Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton.
Feng, Hongjie; Tian, Xinhui; Liu, Yongchang; Li, Yanjun; Zhang, Xinyu; Jones, Brian Joseph; Sun, Yuqiang; Sun, Jie
2013-01-01
As a result of changing consumer preferences, cotton (Gossypium Hirsutum L.) from varieties with naturally colored fibers is becoming increasingly sought after in the textile industry. The molecular mechanisms leading to colored fiber development are still largely unknown, although it is expected that the color is derived from flavanoids. Firstly, four key genes of the flavonoid biosynthetic pathway in cotton (GhC4H, GhCHS, GhF3'H, and GhF3'5'H) were cloned and studied their expression profiles during the development of brown- and white cotton fibers by QRT-PCR. And then, the concentrations of four components of the flavonoid biosynthetic pathway, naringenin, quercetin, kaempferol and myricetin in brown- and white fibers were analyzed at different developmental stages by HPLC. The predicted proteins of the four flavonoid structural genes corresponding to these genes exhibit strong sequence similarity to their counterparts in various plant species. Transcript levels for all four genes were considerably higher in developing brown fibers than in white fibers from a near isogenic line (NIL). The contents of four flavonoids (naringenin, quercetin, kaempferol and myricetin) were significantly higher in brown than in white fibers and corresponding to the biosynthetic gene expression levels. Flavonoid structural gene expression and flavonoid metabolism are important in the development of pigmentation in brown cotton fibers.
Analysis of Flavonoids and the Flavonoid Structural Genes in Brown Fiber of Upland Cotton
Liu, Yongchang; Li, Yanjun; Zhang, Xinyu; Jones, Brian Joseph; Sun, Yuqiang; Sun, Jie
2013-01-01
Backgroud As a result of changing consumer preferences, cotton (Gossypium Hirsutum L.) from varieties with naturally colored fibers is becoming increasingly sought after in the textile industry. The molecular mechanisms leading to colored fiber development are still largely unknown, although it is expected that the color is derived from flavanoids. Experimental Design Firstly, four key genes of the flavonoid biosynthetic pathway in cotton (GhC4H, GhCHS, GhF3′H, and GhF3′5′H) were cloned and studied their expression profiles during the development of brown- and white cotton fibers by QRT-PCR. And then, the concentrations of four components of the flavonoid biosynthetic pathway, naringenin, quercetin, kaempferol and myricetin in brown- and white fibers were analyzed at different developmental stages by HPLC. Result The predicted proteins of the four flavonoid structural genes corresponding to these genes exhibit strong sequence similarity to their counterparts in various plant species. Transcript levels for all four genes were considerably higher in developing brown fibers than in white fibers from a near isogenic line (NIL). The contents of four flavonoids (naringenin, quercetin, kaempferol and myricetin) were significantly higher in brown than in white fibers and corresponding to the biosynthetic gene expression levels. Conclusions Flavonoid structural gene expression and flavonoid metabolism are important in the development of pigmentation in brown cotton fibers. PMID:23527031
Liu, S; Liu, L; Tang, Y; Xiong, S; Long, J; Liu, Z; Tian, N
2017-07-01
The regulatory mechanism of flavonoids, which synergise anti-malarial and anti-cancer compounds in Artemisia annua, is still unclear. In this study, an anthocyanidin-accumulating mutant callus was induced from A. annua and comparative transcriptomic analysis of wild-type and mutant calli performed, based on the next-generation Illumina/Solexa sequencing platform and de novo assembly. A total of 82,393 unigenes were obtained and 34,764 unigenes were annotated in the public database. Among these, 87 unigenes were assigned to 14 structural genes involved in the flavonoid biosynthetic pathway and 37 unigenes were assigned to 17 structural genes related to metabolism of flavonoids. More than 30 unigenes were assigned to regulatory genes, including R2R3-MYB, bHLH and WD40, which might regulate flavonoid biosynthesis. A further 29 unigenes encoding flavonoid biosynthetic enzymes or transcription factors were up-regulated in the mutant, while 19 unigenes were down-regulated, compared with the wild type. Expression levels of nine genes involved in the flavonoid pathway were compared using semi-quantitative RT-PCR, and results were consistent with comparative transcriptomic analysis. Finally, a putative flavonol synthase gene (AaFLS1) was identified from enzyme assay in vitro and in vivo through heterogeneous expression, and confirmed comparative transcriptomic analysis of wild-type and mutant callus. The present work has provided important target genes for the regulation of flavonoid biosynthesis in A. annua. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation.
