching effects of the two Cbl coenzymes, methionine synthase (MS) and methylmalonyl CoA mutase (MCoAM) in, or on, the folate, glutathione, tricarboxylic acid (TCA) and urea cycles, oxidative phosphorylation, glycolysis and the pentose phosphate pathway. Deficiency of any of theNOS substrates and cofactors results in ‘uncoupled’ NOS reactions, decreasedNO production and increased or excessive O2−, H2O2, ONOO− and other reactive oxygen species (ROS), reactive nitric oxide species (RNIS) leading to pathology. (2) Cbl is also the overlooked ultimate determinant of positive glutathione status, which favours the formation of more benign NO species, s-nitrosothiols, the predominant form in which NO is safely deployed. Cbl status may consequently act as a ‘back-up disc’ that ensures the active status of antioxidant systems, as well as reversing and modulating the effects of nitrosylation in cell signal transduction.New evidence shows that GSCbl can significantly promote iNOS/ eNOS NO synthesis in the early stages of inflammation, thus lowering high levels of tumour necrosis factor-a that normally result in pathology, while existing evidence shows that in extreme nitrosative and oxidative stress, GSCbl can regenerate the activity of enzymes important for eventual resolution, such as glucose 6 phosphate dehydrogenase, which ensures NADPH supply, lactate dehydrogenase, and more; with human clinical case studies of OHCbl for cyanide poisoning, suggesting Cbl may regenerate aconitase and cytochrome c oxidase in the TCA cycle and oxidative phosphorylation. Thus, Cbl may simultaneously promote a strong inflammatory response and the means to resolve it. PMID:18836533

  4. Protein Conformational Gating of Enzymatic Activity in Xanthine Oxidoreductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikita, Hiroshi; Eger, Bryan T.; Okamoto, Ken

    2012-05-24

    In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox active cofactors, which form an electron transfer (ET) pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin semiquinone/hydroquinone pair (E{sub sq/hq}) is {approx}170 mV, a striking difference. The former greatly prefers NAD{sup +} as ultimate substrate for ET from the iron-sulfur cluster FeS-II via flavin while the latter only accepts dioxygen. In XDH (without NAD{sup +}), however, the redox potential of the electron donor FeS-IImore » is 180 mV higher than that for the acceptor flavin, yielding an energetically uphill ET. On the basis of new 1.65, 2.3, 1.9, and 2.2 {angstrom} resolution crystal structures for XDH, XO, the NAD{sup +}- and NADH-complexed XDH, E{sub sq/hq} were calculated to better understand how the enzyme activates an ET from FeS-II to flavin. The majority of the E{sub sq/hq} difference between XDH and XO originates from a conformational change in the loop at positions 423-433 near the flavin binding site, causing the differences in stability of the semiquinone state. There was no large conformational change observed in response to NAD{sup +} binding at XDH. Instead, the positive charge of the NAD{sup +} ring, deprotonation of Asp429, and capping of the bulk surface of the flavin by the NAD{sup +} molecule all contribute to altering E{sub sq/hq} upon NAD{sup +} binding to XDH.« less

  5. Distinct properties underlie flavin-based electron bifurcation in a novel electron transfer flavoprotein FixAB from Rhodopseudomonas palustris

    DOE PAGES

    Duan, H. Diessel; Lubner, Carolyn E.; Tokmina-Lukaszewska, Monika; ...

    2018-02-09

    A newly-recognized third fundamental mechanism of energy conservation in biology, electron bifurcation, uses free energy from exergonic redox reactions to drive endergonic redox reactions. Flavin-based electron bifurcation furnishes low potential electrons to demanding chemical reactions such as reduction of dinitrogen to ammonia. We employed the heterodimeric flavoenzyme FixAB from the diazotrophic bacterium Rhodopseudomonas palustris to elucidate unique properties that underpin flavin-based electron bifurcation.

  6. Structural Basis for Inhibitor-Induced Hydrogen Peroxide Production by Kynurenine 3-Monooxygenase.

    PubMed

    Kim, Hyun Tae; Na, Byeong Kwan; Chung, Jiwoung; Kim, Sulhee; Kwon, Sool Ki; Cha, Hyunju; Son, Jonghyeon; Cho, Joong Myung; Hwang, Kwang Yeon

    2018-04-19

    Kynurenine 3-monooxygenase (KMO) inhibitors have been developed for the treatment of neurodegenerative disorders. The mechanisms of flavin reduction and hydrogen peroxide production by KMO inhibitors are unknown. Herein, we report the structure of human KMO and crystal structures of Saccharomyces cerevisiae (sc) and Pseudomonas fluorescens (pf) KMO with Ro 61-8048. Proton transfer in the hydrogen bond network triggers flavin reduction in p-hydroxybenzoate hydroxylase, but the mechanism triggering flavin reduction in KMO is different. Conformational changes via π-π interactions between the loop above the flavin and substrate or non-substrate effectors lead to disorder of the C-terminal α helix in scKMO and shifts of domain III in pfKMO, stimulating flavin reduction. Interestingly, Ro 61-8048 has two different binding modes. It acts as a competitive inhibitor in scKMO and as a non-substrate effector in pfKMO. These findings provide understanding of the catalytic cycle of KMO and insight for structure-based drug design of KMO inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Thermodynamic and electron paramagnetic resonance characterization of flavin in succinate dehydrogenase.

    PubMed

    Ohnishi, T; King, T E; Salerno, J C; Blum, H; Bowyer, J R; Maida, T

    1981-06-10

    Thermodynamic parameters of succinate dehydrogenase flavin were determined potentiometrically from the analysis of free radical signal levels as a function of the oxidation-reduction potential. Midpoint redox potentials of consecutive 1-electron transfer steps are -127 and -31 mV at pH 7.0. This corresponds to a stability constant of intermediate stability, 2.5 x 10(-2), which suggests flavin itself may be a converter from n = 2 to n = 1 electron transfer steps. The pK values of the free radical (FlH . in equilibrium Fl . -) and the fully reduced form (FlH2 in equilibrium FlH-) were estimated as 8.0 +/- 0.2 and 7.7 +/- 0.2, respectively. Succinate dehydrogenase flavosemiquinone elicits an EPR spectrum at g = 2.00 with a peak to peak width of 1.2 mT even in the protonated form, suggesting the delocalization in the unpaired electron density. A close proximity of succinate dehydrogenase flavin and iron-sulfur cluster S-1 was demonstrated based on the enhancement of flavin spin relaxation by Center S-1.

  8. Characterization of a flavin reductase from a thermophilic dibenzothiophene-desulfurizing bacterium, Bacillus subtilis WU-S2B.

    PubMed

    Takahashi, Shusuke; Furuya, Toshiki; Ishii, Yoshitaka; Kino, Kuniki; Kirimura, Kohtaro

    2009-01-01

    Bacillus subtilis WU-S2B is a thermophilic dibenzothiophene (DBT)-desulfurizing bacterium and produces a flavin reductase (Frb) that couples with DBT and DBT sulfone monooxygenases. The recombinant Frb was purified from Escherichia coli cells expressing the frb gene and was characterized. The purified Frb exhibited high stability over wide temperature and pH ranges of 20-55 degrees C and 2-12, respectively. Frb contained FMN and exhibited both flavin reductase and nitroreductase activities.

  9. Identification of Isn1 and Sdt1 as Glucose- and Vitamin-regulated Nicotinamide Mononucleotide and Nicotinic Acid Mononucleotide 5′-Nucleotidases Responsible for Production of Nicotinamide Riboside and Nicotinic Acid Riboside*

    PubMed Central

    Bogan, Katrina L.; Evans, Charles; Belenky, Peter; Song, Peng; Burant, Charles F.; Kennedy, Robert; Brenner, Charles

    2009-01-01

    Recently, we discovered that nicotinamide riboside and nicotinic acid riboside are biosynthetic precursors of NAD+, which are utilized through two pathways consisting of distinct enzymes. In addition, we have shown that exogenously supplied nicotinamide riboside is imported into yeast cells by a dedicated transporter, and it extends replicative lifespan on high glucose medium. Here, we show that nicotinamide riboside and nicotinic acid riboside are authentic intracellular metabolites in yeast. Secreted nicotinamide riboside was detected with a biological assay, and intracellular levels of nicotinamide riboside, nicotinic acid riboside, and other NAD+ metabolites were determined by a liquid chromatography-mass spectrometry method. A biochemical genomic screen indicated that three yeast enzymes possess nicotinamide mononucleotide 5′-nucleotidase activity in vitro. Metabolic profiling of knock-out mutants established that Isn1 and Sdt1 are responsible for production of nicotinamide riboside and nicotinic acid riboside in cells. Isn1, initially classified as an IMP-specific 5′-nucleotidase, and Sdt1, initially classified as a pyrimidine 5′-nucleotidase, are additionally responsible for dephosphorylation of pyridine mononucleotides. Sdt1 overexpression is growth-inhibitory to cells in a manner that depends on its active site and correlates with reduced cellular NAD+. Expression of Isn1 protein is positively regulated by the availability of nicotinic acid and glucose. These results reveal unanticipated and highly regulated steps in NAD+ metabolism. PMID:19846558

  10. Identification of Isn1 and Sdt1 as glucose- and vitamin-regulated nicotinamide mononucleotide and nicotinic acid mononucleotide [corrected] 5'-nucleotidases responsible for production of nicotinamide riboside and nicotinic acid riboside.

    PubMed

    Bogan, Katrina L; Evans, Charles; Belenky, Peter; Song, Peng; Burant, Charles F; Kennedy, Robert; Brenner, Charles

    2009-12-11

    Recently, we discovered that nicotinamide riboside and nicotinic acid riboside are biosynthetic precursors of NAD(+), which are utilized through two pathways consisting of distinct enzymes. In addition, we have shown that exogenously supplied nicotinamide riboside is imported into yeast cells by a dedicated transporter, and it extends replicative lifespan on high glucose medium. Here, we show that nicotinamide riboside and nicotinic acid riboside are authentic intracellular metabolites in yeast. Secreted nicotinamide riboside was detected with a biological assay, and intracellular levels of nicotinamide riboside, nicotinic acid riboside, and other NAD(+) metabolites were determined by a liquid chromatography-mass spectrometry method. A biochemical genomic screen indicated that three yeast enzymes possess nicotinamide mononucleotide 5'-nucleotidase activity in vitro. Metabolic profiling of knock-out mutants established that Isn1 and Sdt1 are responsible for production of nicotinamide riboside and nicotinic acid riboside in cells. Isn1, initially classified as an IMP-specific 5'-nucleotidase, and Sdt1, initially classified as a pyrimidine 5'-nucleotidase, are additionally responsible for dephosphorylation of pyridine mononucleotides. Sdt1 overexpression is growth-inhibitory to cells in a manner that depends on its active site and correlates with reduced cellular NAD(+). Expression of Isn1 protein is positively regulated by the availability of nicotinic acid and glucose. These results reveal unanticipated and highly regulated steps in NAD(+) metabolism.

  11. Intraprotein Electron Transfer in Inducible Nitric Oxide Synthase Holoenzyme

    PubMed Central

    Feng, Changjian; Dupont, Andrea L.; Nahm, Nickolas J.; Spratt, Donald E.; Hazzard, James T.; Weinberg, J. Brice; Guillemette, J. Guy; Tollin, Gordon; Ghosh, Dipak K.

    2008-01-01

    Intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in nitric oxide (NO) synthesis by NO synthase (NOS). Our previous laser flash photolysis studies provided a direct determination of the kinetics of the FMN–heme IET in a truncated oxyFMN construct of murine inducible NOS (iNOS), in which only the oxygenase and FMN domains along with the calmodulin (CaM) binding site are present [Feng et al. (2006) J. Am. Chem. Soc. 128, 3808-3811]. Here we report the kinetics of the IET in a human iNOS oxyFMN construct, a human iNOS holoenzyme and a murine iNOS holoenzyme, using CO photolysis in comparative studies on partially reduced NOS and a NOS oxygenase construct that lacks the FMN domain. The IET rate constants for the human and murine iNOS holoenzymes are 34 ± 5 s-1 and 35 ± 3 s-1, respectively, thereby providing a direct measurement of this IET between the catalytically significant redox couples of FMN and heme in the iNOS holoenzyme. These values are approximately an order of magnitude smaller than that in the corresponding iNOS oxyFMN construct, suggesting that in the holoenzyme the rate-limiting step in the IET is the conversion of the shielded electron-accepting (input) state to a new electron-donating (output) state. The fact that there is no rapid IET component in the kinetic traces obtained with the iNOS holoenzyme implies that the enzyme remains mainly in the input state. The IET rate constant value for the iNOS holoenzyme is similar to that obtained for a CaM-bound neuronal NOS (nNOS) holoenzyme, suggesting that CaM activation effectively removes the inhibitory effect of the unique autoregulatory insert in nNOS. PMID:18830722

  12. Understanding the hydrogen transfer mechanism for the biodegradation of 2,4,6-trinitrotoluene catalyzed by pentaerythritol tetranitrate reductase: molecular dynamics simulations.

    PubMed

    Yang, Zhilin; Chen, Junxian; Zhou, Yang; Huang, Hui; Xu, Dingguo; Zhang, Chaoyang

    2018-05-03

    The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic pollutant. Biodegradation is inevitably one of the most cost-effective and enviromentally friendly means of removing TNT pollution. However, the aromatic derivatives from the reduction of nitro groups by several classic enzymes are still toxic. Besides the reduction of nitro groups, pentaerythritol tetranitrate reductase (PETNR) offers a potential route to ring fission and complete degradation of TNT through the pathway of the Meisenheimer complex. This work is devoted to deeply understand the essence of the Meisenheimer pathway and mainly focus on the crucial hydrogen-transfer reaction by means of molecular dynamics (MD) simulations. We obtain three valuable findings. Firstly, the parallel π-π stacking between TNT and the flavin mononucleotide (FMN) cofactor is a precondition. The key residue controlling this conformation is His181. Although His184 does not interact with TNT, the mutation from His184 to Asn184 would abolish the π-π structure. Secondly, the data of the empirical valence bond (EVB) show that the Meisenheimer pathway is predominant because its activation barrier is 6.7 kcal mol-1 far less than that of nitro reduction (26.6 kcal mol-1). Finally, based on the results of thermodynamic integration (TI), the type of transferred hydrogen is also ensured, that is, the H anion (H-) for the Meisenheimer complex and the H radical (H˙) for nitro reduction. Our findings provide an exhaustive understanding for the first hydrogen transfer reaction that has a decisive effect on two competing pathways, and help in searching for and designing new enzymes that can effectively degrade TNT.

  13. Temperature Sensitive Singlet Oxygen Photosensitization by LOV-Derived Fluorescent Flavoproteins.

    PubMed

    Westberg, Michael; Bregnhøj, Mikkel; Etzerodt, Michael; Ogilby, Peter R

    2017-03-30

    Optogenetic sensitizers that selectively produce a given reactive oxygen species (ROS) constitute a promising tool for studying cell signaling processes with high levels of spatiotemporal control. However, to harness the full potential of this tool for live cell studies, the photophysics of currently available systems need to be explored further and optimized. Of particular interest in this regard, are the flavoproteins miniSOG and SOPP, both of which (1) contain the chromophore flavin mononucleotide, FMN, in a LOV-derived protein enclosure, and (2) photosensitize the production of singlet oxygen, O 2 (a 1 Δ g ). Here we present an extensive experimental study of the singlet and triplet state photophysics of FMN in SOPP and miniSOG over a physiologically relevant temperature range. Although changes in temperature only affect the singlet excited state photophysics slightly, the processes that influence the deactivation of the triplet excited state are more sensitive to temperature. Most notably, for both proteins, the rate constant for quenching of 3 FMN by ground state oxygen, O 2 (X 3 Σ g - ), increases ∼10-fold upon increasing the temperature from 10 to 43 °C, while the oxygen-independent channels of triplet state deactivation are less affected. As a consequence, this increase in temperature results in higher yields of O 2 (a 1 Δ g ) formation for both SOPP and miniSOG. We also show that the quantum yields of O 2 (a 1 Δ g ) production by both miniSOG and SOPP are mainly limited by the fraction of FMN triplet states quenched by O 2 (X 3 Σ g - ). The results presented herein provide a much-needed quantitative framework that will facilitate the future development of optogenetic ROS sensitizers.

  14. Arabidopsis nph1 and npl1: Blue light receptors that mediate both phototropism and chloroplast relocation

    PubMed Central

    Sakai, Tatsuya; Kagawa, Takatoshi; Kasahara, Masahiro; Swartz, Trevor E.; Christie, John M.; Briggs, Winslow R.; Wada, Masamitsu; Okada, Kiyotaka

    2001-01-01

    UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner. PMID:11371609

  15. SAR202 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant Dissolved Organic Matter.

    PubMed

    Landry, Zachary; Swan, Brandon K; Herndl, Gerhard J; Stepanauskas, Ramunas; Giovannoni, Stephen J

    2017-04-18

    Deep-ocean regions beyond the reach of sunlight contain an estimated 615 Pg of dissolved organic matter (DOM), much of which persists for thousands of years. It is thought that bacteria oxidize DOM until it is too dilute or refractory to support microbial activity. We analyzed five single-amplified genomes (SAGs) from the abundant SAR202 clade of dark-ocean bacterioplankton and found they encode multiple families of paralogous enzymes involved in carbon catabolism, including several families of oxidative enzymes that we hypothesize participate in the degradation of cyclic alkanes. The five partial genomes encoded 152 flavin mononucleotide/F420-dependent monooxygenases (FMNOs), many of which are predicted to be type II Baeyer-Villiger monooxygenases (BVMOs) that catalyze oxygen insertion into semilabile alicyclic alkanes. The large number of oxidative enzymes, as well as other families of enzymes that appear to play complementary roles in catabolic pathways, suggests that SAR202 might catalyze final steps in the biological oxidation of relatively recalcitrant organic compounds to refractory compounds that persist. IMPORTANCE Carbon in the ocean is massively sequestered in a complex mixture of biologically refractory molecules that accumulate as the chemical end member of biological oxidation and diagenetic change. However, few details are known about the biochemical machinery of carbon sequestration in the deep ocean. Reconstruction of the metabolism of a deep-ocean microbial clade, SAR202, led to postulation of new biochemical pathways that may be the penultimate stages of DOM oxidation to refractory forms that persist. These pathways are tied to a proliferation of oxidative enzymes. This research illuminates dark-ocean biochemistry that is broadly consequential for reconstructing the global carbon cycle. Copyright © 2017 Landry et al.

  16. Insight into structural rearrangements and interdomain interactions related to electron transfer between flavin mononucleotide and heme in nitric oxide synthase: A molecular dynamics study.

    PubMed

    Sheng, Yinghong; Zhong, Linghao; Guo, Dahai; Lau, Gavin; Feng, Changjian

    2015-12-01

    Calmodulin (CaM) binding to nitric oxide synthase (NOS) enables a conformational change, in which the FMN domain shuttles between the FAD and heme domains to deliver electrons to the active site heme center. A clear understanding of this large conformational change is critical, since this step is the rate-limiting in NOS catalysis. Herein molecular dynamics simulations were conducted on a model of an oxygenase/FMN (oxyFMN) construct of human inducible NOS (iNOS). This is to investigate the structural rearrangements and the domain interactions related to the FMN-heme interdomain electron transfer (IET). We carried out simulations on the iNOS oxyFMN·CaM complex models in [Fe(III)][FMNH(-)] and [Fe(II)][FMNH] oxidation states, the pre- and post-IET states. The comparison of the dynamics and conformations of the iNOS construct at the two oxidation states has allowed us to identify key factors related to facilitating the FMN-heme IET process. The computational results demonstrated, for the first time, that the conformational change is redox-dependent. Predictions of the key interacting sites in optimal interdomain FMN/heme docking are well supported by experimental data in the literature. An intra-subunit pivot region is predicted to modulate the FMN domain motion and correlate with existence of a bottleneck in the conformational sampling that leads to the electron transfer-competent state. Interactions of the residues identified in this work are proposed to ensure that the FMN domain moves with appropriate degrees of freedom and docks to proper positions at the heme domain, resulting in efficient IET and nitric oxide production. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Physiological and biochemical characterization of the soluble formate dehydrogenase, a molybdoenzyme from Alcaligenes eutrophus.

    PubMed Central

    Friedebold, J; Bowien, B

    1993-01-01

    Organoautotrophic growth of Alcaligenes eutrophus on formate was dependent on the presence of molybdate in the medium. Supplementation of the medium with tungstate lead to growth cessation. Corresponding effects of these anions were observed for the activity of the soluble, NAD(+)-linked formate dehydrogenase (S-FDH; EC 1.2.1.2) of the organism. Lack of molybdate or presence of tungstate resulted in an almost complete loss of S-FDH activity. S-FDH was purified to near homogeneity in the presence of nitrate as a stabilizing agent. The native enzyme exhibited an M(r) of 197,000 and a heterotetrameric quaternary structure with nonidentical subunits of M(r) 110,000 (alpha), 57,000 (beta), 19,400 (gamma), and 11,600 (delta). It contained 0.64 g-atom of molybdenum, 25 g-atom of nonheme iron, 20 g-atom of acid-labile sulfur, and 0.9 mol of flavin mononucleotide per mol. The fluorescence spectrum of iodine-oxidized S-FDH was nearly identical to the form A spectrum of milk xanthine oxidase, proving the presence of a pterin cofactor. The molybdenum-complexing cofactor was identified as molybdopterin guanine dinucleotide in an amount of 0.71 mol/mol of S-FDH. Apparent Km values of 3.3 mM for formate and 0.09 mM for NAD+ were determined. The enzyme coupled the oxidation of formate to a number of artificial electron acceptors and was strongly inactivated by formate in the absence of NAD+. It was inhibited by cyanide, azide, nitrate, and Hg2+ ions. Thus, the enzyme belongs to a new group of complex molybdo-flavo Fe-S FDH that so far has been detected in only one other aerobic bacterium. Images PMID:8335630

  18. Catalytic properties of the isolated diaphorase fragment of the NAD-reducing [NiFe]-hydrogenase from Ralstonia eutropha.

    PubMed

    Lauterbach, Lars; Idris, Zulkifli; Vincent, Kylie A; Lenz, Oliver

    2011-01-01

    The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha H16 catalyzes the H₂-driven reduction of NAD+, as well as reverse electron transfer from NADH to H+, in the presence of O₂. It comprises six subunits, HoxHYFUI₂, and incorporates a [NiFe] H+/H₂ cycling catalytic centre, two non-covalently bound flavin mononucleotide (FMN) groups and an iron-sulfur cluster relay for electron transfer. This study provides the first characterization of the diaphorase sub-complex made up of HoxF and HoxU. Sequence comparisons with the closely related peripheral subunits of Complex I in combination with UV/Vis spectroscopy and the quantification of the metal and FMN content revealed that HoxFU accommodates a [2Fe2S] cluster, FMN and a series of [4Fe4S] clusters. Protein film electrochemistry (PFE) experiments show clear electrocatalytic activity for both NAD+ reduction and NADH oxidation with minimal overpotential relative to the potential of the NAD+/NADH couple. Michaelis-Menten constants of 56 µM and 197 µM were determined for NADH and NAD+, respectively. Catalysis in both directions is product inhibited with K(I) values of around 0.2 mM. In PFE experiments, the electrocatalytic current was unaffected by O₂, however in aerobic solution assays, a moderate superoxide production rate of 54 nmol per mg of protein was observed, meaning that the formation of reactive oxygen species (ROS) observed for the native SH can be attributed mainly to HoxFU. The results are discussed in terms of their implications for aerobic functioning of the SH and possible control mechanism for the direction of catalysis.

  19. ACP1 and human adaptability: association with past malarial morbidity in the Sardinian population.

    PubMed

    Bottini, E; Palmarino, R; Lucarelli, P; Lista, F; Bottini, N

    2001-01-01

    Acid Phosphatase locus 1 (ACP1) is a polymorphic enzyme controlled by a locus on chromosome 2 with three common codominant alleles: *A, *B, and *C. ACP1 shows two major isoforms, F and S. The ratio of their concentration differs markedly among genotypes. Two functions have been proposed for the enzyme: flavin-mononucleotide phosphatase and tyrosine phosphatase activity. An association between ACP1 polymorphism and past malarial morbidity in Sardinia and the Po Valley has been described. Genetic polymorphisms could contribute to natural resistance or susceptibility to the disease. On the other hand, malaria pressure may select for genes that increase susceptibility to common diseases of modern civilization. Thus, the association between ACP1 and malaria in Sardinia in the light of recent understanding of the function of ACP1 and the molecular basis of malaria pathophysiology, especially aspects of the structure of band 3 protein (B3P) and the role of cytokines have been revisited. There is a significant negative correlation between ACP1 S isoform concentration, directly related to the ACP1*C allele, and past malarial morbidity in Sardinia. Populations subjected in the past to a heavy malarial burden show, at present, a lower concentration of the S isoform compared to a nearby malaria-free population, suggesting that genotypes with high S isoform concentration have been subjected to negative selection in a malarial environment. Correlation analysis and analysis of the joint G-6-PD/ACP1 distribution suggest that the relationship between past endemic malaria and the S isoform has not been mediated by glucose-6-phosphate dehydrogenase (G-6-PD) deficiency, thus pointing to a direct effect of malaria on ACP1. Copyright 2001 Wiley-Liss, Inc.

  20. Light-induced conformational changes of LOV1 (light oxygen voltage-sensing domain 1) and LOV2 relative to the kinase domain and regulation of kinase activity in Chlamydomonas phototropin.

    PubMed

    Okajima, Koji; Aihara, Yusuke; Takayama, Yuki; Nakajima, Mihoko; Kashojiya, Sachiko; Hikima, Takaaki; Oroguchi, Tomotaka; Kobayashi, Amane; Sekiguchi, Yuki; Yamamoto, Masaki; Suzuki, Tomomi; Nagatani, Akira; Nakasako, Masayoshi; Tokutomi, Satoru

    2014-01-03

    Phototropin (phot), a blue light (BL) receptor in plants, has two photoreceptive domains named LOV1 and LOV2 as well as a Ser/Thr kinase domain (KD) and acts as a BL-regulated protein kinase. A LOV domain harbors a flavin mononucleotide that undergoes a cyclic photoreaction upon BL excitation via a signaling state in which the inhibition of the kinase activity by LOV2 is negated. To understand the molecular mechanism underlying the BL-dependent activation of the kinase, the photochemistry, kinase activity, and molecular structure were studied with the phot of Chlamydomonas reinhardtii. Full-length and LOV2-KD samples of C. reinhardtii phot showed cyclic photoreaction characteristics with the activation of LOV- and BL-dependent kinase. Truncation of LOV1 decreased the photosensitivity of the kinase activation, which was well explained by the fact that the signaling state lasted for a shorter period of time compared with that of the phot. Small angle x-ray scattering revealed monomeric forms of the proteins in solution and detected BL-dependent conformational changes, suggesting an extension of the global molecular shapes of both samples. Constructed molecular model of full-length phot based on the small angle x-ray scattering data proved the arrangement of LOV1, LOV2, and KD for the first time that showed a tandem arrangement both in the dark and under BL irradiation. The models suggest that LOV1 alters its position relative to LOV2-KD under BL irradiation. This finding demonstrates that LOV1 may interact with LOV2 and modify the photosensitivity of the kinase activation through alteration of the duration of the signaling state in LOV2.

  1. Plasma vitamins B2, B6, B12, and related genetic variants as predictors of colorectal cancer risk

    PubMed Central

    Eussen, Simone JPM; Vollset, Stein Emil; Hustad, Steinar; Midttun, Øivind; Meyer, Klaus; Fredriksen, Åse; Ueland, Per Magne; Jenab, Mazda; Slimani, Nadia; Boffetta, Paolo; Overvad, Kim; Thorlacius-Ussing, Ole; Tjønneland, Anne; Olsen, Anja; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Morois, Sophie; Weikert, Cornelia; Pischon, Tobias; Linseisen, Jakob; Kaaks, Rudolf; Trichopoulou, Antonia; Zilis, Demosthenes; Katsoulis, Michael; Palli, Domenico; Pala, Valeria; Vineis, Paolo; Tumino, Rosario; Panico, Salvatore; Peeters, Petra HM; Bueno-de-Mesquita, H Bas; van Duijnhoven, Fränzel JB; Skeie, Guri; Muñoz, Xavier; Martínez, Carmen; Dorronsoro, Miren; Ardanaz, Eva; Navarro, Carmen; Rodríguez, Laudina; Van Guelpen, Bethany; Palmqvist, Richard; Manjer, Jonas; Ericson, Ulrika; Bingham, Sheila; Khaw, Kay-Tee; Norat, Teresa; Riboli, Elio

    2010-01-01

    Background B-vitamins are essential for one-carbon metabolism and have been linked to colorectal cancer (CRC). Although associations with folate have frequently been studied, studies on other plasma vitamins B2, B6, and B12 and CRC are scarce or inconclusive. Methods Nested case-control study within the European Prospective Investigation into Cancer and Nutrition, including 1365 incident CRC cases and 2319 controls matched for study center, age, and sex. We measured the sum of B2 species riboflavin and flavin mononucleotide, and the sum of B6 species pyridoxal 5′-phosphate, pyridoxal, and 4-pyridoxic acid as indicators for vitamin B2 and B6 status, as well as vitamin B12 in plasma samples collected at baseline. In addition, we determined eight polymorphisms related to one-carbon metabolism. Relative risks (RRs) for CRC were estimated using conditional logistic regression, adjusted for smoking, education, physical activity, BMI, alcohol consumption, and intakes of fiber, red- and processed meat. Results RRs comparing highest to lowest quintile (95% confidence interval, Ptrend) were: 0.71 (0.56–0.91, 0.02) for vitamin B2, 0.68 (0.53–0.87, <0.001) for vitamin B6, and 1.02 (0.80–1.29, 0.19) for vitamin B12. The associations for vitamin B6 were stronger in males who consumed ≥ 30g alcohol/day. The polymorphisms were not associated with CRC. Conclusions Higher plasma concentrations of vitamins B2 and B6 are associated with a lower CRC risk. Impact This European population-based study is the first to indicate that vitamin B2 is inversely associated with CRC, and is in agreement to previously suggested inverse associations of vitamin B6 with CRC. PMID:20813848

  2. Effects of blue or violet light on the inactivation of Staphylococcus aureus by riboflavin-5'-phosphate photolysis.

    PubMed

    Wong, Tak-Wah; Cheng, Chien-Wei; Hsieh, Zong-Jhe; Liang, Ji-Yuan

    2017-08-01

    The light sensitive compound riboflavin-5'-phosphate (or flavin mononucleotide, FMN) generates reactive oxygen species (ROS) upon photo-irradiation. FMN is required by all flavoproteins because it is a cofactor of biological blue-light receptors. The photochemical effects of FMN after irradiation by blue or violet light on the inactivation of Staphylococcus aureus strains, including a methicillin-resistant strain (MRSA), were investigated in this study. Upon blue- or violet-light photo-treatment, FMN was shown to inactivate S. aureus due to the generated ROS. Effective bacterial inactivation can be achieved by FMN photolysis without an exogenous electron provider. Inactivation rates of 94.9 and 95.2% in S. aureus and MRSA, respectively, can be reached by blue light irradiation (2.0mW/cm 2 ) with 120μM FMN for 120min. A lower FMN concentration and a shorter time are required to reach similar effects by violet light irradiation. Inactivation rates of 96.3 and 97.0% in S. aureus and MRSA, respectively, can be reached by violet light irradiation (1.0mW/cm 2 ) with 30μM FMN for 30min. The sensitivity of the inherent photosensitizers is lower under blue-light irradiation. A long exposure photolytic treatment of FMN by blue light is required to inactivate S. aureus. Violet light was found to be more efficient in S. aureus inactivation at the same radiant intensity. FMN photolysis with blue or violet light irradiation enhanced the inactivation rates of S. aureus and MRSA. FMN photochemical treatment could be a supplemental technique in hygienic decontamination processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Reduced flavin: NMR investigation of N5-H exchange mechanism, estimation of ionisation constants and assessment of properties as biological catalyst.

    PubMed

    Macheroux, Peter; Ghisla, Sandro; Sanner, Christoph; Rüterjans, Heinz; Müller, Franz

    2005-11-25

    The flavin in its FMN and FAD forms is a versatile cofactor that is involved in catalysis of most disparate types of biological reactions. These include redox reactions such as dehydrogenations, activation of dioxygen, electron transfer, bioluminescence, blue light reception, photobiochemistry (as in photolyases), redox signaling etc. Recently, hitherto unrecognized types of biological reactions have been uncovered that do not involve redox shuffles, and might involve the reduced form of the flavin as a catalyst. The present work addresses properties of reduced flavin relevant in this context. N(5)-H exchange reactions of the flavin reduced form and its pH dependence were studied using the 15N-NMR-signals of 15N-enriched, reduced flavin in the pH range from 5 to 12. The chemical shifts of the N(3) and N(5) resonances are not affected to a relevant extent in this pH range. This contrasts with the multiplicity of the N(5)-resonance, which strongly depends on pH. It is a doublet between pH 8.45 and 10.25 that coalesces into a singlet at lower and higher pH values. From the line width of the 15N(5) signal the pH-dependent rate of hydrogen exchange was deduced. The multiplicity of the 15N(5) signal and the proton exchange rates are little dependent on the buffer system used. The exchange rates allow an estimation of the pKa value of N(5)-H deprotonation in reduced flavin to be >or= 20. This value imposes specific constraints for mechanisms of flavoprotein catalysis based on this process. On the other hand the pK asymptotically equal to 4 for N(5)-H protonation (to form N(5)+-H2) would be consistent with a role of N(5)-H as a base.

  4. Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis.

    PubMed

    Wang, Xueying; Zhou, Yongjin J; Wang, Lei; Liu, Wujun; Liu, Yuxue; Peng, Chang; Zhao, Zongbao K

    2017-07-01

    NAD and its reduced form NADH function as essential redox cofactors and have major roles in determining cellular metabolic features. NAD can be synthesized through the deamidated and amidated pathways, for which the key reaction involves adenylylation of nicotinic acid mononucleotide (NaMN) and nicotinamide mononucleotide (NMN), respectively. In Escherichia coli , NAD de novo biosynthesis depends on the protein NadD-catalyzed adenylylation of NaMN to nicotinic acid adenine dinucleotide (NaAD), followed by NAD synthase-catalyzed amidation. In this study, we engineered NadD to favor NMN for improved amidated pathway activity. We designed NadD mutant libraries, screened by a malic enzyme-coupled colorimetric assay, and identified two variants, 11B4 (Y84V/Y118D) and 16D8 (A86W/Y118N), with a high preference for NMN. Whereas in the presence of NMN both variants were capable of enabling the viability of cells of E. coli BW25113-derived NAD-auxotrophic strain YJE003, for which the last step of the deamidated pathway is blocked, the 16D8 expression strain could grow without exogenous NMN and accumulated a higher cellular NAD(H) level than BW25113 in the stationary phase. These mutants established fully active amidated NAD biosynthesis and offered a new opportunity to manipulate NAD metabolism for biocatalysis and metabolic engineering. IMPORTANCE Adenylylation of nicotinic acid mononucleotide (NaMN) and adenylylation of nicotinamide mononucleotide (NMN), respectively, are the key steps in the deamidated and amidated pathways for NAD biosynthesis. In most organisms, canonical NAD biosynthesis follows the deamidated pathway. Here we engineered Escherichia coli NaMN adenylyltransferase to favor NMN and expressed the mutant enzyme in an NAD-auxotrophic E. coli strain that has the last step of the deamidated pathway blocked. The engineered strain survived in M9 medium, which indicated the implementation of a functional amidated pathway for NAD biosynthesis. These results enrich our understanding of NAD biosynthesis and are valuable for manipulation of NAD homeostasis for metabolic engineering. Copyright © 2017 American Society for Microbiology.

  5. Importance of a serine proximal to the C(4a) and N(5) flavin atoms for hydride transfer in choline oxidase.

    PubMed

    Yuan, Hongling; Gadda, Giovanni

    2011-02-08

    Choline oxidase catalyzes the flavin-dependent, two-step oxidation of choline to glycine betaine with the formation of an aldehyde intermediate. In the first oxidation reaction, the alcohol substrate is initially activated to its alkoxide via proton abstraction. The substrate is oxidized via transfer of a hydride from the alkoxide α-carbon to the N(5) atom of the enzyme-bound flavin. In the wild-type enzyme, proton and hydride transfers are mechanistically and kinetically uncoupled. In this study, we have mutagenized an active site serine proximal to the C(4a) and N(5) atoms of the flavin and investigated the reactions of proton and hydride transfers by using substrate and solvent kinetic isotope effects. Replacement of Ser101 with threonine, alanine, cysteine, or valine resulted in biphasic traces in anaerobic reductions of the flavin with choline investigated in a stopped-flow spectrophotometer. Kinetic isotope effects established that the kinetic phases correspond to the proton and hydride transfer reactions catalyzed by the enzyme. Upon removal of Ser101, there is an at least 15-fold decrease in the rate constants for proton abstraction, irrespective of whether threonine, alanine, valine, or cysteine is present in the mutant enzyme. A logarithmic decrease spanning 4 orders of magnitude is seen in the rate constants for hydride transfer with increasing hydrophobicity of the side chain at position 101. This study shows that the hydrophilic character of a serine residue proximal to the C(4a) and N(5) flavin atoms is important for efficient hydride transfer.

  6. Anti-mitochondrial flavoprotein autoantibodies of patients with myocarditis and dilated cardiomyopathy (anti-M7): interaction with flavin-carrying proteins, effect of vitamin B2 and epitope mapping

    PubMed Central

    Stähle, I; Brizzio, C; Barile, M; Brandsch, R

    1999-01-01

    Vitamin B2 and flavin cofactors are transported tightly bound to immunoglobulin in human serum. We reasoned that anti-mitochondrial flavoprotein autoantibodies (αFp-AB) present in the serum of patients with myocarditis and cardiomyopathy of unknown aetiology may form immunoglobulin aggregates with these serum proteins. However, immunodiffusion and Western blot assays demonstrated that the flavin-carrying proteins were not recognized by αFp-AB. Apparently the flavin moiety in the native protein conformation was inaccessible to αFp-AB. This conclusion was supported by the absence of an immunoreaction between the riboflavin-binding protein from egg white and αFP-AB. Intravenous application of vitamin B2 to rabbits immunized with 6-hydroxy-d-nicotine oxidase, a bacterial protein carrying covalently attached FAD, did not neutralize αFp-AB which had been raised in the serum of the animals. FAD-carrying peptides generated from 6-hydroxy-d-nicotine oxidase by trypsin and chymotrypsin treatment were not recognized by the αFp-AB, but those generated by endopeptidase Lys were. This demonstrates that the epitope recognized by αFp-AB comprises, besides the flavin moiety, protein secondary structure elements. PMID:10193410

  7. Microsatellites in the Eukaryotic DNA Mismatch Repair Genes as Modulators of Evolutionary Mutation Rate

    NASA Technical Reports Server (NTRS)

    Chang, Dong Kyung; Metzgar, David; Wills, Christopher; Boland, C. Richard

    2003-01-01

    All "minor" components of the human DNA mismatch repair (MMR) system-MSH3, MSH6, PMS2, and the recently discovered MLH3-contain mononucleotide microsatellites in their coding sequences. This intriguing finding contrasts with the situation found in the major components of the DNA MMR system-MSH2 and MLH1-and, in fact, most human genes. Although eukaryotic genomes are rich in microsatellites, non-triplet microsatellites are rare in coding regions. The recurring presence of exonal mononucleotide repeat sequences within a single family of human genes would therefore be considered exceptional.

  8. Evidence from Studies with Acifluorfen for Participation of a Flavin-Cytochrome Complex in Blue Light Photoreception for Phototropism of Oat Coleoptiles 12

    PubMed Central

    Leong, Ta-Yan; Briggs, Winslow R.

    1982-01-01

    The diphenyl ether acifluorfen enhances the blue light-induced absorbance change in Triton X100-solubilized crude membrane preparations from etiolated oat (Avena sativa L. cv. Lodi) coleoptiles. Enhancement of the spectral change is correlated with a change in rate of dark reoxidation of a b-type cytochrome. Similar, although smaller, enhancement was obtained with oxyfluorfen, nitrofen, and bifenox. Light-minus-dark difference spectra in the presence and absence of acifluorfen, and the dithionite-reduced-minus oxidized difference spectrum indicate that acifluorfen is acting specifically at a blue light-sensitive cytochrome-flavin complex. Sodium azide, a flavin inhibitor, decreases the light-induced absorbance change significantly, but does not affect the dark reoxidation of the cytochrome. Hence, it is acting on the light reaction, suggesting that the photoreceptor itself is a flavin. Acifluorfen sensitizes phototropism in dark-grown oat seedlings such that the first positive response occurs with blue light fluences as little as one-third of those required to elicit the same response in seedlings grown in the absence of the herbicide. Both this increase in sensitivity to light and the enhancement of the light-induced cytochrome reduction vary with the applied acifluorfen concentration in a similar manner. The herbicide is without effect either on elongation or on the geotropic response of dark-grown oat seedlings, indicating that acifluorfen is acting specifically close to, or at the photoreceptor end of, the stimulus-response chain. It seems likely that the flavin-cytochrome complex serves to transduce the light signal into curvature in phototropism in oats, with the flavin moiety itself serving as the photoreceptor. PMID:16662593

  9. Stepwise Hydrogen Atom and Proton Transfers in Dioxygen Reduction by Aryl-Alcohol Oxidase.

    PubMed

    Carro, Juan; Ferreira, Patricia; Martínez, Angel T; Gadda, Giovanni

    2018-03-20

    The mechanism of dioxygen reduction by the flavoenzyme aryl-alcohol oxidase was investigated with kinetic isotope, viscosity, and pL (pH/pD) effects in rapid kinetics experiments by stopped-flow spectrophotometry of the oxidative half-reaction of the enzyme. Double mixing of the enzyme in a stopped-flow spectrophotometer with [α- 2 H 2 ]- p-methoxybenzyl alcohol and oxygen at varying aging times established a slow rate constant of 0.0023 s -1 for the wash-out of the D atom from the N5 atom of the reduced flavin. Thus, the deuterated substrate could be used to probe the cleavage of the N-H bond of the reduced flavin in the oxidative half-reaction. A significant and pH-independent substrate kinetic isotope effect (KIE) of 1.5 between pH 5.0 and 8.0 demonstrated that H transfer is partially limiting the oxidative half-reaction of the enzyme; a negligible solvent KIE of 1.0 between pD 5.0 and 8.0 proved a fast H + transfer reaction that does not contribute to determining the flavin oxidation rates. Thus, a mechanism for dioxygen reduction in which the H atom originating from the reduced flavin and a H + from a solvent exchangeable site are transferred in separate kinetic steps is proposed. The spectroscopic and kinetic data presented also showed a lack of stabilization of transient flavin intermediates. The substantial differences in the mechanistic details of O 2 reduction by aryl-alcohol oxidase with respect to other alcohol oxidases like choline oxidase, pyranose 2-oxidase, and glucose oxidase further demonstrate the high level of versatility of the flavin cofactor in flavoenzymes.

  10. Understanding blue-light photoreceptors

    NASA Astrophysics Data System (ADS)

    Crane, Brian

    Blue-light sensing proteins coordinate many biological processes that include phototropism, photomorphism, stress responses, virulence and the entrainment of circadian clocks. Three major types of blue-light sensors all bind flavin nucleotides as chromophores, but the photochemistry employed and conformational responses invoked differ considerably among the classes. Nevertheless, photoinduced electron transfer reactions play a key role in many mechanisms. How such reactivity leads to conformational signaling will be discussed for both cryptochromes (CRYs) and light- oxygen- voltage (LOV) domains. In CRYs, blue-light mediated flavin reduction promotes proton transfer within the active center that then leads to displacement of a key signaling element. For LOV proteins, blue light causes formation of a covalent cysteinyl-flavin adduct, which rearranges hydrogen bonding and restructures the N-terminal region of the protein. Interestingly, a new class of LOV-like sensor does not undergo adduct formation and instead can operate by flavin photoreduction, like CRY. Conserved aspects of reactivity in these proteins provide lessons for the design of new photosensors, which may find use as tools in optogenetics Supported by NIH GM079679.

  11. Redox-dependent substrate-cofactor interactions in the Michaelis-complex of a flavin-dependent oxidoreductase

    NASA Astrophysics Data System (ADS)

    Werther, Tobias; Wahlefeld, Stefan; Salewski, Johannes; Kuhlmann, Uwe; Zebger, Ingo; Hildebrandt, Peter; Dobbek, Holger

    2017-07-01

    How an enzyme activates its substrate for turnover is fundamental for catalysis but incompletely understood on a structural level. With redox enzymes one typically analyses structures of enzyme-substrate complexes in the unreactive oxidation state of the cofactor, assuming that the interaction between enzyme and substrate is independent of the cofactors oxidation state. Here, we investigate the Michaelis complex of the flavoenzyme xenobiotic reductase A with the reactive reduced cofactor bound to its substrates by X-ray crystallography and resonance Raman spectroscopy and compare it to the non-reactive oxidized Michaelis complex mimics. We find that substrates bind in different orientations to the oxidized and reduced flavin, in both cases flattening its structure. But only authentic Michaelis complexes display an unexpected rich vibrational band pattern uncovering a strong donor-acceptor complex between reduced flavin and substrate. This interaction likely activates the catalytic ground state of the reduced flavin, accelerating the reaction within a compressed cofactor-substrate complex.

  12. Redox-dependent substrate-cofactor interactions in the Michaelis-complex of a flavin-dependent oxidoreductase

    PubMed Central

    Werther, Tobias; Wahlefeld, Stefan; Salewski, Johannes; Kuhlmann, Uwe; Zebger, Ingo; Hildebrandt, Peter; Dobbek, Holger

    2017-01-01

    How an enzyme activates its substrate for turnover is fundamental for catalysis but incompletely understood on a structural level. With redox enzymes one typically analyses structures of enzyme–substrate complexes in the unreactive oxidation state of the cofactor, assuming that the interaction between enzyme and substrate is independent of the cofactors oxidation state. Here, we investigate the Michaelis complex of the flavoenzyme xenobiotic reductase A with the reactive reduced cofactor bound to its substrates by X-ray crystallography and resonance Raman spectroscopy and compare it to the non-reactive oxidized Michaelis complex mimics. We find that substrates bind in different orientations to the oxidized and reduced flavin, in both cases flattening its structure. But only authentic Michaelis complexes display an unexpected rich vibrational band pattern uncovering a strong donor–acceptor complex between reduced flavin and substrate. This interaction likely activates the catalytic ground state of the reduced flavin, accelerating the reaction within a compressed cofactor–substrate complex.

  13. Structure and biocatalytic scope of thermophilic flavin-dependent halogenase and flavin reductase enzymes.

    PubMed

    Menon, Binuraj R K; Latham, Jonathan; Dunstan, Mark S; Brandenburger, Eileen; Klemstein, Ulrike; Leys, David; Karthikeyan, Chinnan; Greaney, Michael F; Shepherd, Sarah A; Micklefield, Jason

    2016-10-04

    Flavin-dependent halogenase (Fl-Hal) enzymes have been shown to halogenate a range of synthetic as well as natural aromatic compounds. The exquisite regioselectively of Fl-Hal enzymes can provide halogenated building blocks which are inaccessible using standard halogenation chemistries. Consequently, Fl-Hal are potentially useful biocatalysts for the chemoenzymatic synthesis of pharmaceuticals and other valuable products, which are derived from haloaromatic precursors. However, the application of Fl-Hal enzymes, in vitro, has been hampered by their poor catalytic activity and lack of stability. To overcome these issues, we identified a thermophilic tryptophan halogenase (Th-Hal), which has significantly improved catalytic activity and stability, compared with other Fl-Hal characterised to date. When used in combination with a thermostable flavin reductase, Th-Hal can efficiently halogenate a number of aromatic substrates. X-ray crystal structures of Th-Hal, and the reductase partner (Th-Fre), provide insights into the factors that contribute to enzyme stability, which could guide the discovery and engineering of more robust and productive halogenase biocatalysts.

  14. Signal transduction in light–oxygen–voltage receptors lacking the adduct-forming cysteine residue

    PubMed Central

    Yee, Estella F.; Diensthuber, Ralph P.; Vaidya, Anand T.; Borbat, Peter P.; Engelhard, Christopher; Freed, Jack H.; Bittl, Robert; Möglich, Andreas; Crane, Brian R.

    2015-01-01

    Light–oxygen–voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications. PMID:26648256

  15. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.

    PubMed

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E; Ziegler, Mathias; Nikiforov, Andrey

    2015-11-06

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells*

    PubMed Central

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E.; Ziegler, Mathias; Nikiforov, Andrey

    2015-01-01

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5′-nucleotidases (5′-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5′-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5′-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. PMID:26385918

  17. Human Augmenter of Liver Regeneration; probing the catalytic mechanism of a flavin-dependent sulfhydryl oxidase†

    PubMed Central

    Schaefer-Ramadan, Stephanie; Gannon, Shawn A.; Thorpe, Colin

    2013-01-01

    Augmenter of liver regeneration is a member of the ERV family of small flavin-dependent sulfhydryl oxidases that contain a redox-active CxxC disulfide bond in redox communication with the isoalloxazine ring of bound FAD. These enzymes catalyze the oxidation of thiol substrates with the reduction of molecular oxygen to hydrogen peroxide. This work studies the catalytic mechanism of the short, cytokine, form of augmenter of liver regeneration (sfALR) using model thiol substrates of the enzyme. The redox potential of the proximal disulfide in sfALR was found to be approximately 57 mV more reducing than the flavin chromophore, in agreement with titration experiments. Rapid reaction studies show that dithiothreitol (DTT) generates a transient mixed disulfide intermediate with sfALR signaled by a weak charge-transfer interaction between the thiolate of C145 and the oxidized flavin. The subsequent transfer of reducing equivalents to the flavin ring is relatively slow, with a limiting apparent rate constant of 12.4 s−1. However, reoxidation of the reduced flavin by molecular oxygen is even slower (2.3 s−1 at air saturation), and thus largely limits turnover at 5 mM DTT. The nature of the charge-transfer complexes observed with DTT was explored using a range of simple monothiols to mimic the initial nucleophilic attack on the proximal disulfide. While β–mercaptoethanol is a very poor substrate of sfALR (~ 0.3 min−1 at 100 mM thiol), it rapidly generates a mixed disulfide intermediate allowing the thiolate of C145 to form a strong charge-transfer complex with the flavin. Unlike the other monothiols tested, glutathione is unable to form charge-transfer complexes and is an undetectable substrate of the oxidase. These data are rationalized on the basis of the stringent steric requirements for thiol-disulfide exchange reactions. The inability of the relatively bulky glutathione to attain the in-line geometry required for efficient disulfide exchange in sfALR may be physiologically important in preventing the oxidase from catalyzing the potentially harmful oxidation of intracellular glutathione. PMID:24147449

  18. Flavins as Covalent Catalysts: New Mechanisms Emerge.

    PubMed

    Piano, Valentina; Palfey, Bruce A; Mattevi, Andrea

    2017-06-01

    With approximately 1% of proteins being flavoproteins, flavins are at the heart of a plethora of redox reactions in all areas of biology. Thanks to a series of fascinating recent discoveries, in addition to redox chemistry, covalent catalysis is now being recognized more frequently as a common strategy in flavoenzymes, with unprecedented mechanisms becoming apparent. Thus, noncanonical covalent reactions by flavins are emerging as a new pervasive concept in basic enzymology and biochemistry. These diverse enzymes are engaged in most biological processes, positioning the knowledge being gained from these new mechanisms to be translated into drugs that function through covalent mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism.

    PubMed

    Gur-Arie, R; Cohen, C J; Eitan, Y; Shelef, L; Hallerman, E M; Kashi, Y

    2000-01-01

    Computer-based genome-wide screening of the DNA sequence of Escherichia coli strain K12 revealed tens of thousands of tandem simple sequence repeat (SSR) tracts, with motifs ranging from 1 to 6 nucleotides. SSRs were well distributed throughout the genome. Mononucleotide SSRs were over-represented in noncoding regions and under-represented in open reading frames (ORFs). Nucleotide composition of mono- and dinucleotide SSRs, both in ORFs and in noncoding regions, differed from that of the genomic region in which they occurred, with 93% of all mononucleotide SSRs proving to be of A or T. Computer-based analysis of the fine position of every SSR locus in the noncoding portion of the genome relative to downstream ORFs showed SSRs located in areas that could affect gene regulation. DNA sequences at 14 arbitrarily chosen SSR tracts were compared among E. coli strains. Polymorphisms of SSR copy number were observed at four of seven mononucleotide SSR tracts screened, with all polymorphisms occurring in noncoding regions. SSR polymorphism could prove important as a genome-wide source of variation, both for practical applications (including rapid detection, strain identification, and detection of loci affecting key phenotypes) and for evolutionary adaptation of microbes.

  20. Atomic-Resolution Structure of an N(5) Flavin Adduct in D-Arginine Dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Guoxing; Yuan, Hongling; Wang, Siming

    2011-09-06

    D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 {angstrom} atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct.

  1. Understanding and Improving the Activity of Flavin Dependent Halogenases via Random and Targeted Mutagenesis

    PubMed Central

    Andorfer, Mary C.

    2018-01-01

    Flavin dependent halogenases (FDHs) catalyze the halogenation of organic substrates by coordinating reactions of reduced flavin, molecular oxygen, and chloride. Targeted and random mutagenesis of these enzymes has been used to both understand and alter their reactivity. These studies have led to insights into residues essential for catalysis and FDH variants with improved stability, expanded substrate scope, and altered site selectivity. Mutations throughout FDH structures have contributed to all of these advances. More recent studies have sought to rationalize the impact of these mutations on FDH function and to identify new FDHs to deepen our understanding of this enzyme class and to expand their utility for biocatalytic applications. PMID:29589959

  2. Crystallographic, Spectroscopic, and Computational Analysis of a Flavin-C4a-Oxygen Adduct in Choline Oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orville, A.M.; Lountos, G. T.; Finnegan, S.

    2009-02-03

    Flavin C4a-OO(H) and C4a-OH adducts are critical intermediates proposed in many flavoenzyme reaction mechanisms, but they are rarely detected even by rapid transient kinetics methods. We observe a trapped flavin C4a-OH or C4a-OO(H) adduct by single-crystal spectroscopic methods and in the 1.86 {angstrom} resolution X-ray crystal structure of choline oxidase. The microspectrophotometry results show that the adduct forms rapidly in situ at 100 K upon exposure to X-rays. Density functional theory calculations establish the electronic structures for the flavin C4a-OH and C4a-OO(H) adducts and estimate the stabilization energy of several active site hydrogen bonds deduced from the crystal structure. Wemore » propose that the enzyme-bound FAD is reduced in the X-ray beam. The aerobic crystals then form either a C4a-OH or C4a-OO(H) adduct, but an insufficient proton inventory prevents their decay at cryogenic temperatures.« less

  3. Crystallographic, Spectroscopic, and Computational Analysis of a Flavin C4a-Oxygen Adduct in Choline Oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orville, A.; Lountos, G; Finnegan, S

    2009-01-01

    Flavin C4a-OO(H) and C4a-OH adducts are critical intermediates proposed in many flavoenzyme reaction mechanisms, but they are rarely detected even by rapid transient kinetics methods. We observe a trapped flavin C4a-OH or C4a-OO(H) adduct by single-crystal spectroscopic methods and in the 1.86 {angstrom} resolution X-ray crystal structure of choline oxidase. The microspectrophotometry results show that the adduct forms rapidly in situ at 100 K upon exposure to X-rays. Density functional theory calculations establish the electronic structures for the flavin C4a-OH and C4a-OO(H) adducts and estimate the stabilization energy of several active site hydrogen bonds deduced from the crystal structure. Wemore » propose that the enzyme-bound FAD is reduced in the X-ray beam. The aerobic crystals then form either a C4a-OH or C4a-OO(H) adduct, but an insufficient proton inventory prevents their decay at cryogenic temperatures.« less

  4. Enzyme-Mediated Conversion of Flavin Adenine Dinucleotide (FAD) to 8-Formyl FAD in Formate Oxidase Results in a Modified Cofactor with Enhanced Catalytic Properties.

    PubMed

    Robbins, John M; Souffrant, Michael G; Hamelberg, Donald; Gadda, Giovanni; Bommarius, Andreas S

    2017-07-25

    Flavins, including flavin adenine dinucleotide (FAD), are fundamental catalytic cofactors that are responsible for the redox functionality of a diverse set of proteins. Alternatively, modified flavin analogues are rarely found in nature as their incorporation typically results in inactivation of flavoproteins, thus leading to the disruption of important cellular pathways. Here, we report that the fungal flavoenzyme formate oxidase (FOX) catalyzes the slow conversion of noncovalently bound FAD to 8-formyl FAD and that this conversion results in a nearly 10-fold increase in formate oxidase activity. Although the presence of an enzyme-bound 8-formyl FMN has been reported previously as a result of site-directed mutagenesis studies of lactate oxidase, FOX is the first reported case of 8-formyl FAD in a wild-type enzyme. Therefore, the formation of the 8-formyl FAD cofactor in formate oxidase was investigated using steady-state kinetics, site-directed mutagenesis, ultraviolet-visible, circular dichroism, and fluorescence spectroscopy, liquid chromatography with mass spectrometry, and computational analysis. Surprisingly, the results from these studies indicate not only that 8-formyl FAD forms spontaneously and results in the active form of FOX but also that its autocatalytic formation is dependent on a nearby arginine residue, R87. Thus, this work describes a new enzyme cofactor and provides insight into the little-understood mechanism of enzyme-mediated 8α-flavin modifications.

  5. Redox Modulation of Flavin and Tyrosine Determines Photoinduced Proton-coupled Electron Transfer and Photoactivation of BLUF Photoreceptors

    PubMed Central

    Mathes, Tilo; van Stokkum, Ivo H. M.; Stierl, Manuela; Kennis, John T. M.

    2012-01-01

    Photoinduced electron transfer in biological systems, especially in proteins, is a highly intriguing matter. Its mechanistic details cannot be addressed by structural data obtained by crystallography alone because this provides only static information on a given redox system. In combination with transient spectroscopy and site-directed manipulation of the protein, however, a dynamic molecular picture of the ET process may be obtained. In BLUF (blue light sensors using FAD) photoreceptors, proton-coupled electron transfer between a tyrosine and the flavin cofactor is the key reaction to switch from a dark-adapted to a light-adapted state, which corresponds to the biological signaling state. Particularly puzzling is the fact that, although the various naturally occurring BLUF domains show little difference in the amino acid composition of the flavin binding pocket, the reaction rates of the forward reaction differ quite largely from a few ps up to several hundred ps. In this study, we modified the redox potential of the flavin/tyrosine redox pair by site-directed mutagenesis close to the flavin C2 carbonyl and fluorination of the tyrosine, respectively. We provide information on how changes in the redox potential of either reaction partner significantly influence photoinduced proton-coupled electron transfer. The altered redox potentials allowed us furthermore to experimentally describe an excited state charge transfer intermediately prior to electron transfer in the BLUF photocycle. Additionally, we show that the electron transfer rate directly correlates with the quantum yield of signaling state formation. PMID:22833672

  6. Changes in active site histidine hydrogen bonding trigger cryptochrome activation

    PubMed Central

    Ganguly, Abir; Manahan, Craig C.; Top, Deniz; Yee, Estella F.; Lin, Changfan; Young, Michael W.; Thiel, Walter; Crane, Brian R.

    2016-01-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa. Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  7. Computation of the free energy change associated with one-electron reduction of coenzyme immersed in water: a novel approach within the framework of the quantum mechanical/molecular mechanical method combined with the theory of energy representation.

    PubMed

    Takahashi, Hideaki; Ohno, Hajime; Kishi, Ryohei; Nakano, Masayoshi; Matubayasi, Nobuyuki

    2008-11-28

    The isoalloxazine ring (flavin ring) is a part of the coenzyme flavin adenine dinucleotide and acts as an active site in the oxidation of a substrate. We have computed the free energy change Deltamicro(red) associated with one-electron reduction of the flavin ring immersed in water by utilizing the quantum mechanical/molecular mechanical method combined with the theory of energy representation (QM/MM-ER method) recently developed. As a novel treatment in implementing the QM/MM-ER method, we have identified the excess charge to be attached on the flavin ring as a solute while the remaining molecules, i.e., flavin ring and surrounding water molecules, are treated as solvent species. Then, the reduction free energy can be decomposed into the contribution Deltamicro(red)(QM) due to the oxidant described quantum chemically and the free energy Deltamicro(red)(MM) due to the water molecules represented by a classical model. By the sum of these contributions, the total reduction free energy Deltamicro(red) has been given as -80.1 kcal/mol. To examine the accuracy and efficiency of this approach, we have also conducted the Deltamicro(red) calculation using the conventional scheme that Deltamicro(red) is constructed from the solvation free energies of the flavin rings at the oxidized and reduced states. The conventional scheme has been implemented with the QM/MM-ER method and the calculated Deltamicro(red) has been estimated as -81.0 kcal/mol, showing excellent agreement with the value given by the new approach. The present approach is efficient, in particular, to compute free energy change for the reaction occurring in a protein since it enables ones to circumvent the numerical problem brought about by subtracting the huge solvation free energies of the proteins in two states before and after the reduction.

  8. Kynurenine 3-monooxygenase from Pseudomonas fluorescens: substrate-like inhibitors both stimulate flavin reduction and stabilize the flavin-peroxo intermediate yet result in the production of hydrogen peroxide.

    PubMed

    Crozier-Reabe, Karen R; Phillips, Robert S; Moran, Graham R

    2008-11-25

    Kynurenine 3-monooxygenase (KMO) is a flavin-dependent hydroxylase that catalyzes the conversion of l-kynurenine (l-Kyn) to 3-hydroxykynurenine (3OHKyn) in the pathway for tryptophan catabolism. KMO inhibition has been widely suggested as an early treatment for stroke and other neurological disorders that involve ischemia. We have investigated the reductive and the oxidative half-reactions of a stable form of KMO from Pseudomonas fluorescens (KMO). The binding of l-Kyn by the enzyme is relatively slow and involves at least two reversible steps. The rate constant for reduction of the flavin cofactor by NADPH increases by a factor of approximately 2.5 x 10(3) when l-Kyn is bound. The rate of reduction of the KMO.l-Kyn complex is 160 s(-1), and the K(d) for the NADPH complex is 200 microM with charge-transfer absorption bands for the KMO(RED).l-Kyn.NADP(+) complex accumulating after reduction. The reduction potential of KMO is -188 mV and is unresponsive to the addition of l-Kyn or other inhibitory ligands. KMO inhibitors whose structures are reminiscent of l-Kyn such as m-nitrobenzoylalanine and benzoylalanine also stimulate reduction of flavin by NADPH and, in the presence of dioxygen, result in the stoichiometric liberation of hydrogen peroxide, diminishing the perceived therapeutic potential of inhibitors of this type. In the presence of the native substrate, the oxidative half-reaction exhibits triphasic absorbance data. A spectrum consistent with that of a peroxyflavin species accumulates and then decays to yield the oxidized enzyme. This species then undergoes minor spectral changes that, based on flavin difference spectra defined in the presence of 3OHKyn, can be correlated with product release. The oxidative half-reaction observed in the presence of saturating benzoylalanine or m-nitrobenzoylalanine also shows the accumulation of a peroxyflavin species that then decays to yield hydrogen peroxide without hydroxylation.

  9. Chloramphenicol Biosynthesis: The Structure of CmlS, a Flavin-Dependent Halogenase Shwing a Covalent Flavin-Aspartate Bond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podzelinska, K.; Latimer, R; Bhattacharya, A

    2010-01-01

    Chloramphenicol is a halogenated natural product bearing an unusual dichloroacetyl moiety that is critical for its antibiotic activity. The operon for chloramphenicol biosynthesis in Streptomyces venezuelae encodes the chloramphenicol halogenase CmlS, which belongs to the large and diverse family of flavin-dependent halogenases (FDH's). CmlS was previously shown to be essential for the formation of the dichloroacetyl group. Here we report the X-ray crystal structure of CmlS determined at 2.2 {angstrom} resolution, revealing a flavin monooxygenase domain shared by all FDHs, but also a unique 'winged-helix' C-terminal domain that creates a T-shaped tunnel leading to the halogenation active site. Intriguingly, themore » C-terminal tail of this domain blocks access to the halogenation active site, suggesting a structurally dynamic role during catalysis. The halogenation active site is notably nonpolar and shares nearly identical residues with Chondromyces crocatus tyrosyl halogenase (CndH), including the conserved Lys (K71) that forms the reactive chloramine intermediate. The exception is Y350, which could be used to stabilize enolate formation during substrate halogenation. The strictly conserved residue E44, located near the isoalloxazine ring of the bound flavin adenine dinucleotide (FAD) cofactor, is optimally positioned to function as a remote general acid, through a water-mediated proton relay, which could accelerate the reaction of the chloramine intermediate during substrate halogenation, or the oxidation of chloride by the FAD(C4{alpha})-OOH intermediate. Strikingly, the 8{alpha} carbon of the FAD cofactor is observed to be covalently attached to D277 of CmlS, a residue that is highly conserved in the FDH family. In addition to representing a new type of flavin modification, this has intriguing implications for the mechanism of FDHs. Based on the crystal structure and in analogy to known halogenases, we propose a reaction mechanism for CmlS.« less

  10. A Novel F420-dependent Thioredoxin Reductase Gated by Low Potential FAD

    PubMed Central

    Susanti, Dwi; Loganathan, Usha; Mukhopadhyay, Biswarup

    2016-01-01

    A recent report suggested that the thioredoxin-dependent metabolic regulation, which is widespread in all domains of life, existed in methanogenic archaea about 3.5 billion years ago. We now show that the respective electron delivery enzyme (thioredoxin reductase, TrxR), although structurally similar to flavin-containing NADPH-dependent TrxRs (NTR), lacked an NADPH-binding site and was dependent on reduced coenzyme F420 (F420H2), a stronger reductant with a mid-point redox potential (E′0) of −360 mV; E′0 of NAD(P)H is −320 mV. Because F420 is a deazaflavin, this enzyme was named deazaflavin-dependent flavin-containing thioredoxin reductase (DFTR). It transferred electrons from F420H2 to thioredoxin via protein-bound flavin; Km values for thioredoxin and F420H2 were 6.3 and 28.6 μm, respectively. The E′0 of DFTR-bound flavin was approximately −389 mV, making electron transfer from NAD(P)H or F420H2 to flavin endergonic. However, under high partial pressures of hydrogen prevailing on early Earth and present day deep-sea volcanoes, the potential for the F420/F420H2 pair could be as low as −425 mV, making DFTR efficient. The presence of DFTR exclusively in ancient methanogens and mostly in the early Earth environment of deep-sea volcanoes and DFTR's characteristics suggest that the enzyme developed on early Earth and gave rise to NTR. A phylogenetic analysis revealed six more novel-type TrxR groups and suggested that the broader flavin-containing disulfide oxidoreductase family is more diverse than previously considered. The unprecedented structural similarities between an F420-dependent enzyme (DFTR) and an NADPH-dependent enzyme (NTR) brought new thoughts to investigations on F420 systems involved in microbial pathogenesis and antibiotic production. PMID:27590343

  11. Unique Features and Anti-microbial Targeting of Folate- and Flavin-Dependent Methyltransferases Required for Accurate Maintenance of Genetic Information.

    PubMed

    Myllykallio, Hannu; Sournia, Pierre; Heliou, Alice; Liebl, Ursula

    2018-01-01

    Comparative genome analyses have led to the discovery and characterization of novel flavin- and folate-dependent methyltransferases that mainly function in DNA precursor synthesis and post-transcriptional RNA modification by forming (ribo) thymidylate and its derivatives. Here we discuss the recent literature on the novel mechanistic features of these enzymes sometimes referred to as "uracil methyltransferases," albeit we prefer to refer to them as (ribo) thymidylate synthases. These enzyme families attest to the convergent evolution of nucleic acid methylation. Special focus is given to describing the unique characteristics of these flavin- and folate-dependent enzymes that have emerged as new models for studying the non-canonical roles of reduced flavin co-factors (FADH 2 ) in relaying carbon atoms between enzyme substrates. This ancient enzymatic methylation mechanism with a very wide phylogenetic distribution may be more commonly used for biological methylation reactions than previously anticipated. This notion is exemplified by the recent discovery of additional substrates for these enzymes. Moreover, similar reaction mechanisms can be reversed by demethylases, which remove methyl groups e.g., from human histones. Future work is now required to address whether the use of different methyl donors facilitates the regulation of distinct methylation reactions in the cell. It will also be of great interest to address whether the low activity flavin-dependent thymidylate synthases ThyX represent ancestral enzymes that were eventually replaced by the more active thymidylate synthases of the ThyA family to facilitate the maintenance of larger genomes in fast-growing microbes. Moreover, we discuss the recent efforts from several laboratories to identify selective anti-microbial compounds that target flavin-dependent thymidylate synthase ThyX. Altogether we underline how the discovery of the alternative flavoproteins required for methylation of DNA and/or RNA nucleotides, in addition to providing novel targets for antibiotics, has provided new insight into microbial physiology and virulence.

  12. Tolerance to Acetaminophen Hepatotoxicity in the Mouse Model of Autoprotection is Associated with Induction of Flavin-containing Monooxygenase-3 (FMO3) in Hepatocytes

    EPA Science Inventory

    Acetaminophen (APAP) pretreatment with a low hepatotoxic dose in mice results in resistance to a second, higher dose of APAP (APAP autoprotection). Recent microarray work by our group showed a drastic induction of liver flavin containing monooxygenase-3 (Fmo3) mRNA expression in...

  13. Expression of recombinant human flavin monooxygenase and moclobemide-N-oxide synthesis on multi-mg scale.

    PubMed

    Hanlon, Steven P; Camattari, Andrea; Abad, Sandra; Glieder, Anton; Kittelmann, Matthias; Lütz, Stephan; Wirz, Beat; Winkler, Margit

    2012-06-18

    A panel of human flavin monooxygenases were heterologously expressed in E. coli to obtain ready-to-use biocatalysts for the in vitro preparation of human drug metabolites. Moclobemide-N-oxide (65 mg) was the first high-priced metabolite prepared with recombinant hFMO3 on the multi-milligram scale.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, H. Diessel; Lubner, Carolyn E.; Tokmina-Lukaszewska, Monika

    A newly-recognized third fundamental mechanism of energy conservation in biology, electron bifurcation, uses free energy from exergonic redox reactions to drive endergonic redox reactions. Flavin-based electron bifurcation furnishes low potential electrons to demanding chemical reactions such as reduction of dinitrogen to ammonia. We employed the heterodimeric flavoenzyme FixAB from the diazotrophic bacterium Rhodopseudomonas palustris to elucidate unique properties that underpin flavin-based electron bifurcation.

  15. Mechanistic insights into energy conservation by flavin-based electron bifurcation.

    PubMed

    Lubner, Carolyn E; Jennings, David P; Mulder, David W; Schut, Gerrit J; Zadvornyy, Oleg A; Hoben, John P; Tokmina-Lukaszewska, Monika; Berry, Luke; Nguyen, Diep M; Lipscomb, Gina L; Bothner, Brian; Jones, Anne K; Miller, Anne-Frances; King, Paul W; Adams, Michael W W; Peters, John W

    2017-06-01

    The recently realized biochemical phenomenon of energy conservation through electron bifurcation provides biology with an elegant means to maximize utilization of metabolic energy. The mechanism of coordinated coupling of exergonic and endergonic oxidation-reduction reactions by a single enzyme complex has been elucidated through optical and paramagnetic spectroscopic studies revealing unprecedented features. Pairs of electrons are bifurcated over more than 1 volt of electrochemical potential by generating a low-potential, highly energetic, unstable flavin semiquinone and directing electron flow to an iron-sulfur cluster with a highly negative potential to overcome the barrier of the endergonic half reaction. The unprecedented range of thermodynamic driving force that is generated by flavin-based electron bifurcation accounts for unique chemical reactions that are catalyzed by these enzymes.

  16. Electrochemical Measurement of Electron Transfer Kinetics by Shewanella oneidensis MR-1*

    PubMed Central

    Baron, Daniel; LaBelle, Edward; Coursolle, Dan; Gralnick, Jeffrey A.; Bond, Daniel R.

    2009-01-01

    Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce both electrodes and metals, S. oneidensis also secretes flavins, which accelerate electron transfer to metals and electrodes. We developed techniques for detecting direct electron transfer by intact cells, using turnover and single turnover voltammetry. Metabolically active cells attached to graphite electrodes produced thin (submonolayer) films that demonstrated both catalytic and reversible electron transfer in the presence and absence of flavins. In the absence of soluble flavins, electron transfer occurred in a broad potential window centered at ∼0 V (versus standard hydrogen electrode), and was altered in single (ΔomcA, ΔmtrC) and double deletion (ΔomcA/ΔmtrC) mutants of outer membrane cytochromes. The addition of soluble flavins at physiological concentrations significantly accelerated electron transfer and allowed catalytic electron transfer to occur at lower applied potentials (−0.2 V). Scan rate analysis indicated that rate constants for direct electron transfer were slower than those reported for pure cytochromes (∼1 s−1). These observations indicated that anodic current in the higher (>0 V) window is due to activation of a direct transfer mechanism, whereas electron transfer at lower potentials is enabled by flavins. The electrochemical dissection of these activities in living cells into two systems with characteristic midpoint potentials and kinetic behaviors explains prior observations and demonstrates the complementary nature of S. oneidensis electron transfer strategies. PMID:19661057

  17. Ultra-performance liquid chromatography tandem mass-spectrometry (uplc-ms/ms) for the rapid, simultaneous analysis of thiamin, riboflavin, flavin adenine dinucleotide, nicotinamide and pyridoxal in human milk

    USDA-ARS?s Scientific Manuscript database

    A novel, rapid and sensitive Ultra Performance Liquid-Chromatography tandem Mass-Spectrometry (UPLC-MS/MS) method for the simultaneous determination of several B-vitamins in human milk was developed. Resolution by retention time or multiple reaction monitoring (MRM) for thiamin, riboflavin, flavin a...

  18. EXPRESSION OF BRANCHIAL FLAVIN-CONTAINING MONOOXYGENASE IS DIRECTLY CORRELATED WITH SALINITY-INDUCED ALDICARB TOXICITY IN THE EURYHALINE FISH (ORYZIAS LATIPES). (R826109)

    EPA Science Inventory

    Abstract

    Earlier studies in our laboratory have demonstrated a reduction of flavin-containing monooxygenase (FMO) activity when salt-water adapted euryhaline fish were transferred to water of less salinity. Since FMOs have been shown to be responsible for the bioact...

  19. Purification of electron-transferring flavoprotein from Megasphaera elsdenii and binding of additional FAD with an unusual absorption spectrum.

    PubMed

    Sato, Kyosuke; Nishina, Yasuzo; Shiga, Kiyoshi

    2003-11-01

    Electron-transferring flavoprotein (ETF), its redox partner flavoproteins, i.e., D-lactate dehydrogenase and butyryl-CoA dehydrogenase, and another well-known flavoprotein, flavodoxin, were purified from the same starting cell paste of an anaerobic bacterium, Megasphaera elsdenii. The purified ETF contained one mol FAD/mol ETF as the sole non-protein component and bound almost one mol of additional FAD. This preparation is a better subject for investigations of M. elsdenii ETF than the previously isolated ETF, which contains varying amounts of FAD and varying percentages of modified flavins such as 6-OH-FAD and 8-OH-FAD. The additionally bound FAD shows an anomalous absorption spectrum with strong absorption around 400 nm. This spectral change is not due to a chemical modification of the flavin ring because the flavin released by KBr or guanidine hydrochloride is normal FAD. It is also not due to unknown small molecules because the same spectrum appears when ETF is reconstituted from its guanidine-denatured subunits and FAD. A similar anomalous spectrum was observed for AMP-free pig ETF under acidic conditions, suggesting a common flavin environment between pig and M. elsdenii ETFs.

  20. Alternative Pyrimidine Biosynthesis Protein ApbE Is a Flavin Transferase Catalyzing Covalent Attachment of FMN to a Threonine Residue in Bacterial Flavoproteins*

    PubMed Central

    Bertsova, Yulia V.; Fadeeva, Maria S.; Kostyrko, Vitaly A.; Serebryakova, Marina V.; Baykov, Alexander A.; Bogachev, Alexander V.

    2013-01-01

    Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) contains two flavin residues as redox-active prosthetic groups attached by a phosphoester bond to threonine residues in subunits NqrB and NqrC. We demonstrate here that flavinylation of truncated Vibrio harveyi NqrC at Thr-229 in Escherichia coli cells requires the presence of a co-expressed Vibrio apbE gene. The apbE genes cluster with genes for Na+-NQR and other FMN-binding flavoproteins in bacterial genomes and encode proteins with previously unknown function. Experiments with isolated NqrC and ApbE proteins confirmed that ApbE is the only protein factor required for NqrC flavinylation and also indicated that the reaction is Mg2+-dependent and proceeds with FAD but not FMN. Inactivation of the apbE gene in Klebsiella pneumoniae, wherein the nqr operon and apbE are well separated in the chromosome, resulted in a complete loss of the quinone reductase activity of Na+-NQR, consistent with its dependence on covalently bound flavin. Our data thus identify ApbE as a novel modifying enzyme, flavin transferase. PMID:23558683

  1. Mechanistic insights into energy conservation by flavin-based electron bifurcation

    DOE PAGES

    Lubner, Carolyn E.; Jennings, David P.; Mulder, David W.; ...

    2017-04-10

    The recently realized biochemical phenomenon of energy conservation through electron bifurcation provides biology with an elegant means to maximize utilization of metabolic energy. The mechanism of coordinated coupling of exergonic and endergonic oxidation-reduction reactions by a single enzyme complex has been elucidated through optical and paramagnetic spectroscopic studies revealing unprecedented features. Pairs of electrons are bifurcated over more than 1 volt of electrochemical potential by generating a low-potential, highly energetic, unstable flavin semiquinone and directing electron flow to an iron-sulfur cluster with a highly negative potential to overcome the barrier of the endergonic half reaction. As a result, the unprecedentedmore » range of thermodynamic driving force that is generated by flavin-based electron bifurcation accounts for unique chemical reactions that are catalyzed by these enzymes.« less

  2. Extracellular Electron Transport-Mediated Fe(III) Reduction by a Community of Alkaliphilic Bacteria That Use Flavins as Electron Shuttles

    PubMed Central

    Fuller, Samuel J.; McMillan, Duncan G. G.; Renz, Marc B.; Schmidt, Martin

    2014-01-01

    The biochemical and molecular mechanisms used by alkaliphilic bacterial communities to reduce metals in the environment are currently unknown. We demonstrate that an alkaliphilic (pH > 9) consortium dominated by Tissierella, Clostridium, and Alkaliphilus spp. is capable of using iron (Fe3+) as a final electron acceptor under anaerobic conditions. Iron reduction is associated with the production of a freely diffusible species that, upon rudimentary purification and subsequent spectroscopic, high-performance liquid chromatography, and electrochemical analysis, has been identified as a flavin species displaying properties indistinguishable from those of riboflavin. Due to the link between iron reduction and the onset of flavin production, it is likely that riboflavin has an import role in extracellular metal reduction by this alkaliphilic community. PMID:24141133

  3. Mechanistic insights into energy conservation by flavin-based electron bifurcation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubner, Carolyn E.; Jennings, David P.; Mulder, David W.

    The recently realized biochemical phenomenon of energy conservation through electron bifurcation provides biology with an elegant means to maximize utilization of metabolic energy. The mechanism of coordinated coupling of exergonic and endergonic oxidation-reduction reactions by a single enzyme complex has been elucidated through optical and paramagnetic spectroscopic studies revealing unprecedented features. Pairs of electrons are bifurcated over more than 1 volt of electrochemical potential by generating a low-potential, highly energetic, unstable flavin semiquinone and directing electron flow to an iron-sulfur cluster with a highly negative potential to overcome the barrier of the endergonic half reaction. As a result, the unprecedentedmore » range of thermodynamic driving force that is generated by flavin-based electron bifurcation accounts for unique chemical reactions that are catalyzed by these enzymes.« less

  4. Characterization of a HoxEFUYH type of [NiFe] hydrogenase from Allochromatium vinosum and some EPR and IR properties of the hydrogenase module.

    PubMed

    Long, Minnan; Liu, Jingjing; Chen, Zhifeng; Bleijlevens, Boris; Roseboom, Winfried; Albracht, Simon P J

    2007-01-01

    A soluble hydrogenase from Allochromatium vinosum was purified. It consisted of a large (M (r) = 52 kDa) and a small (M (r) = 23 kDa) subunit. The genes encoding for both subunits were identified. They belong to an open reading frame where they are preceded by three more genes. A DNA fragment containing all five genes was cloned and sequenced. The deduced amino acid sequences of the products characterized the complex as a member of the HoxEFUYH type of [NiFe] hydrogenases. Detailed sequence analyses revealed binding sites for eight Fe-S clusters, three [2Fe-2S] clusters and five [4Fe-4S] clusters, six of which are also present in homologous subunits of [FeFe] hydrogenases and NADH:ubiquione oxidoreductases (complex I). This makes the HoxEFUYH type of hydrogenases the one that is evolutionary closest to complex I. The relative positions of six of the potential Fe-S clusters are predicted on the basis of the X-ray structures of the Clostridium pasteurianum [FeFe] hydrogenase I and the hydrophilic domain of complex I from Thermus thermophilus. Although the HoxF subunit contains binding sites for flavin mononucleotide and NAD(H), cell-free extracts of A. vinosum did not catalyse a H(2)-dependent reduction of NAD(+). Only the hydrogenase module (HoxYH) could be purified. Its electron paramagnetic resonance (EPR) and IR spectral properties showed the presence of a Ni-Fe active site and a [4Fe-4S] cluster. Its activity was sensitive to carbon monoxide. No EPR signals from a light-sensitive Ni(a)-C* state could be observed. This study presents the first IR spectroscopic data on the HoxYH module of a HoxEFUYH type of [NiFe] hydrogenase.

  5. Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp.

    PubMed

    Deng, Peng; Tan, Xiaoqing; Wu, Ying; Bai, Qunhua; Jia, Yan; Xiao, Hong

    2015-03-01

    The ChrT gene encodes a chromate reductase enzyme which catalyzes the reduction of Cr(VI). The chromate reductase is also known as flavin mononucleotide (FMN) reductase (FMN_red). The aim of the present study was to clone the full-length ChrT DNA from Serratia sp. CQMUS2 and analyze the deduced amino acid sequence and three-dimensional structure. The putative ChrT gene fragment of Serratia sp. CQMUS2 was isolated by polymerase chain reaction (PCR), according to the known FMN_red gene sequence from Serratia sp. AS13. The flanking sequences of the ChrT gene were obtained by high efficiency TAIL-PCR, while the full-length gene of ChrT was cloned in Escherichia coli for subsequent sequencing. The nucleotide sequence of ChrT was submitted onto GenBank under the accession number, KF211434. Sequence analysis of the gene and amino acids was conducted using the Basic Local Alignment Search Tool, and open reading frame (ORF) analysis was performed using ORF Finder software. The ChrT gene was found to be an ORF of 567 bp that encodes a 188-amino acid enzyme with a calculated molecular weight of 20.4 kDa. In addition, the ChrT protein was hypothesized to be an NADPH-dependent FMN_red and a member of the flavodoxin-2 superfamily. The amino acid sequence of ChrT showed high sequence similarity to the FMN reductase genes of Klebsiella pneumonia and Raoultella ornithinolytica , which belong to the flavodoxin-2 superfamily. Furthermore, ChrT was shown to have a 85.6% similarity to the three-dimensional structure of Escherichia coli ChrR, sharing four common enzyme active sites for chromate reduction. Therefore, ChrT gene cloning and protein structure determination demonstrated the ability of the gene for chromate reduction. The results of the present study provide a basis for further studies on ChrT gene expression and protein function.

  6. Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp

    PubMed Central

    DENG, PENG; TAN, XIAOQING; WU, YING; BAI, QUNHUA; JIA, YAN; XIAO, HONG

    2015-01-01

    The ChrT gene encodes a chromate reductase enzyme which catalyzes the reduction of Cr(VI). The chromate reductase is also known as flavin mononucleotide (FMN) reductase (FMN_red). The aim of the present study was to clone the full-length ChrT DNA from Serratia sp. CQMUS2 and analyze the deduced amino acid sequence and three-dimensional structure. The putative ChrT gene fragment of Serratia sp. CQMUS2 was isolated by polymerase chain reaction (PCR), according to the known FMN_red gene sequence from Serratia sp. AS13. The flanking sequences of the ChrT gene were obtained by high efficiency TAIL-PCR, while the full-length gene of ChrT was cloned in Escherichia coli for subsequent sequencing. The nucleotide sequence of ChrT was submitted onto GenBank under the accession number, KF211434. Sequence analysis of the gene and amino acids was conducted using the Basic Local Alignment Search Tool, and open reading frame (ORF) analysis was performed using ORF Finder software. The ChrT gene was found to be an ORF of 567 bp that encodes a 188-amino acid enzyme with a calculated molecular weight of 20.4 kDa. In addition, the ChrT protein was hypothesized to be an NADPH-dependent FMN_red and a member of the flavodoxin-2 superfamily. The amino acid sequence of ChrT showed high sequence similarity to the FMN reductase genes of Klebsiella pneumonia and Raoultella ornithinolytica, which belong to the flavodoxin-2 superfamily. Furthermore, ChrT was shown to have a 85.6% similarity to the three-dimensional structure of Escherichia coli ChrR, sharing four common enzyme active sites for chromate reduction. Therefore, ChrT gene cloning and protein structure determination demonstrated the ability of the gene for chromate reduction. The results of the present study provide a basis for further studies on ChrT gene expression and protein function. PMID:25667630

  7. The Inhibitory Effects of Anti-Oxidants on Ultraviolet-Induced Up-Regulation of the Wrinkling-Inducing Enzyme Neutral Endopeptidase in Human Fibroblasts

    PubMed Central

    Nakajima, Hiroaki; Terazawa, Shuko; Niwano, Takao; Yamamoto, Yorihiro; Imokawa, Genji

    2016-01-01

    We recently reported that the over-expression of skin fibroblast-derived neutral endopeptidase (NEP) plays a pivotal role in impairing the three-dimensional architecture of dermal elastic fibers during the biological mechanism of ultraviolet (UV)-induced skin wrinkling. In that process, a UVB-associated epithelial-mesenchymal cytokine interaction as well as a direct UVA-induced cellular stimulation are associated with the up-regulation of NEP in human fibroblasts. In this study, we characterized the mode of action of ubiquinol10 which may abrogate the up-regulation of NEP by dermal fibroblasts, resulting in a reported in vivo anti-wrinkling action, and compared that with 3 other anti-oxidants, astaxanthin (AX), riboflavin (RF) and flavin mononucleotide (FMN). Post-irradiation treatment with all 4 of those anti-oxidants elicited an interrupting effect on the UVB-associated epithelial-mesenchymal cytokine interaction leading to the up-regulation of NEP in human fibroblasts but with different modes of action. While AX mainly served as an inhibitor of the secretion of wrinkle-inducing cytokines, such as interleukin-1α (IL-1α) and granulocyte macrophage colony stimulatory factor (GM-CSF) in UVB-exposed epidermal keratinocytes, ubiquinol10, RF and FMN predominantly interrupted the IL-1α and GM-CSF-stimulated expression of NEP in dermal fibroblasts. On the other hand, as for the UVA-associated mechanism, similar to the abrogating effects reported for AX and FMN, ubiquinol10 but not RF had the potential to abrogate the increased expression of NEP and matrix-metalloproteinase-1 in UVA-exposed human fibroblasts. Our findings strongly support the in vivo anti-wrinkling effects of ubiquinol10 and AX on human and animal skin and provide convincing proof of the UV-induced wrinkling mechanism that essentially focuses on the over-expression of NEP by dermal fibroblasts as an intrinsic causative factor. PMID:27648570

  8. Novel, Highly Specific N-Demethylases Enable Bacteria To Live on Caffeine and Related Purine Alkaloids

    PubMed Central

    Summers, Ryan M.; Louie, Tai Man; Yu, Chi-Li; Gakhar, Lokesh; Louie, Kailin C.

    2012-01-01

    The molecular basis for the ability of bacteria to live on caffeine as a sole carbon and nitrogen source is unknown. Pseudomonas putida CBB5, which grows on several purine alkaloids, metabolizes caffeine and related methylxanthines via sequential N-demethylation to xanthine. Metabolism of caffeine by CBB5 was previously attributed to one broad-specificity methylxanthine N-demethylase composed of two subunits, NdmA and NdmB. Here, we report that NdmA and NdmB are actually two independent Rieske nonheme iron monooxygenases with N1- and N3-specific N-demethylation activity, respectively. Activity for both enzymes is dependent on electron transfer from NADH via a redox-center-dense Rieske reductase, NdmD. NdmD itself is a novel protein with one Rieske [2Fe-2S] cluster, one plant-type [2Fe-2S] cluster, and one flavin mononucleotide (FMN) per enzyme. All ndm genes are located in a 13.2-kb genomic DNA fragment which also contained a formaldehyde dehydrogenase. ndmA, ndmB, and ndmD were cloned as His6 fusion genes, expressed in Escherichia coli, and purified using a Ni-NTA column. NdmA-His6 plus His6-NdmD catalyzed N1-demethylation of caffeine, theophylline, paraxanthine, and 1-methylxanthine to theobromine, 3-methylxanthine, 7-methylxanthine, and xanthine, respectively. NdmB-His6 plus His6-NdmD catalyzed N3-demethylation of theobromine, 3-methylxanthine, caffeine, and theophylline to 7-methylxanthine, xanthine, paraxanthine, and 1-methylxanthine, respectively. One formaldehyde was produced from each methyl group removed. Activity of an N7-specific N-demethylase, NdmC, has been confirmed biochemically. This is the first report of bacterial N-demethylase genes that enable bacteria to live on caffeine. These genes represent a new class of Rieske oxygenases and have the potential to produce biofuels, animal feed, and pharmaceuticals from coffee and tea waste. PMID:22328667

  9. The oxidation mode of pyranose 2-oxidase is controlled by pH

    PubMed Central

    Prongjit, Methinee; Sucharitakul, Jeerus; Palfey, Bruce A.; Chaiyen, Pimchai

    2013-01-01

    Pyranose 2-oxidase (P2O) from Trametes multicolor is a flavoenzyme that catalyzes the oxidation of D-glucose and other aldopyranose sugars at the C2 position by using O2 as an electron acceptor to form the corresponding 2-keto-sugars and H2O2. In this study, the effects of pH on the oxidative half-reaction of P2O were investigated using stopped-flow spectrophotometry. The results showed that flavin oxidation occurred via different pathways depending on the pH of the environment. At pH values lower than 8.0, reduced P2O reacts with O2 to form a C4a-hydroperoxy-flavin intermediate, leading to elimination of H2O2. At pH 8.0 and higher, the majority of the reduced P2O reacts with O2 via a pathway which does not allow detection of the C4a-hydroperoxy-flavin, and flavin oxidation occurs with decreased rate constants upon the rise in pH. The switching between the two modes of P2O oxidation is controlled by protonation of a group which has a pKa of 7.6 ± 0.1. Oxidation reactions of reduced P2O under rapid pH change as performed by stopped-flow mixing were different from the same reactions performed with enzyme pre-equilibrated at the same specified pH values, implying that the protonation of the group which controls the mode of flavin oxidation cannot be rapidly equilibrated with outside solvent. Using a double-mixing stopped-flow experiment, a rate constant for proton dissociation from the reaction site was determined to be 21.0 ± 0.4 s-1. PMID:23356577

  10. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.

    PubMed

    Robinson, Reeder; Franceschini, Stefano; Fedkenheuer, Michael; Rodriguez, Pedro J; Ellerbrock, Jacob; Romero, Elvira; Echandi, Maria Paulina; Martin Del Campo, Julia S; Sobrado, Pablo

    2014-04-01

    Siderophore A (SidA) is a flavin-dependent monooxygenase that catalyzes the NAD(P)H- and oxygen-dependent hydroxylation of ornithine in the biosynthesis of siderophores in Aspergillus fumigatus and is essential for virulence. SidA can utilize both NADPH or NADH for activity; however, the enzyme is selective for NADPH. Structural analysis shows that R279 interacts with the 2'-phosphate of NADPH. To probe the role of electrostatic interactions in coenzyme selectivity, R279 was mutated to both an alanine and a glutamate. The mutant proteins were active but highly uncoupled, oxidizing NADPH and producing hydrogen peroxide instead of hydroxylated ornithine. For wtSidA, the catalytic efficiency was 6-fold higher with NADPH as compared to NADH. For the R279A mutant the catalytic efficiency was the same with both coenyzmes, while for the R279E mutant the catalytic efficiency was 5-fold higher with NADH. The effects are mainly due to an increase in the KD values, as no major changes on the kcat or flavin reduction values were observed. Thus, the absence of a positive charge leads to no coenzyme selectivity while introduction of a negative charge leads to preference for NADH. Flavin fluorescence studies suggest altered interaction between the flavin and NADP⁺ in the mutant enzymes. The effects are caused by different binding modes of the coenzyme upon removal of the positive charge at position 279, as no major conformational changes were observed in the structure for R279A. The results indicate that the positive charge at position 279 is critical for tight binding of NADPH and efficient hydroxylation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Role of Valine 464 in the Flavin Oxidation Reaction Catalyzed by Choline Oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnegan, Steffan; Agniswamy, Johnson; Weber, Irene T.

    2010-11-03

    The oxidation of reduced flavin cofactors by oxygen is a very important reaction that is central to the chemical versatility of hundreds of flavoproteins classified as monooxygenases and oxidases. These enzymes are characterized by bimolecular rate constants {ge} 10{sup 5} M{sup -1} s{sup -1} and produce water and hydrogen peroxide, respectively. A hydrophobic cavity close to the reactive flavin C(4a) atom has been previously identified in the 3D structure of monooxygenases but not in flavoprotein oxidases. In the present study, we have investigated by X-ray crystallography, mutagenesis, steady-state, and rapid reaction approaches the role of Val464, which is <6 {angstrom}more » from the flavin C(4a) atom in choline oxidase. The 3D structure of the Val464Ala enzyme was essentially identical to that of the wild-type enzyme as shown by X-ray crystallography. Time-resolved anaerobic substrate reduction of the enzymes showed that replacement of Val464 with alanine or threonine did not affect the reductive half-reaction. Steady-state and rapid kinetics as well as enzyme-monitored turnovers indicated that the oxidative half-reaction in the Ala464 and Thr464 enzymes was decreased by 50-fold with respect to the wild-type enzyme. We propose that the side chain of Val464 in choline oxidase provides a nonpolar site that is required to guide oxygen in proximity of the C(4a) atom of the flavin, where it will subsequently react via electrostatic catalysis. Visual analysis of available structures suggests that analogous nonpolar sites are likely present in most flavoprotein oxidases. Mechanistic considerations provide rationalization for the differences between sites in monooxygenases and oxidases.« less

  12. Oxygen activation in flavoprotein oxidases: the importance of being positive.

    PubMed

    Gadda, Giovanni

    2012-04-03

    The oxidation of flavin hydroquinones by O(2) in solution is slow, with second-order rate constants of ~250 M(-1) s(-1). This is due to the obligatory, single-electron transfer that initiates the reaction being thermodynamically unfavored and poorly catalyzed. Notwithstanding considerations of O(2) accessibility to the reaction site, its desolvation and geometry and other factors that can also contribute to further rate acceleration, flavoprotein oxidases must activate O(2) for reaction with flavin hydroquinones to be able to achieve the 100-1000-fold rate enhancements typically observed. Protein positive charges have been identified in glucose oxidase, monomeric sarcosine oxidase, N-methyltryptophan oxidase and fructosamine oxidase that electrostatically stabilize the transition state for the initial single electron transfer that generates the O(2)(-•)/flavin semiquinone radical pair. In choline oxidase despite the presence of three histidines in the active site, the trimethylammonium group of the reaction product provides such an electrostatic stabilization. A nonpolar site proximal to the flavin C(4a) atom in choline oxidase has also been identified, which contributes to the geometry and desolvation of the O(2) reaction site. The relevance of O(2) activation by product charges to other flavoprotein oxidases, such as for example those catalyzing amine oxidations, is discussed in this review. A nonpolar site close to the flavin C(4a) atom and a positive charge is identified through structural analysis in several flavoprotein oxidases. Mutagenesis has disclosed nonpolar sites in O(2)-reducing enzymes that utilize copper/TPQ or iron. It is predicted that classes of O(2)-reducing enzymes utilizing other cofactors also contain a similar catalytic motif.

  13. Simple Sequence Repeats in Escherichia coli: Abundance, Distribution, Composition, and Polymorphism

    PubMed Central

    Gur-Arie, Riva; Cohen, Cyril J.; Eitan, Yuval; Shelef, Leora; Hallerman, Eric M.; Kashi, Yechezkel

    2000-01-01

    Computer-based genome-wide screening of the DNA sequence of Escherichia coli strain K12 revealed tens of thousands of tandem simple sequence repeat (SSR) tracts, with motifs ranging from 1 to 6 nucleotides. SSRs were well distributed throughout the genome. Mononucleotide SSRs were over-represented in noncoding regions and under-represented in open reading frames (ORFs). Nucleotide composition of mono- and dinucleotide SSRs, both in ORFs and in noncoding regions, differed from that of the genomic region in which they occurred, with 93% of all mononucleotide SSRs proving to be of A or T. Computer-based analysis of the fine position of every SSR locus in the noncoding portion of the genome relative to downstream ORFs showed SSRs located in areas that could affect gene regulation. DNA sequences at 14 arbitrarily chosen SSR tracts were compared among E. coli strains. Polymorphisms of SSR copy number were observed at four of seven mononucleotide SSR tracts screened, with all polymorphisms occurring in noncoding regions. SSR polymorphism could prove important as a genome-wide source of variation, both for practical applications (including rapid detection, strain identification, and detection of loci affecting key phenotypes) and for evolutionary adaptation of microbes.[The sequence data described in this paper have been submitted to the GenBank data library under accession numbers AF209020–209030 and AF209508–209518.] PMID:10645951

  14. Fluorescence decay kinetics and imaging of NAD(P)H and flavins as metabolic indicators

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Koenig, Karsten

    1992-07-01

    The intrinsic fluorescence of various cell cultures in the blue and green spectral range has been attributed mainly to hydrated nicotinamide adenine dinucleotide (NADH) and flavin molecules. Their fluorescence decay curves were measured with subnanosecond resolution. The reduced coenzymes NADH and hydrated nicotinamide adenine dinucleotide phosphate NADPH, both showed a biexponential decay pattern in solution with similar time constants, but different relative intensities of the two components. They could thus be distinguished from one another as well as from their oxidized forms. The NADPH fluorescence of Saccharomyces cerevisiae was located within the cytoplasm and its organelles and was by about a factor of 4 higher for respiratory-deficient than for intact yeast strains. Intracellular flavin fluorescence showed a triexponential behavior--probably due to a superposition of protein-bound and free flavin molecules. The lifetime of the shortest component varied within the range of 0.20 to 0.50 ns between respiratory-deficient and intact yeast strains, and the relative intensity of this component was most pronounced for the intact strain DL1. Time- resolved fluorescence seems therefore to be an appropriate method of probe the function of the respiratory chain and--in the further step--to differentiate between various types of cells and tissues in medical diagnosis or environmental research.

  15. Epimerization of Alanyl-Alanine Induced by γ-Rays Irradiation in Aqueous Solutions.

    PubMed

    Munegumi, Toratane

    2017-03-01

    Living organisms have homochiral L-amino acids in proteins and homochiral D-mononucleotides in nucleic acids. The chemical evolutionary process to protein homochirality has been discussed for many years. Although many scenarios have been proposed for homochirality in the monomeric compounds, homochirality in amino acids and mononucleotides does not always guarantee homochirality in polypeptides and polynucleotides. Integrated scenarios containing the pathways from monomer to polymer should be proposed because in the pathways oligomers and polymers as well as monomers racemize (or epimerize), degrade, and condense. This research addresses epimerization and degradation of dipeptides under γ-rays irradiation by a cobalt-60 ( 60 Co) radiation source. The different rate constants of epimerization between diastereomeric dipeptides in the research suggest that the potential pathway toward homochirality could be much more complex.

  16. Flavins secreted by bacterial cells of Shewanella catalyze cathodic oxygen reduction.

    PubMed

    Liu, Huan; Matsuda, Shoichi; Hashimoto, Kazuhito; Nakanishi, Shuji

    2012-06-01

    On Her Majesty's Secrete Service: Oxygen reduction is an important process for microbial fuel cells (MFCs) and microbiologically-influenced corrosion (MIC). We demonstrate that flavins secreted by anode-respiring Shewanella cells can catalyze cathodic oxygen reduction via adsorption on the cathode. The findings will provide new insight for developing methods to improve MFC performance and to prevent MIC. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Comparative Activity-Based Flavin-Dependent Oxidase Profiling.

    PubMed

    Krysiak, Joanna; Breinbauer, Rolf

    2017-01-01

    Activity-based protein profiling (ABPP) has become a powerful chemoproteomic technology allowing for the dissection of complex ligand-protein interactions in their native cellular environment. One of the biggest challenges for ABPP is the extension of the proteome coverage. In this chapter a new ABPP strategy dedicated to monoamine oxidases (MAO) is presented. These enzymes are representative examples of flavin-dependent oxidases, playing a crucial role in the regulation of nervous system signaling.

  18. Green autofluorescence, a double edged monitoring tool for bacterial growth and activity in micro-plates

    NASA Astrophysics Data System (ADS)

    Mihalcescu, Irina; Van-Melle Gateau, Mathilde; Chelli, Bernard; Pinel, Corinne; Ravanat, Jean-Luc

    2015-12-01

    The intrinsic green autofluorescence of an Escherichia coli culture has long been overlooked and empirically corrected in green fluorescent protein (GFP) reporter experiments. We show here, by using complementary methods of fluorescence analysis and HPLC, that this autofluorescence, principally arise from the secreted flavins in the external media. The cells secrete roughly 10 times more than what they keep inside. We show next that the secreted flavin fluorescence can be used as a complementary method in measuring the cell concentration particularly when the classical method, based on optical density measure, starts to fail. We also demonstrate that the same external flavins limit the dynamical range of GFP quantification and can lead to a false interpretation of lower global dynamic range of expression than what really happens. In the end we evaluate different autofluorescence correction methods to extract the real GFP signal.

  19. Convenient microtiter plate-based, oxygen-independent activity assays for flavin-dependent oxidoreductases based on different redox dyes

    PubMed Central

    Brugger, Dagmar; Krondorfer, Iris; Zahma, Kawah; Stoisser, Thomas; Bolivar, Juan M; Nidetzky, Bernd; Peterbauer, Clemens K; Haltrich, Dietmar

    2014-01-01

    Flavin-dependent oxidoreductases are increasingly recognized as important biocatalysts for various industrial applications. In order to identify novel activities and to improve these enzymes in engineering approaches, suitable screening methods are necessary. We developed novel microtiter-plate-based assays for flavin-dependent oxidases and dehydrogenases using redox dyes as electron acceptors for these enzymes. 2,6-dichlorophenol-indophenol, methylene green, and thionine show absorption changes between their oxidized and reduced forms in the visible range, making it easy to judge visually changes in activity. A sample set of enzymes containing both flavoprotein oxidases and dehydrogenases – pyranose 2-oxidase, pyranose dehydrogenase, cellobiose dehydrogenase, d-amino acid oxidase, and l-lactate oxidase – was selected. Assays for these enzymes are based on a direct enzymatic reduction of the redox dyes and not on the coupled detection of a reaction product as in the frequently used assays based on hydrogen peroxide formation. The different flavoproteins show low Michaelis constants with these electron acceptor substrates, and therefore these dyes need to be added in only low concentrations to assure substrate saturation. In conclusion, these electron acceptors are useful in selective, reliable and cheap MTP-based screening assays for a range of flavin-dependent oxidoreductases, and offer a robust method for library screening, which could find applications in enzyme engineering programs. PMID:24376171

  20. Trichomonas vaginalis: metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance.

    PubMed

    Leitsch, David; Kolarich, Daniel; Binder, Marina; Stadlmann, Johannes; Altmann, Friedrich; Duchêne, Michael

    2009-04-01

    Infections with the microaerophilic parasite Trichomonas vaginalis are treated with the 5-nitroimidazole drug metronidazole, which is also in use against Entamoeba histolytica, Giardia intestinalis and microaerophilic/anaerobic bacteria. Here we report that in T. vaginalis the flavin enzyme thioredoxin reductase displays nitroreductase activity with nitroimidazoles, including metronidazole, and with the nitrofuran drug furazolidone. Reactive metabolites of metronidazole and other nitroimidazoles form covalent adducts with several proteins that are known or assumed to be associated with thioredoxin-mediated redox regulation, including thioredoxin reductase itself, ribonucleotide reductase, thioredoxin peroxidase and cytosolic malate dehydrogenase. Disulphide reducing activity of thioredoxin reductase was greatly diminished in extracts of metronidazole-treated cells and intracellular non-protein thiol levels were sharply decreased. We generated a highly metronidazole-resistant cell line that displayed only minimal thioredoxin reductase activity, not due to diminished expression of the enzyme but due to the lack of its FAD cofactor. Reduction of free flavins, readily observed in metronidazole-susceptible cells, was also absent in the resistant cells. On the other hand, iron-depleted T. vaginalis cells, expressing only minimal amounts of PFOR and hydrogenosomal malate dehydrogenase, remained fully susceptible to metronidazole. Thus, taken together, our data suggest a flavin-based mechanism of metronidazole activation and thereby challenge the current model of hydrogenosomal activation of nitroimidazole drugs.