Morita, Yasumasa; Takagi, Kyoko; Fukuchi-Mizutani, Masako; Ishiguro, Kanako; Tanaka, Yoshikazu; Nitasaka, Eiji; Nakayama, Masayoshi; Saito, Norio; Kagami, Takashi; Hoshino, Atsushi; Iida, Shigeru
2014-04-01
Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best-studied metabolic pathways. Here we have identified three mutations within a gene that result in pale-colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)-related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio-temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3-MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale-colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Flavonoid-Induced Expression of a Symbiosis-Related Gene in the Cyanobacterium Nostoc punctiforme
Cohen, Michael F.; Yamasaki, Hideo
2000-01-01
The flavonoid naringin was found to induce the expression of hrmA, a gene with a symbiotic phenotype in the cyanobacterium Nostoc punctiforme. A comparative analysis of several flavonoids revealed the 7-O-neohesperidoside, 4′-OH, and C-2 000000000000 000000000000 000000000000 000000000000 111111111111 000000000000 000000000000 000000000000 000000000000 C-3 double bond in naringin as structural determinants of its hrmA-inducing activity. PMID:10913102
Wan, Huihua; Zhang, Jie; Song, Tingting; Tian, Ji; Yao, Yuncong
2015-01-01
Flavonoids are secondary metabolites that play important roles in plant physiology. Despite numerous studies examined the effects of available carbon (C) or nitrogen (N) on flavonoid biosynthesis, the mechanism of C/N interactive effects on flavonoid metabolism is still unclear. In this study, we analyzed the composition of flavonoids and the expression levels of flavonoid-related genes in leaves and calli of crabapple (Malus sp.) cultivars with different leaf colors grown on media with different C/N ratios. Our results show that high C/N ratios induce anthocyanin pigmentation in leaves of the ever-red cultivar 'Royalty' and the spring-red cultivar 'Prairifire,' as well as in three types of calli derived from the ever-green cultivar 'Spring Snow,' but not in the leaves of the ever-green cultivar 'Flame.' This phenomenon therefore correlated with anthocyanin content in these different samples. In addition, high C/N ratios in the growth media resulted in an increase in the concentration of flavones and flavonols in the leaves of the three crabapple cultivars. The transcript levels of the general flavonoid pathway genes [from chalcone synthase (CHS) to uridine diphosphat-glucose: flavonoid 3-O-glycosyltransferase (UFGT) and flavonol synthase (FLS)] increased in response to high C/N ratios, and this in turn was correlated with the concentration of anthocyanins, flavones and flavonols in the leaves and calli. Expression of the late flavonoid/anthocyanin biosynthetic genes, anthocyanidin synthase (ANS), UFGT and FLS in particular, was more strongly influenced by C/N ratios than other structural genes, and the increased expression of the structural genes under high C/N ratios coincided with a coordinated increase in transcript levels of a MYB transcription factor, MYB10. These results are likely to be useful for future generation of plants with an optimized flavonoid/anthocyanin content or desirable organ coloration.
Wan, Huihua; Zhang, Jie; Song, Tingting; Tian, Ji; Yao, Yuncong
2015-01-01
Flavonoids are secondary metabolites that play important roles in plant physiology. Despite numerous studies examined the effects of available carbon (C) or nitrogen (N) on flavonoid biosynthesis, the mechanism of C/N interactive effects on flavonoid metabolism is still unclear. In this study, we analyzed the composition of flavonoids and the expression levels of flavonoid-related genes in leaves and calli of crabapple (Malus sp.) cultivars with different leaf colors grown on media with different C/N ratios. Our results show that high C/N ratios induce anthocyanin pigmentation in leaves of the ever-red cultivar ‘Royalty’ and the spring-red cultivar ‘Prairifire,’ as well as in three types of calli derived from the ever-green cultivar ‘Spring Snow,’ but not in the leaves of the ever-green cultivar ‘Flame.’ This phenomenon therefore correlated with anthocyanin content in these different samples. In addition, high C/N ratios in the growth media resulted in an increase in the concentration of flavones and flavonols in the leaves of the three crabapple cultivars. The transcript levels of the general flavonoid pathway genes [from chalcone synthase (CHS) to uridine diphosphat-glucose: flavonoid 3-O-glycosyltransferase (UFGT) and flavonol synthase (FLS)] increased in response to high C/N ratios, and this in turn was correlated with the concentration of anthocyanins, flavones and flavonols in the leaves and calli. Expression of the late flavonoid/anthocyanin biosynthetic genes, anthocyanidin synthase (ANS), UFGT and FLS in particular, was more strongly influenced by C/N ratios than other structural genes, and the increased expression of the structural genes under high C/N ratios coincided with a coordinated increase in transcript levels of a MYB transcription factor, MYB10. These results are likely to be useful for future generation of plants with an optimized flavonoid/anthocyanin content or desirable organ coloration. PMID:26388881
Zhao, Daqiu; Tang, Wenhui; Hao, Zhaojun; Tao, Jun
2015-04-10
Tree peony (Paeonia suffruticosa Andr.) has been named the "king of flowers" because of its elegant and gorgeous flower colour. Among these colours, the molecular mechanisms of white formation and how white turned to red in P. suffruticosa is little known. In this study, flower colour variables, flavonoid accumulation and expression of flavonoid biosynthetic genes of white ('Xueta') and red ('Caihui') P. suffruticosa were investigated. The results showed that the flower colours of both cultivars were gradually deepened with the development of flowers. Moreover, two anthoxanthin compositions apigenin 7-O-glucoside together with apigenin deoxyheso-hexoside were identified in 'Xueta' and 'Caihui', but one main anthocyanin composition peonidin 3,5-di-O-glucoside (Pn3G5G) was only found in 'Caihui'. Total contents of anthocyanins in 'Caihui' was increased during flower development, and the same trend was presented in anthoxanthins and flavonoids of these two cultivars, but the contents of these two category flavonoid in 'Caihui' were always higher than those in 'Xueta'. Furthermore, nine structural genes in flavonoid biosynthetic pathway were isolated including the full-length cDNAs of phenylalanine ammonialyase gene (PAL), chalcone synthase gene (CHS) and chalcone isomerase gene (CHI), together with the partial-length cDNAs of flavanone 3-hydroxylase gene (F3H), flavonoid 3'-hydroxylase gene (F3'H), dihydroflavonol 4-reductase gene (DFR), anthocyanidin synthase gene (ANS), UDP-glucose: flavonoid 3-O-glucosyltransferase gene (UF3GT) and UDP-glucose: flavonoid 5-O-glucosyltransferase gene (UF5GT), and PAL, UF3GT and UF5GT were reported in P. suffruticosa for the first time. Their expression patterns showed that transcription levels of downstream genes in 'Caihui' were basically higher than those in 'Xueta', especially PsDFR and PsANS, suggesting that these two genes may play a key role in the anthocyanin biosynthesis which resulted in the shift from white to red in flowers. These results would provide a better understanding of the underlying molecular mechanisms of flower pigmentation in P. suffruticosa. Copyright © 2015 Elsevier Inc. All rights reserved.