  1. Photodynamics of the small BLUF protein BlrB from Rhodobacter sphaeroides.

    PubMed

    Zirak, P; Penzkofer, A; Schiereis, T; Hegemann, P; Jung, A; Schlichting, I

    2006-06-01

    The BLUF protein BlrB from the non-sulphur anoxyphototrophic purple bacterium Rhodobacter sphaeroides is characterized by absorption and emission spectroscopy. BlrB expressed from E. coli binding FAD, FMN, and riboflavin (called BrlB(I)) and recombinant BlrB containing only FAD (called BlrB(II)) are investigated. The dark-adapted proteins exist in two different receptor conformations (receptor states) with different sub-nanosecond fluorescence lifetimes (BLUF(r,f) and BLUF(r,sl)). Some of the flavin-cofactor (ca. 8%) is unbound in thermodynamic equilibrium with the bound cofactor. The two receptor conformations are transformed to putative signalling states (BLUF(s,f) and BLUF(s,sl)) of decreased fluorescence efficiency and shortened fluorescence lifetime by blue-light excitation. In the dark at room temperature both signalling states recover back to the initial receptor states with a time constant of about 2s. Quantum yields of signalling state formation of about 90% for BlrB(II) and about 40% for BlrB(I) were determined by intensity dependent transmission measurements. Extended blue-light excitation causes unbound flavin degradation (formation of lumichrome and lumiflavin-derivatives) and bound cofactor conversion to the semiquinone form. The flavin-semiquinone further reduces and the reduced flavin re-oxidizes back in the dark. A photo-dynamics scheme is presented and relevant quantum efficiencies and time constants are determined.

  2. A fluorescence study of the molecular interactions of harmane with the nucleobases, their nucleosides and mononucleotides.

    PubMed

    Balón, M; Muñoz, M A; Carmona, C; Guardado, P; Galán, M

    1999-07-19

    Fluorescence binding studies of harmane to the elemental components of the nucleic acids were undertaken to investigate the origin of the interaction between the drug and DNA. Most of the tested substrates have been found to induce hypochromism in the absorption spectrum of harmane and to quench its fluorescence. The quenching process induced by the nucleobases and their nucleosides is mainly due to the formation of ground state 1:1 complexes. However, in the case of the mononucleotides a dynamic quenching component is also observed. This quenching component is likely due to the excited state interaction of harmane with the phosphate group of the nucleotides. UV-vis spectral changes and quenching measurements have been used to quantify the ground state association constants of the complexes and the quenching rate constants.

  3. Enzymatic synthesis of polymers containing nicotinamide mononucleotide

    NASA Technical Reports Server (NTRS)

    Liu, Rihe

    1995-01-01

    Nicotinamide mononucleoside 5'-diphosphate in its reduced form is an excellent substrate for polynucleotide phosphorylase from Micrococcus luteus both in de novo polymerization reactions and in primer extension reactions. The oxidized form of the diphosphate is a much less efficient substrate; it can be used to extend primers but does not oligomerize in the absence of a primer. The cyanide adduct of the oxidized substrate, like the reduced substrate, polymerizes efficiently. Loss of cyanide yields high molecular weight polymers of the oxidized form. Terminal transferase from calf thymus accepts nicotinamide mononucleoside 5'-triphosphate as a substrate and efficiently adds one residue to the 3'-end of an oligodeoxynucleotide. T4 polynucleotide kinase accepts oligomers of nicotinamide mononucleotide as substrates. However, RNA polymerases do not incorporate nicotinamide mononucleoside 5'-triphosphate into products on any of the templates that we used.

  4. Enzymatic Synthesis of Polymers Containing Nicotinamide Mononucleotide

    NASA Technical Reports Server (NTRS)

    Liu, Rihe; Orgel, Leslie E.

    1995-01-01

    Nicotinamide mononucleoside 5'-diphosphate in its reduced form is an excellent substrate for polynucleotide phosphorylase from Micrococcus luteus both in de novo polymerization reactions and in primer extension reactions. The oxidized form of the diphosphate is a much less efficient substrate; it can be used to extend primers but does not oligomerize in the absence of a primer. The cyanide adduct of the oxidized substrate, like the reduced substrate, polymerizes efficiently. Loss of cyanide yields high molecular weight polymers of the oxidized form. Terminal transferase from calf thymus accepts nicotinamide mononucleoside 5'-triphosphate as a substrate and efficiently adds one residue to the 3'-end of an oligodeoxynucleotide. T4 polynucleotide kinase accepts oligomers of nicotinamide mononucleotide as substrates. However, RNA polymerases do not incorporate nicotinamide mononucleoside 5'-triphosphate into products on any of the templates that we used.

  5. Light-induced fluorescence changes in Phycomyces: evidence for blue light-receptor associated flavo-semiquinones.

    PubMed

    Galland, Paul; Tölle, Nadja

    2003-10-01

    Light-induced fluorescence changes (LIFCs) were detected in sporangiophores of the blue-light-sensitive fungus Phycomyces blakesleeanus (Burgeff). The LIFCs can be utilized as a spectrophotometric assay for blue-light photoreceptors and for the in vivo characterization of their photochemical primary reactions. Blue-light irradiation of sporangiophores elicited a transient decrease and subsequent regeneration of flavin-like fluorescence emission at 525 nm. The signals recovered in darkness in about 120 min. In contrast to blue light, near-UV (370 nm) caused an increase in the fluorescence emission at 525 nm. Because the LIFCs were altered in a light-insensitive madC mutant with a defective photoreceptor, the fluorescence changes must be associated with early photochemical events of the transduction chain. Action spectra for the fluorescence changes at 525 nm showed major peaks near 470 and 600 nm. Double-pulse experiments involving two consecutive pulses of either blue and near-UV, blue and red, or near-UV and red showed that the responses depended on the sequence in which the different wavelengths were applied. The results indicate a blue-light receptor with intermediates in the near-UV, blue and red spectral regions. We explain the results in the framework of a general model, in which the three redox states of the flavin photoreceptor, the oxidized flavin (Fl), the flavo-semiquinone (FlH*), and the flavo-hydroquinone (FlH2) are each acting as chromophores with their own characteristic photochemical primary reactions. These consist of the photoreduction of the oxidized flavin generating semiquinone, the photoreduction of the semiquinone generating hydroquinone, and the photooxidation of the flavo-hydroquinone regenerating the pool of oxidized flavins. The proposed mechanism represents a photocycle in which two antagonistic photoreceptor forms, Fl and FlH2, determine the pool size of the biological effector molecule, the flavo-semiquinone. The redox changes that are associated with the photocycle are maintained by redox partners, pterins, that function in the near-UV as secondary chromophores.

  6. Evidence for proton tunneling and a transient covalent flavin-substrate adduct in choline oxidase S101A.

    PubMed

    Uluisik, Rizvan; Romero, Elvira; Gadda, Giovanni

    2017-11-01

    The effect of temperature on the reaction of alcohol oxidation catalyzed by choline oxidase was investigated with the S101A variant of choline oxidase. Anaerobic enzyme reduction in a stopped-flow spectrophotometer was biphasic using either choline or 1,2-[ 2 H 4 ]-choline as a substrate. The limiting rate constants k lim1 and k lim2 at saturating substrate were well separated (k lim1 /k lim2 >9), and were >15-fold slower than for wild-type choline oxidase. Solvent deuterium kinetic isotope effects (KIEs) ~4 established that k lim1 probes the proton transfer from the substrate hydroxyl to a catalytic base. Primary substrate deuterium KIEs ≥7 demonstrated that k lim2 reports on hydride transfer from the choline alkoxide to the flavin. Between 15°C and 39°C the k lim1 and k lim2 values increased with increasing temperature, allowing for the analyses of H + and H - transfers using Eyring and Arrhenius formalisms. Temperature-independent KIE on the k lim1 value ( H2O k lim1 / D2O k lim1 ) suggests that proton transfer occurs within a highly reorganized tunneling-ready-state with a narrow distribution of donor-acceptor distances. Eyring analysis of the k lim2 value gave lines with the slope (choline) >slope (D-choline) , suggesting kinetic complexity. Spectral evidence for the transient occurrence of a covalent flavin-substrate adduct during the first phase of the anaerobic reaction of S101A CHO with choline is presented, supporting the notion that an important role of amino acid residues in the active site of flavin-dependent enzymes is to eliminate alternative reactions of the versatile enzyme-bound flavin for the reaction that needs to be catalyzed. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Analysis of flavin oxidation and electron-transfer inhibition in Plasmodium falciparum dihydroorotate dehydrogenase.

    PubMed

    Malmquist, Nicholas A; Gujjar, Ramesh; Rathod, Pradipsinh K; Phillips, Margaret A

    2008-02-26

    Plasmodium falciparum dihydroorotate dehydrogenase (pfDHODH) is a flavin-dependent mitochondrial enzyme that provides the only route to pyrimidine biosynthesis in the parasite. Clinically significant inhibitors of human DHODH (e.g., A77 1726) bind to a pocket on the opposite face of the flavin cofactor from dihydroorotate (DHO). This pocket demonstrates considerable sequence variability, which has allowed species-specific inhibitors of the malarial enzyme to be identified. Ubiquinone (CoQ), the physiological oxidant in the reaction, has been postulated to bind this site despite a lack of structural evidence. To more clearly define the residues involved in CoQ binding and catalysis, we undertook site-directed mutagenesis of seven residues in the structurally defined A77 1726 binding site, which we term the species-selective inhibitor site. Mutation of several of these residues (H185, F188, and F227) to Ala substantially decreased the affinity of pfDHODH-specific inhibitors (40-240-fold). In contrast, only a modest increase in the Kmapp for CoQ was observed, although mutation of Y528 in particular caused a substantial reduction in kcat (40-100-fold decrease). Pre-steady-state kinetic analysis by single wavelength stopped-flow spectroscopy showed that the mutations had no effect on the rate of the DHO-dependent reductive half-reaction, but most reduced the rate of the CoQ-dependent flavin oxidation step (3-20-fold decrease), while not significantly altering the Kdox for CoQ. As with the mutants, inhibitors that bind this site block the CoQ-dependent oxidative half-reaction without affecting the DHO-dependent step. These results identify residues involved in inhibitor binding and electron transfer to CoQ. Importantly, the data provide compelling evidence that the binding sites for CoQ and species-selective site inhibitors do not overlap, and they suggest instead that inhibitors act either by blocking the electron path between flavin and CoQ or by stabilizing a conformation that excludes CoQ binding.

  8. Kinetics and mechanisms of 1,5-dihydroflavin reduction of carbonyl compounds and flavin oxidation of alcohols. III. Oxidation of benzoin by flavin and reduction of benzil by 1,5-dihydroflavin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruice, T.C.; Taulane, J.P.

    1976-11-24

    The oxidation of benzoin by lumiflavin-3-acetic acid (Fl/sub ox/) to provide benzil and 1,5-dihydrolumiflavin-3-acetic acid (FlH/sub 2/) is a readily reversible reaction. It has been established that the mechanism involves general base ionization of benzoin carbon acid (..cap alpha..-ketol) to yield endiolate anion, followed by partitioning of the endiolate anion back to benzoin through general acid proton donation and to benzil by reaction with Fl/sub ox/. The reaction of endiolate anion with Fl/sub ox/ is not subject to acid or base catalysis. Evidence that ionization of benzoin precedes its oxidation by Fl/sub ox/ stems from the observation that the ratemore » attributed to the latter process possesses a constant equal to that for racemization of (+)-benzoin and O/sub 2/ oxidation of benzoin and that this rate constant is characterized by a primary deuterium kinetic isotope effect (k/sup benzoin//k/sup ..cap alpha..-/sup 2/H-benzoin/) of 7.24 +- 1.5. Reduction of benzil to benzoin by FlH/sub 2/ is pH and buffer insensitive below the pK/sub a/ of FlH/sub 2/. These results are consistent with either general acid catalyzed attack of benzoin carbanion at the 4a-position of Fl/sub ox/, followed by a specific base catalyzed collapse of adduct to diketone and dihydroflavin (Scheme III), or to the uncatalyzed reaction of carbanion (endiolate anion) with flavin to provide a semidione-flavin radical pair which then goes on to diketone and dihydroflavin in a non-acid-base catalyzed reaction (Scheme V). These mechanisms are discussed in terms of the kinetics of reaction of other carbanion species with flavin.« less

  9. Flavin redox bifurcation as a mechanism for controlling the direction of electron flow during extracellular electron transfer.

    PubMed

    Okamoto, Akihiro; Hashimoto, Kazuhito; Nealson, Kenneth H

    2014-10-06

    The iron-reducing bacterium Shewanella oneidensis MR-1 has a dual directional electronic conduit involving 40 heme redox centers in flavin-binding outer-membrane c-type cytochromes (OM c-Cyts). While the mechanism for electron export from the OM c-Cyts to an anode is well understood, how the redox centers in OM c-Cyts take electrons from a cathode has not been elucidated at the molecular level. Electrochemical analysis of live cells during switching from anodic to cathodic conditions showed that altering the direction of electron flow does not require gene expression or protein synthesis, but simply redox potential shift about 300 mV for a flavin cofactor interacting with the OM c-Cyts. That is, the redox bifurcation of the riboflavin cofactor in OM c-Cyts switches the direction of electron conduction in the biological conduit at the cell-electrode interface to drive bacterial metabolism as either anode or cathode catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Aminobacter aminovorans NADH:flavin oxidoreductase His140: a highly conserved residue critical for NADH binding and utilization.

    PubMed

    Russell, Thomas R; Tu, Shiao-Chun

    2004-10-12

    Homodimeric FRD(Aa) Class I is an NADH:flavin oxidoreductase from Aminobacter aminovorans. It is unusual because it contains an FMN cofactor but utilizes a sequential-ordered kinetic mechanism. Because little is known about NADH-specific flavin reductases in general and FRD(Aa) in particular, this study aimed to further explore FRD(Aa) by identifying the functionalities of a key residue. A sequence alignment of FRD(Aa) with several known and hypothetical flavoproteins in the same subfamily reveals within the flavin reductase active-site domain a conserved GDH motif, which is believed to be responsible for the enzyme and NADH interaction. Mutation of the His140 in this GDH motif to alanine reduced FRD(Aa) activity to <3%. An ultrafiltration assay and fluorescence quenching demonstrated that H140A FRD(Aa) binds FMN in the same 1:1 stoichiometric ratio as the wild-type enzyme, but with slightly weakened affinity (K(d) = 0.9 microM). Anaerobic stopped-flow studies were carried out using both the native and mutated FRD(Aa). Similar to the native enzyme, H140A FRD(Aa) was also able to reduce the FMN cofactor by NADH although much less efficiently. Kinetic analysis of anaerobic reduction measurements indicated that the His140 residue of FRD(Aa) was essential to NADH binding, as well as important for the reduction of the FMN cofactor. For the native enzyme, the cofactor reduction was followed by at least one slower step in the catalytic pathway.

  11. Down-regulation of flavin reductase and alcohol dehydrogenase-1 (ADH1) in metronidazole-resistant isolates of Trichomonas vaginalis

    PubMed Central

    Leitsch, David; Drinić, Mirjana; Kolarich, Daniel; Duchêne, Michael

    2012-01-01

    The microaerophilic parasite Trichomonas vaginalis is a causative agent of painful vaginitis or urethritis, termed trichomoniasis, and can also cause preterm delivery or stillbirth. Treatment of trichomoniasis is almost exclusively based on the nitroimidazole drugs metronidazole and tinidazole. Metronidazole resistance in T. vaginalis does occur and is often associated with treatment failure. In most cases, metronidazole-resistant isolates remain susceptible to tinidazole, but cross resistance between the two closely related drugs can be a problem. In this study we measured activities of thioredoxin reductase and flavin reductase in four metronidazole-susceptible and five metronidazole-resistant isolates. These enzyme activities had been previously found to be downregulated in T. vaginalis with high-level metronidazole resistance induced in the laboratory. Further, we aimed at identifying factors causing metronidazole resistance and compared the protein expression profiles of all nine isolates by application of two-dimensional gel electrophoresis (2DE). Thioredoxin reductase activity was nearly equal in all strains assayed but flavin reductase activity was clearly down-regulated, or even absent, in metronidazole-resistant strains. Since flavin reductase has been shown to reduce oxygen to hydrogen peroxide, its down-regulation could significantly contribute to the impairment of oxygen scavenging as reported by others for metronidazole-resistant strains. Analysis by 2DE revealed down-regulation of alcohol dehydrogenase 1 (ADH1) in strains with reduced sensitivity to metronidazole, an enzyme that could be involved in detoxification of intracellular acetaldehyde. PMID:22449940

  12. Emerging roles for riboflavin in functional rescue of mitochondrial β-oxidation flavoenzymes.

    PubMed

    Henriques, Bárbara J; Olsen, Rikke K; Bross, Peter; Gomes, Cláudio M

    2010-01-01

    Riboflavin, commonly known as vitamin B2, is the precursor of flavin cofactors. It is present in our typical diet, and inside the cells it is metabolized to FMN and FAD. As a result of their rather unique and flexible chemical properties these flavins are among the most important redox cofactors present in a large series of different enzymes. A problem in riboflavin metabolism or a low intake of this vitamin will have consequences on the level of FAD and FMN in the cell, resulting in disorders associated with riboflavin deficiency. In a few number of cases, riboflavin deficiency is associated with impaired oxidative folding, cell damage and impaired heme biosynthesis. More relevant are several studies referring reduced activity of enzymes such as dehydrogenases involved in oxidative reactions, respiratory complexes and enzymes from the fatty acid β-oxidation pathway. The role of this vitamin in mitochondrial metabolism, and in particular in fatty acid oxidation, will be discussed in this review. The basic aspects concerning riboflavin and flavin metabolism and deficiency will be addressed, as well as an overview of the role of the different flavoenzymes and flavin chemistry in fatty acid β-oxidation, merging clinical, cellular and biochemical perspectives. A number of recent studies shedding new light on the cellular processes and biological effects of riboflavin supplementation in metabolic disease will also be overviewed. Overall, a deeper understanding of these emerging roles of riboflavin intake is essential to design better therapies.

  13. The interaction of the Eco R1 restriction enzyme E.coli with nucleotides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollis, Donald F.

    1979-11-01

    The Eco R1 restriction enzyme can be shown to be inhibited by nucleotides which correspond to any part of its known site of phosphodiesterase activity. A series of di-, tetra-, and hexa-nucleotide fragments were synthesized and their effect on the activity of the enzyme upon superhelical Co1 E1 DNA studied. The inhibition caused by the individual mononucleotides were also studied. In general all the nucleotide fragments showed some form of interaction with the enzyme system. Tetranucleotides were stronger inhibitors than dinucleotides, which in turn were stronger inhibitors than the mononucleotides. Within each category of inhibitors, those containing the phosphodiester bondmore » which is acted upon by the enzyme were the strongest inhibitors. Only those fragments which were consistent with the enzymes site of activity showed competitive inhibition kinetics. Nucleotides which do not fit within the site of phosphodiesterase activity show non-competitive inhibition kinetics.« less

  14. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy.

    PubMed

    Sasaki, Yo; Araki, Toshiyuki; Milbrandt, Jeffrey

    2006-08-16

    Axonal degeneration occurs in many neurodegenerative diseases and after traumatic injury and is a self-destructive program independent from programmed cell death. Previous studies demonstrated that overexpression of nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) or exogenous application of nicotinamide adenine dinucleotide (NAD) can protect axons of cultured dorsal root ganglion (DRG) neurons from degeneration caused by mechanical or neurotoxic injury. In mammalian cells, NAD can be synthesized from multiple precursors, including tryptophan, nicotinic acid, nicotinamide, and nicotinamide riboside (NmR), via multiple enzymatic steps. To determine whether other components of these NAD biosynthetic pathways are capable of delaying axonal degeneration, we overexpressed each of the enzymes involved in each pathway and/or exogenously administered their respective substrates in DRG cultures and assessed their capacity to protect axons after axotomy. Among the enzymes tested, Nmnat1 had the strongest protective effects, whereas nicotinamide phosphoribosyl transferase and nicotinic acid phosphoribosyl transferase showed moderate protective activity in the presence of their substrates. Strong axonal protection was also provided by Nmnat3, which is predominantly located in mitochondria, and an Nmnat1 mutant localized to the cytoplasm, indicating that the subcellular location of NAD production is not crucial for protective activity. In addition, we showed that exogenous application of the NAD precursors that are the substrates of these enzymes, including nicotinic acid mononucleotide, nicotinamide mononucleotide, and NmR, can also delay axonal degeneration. These results indicate that stimulation of NAD biosynthetic pathways via a variety of interventions may be useful in preventing or delaying axonal degeneration.

  15. Phylogeny and strain typing of Escherichia coli, inferred from variation at mononucleotide repeat loci.

    PubMed

    Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M; Kashi, Yechezkel

    2004-04-01

    Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria.

  16. Phylogeny and Strain Typing of Escherichia coli, Inferred from Variation at Mononucleotide Repeat Loci

    PubMed Central

    Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M.; Kashi, Yechezkel

    2004-01-01

    Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria. PMID:15066845

  17. Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.).

    PubMed

    Katahira, Riko; Ashihara, Hiroshi

    2009-12-01

    As part of a research program on nucleotide metabolism in potato tubers (Solanum tuberosum L.), profiles of pyridine (nicotinamide) metabolism were examined based on the in situ metabolic fate of radio-labelled precursors and the in vitro activities of enzymes. In potato tubers, [(3)H]quinolinic acid, which is an intermediate of de novo pyridine nucleotide synthesis, and [(14)C]nicotinamide, a catabolite of NAD, were utilised for pyridine nucleotide synthesis. The in situ tracer experiments and in vitro enzyme assays suggest the operation of multiple pyridine nucleotide cycles. In addition to the previously proposed cycle consisting of seven metabolites, we found a new cycle that includes newly discovered nicotinamide riboside deaminase which is also functional in potato tubers. This cycle bypasses nicotinamide and nicotinic acid; it is NAD --> nicotinamide mononucleotide --> nicotinamide riboside --> nicotinic acid riboside --> nicotinic acid mononucleotide --> nicotinic acid adenine dinucleotide --> NAD. Degradation of the pyridine ring was extremely low in potato tubers. Nicotinic acid glucoside is formed from nicotinic acid in potato tubers. Comparative studies of [carboxyl-(14)C]nicotinic acid metabolism indicate that nicotinic acid is converted to nicotinic acid glucoside in all organs of potato plants. Trigonelline synthesis from [carboxyl-(14)C]nicotinic acid was also found. Conversion was greater in green parts of plants, such as leaves and stem, than in underground parts of potato plants. Nicotinic acid utilised for the biosynthesis of these conjugates seems to be derived not only from the pyridine nucleotide cycle, but also from the de novo synthesis of nicotinic acid mononucleotide.

  18. Aspergillus fumigatus SidA is a highly specific ornithine hydroxylase with bound flavin cofactor.

    PubMed

    Chocklett, Samuel W; Sobrado, Pablo

    2010-08-10

    Ferrichrome is a hydroxamate-containing siderophore produced by the pathogenic fungus Aspergillus fumigatus under iron-limiting conditions. This siderophore contains N(5)-hydroxylated l-ornithines essential for iron binding. A. fumigatus siderophore A (Af SidA) catalyzes the flavin- and NADPH-dependent hydroxylation of l-ornithine in ferrichrome biosynthesis. Af SidA was recombinantly expressed and purified as a soluble tetramer and is the first member of this class of flavin monooxygenases to be isolated with a bound flavin cofactor. The enzyme showed typical saturation kinetics with respect to l-ornithine while substrate inhibition was observed at high concentrations of NADPH and NADH. Increasing amounts of hydrogen peroxide were measured as a function of reduced nicotinamide coenzyme concentration, indicating that inhibition was caused by increased uncoupling. Af SidA is highly specific for its amino acid substrate, only hydroxylating l-ornithine. An 8-fold preference in the catalytic efficiency was determined for NADPH compared to NADH. In the absence of substrate, Af SidA can be reduced by NADPH, and a C4a-(hydro)peroxyflavin intermediate is observed. The decay of this intermediate is accelerated by l-ornithine binding. This intermediate was only stabilized by NADPH and not by NADH, suggesting a role for NADP(+) in the stabilization of intermediates in the reaction of Af SidA. NADP(+) is a competitive inhibitor with respect to NADPH, demonstrating that Af SidA forms a ternary complex with NADP(+) and l-ornithine during catalysis. The data suggest that Af SidA likely proceeds by a sequential kinetic mechanism.

  19. Crystal Structures of Intermediates in the Nitroalkane Oxidase Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heroux, A.; Bozinovski, D; Valley, M

    2009-01-01

    The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 {angstrom} resolution or better of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct are described. The D402N enzyme has no detectable activity with neutral nitroalkanes. The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. Themore » oxygens of the substrate nitro group interact both with amino acid residues and with the 2'-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped (Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062-2066). The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2'-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle.« less

  20. A conserved glutamine plays a central role in LOV domain signal transmission and duration

    PubMed Central

    Nash, Abigail I.; Ko, Wen-Huang; Harper, Shannon M.; Gardner, Kevin H.

    2009-01-01

    Light is a key stimulus for plant biological functions, several of which are controlled by light-activated kinases known as phototropins, a group of kinases that contain two light-sensing domains (LOV, Light-Oxygen-Voltage domains) and a C-terminal serine/threonine kinase domain. The second sensory domain, LOV2, plays a key role in regulating kinase enzymatic activity via the photochemical formation of a covalent adduct between a LOV2 cysteine residue and an internally-bound flavin mononucleotide (FMN) chromophore. Subsequent conformational changes in LOV2 lead to the unfolding of a peripheral Jα helix, and ultimately, phototropin kinase activation. To date, the mechanism coupling bond formation and helix dissociation has remained unclear. Previous studies found that a conserved glutamine residue (Q513 in the Avena sativa phototropin 1 LOV2 (AsLOV2) domain) switches its hydrogen-bonding pattern with FMN upon light stimulation. Located in the immediate vicinity of the FMN binding site, this Gln residue is provided by the Iβ strand that interacts with the Jα helix, suggesting a route for signal propagation from the core of the LOV domain to its peripheral Jα helix. To test whether Q513 plays a key role in tuning the photochemical and transduction properties of AsLOV2, we designed two point mutations, Q513L and Q513N, and monitored the effects on the chromophore and protein using a combination of UV-visible absorbance and circular dichroism spectroscopy, limited proteolysis, and solution NMR. The results show that these mutations significantly dampen the changes between the dark and lit state AsLOV2 structures, leaving the protein in a pseudo-dark state (Q513L) or a pseudo-lit state (Q513N) conformation. Further, both mutations changed the photochemical properties of this receptor, particularly the lifetime of the photoexcited signaling states. Together, these data establish that this residue plays a central role in both spectral tuning and signal propagation from the core of the LOV domain through the Iβ strand to the peripheral Jα helix. PMID:19063612

  1. A metabolomics strategy to explore urinary biomarkers and metabolic pathways for assessment of interaction between Danhong injection and low-dose aspirin during their synergistic treatment.

    PubMed

    Li, Jianping; Guo, Jianming; Shang, Erxin; Zhu, Zhenhua; Zhu, Kevin Yue; Li, Shujiao; Zhao, Buchang; Jia, Lifu; Zhao, Jing; Tang, Zhishu; Duan, Jinao

    2016-07-15

    The drug combination of Danhong injection (DHI) and low-dose aspirin (ASA) was frequently applied for the treatment of cardiovascular and cerebrovascular diseases. Due to the drug interactions, a lot of potential benefits and risks might exist side by side in the course of combination therapy. However, there had been no studies of interaction between DHI and ASA. Metabolomics was a powerful tool to explore endogenous biomarkers and metabolic pathways. In present study, metabolic profiling with ultra-high-performance liquid chromatography coupled to quadrupole time of flight mass spectrometry (UHPLC-QTOF/MS) coupled with multivariate statistical analysis was performed to provide insight into understanding the interaction between DHI and low-dose ASA. Eleven potential biomarkers of three types were identified and seven metabolic pathways were constructed. The results showed that the interaction between DHI and low-dose ASA during synergistic treatment indeed affected some key endogenous biomarkers and metabolic pathways, which could not happen when DHI or low-dose ASA was used alone. The quality and quantity of endogenous metabolite were both influenced by interaction between DHI and low-dose ASA. In details, the amount of flavin mononucleotide, L-2, 4-diaminobutyric acid (DABA) and 4-aminohippuric acid were significantly increased. On the contrary, the amount of 3-methyluridine, 4, 6-dihydroxyquinoline, cortolone-3-glucuronide, and serotonin were significantly decreased. Furthermore, O-phosphotyrosine, 3-methyl-2-butenal, indoxyl sulfate and dolichyl diphosphate were disappeared in urine. As to metabolic pathways, riboflavin metabolism, pentose and glucuronate interconversions, and tryptophan metabolism were all significantly influenced. The emerging alterations of biomarkers and metabolic pathways were associated with a lot of drugs and diseases based on literature researches, which might influence the co-administration of other drugs or the treatments of relevant diseases. Our paper presented some hints to uncover the mechanism of interaction between DHI and low-dose ASA, which would provide some references for application of DHI and low-dose ASA combination. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The Role of Chloride Complexation on Anaerobic and Aerobic Mercury Bioavailability

    NASA Astrophysics Data System (ADS)

    Stenzler, B.; Ruuskanen, M.; Hinz, A.; Poulain, A.

    2016-12-01

    In the absence of dissolved organic matter, chloride and sulphide are the dominant complexing agents affecting mercury (Hg) speciation in the environment. Bioreporters are good tools in evaluating bioavailable species of Hg. However, signal production for current Hg bioreporters requires oxygen, namely for lux and gfp gene encoded proteins, resulting in a paucity of data in anaerobic bioavailability of Hg species where it is methylated to toxic CH3Hg+. We developed and optimized a whole-cell Hg bioreporter using Escherichia coli 5α capable of functioning in aerobic and anaerobic conditions by transforming a vector containing the gene fusion between the regulatory circuitry of the mer-operon and a flavin mononucleotide-based fluorescent protein. The bioreporter exhibited no physiological limitations with respect to signal production over a chloride gradient ranging from 0 to 0.7 M. The bioreporter had a detection limit of 1 nM Hg(II) however we used 5nM Hg(II) as the optimal working concentration for Hg speciation assays. We report that HgCl42- is highly bioavailable under anoxic conditions in contrast to what was observed under oxic conditions where Hg was not bioavailable. HgCl3- was not bioavailable regardless of the presence of oxygen which we attributed to either coordination polymers consisting of [HgCl3-]x chains on the cell surface or molecular mimicry of HgCl42- onto anaerobically expressed periplasmic binding proteins specific for divalent polyatomic anions shuttling Hg to the inner membrane. In the presence of HgCl42- in saline media and Hg(OH)2 in non-saline media the addition of 2.5 and 5 μM Zn, respectively, completely inhibited uptake of neutral and negatively charged Hg species regardless of the presence of oxygen. The presence of S2- inhibited Hg uptake regardless of the presence or absence of chloride. Our experiments also suggest that ligand exchange occurred faster between S2- and Cl- than between S2- and OH-. The unexpected bioavailability of HgCl42- indicates the possibility of a novel mechanism for Hg uptake in marine environments while the bioavailability of HgS species is dependent on equilibration time and salinity.

  3. Essential role of the A'α/Aβ gap in the N-terminal upstream of LOV2 for the blue light signaling from LOV2 to kinase in Arabidopsis photototropin1, a plant blue light receptor.

    PubMed

    Kashojiya, Sachiko; Okajima, Koji; Shimada, Takashi; Tokutomi, Satoru

    2015-01-01

    Phototropin (phot) is a blue light (BL) receptor in plants and is involved in phototropism, chloroplast movement, stomata opening, etc. A phot molecule has two photo-receptive domains named LOV (Light-Oxygen-Voltage) 1 and 2 in its N-terminal region and a serine/threonine kinase (STK) in its C-terminal region. STK activity is regulated mainly by LOV2, which has a cyclic photoreaction, including the transient formation of a flavin mononucleotide (FMN)-cysteinyl adduct (S390). One of the key events for the propagation of the BL signal from LOV2 to STK is conformational changes in a Jα-helix residing downstream of the LOV2 C-terminus. In contrast, we focused on the role of the A'α-helix, which is located upstream of the LOV2 N-terminus and interacts with the Jα-helix. Using LOV2-STK polypeptides from Arabidopsis thaliana phot1, we found that truncation of the A'α-helix and amino acid substitutions at Glu474 and Lys475 in the gap between the A'α and the Aβ strand of LOV2 (A'α/Aβ gap) to Ala impaired the BL-induced activation of the STK, although they did not affect S390 formation. Trypsin digested the LOV2-STK at Lys603 and Lys475 in a light-dependent manner indicating BL-induced structural changes in both the Jα-helix and the gap. The digestion at Lys603 is faster than at Lys475. These BL-induced structural changes were observed with the Glu474Ala and the Lys475Ala substitutes, indicating that the BL signal reached the Jα-helix as well as the A'α/Aβ gap but could not activate STK. The amino acid residues, Glu474 and Lys475, in the gap are conserved among the phots of higher plants and may act as a joint to connect the structural changes in the Jα-helix with the activation of STK.

  4. PhdA Catalyzes the First Step of Phenazine-1-Carboxylic Acid Degradation in Mycobacterium fortuitum.

    PubMed

    Costa, Kyle C; Moskatel, Leon S; Meirelles, Lucas A; Newman, Dianne K

    2018-05-15

    Phenazines are a class of bacterially produced redox-active metabolites that are found in natural, industrial, and clinical environments. In Pseudomonas spp., phenazine-1-carboxylic acid (PCA)-the precursor of all phenazine metabolites-facilitates nutrient acquisition, biofilm formation, and competition with other organisms. While the removal of phenazines negatively impacts these activities, little is known about the genes or enzymes responsible for phenazine degradation by other organisms. Here, we report that the first step of PCA degradation by Mycobacterium fortuitum is catalyzed by a ph enazine- d egrading decarboxylase (PhdA). PhdA is related to members of the UbiD protein family that rely on a prenylated flavin mononucleotide cofactor for activity. The gene for PhdB, the enzyme responsible for cofactor synthesis, is present in a putative operon with the gene encoding PhdA in a region of the M. fortuitum genome that is essential for PCA degradation. PhdA and PhdB are present in all known PCA-degrading organisms from the Actinobacteria M. fortuitum can also catabolize other Pseudomonas -derived phenazines such as phenazine-1-carboxamide, 1-hydroxyphenazine, and pyocyanin. On the basis of our previous work and the current characterization of PhdA, we propose that degradation converges on a common intermediate: dihydroxyphenazine. An understanding of the genes responsible for degradation will enable targeted studies of phenazine degraders in diverse environments. IMPORTANCE Bacteria from phylogenetically diverse groups secrete redox-active metabolites that provide a fitness advantage for their producers. For example, phenazines from Pseudomonas spp. benefit the producers by facilitating anoxic survival and biofilm formation and additionally inhibit competitors by serving as antimicrobials. Phenazine-producing pseudomonads act as biocontrol agents by leveraging these antibiotic properties to inhibit plant pests. Despite this importance, the fate of phenazines in the environment is poorly understood. Here, we characterize an enzyme from Mycobacterium fortuitum that catalyzes the first step of phenazine-1-carboxylic acid degradation. Knowledge of the genetic basis of phenazine degradation will facilitate the identification of environments where this activity influences the microbial community structure. Copyright © 2018 American Society for Microbiology.

  5. Most blood biomarkers related to vitamin status, one-carbon metabolism, and the kynurenine pathway show adequate preanalytical stability and within-person reproducibility to allow assessment of exposure or nutritional status in healthy women and cardiovascular patients.

    PubMed

    Midttun, Oivind; Townsend, Mary K; Nygård, Ottar; Tworoger, Shelley S; Brennan, Paul; Johansson, Mattias; Ueland, Per Magne

    2014-05-01

    Knowledge of stability during sample transportation and changes in biomarker concentrations within person over time are paramount for proper design and interpretation of epidemiologic studies based on a single measurement of biomarker status. Therefore, we investigated stability and intraindividual vs. interindividual variation in blood concentrations of biomarkers related to vitamin status, one-carbon metabolism, and the kynurenine pathway. Whole blood (EDTA and heparin, n = 12) was stored with an icepack for 24 or 48 h, and plasma concentrations of 38 biomarkers were determined. Stability was calculated as change per hour, intraclass correlation coefficient (ICC), and simple Spearman correlation. Within-person reproducibility of biomarkers was expressed as ICC in samples collected 1-2 y apart from 40 postmenopausal women and in samples collected up to 3 y apart from 551 patients with stable angina pectoris. Biomarker stability was similar in EDTA and heparin blood. Most biomarkers were essentially stable, except for choline and total homocysteine (tHcy), which increased markedly. Within-person reproducibility in postmenopausal women was excellent (ICC > 0.75) for cotinine, all-trans retinol, cobalamin, riboflavin, α-tocopherol, Gly, pyridoxal, methylmalonic acid, creatinine, pyridoxal 5'-phosphate, and Ser; was good to fair (ICC of 0.74-0.40) for pyridoxic acid, kynurenine, tHcy, cholecalciferol, flavin mononucleotide, kynurenic acid, xanthurenic acid, 3-hydroxykynurenine, sarcosine, anthranilic acid, cystathionine, homoarginine, 3-hydroxyanthranilic acid, betaine, Arg, folate, total cysteine, dimethylglycine, asymmetric dimethylarginine, neopterin, symmetric dimethylarginine, and Trp; and poor (ICC of 0.39-0.15) for methionine sulfoxide, Met, choline, and trimethyllysine. Similar reproducibilities were observed in patients with coronary heart disease. Thus, most biomarkers investigated were essentially stable in cooled whole blood for up to 48 h and had a sufficient within-person reproducibility to allow one-exposure assessment of biomarker status in epidemiologic studies. The Western Norway B Vitamin Intervention Trial was registered at clinicaltrials.gov as NTC00354081.

  6. Toxicological significance of azo dye metabolism by human intestinal microbiota

    PubMed Central

    Feng, Jinhui; Cerniglia, Carl E.; Chen, Huizhong

    2018-01-01

    Approximately 0.7 million tons of azo dyes are synthesized each year. Azo dyes are composed of one or more R1-N=N-R2 linkages. Studies have shown that both mammalian and microbial azoreductases cleave the azo bonds of the dyes to form compounds that are potentially genotoxic. The human gastrointestinal tract harbors a diverse microbiota comprised of at least several thousand species. Both water-soluble and water-insoluble azo dyes can be reduced by intestinal bacteria. Some of the metabolites produced by intestinal microbiota have been shown to be carcinogenic to humans although the parent azo dyes may not be classified as being carcinogenic. Azoreductase activity is commonly found in intestinal bacteria. Three types of azoreductases have been characterized in bacteria. They are flavin dependent NADH preferred azoreductase, flavin dependent NADPH preferred azoreductase, and flavin free NADPH preferred azoreductase. This review highlights how azo dyes are metabolized by intestinal bacteria, mechanisms of azo reduction, and the potential contribution in the carcinogenesis/mutagenesis of the reduction of the azo dyes by intestinal microbiota. PMID:22201895

  7. Perfect merohedral twinning combined with noncrystallographic symmetry potentially causes the failure of molecular replacement with low-homology search models for the flavin-dependent halogenase HalX from Xanthomonas campestris.

    PubMed

    Buss, Maren; Geerds, Christina; Patschkowski, Thomas; Niehaus, Karsten; Niemann, Hartmut H

    2018-06-01

    Flavin-dependent halogenases can be used as biocatalysts because they regioselectively halogenate their substrates under mild reaction conditions. New halogenases with novel substrate specificities will add to the toolbox of enzymes available to organic chemists. HalX, the product of the xcc-b100_4193 gene, is a putative flavin-dependent halogenase from Xanthomonas campestris. The enzyme was recombinantly expressed and crystallized in order to aid in identifying its hitherto unknown substrate. Native data collected to a resolution of 2.5 Å showed indications of merohedral twinning in a hexagonal lattice. Attempts to solve the phase problem by molecular replacement failed. Here, a detailed analysis of the suspected twinning is presented. It is most likely that the crystals are trigonal (point group 3) and exhibit perfect hemihedral twinning so that they appear to be hexagonal (point group 6). As there are several molecules in the asymmetric unit, noncrystallographic symmetry may complicate twinning analysis and structure determination.

  8. Relationships between laser powers and photoacoustic signal intensities of flavin adenine dinucleotide and beta-carotene dissolved in solutions

    NASA Astrophysics Data System (ADS)

    Imakubo, Keiichi

    1994-10-01

    Ar ion laser-induced photoacoustic spectroscopy has been performed on 0.01 mu M flavin adenine dinucleotide in H2O and 0.01 mu M beta-carotene in n-hexane where the optical absorption spectroscopy is not applicable. On the basis of the linear relationships between laser powers and photoacoustic signal intensities up to 500 mW, it may be concluded that laser power ranging from 10 to 50 mW is required for the successful observation of photoacoustic signals without any photochemical or photobiological effects.

  9. Genome-Wide Characterization and Linkage Mapping of Simple Sequence Repeats in Mei (Prunus mume Sieb. et Zucc.)

    PubMed Central

    Sun, Lidan; Yang, Weiru; Zhang, Qixiang; Cheng, Tangren; Pan, Huitang; Xu, Zongda; Zhang, Jie; Chen, Chuguang

    2013-01-01

    Because of its popularity as an ornamental plant in East Asia, mei (Prunus mume Sieb. et Zucc.) has received increasing attention in genetic and genomic research with the recent shotgun sequencing of its genome. Here, we performed the genome-wide characterization of simple sequence repeats (SSRs) in the mei genome and detected a total of 188,149 SSRs occurring at a frequency of 794 SSR/Mb. Mononucleotide repeats were the most common type of SSR in genomic regions, followed by di- and tetranucleotide repeats. Most of the SSRs in coding sequences (CDS) were composed of tri- or hexanucleotide repeat motifs, but mononucleotide repeats were always the most common in intergenic regions. Genome-wide comparison of SSR patterns among the mei, strawberry (Fragaria vesca), and apple (Malus×domestica) genomes showed mei to have the highest density of SSRs, slightly higher than that of strawberry (608 SSR/Mb) and almost twice as high as that of apple (398 SSR/Mb). Mononucleotide repeats were the dominant SSR motifs in the three Rosaceae species. Using 144 SSR markers, we constructed a 670 cM-long linkage map of mei delimited into eight linkage groups (LGs), with an average marker distance of 5 cM. Seventy one scaffolds covering about 27.9% of the assembled mei genome were anchored to the genetic map, depending on which the macro-colinearity between the mei genome and Prunus T×E reference map was identified. The framework map of mei constructed provides a first step into subsequent high-resolution genetic mapping and marker-assisted selection for this ornamental species. PMID:23555708

  10. Mycobacterial nicotinate mononucleotide adenylyltransferase: Structure, mechanism, and implications for drug discovery

    DOE PAGES

    Rodionova, Irina A.; Zuccola, Harmon J.; Sorci, Leonardo; ...

    2015-01-28

    Nicotinate mononucleotide adenylyltransferase NadD is an essential enzyme in the biosynthesis of the NAD cofactor, which has been implicated as a target for developing new antimycobacterial therapies. Here we report the crystal structure of Mycobacterium tuberculosis NadD ( MtNadD) at a resolution of 2.4 Å. A remarkable new feature of the MtNadD structure, compared with other members of this enzyme family, is a 310 helix that locks the active site in an over-closed conformation. As a result, MtNadD is rendered inactive as it is topologically incompatible with substrate binding and catalysis. Directed mutagenesis was also used to further dissect themore » structural elements that contribute to the interactions of the two MtNadD substrates, i.e. ATP and nicotinic acid mononucleotide (NaMN). For inhibitory profiling of partially active mutants and wild type MtNadD, we used a small molecule inhibitor of MtNadD with moderate affinity ( Ki ~ 25 μM) and antimycobacterial activity (MIC 80) ~ 40-80 μM). This analysis revealed interferences with some of the residues in the NaMN binding subsite consistent with the competitive inhibition observed for the NaMN substrate (but not ATP). A detailed steady-state kinetic analysis of MtNadD suggests that ATP must first bind to allow efficient NaMN binding and catalysis. This sequential mechanism is consistent with the requirement of transition to catalytically competent (open) conformation hypothesized from structural modeling. A possible physiological significance of this mechanism is to enable the down-regulation of NAD synthesis under ATP-limiting dormancy conditions. Lastly, these findings point to a possible new strategy for designing inhibitors that lock the enzyme in the inactive over-closed conformation.« less

  11. Identification of a nicotinamide/nicotinate mononucleotide adenylyltransferase in Giardia lamblia (GlNMNAT).

    PubMed

    Forero-Baena, Nicolás; Sánchez-Lancheros, Diana; Buitrago, July Constanza; Bustos, Victor; Ramírez-Hernández, María Helena

    2015-01-01

    Giardia lamblia is an intestinal protozoan parasite that causes giardiasis, a disease of high prevalence in Latin America, Asia and Africa. Giardiasis leads to poor absorption of nutrients, severe electrolyte loss and growth retardation. In addition to its clinical importance, this parasite is of special biological interest due to its basal evolutionary position and simplified metabolism, which has not been studied thoroughly. One of the most important and conserved metabolic pathways is the biosynthesis of nicotinamide adenine dinucleotide (NAD). This molecule is widely known as a coenzyme in multiple redox reactions and as a substrate in cellular processes such as synthesis of Ca 2+ mobilizing agents, DNA repair and gene expression regulation. There are two pathways for NAD biosynthesis, which converge at the step catalyzed by nicotinamide/nicotinate mononucleotide adenylyltransferase (NMNAT, EC 2.7.7.1/18). Using bioinformatics tools, we found two NMNAT sequences in Giardia lamblia ( glnmnat-a and glnmnat-b ). We first verified the identity of the sequences in silico . Subsequently, glnmnat-a was cloned into an expression vector. The recombinant protein (His-GlNMNAT) was purified by nickel-affinity binding and was used in direct in vitro enzyme assays assessed by C18-HPLC, verifying adenylyltransferase activity with both nicotinamide (NMN) and nicotinic acid (NAMN) mononucleotides. Optimal reaction pH and temperature were 7.3 and 26 °C. Michaelis-Menten kinetics were observed for NMN and ATP, but saturation was not accomplished with NAMN, implying low affinity yet detectable activity with this substrate. Double-reciprocal plots showed no cooperativity for this enzyme. This represents an advance in the study of NAD metabolism in Giardia spp.

  12. Screening for microsatellite instability target genes in colorectal cancers

    PubMed Central

    Vilkki, S; Launonen, V; Karhu, A; Sistonen, P; Vastrik, I; Aaltonen, L

    2002-01-01

    Background: Defects in the DNA repair system lead to genetic instability because replication errors are not corrected. This type of genetic instability is a key event in the malignant progression of HNPCC and a subset of sporadic colon cancers and mutation rates are particularly high at short repetitive sequences. Somatic deletions of coding mononucleotide repeats have been detected, for example, in the TGFßRII and BAX genes, and recently many novel target genes for microsatellite instability (MSI) have been proposed. Novel target genes are likely to be discovered in the future. More data should be created on background mutation rates in MSI tumours to evaluate mutation rates observed in the candidate target genes. Methods: Mutation rates in 14 neutral intronic repeats were evaluated in MSI tumours. Bioinformatic searches combined with keywords related to cancer and tumour suppressor or CRC related gene homology were used to find new candidate MSI target genes. By comparison of mutation frequencies observed in intronic mononucleotide repeats versus exonic coding repeats of potential MSI target genes, the significance of the exonic mutations was estimated. Results: As expected, the length of an intronic mononucleotide repeat correlated positively with the number of slippages for both G/C and A/T repeats (p=0.0020 and p=0.0012, respectively). BRCA1, CtBP1, and Rb1 associated CtIP and other candidates were found in a bioinformatic search combined with keywords related to cancer. Sequencing showed a significantly increased mutation rate in the exonic A9 repeat of CtIP (25/109=22.9%) as compared with similar intronic repeats (p≤0.001). Conclusions: We propose a new candidate MSI target gene CtIP to be evaluated in further studies. PMID:12414815

  13. New Insights into the Phylogeny and Molecular Classification of Nicotinamide Mononucleotide Deamidases

    PubMed Central

    Sánchez-Carrón, Guiomar; Martínez-Moñino, Ana Belén; Sola-Carvajal, Agustín; Takami, Hideto; García-Carmona, Francisco; Sánchez-Ferrer, Álvaro

    2013-01-01

    Nicotinamide mononucleotide (NMN) deamidase is one of the key enzymes of the bacterial pyridine nucleotide cycle (PNC). It catalyzes the conversion of NMN to nicotinic acid mononucleotide, which is later converted to NAD+ by entering the Preiss-Handler pathway. However, very few biochemical data are available regarding this enzyme. This paper represents the first complete molecular characterization of a novel NMN deamidase from the halotolerant and alkaliphilic bacterium Oceanobacillus iheyensis (OiPncC). The enzyme was active over a broad pH range, with an optimum at pH 7.4, whilst maintaining 90 % activity at pH 10.0. Surprisingly, the enzyme was quite stable at such basic pH, maintaining 61 % activity after 21 days. As regard temperature, it had an optimum at 65 °C but its stability was better below 50 °C. OiPncC was a Michaelian enzyme towards its only substrate NMN, with a K m value of 0.18 mM and a kcat/K m of 2.1 mM-1 s-1. To further our understanding of these enzymes, a complete phylogenetic and structural analysis was carried out taking into account the two Pfam domains usually associated with them (MocF and CinA). This analysis sheds light on the evolution of NMN deamidases, and enables the classification of NMN deamidases into 12 different subgroups, pointing to a novel domain architecture never before described. Using a Logo representation, conserved blocks were determined, providing new insights on the crucial residues involved in the binding and catalysis of both CinA and MocF domains. The analysis of these conserved blocks within new protein sequences could permit the more efficient data curation of incoming NMN deamidases. PMID:24340054

  14. Absorption by DNA single strands of adenine isolated in vacuo: The role of multiple chromophores

    NASA Astrophysics Data System (ADS)

    Nielsen, Lisbeth Munksgaard; Pedersen, Sara Øvad; Kirketerp, Maj-Britt Suhr; Nielsen, Steen Brøndsted

    2012-02-01

    The degree of electronic coupling between DNA bases is a topic being up for much debate. Here we report on the intrinsic electronic properties of isolated DNA strands in vacuo free of solvent, which is a good starting point for high-level excited states calculations. Action spectra of DNA single strands of adenine reveal sign of exciton coupling between stacked bases from blueshifted absorption bands (˜3 nm) relative to that of the dAMP mononucleotide (one adenine base). The bands are blueshifted by about 10 nm compared to those of solvated strands, which is a shift similar to that for the adenine molecule and the dAMP mononucleotide. Desolvation has little effect on the bandwidth, which implies that inhomogenous broadening of the absorption bands in aqueous solution is of minor importance compared to, e.g., conformational disorder. Finally, at high photon energies, internal conversion competes with electron detachment since dissociation of the bare photoexcited ions on the microsecond time scale is measured.

  15. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells.

    PubMed

    Ratajczak, Joanna; Joffraud, Magali; Trammell, Samuel A J; Ras, Rosa; Canela, Núria; Boutant, Marie; Kulkarni, Sameer S; Rodrigues, Marcelo; Redpath, Philip; Migaud, Marie E; Auwerx, Johan; Yanes, Oscar; Brenner, Charles; Cantó, Carles

    2016-10-11

    NAD + is a vital redox cofactor and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Supplementation with NAD + precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we show that nicotinamide riboside kinase 1 (NRK1) is necessary and rate-limiting for the use of exogenous NR and NMN for NAD + synthesis. Using genetic gain- and loss-of-function models, we further demonstrate that the role of NRK1 in driving NAD + synthesis from other NAD + precursors, such as nicotinamide or nicotinic acid, is dispensable. Using stable isotope-labelled compounds, we confirm NMN is metabolized extracellularly to NR that is then taken up by the cell and converted into NAD + . Our results indicate that mammalian cells require conversion of extracellular NMN to NR for cellular uptake and NAD + synthesis, explaining the overlapping metabolic effects observed with the two compounds.

  16. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells

    PubMed Central

    Ratajczak, Joanna; Joffraud, Magali; Trammell, Samuel A. J.; Ras, Rosa; Canela, Núria; Boutant, Marie; Kulkarni, Sameer S.; Rodrigues, Marcelo; Redpath, Philip; Migaud, Marie E.; Auwerx, Johan; Yanes, Oscar; Brenner, Charles; Cantó, Carles

    2016-01-01

    NAD+ is a vital redox cofactor and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Supplementation with NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we show that nicotinamide riboside kinase 1 (NRK1) is necessary and rate-limiting for the use of exogenous NR and NMN for NAD+ synthesis. Using genetic gain- and loss-of-function models, we further demonstrate that the role of NRK1 in driving NAD+ synthesis from other NAD+ precursors, such as nicotinamide or nicotinic acid, is dispensable. Using stable isotope-labelled compounds, we confirm NMN is metabolized extracellularly to NR that is then taken up by the cell and converted into NAD+. Our results indicate that mammalian cells require conversion of extracellular NMN to NR for cellular uptake and NAD+ synthesis, explaining the overlapping metabolic effects observed with the two compounds. PMID:27725675

  17. Facile oxidation of leucomethylene blue and dihydroflavins by artemisinins: relationship with flavoenzyme function and antimalarial mechanism of action.