Martínez-Fernández, Leyre; Pons, Zara; Margalef, Maria; Arola-Arnal, Anna; Muguerza, Begoña
2015-03-01
Physiological concentrations (1 μM) of 15 flavonoids were evaluated in human umbilical vein endothelial cells in the presence of hydrogen peroxide (H₂O₂) for their ability to affect endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) expression in order to establish the structural basis of their bioactivity. Flavonoid effects on eNOS transcription factor Krüpple like factor-2 (KLF-2) expression were also evaluated. All studied flavonoids appeared to be effective compounds for counteracting the oxidative stress-induced effects on vascular gene expression, indicating that flavonoids are an excellent source of functional endothelial regulator products. Notably, the more effective flavonoids for KLF-2 up-regulation resulted in the highest values for eNOS expression, showing that the increment of eNOS expression would take place through KLF-2 induction. Structure-activity relationship studies showed that the combinations of substructures on flavonoid skeleton that regulate eNOS expression are made up of the following elements: glycosylation and hydroxylation of C-ring, double bond C2=C3 at C-ring, methoxylation and hydroxylation of B-ring, ketone group in C4 at C-ring and glycosylation in C7 of A-ring, while flavonoid features involved in the reduction of vasoconstrictor ET-1 expression are as follows: double bond C2=C3 at C-ring glycosylation in C7 of A-ring and ketone group in C4 of C-ring. Copyright © 2015 Elsevier Inc. All rights reserved.
Garcia-Seco, Daniel; Zhang, Yang; Gutierrez-Mañero, Francisco J.; Martin, Cathie; Ramos-Solano, Beatriz
2015-01-01
Application of a plant growth promoting rhizobacterium (PGPR), Pseudomonas fluorescens N21.4, to roots of blackberries (Rubus sp.) is part of an optimised cultivation practice to improve yields and quality of fruit throughout the year in this important fruit crop. Blackberries are especially rich in flavonoids and therefore offer potential benefits for human health in prevention or amelioration of chronic diseases. However, the phenylpropanoid pathway and its regulation during ripening have not been studied in detail, in this species. PGPR may trigger flavonoid biosynthesis as part of an induced systemic response (ISR) given the important role of this pathway in plant defence, to cause increased levels of flavonoids in the fruit. We have identified structural genes encoding enzymes of the phenylpropanoid and flavonoid biosynthetic pathways catalysing the conversion of phenylalanine to the final products including flavonols, anthocyanins and catechins from blackberry, and regulatory genes likely involved in controlling the activity of pathway branches. We have also measured the major flavonols, anthocyanins and catechins at three stages during ripening. Our results demonstrate the coordinated expression of flavonoid biosynthetic genes with the accumulation of anthocyanins, catechins, and flavonols in developing fruits of blackberry. Elicitation of blackberry plants by treatment of roots with P.fluorescens N21.4, caused increased expression of some flavonoid biosynthetic genes and an accompanying increase in the concentration of selected flavonoids in fruits. Our data demonstrate the physiological mechanisms involved in the improvement of fruit quality by PGPR under field conditions, and highlight some of the genetic targets of elicitation by beneficial bacteria. PMID:26559418
Garcia-Seco, Daniel; Zhang, Yang; Gutierrez-Mañero, Francisco J; Martin, Cathie; Ramos-Solano, Beatriz
2015-01-01
Application of a plant growth promoting rhizobacterium (PGPR), Pseudomonas fluorescens N21.4, to roots of blackberries (Rubus sp.) is part of an optimised cultivation practice to improve yields and quality of fruit throughout the year in this important fruit crop. Blackberries are especially rich in flavonoids and therefore offer potential benefits for human health in prevention or amelioration of chronic diseases. However, the phenylpropanoid pathway and its regulation during ripening have not been studied in detail, in this species. PGPR may trigger flavonoid biosynthesis as part of an induced systemic response (ISR) given the important role of this pathway in plant defence, to cause increased levels of flavonoids in the fruit. We have identified structural genes encoding enzymes of the phenylpropanoid and flavonoid biosynthetic pathways catalysing the conversion of phenylalanine to the final products including flavonols, anthocyanins and catechins from blackberry, and regulatory genes likely involved in controlling the activity of pathway branches. We have also measured the major flavonols, anthocyanins and catechins at three stages during ripening. Our results demonstrate the coordinated expression of flavonoid biosynthetic genes with the accumulation of anthocyanins, catechins, and flavonols in developing fruits of blackberry. Elicitation of blackberry plants by treatment of roots with P.fluorescens N21.4, caused increased expression of some flavonoid biosynthetic genes and an accompanying increase in the concentration of selected flavonoids in fruits. Our data demonstrate the physiological mechanisms involved in the improvement of fruit quality by PGPR under field conditions, and highlight some of the genetic targets of elicitation by beneficial bacteria.
Qu, Cunmin; Zhao, Huiyan; Fu, Fuyou; Wang, Zhen; Zhang, Kai; Zhou, Yan; Wang, Xin; Wang, Rui; Xu, Xinfu; Tang, Zhanglin; Lu, Kun; Li, Jia-Na
2016-01-01
Flavonoids, the compounds that impart color to fruits, flowers, and seeds, are the most widespread secondary metabolites in plants. However, a systematic analysis of these loci has not been performed in Brassicaceae. In this study, we isolated 649 nucleotide sequences related to flavonoid biosynthesis, i.e., the Transparent Testa (TT) genes, and their associated amino acid sequences in 17 Brassicaceae species, grouped into Arabidopsis or Brassicaceae subgroups. Moreover, 36 copies of 21 genes of the flavonoid biosynthesis pathway were identified in Arabidopsis thaliana, 53 were identified in Brassica rapa, 50 in Brassica oleracea, and 95 in B. napus, followed the genomic distribution, collinearity analysis and genes triplication of them among Brassicaceae species. The results showed that the extensive gene loss, whole genome triplication, and diploidization that occurred after divergence from the common ancestor. Using qRT-PCR methods, we analyzed the expression of 18 flavonoid biosynthesis genes in 6 yellow- and black-seeded B. napus inbred lines with different genetic background, found that 12 of which were preferentially expressed during seed development, whereas the remaining genes were expressed in all B. napus tissues examined. Moreover, 14 of these genes showed significant differences in expression level during seed development, and all but four of these (i.e., BnTT5, BnTT7, BnTT10, and BnTTG1) had similar expression patterns among the yellow- and black-seeded B. napus. Results showed that the structural genes (BnTT3, BnTT18, and BnBAN), regulatory genes (BnTTG2 and BnTT16) and three encoding transfer proteins (BnTT12, BnTT19, and BnAHA10) might play an crucial roles in the formation of different seed coat colors in B. napus. These data will be helpful for illustrating the molecular mechanisms of flavonoid biosynthesis in Brassicaceae species. PMID:27999578
Wang, Wenzhao; Zhou, Yihui; Wu, Yingling; Dai, Xinlong; Liu, Yajun; Qian, Yumei; Li, Mingzhuo; Jiang, Xiaolan; Wang, Yunsheng; Gao, Liping; Xia, Tao
2018-04-25
Tea is an important economic crop with a 3.02 Gb genome. It accumulates various bioactive compounds, especially catechins, which are closely associated with tea flavor and quality. Catechins are biosynthesized through the phenylpropanoid and flavonoid pathways, with 12 structural genes being involved in their synthesis. However, we found that in Camellia sinensis the understanding of the basic profile of catechins biosynthesis is still unclear. The gene structure, locus, transcript number, transcriptional variation, and function of multigene families have not yet been clarified. Our previous studies demonstrated that the accumulation of flavonoids in tea is species, tissue, and induction specific, which indicates that gene coexpression patterns may be involved in tea catechins and flavonoids biosynthesis. In this paper, we screened candidate genes of multigene families involved in the phenylpropanoid and flavonoid pathways based on an analysis of genome and transcriptome sequence data. The authenticity of candidate genes was verified by PCR cloning, and their function was validated by reverse genetic methods. In the present study, 36 genes from 12 gene families were identified and were accessed in the NCBI database. During this process, some intron retention events of the CsCHI and CsDFR genes were found. Furthermore, the transcriptome sequencing of various tea tissues and subcellular location assays revealed coexpression and colocalization patterns. The correlation analysis showed that CsCHIc, CsF3'H, and CsANRb expression levels are associated significantly with the concentration of soluble PA as well as the expression levels of CsPALc and CsPALf with the concentration of insoluble PA. This work provides insights into catechins metabolism in tea and provides a foundation for future studies.