    PubMed

    Haynes, Richard K; Chan, Wing-Chi; Wong, Ho-Ning; Li, Ka-Yan; Wu, Wai-Keung; Fan, Kit-Man; Sung, Herman H Y; Williams, Ian D; Prosperi, Davide; Melato, Sergio; Coghi, Paolo; Monti, Diego

    2010-08-02

    The antimalarial drug methylene blue (MB) affects the redox behaviour of parasite flavin-dependent disulfide reductases such as glutathione reductase (GR) that control oxidative stress in the malaria parasite. The reduced flavin adenine dinucleotide cofactor FADH(2) initiates reduction to leucomethylene blue (LMB), which is oxidised by oxygen to generate reactive oxygen species (ROS) and MB. MB then acts as a subversive substrate for NADPH normally required to regenerate FADH(2) for enzyme function. The synergism between MB and the peroxidic antimalarial artemisinin derivative artesunate suggests that artemisinins have a complementary mode of action. We find that artemisinins are transformed by LMB generated from MB and ascorbic acid (AA) or N-benzyldihydronicotinamide (BNAH) in situ in aqueous buffer at physiological pH into single electron transfer (SET) rearrangement products or two-electron reduction products, the latter of which dominates with BNAH. Neither AA nor BNAH alone affects the artemisinins. The AA-MB SET reactions are enhanced under aerobic conditions, and the major products obtained here are structurally closely related to one such product already reported to form in an intracellular medium. A ketyl arising via SET with the artemisinin is invoked to explain their formation. Dihydroflavins generated from riboflavin (RF) and FAD by pretreatment with sodium dithionite are rapidly oxidised by artemisinin to the parent flavins. When catalytic amounts of RF, FAD, and other flavins are reduced in situ by excess BNAH or NAD(P)H in the presence of the artemisinins in the aqueous buffer, they are rapidly oxidised to the parent flavins with concomitant formation of two-electron reduction products from the artemisinins; regeneration of the reduced flavin by excess reductant maintains a catalytic cycle until the artemisinin is consumed. In preliminary experiments, we show that NADPH consumption in yeast GR with redox behaviour similar to that of parasite GR is enhanced by artemisinins, especially under aerobic conditions. Recombinant human GR is not affected. Artemisinins thus may act as antimalarial drugs by perturbing the redox balance within the malaria parasite, both by oxidising FADH(2) in parasite GR or other parasite flavoenzymes, and by initiating autoxidation of the dihydroflavin by oxygen with generation of ROS. Reduction of the artemisinin is proposed to occur via hydride transfer from LMB or the dihydroflavin to O1 of the peroxide. This hitherto unrecorded reactivity profile conforms with known structure-activity relationships of artemisinins, is consistent with their known ability to generate ROS in vivo, and explains the synergism between artemisinins and redox-active antimalarial drugs such as MB and doxorubicin. As the artemisinins appear to be relatively inert towards human GR, a putative model that accounts for the selective potency of artemisinins towards the malaria parasite also becomes apparent. Decisively, ferrous iron or carbon-centered free radicals cannot be involved, and the reactivity described herein reconciles disparate observations that are incompatible with the ferrous iron-carbon radical hypothesis for antimalarial mechanism of action. Finally, the urgent enquiry into the emerging resistance of the malaria parasite to artemisinins may now in one part address the possibilities either of structural changes taking place in parasite flavoenzymes that render the flavin cofactor less accessible to artemisinins or of an enhancement in the ability to use intra-erythrocytic human disulfide reductases required for maintenance of parasite redox balance.

  18. alpha Arg-237 in Methylophilus methylotrophus (sp. W3A1) electron-transferring flavoprotein affords approximately 200-millivolt stabilization of the FAD anionic semiquinone and a kinetic block on full reduction to the dihydroquinone.

    PubMed

    Talfournier, F; Munro, A W; Basran, J; Sutcliffe, M J; Daff, S; Chapman, S K; Scrutton, N S

    2001-06-08

    The midpoint reduction potentials of the FAD cofactor in wild-type Methylophilus methylotrophus (sp. W3A1) electron-transferring flavoprotein (ETF) and the alphaR237A mutant were determined by anaerobic redox titration. The FAD reduction potential of the oxidized-semiquinone couple in wild-type ETF (E'(1)) is +153 +/- 2 mV, indicating exceptional stabilization of the flavin anionic semiquinone species. Conversion to the dihydroquinone is incomplete (E'(2) < -250 mV), because of the presence of both kinetic and thermodynamic blocks on full reduction of the FAD. A structural model of ETF (Chohan, K. K., Scrutton, N. S., and Sutcliffe, M. J. (1998) Protein Pept. Lett. 5, 231-236) suggests that the guanidinium group of Arg-237, which is located over the si face of the flavin isoalloxazine ring, plays a key role in the exceptional stabilization of the anionic semiquinone in wild-type ETF. The major effect of exchanging alphaArg-237 for Ala in M. methylotrophus ETF is to engineer a remarkable approximately 200-mV destabilization of the flavin anionic semiquinone (E'(2) = -31 +/- 2 mV, and E'(1) = -43 +/- 2 mV). In addition, reduction to the FAD dihydroquinone in alphaR237A ETF is relatively facile, indicating that the kinetic block seen in wild-type ETF is substantially removed in the alphaR237A ETF. Thus, kinetic (as well as thermodynamic) considerations are important in populating the redox forms of the protein-bound flavin. Additionally, we show that electron transfer from trimethylamine dehydrogenase to alphaR237A ETF is severely compromised, because of impaired assembly of the electron transfer complex.

  19. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool

    PubMed Central

    Zhang, Jian; Frerman, Frank E.; Kim, Jung-Ja P.

    2006-01-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a 4Fe4S flavoprotein located in the inner mitochondrial membrane. It catalyzes ubiquinone (UQ) reduction by ETF, linking oxidation of fatty acids and some amino acids to the mitochondrial respiratory chain. Deficiencies in ETF or ETF-QO result in multiple acyl-CoA dehydrogenase deficiency, a human metabolic disease. Crystal structures of ETF-QO with and without bound UQ were determined, and they are essentially identical. The molecule forms a single structural domain. Three functional regions bind FAD, the 4Fe4S cluster, and UQ and are closely packed and share structural elements, resulting in no discrete structural domains. The UQ-binding pocket consists mainly of hydrophobic residues, and UQ binding differs from that of other UQ-binding proteins. ETF-QO is a monotopic integral membrane protein. The putative membrane-binding surface contains an α-helix and a β-hairpin, forming a hydrophobic plateau. The UQ—flavin distance (8.5 Å) is shorter than the UQ—cluster distance (18.8 Å), and the very similar redox potentials of FAD and the cluster strongly suggest that the flavin, not the cluster, transfers electrons to UQ. Two possible electron transfer paths can be envisioned. First, electrons from the ETF flavin semiquinone may enter the ETF-QO flavin one by one, followed by rapid equilibration with the cluster. Alternatively, electrons may enter via the cluster, followed by equilibration between centers. In both cases, when ETF-QO is reduced to a two-electron reduced state (one electron at each redox center), the enzyme is primed to reduce UQ to ubiquinol via FAD. PMID:17050691

  20. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool.

    PubMed

    Zhang, Jian; Frerman, Frank E; Kim, Jung-Ja P

    2006-10-31

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a 4Fe4S flavoprotein located in the inner mitochondrial membrane. It catalyzes ubiquinone (UQ) reduction by ETF, linking oxidation of fatty acids and some amino acids to the mitochondrial respiratory chain. Deficiencies in ETF or ETF-QO result in multiple acyl-CoA dehydrogenase deficiency, a human metabolic disease. Crystal structures of ETF-QO with and without bound UQ were determined, and they are essentially identical. The molecule forms a single structural domain. Three functional regions bind FAD, the 4Fe4S cluster, and UQ and are closely packed and share structural elements, resulting in no discrete structural domains. The UQ-binding pocket consists mainly of hydrophobic residues, and UQ binding differs from that of other UQ-binding proteins. ETF-QO is a monotopic integral membrane protein. The putative membrane-binding surface contains an alpha-helix and a beta-hairpin, forming a hydrophobic plateau. The UQ-flavin distance (8.5 A) is shorter than the UQ-cluster distance (18.8 A), and the very similar redox potentials of FAD and the cluster strongly suggest that the flavin, not the cluster, transfers electrons to UQ. Two possible electron transfer paths can be envisioned. First, electrons from the ETF flavin semiquinone may enter the ETF-QO flavin one by one, followed by rapid equilibration with the cluster. Alternatively, electrons may enter via the cluster, followed by equilibration between centers. In both cases, when ETF-QO is reduced to a two-electron reduced state (one electron at each redox center), the enzyme is primed to reduce UQ to ubiquinol via FAD.

  1. Conformational Changes of NADPH-Cytochrome P450 Oxidoreductase Are Essential for Catalysis and Cofactor Binding*

    PubMed Central

    Xia, Chuanwu; Hamdane, Djemel; Shen, Anna L.; Choi, Vivian; Kasper, Charles B.; Pearl, Naw May; Zhang, Haoming; Im, Sang-Choul; Waskell, Lucy; Kim, Jung-Ja P.

    2011-01-01

    The crystal structure of NADPH-cytochrome P450 reductase (CYPOR) implies that a large domain movement is essential for electron transfer from NADPH via FAD and FMN to its redox partners. To test this hypothesis, a disulfide bond was engineered between residues Asp147 and Arg514 in the FMN and FAD domains, respectively. The cross-linked form of this mutant protein, designated 147CC514, exhibited a significant decrease in the rate of interflavin electron transfer and large (≥90%) decreases in rates of electron transfer to its redox partners, cytochrome c and cytochrome P450 2B4. Reduction of the disulfide bond restored the ability of the mutant to reduce its redox partners, demonstrating that a conformational change is essential for CYPOR function. The crystal structures of the mutant without and with NADP+ revealed that the two flavin domains are joined by a disulfide linkage and that the relative orientations of the two flavin rings are twisted ∼20° compared with the wild type, decreasing the surface contact area between the two flavin rings. Comparison of the structures without and with NADP+ shows movement of the Gly631–Asn635 loop. In the NADP+-free structure, the loop adopts a conformation that sterically hinders NADP(H) binding. The structure with NADP+ shows movement of the Gly631–Asn635 loop to a position that permits NADP(H) binding. Furthermore, comparison of these mutant and wild type structures strongly suggests that the Gly631–Asn635 loop movement controls NADPH binding and NADP+ release; this loop movement in turn facilitates the flavin domain movement, allowing electron transfer from FMN to the CYPOR redox partners. PMID:21345800

  2. Identification of a flavin-containing S-oxygenating monooxygenase involved in alliin biosynthesis in garlic.

    PubMed

    Yoshimoto, Naoko; Onuma, Misato; Mizuno, Shinya; Sugino, Yuka; Nakabayashi, Ryo; Imai, Shinsuke; Tsuneyoshi, Tadamitsu; Sumi, Shin-ichiro; Saito, Kazuki

    2015-09-01

    S-Alk(en)yl-l-cysteine sulfoxides are cysteine-derived secondary metabolites highly accumulated in the genus Allium. Despite pharmaceutical importance, the enzymes that contribute to the biosynthesis of S-alk-(en)yl-l-cysteine sulfoxides in Allium plants remain largely unknown. Here, we report the identification of a flavin-containing monooxygenase, AsFMO1, in garlic (Allium sativum), which is responsible for the S-oxygenation reaction in the biosynthesis of S-allyl-l-cysteine sulfoxide (alliin). Recombinant AsFMO1 protein catalyzed the stereoselective S-oxygenation of S-allyl-l-cysteine to nearly exclusively yield (RC SS )-S-allylcysteine sulfoxide, which has identical stereochemistry to the major natural form of alliin in garlic. The S-oxygenation reaction catalyzed by AsFMO1 was dependent on the presence of nicotinamide adenine dinucleotide phosphate (NADPH) and flavin adenine dinucleotide (FAD), consistent with other known flavin-containing monooxygenases. AsFMO1 preferred S-allyl-l-cysteine to γ-glutamyl-S-allyl-l-cysteine as the S-oxygenation substrate, suggesting that in garlic, the S-oxygenation of alliin biosynthetic intermediates primarily occurs after deglutamylation. The transient expression of green fluorescent protein (GFP) fusion proteins indicated that AsFMO1 is localized in the cytosol. AsFMO1 mRNA was accumulated in storage leaves of pre-emergent nearly sprouting bulbs, and in various tissues of sprouted bulbs with green foliage leaves. Taken together, our results suggest that AsFMO1 functions as an S-allyl-l-cysteine S-oxygenase, and contributes to the production of alliin both through the conversion of stored γ-glutamyl-S-allyl-l-cysteine to alliin in storage leaves during sprouting and through the de novo biosynthesis of alliin in green foliage leaves. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  3. Hyperthermophilic Archaeon Thermococcus kodakarensis Utilizes a Four-Step Pathway for NAD+ Salvage through Nicotinamide Deamination.

    PubMed

    Hachisuka, Shin-Ichi; Sato, Takaaki; Atomi, Haruyuki

    2018-06-01

    Many organisms possess pathways that regenerate NAD + from its degradation products, and two pathways are known to salvage NAD + from nicotinamide (Nm). One is a four-step pathway that proceeds through deamination of Nm to nicotinic acid (Na) by Nm deamidase and phosphoribosylation to nicotinic acid mononucleotide (NaMN), followed by adenylylation and amidation. Another is a two-step pathway that does not involve deamination and directly proceeds with the phosphoribosylation of Nm to nicotinamide mononucleotide (NMN), followed by adenylylation. Judging from genome sequence data, the hyperthermophilic archaeon Thermococcus kodakarensis is supposed to utilize the four-step pathway, but the fact that the adenylyltransferase encoded by TK0067 recognizes both NMN and NaMN also raises the possibility of a two-step salvage mechanism. Here, we examined the substrate specificity of the recombinant TK1676 protein, annotated as nicotinic acid phosphoribosyltransferase. The TK1676 protein displayed significant activity toward Na and phosphoribosyl pyrophosphate (PRPP) and only trace activity with Nm and PRPP. We further performed genetic analyses on TK0218 (quinolinic acid phosphoribosyltransferase) and TK1650 (Nm deamidase), involved in de novo biosynthesis and four-step salvage of NAD + , respectively. The ΔTK0218 mutant cells displayed growth defects in a minimal synthetic medium, but growth was fully restored with the addition of Na or Nm. The ΔTK0218 ΔTK1650 mutant cells did not display growth in the minimal medium, and growth was restored with the addition of Na but not Nm. The enzymatic and genetic analyses strongly suggest that NAD + salvage in T. kodakarensis requires deamination of Nm and proceeds through the four-step pathway. IMPORTANCE Hyperthermophiles must constantly deal with increased degradation rates of their biomolecules due to their high growth temperatures. Here, we identified the pathway that regenerates NAD + from nicotinamide (Nm) in the hyperthermophilic archaeon Thermococcus kodakarensis The organism utilizes a four-step pathway that initially hydrolyzes the amide bond of Nm to generate nicotinic acid (Na), followed by phosphoribosylation, adenylylation, and amidation. Although the two-step pathway, consisting of only phosphoribosylation of Nm and adenylylation, seems to be more efficient, Nm mononucleotide in the two-step pathway is much more thermolabile than Na mononucleotide, the corresponding intermediate in the four-step pathway. Although NAD + itself is thermolabile, this may represent an example of a metabolism that has evolved to avoid the use of thermolabile intermediates. Copyright © 2018 American Society for Microbiology.

  4. Flavoenzymes: Versatile Catalysts in Biosynthetic Pathways

    PubMed Central

    Walsh, Christopher T.; Wencewicz, Timothy A.

    2012-01-01

    Riboflavin-based coenzymes, tightly bound to enzymes catalyzing substrate oxidations and reductions, enable an enormous range of chemical transformations in biosynthetic pathways. Flavoenzymes catalyze substrate oxidations involving amine and alcohol oxidations and desaturations to olefins, the latter setting up Diels-Alder cyclizations in lovastatin and solanapyrone biosyntheses. Both C4a and N5 of the flavin coenzymes are sites for covalent adduct formation. For example, the reactivity of dihydroflavins with molecular oxygen leads to flavin-4a-OOH adducts which then carry out a diverse range of oxygen transfers, including Baeyer-Villiger type ring expansions, olefin epoxidations, halogenations via transient HOCl generation, and an oxidative Favorskii rerrangement during enterocin assembly. PMID:23051833

  5. Flavoenzymes: versatile catalysts in biosynthetic pathways.

    PubMed

    Walsh, Christopher T; Wencewicz, Timothy A

    2013-01-01

    Riboflavin-based coenzymes, tightly bound to enzymes catalyzing substrate oxidations and reductions, enable an enormous range of chemical transformations in biosynthetic pathways. Flavoenzymes catalyze substrate oxidations involving amine and alcohol oxidations and desaturations to olefins, the latter setting up Diels-Alder cyclizations in lovastatin and solanapyrone biosyntheses. Both C(4a) and N(5) of the flavin coenzymes are sites for covalent adduct formation. For example, the reactivity of dihydroflavins with molecular oxygen leads to flavin-4a-OOH adducts which then carry out a diverse range of oxygen transfers, including Baeyer-Villiger type ring expansions, olefin epoxidations, halogenations via transient HOCl generation, and an oxidative Favorskii rerrangement during enterocin assembly.

  6. Role of Ser-257 in the sliding mechanism of NADP(H) in the reaction catalyzed by the Aspergillus fumigatus flavin-dependent ornithine N5-monooxygenase SidA.

    PubMed

    Shirey, Carolyn; Badieyan, Somayesadat; Sobrado, Pablo

    2013-11-08

    SidA (siderophore A) is a flavin-dependent N-hydroxylating monooxygenase that is essential for virulence in Aspergillus fumigatus. SidA catalyzes the NADPH- and oxygen-dependent formation of N(5)-hydroxyornithine. In this reaction, NADPH reduces the flavin, and the resulting NADP(+) is the last product to be released. The presence of NADP(+) is essential for activity, as it is required for stabilization of the C4a-hydroperoxyflavin, which is the hydroxylating species. As part of our efforts to determine the molecular details of the role of NADP(H) in catalysis, we targeted Ser-257 for site-directed mutagenesis and performed extensive characterization of the S257A enzyme. Using a combination of steady-state and stopped-flow kinetic experiments, substrate analogs, and primary kinetic isotope effects, we show that the interaction between Ser-257 and NADP(H) is essential for stabilization of the C4a-hydroperoxyflavin. Molecular dynamics simulation results suggest that Ser-257 functions as a pivot point, allowing the nicotinamide of NADP(+) to slide into position for stabilization of the C4a-hydroperoxyflavin.

  7. Absorption and luminescence spectroscopy of mass-selected flavin adenine dinucleotide mono-anions

    NASA Astrophysics Data System (ADS)

    Giacomozzi, L.; Kjær, C.; Langeland Knudsen, J.; Andersen, L. H.; Brøndsted Nielsen, S.; Stockett, M. H.

    2018-06-01

    We report the absorption profile of isolated Flavin Adenine Dinucleotide (FAD) mono-anions recorded using photo-induced dissociation action spectroscopy. In this charge state, one of the phosphoric acid groups is deprotonated and the chromophore itself is in its neutral oxidized state. These measurements cover the first four optical transitions of FAD with excitation energies from 2.3 to 6.0 eV (210-550 nm). The S0 → S2 transition is strongly blue shifted relative to aqueous solution, supporting the view that this transition has a significant charge-transfer character. The remaining bands are close to their solution-phase positions. This confirms that the large discrepancy between quantum chemical calculations of vertical transition energies and solution-phase band maxima cannot be explained by solvent effects. We also report the luminescence spectrum of FAD mono-anions in vacuo. The gas-phase Stokes shift for S1 is 3000 cm-1, which is considerably larger than any previously reported for other molecular ions and consistent with a significant displacement of the ground and excited state potential energy surfaces. Consideration of the vibronic structure is thus essential for simulating the absorption and luminescence spectra of flavins.

  8. New Role of Flavin as a General Acid-Base Catalyst with No Redox Function in Type 2 Isopentenyl-diphosphate Isomerase*S⃞

    PubMed Central

    Unno, Hideaki; Yamashita, Satoshi; Ikeda, Yosuke; Sekiguchi, Shin-ya; Yoshida, Norie; Yoshimura, Tohru; Kusunoki, Masami; Nakayama, Toru; Nishino, Tokuzo; Hemmi, Hisashi

    2009-01-01

    Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we report the crystal structures of the substrate-free and complex forms of type 2 isopentenyl-diphosphate isomerase from the thermoacidophilic archaeon Sulfolobus shibatae, not only in the oxidized state but also in the reduced state. Based on the active-site structures of the reduced FMN-substrate-enzyme ternary complexes, which are in the active state, and on the data from site-directed mutagenesis at highly conserved charged or polar amino acid residues around the active site, we demonstrate that only reduced FMN, not amino acid residues, can catalyze proton addition/elimination required for the isomerase reaction. This discovery is the first evidence for this long suspected, but previously unobserved, role of flavins just as a general acid-base catalyst without playing any redox roles, and thereby expands the known functions of these versatile coenzymes. PMID:19158086

  9. New role of flavin as a general acid-base catalyst with no redox function in type 2 isopentenyl-diphosphate isomerase.

    PubMed

    Unno, Hideaki; Yamashita, Satoshi; Ikeda, Yosuke; Sekiguchi, Shin-Ya; Yoshida, Norie; Yoshimura, Tohru; Kusunoki, Masami; Nakayama, Toru; Nishino, Tokuzo; Hemmi, Hisashi

    2009-04-03

    Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we report the crystal structures of the substrate-free and complex forms of type 2 isopentenyl-diphosphate isomerase from the thermoacidophilic archaeon Sulfolobus shibatae, not only in the oxidized state but also in the reduced state. Based on the active-site structures of the reduced FMN-substrate-enzyme ternary complexes, which are in the active state, and on the data from site-directed mutagenesis at highly conserved charged or polar amino acid residues around the active site, we demonstrate that only reduced FMN, not amino acid residues, can catalyze proton addition/elimination required for the isomerase reaction. This discovery is the first evidence for this long suspected, but previously unobserved, role of flavins just as a general acid-base catalyst without playing any redox roles, and thereby expands the known functions of these versatile coenzymes.

  10. Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zou, Long; Lu, Zhisong; Huang, Yunhong; Long, Zhong-er; Qiao, Yan

    2017-08-01

    An efficient microbial electrocatalysis in microbial fuel cells (MFCs) needs both high loading of microbes (biocatalysts) and robust interfacial electron transfer from microbes to electrode. Herein a nanoporous molybdenum carbide (Mo2C) functionalized carbon felt electrode with rich 3D hierarchical porous architecture is applied as MFC anode to achieve superior electrocatalytic performance. The nanoporous Mo2C functionalized anode exhibits strikingly improved microbial electrocatalysis in MFCs with 5-fold higher power density and long-term stability of electricity production. The great enhancement is attributed to the introduction of rough Mo2C nanostructural interface into macroporous carbon architecture for promoting microbial growth with great excretion of endogenous electron shuttles (flavins) and rich available nanopores for enlarging electrochemically active surface area. Importantly, the nanoporous Mo2C functionalized anode is revealed for the first time to have unique electrocatalytic activity towards redox reaction of flavins with more negative redox potential, indicating a more favourable thermodynamic driving force for anodic electron transfer. This work not only provides a promising electrode for high performance MFCs but also brings up a new insight into the effect of nanostructured materials on interfacial bioelectrocatalysis.

  11. Humic acids facilitated microbial reduction of polymeric Pu(IV) under anaerobic conditions.

    PubMed

    Xie, Jinchuan; Liang, Wei; Lin, Jianfeng; Zhou, Xiaohua; Li, Mei

    2018-01-01

    Flavins and humic substances have been extensively studied with emphasis on their ability to transfer extracellular electrons to insoluble metal oxides. Nevertheless, whether the low-solubility Pu(IV) polymers are microbially reduced to aqueous Pu(III) remains uncertain. Experiments were conducted under anaerobic and slightly alkaline conditions to study the difference between humic acids and flavins to transport extracellular electrons to Pu(IV) polymers. Our study demonstrates that Shewanella putrefaciens was unable to directly reduce polymeric Pu(IV) with a notably low reduction rate (3.4×10 -12 mol/L Pu(III) aq within 144h). The relatively high redox potential of flavins reveals the thermodynamically unfavorable reduction: E h (PuO 2 (am)/Pu 3+ )

  12. YCL047C/POF1 Is a Novel Nicotinamide Mononucleotide Adenylyltransferase (NMNAT) in Saccharomyces cerevisiae*

    PubMed Central

    Kato, Michiko; Lin, Su-Ju

    2014-01-01

    NAD+ is an essential metabolic cofactor involved in various cellular biochemical processes. Nicotinamide riboside (NR) is an endogenously produced key pyridine metabolite that plays important roles in the maintenance of NAD+ pool. Using a NR-specific cell-based screen, we identified mutants that exhibit altered NR release phenotype. Yeast cells lacking the ORF YCL047C/POF1 release considerably more NR compared with wild type, suggesting that POF1 plays an important role in NR/NAD+ metabolism. The amino acid sequence of Pof1 indicates that it is a putative nicotinamide mononucleotide adenylyltransferase (NMNAT). Unlike other yeast NMNATs, Pof1 exhibits NMN-specific adenylyltransferase activity. Deletion of POF1 significantly lowers NAD+ levels and decreases the efficiency of NR utilization, resistance to oxidative stress, and NR-induced life span extension. We also show that NR is constantly produced by multiple nucleotidases and that the intracellular NR pools are likely to be compartmentalized, which contributes to the regulation of NAD+ homeostasis. Our findings may contribute to the understanding of the molecular basis and regulation of NAD+ metabolism in higher eukaryotes. PMID:24759102

  13. Multidomain flavin-dependent sulfhydryl oxidases.

    PubMed

    Coppock, Donald L; Thorpe, Colin

    2006-01-01

    Eukaryotic flavin-dependent sulfhydryl oxidases catalyze oxidative protein folding with the generation of disulfides and the reduction of oxygen to hydrogen peroxide. This review deals principally with the Quiescinsulfhydryl oxidases (QSOX) that are found in multiple forms in multicellular organisms and singly in a number of protozoan parasites. QSOX is an ancient fusion of thioredoxin domains and an FAD-binding module, ERV1/ALR. Interdomain disulfide exchanges transmit reducing equivalents from substrates to the flavin cofactor and thence to molecular oxygen. The in vitro substrate specificity of avian QSOX1 and the likely substrates of QSOXs in vivo are discussed. The location of QSOX immunoreactivity and mRNA expression levels in human cells and tissues is reviewed. Generally, there is a marked association of QSOX1 expression with cell types that have a high secretory load of disulfide-containing peptides and proteins. The abundance of sulfhydryl oxidases in the islets of Langerhans suggests that oxidative protein folding may directly contribute to the oxidative stress believed to be a factor in the progression to type II diabetes. Finally, the structure and mechanism of QSOX proteins is compared to their smaller stand-alone cousins: yeast ERV1p and ERV2p, the mammalian augmenter of liver regeneration (ALR), and the viral ALR homologs.

  14. A fluorescence polarization binding assay to identify inhibitors of flavin-dependent monooxygenases

    PubMed Central

    Qi, Jun; Kizjakina, Karina; Robinson, Reeder; Tolani, Karishma; Sobrado, Pablo

    2014-01-01

    N-hydroxylating monooxygenases (NMOs) are essential for pathogenesis in fungi and mycobacteria. NMOs catalyze the hydroxylation of lysine and ornithine in the biosynthesis of hydroxamate-containing siderophores. Inhibition of kynurenine monooxygenase (KMO), which catalyzes the conversion of l-kynurenine to 3-hydroxykynurenine, alleviates neurodegenerative disorders such as Huntington’s and Alzheimer’s diseases and brain infections caused by the parasite Trypanosoma brucei. These enzymes are examples of flavin-dependent monooxygenases, which are validated drug targets. Here, we describe the development and optimization of a fluorescence polarization assay to identify potential inhibitors of flavin monooxygenases. Fluorescently-labeled ADP molecules were synthesized and tested. An ADP-TAMRA chromophore bound to KMO with a Kd value of 0.60 ± 0.05 μM and to the NMOs from Aspergillus fumigatus and Mycobacterium smegmatis with Kd values of 2.1 ± 0.2 μM and 4.0 ± 0.2 μM, respectively. The assay was tested in competitive binding experiments with substrates and products of KMO and an NMO. Furthermore, we showed that this assay can be used to identify inhibitors of NMOs. A Z’-factor of 0.77 was calculated and we show that the assay exhibits good tolerance to temperature, incubation time, and DMSO concentration. PMID:22410281

  15. Spin Biochemistry Modulates Reactive Oxygen Species (ROS) Production by Radio Frequency Magnetic Fields

    PubMed Central

    Usselman, Robert J.; Hill, Iain; Singel, David J.; Martino, Carlos F.

    2014-01-01

    The effects of weak magnetic fields on the biological production of reactive oxygen species (ROS) from intracellular superoxide (O2 •−) and extracellular hydrogen peroxide (H2O2) were investigated in vitro with rat pulmonary arterial smooth muscle cells (rPASMC). A decrease in O2 •− and an increase in H2O2 concentrations were observed in the presence of a 7 MHz radio frequency (RF) at 10 μTRMS and static 45 μT magnetic fields. We propose that O2 •− and H2O2 production in some metabolic processes occur through singlet-triplet modulation of semiquinone flavin (FADH•) enzymes and O2 •− spin-correlated radical pairs. Spin-radical pair products are modulated by the 7 MHz RF magnetic fields that presumably decouple flavin hyperfine interactions during spin coherence. RF flavin hyperfine decoupling results in an increase of H2O2 singlet state products, which creates cellular oxidative stress and acts as a secondary messenger that affects cellular proliferation. This study demonstrates the interplay between O2 •− and H2O2 production when influenced by RF magnetic fields and underscores the subtle effects of low-frequency magnetic fields on oxidative metabolism, ROS signaling, and cellular growth. PMID:24681944

  16. A fluorescence polarization binding assay to identify inhibitors of flavin-dependent monooxygenases.

    PubMed

    Qi, Jun; Kizjakina, Karina; Robinson, Reeder; Tolani, Karishma; Sobrado, Pablo

    2012-06-01

    N-Hydroxylating monooxygenases (NMOs) are essential for pathogenesis in fungi and bacteria. NMOs catalyze the hydroxylation of sine and ornithine in the biosynthesis of hydroxamate-containing siderophores. Inhibition of kynurenine monooxygenase (KMO), which catalyzes the conversion of kynurenine to 3-hydroxykynurenine, alleviates neurodegenerative disorders such as Huntington's and Alzheimer's diseases and brain infections caused by the parasite Trypanosoma brucei. These enzymes are examples of flavin-dependent monooxygenases, which are validated drug targets. Here, we describe the development and optimization of a fluorescence polarization assay to identify potential inhibitors of flavin-dependent monooxygenases. Fluorescently labeled ADP molecules were synthesized and tested. An ADP-TAMRA chromophore bound to KMO with a K(d) value of 0.60 ± 0.05 μM and to the NMOs from Aspergillus fumigatus and Mycobacterium smegmatis with K(d) values of 2.1 ± 0.2 and 4.0 ± 0.2 μM, respectively. The assay was tested in competitive binding experiments with substrates and products of KMO and an NMO. Furthermore, we show that this assay can be used to identify inhibitors of NMOs. A Z' factor of 0.77 was calculated, and we show that the assay exhibits good tolerance to temperature, incubation time, and dimethyl sulfoxide concentration. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Binding of the human "electron transferring flavoprotein" (ETF) to the medium chain acyl-CoA dehydrogenase (MCAD) involves an arginine and histidine residue.

    PubMed

    Parker, Antony R

    2003-10-01

    The interaction between the "electron transferring flavoprotein" (ETF) and medium chain acyl-CoA dehydrogenase (MCAD) enables successful flavin to flavin electron transfer, crucial for the beta-oxidation of fatty acids. The exact biochemical determinants for ETF binding to MCAD are unknown. Here we show that binding of human ETF, to MCAD, was inhibited by 2,3-butanedione and diethylpyrocarbonate (DEPC) and reversed by incubation with free arginine and hydroxylamine respectively. Spectral analyses of native ETF vs modified ETF suggested that flavin binding was not affected and that the loss of ETF activity with MCAD involved modification of one ETF arginine residue and one ETF histidine residue respectively. MCAD and octanoyl-CoA protected ETF against inactivation by both 2,3-butanedione and DEPC indicating that the arginine and histidine residues are present in or around the MCAD binding site. Comparison of exposed arginine and histidine residues among different ETF species, however, indicates that arginine residues are highly conserved but that histidine residues are not. These results lead us to conclude that this single arginine residue is essential for the binding of ETF to MCAD, but that the single histidine residue, although involved, is not.

  18. Evidence for Tautomerisation of Glutamine in BLUF Blue Light Receptors by Vibrational Spectroscopy and Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Domratcheva, Tatiana; Hartmann, Elisabeth; Schlichting, Ilme; Kottke, Tilman

    2016-03-01

    BLUF (blue light sensor using flavin) domains regulate the activity of various enzymatic effector domains in bacteria and euglenids. BLUF features a unique photoactivation through restructuring of the hydrogen-bonding network as opposed to a redox reaction or an isomerization of the chromophore. A conserved glutamine residue close to the flavin chromophore plays a central role in the light response, but the underlying modification is still unclear. We labelled this glutamine with 15N in two representative BLUF domains and performed time-resolved infrared double difference spectroscopy. The assignment of the signals was conducted by extensive quantum chemical calculations on large models with 187 atoms reproducing the UV-vis and infrared signatures of BLUF photoactivation. In the dark state, the comparatively low frequency of 1,667 cm-1 is assigned to the glutamine C=O accepting a hydrogen bond from tyrosine. In the light state, the signature of a tautomerised glutamine was extracted with the C=N stretch at ~1,691 cm-1 exhibiting the characteristic strong downshift by 15N labelling. Moreover, an indirect isotope effect on the flavin C4=O stretch was found. We conclude that photoactivation of the BLUF receptor does not only involve a rearrangement of hydrogen bonds but includes a change in covalent bonds of the protein.

  19. New chloroplast microsatellite markers suitable for assessing genetic diversity of Lolium perenne and other related grass species

    PubMed Central

    Diekmann, Kerstin; Hodkinson, Trevor R.; Barth, Susanne

    2012-01-01

    Background and Aims Lolium perenne (perennial ryegrass) is the most important forage grass species of temperate regions. We have previously released the chloroplast genome sequence of L. perenne ‘Cashel’. Here nine chloroplast microsatellite markers are published, which were designed based on knowledge about genetically variable regions within the L. perenne chloroplast genome. These markers were successfully used for characterizing the genetic diversity in Lolium and different grass species. Methods Chloroplast genomes of 14 Poaceae taxa were screened for mononucleotide microsatellite repeat regions and primers designed for their amplification from nine loci. The potential of these markers to assess genetic diversity was evaluated on a set of 16 Irish and 15 European L. perenne ecotypes, nine L. perenne cultivars, other Lolium taxa and other grass species. Key Results All analysed Poaceae chloroplast genomes contained more than 200 mononucleotide repeats (chloroplast simple sequence repeats, cpSSRs) of at least 7 bp in length, concentrated mainly in the large single copy region of the genome. Nucleotide composition varied considerably among subfamilies (with Pooideae biased towards poly A repeats). The nine new markers distinguish L. perenne from all non-Lolium taxa. TeaCpSSR28 was able to distinguish between all Lolium species and Lolium multiflorum due to an elongation of an A8 mononucleotide repeat in L. multiflorum. TeaCpSSR31 detected a considerable degree of microsatellite length variation and single nucleotide polymorphism. TeaCpSSR27 revealed variation within some L. perenne accessions due to a 44-bp indel and was hence readily detected by simple agarose gel electrophoresis. Smaller insertion/deletion events or single nucleotide polymorphisms detected by these new markers could be visualized by polyacrylamide gel electrophoresis or DNA sequencing, respectively. Conclusions The new markers are a valuable tool for plant breeding companies, seed testing agencies and the wider scientific community due to their ability to monitor genetic diversity within breeding pools, to trace maternal inheritance and to distinguish closely related species. PMID:22419761

  20. New chloroplast microsatellite markers suitable for assessing genetic diversity of Lolium perenne and other related grass species.

    PubMed

    Diekmann, Kerstin; Hodkinson, Trevor R; Barth, Susanne

    2012-11-01

    Lolium perenne (perennial ryegrass) is the most important forage grass species of temperate regions. We have previously released the chloroplast genome sequence of L. perenne 'Cashel'. Here nine chloroplast microsatellite markers are published, which were designed based on knowledge about genetically variable regions within the L. perenne chloroplast genome. These markers were successfully used for characterizing the genetic diversity in Lolium and different grass species. Chloroplast genomes of 14 Poaceae taxa were screened for mononucleotide microsatellite repeat regions and primers designed for their amplification from nine loci. The potential of these markers to assess genetic diversity was evaluated on a set of 16 Irish and 15 European L. perenne ecotypes, nine L. perenne cultivars, other Lolium taxa and other grass species. All analysed Poaceae chloroplast genomes contained more than 200 mononucleotide repeats (chloroplast simple sequence repeats, cpSSRs) of at least 7 bp in length, concentrated mainly in the large single copy region of the genome. Nucleotide composition varied considerably among subfamilies (with Pooideae biased towards poly A repeats). The nine new markers distinguish L. perenne from all non-Lolium taxa. TeaCpSSR28 was able to distinguish between all Lolium species and Lolium multiflorum due to an elongation of an A(8) mononucleotide repeat in L. multiflorum. TeaCpSSR31 detected a considerable degree of microsatellite length variation and single nucleotide polymorphism. TeaCpSSR27 revealed variation within some L. perenne accessions due to a 44-bp indel and was hence readily detected by simple agarose gel electrophoresis. Smaller insertion/deletion events or single nucleotide polymorphisms detected by these new markers could be visualized by polyacrylamide gel electrophoresis or DNA sequencing, respectively. The new markers are a valuable tool for plant breeding companies, seed testing agencies and the wider scientific community due to their ability to monitor genetic diversity within breeding pools, to trace maternal inheritance and to distinguish closely related species.

  1. Characterization and mutational analysis of a nicotinamide mononucleotide deamidase from Agrobacterium tumefaciens showing high thermal stability and catalytic efficiency

    PubMed Central

    Martínez-Moñino, Ana Belén; Zapata-Pérez, Rubén; García-Saura, Antonio Ginés; Gil-Ortiz, Fernando; Pérez-Gilabert, Manuela

    2017-01-01

    NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organismal homeostasis. Among the enzymes involved in its recycling, nicotinamide mononucleotide (NMN) deamidase is one of the key players in the bacterial pyridine nucleotide cycle, where it catalyzes the conversion of NMN into nicotinic acid mononucleotide (NaMN), which is later converted to NAD+ in the Preiss-Handler pathway. The biochemical characteristics of bacterial NMN deamidases have been poorly studied, although they have been investigated in some firmicutes, gamma-proteobacteria and actinobacteria. In this study, we present the first characterization of an NMN deamidase from an alphaproteobacterium, Agrobacterium tumefaciens (AtCinA). The enzyme was active over a broad pH range, with an optimum at pH 7.5. Moreover, the enzyme was quite stable at neutral pH, maintaining 55% of its activity after 14 days. Surprisingly, AtCinA showed the highest optimal (80°C) and melting (85°C) temperatures described for an NMN deamidase. The above described characteristics, together with its high catalytic efficiency, make AtCinA a promising biocatalyst for the production of pure NaMN. In addition, six mutants (C32A, S48A, Y58F, Y58A, T105A and R145A) were designed to study their involvement in substrate binding, and two (S31A and K63A) to determine their contribution to the catalysis. However, only four mutants (C32A, S48A Y58F and T105A) showed activity, although with reduced catalytic efficiency. These results, combined with a thermal and structural analysis, reinforce the Ser/Lys catalytic dyad mechanism as the most plausible among those proposed. PMID:28388636

  2. Characterization of frequencies and distribution of single nucleotide insertions/deletions in the human genome.

    PubMed

    Tan, Ene-Choo; Li, Haixia

    2006-07-19

    Most of the studies on single nucleotide variations are on substitutions rather than insertions/deletions. In this study, we examined the distribution and characteristics of single nucleotide insertions/deletions (SNindels), using data available from dbSNP for all the human chromosomes. There are almost 300,000 SNindels in the database, of which only 0.8% are validated. They occur at the frequency of 0.887 per 10 kb on average for the whole genome, or approximately 1 for every 11,274 bp. More than half occur in regions with mononucleotide repeats the longest of which is 47 bases. Overall the mononucleotide repeats involving C and G are much shorter than those for A and T. About 12% are surrounded by palindromes. There is general correlation between chromosome size and total number for each chromosome. Inter-chromosomal variation in density ranges from 0.6 to 21.7 per kilobase. The overall spectrum shows very high proportion of SNindel of types -/A and -/T at over 81%. The proportion of -/A and -/T SNindels for each chromosome is correlated to its AT content. Less than half of the SNindels are within or near known genes and even fewer (<0.183%) in coding regions, and more than 1.4% of -/C and -/G are in coding compared to 0.2% for -/A and -/T types. SNindels of -/A and -/T types make up 80% of those found within untranslated regions but less than 40% of those within coding regions. A separate analysis using the subset of 2324 validated SNindels showed slightly less AT bias of 74%, SNindels not within mononucleotide repeats showed even less AT bias at 58%. Density of validated SNindels is 0.007/10 kb overall and 90% are found within or near genes. Among all chromosomes, Y has the lowest numbers and densities for all SNindels, validated SNindels, and SNindels not within repeats.

  3. A disposable tear glucose biosensor--part 3: assessment of enzymatic specificity.

    PubMed

    Lan, Kenneth; McAferty, Kenyon; Shah, Pankti; Lieberman, Erica; Patel, Dharmendra R; Cook, Curtiss B; La Belle, Jeffrey T

    2011-09-01

    A concept for a tear glucose sensor based on amperometric measurement of enzymatic oxidation of glucose was previously presented, using glucose dehydrogenase flavin adenine dinucleotide (GDH-FAD) as the enzyme. Glucose dehydrogenase flavin adenine dinucleotide is further characterized in this article and evaluated for suitability in glucose-sensing applications in purified tear-like saline, with specific attention to the effect of interfering substances only. These interferents are specifically saccharides that could interact with the enzymatic activity seen in the sensor's performance. Bench top amperometric glucose assays were performed using an assay solution of GDH-FAD and ferricyanide redox mediator with samples of glucose, mannose, lactose, maltose, galactose, fructose, sucrose, and xylose at varying concentrations to evaluate specificity, linear dynamic range, signal size, and signal-to-noise ratio. A comparison study was done by substituting an equivalent activity unit concentration of glucose oxidase (GOx) for GDH-FAD. Glucose dehydrogenase flavin adenine dinucleotide was found to be more sensitive than GOx, producing larger oxidation currents than GOx on an identical glucose concentration gradient, and GDH-FAD exhibited larger slope response (-5.65 × 10(-7) versus -3.11 × 10(-7) A/mM), signal-to-noise ratio (18.04 versus 2.62), and linear dynamic range (0-30 versus 0-10 mM), and lower background signal (-7.12 versus -261.63 nA) than GOx under the same assay conditions. GDH-FAD responds equally to glucose and xylose but is otherwise specific for glucose. Glucose dehydrogenase flavin adenine dinucleotide compares favorably with GOx in many sensor-relevant attributes and may enable measurement of glucose concentrations both higher and lower than those measurable by GOx. GDH-FAD is a viable enzyme to use in the proposed amperometric tear glucose sensor system and perhaps also in detecting extreme hypoglycemia or hyperglycemia in blood. © 2011 Diabetes Technology Society.

  4. A Disposable Tear Glucose Biosensor—Part 3: Assessment of Enzymatic Specificity

    PubMed Central

    Lan, Kenneth; McAferty, Kenyon; Shah, Pankti; Lieberman, Erica; Patel, Dharmendra R; Cook, Curtiss B; La Belle, Jeffrey T

    2011-01-01

    Background A concept for a tear glucose sensor based on amperometric measurement of enzymatic oxidation of glucose was previously presented, using glucose dehydrogenase flavin adenine dinucleotide (GDH-FAD) as the enzyme. Glucose dehydrogenase flavin adenine dinucleotide is further characterized in this article and evaluated for suitability in glucose-sensing applications in purified tear-like saline, with specific attention to the effect of interfering substances only. These interferents are specifically saccharides that could interact with the enzymatic activity seen in the sensor's performance. Methods Bench top amperometric glucose assays were performed using an assay solution of GDH-FAD and ferricyanide redox mediator with samples of glucose, mannose, lactose, maltose, galactose, fructose, sucrose, and xylose at varying concentrations to evaluate specificity, linear dynamic range, signal size, and signal-to-noise ratio. A comparison study was done by substituting an equivalent activity unit concentration of glucose oxidase (GOx) for GDH-FAD. Results Glucose dehydrogenase flavin adenine dinucleotide was found to be more sensitive than GOx, producing larger oxidation currents than GOx on an identical glucose concentration gradient, and GDH-FAD exhibited larger slope response (-5.65 × 10-7 versus -3.11 × 10-7 A/mM), signal-to-noise ratio (18.04 versus 2.62), and linear dynamic range (0–30 versus 0–10 mM), and lower background signal (-7.12 versus -261.63 nA) than GOx under the same assay conditions. GDH-FAD responds equally to glucose and xylose but is otherwise specific for glucose. Conclusion Glucose dehydrogenase flavin adenine dinucleotide compares favorably with GOx in many sensor-relevant attributes and may enable measurement of glucose concentrations both higher and lower than those measurable by GOx. GDH-FAD is a viable enzyme to use in the proposed amperometric tear glucose sensor system and perhaps also in detecting extreme hypoglycemia or hyperglycemia in blood. PMID:22027303

  5. Characterization of flavin-based fluorescent proteins: an emerging class of fluorescent reporters.

    PubMed

    Mukherjee, Arnab; Walker, Joshua; Weyant, Kevin B; Schroeder, Charles M

    2013-01-01

    Fluorescent reporter proteins based on flavin-binding photosensors were recently developed as a new class of genetically encoded probes characterized by small size and oxygen-independent maturation of fluorescence. Flavin-based fluorescent proteins (FbFPs) address two major limitations associated with existing fluorescent reporters derived from the green fluorescent protein (GFP)-namely, the overall large size and oxygen-dependent maturation of fluorescence of GFP. However, FbFPs are at a nascent stage of development and have been utilized in only a handful of biological studies. Importantly, a full understanding of the performance and properties of FbFPs as a practical set of biological probes is lacking. In this work, we extensively characterize three FbFPs isolated from Pseudomonas putida, Bacillus subtilis, and Arabidopsis thaliana, using in vitro studies to assess probe brightness, oligomeric state, maturation time, fraction of fluorescent holoprotein, pH tolerance, redox sensitivity, and thermal stability. Furthermore, we validate FbFPs as stable molecular tags using in vivo studies by constructing a series of FbFP-based transcriptional constructs to probe promoter activity in Escherichia coli. Overall, FbFPs show key advantages as broad-spectrum biological reporters including robust pH tolerance (4-11), thermal stability (up to 60°C), and rapid maturation of fluorescence (<3 min.). In addition, the FbFP derived from Arabidopsis thaliana (iLOV) emerged as a stable and nonperturbative reporter of promoter activity in Escherichia coli. Our results demonstrate that FbFP-based reporters have the potential to address key limitations associated with the use of GFP, such as pH-sensitive fluorescence and slow kinetics of fluorescence maturation (10-40 minutes for half maximal fluorescence recovery). From this view, FbFPs represent a useful new addition to the fluorescent reporter protein palette, and our results constitute an important framework to enable researchers to implement and further engineer improved FbFP-based reporters with enhanced brightness and tighter flavin binding, which will maximize their potential benefits.

  6. Flavin-containing monooxygenases in plants: looking beyond detox.

    PubMed

    Schlaich, Nikolaus L

    2007-09-01

    Flavin-containing monooxygenases (FMOs) are known in bacteria, yeast and mammals where they catalyze the transfer of one atom of molecular O(2) to low molecular weight substrates. The predominant physiological function of animal FMOs appears to be detoxification of a vast spectrum of xenobiotics but until recently very little was known about the function of FMOs in plants. In the last two to three years, genetic and biochemical characterization has shown that plant FMOs can catalyze specific steps in the biosynthesis of auxin or in the metabolism of glucosinolates, and, furthermore, have a role in pathogen defence. Thus, plant FMOs hint that further FMO functions might be identified also in non-plant organisms and could stimulate novel research in this area.

  7. Listeria monocytogenes PdeE, a phosphodiesterase that contributes to virulence and has hydrolytic activity against cyclic mononucleotides and cyclic dinucleotides

    USDA-ARS?s Scientific Manuscript database

    We have identified and partially characterized a putative HD domain hydrolase, LMOf2365_2464, which is highly expressed during listerial intracellular replication. LMOf2365_2464 is annotated as a putative HD domain-containing hydrolase. The ability of an isogenic mutant strain, F2365'2464, to adhere...

  8. Contributions to the study of the mechanisms of photodynamic cross-linking of proteins

    NASA Astrophysics Data System (ADS)

    Shen, Hui-Rong

    The illumination of proteins in solution and in cells in the presence of photosensitizers may lead to the inter- and/or intramolecular crosslinking of the proteins (photosensitized or photodynamic crosslinking). This phenomenon appears to be involved in the photohemolysis of red cells, cataract development, skin photoaging, photodynamic therapy for cancers, laser welding of tissues, biomaterial modification, and other biological situations. Although the processes involved in the photocrosslinking of proteins have been extensively studied, the mechanisms involved are still largely unknown. The main objectives of the studies reported in this dissertation were to investigate the detailed mechanisms involved in the photocrosslinking of proteins and to determine the chemical nature of the crosslinks formed. The first part of this study was devoted to the verification of the roles of His, Lys and Tyr in the photodynamic crosslinking of proteins. The crosslinking reaction was modeled using tailor-made water-soluble synthetic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers containing epsilon-aminocaproic acid side chains terminating in His, Lys or tyrosinamide residues photosensitized by rose bengal (RB) and flavin mononucleotide (FMN). RB typically produces singlet oxygen, whereas FMN produces both singlet oxygen and radicals. His-His and His-Lys crosslinks were formed with RB as the sensitizer. RB-sensitization did not crosslink Tyr residues, whereas FMN coupled two Tyr residues via a radical pathway. Protection of the His and/or Lys residues in ribonuclease A (RNase A) significantly inhibited the extent of intermolecular crosslinking, and confirmed the key roles played by His and Lys in crosslinking reactions. The second part of this study involved the elucidation of the detailed reaction mechanisms and the chemical structures of His-His and Tyr-Tyr crosslinks. N-benzoyl-histidine (Bz-His) and N-acetyl-tyrosine (Ac-Tyr) were used to model the photosensitized crosslinking of proteins involving His and Tyr residues. Photocrosslinking of Bz-His was performed in phosphate buffer at pH 7.4 with immobilized RB beads as sensitizer. The main dimerized product was isolated and characterized. Its chemical structure was established by MS and NMR methods. Ac-Tyr was photocrosslinked with FMN as the sensitizer at pH 6.0; oxygen was necessary. Three main crosslinked dimers were obtained. Their chemical structures were determined by MS and NMR data.

  9. A Flavin Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii[W

    PubMed Central

    Beel, Benedikt; Prager, Katja; Spexard, Meike; Sasso, Severin; Weiss, Daniel; Müller, Nico; Heinnickel, Mark; Dewez, David; Ikoma, Danielle; Grossman, Arthur R.; Kottke, Tilman; Mittag, Maria

    2012-01-01

    Cryptochromes are flavoproteins that act as sensory blue light receptors in insects, plants, fungi, and bacteria. We have investigated a cryptochrome from the green alga Chlamydomonas reinhardtii with sequence homology to animal cryptochromes and (6-4) photolyases. In response to blue and red light exposure, this animal-like cryptochrome (aCRY) alters the light-dependent expression of various genes encoding proteins involved in chlorophyll and carotenoid biosynthesis, light-harvesting complexes, nitrogen metabolism, cell cycle control, and the circadian clock. Additionally, exposure to yellow but not far-red light leads to comparable increases in the expression of specific genes; this expression is significantly reduced in an acry insertional mutant. These in vivo effects are congruent with in vitro data showing that blue, yellow, and red light, but not far-red light, are absorbed by the neutral radical state of flavin in aCRY. The aCRY neutral radical is formed following blue light absorption of the oxidized flavin. Red illumination leads to conversion to the fully reduced state. Our data suggest that aCRY is a functionally important blue and red light–activated flavoprotein. The broad spectral response implies that the neutral radical state functions as a dark form in aCRY and expands the paradigm of flavoproteins and cryptochromes as blue light sensors to include other light qualities. PMID:22773746

  10. Hierarchically Porous N-Doped Carbon Nanotubes/Reduced Graphene Oxide Composite for Promoting Flavin-Based Interfacial Electron Transfer in Microbial Fuel Cells.

    PubMed

    Wu, Xiaoshuai; Qiao, Yan; Shi, Zhuanzhuan; Tang, Wei; Li, Chang Ming

    2018-04-11

    Interfacial electron transfer between an electroactive biofilm and an electrode is a crucial step for microbial fuel cells (MFCs) and other bio-electrochemical systems. Here, a hierarchically porous nitrogen-doped carbon nanotubes (CNTs)/reduced graphene oxide (rGO) composite with polyaniline as the nitrogen source has been developed for the MFC anode. This composite possesses a nitrogen atom-doped surface for improved flavin redox reaction and a three-dimensional hierarchically porous structure for rich bacterial biofilm growth. The maximum power density achieved with the N-CNTs/rGO anode in S. putrefaciens CN32 MFCs is 1137 mW m -2 , which is 8.9 times compared with that of the carbon cloth anode and also higher than those of N-CNTs (731.17 mW m -2 ), N-rGO (442.26 mW m -2 ), and the CNTs/rGO (779.9 mW m -2 ) composite without nitrogen doping. The greatly improved bio-electrocatalysis could be attributed to the enhanced adsorption of flavins on the N-doped surface and the high density of biofilm adhesion for fast interfacial electron transfer. This work reveals a synergistic effect from pore structure tailoring and surface chemistry designing to boost both the bio- and electrocatalysis in MFCs, which also provide insights for the bioelectrode design in other bio-electrochemical systems.

  11. OnpA, an Unusual Flavin-Dependent Monooxygenase Containing a Cytochrome b5 Domain

    PubMed Central

    Xiao, Yi; Liu, Ting-Ting; Dai, Hui; Zhang, Jun-Jie; Liu, Hong; Tang, Huiru; Leak, David J.

    2012-01-01

    ortho-Nitrophenol 2-monooxygenase (EC 1.14.13.31) from Alcaligenes sp. strain NyZ215 catalyzes monooxygenation of ortho-nitrophenol to form catechol via ortho-benzoquinone. Sequence analysis of this onpA-encoded enzyme revealed that it contained a flavin-binding monooxygenase domain and a heme-binding cytochrome b5 domain. OnpA was purified to homogeneity as a His-tagged protein and was considered a monomer, as determined by gel filtration. FAD and heme were identified by high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (HPLC-MS) as cofactors in this enzyme, and quantitative analysis indicated that 1 mol of the purified recombinant OnpA contained 0.66 mol of FAD and 0.20 mol of heme. However, the enzyme activity of OnpA was increased by 60% and 450% after addition of FAD and hemin, respectively, suggesting that the optimal stoichiometry was 1:1:1. In addition, site-directed mutagenesis experiments confirmed that two highly conserved histidines located in the cytochrome b5 domain were associated with binding of the heme, and the cytochrome b5 domain was involved in the OnpA activity. These results indicate that OnpA is an unusual FAD-dependent monooxygenase containing a fused cytochrome b5 domain that is essential for its activity. Therefore, we here demonstrate a link between cytochrome b5 and flavin-dependent monooxygenases. PMID:22267507

  12. Flavin-Induced Oligomerization in Escherichia coli Adaptive Response Protein AidB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamill, Michael J.; Jost, Marco; Wong, Cintyu

    2011-11-21

    The process known as 'adaptive response' allows Escherichia coli to respond to small doses of DNA-methylating agents by upregulating the expression of four proteins. While the role of three of these proteins in mitigating DNA damage is well understood, the function of AidB is less clear. Although AidB is a flavoprotein, no catalytic role has been established for the bound cofactor. Here we investigate the possibility that flavin plays a structural role in the assembly of the AidB tetramer. We report the generation and biophysical characterization of deflavinated AidB and of an AidB mutant that has greatly reduced affinity formore » flavin adenine dinucleotide (FAD). Using fluorescence quenching and analytical ultracentrifugation, we find that apo AidB has a high affinity for FAD, as indicated by an apparent dissociation constant of 402.1 {+-} 35.1 nM, and that binding of substoichiometric amounts of FAD triggers a transition in the AidB oligomeric state. In particular, deflavinated AidB is dimeric, whereas the addition of FAD yields a tetramer. We further investigate the dimerization and tetramerization interfaces of AidB by determining a 2.8 {angstrom} resolution crystal structure in space group P3{sub 2} that contains three intact tetramers in the asymmetric unit. Taken together, our findings provide strong evidence that FAD plays a structural role in the formation of tetrameric AidB.« less

  13. Minimizing photodecomposition of flavin adenine dinucleotide fluorescence by the use of pulsed LEDs.

    PubMed

    Rösner, J; Liotta, A; Angamo, E A; Spies, C; Heinemann, U; Kovács, R

    2016-11-01

    Dynamic alterations in flavin adenine dinucleotide (FAD) fluorescence permit insight into energy metabolism-dependent changes of intramitochondrial redox potential. Monitoring FAD fluorescence in living tissue is impeded by photobleaching, restricting the length of microfluorimetric recordings. In addition, photodecomposition of these essential electron carriers negatively interferes with energy metabolism and viability of the biological specimen. Taking advantage of pulsed LED illumination, here we determined the optimal excitation settings giving the largest fluorescence yield with the lowest photobleaching and interference with metabolism in hippocampal brain slices. The effects of FAD bleaching on energy metabolism and viability were studied by monitoring tissue pO 2 , field potentials and changes in extracellular potassium concentration ([K + ] o ). Photobleaching with continuous illumination consisted of an initial exponential decrease followed by a nearly linear decay. The exponential decay was significantly decelerated with pulsed illumination. Pulse length of 5 ms was sufficient to reach a fluorescence output comparable to continuous illumination, whereas further increasing duration increased photobleaching. Similarly, photobleaching increased with shortening of the interpulse interval. Photobleaching was partially reversible indicating the existence of a transient nonfluorescent flavin derivative. Pulsed illumination decreased FAD photodecomposition, improved slice viability and reproducibility of stimulus-induced FAD, field potential, [K + ] o and pO 2 changes as compared to continuous illumination. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  14. Evidence for Tautomerisation of Glutamine in BLUF Blue Light Receptors by Vibrational Spectroscopy and Computational Chemistry

    PubMed Central

    Domratcheva, Tatiana; Hartmann, Elisabeth; Schlichting, Ilme; Kottke, Tilman

    2016-01-01

    BLUF (blue light sensor using flavin) domains regulate the activity of various enzymatic effector domains in bacteria and euglenids. BLUF features a unique photoactivation through restructuring of the hydrogen-bonding network as opposed to a redox reaction or an isomerization of the chromophore. A conserved glutamine residue close to the flavin chromophore plays a central role in the light response, but the underlying modification is still unclear. We labelled this glutamine with 15N in two representative BLUF domains and performed time-resolved infrared double difference spectroscopy. The assignment of the signals was conducted by extensive quantum chemical calculations on large models with 187 atoms reproducing the UV-vis and infrared signatures of BLUF photoactivation. In the dark state, the comparatively low frequency of 1,667 cm−1 is assigned to the glutamine C=O accepting a hydrogen bond from tyrosine. In the light state, the signature of a tautomerised glutamine was extracted with the C=N stretch at ~1,691 cm−1 exhibiting the characteristic strong downshift by 15N labelling. Moreover, an indirect isotope effect on the flavin C4=O stretch was found. We conclude that photoactivation of the BLUF receptor does not only involve a rearrangement of hydrogen bonds but includes a change in covalent bonds of the protein. PMID:26947391

  15. Normal Stress or Adjustment Disorder?

    MedlinePlus

    ... Lifestyle Stress management What's the difference between normal stress and an adjustment disorder? Answers from Daniel K. Hall-Flavin, M.D. Stress is a normal psychological and physical reaction to ...

  16. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease.

    PubMed

    Yao, Zhiwen; Yang, Wenhao; Gao, Zhiqiang; Jia, Peng

    2017-04-24

    Amyloid-β (Aβ) oligomers have been accepted as major neurotoxic agents in the therapy of Alzheimer's disease (AD). It has been shown that the activity of nicotinamide adenine dinucleotide (NAD+) is related with the decline of Aβ toxicity in AD. Nicotinamide mononucleotide (NMN), the important precursor of NAD+, is produced during the reaction of nicotinamide phosphoribosyl transferase (Nampt). This study aimed to figure out the potential therapeutic effects of NMN and its underlying mechanisms in APPswe/PS1dE9 (AD-Tg) mice. We found that NMN gave rise to a substantial improvement in behavioral measures of cognitive impairments compared to control AD-Tg mice. In addition, NMN treatment significantly decreased β-amyloid production, amyloid plaque burden, synaptic loss, and inflammatory responses in transgenic animals. Mechanistically, NMN effectively controlled JNK activation. Furthermore, NMN potently progressed nonamyloidogenic amyloid precursor protein (APP) and suppressed amyloidogenic APP by mediating the expression of APP cleavage secretase in AD-Tg mice. Based on our findings, it was suggested that NMN substantially decreases multiple AD-associated pathological characteristically at least partially by the inhibition of JNK activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Crystal structure of the YGR205w protein from Saccharomyces cerevisiae: close structural resemblance to E. coli pantothenate kinase.

    PubMed

    Li de La Sierra-Gallay, Ines; Collinet, Bruno; Graille, Marc; Quevillon-Cheruel, Sophie; Liger, Dominique; Minard, Philippe; Blondeau, Karine; Henckes, Gilles; Aufrère, Robert; Leulliot, Nicolas; Zhou, Cong-Zhao; Sorel, Isabelle; Ferrer, Jean-Luc; Poupon, Anne; Janin, Joël; van Tilbeurgh, Herman

    2004-03-01

    The protein product of the YGR205w gene of Saccharomyces cerevisiae was targeted as part of our yeast structural genomics project. YGR205w codes for a small (290 amino acids) protein with unknown structure and function. The only recognizable sequence feature is the presence of a Walker A motif (P loop) indicating a possible nucleotide binding/converting function. We determined the three-dimensional crystal structure of Se-methionine substituted protein using multiple anomalous diffraction. The structure revealed a well known mononucleotide fold and strong resemblance to the structure of small metabolite phosphorylating enzymes such as pantothenate and phosphoribulo kinase. Biochemical experiments show that YGR205w binds specifically ATP and, less tightly, ADP. The structure also revealed the presence of two bound sulphate ions, occupying opposite niches in a canyon that corresponds to the active site of the protein. One sulphate is bound to the P-loop in a position that corresponds to the position of beta-phosphate in mononucleotide protein ATP complex, suggesting the protein is indeed a kinase. The nature of the phosphate accepting substrate remains to be determined. Copyright 2004 Wiley-Liss, Inc.

  18. Requirement for Msh6, but not for Swi4 (Msh3), in Msh2-dependent repair of base-base mismatches and mononucleotide loops in Schizosaccharomyces pombe.

    PubMed

    Tornier, C; Bessone, S; Varlet, I; Rudolph, C; Darmon, M; Fleck, O

    2001-05-01

    The msh6 mismatch repair gene of Schizosaccharomyces pombe was cloned, sequenced, and inactivated. Strains bearing all combinations of inactivated msh6, msh2, and swi4 (the S. pombe MSH3 ortholog) alleles were tested for their defects in mitotic and meiotic mismatch repair. Mitotic mutation rates were similarly increased in msh6 and msh2 mutants, both for reversion of a base-base substitution as well as of an insertion of one nucleotide in a mononucleotide run. Tetrad analysis and intragenic two-factor crosses revealed that meiotic mismatch repair was affected in msh6 to the same extent as in msh2 background. In contrast, loss of Swi4 likely did not cause a defect in mismatch repair, but rather resulted in reduced recombination frequency. Consistently, a mutated swi4 caused a two- to threefold reduction of recombinants in intergenic crosses, while msh2 and msh6 mutants were not significantly different from wild type. In summary, our study showed that Msh6 plays the same important role as Msh2 in the major mismatch repair pathway of S. pombe, while Swi4 rather functions in recombination.

  19. YCL047C/POF1 is a novel nicotinamide mononucleotide adenylyltransferase (NMNAT) in Saccharomyces cerevisiae.

    PubMed

    Kato, Michiko; Lin, Su-Ju

    2014-05-30

    NAD(+) is an essential metabolic cofactor involved in various cellular biochemical processes. Nicotinamide riboside (NR) is an endogenously produced key pyridine metabolite that plays important roles in the maintenance of NAD(+) pool. Using a NR-specific cell-based screen, we identified mutants that exhibit altered NR release phenotype. Yeast cells lacking the ORF YCL047C/POF1 release considerably more NR compared with wild type, suggesting that POF1 plays an important role in NR/NAD(+) metabolism. The amino acid sequence of Pof1 indicates that it is a putative nicotinamide mononucleotide adenylyltransferase (NMNAT). Unlike other yeast NMNATs, Pof1 exhibits NMN-specific adenylyltransferase activity. Deletion of POF1 significantly lowers NAD(+) levels and decreases the efficiency of NR utilization, resistance to oxidative stress, and NR-induced life span extension. We also show that NR is constantly produced by multiple nucleotidases and that the intracellular NR pools are likely to be compartmentalized, which contributes to the regulation of NAD(+) homeostasis. Our findings may contribute to the understanding of the molecular basis and regulation of NAD(+) metabolism in higher eukaryotes. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Antidepressants and Alcohol

    MedlinePlus

    ... the concern? Why is it bad to mix antidepressants and alcohol? Answers from Daniel K. Hall-Flavin, M.D. It's best to avoid combining antidepressants and alcohol. It may worsen your symptoms, and ...

  1. Active site architecture of a sugar N-oxygenase.

    PubMed

    Thoden, James B; Branch, Megan C; Zimmer, Alex L; Bruender, Nathan A; Holden, Hazel M

    2013-05-14

    KijD3 is a flavin-dependent N-oxygenase implicated in the formation of the nitro-containing sugar d-kijanose, found attached to the antibiotic kijanimicin. For this investigation, the structure of KijD3 in complex with FMN and its dTDP-sugar substrate was solved to 2.1 Å resolution. In contrast to the apoenzyme structure, the C-terminus of the protein becomes ordered and projects into the active site cleft [Bruender, N. A., Thoden, J. B., and Holden, H. M. (2010) Biochemistry 49, 3517-3524]. The amino group of the dTDP-aminosugar that is oxidized is located 4.9 Å from C4a of the flavin ring. The model provides a molecular basis for understanding the manner in which KijD3 catalyzes its unusual chemical transformation.

  2. Molecular complex of lumiflavin and 2-aminobenzoic acid: crystal structure, crystal spectra, and solution properties.

    PubMed

    Shieh, H S; Ghisla, S; Hanson, L K; Ludwig, M L; Nordman, C E

    1981-08-04

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N4O2.C7H7NO2.H2O) crystallizes from from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 A, c = 7.045 A, alpha = 95.44 degrees , beta = 95.86 degrees, and gamma = 105.66 degrees . The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating lumiflavin adn un-ionized (neutral) 2-aminobenzoic acid molecules. Two different modes of stacking interaction are observed. In one, 2-aminobenzoic acid overlaps all three of the isoalloxazine rings, at a mean distance of 3.36 A; in the other, 2-aminobenzoic acid interacts distance of 3.36 A; in the other, 2-aminobenzoic acid interacts with the pyrazine and dimethylbenzene moieties, at a distance of 3.42 A. Perpendicular to the stacking direction, the molecules form a continuous sheet. Each flavin is hydrogen bonded via O(2) and NH(3) to two symmetrically related aminobenzoates; the water of crystallization forms three hydrogen bonds, bridging two flavins, via O(4) and N(5), and one aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid molecules. Measurements of the polarized optical absorption spectra of crystals show that the transition moment direction for the long wavelength absorbance (beyond 530 nm) contains an out-of-plane component which can only arise from a charge-transfer interaction. Since the amino N does not make exceptionally close interactions with isoalloxazine atoms in either stacking mode (minimum interatomic distance 3.52 A), the charge transfer is presumed to involve pi orbitals of the 2-aminobenzoic acid donor.

  3. Bipolar Medications and Weight Gain

    MedlinePlus

    ... Answers from Daniel K. Hall-Flavin, M.D. Bipolar disorder can be treated with a number of medications. ... Also, how well the medication works to treat bipolar disorder symptoms differs among individuals. Because of this, finding ...

  4. Chem Ed Compacts

    ERIC Educational Resources Information Center

    Wolf, Walter A., Ed.

    1976-01-01

    Presents three activities: (1) the investigation of the purity and stability of nicotinamide and flavin coenzymes; (2) desk-computer fitting of a two-exponential function; and (3) an interesting and inexpensive solubility product experiment for introductory chemistry. (RH)

  5. Nonnegative matrix factorization: a blind sources separation method to extract content of fluorophores mixture media

    NASA Astrophysics Data System (ADS)

    Zhou, Kenneth J.; Chen, Jun

    2014-03-01

    The fluorophores of malignant human breast cells change their compositions that may be exposed in the fluorescence spectroscopy and blind source separation method. The content of the fluorophores mixture media such as tryptophan, collagen, elastin, NADH, and flavin were varied according to the cancer development. The native fluorescence spectra of these key fluorophores mixture media excited by the selective excitation wavelengths of 300 nm and 340 nm were analyzed using a blind source separation method: Nonnegative Matrix Factorization (NMF). The results show that the contribution from tryptophan, NADH and flavin to the fluorescence spectra of the mixture media is proportional to the content of each fluorophore. These data present a possibility that native fluorescence spectra decomposed by NMF can be used as potential native biomarkers for cancer detection evaluation of the cancer.

  6. Sensor systems for bacterial reactors: A new flavin-phenol composite film for the in situ voltammetric measurement of pH.

    PubMed

    Casimero, Charnete; McConville, Aaron; Fearon, John-Joe; Lawrence, Clare L; Taylor, Charlotte M; Smith, Robert B; Davis, James

    2018-10-16

    Monitoring pH within microbial reactors has become an important requirement across a host of applications ranging from the production of functional foods (probiotics) to biofuel cell systems. An inexpensive and scalable composite sensor capable of monitoring the pH within the demanding environments posed by microbial reactors has been developed. A custom designed flavin derivative bearing an electropolymerisable phenol monomer was used to create a redox film sensitive to pH but free from the interferences that can impede conventional pH systems. The film was integrated within a composite carbon-fibre-polymer laminate and was shown to exhibit Nernstian behaviour (55 mV/pH) with minimal drift and robust enough to operate within batch reactors. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Mechanism of specific inhibition of phototropism by phenylacetic acid in corn seedling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vierstra, R.D.; Poff, K.L.

    1981-05-01

    Using geotropism as a control for phototropism, compounds similar to phenylacetic acid that phototreact with flavins and/or have auxin-like activity were examined for their ability to specifically inhibit phototropism in corn seedlings using geotropism as a control. Results using indole-3-acetic acid, napthalene-1-acetic acid, naphthalene-2-acetic acid, phenylacetic acid, and ..beta..-phenylpyruvic acid suggest that such compounds will specifically inhibit phototropism primarily because of their photoreactivity with flavins and not their auxin activity. In addition, the in vivo concentration of phenylacetic acid required to induce specificity was well below that required to stimulate coleoptile growth. Estimates of the percentage of photoreceptor pigment inactivatedmore » by phenylacetic acid (>10%) suggest that phenylacetic acid could be used to photoaffinity label the flavoprotein involved in corn seedling phototropism.« less

  8. Identification of the Lomofungin Biosynthesis Gene Cluster and Associated Flavin-Dependent Monooxygenase Gene in Streptomyces lomondensis S015

    PubMed Central

    Zhang, Chunxiao; Sheng, Chaolan; Wang, Wei; Hu, Hongbo; Peng, Huasong; Zhang, Xuehong

    2015-01-01

    Streptomyces lomondensis S015 synthesizes the broad-spectrum phenazine antibiotic lomofungin. Whole genome sequencing of this strain revealed a genomic locus consisting of 23 open reading frames that includes the core phenazine biosynthesis gene cluster lphzGFEDCB. lomo10, encoding a putative flavin-dependent monooxygenase, was also identified in this locus. Inactivation of lomo10 by in-frame partial deletion resulted in the biosynthesis of a new phenazine metabolite, 1-carbomethoxy-6-formyl-4,9-dihydroxy-phenazine, along with the absence of lomofungin. This result suggests that lomo10 is responsible for the hydroxylation of lomofungin at its C-7 position. This is the first description of a phenazine hydroxylation gene in Streptomyces, and the results of this study lay the foundation for further investigation of phenazine metabolite biosynthesis in Streptomyces. PMID:26305803

  9. Equilibrium and ultrafast kinetic studies manipulating electron transfer: A short-lived flavin semiquinone is not sufficient for electron bifurcation

    DOE PAGES

    Hoben, John P.; Lubner, Carolyn E.; Ratzloff, Michael W.; ...

    2017-06-14

    Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power) and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to 'bifurcation'. It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that presence of a short-lived anionic flavin semiquinone (ASQ) is notmore » sufficient to infer existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over two orders of magnitude. Capacity for electron transfer among redox cofactors vs. charge recombination with nearby donors can explain the range of ASQ lifetimes we observe. In conclusion, our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase I, and can be an indication of capacity for electron bifurcation.« less

  10. Rationally engineered flavin-dependent oxidase reveals steric control of dioxygen reduction.

    PubMed

    Zafred, Domen; Steiner, Barbara; Teufelberger, Andrea R; Hromic, Altijana; Karplus, P Andrew; Schofield, Christopher J; Wallner, Silvia; Macheroux, Peter

    2015-08-01

    The ability of flavoenzymes to reduce dioxygen varies greatly, and is controlled by the protein environment, which may cause either a rapid reaction (oxidases) or a sluggish reaction (dehydrogenases). Previously, a 'gatekeeper' amino acid residue was identified that controls the reactivity to dioxygen in proteins from the vanillyl alcohol oxidase superfamily of flavoenzymes. We have identified an alternative gatekeeper residue that similarly controls dioxygen reactivity in the grass pollen allergen Phl p 4, a member of this superfamily that has glucose dehydrogenase activity and the highest redox potential measured in a flavoenzyme. A substitution at the alternative gatekeeper site (I153V) transformed the enzyme into an efficient oxidase by increasing dioxygen reactivity by a factor of 60,000. An inverse exchange (V169I) in the structurally related berberine bridge enzyme (BBE) decreased its dioxygen reactivity by a factor of 500. Structural and biochemical characterization of these and additional variants showed that our model enzymes possess a cavity that binds an anion and resembles the 'oxyanion hole' in the proximity of the flavin ring. We showed also that steric control of access to this site is the most important parameter affecting dioxygen reactivity in BBE-like enzymes. Analysis of flavin-dependent oxidases from other superfamilies revealed similar structural features, suggesting that dioxygen reactivity may be governed by a common mechanistic principle. Structural data are available in PDB database under the accession numbers 4PVE, 4PVH, 4PVJ, 4PVK, 4PWB, 4PWC and 4PZF. © 2015 FEBS.

  11. Equilibrium and ultrafast kinetic studies manipulating electron transfer: A short-lived flavin semiquinone is not sufficient for electron bifurcation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoben, John P.; Lubner, Carolyn E.; Ratzloff, Michael W.

    Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power) and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to 'bifurcation'. It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that presence of a short-lived anionic flavin semiquinone (ASQ) is notmore » sufficient to infer existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over two orders of magnitude. Capacity for electron transfer among redox cofactors vs. charge recombination with nearby donors can explain the range of ASQ lifetimes we observe. In conclusion, our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase I, and can be an indication of capacity for electron bifurcation.« less

  12. Recent Progress on the Characterization of Aldonolactone Oxidoreductases

    PubMed Central

    Aboobucker, Siddique I; Lorence, Argelia

    2015-01-01

    l-Ascorbic acid (ascorbate, AsA, vitamin C) is essential for animal and plant health. Despite our dependence on fruits and vegetables to fulfill our requirement for this vitamin, the metabolic network leading to its formation in plants is just being fully elucidated. There is evidence supporting the operation of at least four biosynthetic pathways leading to AsA formation in plants. These routes use d-mannose/l-Galactose, l-gulose, d-galacturonate, and myo-inositol as the main precursors. This review focuses on aldonolactone oxidoreductases, a subgroup of the vanillyl alcohol oxidase (VAO; EC 1.1.3.38) superfamily, enzymes that catalyze the terminal step in AsA biosynthesis in bacteria, protozoa, animals, and plants. In this report, we review the properties of well characterized aldonolactone oxidoreductases to date. A shared feature in these proteins is the presence of a flavin cofactor as well as a thiol group. The flavin cofactor in many cases is bound to the N terminus of the enzymes or to a recently discovered HWXK motif in the C terminus. The binding between the flavin moiety and the protein can be either covalent or non-covalent. Substrate specificity and subcellular localization differ among the isozymes of each kingdom. All oxidases among these enzymes possess dehydrogenase activity, however, exclusive dehydrogenases are also found. We also discuss recent evidence indicating that plants have both l-gulono-1,4-lactone oxidases and l-Galactono-1,4-lactone dehydrogenases involved in AsA biosynthesis. PMID:26696130

  13. Equilibrium and ultrafast kinetic studies manipulating electron transfer: A short-lived flavin semiquinone is not sufficient for electron bifurcation.

    PubMed

    Hoben, John P; Lubner, Carolyn E; Ratzloff, Michael W; Schut, Gerrit J; Nguyen, Diep M N; Hempel, Karl W; Adams, Michael W W; King, Paul W; Miller, Anne-Frances

    2017-08-25

    Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential ( i.e. intermediate reducing power), and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to "bifurcation." It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that the presence of a short-lived anionic flavin semiquinone (ASQ) is not sufficient to infer the existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase, and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over 2 orders of magnitude. Capacity for electron transfer among redox cofactors versus charge recombination with nearby donors can explain the range of ASQ lifetimes that we observe. Our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase I and can be an indication of capacity for electron bifurcation.

  14. Nicotinamide mononucleotide (NMN) supplementation ameliorates the impact of maternal obesity in mice: comparison with exercise.

    PubMed

    Uddin, Golam Mezbah; Youngson, Neil A; Doyle, Bronte M; Sinclair, David A; Morris, Margaret J

    2017-11-08

    Maternal overnutrition increases the risk of long-term metabolic dysfunction in offspring. Exercise improves metabolism partly by upregulating mitochondrial biogenesis or function, via increased levels of nicotinamide adenine dinucleotide (NAD + ). We have shown that the NAD + precursor, nicotinamide mononucleotide (NMN) can reverse some of the negative consequences of high fat diet (HFD) consumption. To investigate whether NMN can impact developmentally-set metabolic deficits, we compared treadmill exercise and NMN injection in offspring of obese mothers. Five week old lean and obese female C57BL6/J mice were mated with chow fed males. Female offspring weaned onto HFD were given treadmill exercise for 9 weeks, or NMN injection daily for 18 days. Maternal obesity programmed increased adiposity and liver triglycerides, with decreased glucose tolerance, liver NAD + levels and citrate synthase activity in offspring. Both interventions reduced adiposity, and showed a modest improvement in glucose tolerance and improved markers of mitochondrial function. NMN appeared to have stronger effects on liver fat catabolism (Hadh) and synthesis (Fasn) than exercise. The interventions appeared to exert the most global benefit in mice that were most metabolically challenged (HFD-consuming offspring of obese mothers). This work encourages further study to confirm the suitability of NMN for use in reversing metabolic dysfunction linked to programming by maternal obesity.

  15. Assimilation of Endogenous Nicotinamide Riboside Is Essential for Calorie Restriction-mediated Life Span Extension in Saccharomyces cerevisiae*

    PubMed Central

    Lu, Shu-Ping; Kato, Michiko; Lin, Su-Ju

    2009-01-01

    NAD+ (nicotinamide adenine dinucleotide) is an essential cofactor involved in various biological processes including calorie restriction-mediated life span extension. Administration of nicotinamide riboside (NmR) has been shown to ameliorate deficiencies related to aberrant NAD+ metabolism in both yeast and mammalian cells. However, the biological role of endogenous NmR remains unclear. Here we demonstrate that salvaging endogenous NmR is an integral part of NAD+ metabolism. A balanced NmR salvage cycle is essential for calorie restriction-induced life span extension and stress resistance in yeast. Our results also suggest that partitioning of the pyridine nucleotide flux between the classical salvage cycle and the NmR salvage branch might be modulated by the NAD+-dependent Sir2 deacetylase. Furthermore, two novel deamidation steps leading to nicotinic acid mononucleotide and nicotinic acid riboside production are also uncovered that further underscore the complexity and flexibility of NAD+ metabolism. In addition, utilization of extracellular nicotinamide mononucleotide requires prior conversion to NmR mediated by a periplasmic phosphatase Pho5. Conversion to NmR may thus represent a strategy for the transport and assimilation of large nonpermeable NAD+ precursors. Together, our studies provide a molecular basis for how NAD+ homeostasis factors confer metabolic flexibility. PMID:19416965

  16. In vitro evaluation of nicotinamide riboside analogs against Haemophilus influenzae.

    PubMed Central

    Godek, C P; Cynamon, M H

    1990-01-01

    Exogenous NAD, nicotinamide mononucleotide, or nicotinamide riboside is required for the growth of Haemophilus influenzae. These compounds have been defined as the V-factor growth requirement. We have previously shown that the internalization of nicotinamide riboside is energy dependent and carrier mediated with saturation kinetics. Thionicotinamide riboside, 3-pyridinealdehyde riboside, 3-acetylpyridine riboside, and 3-aminopyridine riboside were prepared from their corresponding NAD analogs. These compounds and several other nicotinamide riboside analogs were evaluated for their ability to support the growth of H. influenzae and for their ability to block the uptake of [carbonyl-14C]nicotinamide riboside by H. influenzae. 3-Aminopyridine riboside blocked the uptake of [carbonyl-14C]nicotinamide riboside and inhibited the growth of H. influenzae when NAD, nicotinamide mononucleotide, or nicotinamide riboside served as the V factor. The antibacterial activity of 3-aminopyridine riboside was found to be specific for H. influenzae but had no effect on the growth of Staphylococcus aureus or Escherichia coli. In additional experiments by reversed-phase high-performance liquid chromatography, it was determined that whole cells of H. influenzae degrade 3-aminopyridine adenine dinucleotide to 3-aminopyridine riboside, which is then internalized. Inside the cell, 3-aminopyridine riboside has the ability to interfere with the growth of H. influenzae by an undetermined mechanism. Images PMID:2145800

  17. In vitro evaluation of nicotinamide riboside analogs against Haemophilus influenzae.

    PubMed

    Godek, C P; Cynamon, M H

    1990-08-01

    Exogenous NAD, nicotinamide mononucleotide, or nicotinamide riboside is required for the growth of Haemophilus influenzae. These compounds have been defined as the V-factor growth requirement. We have previously shown that the internalization of nicotinamide riboside is energy dependent and carrier mediated with saturation kinetics. Thionicotinamide riboside, 3-pyridinealdehyde riboside, 3-acetylpyridine riboside, and 3-aminopyridine riboside were prepared from their corresponding NAD analogs. These compounds and several other nicotinamide riboside analogs were evaluated for their ability to support the growth of H. influenzae and for their ability to block the uptake of [carbonyl-14C]nicotinamide riboside by H. influenzae. 3-Aminopyridine riboside blocked the uptake of [carbonyl-14C]nicotinamide riboside and inhibited the growth of H. influenzae when NAD, nicotinamide mononucleotide, or nicotinamide riboside served as the V factor. The antibacterial activity of 3-aminopyridine riboside was found to be specific for H. influenzae but had no effect on the growth of Staphylococcus aureus or Escherichia coli. In additional experiments by reversed-phase high-performance liquid chromatography, it was determined that whole cells of H. influenzae degrade 3-aminopyridine adenine dinucleotide to 3-aminopyridine riboside, which is then internalized. Inside the cell, 3-aminopyridine riboside has the ability to interfere with the growth of H. influenzae by an undetermined mechanism.

  18. Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae.

    PubMed

    Lu, Shu-Ping; Kato, Michiko; Lin, Su-Ju

    2009-06-19

    NAD(+) (nicotinamide adenine dinucleotide) is an essential cofactor involved in various biological processes including calorie restriction-mediated life span extension. Administration of nicotinamide riboside (NmR) has been shown to ameliorate deficiencies related to aberrant NAD(+) metabolism in both yeast and mammalian cells. However, the biological role of endogenous NmR remains unclear. Here we demonstrate that salvaging endogenous NmR is an integral part of NAD(+) metabolism. A balanced NmR salvage cycle is essential for calorie restriction-induced life span extension and stress resistance in yeast. Our results also suggest that partitioning of the pyridine nucleotide flux between the classical salvage cycle and the NmR salvage branch might be modulated by the NAD(+)-dependent Sir2 deacetylase. Furthermore, two novel deamidation steps leading to nicotinic acid mononucleotide and nicotinic acid riboside production are also uncovered that further underscore the complexity and flexibility of NAD(+) metabolism. In addition, utilization of extracellular nicotinamide mononucleotide requires prior conversion to NmR mediated by a periplasmic phosphatase Pho5. Conversion to NmR may thus represent a strategy for the transport and assimilation of large nonpermeable NAD(+) precursors. Together, our studies provide a molecular basis for how NAD(+) homeostasis factors confer metabolic flexibility.

  19. Mechanism of Rifampicin Inactivation in Nocardia farcinica

    PubMed Central

    Abdelwahab, Heba; Martin Del Campo, Julia S.; Dai, Yumin; Adly, Camelia; El-Sohaimy, Sohby; Sobrado, Pablo

    2016-01-01

    A novel mechanism of rifampicin (Rif) resistance has recently been reported in Nocardia farcinica. This new mechanism involves the activity of rifampicin monooxygenase (RifMO), a flavin-dependent monooxygenase that catalyzes the hydroxylation of Rif, which is the first step in the degradation pathway. Recombinant RifMO was overexpressed and purified for biochemical analysis. Kinetic characterization revealed that Rif binding is necessary for effective FAD reduction. RifMO exhibits only a 3-fold coenzyme preference for NADPH over NADH. RifMO catalyzes the incorporation of a single oxygen atom forming an unstable intermediate that eventually is converted to 2′-N-hydroxy-4-oxo-Rif. Stable C4a-hydroperoxyflavin was not detected by rapid kinetics methods, which is consistent with only 30% of the activated oxygen leading to product formation. These findings represent the first reported detailed biochemical characterization of a flavin-monooxygenase involved in antibiotic resistance. PMID:27706151

  20. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    PubMed

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-09-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes.

  1. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation

    NASA Astrophysics Data System (ADS)

    Tan, Tien-Chye; Kracher, Daniel; Gandini, Rosaria; Sygmund, Christoph; Kittl, Roman; Haltrich, Dietmar; Hällberg, B. Martin; Ludwig, Roland; Divne, Christina

    2015-07-01

    A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization.

  2. How pH Modulates the Reactivity and Selectivity of a Siderophore-Associated Flavin Monooxygenase

    PubMed Central

    2015-01-01

    Flavin-containing monooxygenases (FMOs) catalyze the oxygenation of diverse organic molecules using O2, NADPH, and the flavin adenine dinucleotide (FAD) cofactor. The fungal FMO SidA initiates peptidic siderophore biosynthesis via the highly selective hydroxylation of l-ornithine, while the related amino acid l-lysine is a potent effector of reaction uncoupling to generate H2O2. We hypothesized that protonation states could critically influence both substrate-selective hydroxylation and H2O2 release, and therefore undertook a study of SidA’s pH-dependent reaction kinetics. Consistent with other FMOs that stabilize a C4a-OO(H) intermediate, SidA’s reductive half reaction is pH independent. The rate constant for the formation of the reactive C4a-OO(H) intermediate from reduced SidA and O2 is likewise independent of pH. However, the rate constants for C4a-OO(H) reactions, either to eliminate H2O2 or to hydroxylate l-Orn, were strongly pH-dependent and influenced by the nature of the bound amino acid. Solvent kinetic isotope effects of 6.6 ± 0.3 and 1.9 ± 0.2 were measured for the C4a-OOH/H2O2 conversion in the presence and absence of l-Lys, respectively. A model is proposed in which l-Lys accelerates H2O2 release via an acid–base mechanism and where side-chain position determines whether H2O2 or the hydroxylation product is observed. PMID:24490904

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledbetter, Rhesa N.; Garcia Costas, Amaya M.; Lubner, Carolyn E.

    The biological reduction of dinitrogen (N 2) to ammonia (NH 3) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (E m = -320 mV) coupled tomore » reduction of flavodoxin semiquinone (E m = -460 mV) and reduction of coenzyme Q (E m = 10 mV). Knocking out fix genes rendered ..delta..rnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Altogether, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.« less

  4. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase*

    PubMed Central

    Mishanina, Tatiana V.; Yadav, Pramod K.; Ballou, David P.; Banerjee, Ruma

    2015-01-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be −123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  5. Photo dynamics of BLUF domain mutant H44R of AppA from Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Zirak, P.; Penzkofer, A.; Hegemann, P.; Mathes, T.

    2007-05-01

    The photo-cycle dynamics of the H44R mutant of the BLUF domain of the transcriptional anti-repressor protein AppA (AppA-H44R) from the non-sulfur anoxyphototropic purple bacterium Rhodobacter sphaeroides is studied in order to gain information on the involvement of His44 in the photo-cyclic mechanism of the AppA BLUF domain and to add information to the involved processes. The amino acid residue histidine at position 44 is replaced by arginine. A 12 nm red-shifted signalling state is formed upon blue-light excitation, while in wild-type AppA (AppA-wt) the red-shift is 16 nm. The recovery to the receptor dark state is approximately a factor of 2.5 faster ( τrec ≈ 6.5 min) than the recovery of the wild-type counterpart. Extended light exposure of the mutant causes photo-degradation of flavin (mainly free flavin conversion to lumichrome and re-equilibration between free and non-covalently bound flavin) and protein aggregation (showing up as light scattering). No photo-degradation was observed for AppA-wt. The quantum efficiency of signalling-state formation determined by intensity dependent absorption measurements is found to be ϕs ≈ 0.3 (for AppA-wt: ϕs ≈ 0.24). A two-component single-exponential fluorescence relaxation was observed, which is interpreted as fast fluorescence quenching to an equilibrium value by photo-induced electron transfer followed by slower fluorescence decay due to charge recombination. Based on the experimental findings, an extended photo-cycle model for BLUF domains is proposed.

  6. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    PubMed

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Shewanella secretes flavins that mediate extracellular electron transfer

    PubMed Central

    Marsili, Enrico; Baron, Daniel B.; Shikhare, Indraneel D.; Coursolle, Dan; Gralnick, Jeffrey A.; Bond, Daniel R.

    2008-01-01

    Bacteria able to transfer electrons to metals are key agents in biogeochemical metal cycling, subsurface bioremediation, and corrosion processes. More recently, these bacteria have gained attention as the transfer of electrons from the cell surface to conductive materials can be used in multiple applications. In this work, we adapted electrochemical techniques to probe intact biofilms of Shewanella oneidensis MR-1 and Shewanella sp. MR-4 grown by using a poised electrode as an electron acceptor. This approach detected redox-active molecules within biofilms, which were involved in electron transfer to the electrode. A combination of methods identified a mixture of riboflavin and riboflavin-5′-phosphate in supernatants from biofilm reactors, with riboflavin representing the dominant component during sustained incubations (>72 h). Removal of riboflavin from biofilms reduced the rate of electron transfer to electrodes by >70%, consistent with a role as a soluble redox shuttle carrying electrons from the cell surface to external acceptors. Differential pulse voltammetry and cyclic voltammetry revealed a layer of flavins adsorbed to electrodes, even after soluble components were removed, especially in older biofilms. Riboflavin adsorbed quickly to other surfaces of geochemical interest, such as Fe(III) and Mn(IV) oxy(hydr)oxides. This in situ demonstration of flavin production, and sequestration at surfaces, requires the paradigm of soluble redox shuttles in geochemistry to be adjusted to include binding and modification of surfaces. Moreover, the known ability of isoalloxazine rings to act as metal chelators, along with their electron shuttling capacity, suggests that extracellular respiration of minerals by Shewanella is more complex than originally conceived. PMID:18316736

  8. Cloning of a Gene Cluster Involved in the Catabolism of p-Nitrophenol by Arthrobacter sp. Strain JS443 and Characterization of the p-Nitrophenol Monooxygenase▿

    PubMed Central

    Perry, Lynda L.; Zylstra, Gerben J.

    2007-01-01

    The npd gene cluster, which encodes the enzymes of a p-nitrophenol catabolic pathway from Arthrobacter sp. strain JS443, was cloned and sequenced. Three genes, npdB, npdA1, and npdA2, were independently expressed in Escherichia coli in order to confirm the identities of their gene products. NpdA2 is a p-nitrophenol monooxygenase belonging to the two-component flavin-diffusible monooxygenase family of reduced flavin-dependent monooxygenases. NpdA1 is an NADH-dependent flavin reductase, and NpdB is a hydroxyquinol 1,2-dioxygenase. The npd gene cluster also includes a putative maleylacetate reductase gene, npdC. In an in vitro assay containing NpdA2, an E. coli lysate transforms p-nitrophenol stoichiometrically to hydroquinone and hydroxyquinol. It was concluded that the p-nitrophenol catabolic pathway in JS443 most likely begins with a two-step transformation of p-nitrophenol to hydroxy-1,4-benzoquinone, catalyzed by NpdA2. Hydroxy-1,4-benzoquinone is reduced to hydroxyquinol, which is degraded through the hydroxyquinol ortho cleavage pathway. The hydroquinone detected in vitro is a dead-end product most likely resulting from chemical or enzymatic reduction of the hypothetical intermediate 1,4-benzoquinone. NpdA2 hydroxylates a broad range of chloro- and nitro-substituted phenols, resorcinols, and catechols. Only p-nitro- or p-chloro-substituted phenols are hydroxylated twice. Other substrates are hydroxylated once, always at a position para to a hydroxyl group. PMID:17720792

  9. Stress and Hair Loss: Are They Related?

    MedlinePlus

    Healthy Lifestyle Stress management Can stress cause hair loss? Answers from Daniel K. Hall-Flavin, M.D. Yes, stress and hair loss ... Original article: http://www.mayoclinic.org/healthy-lifestyle/stress-management/expert-answers/stress-and-hair-loss/faq-20057820 . ...

  10. Following the Light

    ERIC Educational Resources Information Center

    Lopez, Marina

    2006-01-01

    In this article, the author describes the learning her students gained from their field trip to the Museum of Contemporary Art (MCA) in Chicago. On their trip to MCA, her fourth-grade students discovered new and surprising ways to approach the work of artist Dan Flavin.

  11. Erythroid pyrimidine 5'-nucleotidase: cloning, developmental expression, and regulation by cAMP and in vivo hypoxia.

    PubMed

    Mass, Markus; Simo, Erika; Dragon, Stefanie

    2003-12-01

    A characteristic process of terminal erythroid differentiation is the degradation of ribosomal RNA into mononucleotides. The pyrimidine mononucleotides can be dephosphorylated by pyrimidine 5'-nucleotidase (P5N-I). In humans, a lack of this enzyme causes hemolytic anemia with ribosomal structures and trinucleotides retained in the red blood cells (RBCs). Although the protein/nucleotide sequence of P5N-I is known in mammals, the onset and regulation of P5N-I during erythroid maturation is unknown. However, in circulating chicken embryonic RBCs, the enzyme is induced together with carbonic anhydrase (CAII) and 2,3-bisphosphoglycerate (2,3-BPG) by norepinephrine (NE) and adenosine, which are released by the embryo under hypoxic conditions. Here, we present the chicken P5N-I sequence and the gene expression of P5N-I during RBC maturation; the profile of gene expression follows the enzyme activity with a rise between days 13 and 16 of embryonic development. The p5n-I expression is induced (1) in definitive but not primitive RBCs by stimulation of beta-adrenergic/adenosine receptors, and (2) in definitive RBCs by hypoxic incubation of the chicken embryo. Since embryonic RBCs increase their hemoglobin-oxygen affinity by degradation of nucleotides such as uridine triphosphate (UTP) and cytidine triphosphate (CTP), the induction of p5n-I expression can be seen as an adaptive response to hypoxia.

  12. Abiotic Synthesis of Nucleic Acids: Hypochromicity and Future Research

    NASA Technical Reports Server (NTRS)

    Glass, K.; Oye, M.; Deamer, D.; Vercoutere, W.

    2017-01-01

    The earliest forms of life would likely have a protocellular form, with a membrane encapsulating some form of linear charged polymer. These polymers could have enzymatic as well as genetic properties. We can simulate plausible prebiotic conditions in the laboratory to test hypotheses related to this concept. In earlier work we have shown that mononucleotides organized within a multilamellar lipid matrix can produce oligomers in the anhydrous phase of dehydration- rehydration cycles (Rajamani, 2008). If mononucleotides are in solution at millimolar concentrations, then oligomers resembling RNA are synthesized and exist in a steady state with their monomers DeGuzman, 2014). We have used conventional and novel techniques to demonstrate that secondary structures stabilized by hydrogen bonds may be present in the condensation products produced in dehydration- rehydration cycles that simulate hydrothermal fields that were present on the early Earth. Gel electrophoresis data corroborates the presence of up to 200-base pair length RNA fragments in products of Hydration-Dehydration experiments. Furthermore, hypochromicity measurements demonstrate a degree of hypochromicity found in single RNA strand of known sequence, as well as results that indicate this is true also for a sample of complementary strands of RNA. Analysis of ionic current signatures of known RNA hairpin molecule as measured using a nanopore detector indicate a significant variability in pattern, different from the signatures produced by DNA hairpin molecules. This informs how we may interpret nanopore data gathered from prebiotic simulations.

  13. Infrequent widespread microsatellite instability in hepatocellular carcinomas.

    PubMed

    Yamamoto, H; Itoh, F; Fukushima, H; Kaneto, H; Sasaki, S; Ohmura, T; Satoh, T; Karino, Y; Endo, T; Toyota, J; Imai, K

    2000-03-01

    Widespread or high-frequency microsatellite instability (MSI) due to the defective DNA mismatch repair (MMR) occurs in the majority of hereditary non-polyposis colorectal cancer and a subset of sporadic malignant tumors. The incidence of MSI and underlying DNA MMR defects have been well characterized in gastrointestinal carcinogenesis, but not in hepatocarcinogenesis. To address the issue, we analyzed 55 Japanese hepatocellular carcinomas using several indicators of DNA MMR defects, such as microsatellite analysis, loss of heterozygosity (LOH) and mutation analysis of MMR genes, methylation of hMLH1 promoter, and frameshift mutations of mononucleotide repeat sequences within possible target genes. Mutation of beta2-microglobulin gene, which is presumably involved in MSI-positive tumor cell escape from immune surveillance was also examined. Some of these analyses were also carried out in 9 human liver cancer cell lines. None of the 3 quasi-monomorphic mononucleotide markers sensitive for MSI, BAT26, BAT25, and BAT34C4 presented shortened unstable alleles in any of the carcinoma, cirrhosis, chronic hepatitis tissues, or cell lines. LOH at MMR genes was infrequent (4.4 approximately 7.1%), and no mutations were detected. Neither hMLH1 hypermethylation nor frameshift mutation in the target genes was detected. No mutations were found in beta2-microglobulin. Widespread MSI due to the defective DNA MMR appears to play little if any part in Japanese hepatocarcinogenesis.

  14. Loss of heterozygosity and microsatellite instability are rare in sporadic dedifferentiated liposarcoma: a study of 43 well-characterized cases.

    PubMed

    Davis, Jessica L; Grenert, James P; Horvai, Andrew E

    2014-06-01

    Defects in mismatch repair proteins have been identified in Lynch syndrome-associated liposarcomas, as well as in rare sporadic sarcomas. However, it is unclear if mismatch repair defects have a role in sarcoma tumorigenesis. Microsatellite instability is a surrogate marker of mismatch repair defects. To determine whether sporadic dedifferentiated liposarcomas display microsatellite instability and, if so, to evaluate whether such instability differs between the lipogenic and nonlipogenic components of these tumors. The diagnoses of conventional dedifferentiated liposarcoma were confirmed by a combination of morphologic, immunophenotypic, and molecular studies. Standard fluorescence-based polymerase chain reaction, including 5 mononucleotide microsatellite markers (BAT25, BAT26, NR21, NR24, and MONO27), as well as 2 pentanucleotide repeat markers (Penta C and Penta D), was used to test for instability and loss of heterozygosity. We demonstrated only a single case (1 of 43) with microsatellite instability at one mononucleotide marker. No sarcomas showed high-level microsatellite instability. However, loss of heterozygosity at the pentanucleotide markers was observed in 8 of 43 cases. The presence of loss of heterozygosity was overrepresented in the nonlipogenic (dedifferentiated) components compared with the paired lipogenic (well differentiated) components. Mismatch repair defects do not contribute to sporadic dedifferentiated liposarcoma tumorigenesis. Whether the observed loss of heterozygosity drives tumorigenesis in liposarcoma, for example by affecting tumor suppressor or cell cycle regulator genes, remains to be determined.

  15. Upstream mononucleotide A-repeats play a cis-regulatory role in mammals through the DICER1 and Ago proteins.

    PubMed

    Aporntewan, Chatchawit; Pin-on, Piyapat; Chaiyaratana, Nachol; Pongpanich, Monnat; Boonyaratanakornkit, Viroj; Mutirangura, Apiwat

    2013-10-01

    A-repeats are the simplest form of tandem repeats and are found ubiquitously throughout genomes. These mononucleotide repeats have been widely believed to be non-functional 'junk' DNA. However, studies in yeasts suggest that A-repeats play crucial biological functions, and their role in humans remains largely unknown. Here, we showed a non-random pattern of distribution of sense A- and T-repeats within 20 kb around transcription start sites (TSSs) in the human genome. Different distributions of these repeats are observed upstream and downstream of TSSs. Sense A-repeats are enriched upstream, whereas sense T-repeats are enriched downstream of TSSs. This enrichment directly correlates with repeat size. Genes with different functions contain different lengths of repeats. In humans, tissue-specific genes are enriched for short repeats of <10 bp, whereas housekeeping genes are enriched for long repeats of ≥10 bp. We demonstrated that DICER1 and Argonaute proteins are required for the cis-regulatory role of A-repeats. Moreover, in the presence of a synthetic polymer that mimics an A-repeat, protein binding to A-repeats was blocked, resulting in a dramatic change in the expression of genes containing upstream A-repeats. Our findings suggest a length-dependent cis-regulatory function of A-repeats and that Argonaute proteins serve as trans-acting factors, binding to A-repeats.

  16. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia.

    PubMed

    Park, Ji H; Long, Aaron; Owens, Katrina; Kristian, Tibor

    2016-11-01

    Nicotinamide adenine dinucleotide (NAD(+)) is an essential cofactor for multiple cellular metabolic reactions and has a central role in energy production. Brain ischemia depletes NAD(+) pools leading to bioenergetics failure and cell death. Nicotinamide mononucleotide (NMN) is utilized by the NAD(+) salvage pathway enzyme, nicotinamide adenylyltransferase (Nmnat) to generate NAD(+). Therefore, we examined whether NMN could protect against ischemic brain damage. Mice were subjected to transient forebrain ischemia and treated with NMN or vehicle at the start of reperfusion or 30min after the ischemic insult. At 2, 4, and 24h of recovery, the proteins poly-ADP-ribosylation (PAR), hippocampal NAD(+) levels, and expression levels of NAD(+) salvage pathway enzymes were determined. Furthermore, animal's neurologic outcome and hippocampal CA1 neuronal death was assessed after six days of reperfusion. NMN (62.5mg/kg) dramatically ameliorated the hippocampal CA1 injury and significantly improved the neurological outcome. Additionally, the post-ischemic NMN treatment prevented the increase in PAR formation and NAD(+) catabolism. Since the NMN administration did not affect animal's temperature, blood gases or regional cerebral blood flow during recovery, the protective effect was not a result of altered reperfusion conditions. These data suggest that administration of NMN at a proper dosage has a strong protective effect against ischemic brain injury. Published by Elsevier Inc.

  17. Actions of p-synephrine on hepatic enzyme activities linked to carbohydrate metabolism and ATP levels in vivo and in the perfused rat liver.

    PubMed

    Maldonado, Marcos Rodrigues; Bracht, Lívia; de Sá-Nakanishi, Anacharis Babeto; Corrêa, Rúbia Carvalho Gomes; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2018-01-01

    p-Synephrine is one of the main active components of the fruit of Citrus aurantium (bitter orange). Extracts of the bitter orange and other preparations containing p-synephrine have been used worldwide to promote weight loss and for sports performance. The purpose of the study was to measure the action of p-synephrine on hepatic enzyme activities linked to carbohydrate and energy metabolism and the levels of adenine mononucleotides. Enzymes and adenine mononucleotides were measured in the isolated perfused rat liver and in vivo after oral administration of the drug (50 and 300 mg/kg) by using standard techniques. p-Synephrine increased the activity of glycogen phosphorylase in vivo and in the perfused liver. It decreased, however, the activities of pyruvate kinase and pyruvate dehydrogenase also in vivo and in the perfused liver. p-Synephrine increased the hepatic pools of adenosine diphosphate and adenosine triphosphate. Stimulation of glycogen phosphorylase is consistent with the reported increased glycogenolysis in the perfused liver and increased glycemia in rats. The decrease in the pyruvate dehydrogenase activity indicates that p-synephrine is potentially capable of inhibiting the transformation of carbohydrates into lipids. The capability of increasing the adenosine triphosphate-adenosine diphosphate pool indicates a beneficial effect of p-synephrine on the cellular energetics. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Ligand binding phenomena that pertain to the metabolic function of renalase.

    PubMed

    Beaupre, Brett A; Roman, Joseph V; Hoag, Matthew R; Meneely, Kathleen M; Silvaggi, Nicholas R; Lamb, Audrey L; Moran, Graham R

    2016-12-15

    Renalase catalyzes the oxidation of isomers of β-NAD(P)H that carry the hydride in the 2 or 6 positions of the nicotinamide base to form β-NAD(P) + . This activity is thought to alleviate inhibition of multiple β-NAD(P)-dependent enzymes of primary and secondary metabolism by these isomers. Here we present evidence for a variety of ligand binding phenomena relevant to the function of renalase. We offer evidence of the potential for primary metabolism inhibition with structures of malate dehydrogenase and lactate dehydrogenase bound to the 6-dihydroNAD isomer. The previously observed preference of renalase from Pseudomonas for NAD-derived substrates over those derived from NADP is accounted for by the structure of the enzyme in complex with NADPH. We also show that nicotinamide nucleosides and mononucleotides reduced in the 2- and 6-positions are renalase substrates, but bind weakly. A seven-fold enhancement of acquisition (k red /K d ) for 6-dihydronicotinamide riboside was observed for human renalase in the presence of ADP. However, generally the addition of complement ligands, AMP for mononucleotide or ADP for nucleoside substrates, did not enhance the reductive half-reaction. Non-substrate nicotinamide nucleosides or nucleotides bind weakly suggesting that only β-NADH and β-NADPH compete with dinucleotide substrates for access to the active site. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. SelTarbase, a database of human mononucleotide-microsatellite mutations and their potential impact to tumorigenesis and immunology

    PubMed Central

    Woerner, Stefan M.; Yuan, Yan P.; Benner, Axel; Korff, Sebastian; von Knebel Doeberitz, Magnus; Bork, Peer

    2010-01-01

    About 15% of human colorectal cancers and, at varying degrees, other tumor entities as well as nearly all tumors related to Lynch syndrome are hallmarked by microsatellite instability (MSI) as a result of a defective mismatch repair system. The functional impact of resulting mutations depends on their genomic localization. Alterations within coding mononucleotide repeat tracts (MNRs) can lead to protein truncation and formation of neopeptides, whereas alterations within untranslated MNRs can alter transcription level or transcript stability. These mutations may provide selective advantage or disadvantage to affected cells. They may further concern the biology of microsatellite unstable cells, e.g. by generating immunogenic peptides induced by frameshifts mutations. The Selective Targets database (http://www.seltarbase.org) is a curated database of a growing number of public MNR mutation data in microsatellite unstable human tumors. Regression calculations for various MSI–H tumor entities indicating statistically deviant mutation frequencies predict TGFBR2, BAX, ACVR2A and others that are shown or highly suspected to be involved in MSI tumorigenesis. Many useful tools for further analyzing genomic DNA, derived wild-type and mutated cDNAs and peptides are integrated. A comprehensive database of all human coding, untranslated, non-coding RNA- and intronic MNRs (MNR_ensembl) is also included. Herewith, SelTarbase presents as a plenty instrument for MSI-carcinogenesis-related research, diagnostics and therapy. PMID:19820113

  20. Oxidation mode of pyranose 2-oxidase is controlled by pH.

    PubMed

    Prongjit, Methinee; Sucharitakul, Jeerus; Palfey, Bruce A; Chaiyen, Pimchai

    2013-02-26

    Pyranose 2-oxidase (P2O) from Trametes multicolor is a flavoenzyme that catalyzes the oxidation of d-glucose and other aldopyranose sugars at the C2 position by using O₂ as an electron acceptor to form the corresponding 2-keto-sugars and H₂O₂. In this study, the effects of pH on the oxidative half-reaction of P2O were investigated using stopped-flow spectrophotometry. The results showed that flavin oxidation occurred via different pathways depending on the pH of the environment. At pH values lower than 8.0, reduced P2O reacts with O₂ to form a C4a-hydroperoxyflavin intermediate, leading to elimination of H₂O₂. At pH 8.0 and higher, the majority of the reduced P2O reacts with O₂ via a pathway that does not allow detection of the C4a-hydroperoxyflavin, and flavin oxidation occurs with decreased rate constants upon the rise in pH. The switching between the two modes of P2O oxidation is controlled by protonation of a group which has a pK(a) of 7.6 ± 0.1. Oxidation reactions of reduced P2O under rapid pH change as performed by stopped-flow mixing were different from the same reactions performed with enzyme pre-equilibrated at the same specified pH values, implying that the protonation of the group which controls the mode of flavin oxidation cannot be rapidly equilibrated with outside solvent. Using a double-mixing stopped-flow experiment, a rate constant for proton dissociation from the reaction site was determined to be 21.0 ± 0.4 s⁻¹.

  1. Fullerene-Assisted Photoinduced Charge Transfer of Single-Walled Carbon Nanotubes through a Flavin Helix.

    PubMed

    Mollahosseini, Mehdi; Karunaratne, Erandika; Gibson, George N; Gascón, Jose A; Papadimitrakopoulos, Fotios

    2016-05-11

    One of the greatest challenges with single-walled carbon nanotube (SWNT) photovoltaics and nanostructured devices is maintaining the nanotubes in their pristine state (i.e., devoid of aggregation and inhomogeneous doping) so that their unique spectroscopic and transport characteristics are preserved. To this effect, we report on the synthesis and self-assembly of a C60-functionalized flavin (FC60), composed of PCBM and isoalloxazine moieties attached on either ends of a linear, C-12 aliphatic spacer. Small amounts of FC60 (up to 3 molar %) were shown to coassembly with an organic soluble derivative of flavin (FC12) around SWNTs and impart effective dispersion and individualization. A key annealing step was necessary to perfect the isoalloxazine helix and expel the C60 moiety away from the nanotubes. Steady-state and transient absorption spectroscopy illustrate that 1% or higher incorporation of FC60 allows for an effective photoinduced charge transfer quenching of the encased SWNTs through the seamless helical encase. This is enabled via the direct π-π overlap between the graphene sidewalls, isoalloxazine helix, and the C60 cage that facilitates SWNT exciton dissociation and electron transfer to the PCBM moiety. Atomistic molecular simulations indicate that the stability of the complex originates from enhanced van der Waals interactions of the flexible spacer wrapped around the fullerene that brings the C60 in π-π overlap with the isoalloxazine helix. The remarkable spectral purity (in terms of narrow E(S)ii line widths) for the resulting ground-state complex signals a new class of highly organized supramolecular nanotube architecture with profound importance for advanced nanostructured devices.

  2. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.

    PubMed

    Wongnate, Thanyaporn; Chaiyen, Pimchai

    2013-07-01

    Enzymes in the glucose-methanol-choline (GMC) oxidoreductase superfamily catalyze the oxidation of an alcohol moiety to the corresponding aldehyde. In this review, the current understanding of the sugar oxidation mechanism in the reaction of pyranose 2-oxidase (P2O) is highlighted and compared with that of other enzymes in the GMC family for which structural and mechanistic information is available, including glucose oxidase, choline oxidase, cholesterol oxidase, cellobiose dehydrogenase, aryl-alcohol oxidase, and pyridoxine 4-oxidase. Other enzymes in the family that have been newly discovered or for which less information is available are also discussed. A large primary kinetic isotope effect was observed for the flavin reduction when 2-d-D-glucose was used as a substrate, but no solvent kinetic isotope effect was detected for the flavin reduction step. The reaction of P2O is consistent with a hydride transfer mechanism in which there is stepwise formation of d-glucose alkoxide prior to the hydride transfer. Site-directed mutagenesis of P2O and pH-dependence studies indicated that His548 is a catalytic base that facilitates the deprotonation of C2-OH in D-glucose. This finding agrees with the current mechanistic model for aryl-alcohol oxidase, glucose oxidase, cellobiose dehydrogenase, methanol oxidase, and pyridoxine 4-oxidase, but is different from that of cholesterol oxidase and choline oxidase. Although all of the GMC enzymes share similar structural folding and use the hydride transfer mechanism for flavin reduction, they appear to have subtle differences in the fine-tuned details of how they catalyze substrate oxidation. © 2013 The Authors Journal compilation © 2013 FEBS.

  3. The Electron Bifurcating FixABCX Protein Complex from Azotobacter vinelandii: Generation of Low-Potential Reducing Equivalents for Nitrogenase Catalysis.

    PubMed

    Ledbetter, Rhesa N; Garcia Costas, Amaya M; Lubner, Carolyn E; Mulder, David W; Tokmina-Lukaszewska, Monika; Artz, Jacob H; Patterson, Angela; Magnuson, Timothy S; Jay, Zackary J; Duan, H Diessel; Miller, Jacquelyn; Plunkett, Mary H; Hoben, John P; Barney, Brett M; Carlson, Ross P; Miller, Anne-Frances; Bothner, Brian; King, Paul W; Peters, John W; Seefeldt, Lance C

    2017-08-15

    The biological reduction of dinitrogen (N 2 ) to ammonia (NH 3 ) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (E m = -320 mV) coupled to reduction of flavodoxin semiquinone (E m = -460 mV) and reduction of coenzyme Q (E m = 10 mV). Knocking out fix genes rendered Δrnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Overall, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.

  4. Structure and Ligand Binding Properties of the Epoxidase Component of Styrene Monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ukaegbu, Uchechi E.; Kantz, Auric; Beaton, Michelle

    2010-07-23

    Styrene monooxygenase (SMO) is a two-component flavoprotein monooxygenase that transforms styrene to styrene oxide in the first step of the styrene catabolic and detoxification pathway of Pseudomonas putida S12. The crystal structure of the N-terminally histidine-tagged epoxidase component of this system, NSMOA, determined to 2.3 {angstrom} resolution, indicates the enzyme exists as a homodimer in which each monomer forms two distinct domains. The overall architecture is most similar to that of p-hydroxybenzoate hydroxylase (PHBH), although there are some significant differences in secondary structure. Structural comparisons suggest that a large cavity open to the surface forms the FAD binding site. Atmore » the base of this pocket is another cavity that likely represents the styrene binding site. Flavin binding and redox equilibria are tightly coupled such that reduced FAD binds apo NSMOA {approx}8000 times more tightly than the oxidized coenzyme. Equilibrium fluorescence and isothermal titration calorimetry data using benzene as a substrate analogue indicate that the oxidized flavin and substrate analogue binding equilibria of NSMOA are linked such that the binding affinity of each is increased by 60-fold when the enzyme is saturated with the other. A much weaker {approx}2-fold positive cooperative interaction is observed for the linked binding equilibria of benzene and reduced FAD. The low affinity of the substrate analogue for the reduced FAD complex of NSMOA is consistent with a preferred reaction order in which flavin reduction and reaction with oxygen precede the binding of styrene, identifying the apoenzyme structure as the key catalytic resting state of NSMOA poised to bind reduced FAD and initiate the oxygen reaction.« less

  5. Metal plasmon-coupled fluorescence imaging and label free coenzyme detection in cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian, E-mail: jian@cfs.bioment.umaryland.edu; Fu, Yi; Li, Ge

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Metal nanoparticle for fluorescence cell imaging. Black-Right-Pointing-Pointer Non-invasive emission detection of coenzyme in cell on time-resolved confocal microscope. Black-Right-Pointing-Pointer Near-field interaction of flavin adenine dinucleotide with silver substrate. Black-Right-Pointing-Pointer Isolation of emissions by coenzymes from cellular autofluorescence on fluorescence cell imaging. -- Abstract: Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent,more » but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells.« less

  6. Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY*

    PubMed Central

    Oldemeyer, Sabine; Franz, Sophie; Wenzel, Sandra; Essen, Lars-Oliver; Mittag, Maria

    2016-01-01

    Cryptochromes constitute a group of flavin-binding blue light receptors in bacteria, fungi, plants, and insects. Recently, the response of cryptochromes to light was extended to nearly the entire visible spectral region on the basis of the activity of the animal-like cryptochrome aCRY in the green alga Chlamydomonas reinhardtii. This finding was explained by the absorption of red light by the flavin neutral radical as the dark state of the receptor, which then forms the anionic fully reduced state. In this study, time-resolved UV-visible spectroscopy on the full-length aCRY revealed an unusually long-lived tyrosyl radical with a lifetime of 2.6 s, which is present already 1 μs after red light illumination of the flavin radical. Mutational studies disclosed the tyrosine 373 close to the surface to form the long-lived radical and to be essential for photoreduction. This residue is conserved exclusively in the sequences of other putative aCRY proteins distinguishing them from conventional (6–4) photolyases. Size exclusion chromatography showed the full-length aCRY to be a dimer in the dark at 0.5 mm injected concentration with the C-terminal extension as the dimerization site. Upon illumination, partial oligomerization was observed via disulfide bridge formation at cysteine 482 in close proximity to tyrosine 373. The lack of any light response in the C-terminal extension as evidenced by FTIR spectroscopy differentiates aCRY from plant and Drosophila cryptochromes. These findings imply that aCRY might have evolved a different signaling mechanism via a light-triggered redox cascade culminating in photooxidation of a yet unknown substrate or binding partner. PMID:27189948

  7. Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress.

    PubMed

    Sainz, Martha; Pérez-Rontomé, Carmen; Ramos, Javier; Mulet, Jose Miguel; James, Euan K; Bhattacharjee, Ujjal; Petrich, Jacob W; Becana, Manuel

    2013-12-01

    The heme of bacteria, plant and animal hemoglobins (Hbs) must be in the ferrous state to bind O(2) and other physiological ligands. Here we have characterized the full set of non-symbiotic (class 1 and 2) and 'truncated' (class 3) Hbs of Lotus japonicus. Class 1 Hbs are hexacoordinate, but class 2 and 3 Hbs are pentacoordinate. Three of the globins, Glb1-1, Glb2 and Glb3-1, are nodule-enhanced proteins. The O(2) affinity of Glb1-1 (50 pm) was the highest known for any Hb, and the protein may function as an O(2) scavenger. The five globins were reduced by free flavins, which transfer electrons from NAD(P)H to the heme iron under aerobic and anaerobic conditions. Class 1 Hbs were reduced at very fast rates by FAD, class 2 Hbs at slower rates by both FMN and FAD, and class 3 Hbs at intermediate rates by FMN. The members of the three globin classes were immunolocalized predominantly in the nuclei. Flavins were quantified in legume nodules and nuclei, and their concentrations were sufficient to maintain Hbs in their functional state. All Hbs, except Glb1-1, were expressed in a flavohemoglobin-deficient yeast mutant and found to confer tolerance to oxidative stress induced by methyl viologen, copper or low temperature, indicating an anti-oxidative role for the hemes. However, only Glb1-2 and Glb2 afforded protection against nitrosative stress induced by S-nitrosoglutathione. Because this compound is specifically involved in transnitrosylation reactions with thiol groups, our results suggest a contribution of the single cysteine residues of both proteins in the stress response. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  8. Oxidation of the FAD cofactor to the 8-formyl-derivative in human electron-transferring flavoprotein

    PubMed Central

    Augustin, Peter; Toplak, Marina; Fuchs, Katharina; Gerstmann, Eva Christine; Prassl, Ruth; Winkler, Andreas; Macheroux, Peter

    2018-01-01

    The heterodimeric human (h) electron-transferring flavoprotein (ETF) transfers electrons from at least 13 different flavin dehydrogenases to the mitochondrial respiratory chain through a non-covalently bound FAD cofactor. Here, we describe the discovery of an irreversible and pH-dependent oxidation of the 8α-methyl group to 8-formyl-FAD (8f-FAD), which represents a unique chemical modification of a flavin cofactor in the human flavoproteome. Furthermore, a set of hETF variants revealed that several conserved amino acid residues in the FAD-binding pocket of electron-transferring flavoproteins are required for the conversion to the formyl group. Two of the variants generated in our study, namely αR249C and αT266M, cause glutaric aciduria type II, a severe inherited disease. Both of the variants showed impaired formation of 8f-FAD shedding new light on the potential molecular cause of disease development. Interestingly, the conversion of FAD to 8f-FAD yields a very stable flavin semiquinone that exhibited slightly lower rates of electron transfer in an artificial assay system than hETF containing FAD. In contrast, the formation of 8f-FAD enhanced the affinity to human dimethylglycine dehydrogenase 5-fold, indicating that formation of 8f-FAD modulates the interaction of hETF with client enzymes in the mitochondrial matrix. Thus, we hypothesize that the FAD cofactor bound to hETF is subject to oxidation in the alkaline (pH 8) environment of the mitochondrial matrix, which may modulate electron transport between client dehydrogenases and the respiratory chain. This discovery challenges the current concepts of electron transfer processes in mitochondria. PMID:29301933

  9. Studies on the reaction mechanism of lactate oxidase. Formation of two covalent flavin-substrate adducts on reaction with glycollate.

    PubMed

    Massey, V; Ghisla, S; Kieschke, K

    1980-04-10

    L-Lactate oxidase from Mycobacterium smegmatis catalyzes the oxidative decarboxylation of glycollate, with formate, CO2, and H2O as the major products. In addition, some "uncoupling" of the normal reaction occurs, with glyoxylate and H2O adition, some "uncoupling" of the normal reaction occurs, with glyoxylate and H2O2 as products. Glyoxylate is also a substrate (presumably as its hydrate); in this case, the reaction products are oxalate and H2O2. Evidence is presented that the enzyme recognizes glycollate as a prochiral substrate, differentiating between the Re- and Si-faces of the alpha carbon atom. Two highly fluorescent species are formed concomitantly from the reaction with glycollate; they are proposed to be covalent alpha-glycollyl adducts to the reduced flavin position N(5). One of these adducts is labile and in rapid equilibrium with oxidized enzyme and glycollate, and with the complex of reduced enzyme and glyoxylate; this adduct is a catalytically competent intermediate. The other adduct is comparatively stable (t 1/2 for decay = 20 min at 25 degrees C) and does not react with O2. It is formed at a rate approximately 1% that of the catalytic adduct, but because of its lack of reaction with O2 and its stability, it gradually accumulates during catalytic turnover, resulting in catalytically incompetent enzyme. An isotope effect of approximately 4 is found in the reduction of oxidized enzyme flavin and in the formation of the labile fluorescent adduct, when alpha-2H2-glycollate or (R)-glycollate-2-d is used, but not with the (S)-glycollate-2-d enantiomer. It is concluded that the catalytic adduct is formed by hydrogen abstraction from the Re-face of glycollate.

  10. The Electron Bifurcating FixABCX Protein Complex from Azotobacter vinelandii: Generation of Low-Potential Reducing Equivalents for Nitrogenase Catalysis

    DOE PAGES

    Ledbetter, Rhesa N.; Garcia Costas, Amaya M.; Lubner, Carolyn E.; ...

    2017-07-13

    The biological reduction of dinitrogen (N 2) to ammonia (NH 3) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (E m = -320 mV) coupled tomore » reduction of flavodoxin semiquinone (E m = -460 mV) and reduction of coenzyme Q (E m = 10 mV). Knocking out fix genes rendered ..delta..rnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Altogether, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.« less

  11. Riboflavin Is an Active Redox Cofactor in the Na+-pumping NADH:Quinone Oxidoreductase (Na+-NQR) from Vibrio cholerae*

    PubMed Central

    Juárez, Oscar; Nilges, Mark J.; Gillespie, Portia; Cotton, Jennifer; Barquera, Blanca

    2008-01-01

    Here we present new evidence that riboflavin is present as one of four flavins in Na+-NQR. In particular, we present conclusive evidence that the source of the neutral radical is not one of the FMNs and that riboflavin is the center that gives rise to the neutral flavosemiquinone. The riboflavin is a bona fide redox cofactor and is likely to be the last redox carrier of the enzyme, from which electrons are donated to quinone. We have constructed a double mutant that lacks both covalently bound FMN cofactors (NqrB-T236Y/NqrC-T225Y) and have studied this mutant together with the two single mutants (NqrB-T236Y and NqrC-T225Y) and a mutant that lacks the noncovalently bound FAD in NqrF (NqrF-S246A). The double mutant contains riboflavin and FAD in a 0.6:1 ratio, as the only flavins in the enzyme; noncovalently bound flavins were detected. In the oxidized form, the double mutant exhibits an EPR signal consistent with a neutral flavosemiquinone radical, which is abolished on reduction of the enzyme. The same radical can be observed in the FAD deletion mutant. Furthermore, when the oxidized enzyme reacts with ubiquinol (the reduced form of the usual electron acceptor) in a process that reverses the physiological direction of the electron flow, a single kinetic phase is observed. The kinetic difference spectrum of this process is consistent with one-electron reduction of a neutral flavosemiquinone. The presence of riboflavin in the role of a redox cofactor is thus far unique to Na+-NQR. PMID:18832377

  12. Kinetic Mechanism of the Dechlorinating Flavin-dependent Monooxygenase HadA*

    PubMed Central

    Pimviriyakul, Panu; Thotsaporn, Kittisak; Sucharitakul, Jeerus; Chaiyen, Pimchai

    2017-01-01

    The accumulation of chlorophenols (CPs) in the environment, due to their wide use as agrochemicals, has become a serious environmental problem. These organic halides can be degraded by aerobic microorganisms, where the initial steps of various biodegradation pathways include an oxidative dechlorinating process in which chloride is replaced by a hydroxyl substituent. Harnessing these dechlorinating processes could provide an opportunity for environmental remediation, but detailed catalytic mechanisms for these enzymes are not yet known. To close this gap, we now report transient kinetics and product analysis of the dechlorinating flavin-dependent monooxygenase, HadA, from the aerobic organism Ralstonia pickettii DTP0602, identifying several mechanistic properties that differ from other enzymes in the same class. We first overexpressed and purified HadA to homogeneity. Analyses of the products from single and multiple turnover reactions demonstrated that HadA prefers 4-CP and 2-CP over CPs with multiple substituents. Stopped-flow and rapid-quench flow experiments of HadA with 4-CP show the involvement of specific intermediates (C4a-hydroperoxy-FAD and C4a-hydroxy-FAD) in the reaction, define rate constants and the order of substrate binding, and demonstrate that the hydroxylation step occurs prior to chloride elimination. The data also identify the non-productive and productive paths of the HadA reactions and demonstrate that product formation is the rate-limiting step. This is the first elucidation of the kinetic mechanism of a two-component flavin-dependent monooxygenase that can catalyze oxidative dechlorination of various CPs, and as such it will serve as the basis for future investigation of enzyme variants that will be useful for applications in detoxifying chemicals hazardous to human health. PMID:28159841

  13. From Cholesterogenesis to Steroidogenesis: Role of Riboflavin and Flavoenzymes in the Biosynthesis of Vitamin D12

    PubMed Central

    Pinto, John T.; Cooper, Arthur J. L.

    2014-01-01

    Flavin-dependent monooxygenases and oxidoreductases are located at critical branch points in the biosynthesis and metabolism of cholesterol and vitamin D. These flavoproteins function as obligatory intermediates that accept 2 electrons from NAD(P)H with subsequent 1-electron transfers to a variety of cytochrome P450 (CYP) heme proteins within the mitochondria matrix (type I) and the (microsomal) endoplasmic reticulum (type II). The mode of electron transfer in these systems differs slightly in the number and form of the flavin prosthetic moiety. In the type I mitochondrial system, FAD-adrenodoxin reductase interfaces with adrenodoxin before electron transfer to CYP heme proteins. In the microsomal type II system, a diflavin (FAD/FMN)-dependent cytochrome P450 oxidoreductase [NAD(P)H-cytochrome P450 reductase (CPR)] donates electrons to a multitude of heme oxygenases. Both flavoenzyme complexes exhibit a commonality of function with all CYP enzymes and are crucial for maintaining a balance of cholesterol and vitamin D metabolites. Deficits in riboflavin availability, imbalances in the intracellular ratio of FAD to FMN, and mutations that affect flavin binding domains and/or interactions with client proteins result in marked structural alterations within the skeletal and central nervous systems similar to those of disorders (inborn errors) in the biosynthetic pathways that lead to cholesterol, steroid hormones, and vitamin D and their metabolites. Studies of riboflavin deficiency during embryonic development demonstrate congenital malformations similar to those associated with genetic alterations of the flavoenzymes in these pathways. Overall, a deeper understanding of the role of riboflavin in these pathways may prove essential to targeted therapeutic designs aimed at cholesterol and vitamin D metabolism. PMID:24618756

  14. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    PubMed Central

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-01-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes. Images Fig. 3. PMID:117798

  15. Direct determination of resonance energy transfer in photolyase: structural alignment for the functional state.

    PubMed

    Tan, Chuang; Guo, Lijun; Ai, Yuejie; Li, Jiang; Wang, Lijuan; Sancar, Aziz; Luo, Yi; Zhong, Dongping

    2014-11-13

    Photoantenna is essential to energy transduction in photoinduced biological machinery. A photoenzyme, photolyase, has a light-harvesting pigment of methenyltetrahydrofolate (MTHF) that transfers its excitation energy to the catalytic flavin cofactor FADH¯ to enhance DNA-repair efficiency. Here we report our systematic characterization and direct determination of the ultrafast dynamics of resonance energy transfer from excited MTHF to three flavin redox states in E. coli photolyase by capturing the intermediates formed through the energy transfer and thus excluding the electron-transfer quenching pathway. We observed 170 ps for excitation energy transferring to the fully reduced hydroquinone FADH¯, 20 ps to the fully oxidized FAD, and 18 ps to the neutral semiquinone FADH(•), and the corresponding orientation factors (κ(2)) were determined to be 2.84, 1.53 and 1.26, respectively, perfectly matching with our calculated theoretical values. Thus, under physiological conditions and over the course of evolution, photolyase has adopted the optimized orientation of its photopigment to efficiently convert solar energy for repair of damaged DNA.

  16. Inhibition of the Flavin-Dependent Monooxygenase Siderophore A (SidA) Blocks Siderophore Biosynthesis and Aspergillus fumigatus Growth.

    PubMed

    Martín Del Campo, Julia S; Vogelaar, Nancy; Tolani, Karishma; Kizjakina, Karina; Harich, Kim; Sobrado, Pablo

    2016-11-18

    Aspergillus fumigatus is an opportunistic fungal pathogen and the most common causative agent of fatal invasive mycoses. The flavin-dependent monooxygenase siderophore A (SidA) catalyzes the oxygen and NADPH dependent hydroxylation of l-ornithine (l-Orn) to N 5 -l-hydroxyornithine in the biosynthetic pathway of hydroxamate-containing siderophores in A. fumigatus. Deletion of the gene that codes for SidA has shown that it is essential in establishing infection in mice models. Here, a fluorescence polarization high-throughput assay was used to screen a 2320 compound library for inhibitors of SidA. Celastrol, a natural quinone methide, was identified as a noncompetitive inhibitor of SidA with a MIC value of 2 μM. Docking experiments suggest that celastrol binds across the NADPH and l-Orn pocket. Celastrol prevents A. fumigatus growth in blood agar. The addition of purified ferric-siderophore abolished the inhibitory effect of celastrol. Thus, celastrol inhibits A. fumigatus growth by blocking siderophore biosynthesis through SidA inhibiton.

  17. Impact of Mono-Fluorination on the Photophysics of the Flavin Chromophore.

    PubMed

    Reiffers, Anna; Torres Ziegenbein, Christian; Engelhardt, Alyn; Kühnemuth, Ralf; Gilch, Peter; Czekelius, Constantin

    2018-03-31

    Three mono-fluorinated derivatives of the flavin core system 10-methyl-isoalloxazine (MIA) were synthesized. Aqueous solutions of these compounds were characterized by steady-state and time-resolved spectroscopy. The positions for the fluorination (6, 7 and 8) were motivated by the nodal structure of the frontier orbitals of MIA. In comparison with MIA, the fluorination results in bathochromic (6F- and 7F-MIA) and hypsochromic (8F-MIA) shifts of the adiabatic excitation energy of the lowest allowed transition. Shifts of up to ~500 cm -1 were observed. These spectroscopic shifts go along with changes in fluorescence quantum yields and lifetimes. In addition, triplet yields are affected. For 7F-MIA, a 50% increase in the fluorescence quantum yield as well as a 50% decrease in triplet yield is observed rendering the compound interesting for fluorescence applications. The measured effects are discussed in terms of qualitative perturbation theory. © 2018 The American Society of Photobiology.

  18. Structural and mechanistic basis of differentiated inhibitors of the acute pancreatitis target kynurenine-3-monooxygenase

    NASA Astrophysics Data System (ADS)

    Hutchinson, Jonathan P.; Rowland, Paul; Taylor, Mark R. D.; Christodoulou, Erica M.; Haslam, Carl; Hobbs, Clare I.; Holmes, Duncan S.; Homes, Paul; Liddle, John; Mole, Damian J.; Uings, Iain; Walker, Ann L.; Webster, Scott P.; Mowat, Christopher G.; Chung, Chun-Wa

    2017-06-01

    Kynurenine-3-monooxygenase (KMO) is a key FAD-dependent enzyme of tryptophan metabolism. In animal models, KMO inhibition has shown benefit in neurodegenerative diseases such as Huntington's and Alzheimer's. Most recently it has been identified as a target for acute pancreatitis multiple organ dysfunction syndrome (AP-MODS); a devastating inflammatory condition with a mortality rate in excess of 20%. Here we report and dissect the molecular mechanism of action of three classes of KMO inhibitors with differentiated binding modes and kinetics. Two novel inhibitor classes trap the catalytic flavin in a previously unobserved tilting conformation. This correlates with picomolar affinities, increased residence times and an absence of the peroxide production seen with previous substrate site inhibitors. These structural and mechanistic insights culminated in GSK065(C1) and GSK366(C2), molecules suitable for preclinical evaluation. Moreover, revising the repertoire of flavin dynamics in this enzyme class offers exciting new opportunities for inhibitor design.

  19. How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors?

    PubMed

    Nohr, Daniel; Rodriguez, Ryan; Weber, Stefan; Schleicher, Erik

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage), and BLUF (blue-light using FAD) domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes.

  20. A Fivefold Parallelized Biosynthetic Process Secures Chlorination of Armillaria mellea (Honey Mushroom) Toxins

    PubMed Central

    Wick, Jonas; Heine, Daniel; Lackner, Gerald; Misiek, Mathias; Tauber, James; Jagusch, Hans; Hertweck, Christian

    2015-01-01

    The basidiomycetous tree pathogen Armillaria mellea (honey mushroom) produces a large variety of structurally related antibiotically active and phytotoxic natural products, referred to as the melleolides. During their biosynthesis, some members of the melleolide family of compounds undergo monochlorination of the aromatic moiety, whose biochemical and genetic basis was not known previously. This first study on basidiomycete halogenases presents the biochemical in vitro characterization of five flavin-dependent A. mellea enzymes (ArmH1 to ArmH5) that were heterologously produced in Escherichia coli. We demonstrate that all five enzymes transfer a single chlorine atom to the melleolide backbone. A 5-fold, secured biosynthetic step during natural product assembly is unprecedented. Typically, flavin-dependent halogenases are categorized into enzymes acting on free compounds as opposed to those requiring a carrier-protein-bound acceptor substrate. The enzymes characterized in this study clearly turned over free substrates. Phylogenetic clades of halogenases suggest that all fungal enzymes share an ancestor and reflect a clear divergence between ascomycetes and basidiomycetes. PMID:26655762

  1. Structural and mechanistic basis of differentiated inhibitors of the acute pancreatitis target kynurenine-3-monooxygenase.

    PubMed

    Hutchinson, Jonathan P; Rowland, Paul; Taylor, Mark R D; Christodoulou, Erica M; Haslam, Carl; Hobbs, Clare I; Holmes, Duncan S; Homes, Paul; Liddle, John; Mole, Damian J; Uings, Iain; Walker, Ann L; Webster, Scott P; Mowat, Christopher G; Chung, Chun-Wa

    2017-06-12

    Kynurenine-3-monooxygenase (KMO) is a key FAD-dependent enzyme of tryptophan metabolism. In animal models, KMO inhibition has shown benefit in neurodegenerative diseases such as Huntington's and Alzheimer's. Most recently it has been identified as a target for acute pancreatitis multiple organ dysfunction syndrome (AP-MODS); a devastating inflammatory condition with a mortality rate in excess of 20%. Here we report and dissect the molecular mechanism of action of three classes of KMO inhibitors with differentiated binding modes and kinetics. Two novel inhibitor classes trap the catalytic flavin in a previously unobserved tilting conformation. This correlates with picomolar affinities, increased residence times and an absence of the peroxide production seen with previous substrate site inhibitors. These structural and mechanistic insights culminated in GSK065(C1) and GSK366(C2), molecules suitable for preclinical evaluation. Moreover, revising the repertoire of flavin dynamics in this enzyme class offers exciting new opportunities for inhibitor design.

  2. Structural and mechanistic basis of differentiated inhibitors of the acute pancreatitis target kynurenine-3-monooxygenase

    PubMed Central

    Hutchinson, Jonathan P.; Rowland, Paul; Taylor, Mark R. D.; Christodoulou, Erica M.; Haslam, Carl; Hobbs, Clare I.; Holmes, Duncan S.; Homes, Paul; Liddle, John; Mole, Damian J.; Uings, Iain; Walker, Ann L.; Webster, Scott P.; Mowat, Christopher G.; Chung, Chun-wa

    2017-01-01

    Kynurenine-3-monooxygenase (KMO) is a key FAD-dependent enzyme of tryptophan metabolism. In animal models, KMO inhibition has shown benefit in neurodegenerative diseases such as Huntington's and Alzheimer's. Most recently it has been identified as a target for acute pancreatitis multiple organ dysfunction syndrome (AP-MODS); a devastating inflammatory condition with a mortality rate in excess of 20%. Here we report and dissect the molecular mechanism of action of three classes of KMO inhibitors with differentiated binding modes and kinetics. Two novel inhibitor classes trap the catalytic flavin in a previously unobserved tilting conformation. This correlates with picomolar affinities, increased residence times and an absence of the peroxide production seen with previous substrate site inhibitors. These structural and mechanistic insights culminated in GSK065(C1) and GSK366(C2), molecules suitable for preclinical evaluation. Moreover, revising the repertoire of flavin dynamics in this enzyme class offers exciting new opportunities for inhibitor design. PMID:28604669

  3. How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors?

    PubMed Central

    Nohr, Daniel; Rodriguez, Ryan; Weber, Stefan; Schleicher, Erik

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage), and BLUF (blue-light using FAD) domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes. PMID:26389123

  4. Identification of eukaryotic UDP-galactopyranose mutase inhibitors using the ThermoFAD assay.

    PubMed

    Martín Del Campo, Julia S; Eckshtain-Levi, Meital; Sobrado, Pablo

    2017-11-04

    Aspergillus fumigatus is a human pathogen responsible for deadly infections in immune-compromised patients. A potential strategy for treating A. fumigatus infections is by targeting the biosynthesis of cell wall components, such as galactofuranase, which is absent in humans. Galactofuranose biosynthesis is initiated by the flavoenzyme UDP-galactopyranose mutase (UGM), which converts UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). UGM requires the reduced form of the flavin for activity, which is obtained by reacting with NADPH. We aimed to identify inhibitors of UGM by screening a kinase inhibitor library using ThermoFAD, a flavin fluorescence thermal shift assay. The screening assay identified flavopiridol as a compound that increased the melting temperature of A. fumigatus UGM. Further characterization showed that flavopiridol is a non-competitive inhibitor of UGM and docking studies suggest that it binds in the active site. This compound does not inhibit the prokaryotic UGM from Mycobacteria tuberculosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Crystal structure of 4-hydroxybutyryl-CoA dehydratase: radical catalysis involving a [4Fe-4S] cluster and flavin.

    PubMed

    Martins, Berta M; Dobbek, Holger; Cinkaya, Irfan; Buckel, Wolfgang; Messerschmidt, Albrecht

    2004-11-02

    Dehydratases catalyze the breakage of a carbon-oxygen bond leading to unsaturated products via the elimination of water. The 1.6-A resolution crystal structure of 4-hydroxybutyryl-CoA dehydratase from the gamma-aminobutyrate-fermenting Clostridium aminobutyricum represents a new class of dehydratases with an unprecedented active site architecture. A [4Fe-4S](2+) cluster, coordinated by three cysteine and one histidine residues, is located 7 A from the Re-side of a flavin adenine dinucleotide (FAD) moiety. The structure provides insight into the function of these ubiquitous prosthetic groups in the chemically nonfacile, radical-mediated dehydration of 4-hydroxybutyryl-CoA. The substrate can be bound between the [4Fe-4S](2+) cluster and the FAD with both cofactors contributing to its radical activation and catalytic conversion. Our results raise interesting questions regarding the mechanism of acyl-CoA dehydrogenases, which are involved in fatty acid oxidation, and address the divergent evolution of the ancestral common gene.

  6. Mechanism of Specific Inhibition of Phototropism by Phenylacetic Acid in Corn Seedling 1

    PubMed Central

    Vierstra, Richard D.; Poff, Kenneth L.

    1981-01-01

    Using geotropism as a control for phototropism, compounds similar to phenylacetic acid that photoreact with flavins and/or have auxin-like activity were examined for their ability to specifically inhibit phototropism in corn seedlings using geotropism as a control. Results using indole-3-acetic acid, napthalene-1-acetic acid, naphthalene-2-acetic acid, phenylacetic acid, and β-phenylpyruvic acid suggest that such compounds will specifically inhibit phototropism primarily because of their photoreactivity with flavins and not their auxin activity. For example, strong auxins, indole-3-acetic acid and naphthalene-1-acetic acid, affected both tropic responses at all concentrations tested whereas weak auxins, phenylacetic acid and naphthalene-2-acetic acid, exhibited specific inhibition. In addition, the in vivo concentration of phenylacetic acid required to induce specificity was well below that required to stimulate coleoptile growth. Estimates of the percentage of photoreceptor pigment inactivated by phenylacetic acid (>10%) suggest that phenylacetic acid could be used to photoaffinity label the flavoprotein involved in corn seedling phototropism. PMID:16661774

  7. Action of nucleotide phosphotransferase of Escherichia coli on nicotinamide riboside and nicotinamide mononucleotide.

    PubMed Central

    Brunngraber, E F; Chargaff, E

    1977-01-01

    The action of the nucleotide phosphotransferase of Escherichia coli on nicotinamide riboside and on its 5'-phosphate results in the addition of one phosphate moiety to each of the substrates. Although the proof is not conclusive, it is likely that the phosphate group is transferred to the 3'-hydroxyl of the ribose. This is in contrast to the behavior of the enzyme toward NAD in which only the adenylic acid portion is phosphorylated enzymically. PMID:144913

  8. CORRELATION OF FLAVIN-CONTAINING MONOOXYGENASE ACTIVITY, ALDICARB TOXICITY AND SALINITY IN THE EURYHALINE FISH, JAPANESE MEDAKA (ORYZIAS LATIPES). (R826109)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. Localization and phosphorylation of Plasmodium falciparum nicotinamide/nicotinate mononucleotide adenylyltransferase (PfNMNAT) in intraerythrocytic stages.

    PubMed

    Nieto, Carlos A; Sánchez, Lina M; Sánchez, Diana M; Díaz, Gonzalo J; Ramírez, María H

    2018-04-11

    Nicotinamide adenine dinucleotide (NAD+) is an essential molecule in the energy metabolism of living beings, and it has various cellular functions. The main enzyme in the biosynthesis of this nucleotide is nicotinamide/nicotinate mononucleotide adenylyltransferase (NMNAT, EC 2.7.7.1/18) because it is the convergence point for all known biosynthetic pathways. NMNATs have divergences in both the number of isoforms detected and their distribution, depending on the organism. In the laboratory of basic research in biochemistry (LIBBIQ: acronym in Spanish) the NMNATs of protozoan parasites (Leishmania braziliensis, Plasmodium falciparum, Trypanosoma cruzi, and Giardia duodenalis) have been studied, analysing their catalytic properties through the use of proteins. Recombinants and their cellular distribution essentially. In 2014, O'Hara et al. determined the cytoplasmic localization of NMNAT of P. falciparum, using a transgene coupled to GFP, however, the addition of labels to the study protein can modify several of its characteristics, including its sub-cellular localization. This study confirms the cytoplasmic localization of this protein in the parasite through recognition of the endogenous protein in the different stages of the asexual life cycle. Additionally, the study found that PfNMNAT could be a phosphorylation target at serine, tyrosine and threonine residues, and it shows variations during the asexual life cycle. These experiments confirmed that the parasite is situated in the cytoplasm, fulfilling the required functions of NAD+ in this compartment, the PfNMNAT is regulated in post-transcription processes, and can be regulated by phosphorylation in its residues.

  10. The transport and metabolism of the uridine mononucleotides by rat jejunum in vitro.

    PubMed Central

    Bronk, J R; Hastewell, J G

    1989-01-01

    1. Both uridine 3'-monophosphate (3'-UMP) and uridine 5'-monophosphate (5'-UMP) when perfused through the lumen of isolated rat jejunum gave rise to uracil as the only transported pyrimidine appearing in the serosal medium; neither the nucleotide nor the nucleoside could be detected in the serosal fluid. 2. There was a low level of the nucleoside, uridine, in the luminal fluid after the nucleotide had passed through the jejunal segment. Luminal nucleoside appearance was more marked from the 3' form of the nucleotide. 3. The hydrolysis of the nucleotides to the nucleoside form occurred via a brush-border membrane enzyme, which had the same maximal velocity (Vmax) for the two nucleotides (699 +/- 35 and 747 +/- 10 nmol min-1 (mg protein)-1 for 3'-UMP and 5'-UMP, respectively) but a different Michaelis constant (Km) so that 3'-UMP (Km = 58 +/- 3 microM) hydrolysis is favoured over 5'-UMP hydrolysis (Km = 108 +/- microM) at lower concentrations. 4. At 0.05 mM, luminal 3'-UMP gave rise to a higher rate of serosal uracil appearance than luminal 5'-UMP, but at higher luminal concentrations (0.1-0.2 mM) the rate of serosal uracil appearance was the same from both nucleotides. 5. The transmural transport of uracil from the uridine mononucleotides is discussed with reference to the metabolism and compartmentalization of the small intestine responsible for the appearance of the free pyrimidine in the serosal fluid. PMID:2778724

  11. Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells.

    PubMed

    Fletcher, Rachel S; Ratajczak, Joanna; Doig, Craig L; Oakey, Lucy A; Callingham, Rebecca; Da Silva Xavier, Gabriella; Garten, Antje; Elhassan, Yasir S; Redpath, Philip; Migaud, Marie E; Philp, Andrew; Brenner, Charles; Canto, Carles; Lavery, Gareth G

    2017-08-01

    Augmenting nicotinamide adenine dinucleotide (NAD + ) availability may protect skeletal muscle from age-related metabolic decline. Dietary supplementation of NAD + precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) appear efficacious in elevating muscle NAD + . Here we sought to identify the pathways skeletal muscle cells utilize to synthesize NAD + from NMN and NR and provide insight into mechanisms of muscle metabolic homeostasis. We exploited expression profiling of muscle NAD + biosynthetic pathways, single and double nicotinamide riboside kinase 1/2 (NRK1/2) loss-of-function mice, and pharmacological inhibition of muscle NAD + recycling to evaluate NMN and NR utilization. Skeletal muscle cells primarily rely on nicotinamide phosphoribosyltransferase (NAMPT), NRK1, and NRK2 for salvage biosynthesis of NAD + . NAMPT inhibition depletes muscle NAD + availability and can be rescued by NR and NMN as the preferred precursors for elevating muscle cell NAD + in a pathway that depends on NRK1 and NRK2. Nrk2 knockout mice develop normally and show subtle alterations to their NAD+ metabolome and expression of related genes. NRK1, NRK2, and double KO myotubes revealed redundancy in the NRK dependent metabolism of NR to NAD + . Significantly, these models revealed that NMN supplementation is also dependent upon NRK activity to enhance NAD + availability. These results identify skeletal muscle cells as requiring NAMPT to maintain NAD + availability and reveal that NRK1 and 2 display overlapping function in salvage of exogenous NR and NMN to augment intracellular NAD + availability.

  12. Recognition of Nucleoside Monophosphate Substrates by Haemophilus influenzae Class C Acid Phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Harkewal; Schuermann, Jonathan P.; Reilly, Thomas J.

    2010-12-08

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD{sup +} utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5{prime},3{prime}-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5{prime}-AMP, 3{prime}-AMP, and 2{prime}-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pocketsmore » that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5{prime}-nucleotides and 3{prime}-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5{prime} substrates in an anti conformation and 3{prime} substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.« less

  13. Fluorescence microscopy for measuring fibril angles in pine tracheids

    Treesearch

    Ralph O. Marts

    1955-01-01

    Observation and measurement of fibril angles in increment cores or similar small samples from living pine trees was facilitated by the use of fluorescence microscopy. Although some autofluorescence was present, brighter images could be obtained by staining the specimens with a 0.1% aqueous solution of a fluorochrome (Calcozine flavine TG extra concentrated, Calcozine...

  14. Bound Flavin-Cytochrome Model of Extracellular Electron Transfer in Shewanella oneidensis: Analysis by Free Energy Molecular (Postprint)

    DTIC Science & Technology

    2016-06-06

    toxic chemicals,4 protection of steel from corrosion,5 or in bioremediation .6 Of special interest is the potential use of the exoelectrogens in... Bioremediation of Uranium-Contaminated Groundwater: A Systems Approach to Subsurface Biogeochemistry. Curr. Opin. Biotechnol. 2013, 24, 489−497. (7

  15. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, C.M.; Rohrmann, G.F.; Merrill, G.F., E-mail: merrillg@onid.orst.ed

    2009-06-05

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involvedmore » in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.« less

  16. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase.

    PubMed

    Long, C M; Rohrmann, G F; Merrill, G F

    2009-06-05

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involved in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.

  17. Structures of almond hydroxynitrile lyase isoenzyme 5 provide a rationale for the lack of oxidoreductase activity in flavin dependent HNLs.

    PubMed

    Pavkov-Keller, Tea; Bakhuis, Janny; Steinkellner, Georg; Jolink, Fenneke; Keijmel, Esther; Birner-Gruenberger, Ruth; Gruber, Karl

    2016-10-10

    Hydroxynitrile lyases (HNLs) catalyze the asymmetric addition of HCN to aldehydes producing enantiomerically pure cyanohydrins. These enzymes can be heterologously expressed in large quantities making them interesting candidates for industrial applications. The HNLs from Rosaceae evolved from flavin dependent dehydrogenase/oxidase structures. Here we report the high resolution X-ray structure of the highly glycosylated Prunus amygdalus HNL isoenzyme5 (PaHNL5 V317A) expressed in Aspergillus niger and its complex with benzyl alcohol. A comparison with the structure of isoenzyme PaHNL1 indicates a higher accessibility to the active site and a larger cavity for PaHNL5. Additionally, the PaHNL5 complex structure with benzyl alcohol was compared with the structurally related aryl-alcohol oxidase (AAO). Even though both enzymes contain an FAD-cofactor and histidine residues at crucial positions in the active site, PaHNL5 lacks the oxidoreductase activity. The structures indicate that in PaHNLs benzyl alcohol is bound too far away from the FAD cofactor in order to be oxidized. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Macroporous graphitic carbon foam decorated with polydopamine as a high-performance anode for microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Jiang, Hongmei; Yang, Lu; Deng, Wenfang; Tan, Yueming; Xie, Qingji

    2017-09-01

    Herein, a macroporous graphitic carbon foam (MGCF) electrode decorated with polydopamine (PDA) is used as a high-performance anode for microbial fuel cell (MFC) applications. The MGCF is facilely prepared by pyrolysis of a powder mixture comprising maltose, nickel nitrate, and ammonia chloride, without using solid porous template. The MGCF is coated with PDA by self-polymerization of dopamine in a basic solution. The MGCF can provide a large surface area for bacterial attachment, and PDA coated on the MGCF electrode can further promote bacterial adhesion resulting from the improved hydrophility, so the MGCF-PDA electrode as an anode in a MFC can show ultrahigh bacterial loading capacity. Moreover, the electrochemical oxidation of flavins at the MGCF-PDA electrode is greatly accelerated, so the extracellular electron transfer mediated by flavins is improved. As a result, the MFC equipped with a MGCF-PDA anode can show a maximum power density of 1735 mW cm-2, which is 6.7 times that of a MFC equipped with a commercial carbon felt anode, indicating a promising anode for MFC applications.

  19. Electron Transfer Mechanisms of DNA Repair by Photolyase

    NASA Astrophysics Data System (ADS)

    Zhong, Dongping

    2015-04-01

    Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer.

  20. Dynamics of intramolecular electron transfer reaction of FAD studied by magnetic field effects on transient absorption spectra.

    PubMed

    Murakami, Masaaki; Maeda, Kiminori; Arai, Tatsuo

    2005-07-07

    The kinetics of intermediates generated from intramolecular electron-transfer reaction by photo irradiation of the flavin adenine dinucleotide (FAD) molecule was studied by a magnetic field effect (MFE) on transient absorption (TA) spectra. Existence time of MFE and MFE action spectra have a strong dependence on the pH of solutions. The MFE action spectra have indicated the existence of interconversion between the radical pair and the cation form of the triplet excited state of flavin part. All rate constants of the triplet and the radical pair were determined by analysis of the MFE action spectra and decay kinetics of TA. The obtained values for the interconversion indicate that the formation of cation radical promotes the back electron-transfer reaction to the triplet excited state. Further, rate constants of spin relaxation and recombination have been studied by the time profiles of MFE at various pH. The drastic change of those two factors has been obtained and can be explained by SOC (spin-orbit coupling) induced back electron-transfer promoted by the formation of a stacking conformation at pH > 2.5.

  1. Augmenter of liver regeneration: substrate specificity of a flavin-dependent oxidoreductase from the mitochondrial intermembrane space.

    PubMed

    Daithankar, Vidyadhar N; Farrell, Scott R; Thorpe, Colin

    2009-06-09

    Augmenter of liver regeneration (ALR) is both a growth factor and a sulfhydryl oxidase that binds FAD in an unusual helix-rich domain containing a redox-active CxxC disulfide proximal to the flavin ring. In addition to the cytokine form of ALR (sfALR) that circulates in serum, a longer form, lfALR, is believed to participate in oxidative trapping of reduced proteins entering the mitochondrial intermembrane space (IMS). This longer form has an 80-residue N-terminal extension containing an additional, distal, CxxC motif. This work presents the first enzymological characterization of human lfALR. The N-terminal region conveys no catalytic advantage toward the oxidation of the model substrate dithiothreitol (DTT). In addition, a C71A or C74A mutation of the distal disulfide does not increase the turnover number toward DTT. Unlike Erv1p, the yeast homologue of lfALR, static spectrophotometric experiments with the human oxidase provide no evidence of communication between distal and proximal disulfides. An N-terminal His-tagged version of human Mia40, a resident oxidoreductase of the IMS and a putative physiological reductant of lfALR, was subcloned and expressed in Escherichia coli BL21 DE3 cells. Mia40, as isolated, shows a visible spectrum characteristic of an Fe-S center and contains 0.56 +/- 0.02 atom of iron per subunit. Treatment of Mia40 with guanidine hydrochloride and triscarboxyethylphosphine hydrochloride during purification removed this chromophore. The resulting protein, with a reduced CxC motif, was a good substrate of lfALR. However, neither sfALR nor lfALR mutants lacking the distal disulfide could oxidize reduced Mia40 efficiently. Thus, catalysis involves a flow of reducing equivalents from the reduced CxC motif of Mia40 to distal and then proximal CxxC motifs of lfALR to the flavin ring and, finally, to cytochrome c or molecular oxygen.

  2. Augmenter of Liver Regeneration: Substrate Specificity of a Flavin-dependent Oxidoreductase from the Mitochondrial Intermembrane Space†

    PubMed Central

    Daithankar, Vidyadhar N.; Farrell, Scott R.; Thorpe, Colin

    2009-01-01

    Augmenter of liver regeneration (ALR) is both a growth factor and a sulfhydryl oxidase that binds FAD in an unusual helix-rich domain containing a redox-active CxxC disulfide proximal to the flavin ring. In addition to the cytokine form of ALR (sfALR) that circulates in serum, a longer form, lfALR, is believed to participate in oxidative trapping of reduced proteins entering the mitochondrial intermembrane space (IMS). This longer form has an 80-residue N-terminal extension containing an additional, distal, CxxC motif. This work presents the first enzymological characterization of human lfALR. The N-terminal region conveys no catalytic advantage towards the oxidation of the model substrate dithiothreitol (DTT). In addition, C71A or C74A mutations of the distal disulfide do not increase the turnover number towards DTT. Unlike Erv1p, the yeast homolog of lfALR, static spectrophotometric experiments of the human oxidase provide no evidence for communication between distal and proximal disulfides. An N-terminal his-tagged version of human Mia40, a resident oxidoreductase of the IMS and a putative physiological reductant of lfALR, was subcloned and expressed in Escherichia coli BL21 DE3 cells. Mia40, as isolated, shows a visible spectrum characteristic of an Fe/S center and contains 0.56 ± 0.02 atoms of iron per subunit. Treatment of Mia40 with guanidine hydrochloride and triscarboxyethylphosphine hydrochloride during purification removed this chromophore. The resulting protein, with a reduced CxC motif, was a good substrate of lfALR. However, neither sfALR, nor lfALR mutants lacking the distal disulfide, could oxidize reduced Mia40 efficiently. Thus, catalysis involves a flow of reducing equivalents from the reduced CxC motif of Mia40, to distal- and then proximal CxxC motifs of lfALR, to the flavin ring, and, finally, to cytochrome c or molecular oxygen. PMID:19397338

  3. Challenges of the African Military in Peacekeeping Missions in Africa

    DTIC Science & Technology

    2012-03-20

    the potential it required the African defense industry cooperation and governments’ commitment to development and economic growth . Lack of such...Challenges of the African Military in Peacekeeping Missions in Africa by Brigadier General James N Mazimba Zambia Army...AFRICAN MILITARY IN PEACEKEEPING MISSIONS IN AFRICA by Brigadier General James N Mazimba Zambia Army William J Flavin

  4. Syntrophomonas wolfei Uses an NADH-Dependent, Ferredoxin-Independent [FeFe]-Hydrogenase To Reoxidize NADH

    PubMed Central

    Losey, Nathaniel A.; Mus, Florence; Peters, John W.; Le, Huynh M.

    2017-01-01

    ABSTRACT Syntrophomonas wolfei syntrophically oxidizes short-chain fatty acids (four to eight carbons in length) when grown in coculture with a hydrogen- and/or formate-using methanogen. The oxidation of 3-hydroxybutyryl-coenzyme A (CoA), formed during butyrate metabolism, results in the production of NADH. The enzyme systems involved in NADH reoxidation in S. wolfei are not well understood. The genome of S. wolfei contains a multimeric [FeFe]-hydrogenase that may be a mechanism for NADH reoxidation. The S. wolfei genes for the multimeric [FeFe]-hydrogenase (hyd1ABC; SWOL_RS05165, SWOL_RS05170, SWOL_RS05175) and [FeFe]-hydrogenase maturation proteins (SWOL_RS05180, SWOL_RS05190, SWOL_RS01625) were coexpressed in Escherichia coli, and the recombinant Hyd1ABC was purified and characterized. The purified recombinant Hyd1ABC was a heterotrimer with an αβγ configuration and a molecular mass of 115 kDa. Hyd1ABC contained 29.2 ± 1.49 mol of Fe and 0.7 mol of flavin mononucleotide (FMN) per mole enzyme. The purified, recombinant Hyd1ABC reduced NAD+ and oxidized NADH without the presence of ferredoxin. The HydB subunit of the S. wolfei multimeric [FeFe]-hydrogenase lacks two iron-sulfur centers that are present in known confurcating NADH- and ferredoxin-dependent [FeFe]-hydrogenases. Hyd1ABC is a NADH-dependent hydrogenase that produces hydrogen from NADH without the need of reduced ferredoxin, which differs from confurcating [FeFe]-hydrogenases. Hyd1ABC provides a mechanism by which S. wolfei can reoxidize NADH produced during syntrophic butyrate oxidation when low hydrogen partial pressures are maintained by a hydrogen-consuming microorganism. IMPORTANCE Our work provides mechanistic understanding of the obligate metabolic coupling that occurs between hydrogen-producing fatty and aromatic acid-degrading microorganisms and their hydrogen-consuming partners in the process called syntrophy (feeding together). The multimeric [FeFe]-hydrogenase used NADH without the involvement of reduced ferredoxin. The multimeric [FeFe]-hydrogenase would produce hydrogen from NADH only when hydrogen concentrations were low. Hydrogen production from NADH by Syntrophomonas wolfei would likely cease before any detectable amount of cell growth occurred. Thus, continual hydrogen production requires the presence of a hydrogen-consuming partner to keep hydrogen concentrations low and explains, in part, the obligate requirement that S. wolfei has for a hydrogen-consuming partner organism during growth on butyrate. We have successfully expressed genes encoding a multimeric [FeFe]-hydrogenase in E. coli, demonstrating that such an approach can be advantageous to characterize complex redox proteins from difficult-to-culture microorganisms. PMID:28802265

  5. Forensic applicability of multi-allelic InDels with mononucleotide homopolymer structures.

    PubMed

    Zhang, Shu; Zhu, Qiang; Chen, Xiaogang; Zhao, Yuancun; Zhao, Xiaohong; Yang, Yiwen; Gao, Zehua; Fang, Ting; Wang, Yufang; Zhang, Ji

    2018-04-27

    Insertion/deletion polymorphisms (InDels), which possess the characteristics of low mutation rates and a short amplicon size, have been regarded as promising markers for forensic DNA analysis. InDels can be classified as bi-allelic or multi-allelic, depending on the number of alleles. Many studies have explored the use of bi-allelic InDels in forensic applications, such as individual identification and ancestry inference. However, multi-allelic InDels have received relatively little attention. In this study, InDels with 2-6 alleles and a minor allele frequency ≥0.01, in Chinese Southern Han (CHS), were retrieved from the 1000 Genomes Project Phase III. Based on the structural analysis of all retrieved InDels, 17 multi-allelic markers with mononucleotide homopolymer structures were selected and combined in one multiplex PCR reaction system. Sensitivity, species specificity and applicability in forensic case work of the multiplex were analyzed. A total of 218 unrelated individuals from a Chinese Han population were genotyped. The combined discriminatory power (CDP), the combined match probability (CMP) and the cumulative probability of exclusion (CPE) were 0.9999999999609, 3.91E-13 and 0.9956, respectively. The results demonstrated that this InDel multiplex panel was highly informative in the investigated population and most of the 26 populations of the 1000 Genomes Project. The data also suggested that multi-allelic InDel markers with monomeric base pair expansions are useful for forensic applications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. IDENTIFICATION OF NICOTINAMIDE MONONUCLEOTIDE DEAMIDASE OF THE BACTERIAL PYRIDINE NUCLEOTIDE CYCLE REVEALS A NOVEL BROADLY CONSERVED AMIDOHYDROLASE FAMILY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galeazzi, Luca; Bocci, Paolo; Amici, Adolfo

    2011-09-27

    The pyridine nucleotide cycle (PNC) is a network of salvage and recycling routes maintaining homeostasis of NAD(P) cofactor pool in the cell. Nicotinamide mononucleotide (NMN) deamidase (EC 3.5.1.42), one of the key enzymes of the bacterial PNC was originally described in Enterobacteria, but the corresponding gene eluded identification for over 30 years. A genomics-based reconstruction of NAD metabolism across hundreds bacterial species suggested that NMN deamidase reaction is the only possible way of nicotinamide salvage in the marine bacterium Shewanella oneidensis. This prediction was verified via purification of native NMN deamidase from S. oneidensis followed by the identification of themore » respective gene, termed pncC. Enzymatic characterization of the PncC protein, as well as phenotype analysis of deletion mutants, confirmed its proposed biochemical and physiological function in S. oneidensis. Of the three PncC homologs present in E. coli, NMN deamidase activity was confirmed only for the recombinant purified product of the ygaD gene. A comparative analysis at the level of sequence and three dimensional structure, which is available for one of the PncC family member, shows no homology with any previously described amidohydrolases. Multiple alignment analysis of functional and non functional PncC homologs, together with NMN docking experiments, allowed us to tentatively identify the active site area and conserved residues therein. An observed broad phylogenomic distribution of predicted functional PncCs in bacterial kingdom is consistent with a possible role in detoxification of NMN, resulting from NAD utilization by DNA ligase.« less

  7. NadN and e (P4) are essential for utilization of NAD and nicotinamide mononucleotide but not nicotinamide riboside in Haemophilus influenzae.

    PubMed

    Kemmer, G; Reilly, T J; Schmidt-Brauns, J; Zlotnik, G W; Green, B A; Fiske, M J; Herbert, M; Kraiss, A; Schlör, S; Smith, A; Reidl, J

    2001-07-01

    Haemophilus influenzae has an absolute requirement for NAD (factor V) because it lacks almost all the biosynthetic enzymes necessary for the de novo synthesis of that cofactor. Factor V can be provided as either nicotinamide adenosine dinucleotide (NAD), nicotinamide mononucleotide (NMN), or nicotinamide riboside (NR) in vitro, but little is known about the source or the mechanism of uptake of these substrates in vivo. As shown by us earlier, at least two gene products are involved in the uptake of NAD, the outer membrane lipoprotein e (P4), which has phosphatase activity and is encoded by hel, and a periplasmic NAD nucleotidase, encoded by nadN. It has also been observed that the latter gene product is essential for H. influenzae growth on media supplemented with NAD. In this report, we describe the functions and substrates of these two proteins as they act together in an NAD utilization pathway. Data are provided which indicate that NadN harbors not only NAD pyrophosphatase but also NMN 5'-nucleotidase activity. The e (P4) protein is also shown to have NMN 5'-nucleotidase activity, recognizing NMN as a substrate and releasing NR as its product. Insertion mutants of nadN or deletion and site-directed mutants of hel had attenuated growth and a reduced uptake phenotype when NMN served as substrate. A hel and nadN double mutant was only able to grow in the presence of NR, whereas no uptake of NMN was observed.

  8. NadN and e (P4) Are Essential for Utilization of NAD and Nicotinamide Mononucleotide but Not Nicotinamide Riboside in Haemophilus influenzae

    PubMed Central

    Kemmer, Gabriele; Reilly, Thomas J.; Schmidt-Brauns, Joachim; Zlotnik, Gary W.; Green, Bruce A.; Fiske, Michael J.; Herbert, Mark; Kraiß, Anita; Schlör, Stefan; Smith, Arnold; Reidl, Joachim

    2001-01-01

    Haemophilus influenzae has an absolute requirement for NAD (factor V) because it lacks almost all the biosynthetic enzymes necessary for the de novo synthesis of that cofactor. Factor V can be provided as either nicotinamide adenosine dinucleotide (NAD), nicotinamide mononucleotide (NMN), or nicotinamide riboside (NR) in vitro, but little is known about the source or the mechanism of uptake of these substrates in vivo. As shown by us earlier, at least two gene products are involved in the uptake of NAD, the outer membrane lipoprotein e (P4), which has phosphatase activity and is encoded by hel, and a periplasmic NAD nucleotidase, encoded by nadN. It has also been observed that the latter gene product is essential for H. influenzae growth on media supplemented with NAD. In this report, we describe the functions and substrates of these two proteins as they act together in an NAD utilization pathway. Data are provided which indicate that NadN harbors not only NAD pyrophosphatase but also NMN 5′-nucleotidase activity. The e (P4) protein is also shown to have NMN 5′-nucleotidase activity, recognizing NMN as a substrate and releasing NR as its product. Insertion mutants of nadN or deletion and site-directed mutants of hel had attenuated growth and a reduced uptake phenotype when NMN served as substrate. A hel and nadN double mutant was only able to grow in the presence of NR, whereas no uptake of NMN was observed. PMID:11395461

  9. Clinical impact of endometrial cancer stratified by genetic mutational profiles, POLE mutation, and microsatellite instability.

    PubMed

    Haruma, Tomoko; Nagasaka, Takeshi; Nakamura, Keiichiro; Haraga, Junko; Nyuya, Akihiro; Nishida, Takeshi; Goel, Ajay; Masuyama, Hisashi; Hiramatsu, Yuji

    2018-01-01

    The molecular characterization of endometrial cancer (EC) can facilitate identification of various tumor subtypes. Although EC patients with POLE mutations reproducibly demonstrate better prognosis, the outcome of patients with microsatellite instability (MSI) remains controversial. This study attempted to interrogate whether genetic stratification of EC can identify distinct subsets with prognostic significance. A cohort of 138 EC patients who underwent surgical resection with curative intent was enrolled. Sanger sequencing was used to evaluate mutations in the POLE and KRAS genes. MSI analysis was performed using four mononucleotide repeat markers and methylation status of the MLH1 promoter was measured by a fluorescent bisulfite polymerase chain reaction (PCR). Protein expression for mismatch repair (MMR) proteins was evaluated by immunohistochemistry (IHC). Extensive hypermethylation of the MLH1 promoter was observed in 69.6% ECs with MLH1 deficiency and 3.5% with MMR proficiency, but in none of the ECs with loss of other MMR genes (P < .0001). MSI-positive and POLE mutations were found in 29.0% and 8.7% EC patients, respectively. Our MSI analysis showed a sensitivity of 92.7% for EC patients with MMR deficiency, and a specificity of 97.9% for EC patients with MMR proficiency. In univariate and multivariate analyses, POLE mutations and MSI status was significantly associated with progression-free survival (P = 0.0129 and 0.0064, respectively) but not with endometrial cancer-specific survival. This study provides significant evidence that analyses of proofreading POLE mutations and MSI status based on mononucleotide repeat markers are potentially useful biomarkers to identify EC patients with better prognosis.

  10. KDM1 Class Flavin-Dependent Protein Lysine Demethylases

    PubMed Central

    Burg, Jonathan M.; Link, Jennifer E.; Morgan, Brittany S.; Heller, Frederick J.; Hargrove, Amanda E.; McCafferty, Dewey G.

    2015-01-01

    Flavin-dependent, lysine-specific protein demethylases (KDM1s) are a subfamily of amine oxidases that catalyze the selective posttranslational oxidative demethylation of methyllysine side chains within protein and peptide substrates. KDM1s participate in the widespread epigenetic regulation of both normal and disease state transcriptional programs. Their activities are central to various cellular functions, such as hematopoietic and neuronal differentiation, cancer proliferation and metastasis, and viral lytic replication and establishment of latency. Interestingly, KDM1s function as catalytic subunits within complexes with coregulatory molecules that modulate enzymatic activity of the demethylases and coordinate their access to specific substrates at distinct sites within the cell and chromatin. Although several classes of KDM1 -selective small molecule inhibitors have been recently developed, these pan-active site inhibition strategies lack the ability to selectively discriminate between KDM1 activity in specific, and occasionally opposing, functional contexts within these complexes. Here we review the discovery of this class of demethylases, their structures, chemical mechanisms, and specificity. Additionally, we review inhibition of this class of enzymes as well as emerging interactions with coregulatory molecules that regulate demethylase activity in highly specific functional contexts of biological and potential therapeutic importance. PMID:25787087

  11. Blue light-induced oxidative stress in live skin.

    PubMed

    Nakashima, Yuya; Ohta, Shigeo; Wolf, Alexander M

    2017-07-01

    Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Sperm metabolism is altered during storage by female insects: evidence from two-photon autofluorescence lifetime measurements in bedbugs

    PubMed Central

    Reinhardt, Klaus; Breunig, Hans Georg; Uchugonova, Aisada; König, Karsten

    2015-01-01

    We explore the possibility of characterizing sperm cells without the need to stain them using spectral and fluorescence lifetime analyses after multi-photon excitation in an insect model. The autofluorescence emission spectrum of sperm of the common bedbug, Cimex lectularius, was consistent with the presence of flavins and NAD(P)H. The mean fluorescence lifetimes showed smaller variation in sperm extracted from the male (tau m, τm = 1.54–1.84 ns) than in that extracted from the female sperm storage organ (tau m, τm = 1.26–2.00 ns). The fluorescence lifetime histograms revealed four peaks. These peaks (0.18, 0.92, 2.50 and 3.80 ns) suggest the presence of NAD(P)H and flavins and show that sperm metabolism can be characterized using fluorescence lifetime imaging. The difference in fluorescence lifetime variation between the sexes is consistent with the notion that female animals alter the metabolism of sperm cells during storage. It is not consistent, however, with the idea that sperm metabolism represents a sexually selected character that provides females with information about the male genotype. PMID:26333813

  13. Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Hendinger, Anita; Sailer, Reinhard; Gschwend, Michael H.; Strauss, Wolfgang S.; Bauer, Manfred; Schuetze, Karin

    2000-01-01

    Viability of cultivated Chinese hamster ovary cells in optical tweezers was measured after exposure to various light doses of red high power laser diodes ((lambda) equals 670 - 680 nm) and a Nd:yttrium-aluminum-garnet laser ((lambda) equals 1064 nm). When using a radiant exposure of 2.4 GJ/cm2, a reduction of colony formation up to a factor 2 (670 - 680 nm) or 1.6 (1064 nm) as well as a delay of cell growth were detected in comparison with nonirradiated controls. In contrast, no cell damage was found at an exposure of 340 MJ/cm2 applied at 1064 nm. Cell viabilities were correlated with fluorescence excitation spectra and with literature data of wavelength dependent cloning efficiencies. Fluorescence excitation maxima of the coenzymes NAD(P)H and flavins were detected at 365 and 450 nm, respectively. This is half of the wavelengths of the maxima of cell inactivation, suggesting that two-photon absorption by these coenzymes may contribute to cellular damage. Two-photon excitation of NAD(P)H and flavins may also affect cell viability after exposure to 670 - 680 nm, whereas one-photon excitation of water molecules seems to limit cell viability at 1064 nm.

  14. The flavinyl transferase ApbE of Pseudomonas stutzeri matures the NosR protein required for nitrous oxide reduction.

    PubMed

    Zhang, Lin; Trncik, Christian; Andrade, Susana L A; Einsle, Oliver

    2017-02-01

    The copper-containing enzyme nitrous oxide reductase (N 2 OR) catalyzes the transformation of nitrous oxide (N 2 O) to dinitrogen (N 2 ) in microbial denitrification. Several accessory factors are essential for assembling the two copper sites Cu A and Cu Z , and for maintaining the activity. In particular, the deletion of either the transmembrane iron-sulfur flavoprotein NosR or the periplasmic protein NosX, a member of the ApbE family, abolishes N 2 O respiration. Here we demonstrate through biochemical and structural studies that the ApbE protein from Pseudomonas stutzeri, where the nosX gene is absent, is a monomeric FAD-binding protein that can serve as the flavin donor for NosR maturation via covalent flavinylation of a threonine residue. The flavin transfer reaction proceeds both in vivo and in vitro to generate post-translationally modified NosR with covalently bound FMN. Only FAD can act as substrate and the reaction requires a divalent cation, preferably Mg 2+ that was also present in the crystal structure. In addition, the reaction is species-specific to a certain extent. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. [Effect of flavin adenine dinucleotide on ultraviolet B induced damage in cultured human corneal epithelial cells].

    PubMed

    Sakamoto, Asuka; Nakamura, Masatsugu

    2012-01-01

    This study evaluated the effects of flavin adenine dinucleotide (FAD) on ultraviolet B (UV-B)-induced damage in cultured human corneal epithelial (HCE-T) cells. The cultured HCE-T cells were treated with 0.003125-0.05% FAD before exposure to 80 mJ/cm2 UV-B. Cell viability was measured 24 h after UV-B irradiation using the MTS assay. Reactive oxygen species (ROS) were detected 30 min after UV-B irradiation using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester. Apoptosis was evaluated 4 h after UV-B irradiation in the caspase-3/7 activity assay. UV-B irradiation reduced cell viability and stimulated ROS production and caspase-3/7 activity in HCE-T cells. Pretreatment of UV-B irradiated HCE-T cells with FAD significantly attenuated cell viability reduction and inhibited the stimulation of both ROS production and caspase-3/7 activity due to UV-B exposure compared with those with vehicle (0% FAD). These results clarified that FAD inhibits ROS-mediated apoptosis by UV-B irradiation in HCE-T cells and suggest that FAD may be effective as a radical scavenger in UV-B-induced corneal damage.

  16. Chloroquine Binding Reveals Flavin Redox Switch Function of Quinone Reductase 2*

    PubMed Central

    Leung, Kevin K. K.; Shilton, Brian H.

    2013-01-01

    Quinone reductase 2 (NQO2) is an FAD-linked enzyme and the only known human target of two antimalarial drugs, primaquine (PQ) and chloroquine (CQ). The structural differences between oxidized and reduced NQO2 and the structural basis for inhibition by PQ and CQ were investigated by x-ray crystallography. Structures of oxidized NQO2 in complex with PQ and CQ were solved at 1.4 Å resolution. CQ binds preferentially to reduced NQO2, and upon reduction of NQO2-CQ crystals, the space group changed from P212121 to P21, with 1-Å decreases in all three unit cell dimensions. The change in crystal packing originated in the negative charge and 4–5º bend in the reduced isoalloxazine ring of FAD, which resulted in a new mode of CQ binding and closure of a flexible loop (Phe126–Leu136) over the active site. This first structure of a reduced quinone reductase shows that reduction of the FAD cofactor and binding of a specific inhibitor lead to global changes in NQO2 structure and is consistent with a functional role for NQO2 as a flavin redox switch. PMID:23471972

  17. Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells.

    PubMed

    Epifanio, Monica; Inguva, Saikumar; Kitching, Michael; Mosnier, Jean-Paul; Marsili, Enrico

    2015-12-01

    The attachment of electrochemically active microorganisms (EAM) on an electrode is determined by both the chemistry and topography of the electrode surface. Pre-treatment of the electrode surface by atmospheric air plasma introduces hydrophilic functional groups, thereby increasing cell attachment and electroactivity in short-term experiments. In this study, we use graphite and carbon felt electrodes to grow the model EAM Shewanella loihica PV-4 at oxidative potential (0.2 V vs. Ag/AgCl). Cell attachment and electroactivity are measured through electrodynamic methods. Atmospheric air plasma pre-treatment increases cell attachment and current output at graphite electrodes by 25%, while it improves the electroactivity of the carbon felt electrodes by 450%. Air plasma pre-treatment decreased the coulombic efficiency on both carbon felt and graphite electrodes by 60% and 80%, respectively. Microbially produced flavins adsorb preferentially at the graphite electrode, and air plasma pre-treatment results in lower flavin adsorption at both graphite and carbon felt electrodes. Results show that air plasma pre-treatment is a feasible option to increase current output in bioelectrochemical systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Imaging Redox State in Mouse Muscles of Different Ages.

    PubMed

    Moon, Lily; Frederick, David W; Baur, Joseph A; Li, Lin Z

    2017-01-01

    Aging is the greatest risk factor for many diseases. Intracellular concentrations of nicotinamide adenine dinucleotide (NAD + ) and the NAD + -coupled redox state have been proposed to moderate many aging-related processes, yet the specific mechanisms remain unclear. The concentration of NAD + falls with age in skeletal muscle, yet there is no consensus on whether aging will increase or decrease the redox potential of NAD + /NADH. Oxidized flavin groups (Fp) (e.g. FAD, i.e., flavin adenine dinucleotide, contained in flavoproteins) and NADH are intrinsic fluorescent indicators of oxidation and reduction status of tissue, respectively. The redox ratio, i.e., the ratio of Fp to NADH, may be a surrogate indicator of the NAD + /NADH redox potential. In this study we used the Chance redox scanner (NADH/Fp fluorescence imaging at low temperature) to investigate the effect of aging on the redox state of mitochondria in skeletal muscles. The results showed that there are borderline significant differences in nominal concentrations of Fp and NADH, but not in the redox ratio s when comparing 3.5-month and 13-month old muscles of mice (n = 6). It may be necessary to increase the number of muscle samples and study mice of more advanced age.

  19. Artemisone and artemiside - potent pan-reactive antimalarial agents that also synergize redox imbalance in P. falciparum transmissible gametocyte stages.

    PubMed

    Coertzen, Dina; Reader, Janette; van der Watt, Mariëtte; Nondaba, Sindisiwe H; Gibhard, Liezl; Wiesner, Lubbe; Smith, Peter; D'Alessandro, Sarah; Taramelli, Donatella; Ning Wong, Ho; du Preez, Jan L; Wu, Ronald Wai Keung; Birkholtz, Lyn-Marie; Haynes, Richard K

    2018-06-04

    The emergence of resistance towards artemisinin combination therapies (ACTs) by the malaria parasite Plasmodium falciparum has the potential to severely compromise malaria control. Therefore, development of new artemisinins in combination with new drugs that impart activities towards both intraerythrocytic proliferative asexual and transmissible gametocyte stages, in particular those of resistant parasites, are urgently required. We define artemisinins as oxidant drugs through their ability to oxidize reduced flavin cofactors of flavin disulfide reductases critical for maintaining redox-homeostasis in the malaria parasite. Here we compare the activities of 10-amino artemisinin derivatives towards the asexual and gametocyte stages of P. falciparum parasites. Of these, artemisone and artemiside inhibited asexual and gametocyte stages, particularly stage V gametocytes in the low nM range. Further, treatment of both early and late gametocyte stages with artemisone or artemiside combined with the pro-oxidant redox partner methylene blue displays notable synergism. These data suggest that modulation of redox-homeostasis likely is an important druggable process, particularly in gametocytes, and thereby enhances the prospect of using combinations of oxidant and redox drugs for malaria control. Copyright © 2018 American Society for Microbiology.

  20. Characterization of Two Mitochondrial Flavin Adenine Dinucleotide-Dependent Glycerol-3-Phosphate Dehydrogenases in Trypanosoma brucei

    PubMed Central

    Škodová, Ingrid; Verner, Zdeněk; Bringaud, Fréderic; Fabian, Peter

    2013-01-01

    Glycerol-3-phosphate dehydrogenases (G3PDHs) constitute a shuttle that serves for regeneration of NAD+ reduced during glycolysis. This NAD-dependent enzyme is employed in glycolysis and produces glycerol-3-phosphate from dihydroxyacetone phosphate, while its flavin adenine dinucleotide (FAD)-dependent homologue catalyzes a reverse reaction coupled to the respiratory chain. Trypanosoma brucei possesses two FAD-dependent G3PDHs. While one of them (mitochondrial G3PDH [mtG3PDH]) has been attributed to the mitochondrion and seems to be directly involved in G3PDH shuttle reactions, the function of the other enzyme (putative G3PDH [putG3PDH]) remains unknown. In this work, we used RNA interference and protein overexpression and tagging to shed light on the relative contributions of both FAD-G3PDHs to overall cellular metabolism. Our results indicate that mtG3PDH is essential for the bloodstream stage of T. brucei, while in the procyclic stage the enzyme is dispensable. Expressed putG3PDH-V5 was localized to the mitochondrion, and the data obtained by digitonin permeabilization, Western blot analysis, and immunofluorescence indicate that putG3PDH is located within the mitochondrion. PMID:24142106

  1. Absorption and emission spectroscopic characterization of BLUF protein Slr1694 from Synechocystis sp. PCC6803 with roseoflavin cofactor.

    PubMed

    Zirak, P; Penzkofer, A; Mathes, T; Hegemann, P

    2009-11-09

    The wild-type BLUF protein Slr1694 from Synechocystis sp. PCC6803 (BLUF=blue-light sensor using FAD) has flavin adenosine dinucleotide (FAD) as natural cofactor. This light sensor causes positive phototaxis of the marine cyanobacterium. In this study the FAD cofactor of the wild-type Slr1694 was replaced by roseoflavin (RoF) and the roseoflavin derivatives RoFMN and RoFAD during heterologous expression in a riboflavin auxotrophic E. coli strain. An absorption and emission spectroscopic characterization of the cofactor-exchanged-Slr1694 (RoSlr) was carried out both under dark conditions and under illuminated conditions. The behaviour of RoF embedded in RoSlr in aqueous solution at pH 8 is compared with the behaviour of RoF in aqueous solution. The fluorescence of RoF and RoSlr is quenched by photo-induced twisted intra-molecular charge transfer at room temperature with stronger effect for RoF. The fluorescence quenching is diminished at liquid nitrogen temperature. Light exposure of RoSlr causes irreversible conversion of the protein embedded roseoflavins to 8-methylamino-flavins, 8-dimethylamino-lumichrome and 8-methylamino-lumichrome.

  2. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyanagi, Takashi

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form canmore » function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.« less

  3. Hepatic microsomal metabolism of montelukast, a potent leukotriene D4 receptor antagonist, in humans.

    PubMed

    Chiba, M; Xu, X; Nishime, J A; Balani, S K; Lin, J H

    1997-09-01

    Montelukast (L-706,631, MK-0476, SINGULAIR), a potent and selective leukotriene D4 (CysLT1) receptor antagonist, is currently under development for the treatment of asthma. In vitro studies were conducted using human liver microsomes to evaluate: 1) the difference in the metabolic kinetics of montelukast between adult and pediatric subjects; 2) the relative contribution of flavin-containing monooxygenase and cytochrome P450 (P450) to the sulfoxidation; and 3) the P450 isoforms responsible for montelukast oxidation. No statistically significant difference was observed in the in vitro kinetics for acyl glucuronidation and oxidative metabolism between the two age groups. Results from studies on heat inactivation of flavin-containing monooxygenase and immunochemical inhibition by an anti-rat NADPH P450 reductase antibody on montelukast oxidation indicated that all oxidative metabolism of montelukast-including diastereomeric sulfoxidations, as well as 21- and methyl-hydroxylations-are catalyzed exclusively by P450. Five in vitro approaches have been used to identify the P450 isoforms responsible for the human liver microsomal oxidation of montelukast. The experimental results consistently indicated that CYP3A4 catalyzes sulfoxidation and 21-hydroxylation, whereas CYP2C9 selectively mediates methyl-hydroxylation.

  4. C. elegans flavin-containing monooxygenase-4 is essential for osmoregulation in hypotonic stress

    PubMed Central

    Hirani, Nisha; Westenberg, Marcel; Seed, Paul T.; Petalcorin, Mark I. R.; Dolphin, Colin T.

    2016-01-01

    ABSTRACT Studies in Caenorhabditis elegans have revealed osmoregulatory systems engaged when worms experience hypertonic conditions, but less is known about measures employed when faced with hypotonic stress. Inactivation of fmo-4, which encodes flavin-containing monooxygenase-4, results in dramatic hypoosmotic hypersensitivity; worms are unable to prevent overwhelming water influx and swell rapidly, finally rupturing due to high internal hydrostatic pressure. fmo-4 is expressed prominently in hypodermis, duct and pore cells but is excluded from the excretory cell. Thus, FMO-4 plays a crucial osmoregulatory role by promoting clearance of excess water that enters during hypotonicity, perhaps by synthesizing an osmolyte that acts to establish an osmotic gradient from excretory cell to duct and pore cells. C. elegans FMO-4 contains a C-terminal extension conserved in all nematode FMO-4s. The coincidently numbered human FMO4 also contains an extended C-terminus with features similar to those of FMO-4. Although these shared sequence characteristics suggest potential orthology, human FMO4 was unable to rescue the fmo-4 osmoregulatory defect. Intriguingly, however, mammalian FMO4 is expressed predominantly in the kidney – an appropriate site if it too is, or once was, involved in osmoregulation. PMID:27010030

  5. Electrochemical Detection of the Molecules of Life

    NASA Technical Reports Server (NTRS)

    Thomson, Seamus; Quinn, Richard; Koehne, Jessica

    2017-01-01

    All forms of life on Earth contain cellular machinery that can transform and regulate chemical energy through metabolic pathways. These processes are oxidation-reduction reactions that are performed by four key classes of molecules: flavins, nicotinamaides, porphyrins, and quinones. By detecting the electrochemical interaction of these redox-active molecules with an electrode, a method of differentiating them by their class could be established and incorporated into future life-detecting missions. This body of work investigates the electrochemistry of ubiquitous molecules found in life and how they may be detected. Molecules can oxidise or reduce the surface of an electrode - giving or receiving electrons - and these interactions are represented by changes in current with respect to an applied voltage. This relationship varies with: electrolyte type and concentration, working electrode material, the redox-active molecule itself, and scan rate. Flavin adenine dinucleotide (FAD), riboflavin, nicotinamide adenine dinucleotide (NADH), and anthraquinone are all molecules found intracellularly in almost all living organisms. An organism-synthesised extracellular redox-active molecule, Plumbagin, was also selected as part of this study. The goal of this work is to detect these molecules in seawater and assess its application in searching for life on Ocean Worlds.

  6. Microbial photoinactivation by 470 nm radiation: an investigation into the underlying photobiological mechanism

    NASA Astrophysics Data System (ADS)

    Hoenes, K.; Wild, K.; Schmid, J.; Spellerberg, B.; Hessling, M.

    2018-02-01

    The photoinactivation properties of 405 (violet) and 470 nm (blue) light have been studied by many research groups within the last few years. Both wavelengths are capable of disinfecting bacteria and fungi, with 405 nm radiation being more efficient. The basic photoinactivation mechanism is understood for 405 nm. Violet light is absorbed by endogenous porphyrins that act as photosensitizers and generate reactive oxygen species, subsequently destroying the microorganisms from within. The underlying photobiological mechanism for 470nm radiation is still unclear though porphyrins and flavins are widely believed to be involved endogenous photosensitizer. We performed own measurements of disinfection efficacy and additionally did a meta-analysis of published photoinactivation data. The disinfection experiments were performed with LEDs at peak wavelengths between 440 and 490 nm in an interval of about 10 nm. Staphylococcus auricularis was irradiated with doses of 70, 140 and 210 J/cm2 and peak efficacy was observed at 470 nm while the impact of irradiation decreases steeply to lower and higher wavelengths. These observations are supported by the meta-analysis results and rather contradictory to the porphyrin and flavin hypothesis so that our conclusion is that there may be another unknown photosensitizer involved.

  7. The Origin and Evolution of Baeyer—Villiger Monooxygenases (BVMOs): An Ancestral Family of Flavin Monooxygenases

    PubMed Central

    Mascotti, Maria Laura; Lapadula, Walter Jesús; Juri Ayub, Maximiliano

    2015-01-01

    The Baeyer—Villiger Monooxygenases (BVMOs) are enzymes belonging to the “Class B” of flavin monooxygenases and are capable of performing exquisite selective oxidations. These enzymes have been studied from a biotechnological perspective, but their physiological substrates and functional roles are widely unknown. Here, we investigated the origin, taxonomic distribution and evolutionary history of the BVMO genes. By using in silico approaches, 98 BVMO encoding genes were detected in the three domains of life: Archaea, Bacteria and Eukarya. We found evidence for the presence of these genes in Metazoa (Hydra vulgaris, Oikopleura dioica and Adineta vaga) and Haptophyta (Emiliania huxleyi) for the first time. Furthermore, a search for other “Class B” monooxygenases (flavoprotein monooxygenases –FMOs – and N-hydroxylating monooxygenases – NMOs) was conducted. These sequences were also found in the three domains of life. Phylogenetic analyses of all “Class B” monooxygenases revealed that NMOs and BVMOs are monophyletic, whereas FMOs form a paraphyletic group. Based on these results, we propose that BVMO genes were already present in the last universal common ancestor (LUCA) and their current taxonomic distribution is the result of differential duplication and loss of paralogous genes. PMID:26161776

  8. Light-dependent magnetoreception in birds: the crucial step occurs in the dark.

    PubMed

    Wiltschko, Roswitha; Ahmad, Margaret; Nießner, Christine; Gehring, Dennis; Wiltschko, Wolfgang

    2016-05-01

    The Radical Pair Model proposes that the avian magnetic compass is based on spin-chemical processes: since the ratio between the two spin states singlet and triplet of radical pairs depends on their alignment in the magnetic field, it can provide information on magnetic directions. Cryptochromes, blue light-absorbing flavoproteins, with flavin adenine dinucleotide as chromophore, are suggested as molecules forming the radical pairs underlying magnetoreception. When activated by light, cryptochromes undergo a redox cycle, in the course of which radical pairs are generated during photo-reduction as well as during light-independent re-oxidation. This raised the question as to which radical pair is crucial for mediating magnetic directions. Here, we present the results from behavioural experiments with intermittent light and magnetic field pulses that clearly show that magnetoreception is possible in the dark interval, pointing to the radical pair formed during flavin re-oxidation. This differs from the mechanism considered for cryptochrome signalling the presence of light and rules out most current models of an avian magnetic compass based on the radical pair generated during photo-reduction. Using the radical pair formed during re-oxidation may represent a specific adaptation of the avian magnetic compass. © 2016 The Authors.

  9. Oligomerization of mononucleotides on montmorillonite: A potential approach to the prebiotic synthesis of RNA. [Abstract only

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ertem, Goezen; Ding, Zi Ping; Prabahar, Joseph

    1994-01-01

    The condensation of the 5'-phosphorimidazolide of adenosine (ImpA) on montmorillonite in a pH 8 aqueous solution yields oligomers containing up to 10 monomer units. The regiospecificity of 3',5'-phosphodiester bond formation is enhanced by addition of 10% diadenosine pyrophosphate (AppA) to the reaction mixture. A series of activated derivatives of 5'-AMP was prepared to investigate the effect of the leaving group on oligomer formation. The benzimidazole and p-dimethylamino-pyridine derivatives gave the best yields of oligomers. Factors important for oligomer formation is discussed.

  10. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure on phosphodiester bond formation

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; KAMALUDDIN

    1989-01-01

    The formation of oligomers from deoxynucleotides, catalyzed by Na(+)-montmorillonite, was investigated with special attention given to the effect of the monomer structure on the phosphodiester bond formation. It was found that adenine deoxynucleotides bind more strongly to montmorillonite than do the corresponding ribonucleotides and thymidine nucleotides. Tetramers of 2-prime-dpA were detected in the reaction of 2-prime-d-5-prime-AMP with a water-soluble carbodiimide EDAC in the presence of Na(+)-montmorillonite, illustrating the possible role of minerals in the formation of biopolymers on the primitive earth.

  11. Thiamin and riboflavin vitamers in human milk: effects of lipid-based nutrient supplementation and stage of lactation on vitamer secretion and contributions to total vitamin content

    USDA-ARS?s Scientific Manuscript database

    While thiamin and riboflavin in breast milk have been analyzed for over 50 years, less attention has been given to the different forms of each vitamin. Thiamin-monophosphate (TMP) and free thiamin contribute to total thiamin content; flavin adenine-dinucleotide (FAD) and free riboflavin are the main...

  12. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

    PubMed Central

    MURAHASHI, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. PMID:21558760

  13. Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function.

    PubMed

    Caton, P W; Kieswich, J; Yaqoob, M M; Holness, M J; Sugden, M C

    2011-12-01

    Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD(+) biosynthesis, exists as intracellular NAMPT (iNAMPT) and extracellular NAMPT (eNAMPT). eNAMPT, secreted from adipose tissue, promotes insulin secretion. Administration of nicotinamide mononucleotide (NMN), a product of the eNAMPT reaction, corrects impaired islet function in Nampt ( +/- ) mice. One of its potential targets is the NAD(+)-dependent deacetylase sirtuin 1. We hypothesised that altered NAMPT activity might contribute to the suppression of islet function associated with inflammation, and aimed to determine whether NMN could improve cytokine-mediated islet dysfunction. Acute effects of NMN on cytokine-mediated islet dysfunction were examined in islets incubated with TNFα and IL1β, and in mice fed a fructose-rich diet (FRD) for 16 weeks. Changes in iNAMPT, eNAMPT and inflammation levels were determined in FRD-fed mice. FRD-fed mice displayed markedly lower levels of circulating eNAMPT, with impaired insulin secretion and raised islet expression of Il1b. NMN administration lowered Il1b expression and restored suppressed insulin secretion in FRD-fed mice. NMN also restored insulin secretion in islets cultured with pro-inflammatory cytokines. The changes in islet function corresponded with changes in key markers of islet function and differentiation. The anti-inflammatory effects of NMN were partially blocked by inhibition of sirtuin 1. Chronic fructose feeding causes severe islet dysfunction in mice. Onset of beta cell failure in FRD-fed mice may occur via lowered secretion of eNAMPT, leading to increased islet inflammation and impaired beta cell function. Administration of exogenous NMN to FRD-fed mice corrects inflammation-induced islet dysfunction. Modulation of this pathway may be an attractive target for amelioration of islet dysfunction associated with inflammation.

  14. Interaction of DNA and mononucleotides with theophylline investigated using electrochemical biosensors and biosensing.

    PubMed

    Nemčeková, Katarína; Labuda, Ján; Milata, Viktor; Blaškovičová, Jana; Sochr, Jozef

    2018-05-03

    The understanding of DNA-drug interaction mechanism is among the important aspects of biological studies for drug design, discovery and pharmaceutical development processes. Published rather detailed FTIR and UV-visible spectroscopic studies on the interactions of theophylline, theobromine and caffeine with calf thymus DNA have shown effective binding of these methylxanthine derivatives to DNA and RNA involving H-bonds. However, to our knowledge, there is no such investigation using electrochemical approach. As a novelty of the study, in this paper the bioelectrochemical approach has been chosen for the investigation of an interaction of low molecular salmon sperm dsDNA, ssDNA and mononucleotides with theophylline (TP) in aqueous phosphate buffered medium using DNA-based electrochemical biosensors and biosensing in solution phase. Exploitation of the electrochemical approach via changes in square wave voltammetric responses of deoxyguanosine (dGuo) and deoxyadenosine (dAdo) provided a new indication on preferential association of TP with dGuo in the case of double helical dsDNA structure which was not reported previously. Moreover, an attachment of TP molecules outside DNA was found in the presence of high concentration of 3.3 × 10 -4  M TP in solution which diminishes the electron transfer and leads to the difficulties in quantitative evaluation of the TP and dGuo voltammetric responses. The changes in UV-vis and FTIR spectra obtained in the same medium confirmed the association interaction of TP with both nucleobases. Utilizing the model and the published energies of hydrogen bonding stabilization, the formation of a DNA-TP complex was predicted through the intermolecular H-bonds between TP and the NH-CO moiety of guanine and the N-NH 2 moiety of adenine. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Optimizing doped libraries by using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Tomandl, Dirk; Schober, Andreas; Schwienhorst, Andreas

    1997-01-01

    The insertion of random sequences into protein-encoding genes in combination with biologicalselection techniques has become a valuable tool in the design of molecules that have usefuland possibly novel properties. By employing highly effective screening protocols, a functionaland unique structure that had not been anticipated can be distinguished among a hugecollection of inactive molecules that together represent all possible amino acid combinations.This technique is severely limited by its restriction to a library of manageable size. Oneapproach for limiting the size of a mutant library relies on `doping schemes', where subsetsof amino acids are generated that reveal only certain combinations of amino acids in a proteinsequence. Three mononucleotide mixtures for each codon concerned must be designed, suchthat the resulting codons that are assembled during chemical gene synthesis represent thedesired amino acid mixture on the level of the translated protein. In this paper we present adoping algorithm that `reverse translates' a desired mixture of certain amino acids into threemixtures of mononucleotides. The algorithm is designed to optimally bias these mixturestowards the codons of choice. This approach combines a genetic algorithm with localoptimization strategies based on the downhill simplex method. Disparate relativerepresentations of all amino acids (and stop codons) within a target set can be generated.Optional weighing factors are employed to emphasize the frequencies of certain amino acidsand their codon usage, and to compensate for reaction rates of different mononucleotidebuilding blocks (synthons) during chemical DNA synthesis. The effect of statistical errors thataccompany an experimental realization of calculated nucleotide mixtures on the generatedmixtures of amino acids is simulated. These simulations show that the robustness of differentoptima with respect to small deviations from calculated values depends on their concomitantfitness. Furthermore, the calculations probe the fitness landscape locally and allow apreliminary assessment of its structure.

  16. Development of Pineapple Microsatellite Markers and Germplasm Genetic Diversity Analysis

    PubMed Central

    Tong, Helin; Chen, You; Wang, Jingyi; Chen, Yeyuan; Sun, Guangming; He, Junhu; Wu, Yaoting

    2013-01-01

    Two methods were used to develop pineapple microsatellite markers. Genomic library-based SSR development: using selectively amplified microsatellite assay, 86 sequences were generated from pineapple genomic library. 91 (96.8%) of the 94 Simple Sequence Repeat (SSR) loci were dinucleotide repeats (39 AC/GT repeats and 52 GA/TC repeats, accounting for 42.9% and 57.1%, resp.), and the other three were mononucleotide repeats. Thirty-six pairs of SSR primers were designed; 24 of them generated clear bands of expected sizes, and 13 of them showed polymorphism. EST-based SSR development: 5659 pineapple EST sequences obtained from NCBI were analyzed; among 1397 nonredundant EST sequences, 843 were found containing 1110 SSR loci (217 of them contained more than one SSR locus). Frequency of SSRs in pineapple EST sequences is 1SSR/3.73 kb, and 44 types were found. Mononucleotide, dinucleotide, and trinucleotide repeats dominate, accounting for 95.6% in total. AG/CT and AGC/GCT were the dominant type of dinucleotide and trinucleotide repeats, accounting for 83.5% and 24.1%, respectively. Thirty pairs of primers were designed for each of randomly selected 30 sequences; 26 of them generated clear and reproducible bands, and 22 of them showed polymorphism. Eighteen pairs of primers obtained by the one or the other of the two methods above that showed polymorphism were selected to carry out germplasm genetic diversity analysis for 48 breeds of pineapple; similarity coefficients of these breeds were between 0.59 and 1.00, and they can be divided into four groups accordingly. Amplification products of five SSR markers were extracted and sequenced, corresponding repeat loci were found and locus mutations are mainly in copy number of repeats and base mutations in the flanking region. PMID:24024187

  17. Excited-state dynamics of mononucleotides and DNA strands in a deep eutectic solvent.

    PubMed

    Zhang, Yuyuan; de La Harpe, Kimberly; Hariharan, Mahesh; Kohler, Bern

    2018-04-17

    The photophysics of several mono- and oligonucleotides were investigated in a deep eutectic solvent for the first time. The solvent glyceline, prepared as a 1 : 2 mole ratio mixture of choline chloride and glycerol, was used to study excited-state deactivation in a non-aqueous solvent by the use of steady-state and time-resolved spectroscopy. DNA strands in glyceline retain the secondary structures that are present in aqueous solution to some degree, thus enabling a study of the effects of solvent properties on the excited states of stacked bases and stacked base pairs. The excited-state lifetime of the mononucleotide 5'-AMP in glyceline is 630 fs, or twice as long as in aqueous solution. Even slower relaxation is seen for 5'-TMP in glyceline, and a possible triplet state with a lifetime greater than 3 ns is observed. Circular dichroism spectra show that the single strand (dA)18 and the duplex d(AT)9·d(AT)9 adopt similar structures in glyceline and in aqueous solution. Despite having similar conformations in both solvents, femtosecond transient absorption experiments reveal striking changes in the dynamics. Excited-state decay and vibrational cooling generally take place more slowly in glyceline than in water. Additionally, the fraction of long-lived excited states in both oligonucleotide systems is lower in glyceline than in aqueous solution. For a DNA duplex, water is suggested to favor decay pathways involving intrastrand charge separation, while the deep eutectic solvent favors interstrand deactivation channels involving neutral species. Slower solvation dynamics in the viscous deep eutectic solvent may also play a role. These results demonstrate that the dynamics of excitations in stacked bases and stacked base pairs depend not only on conformation, but are also highly sensitive to the solvent.

  18. Clays in prebiological chemistry

    NASA Technical Reports Server (NTRS)

    Rao, M.; Oro, J.; Odom, D. G.

    1980-01-01

    The ways in which clays have been utilized in studies of prebiological chemistry are reviewed, and an assessment is given of the possible role of clays in prebiological systems. The adsorption of organic molecules on clays has been demonstrated, as has the synthesis of bioorganic monomers in the presence of clays. For instance, amino acids, purines and pyrimidines have been obtained from carbon monoxide and nitric acid in the presence of clays at relatively high temperatures (250-325 C). The oligomerization of biochemical monomers, mediated by clays, has also been shown to result in the formation of polymer molecules basic to life. Clays have also been found to affect the condensation of mononucleotides to oligonucleotides.

  19. Coq6 Is Responsible for the C4-deamination Reaction in Coenzyme Q Biosynthesis in Saccharomyces cerevisiae*

    PubMed Central

    Ozeir, Mohammad; Pelosi, Ludovic; Ismail, Alexandre; Mellot-Draznieks, Caroline; Fontecave, Marc; Pierrel, Fabien

    2015-01-01

    The yeast Saccharomyces cerevisiae is able to use para-aminobenzoic acid (pABA) in addition to 4-hydroxybenzoic acid as a precursor of coenzyme Q, a redox lipid essential to the function of the mitochondrial respiratory chain. The biosynthesis of coenzyme Q from pABA requires a deamination reaction at position C4 of the benzene ring to substitute the amino group with an hydroxyl group. We show here that the FAD-dependent monooxygenase Coq6, which is known to hydroxylate position C5, also deaminates position C4 in a reaction implicating molecular oxygen, as demonstrated with labeling experiments. We identify mutations in Coq6 that abrogate the C4-deamination activity, whereas preserving the C5-hydroxylation activity. Several results support that the deletion of Coq9 impacts Coq6, thus explaining the C4-deamination defect observed in Δcoq9 cells. The vast majority of flavin monooxygenases catalyze hydroxylation reactions on a single position of their substrate. Coq6 is thus a rare example of a flavin monooxygenase that is able to act on two different carbon atoms of its C4-aminated substrate, allowing its deamination and ultimately its conversion into coenzyme Q by the other proteins constituting the coenzyme Q biosynthetic pathway. PMID:26260787

  20. Characterization of Active Site Residues of Nitroalkane Oxidase†

    PubMed Central

    Valley, Michael P.; Fenny, Nana S.; Ali, Shah R.; Fitzpatrick, Paul F.

    2010-01-01

    The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitrolkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Serl71 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by ~5-fold and decreases in the rate constant for product release of ~2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure. PMID:20056514

  1. Characterization of active site residues of nitroalkane oxidase.

    PubMed

    Valley, Michael P; Fenny, Nana S; Ali, Shah R; Fitzpatrick, Paul F

    2010-06-01

    The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitroalkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Ser171 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by approximately 5-fold and decreases in the rate constant for product release of approximately 2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure. 2009 Elsevier Inc. All rights reserved.

  2. In vivo native fluorescence spectroscopy and nicotinamide adinine dinucleotide/flavin adenine dinucleotide reduction and oxidation states of oral submucous fibrosis for chemopreventive drug monitoring

    NASA Astrophysics Data System (ADS)

    Sivabalan, Shanmugam; Vedeswari, C. Ponranjini; Jayachandran, Sadaksharam; Koteeswaran, Dornadula; Pravda, Chidambaranathan; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2010-01-01

    Native fluorescence spectroscopy has shown potential to characterize and diagnose oral malignancy. We aim at extending the native fluorescence spectroscopy technique to characterize normal and oral submucous fibrosis (OSF) patients under pre- and post-treated conditions, and verify whether this method could also be considered in the monitoring of therapeutic prognosis noninvasively. In this study, 28 normal subjects and 28 clinically proven cases of OSF in the age group of 20 to 40 years are diagnosed using native fluorescence spectroscopy. The OSF patients are given dexamethasone sodium phosphate and hyaluronidase twice a week for 6 weeks, and the therapeutic response is monitored using fluorescence spectroscopy. The fluorescence emission spectra of normal and OSF cases of both pre- and post-treated conditions are recorded in the wavelength region of 350 to 600 nm at an excitation wavelength of 330 nm. The statistical significance is verified using discriminant analysis. The oxidation-reduction ratio of the tissue is also calculated using the fluorescence emission intensities of flavin adenine dinucleotide and nicotinamide adinine dinucleotide at 530 and 440 nm, respectively, and they are compared with conventional physical clinical examinations. This study suggests that native fluorescence spectroscopy could also be extended to OSF diagnosis and therapeutic prognosis.

  3. Unprecedented pathway of reducing equivalents in a diflavin-linked disulfide oxidoreductase.

    PubMed

    Buey, Rubén M; Arellano, Juan B; López-Maury, Luis; Galindo-Trigo, Sergio; Velázquez-Campoy, Adrián; Revuelta, José L; de Pereda, José M; Florencio, Francisco J; Schürmann, Peter; Buchanan, Bob B; Balsera, Monica

    2017-11-28

    Flavoproteins participate in a wide variety of physiologically relevant processes that typically involve redox reactions. Within this protein superfamily, there exists a group that is able to transfer reducing equivalents from FAD to a redox-active disulfide bridge, which further reduces disulfide bridges in target proteins to regulate their structure and function. We have identified a previously undescribed type of flavin enzyme that is exclusive to oxygenic photosynthetic prokaryotes and that is based on the primary sequence that had been assigned as an NADPH-dependent thioredoxin reductase (NTR). However, our experimental data show that the protein does not transfer reducing equivalents from flavins to disulfides as in NTRs but functions in the opposite direction. High-resolution structures of the protein from Gloeobacter violaceus and Synechocystis sp. PCC6803 obtained by X-ray crystallography showed two juxtaposed FAD molecules per monomer in redox communication with an active disulfide bridge in a variant of the fold adopted by NTRs. We have tentatively named the flavoprotein "DDOR" (diflavin-linked disulfide oxidoreductase) and propose that its activity is linked to a thiol-based transfer of reducing equivalents in bacterial membranes. These findings expand the structural and mechanistic repertoire of flavoenzymes with oxidoreductase activity and pave the way to explore new protein engineering approaches aimed at designing redox-active proteins for diverse biotechnological applications.

  4. Structural and kinetic studies on the Ser101Ala variant of choline oxidase: Catalysis by compromise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnegan, S.; Orville, A.; Yuan, H.

    2010-09-15

    The oxidation of choline catalyzed by choline oxidase includes two reductive half-reactions where FAD is reduced by the alcohol substrate and by an aldehyde intermediate transiently formed in the reaction. Each reductive half-reaction is followed by an oxidative half-reaction where the reduced flavin is oxidized by oxygen. Here, we have used mutagenesis to prepare the Ser101Ala mutant of choline oxidase and have investigated the impact of this mutation on the structural and kinetic properties of the enzyme. The crystallographic structure of the Ser101Ala enzyme indicates that the only differences between the mutant and wild-type enzymes are the lack of amore » hydroxyl group on residue 101 and a more planar configuration of the flavin in the mutant enzyme. Kinetics established that replacement of Ser101 with alanine yields a mutant enzyme with increased efficiencies in the oxidative half-reactions and decreased efficiencies in the reductive half-reactions. This is accompanied by a significant decrease in the overall rate of turnover with choline. Thus, this mutation has revealed the importance of a specific residue for the optimization of the overall turnover of choline oxidase, which requires fine-tuning of four consecutive half-reactions for the conversion of an alcohol to a carboxylic acid.« less

  5. Evidence that ferritin is associated with light production in the mucus of the marine worm Chaetopterus

    PubMed Central

    Rawat, Renu; Deheyn, Dimitri D.

    2016-01-01

    The blue glow of the mucus from Chaetopterus involves a photoprotein, iron and flavins. Identity and respective role of these components remain, however, largely unresolved today, likely because of viscosity issues and inhibition of this system by oxidizers conventionally used to track bioluminescence activity. Here, we used gentle centrifugation to obtain a mucus supernatant showing no inhibition to oxidizers, allowing for further analysis. We applied conventional chromatographic techniques to isolate major proteins associated with light emission. Luminescence ability of elutriate fractions was tested with hydrogen peroxide to track photoprotein and/or protein-bound chromophore. Fractions producing light contained few major proteins, one with similarity to ferritin. Addition to the mucus of elements with inhibitory/potentiary effect on ferritin ferroxidase activity induced corresponding changes in light production, emphasizing the possible role of ferritin in the worm bioluminescence. DNA of the protein was cloned, sequenced, and expressed, confirming its identity to a Chaetopterus Ferritin (ChF). Both ferric and ferrous iron were found in the mucus, indicating the occurrence of both oxidase and reductase activity. Biochemical analysis showed ChF has strong ferroxidase activity, which could be a source of biological iron and catalytic energy for the worm bioluminescence when coupled to a reduction process with flavins. PMID:27830745

  6. Three-dimensional structure of NADPH–cytochrome P450 reductase: Prototype for FMN- and FAD-containing enzymes

    PubMed Central

    Wang, Ming; Roberts, David L.; Paschke, Rosemary; Shea, Thomas M.; Masters, Bettie Sue Siler; Kim, Jung-Ja P.

    1997-01-01

    Microsomal NADPH–cytochrome P450 reductase (CPR) is one of only two mammalian enzymes known to contain both FAD and FMN, the other being nitric-oxide synthase. CPR is a membrane-bound protein and catalyzes electron transfer from NADPH to all known microsomal cytochromes P450. The structure of rat liver CPR, expressed in Escherichia coli and solubilized by limited trypsinolysis, has been determined by x-ray crystallography at 2.6 Å resolution. The molecule is composed of four structural domains: (from the N- to C- termini) the FMN-binding domain, the connecting domain, and the FAD- and NADPH-binding domains. The FMN-binding domain is similar to the structure of flavodoxin, whereas the two C-terminal dinucleotide-binding domains are similar to those of ferredoxin–NADP+ reductase (FNR). The connecting domain, situated between the FMN-binding and FNR-like domains, is responsible for the relative orientation of the other domains, ensuring the proper alignment of the two flavins necessary for efficient electron transfer. The two flavin isoalloxazine rings are juxtaposed, with the closest distance between them being about 4 Å. The bowl-shaped surface near the FMN-binding site is likely the docking site of cytochrome c and the physiological redox partners, including cytochromes P450 and b5 and heme oxygenase. PMID:9237990

  7. Absorption and emission spectroscopic characterization of blue-light receptor Slr1694 from Synechocystis sp. PCC6803.

    PubMed

    Zirak, P; Penzkofer, A; Lehmpfuhl, C; Mathes, T; Hegemann, P

    2007-01-03

    The BLUF protein Slr1694 from the cyanobacterium Synechocystis sp. PCC6803 is characterized by absorption and emission spectroscopy. Slr1694 expressed from E. coli which non-covalently binds FAD, FMN, and riboflavin (called Slr1694(I)), and reconstituted Slr1694 which dominantly contains FAD (called Slr1694(II)) are investigated. The receptor conformation of Slr1694 (dark adapted form Slr1694(r)) is transformed to the putative signalling state (light adapted form Slr1694(s)) with red-shifted absorption and decreased fluorescence efficiency by blue-light excitation. In the dark at 22 degrees C, the signalling state recovers back to the initial receptor state with a time constants of about 14.2s for Slr1694(I) and 17s for Slr1694(II). Quantum yields of signalling state formation of approximately 0.63+/-0.07 for both Slr1694(I) and Slr1694(II) were determined by transient transmission measurements and intensity dependent steady-state transmission measurements. Extended blue-light excitation causes some bound flavin conversion to the hydroquinone form and some photo-degradation, both with low quantum efficiency. The flavin-hydroquinone re-oxidizes slowly back (time constant 5-9 min) to the initial flavoquinone form in the dark. A photo-cycle dynamics scheme is presented.

  8. Two photon spectroscopy and microscopy of the fluorescent flavoprotein, iLOV.

    PubMed

    Homans, Rachael J; Khan, Raja U; Andrews, Michael B; Kjeldsen, Annemette E; Natrajan, Louise S; Marsden, Steven; McKenzie, Edward A; Christie, John M; Jones, Alex R

    2018-06-06

    LOV-domains are ubiquitous photosensory proteins that are commonly re-engineered to serve as powerful and versatile fluorescent proteins and optogenetic tools. The photoactive, flavin chromophore, however, is excited using short wavelengths of light in the blue and UV regions, which have limited penetration into biological samples and can cause photodamage. Here, we have used non-linear spectroscopy and microscopy of the fluorescent protein, iLOV, to reveal that functional variants of LOV can be activated to great effect by two non-resonant photons of lower energy, near infrared light, not only in solution but also in biological samples. The two photon cross section of iLOV has a significantly blue-shifted S0 → S1 transition compared with the one photon absorption spectrum, suggesting preferential population of excited vibronic states. It is highly likely, therefore, that the two photon absorption wavelength of engineered, LOV-based tools is tuneable. We also demonstrate for the first time two photon imaging using iLOV in human epithelial kidney cells. Consequently, two photon absorption by engineered, flavin-based bio-molecular tools can enable non-invasive activation with high depth resolution and the potential for not only improved image clarity but also enhanced spatiotemporal control for optogenetic applications.

  9. FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture

    PubMed Central

    Tobeña-Santamaria, Rafael; Bliek, Mattijs; Ljung, Karin; Sandberg, Göran; Mol, Joseph N.M.; Souer, Erik; Koes, Ronald

    2002-01-01

    The mechanisms that determine the relative positions of floral organs, and thereby their numbers, is a poorly understood aspect of flower development. We isolated a petunia mutant, floozy (fzy), in which the formation of floral organ primordia in the outermost three floral whorls and one of the two bracts at the base of the flower is blocked at an early stage. In addition, fzy mutants fail to generate secondary veins in leaves and bracts and display a decreased apical dominance in the inflorescence. FZY encodes an enzyme with homology to flavin mono-oxygenases and appears to be the ortholog of YUCCA genes of Arabidopsis. FZY is expressed in young leafs and bracts and in developing flowers. In young floral meristems FZY is expressed in the center of the meristem dome and, later, expression becomes localized on the flanks of the initiating petal and stamen primordia and at several sites in maturing anthers and carpels. These findings indicate that FZY is involved in synthesizing a signaling compound that is required for floral organ initiation and specification of the vascularization pattern in leaves. Although fzy mutants contain normal auxin levels, ectopic expression of FZY results in excessive auxin accumulation, suggesting that the signaling compound is auxin. PMID:11914280

  10. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry.

    PubMed

    Zhang, Peng; Yuly, Jonathon L; Lubner, Carolyn E; Mulder, David W; King, Paul W; Peters, John W; Beratan, David N

    2017-09-19

    How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation. Remarkably, bifurcating electron transfer (ET) proteins typically send one electron uphill and one electron downhill by similar energies, such that the overall reaction is spontaneous, but not profligate. Electron bifurcation in the NADH-dependent reduced ferredoxin: NADP + oxidoreductase I (Nfn) is explored in detail here. Recent experimental progress in understanding the structure and function of Nfn allows us to dissect its workings in the framework of modern ET theory. The first electron that leaves the two-electron donor flavin (L-FAD) executes a positive free energy "uphill" reaction, and the departure of this electron switches on a second thermodynamically spontaneous ET reaction from the flavin along a second pathway that moves electrons in the opposite direction and at a very different potential. The singly reduced ET products formed from the bifurcating flavin are more than two nanometers distant from each other. In Nfn, the second electron to leave the flavin is much more reducing than the first: the potentials are said to be "crossed." The eventually reduced cofactors, NADH and ferredoxin in the case of Nfn, perform crucial downstream redox processes of their own. We dissect the thermodynamics and kinetics of electron bifurcation in Nfn and find that the key features of electron bifurcation are (1) spatially separated transfer pathways that diverge from a two-electron donor, (2) one thermodynamically uphill and one downhill redox pathway, with a large negative shift in the donor's reduction potential after departure of the first electron, and (3) electron tunneling and activation factors that enable bifurcation, producing a 1:1 partitioning of electrons onto the two pathways. Electron bifurcation is found in the CO 2 reducing pathways of methanogenic archaea, in the hydrogen pathways of hydrogenases, in the nitrogen fixing pathway of Fix, and in the mitochondrial charge transfer chain of complex III, cytochrome bc 1 . While crossed potentials may offer the biological advantage of producing tightly regulated high energy reactive species, neither kinetic nor thermodynamic considerations mandate crossed potentials to generate successful electron bifurcation. Taken together, the theoretical framework established here, focusing on the underpinning electron tunneling barriers and activation free energies, explains the logic of electron bifurcation that enables energy conversion and conservation in Nfn, points toward bioinspired schemes to execute multielectron redox chemistry, and establishes a roadmap for examining novel electron bifurcation networks in nature.

  11. Blue-Light Inhibition of Listeria monocytogenes Growth Is Mediated by Reactive Oxygen Species and Is Influenced by σB and the Blue-Light Sensor Lmo0799.

    PubMed

    O'Donoghue, Beth; NicAogáin, Kerrie; Bennett, Claire; Conneely, Alan; Tiensuu, Teresa; Johansson, Jörgen; O'Byrne, Conor

    2016-07-01

    Listeria monocytogenes senses blue light via the flavin mononucleotide-containing sensory protein Lmo0799, leading to activation of the general stress response sigma factor SigB (σ(B)). In this study, we investigated the physiological response of this foodborne pathogen to blue light. We show that blue light (460 to 470 nm) doses of 1.5 to 2 mW cm(-2) cause inhibition of growth on agar-based and liquid culture media. The inhibitory effects are dependent on cell density, with reduced effects evident when high cell numbers are present. The addition of 20 mM dimethylthiourea, a scavenger of reactive oxygen species, or catalase to the medium reverses the inhibitory effects of blue light, suggesting that growth inhibition is mediated by the formation of reactive oxygen species. A mutant strain lacking σ(B) (ΔsigB) was found to be less inhibited by blue light than the wild type, likely indicating the energetic cost of deploying the general stress response. When a lethal dose of light (8 mW cm(-2)) was applied to cells, the ΔsigB mutant displayed a marked increase in sensitivity to light compared to the wild type. To investigate the role of the blue-light sensor Lmo0799, mutants were constructed that either had a deletion of the gene (Δlmo0799) or alteration in a conserved cysteine residue at position 56, which is predicted to play a pivotal role in the photocycle of the protein (lmo0799 C56A). Both mutants displayed phenotypes similar to the ΔsigB mutant in the presence of blue light, providing genetic evidence that residue 56 is critical for light sensing in L. monocytogenes Taken together, these results demonstrate that L. monocytogenes is inhibited by blue light in a manner that depends on reactive oxygen species, and they demonstrate clear light-dependent phenotypes associated with σ(B) and the blue-light sensor Lmo0799. Listeria monocytogenes is a bacterial foodborne pathogen that can cause life-threatening infections in humans. It is known to be able to sense and respond to visible light. In this study, we examine the effects of blue light on the growth and survival of this pathogen. We show that growth can be inhibited at comparatively low doses of blue light, and that at higher doses, L. monocytogenes cells are killed. We present evidence suggesting that blue light inhibits this organism by causing the production of reactive oxygen species, such as hydrogen peroxide. We help clarify the mechanism of light sensing by constructing a "blind" version of the blue-light sensor protein. Finally, we show that activation of the general stress response by light has a negative effect on growth, probably because cellular resources are diverted into protective mechanisms rather than growth. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Blue-Light Inhibition of Listeria monocytogenes Growth Is Mediated by Reactive Oxygen Species and Is Influenced by σB and the Blue-Light Sensor Lmo0799

    PubMed Central

    O'Donoghue, Beth; NicAogáin, Kerrie; Bennett, Claire; Conneely, Alan; Tiensuu, Teresa; Johansson, Jörgen

    2016-01-01

    ABSTRACT Listeria monocytogenes senses blue light via the flavin mononucleotide-containing sensory protein Lmo0799, leading to activation of the general stress response sigma factor SigB (σB). In this study, we investigated the physiological response of this foodborne pathogen to blue light. We show that blue light (460 to 470 nm) doses of 1.5 to 2 mW cm−2 cause inhibition of growth on agar-based and liquid culture media. The inhibitory effects are dependent on cell density, with reduced effects evident when high cell numbers are present. The addition of 20 mM dimethylthiourea, a scavenger of reactive oxygen species, or catalase to the medium reverses the inhibitory effects of blue light, suggesting that growth inhibition is mediated by the formation of reactive oxygen species. A mutant strain lacking σB (ΔsigB) was found to be less inhibited by blue light than the wild type, likely indicating the energetic cost of deploying the general stress response. When a lethal dose of light (8 mW cm−2) was applied to cells, the ΔsigB mutant displayed a marked increase in sensitivity to light compared to the wild type. To investigate the role of the blue-light sensor Lmo0799, mutants were constructed that either had a deletion of the gene (Δlmo0799) or alteration in a conserved cysteine residue at position 56, which is predicted to play a pivotal role in the photocycle of the protein (lmo0799 C56A). Both mutants displayed phenotypes similar to the ΔsigB mutant in the presence of blue light, providing genetic evidence that residue 56 is critical for light sensing in L. monocytogenes. Taken together, these results demonstrate that L. monocytogenes is inhibited by blue light in a manner that depends on reactive oxygen species, and they demonstrate clear light-dependent phenotypes associated with σB and the blue-light sensor Lmo0799. IMPORTANCE Listeria monocytogenes is a bacterial foodborne pathogen that can cause life-threatening infections in humans. It is known to be able to sense and respond to visible light. In this study, we examine the effects of blue light on the growth and survival of this pathogen. We show that growth can be inhibited at comparatively low doses of blue light, and that at higher doses, L. monocytogenes cells are killed. We present evidence suggesting that blue light inhibits this organism by causing the production of reactive oxygen species, such as hydrogen peroxide. We help clarify the mechanism of light sensing by constructing a “blind” version of the blue-light sensor protein. Finally, we show that activation of the general stress response by light has a negative effect on growth, probably because cellular resources are diverted into protective mechanisms rather than growth. PMID:27129969

  13. Pore and Continuum Scale Study of the Effect of Subgrid Transport Heterogeneity on Redox Reaction Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong

    2015-08-01

    A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale ratesmore » of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however, not affected by the flow rate because molecular diffusion limits reductant supply to the micropore domain interior. Domain-based macroscopic models were evaluated to scale redox reaction rates from the pore to macroscopic scales. A single domain model, which ignores subgrid transport heterogeneity deviated significantly from the pore-scale results. Further analysis revealed that the rate expression for hematite reduction was not scalable from the pore to porous media using the single domain model. A three-domain model, which effectively considers subgrid reactive diffusion in the micropore and macropore domains, significantly improved model description. Overall this study revealed the importance of subgrid transport heterogeneity in the manifestation of redox reaction rates in porous media and in scaling reactions from the pore to porous media. The research also supported that the domain-based scaling approach can be used to directly scale redox reactions in porous media with subgrid transport heterogeneity.« less

  14. Oxidation of Amines by Flavoproteins

    PubMed Central

    Fitzpatrick, Paul F.

    2009-01-01

    Many flavoproteins catalyze the oxidation of primary and secondary amines, with the transfer of a hydride equivalent from a carbon -nitrogen bond to the flavin cofactor. Most of these amine oxidases can be classified into two structural families, the D -amino acid oxidase/sarcosine oxidase family and the monoamine oxidase family. This review discusses the present understanding of the mechanisms of amine and amino acid oxidation by flavoproteins, focusing on these two structural families. PMID:19651103

  15. Biomarkers and Biological Spectral Imaging

    DTIC Science & Technology

    2001-01-23

    Image t iZ ~ Rotator SSteping r De m oo ontroler Frmegabe (single ams) ... Software -= • . ... PCCm ue Data acquisition Rotator control PC Co puterImage...the depth of bum injury", Bums, 7, pp. 197-202, 1981. 7. R. A. De Blasi, M. Cope, C. Elwell, F. Safoue and M. Ferrari, "Noninvasive measurement of...nicotinamide adenine dinucleotide (NADH), oxidized flavin adenine dinucleotide (FAD) and porphyrins. A number of studies have shown that the measured

  16. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts.

    PubMed

    Murahashi, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. (Communicated by Ryoji Noyori, M.J.A.).

  17. Cofactor engineering to regulate NAD+/NADH ratio with its application to phytosterols biotransformation.

    PubMed

    Su, Liqiu; Shen, Yanbing; Zhang, Wenkai; Gao, Tian; Shang, Zhihua; Wang, Min

    2017-10-30

    Cofactor engineering is involved in the modification of enzymes related to nicotinamide adenine dinucleotides (NADH and NAD + ) metabolism, which results in a significantly altered spectrum of metabolic products. Cofactor engineering plays an important role in metabolic engineering but is rarely reported in the sterols biotransformation process owing to its use of multi-catabolic enzymes, which promote multiple consecutive reactions. Androst-4-ene-3, 17-dione (AD) and androst-1, 4-diene-3, 17-dione (ADD) are important steroid medicine intermediates that are obtained via the nucleus oxidation and the side chain degradation of phytosterols by Mycobacterium. Given that the biotransformation from phytosterols to AD (D) is supposed to be a NAD + -dependent process, this work utilized cofactor engineering in Mycobacterium neoaurum and investigated the effect on cofactor and phytosterols metabolism. Through the addition of the coenzyme precursor of nicotinic acid in the phytosterols fermentation system, the intracellular NAD + /NADH ratio and the AD (D) production of M. neoaurum TCCC 11978 (MNR M3) were higher than in the control. Moreover, the NADH: flavin oxidoreductase was identified and was supposed to exert a positive effect on cofactor regulation and phytosterols metabolism pathways via comparative proteomic profiling of MNR cultured with and without phytosterols. In addition, the NADH: flavin oxidoreductase and a water-forming NADH oxidase from Lactobacillus brevis, were successfully overexpressed and heterologously expressed in MNR M3 to improve the intracellular ratio of NAD + /NADH. After 96 h of cultivation, the expression of these two enzymes in MNR M3 resulted in the decrease in intracellular NADH level (by 51 and 67%, respectively) and the increase in NAD + /NADH ratio (by 113 and 192%, respectively). Phytosterols bioconversion revealed that the conversion ratio of engineered stains was ultimately improved by 58 and 147%, respectively. The highest AD (D) conversion ratio by MNR M3N2 was 94% in the conversion system with soybean oil as reaction media to promote the solubility of phytosterols. The ratio of NAD + /NADH is an important factor for the transformation of phytosterols. Expression of NADH: flavin oxidoreductase and water-forming NADH oxidase in MNR improved AD (D) production. Besides the manipulation of key enzyme activities, which included in phytosterols degradation pathways, maintenance the balance of redox also played an important role in promoting steroid biotransformation. The recombinant MNR strain may be useful in industrial production.

  18. Interaction of glutathione reductase with heavy metal: the binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol pair and the flavin.

    PubMed

    Picaud, Thierry; Desbois, Alain

    2006-12-26

    To determine the inhibition mechanism of yeast glutathione reductase (GR) by heavy metal, we have compared the electronic absorption and resonance Raman (RR) spectra of the enzyme in its oxidized (Eox) and two-electron reduced (EH2) forms, in the absence and the presence of Hg(II) or Cd(II). The spectral data clearly show a redox dependence of the metal binding. The metal ions do not affect the absorption and RR spectra of Eox. On the contrary, the EH2 spectra, generated by addition of NADPH, are strongly modified by the presence of heavy metal. The absorption changes of EH2 are metal-dependent. On the one hand, the main flavin band observed at 450 nm for EH2 is red-shifted at 455 nm for the EH2-Hg(II) complex and at 451 nm for the EH2-Cd(II) complex. On the other hand, the characteristic charge-transfer (CT) band at 540 nm is quenched upon metal binding to EH2. In NADPH excess, a new CT band is observed at 610 nm for the EH2-Hg(II)-NADPH complex and at 590 nm for EH2-Cd(II)-NADPH. The RR spectra of the EH2-metal complexes are not sensitive to the NADPH concentration. With reference to the RR spectra of EH2 in which the frequencies of bands II and III were observed at 1582 and 1547 cm-1, respectively, those of the EH2-metal complexes are detected at 1577 and 1542 cm-1, indicating an increased flavin bending upon metal coordination to EH2. From the frequency shifts of band III, a concomitant weakening of the H-bonding state of the N5 atom is also deduced. Taking into account the different chemical properties of Hg(II) and Cd(II), the coordination number of the bound metal ion was deduced to be different in GR. A mechanism of the GR inhibition is proposed. It proceeds primarily by a specific binding of the metal to the redox thiol/thiolate pair and the catalytic histidine of EH2. The bound metal ion then acts on the bending of the isoalloxazine ring of FAD as well as on the hydrophobicity of its microenvironment.

  19. Predicting the NMR spectra of nucleotides by DFT calculations: cyclic uridine monophosphate.

    PubMed

    Bagno, Alessandro; Rastrelli, Federico; Saielli, Giacomo

    2008-06-01

    We present an experimental and quantum chemical NMR study of the mononucleotide cyclic uridine monophosphate in water. Spectral parameters ((1)H and (13)C chemical shifts and (1)H--(1)H, (13)C--(1)H, (31)P--(13)C and (31)P--(1)H spin-spin coupling constants) have been carefully obtained experimentally and calculated using DFT methods including the solvent effect and the conformational flexibility of the solute. This study confirms that the (1)H and (13)C spectra of polar, flexible molecules in aqueous solution can be predicted with a high level of accuracy, comparable to that obtained for less complex systems. Copyright (c) 2008 John Wiley & Sons, Ltd

  20. Oxidation of amines by flavoproteins.

    PubMed

    Fitzpatrick, Paul F

    2010-01-01

    Many flavoproteins catalyze the oxidation of primary and secondary amines, with the transfer of a hydride equivalent from a carbon-nitrogen bond to the flavin cofactor. Most of these amine oxidases can be classified into two structural families, the D-amino acid oxidase/sarcosine oxidase family and the monoamine oxidase family. This review discusses the present understanding of the mechanisms of amine and amino acid oxidation by flavoproteins, focusing on these two structural families. Copyright 2009 Elsevier Inc. All rights reserved.

  1. The Innate Insurgent Advantage: Can Training and Planning Bridge the Gap

    DTIC Science & Technology

    2016-01-01

    Production Manager Cheryl King Air University Press 155 N. Twining St., Bldg. 693 Maxwell AFB, AL 36112-6026 afri.aupress@us.af.mil/ http...2005, http://fas.org/irp/ doddir/dod/d3000_05. pdf . 6. Connable and Libicki, How Insurgencies End. 7. Ibid.; Department of the Army, Army Strategic...March 2012), 16, http://www.ohchr.org/Documents/HRBodies/ HRCouncil/RegularSession/Session19/A.HRC.19.68. pdf . 12. William Flavin, “Planning for Conflict

  2. Spectroscopic study of intermolecular complexes between FAD and some β-carboline derivatives

    NASA Astrophysics Data System (ADS)

    Codoñer, Armando; Monzó, Isidro S.; Tomás, Francisco; Valero, Rosa

    The formation of molecular complexes between flavine adenine dinucleotide (FAD) and some β-carboline derivatives [antidepressant drugs that have a pronounced inhibition of monoamine oxidase (MAO)] has been studied by using electronic absorption and fluorescence spectroscopic methods. Thermodynamic parameters have been determined from the values of association constants for the molecular complexes at various temperatures. The influence of substituents in the β-carboline molecule on the stability of the complexes formed was also investigated.

  3. Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells.

    PubMed

    Blain-Hartung, Matthew; Rockwell, Nathan C; Moreno, Marcus V; Martin, Shelley S; Gan, Fei; Bryant, Donald A; Lagarias, J Clark

    2018-06-01

    Class III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in nonphotosynthetic species. Among such naturally occurring light sensors, several flavin-based photoactivated adenylyl cyclases (PACs) have been adopted as optogenetic tools to manipulate cellular processes with blue light. In this report, we report the discovery of a cyanobacteriochrome-based photoswitchable adenylyl cyclase (cPAC) from the cyanobacterium Microcoleus sp. PCC 7113. Unlike flavin-dependent PACs, which must thermally decay to be deactivated, cPAC exhibits a bistable photocycle whose adenylyl cyclase could be reversibly activated and inactivated by blue and green light, respectively. Through domain exchange experiments, we also document the ability to extend the wavelength-sensing specificity of cPAC into the near IR. In summary, our work has uncovered a cyanobacteriochrome-based adenylyl cyclase that holds great potential for the design of bistable photoswitchable adenylyl cyclases to fine-tune cAMP-regulated processes in cells, tissues, and whole organisms with light across the visible spectrum and into the near IR.

  4. Fluorescence of the Flavin group in choline oxidase. Insights and analytical applications for the determination of choline and betaine aldehyde.

    PubMed

    Ortega, E; de Marcos, S; Sanz-Vicente, I; Ubide, C; Ostra, M; Vidal, M; Galbán, J

    2016-01-15

    Choline oxidase (ChOx) is a flavoenzyme catalysing the oxidation of choline (Ch) to betaine aldehyde (BA) and glycine betaine (GB). In this paper a fundamental study of the intrinsic fluorescence properties of ChOx due to Flavin Adenine Dinucleotide (FAD) is presented and some analytical applications are studied in detail. Firstly, an unusual alteration in the excitation spectra, in comparison with the absorption spectra, has been observed as a function of the pH. This is ascribed to a change of polarity in the excited state. Secondly, the evolution of the fluorescence spectra during the reaction seems to indicate that the reaction takes place in two consecutive, but partially overlapped, steps and each of them follows a different mechanism. Thirdly, the chemical system can be used to determine the Ch concentration in the range from 5×10(-6)M to 5×10(-5)M (univariate and multivariate calibration) in the presence of BA as interference, and the joint Ch+BA concentration in the range 5×10(-6)-5×10(-4)M (multivariate calibration) with mean errors under 10%; a semiquantitative determination of the BA concentration can be deduced by difference. Finally, Ch has been successfully determined in an infant milk sample. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The Arabidopsis dwarf1 Mutant Is Defective in the Conversion of 24-Methylenecholesterol to Campesterol in Brassinosteroid Biosynthesis1

    PubMed Central

    Choe, Sunghwa; Dilkes, Brian P.; Gregory, Brian D.; Ross, Amanda S.; Yuan, Heng; Noguchi, Takahiro; Fujioka, Shozo; Takatsuto, Suguru; Tanaka, Atsushi; Yoshida, Shigeo; Tax, Frans E.; Feldmann, Kenneth A.

    1999-01-01

    Since the isolation and characterization of dwarf1-1 (dwf1-1) from a T-DNA insertion mutant population, phenotypically similar mutants, including deetiolated2 (det2), constitutive photomorphogenesis and dwarfism (cpd), brassinosteroid insensitive1 (bri1), and dwf4, have been reported to be defective in either the biosynthesis or the perception of brassinosteroids. We present further characterization of dwf1-1 and additional dwf1 alleles. Feeding tests with brassinosteroid-biosynthetic intermediates revealed that dwf1 can be rescued by 22α-hydroxycampesterol and downstream intermediates in the brassinosteroid pathway. Analysis of the endogenous levels of brassinosteroid intermediates showed that 24-methylenecholesterol in dwf1 accumulates to 12 times the level of the wild type, whereas the level of campesterol is greatly diminished, indicating that the defective step is in C-24 reduction. Furthermore, the deduced amino acid sequence of DWF1 shows significant similarity to a flavin adenine dinucleotide-binding domain conserved in various oxidoreductases, suggesting an enzymatic role for DWF1. In support of this, 7 of 10 dwf1 mutations directly affected the flavin adenine dinucleotide-binding domain. Our molecular characterization of dwf1 alleles, together with our biochemical data, suggest that the biosynthetic defect in dwf1 results in reduced synthesis of bioactive brassinosteroids, causing dwarfism. PMID:10069828

  6. Local Auxin Biosynthesis Mediated by a YUCCA Flavin Monooxygenase Regulates Haustorium Development in the Parasitic Plant Phtheirospermum japonicum.

    PubMed

    Ishida, Juliane K; Wakatake, Takanori; Yoshida, Satoko; Takebayashi, Yumiko; Kasahara, Hiroyuki; Wafula, Eric; dePamphilis, Claude W; Namba, Shigetou; Shirasu, Ken

    2016-08-01

    Parasitic plants in the Orobanchaceae cause serious agricultural problems worldwide. Parasitic plants develop a multicellular infectious organ called a haustorium after recognition of host-released signals. To understand the molecular events associated with host signal perception and haustorium development, we identified differentially regulated genes expressed during early haustorium development in the facultative parasite Phtheirospermum japonicum using a de novo assembled transcriptome and a customized microarray. Among the genes that were upregulated during early haustorium development, we identified YUC3, which encodes a functional YUCCA (YUC) flavin monooxygenase involved in auxin biosynthesis. YUC3 was specifically expressed in the epidermal cells around the host contact site at an early time point in haustorium formation. The spatio-temporal expression patterns of YUC3 coincided with those of the auxin response marker DR5, suggesting generation of auxin response maxima at the haustorium apex. Roots transformed with YUC3 knockdown constructs formed haustoria less frequently than nontransgenic roots. Moreover, ectopic expression of YUC3 at the root epidermal cells induced the formation of haustorium-like structures in transgenic P. japonicum roots. Our results suggest that expression of the auxin biosynthesis gene YUC3 at the epidermal cells near the contact site plays a pivotal role in haustorium formation in the root parasitic plant P. japonicum. © 2016 American Society of Plant Biologists. All rights reserved.

  7. Rapid kinetics of dehalogenation promoted by iodotyrosine deiodinase from human thyroid.

    PubMed

    Bobyk, Kostyantyn D; Ballou, David P; Rokita, Steven E

    2015-07-28

    Reductive dehalogenation such as that catalyzed by iodotyrosine deiodinase (IYD) is highly unusual in aerobic organisms but necessary for iodide salvage from iodotyrosine generated during thyroxine biosynthesis. Equally unusual is the dependence of this process on flavin. Rapid kinetics have now been used to define the basic processes involved in IYD catalysis. Time-dependent quenching of flavin fluorescence was used to monitor halotyrosine association to IYD. The substrates chloro-, bromo-, and iodotyrosine bound with similar rate constants (kon) ranging from 1.3 × 10(6) to 1.9 × 10(6) M(-1) s(-1). Only the inert substrate analogue fluorotyrosine exhibited a significantly (5-fold) slower kon (0.3 × 10(6) M(-1) s(-1)). All data fit a standard two-state model and indicated that no intermediate complex accumulated during closure of the active site lid induced by substrate. Subsequent halide elimination does not appear to limit reactions of bromo- and iodotyrosine since both fully oxidized the reduced enzyme with nearly equivalent second-order rate constants (7.3 × 10(3) and 8.6 × 10(3) M(-1) s(-1), respectively) despite the differing strength of their carbon-halogen bonds. In contrast to these substrates, chlorotyrosine reacted with the reduced enzyme approximately 20-fold more slowly and revealed a spectral intermediate that formed at approximately the same rate as the bromo- and iodotyrosine reactions.

  8. Rapid Kinetics of Dehalogenation Promoted by Iodotyrosine Deiodinase from Human Thyroid

    PubMed Central

    2015-01-01

    Reductive dehalogenation such as that catalyzed by iodotyrosine deiodinase (IYD) is highly unusual in aerobic organisms but necessary for iodide salvage from iodotyrosine generated during thyroxine biosynthesis. Equally unusual is the dependence of this process on flavin. Rapid kinetics have now been used to define the basic processes involved in IYD catalysis. Time-dependent quenching of flavin fluorescence was used to monitor halotyrosine association to IYD. The substrates chloro-, bromo-, and iodotyrosine bound with similar rate constants (kon) ranging from 1.3 × 106 to 1.9 × 106 M–1 s–1. Only the inert substrate analogue fluorotyrosine exhibited a significantly (5-fold) slower kon (0.3 × 106 M–1 s–1). All data fit a standard two-state model and indicated that no intermediate complex accumulated during closure of the active site lid induced by substrate. Subsequent halide elimination does not appear to limit reactions of bromo- and iodotyrosine since both fully oxidized the reduced enzyme with nearly equivalent second-order rate constants (7.3 × 103 and 8.6 × 103 M–1 s–1, respectively) despite the differing strength of their carbon–halogen bonds. In contrast to these substrates, chlorotyrosine reacted with the reduced enzyme approximately 20-fold more slowly and revealed a spectral intermediate that formed at approximately the same rate as the bromo- and iodotyrosine reactions. PMID:26151430

  9. VhuD Facilitates Electron Flow from H2 or Formate to Heterodisulfide Reductase in Methanococcus maripaludis

    PubMed Central

    Costa, Kyle C.; Lie, Thomas J.; Xia, Qin

    2013-01-01

    Flavin-based electron bifurcation has recently been characterized as an essential energy conservation mechanism that is utilized by hydrogenotrophic methanogenic Archaea to generate low-potential electrons in an ATP-independent manner. Electron bifurcation likely takes place at the flavin associated with the α subunit of heterodisulfide reductase (HdrA). In Methanococcus maripaludis the electrons for this reaction come from either formate or H2 via formate dehydrogenase (Fdh) or Hdr-associated hydrogenase (Vhu). However, how these enzymes bind to HdrA to deliver electrons is unknown. Here, we present evidence that the δ subunit of hydrogenase (VhuD) is central to the interaction of both enzymes with HdrA. When M. maripaludis is grown under conditions where both Fdh and Vhu are expressed, these enzymes compete for binding to VhuD, which in turn binds to HdrA. Under these conditions, both enzymes are fully functional and are bound to VhuD in substoichiometric quantities. We also show that Fdh copurifies specifically with VhuD in the absence of other hydrogenase subunits. Surprisingly, in the absence of Vhu, growth on hydrogen still occurs; we show that this involves F420-reducing hydrogenase. The data presented here represent an initial characterization of specific protein interactions centered on Hdr in a hydrogenotrophic methanogen that utilizes multiple electron donors for growth. PMID:24039260

  10. Alteration of ROS Homeostasis and Decreased Lifespan in S. cerevisiae Elicited by Deletion of the Mitochondrial Translocator FLX1

    PubMed Central

    Giancaspero, Teresa Anna; Dipalo, Emilia; Miccolis, Angelica; Boles, Eckhard; Caselle, Michele; Barile, Maria

    2014-01-01

    This paper deals with the control exerted by the mitochondrial translocator FLX1, which catalyzes the movement of the redox cofactor FAD across the mitochondrial membrane, on the efficiency of ATP production, ROS homeostasis, and lifespan of S. cerevisiae. The deletion of the FLX1 gene resulted in respiration-deficient and small-colony phenotype accompanied by a significant ATP shortage and ROS unbalance in glycerol-grown cells. Moreover, the flx1Δ strain showed H2O2 hypersensitivity and decreased lifespan. The impaired biochemical phenotype found in the flx1Δ strain might be justified by an altered expression of the flavoprotein subunit of succinate dehydrogenase, a key enzyme in bioenergetics and cell regulation. A search for possible cis-acting consensus motifs in the regulatory region upstream SDH1-ORF revealed a dozen of upstream motifs that might respond to induced metabolic changes by altering the expression of Flx1p. Among these motifs, two are present in the regulatory region of genes encoding proteins involved in flavin homeostasis. This is the first evidence that the mitochondrial flavin cofactor status is involved in controlling the lifespan of yeasts, maybe by changing the cellular succinate level. This is not the only case in which the homeostasis of redox cofactors underlies complex phenotypical behaviours, as lifespan in yeasts. PMID:24895546

  11. Hyperspectral imaging of endogenous fluorescent metabolic molecules to identify pain states in central nervous system tissue

    NASA Astrophysics Data System (ADS)

    Staikopoulos, Vasiliki; Gosnell, Martin E.; Anwer, Ayad G.; Mustafa, Sanam; Hutchinson, Mark R.; Goldys, Ewa M.

    2016-12-01

    Fluorescence-based bio-imaging methods have been extensively used to identify molecular changes occurring in biological samples in various pathological adaptations. Auto-fluorescence generated by endogenous fluorescent molecules within these samples can interfere with signal to background noise making positive antibody based fluorescent staining difficult to resolve. Hyperspectral imaging uses spectral and spatial imaging information for target detection and classification, and can be used to resolve changes in endogenous fluorescent molecules such as flavins, bound and free NADH and retinoids that are involved in cell metabolism. Hyperspectral auto-fluorescence imaging of spinal cord slices was used in this study to detect metabolic differences within pain processing regions of non-pain versus sciatic chronic constriction injury (CCI) animals, an established animal model of peripheral neuropathy. By using an endogenous source of contrast, subtle metabolic variations were detected between tissue samples, making it possible to distinguish between animals from non-injured and injured groups. Tissue maps of native fluorophores, flavins, bound and free NADH and retinoids unveiled subtle metabolic signatures and helped uncover significant tissue regions with compromised mitochondrial function. Taken together, our results demonstrate that hyperspectral imaging provides a new non-invasive method to investigate central changes of peripheral neuropathic injury and other neurodegenerative disease models, and paves the way for novel cellular characterisation in health, disease and during treatment, with proper account of intrinsic cellular heterogeneity.

  12. Exploring the structural basis of the selective inhibition of monoamine oxidase A by dicarbonitrile aminoheterocycles: role of Asn181 and Ile335 validated by spectroscopic and computational studies.

    PubMed

    Juárez-Jiménez, Jordi; Mendes, Eduarda; Galdeano, Carles; Martins, Carla; Silva, Daniel B; Marco-Contelles, José; do Carmo Carreiras, Maria; Luque, F Javier; Ramsay, Rona R

    2014-02-01

    Since cyanide potentiates the inhibitory activity of several monoamine oxidase (MAO) inhibitors, a series of carbonitrile-containing aminoheterocycles was examined to explore the role of nitriles in determining the inhibitory activity against MAO. Dicarbonitrile aminofurans were found to be potent, selective inhibitors against MAO A. The origin of the MAO A selectivity was identified by combining spectroscopic and computational methods. Spectroscopic changes induced in MAO A by mono- and dicarbonitrile inhibitors were different, providing experimental evidence for distinct binding modes to the enzyme. Similar differences were also found between the binding of dicarbonitrile compounds to MAO A and to MAO B. Stabilization of the flavin anionic semiquinone by monocarbonitrile compounds, but destabilization by dicarbonitriles, provided further support to the distinct binding modes of these compounds and their interaction with the flavin ring. Molecular modeling studies supported the role played by the nitrile and amino groups in anchoring the inhibitor to the binding cavity. In particular, the results highlight the role of Asn181 and Ile335 in assisting the interaction of the nitrile-containing aminofuran ring. The network of interactions afforded by the specific attachment of these functional groups provides useful guidelines for the design of selective, reversible MAO A inhibitors. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.

    PubMed

    Heine, Thomas; Tucker, Kathryn; Okonkwo, Nonye; Assefa, Berhanegebriel; Conrad, Catleen; Scholtissek, Anika; Schlömann, Michael; Gassner, George; Tischler, Dirk

    2017-04-01

    The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s -1 . This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.

  14. Hydrogen-bonding dynamics of free flavins in benzene and FAD in electron-transferring flavoprotein upon excitation.

    PubMed

    Sato, Kyousuke; Nishina, Yasuzou; Shiga, Kiyoshi; Tanaka, Fumio

    2003-01-01

    The dynamic natures of two hydrogen-bonding model systems, riboflavin tetrabutylate (RFTB)-trichloroacetic acid (TCA) and RFTB-phenol in benzene, and of electron-transferring flavoprotein (ETF) from pig kidney upon excitation of flavins was investigated by means of steady state and time-resolved fluorescence spectroscopy. In both model systems fluorescence intensities of RFTB decreased as TCA or phenol was added. The spectral characteristics of ETF under steady state excitation were quite similar to those of the RFTB-TCA system, but not to those of the RFTB-phenol system. The observed fluorescence decay curves of ETF fit well with the calculated decay curves with two lifetime components, as in the model systems. Averaged lifetime was 0.9 ns. The time-resolved fluorescence spectrum of ETF shifted toward longer wavelength with time after pulsed excitation, which was also observed in the RFTB-TCA system. In the RFTB-phenol system the emission spectrum did not shift at all with time. These results reveal that the dynamic nature of ETF can be ascribed to aliphatic hydrogen-bonding(s) of the isoalloxazine ring with surrounding amino acid(s). From the fluorescence characteristics of ETF in comparison with the model systems, human ETF and other flavoproteins, it was suggested that ETF from pig kidney does not contain Tyr-16 in the beta subunit, unlike human ETF.

  15. The Reaction Kinetics of 3-Hydroxybenzoate 6-Hydroxylase from Rhodococcus jostii RHA1 Provide an Understanding of the para-Hydroxylation Enzyme Catalytic Cycle*

    PubMed Central

    Sucharitakul, Jeerus; Tongsook, Chanakan; Pakotiprapha, Danaya; van Berkel, Willem J. H.; Chaiyen, Pimchai

    2013-01-01

    3-Hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1 is an NADH-specific flavoprotein monooxygenase that catalyzes the para-hydroxylation of 3-hydroxybenzoate (3HB) to form 2,5-dihydroxybenzoate (2,5-DHB). Based on results from stopped-flow spectrophotometry, the reduced enzyme-3HB complex reacts with oxygen to form a C4a-peroxy flavin with a rate constant of 1.13 ± 0.01 × 106 m−1 s−1 (pH 8.0, 4 °C). This intermediate is subsequently protonated to form a C4a-hydroperoxyflavin with a rate constant of 96 ± 3 s−1. This step shows a solvent kinetic isotope effect of 1.7. Based on rapid-quench measurements, the hydroxylation occurs with a rate constant of 36 ± 2 s−1. 3HB6H does not exhibit substrate inhibition on the flavin oxidation step, a common characteristic found in most ortho-hydroxylation enzymes. The apparent kcat at saturating concentrations of 3HB, NADH, and oxygen is 6.49 ± 0.02 s−1. Pre-steady state and steady-state kinetic data were used to construct the catalytic cycle of the reaction. The data indicate that the steps of product release (11.7 s−1) and hydroxylation (36 ± 2 s−1) partially control the overall turnover. PMID:24129570

  16. Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress.

    PubMed

    Chernyak, Boris V; Izyumov, Denis S; Lyamzaev, Konstantin G; Pashkovskaya, Alina A; Pletjushkina, Olga Y; Antonenko, Yuri N; Sakharov, Dmitrii V; Wirtz, Karel W A; Skulachev, Vladimir P

    2006-01-01

    Mitochondria can be a source of reactive oxygen species (ROS) and a target of oxidative damage during oxidative stress. In this connection, the effect of photodynamic treatment (PDT) with Mitotracker Red (MR) as a mitochondria-targeted photosensitizer has been studied in HeLa cells. It is shown that MR produces both singlet oxygen and superoxide anion upon photoactivation and causes photoinactivation of gramicidin channels in a model system (planar lipid bilayer). Mitochondria-targeted antioxidant (MitoQ) inhibits this effect. In living cells, MR-mediated PDT initiates a delayed ("dark") accumulation of ROS, which is accelerated by inhibitors of the respiratory chain (piericidin, rotenone and myxothiazol) and inhibited by MitoQ and diphenyleneiodonium (an inhibitor of flavin enzymes), indicating that flavin of Complex I is involved in the ROS production. PDT causes necrosis that is prevented by MitoQ. Treatment of the cell with hydrogen peroxide causes accumulation of ROS, and the effects of inhibitors and MitoQ are similar to that described for the PDT model. Apoptosis caused by H2O2 is augmented by the inhibitors of respiration and suppressed by MitoQ. It is concluded that the initial segments of the respiratory chain can be an important source of ROS, which are targeted to mitochondria, determining the fate of the cell subjected to oxidative stress.

  17. Amperometric cholesterol biosensor based on in situ reconstituted cholesterol oxidase on an immobilized monolayer of flavin adenine dinucleotide cofactor.

    PubMed

    Vidal, Juan-C; Espuelas, Javier; Castillo, Juan-R

    2004-10-01

    A new amperometric biosensor for determining cholesterol based on deflavination of the enzyme cholesterol oxidase (ChOx) and subsequent reconstitution of the apo-protein with a complexed flavin adenine dinucleotide (FAD) monolayer is described. The charge transfer mediator pyrroquinoline quinone (PQQ) was covalently bound to a cystamine self-assembled monolayer (SAM) on an Au electrode. Boronic acid (BA) was then bound to PQQ using the carbodiimide procedure, and the BA ligand was complexed to the FAD molecules on which the apo-ChOx was subsequently reconstituted. The effective release of the FAD from the enzyme and the successful reconstitution were verified using molecular fluorescence and cyclic voltammetry. The optimal orientation of FAD toward the PQQ mediator and the distances between FAD and PQQ and between PQQ and electrode enhance the charge transfer, very high sensitivity (about 2,500 nAmM(-1)cm(-2)) being obtained for cholesterol determination. The biosensor is selective toward electroactive interferents (ascorbic acid and uric acid) and was tested in reference serum samples, demonstrating excellent accuracy (relative errors below 3% in all cases). The biosensor activity can be successfully regenerated in a simple process by successive reconstitution with batches of recently prepared apo-ChOx on the same immobilized Au/SAM-PQQ-BA-FAD monolayer (it was tested five times); the lifetime of the biosensor is about 45-60 days.

  18. Path Integral Simulation of the H/D Kinetic Isotope Effect in Monoamine Oxidase B Catalyzed Decomposition of Dopamine.

    PubMed

    Mavri, Janez; Matute, Ricardo A; Chu, Zhen T; Vianello, Robert

    2016-04-14

    Brain monoamines regulate many centrally mediated body functions, and can cause adverse symptoms when they are out of balance. A starting point to address challenges raised by the increasing burden of brain diseases is to understand, at atomistic level, the catalytic mechanism of an essential amine metabolic enzyme-monoamine oxidase B (MAO B). Recently, we demonstrated that the rate-limiting step of MAO B catalyzed conversion of amines into imines represents the hydride anion transfer from the substrate α-CH2 group to the N5 atom of the flavin cofactor moiety. In this article we simulated for MAO B catalyzed dopamine decomposition the effects of nuclear tunneling by the calculation of the H/D kinetic isotope effect. We applied path integral quantization of the nuclear motion for the methylene group and the N5 atom of the flavin moiety in conjunction with the QM/MM treatment on the empirical valence bond (EVB) level for the rest of the enzyme. The calculated H/D kinetic isotope effect of 12.8 ± 0.3 is in a reasonable agreement with the available experimental data for closely related biogenic amines, which gives strong support for the proposed hydride mechanism. The results are discussed in the context of tunneling in enzyme centers and advent of deuterated drugs into clinical practice.

  19. Loss of MSH3 protein expression is frequent in MLH1-deficient colorectal cancer and is associated with disease progression.

    PubMed

    Plaschke, Jens; Krüger, Stefan; Jeske, Birgit; Theissig, Franz; Kreuz, Friedmar R; Pistorius, Steffen; Saeger, Hans D; Iaccarino, Ingram; Marra, Giancarlo; Schackert, Hans K

    2004-02-01

    Mononucleotide repeat sequences are particularly prone to frameshift mutations in tumors with biallelic inactivation of the mismatch repair (MMR) genes MLH1 or MSH2. In these tumors, several genes harboring mononucleotide repeats in their coding region have been proposed as targets involved in tumor progression, among which are also the MMR genes MSH3 and MSH6. We have analyzed the expression of the MSH3 and MSH6 proteins by immunohistochemistry in 31 colorectal carcinomas in which MLH1 was inactivated. Loss of MSH3 expression was identified in 15 tumors (48.5%), whereas all tumors expressed MSH6. Frameshift mutations at coding microsatellites were more frequent in MSH3 (16 of 31) than in MSH6 (3 of 31; Fisher's exact test, P < 0.001). Frameshift mutations and allelic losses of MSH3 were more frequent in MSH3-negative tumors compared with those with normal expression (22 mutations in 30 alleles versus 8 mutations in 28 alleles; chi(2), P = 0.001). Biallelic inactivation was evident or inferred for 60% of MSH3-negative tumors but none of the tumors with normal MSH3 expression. In contrast, we did not identify frameshift mutations in the (A)8 tract of MSH3 in a control group of 18 colorectal carcinomas in which the MMR deficiency was based on the inactivation of MSH2. As it has been suggested that mutations of MSH3 might play a role in tumor progression, we studied the association between MSH3 expression and disease stage assessed by lymph node and distant metastases status. Dukes stages C and D were more frequent in primary tumors with loss of MSH3 expression (9 of 13), compared with tumors with retained expression (1 of 14; Fisher's exact test, P = 0.001), suggesting that MSH3 abrogation may be a predictor of metastatic disease or even favor tumor cell spread in MLH1-deficient colorectal cancers.

  20. Head to Head Comparison of Short-Term Treatment with the NAD(+) Precursor Nicotinamide Mononucleotide (NMN) and 6 Weeks of Exercise in Obese Female Mice.

    PubMed

    Uddin, Golam M; Youngson, Neil A; Sinclair, David A; Morris, Margaret J

    2016-01-01

    Obesity is well known to be a major cause of several chronic metabolic diseases, which can be partially counteracted by exercise. This is due, in part, to an upregulation of mitochondrial activity through increased nicotinamide adenine dinucleotide (NAD(+)). Recent studies have shown that NAD(+) levels can be increased by using the NAD(+) precursor, nicotinamide mononucleotide (NMN) leading to the suggestion that NMN could be a useful intervention in diet related metabolic disorders. In this study we compared the metabolic, and especially mitochondrial-associated, effects of exercise and NMN in ameliorating the consequences of high-fat diet (HFD) induced obesity in mice. Sixty female 5 week old C57BL6/J mice were allocated across five groups: Chow sedentary: CS; Chow exercise: CEX; HFD sedentary: HS; HFD NMN: HNMN; HFD exercise: HEX (12/group). After 6 weeks of diet, exercise groups underwent treadmill exercise (15 m/min for 45 min), 6 days per week for 6 weeks. NMN or vehicle (500 mg/kg body weight) was injected (i.p.) daily for the last 17 days. No significant alteration in body weight was observed in response to exercise or NMN. The HFD significantly altered adiposity, glucose tolerance, plasma insulin, NADH levels and citrate synthase activity in muscle and liver. HEX and HNMN groups both showed significantly improved glucose tolerance compared to the HS group. NAD(+) levels were increased significantly both in muscle and liver by NMN whereas exercise increased NAD(+) only in muscle. Both NMN and exercise ameliorated the HFD-induced reduction in liver citrate synthase activity. However, exercise, but not NMN, ameliorated citrate synthase activity in muscle. Overall these data suggest that while exercise and NMN-supplementation can induce similar reversal of the glucose intolerance induced by obesity, they are associated with tissue-specific effects and differential alterations to mitochondrial function in muscle and liver.

Top