Castellarin, Simone D; Pfeiffer, Antonella; Sivilotti, Paolo; Degan, Mirko; Peterlunger, Enrico; DI Gaspero, Gabriele
2007-11-01
Anthocyanin biosynthesis is strongly up-regulated in ripening fruit of grapevines (Vitis vinifera L.) grown under drought conditions. We investigated the effects of long-term water deficit on the expression of genes coding for flavonoid and anthocyanin biosynthetic enzymes and related transcription factors, genes sensitive to endogenous [sugars, abscisic acid (ABA)] and environmental (light) stimuli connected to drought stress, and genes developmentally regulated in ripening berries. Total anthocyanin content has increased at harvest in water-stressed (WS) fruits by 37-57% in two consecutive years. At least 84% of the total variation in anthocyanin content was explained by the linear relationship between the integral of mRNA accumulation of the specific anthocyanin biosynthetic gene UDP-glucose : flavonoid 3-O-glucosyltransferase (UFGT) and metabolite content during time series from véraison through ripening. Chalcone synthase (CHS2, CHS3) and flavanone 3-hydroxylase (F3H) genes of the flavonoid pathway showed high correlation as well. Genes coding for flavonoid 3',5'-hydroxylase (F3'5'H) and O-methyltransferase (OMT) were also up-regulated in berries from dehydrated plants in which anthocyanin composition enriched in more hydroxylated and more methoxylated derivatives such as malvidin and peonidin, the grape anthocyanins to which human gastric bilitranslocase displays the highest affinity. The induction in WS plants of structural and regulatory genes of the flavonoid pathway and of genes that trigger brassinosteroid hormonal onset of maturation suggested that the interrelationships between developmental and environmental signalling pathways were magnified by water deficit which actively promoted fruit maturation and, in this context, anthocyanin biosynthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tschaplinski, Timothy J; Tsai, Chung-Jui; Harding, Scott A
Salicin-based phenolic glycosides, hydroxycinnamate derivatives and flavonoid-derived condensed tannins comprise up to one-third of Populus leaf dry mass. Genes regulating the abundance and chemical diversity of these substances have not been comprehensively analysed in tree species exhibiting this metabolically demanding level of phenolic metabolism. Here, shikimate-phenylpropanoid pathway genes thought to give rise to these phenolic products were annotated from the Populus genome, their expression assessed by semiquantitative or quantitative reverse transcription polymerase chain reaction (PCR), and metabolic evidence for function presented. Unlike Arabidopsis, Populus leaves accumulate an array of hydroxycinnamoyl-quinate esters, which is consistent with broadened function of the expandedmore » hydroxycinnamoyl-CoA transferase gene family. Greater flavonoid pathway diversity is also represented, and flavonoid gene families are larger. Consistent with expanded pathway function, most of these genes were upregulated during wound-stimulated condensed tannin synthesis in leaves. The suite of Populus genes regulating phenylpropanoid product accumulation should have important application in managing phenolic carbon pools in relation to climate change and global carbon cycling.« less
Cohen, Seth D.; Tarara, Julie M.; Gambetta, Greg A.; Matthews, Mark A.; Kennedy, James A.
2012-01-01
Little is known about the impact of temperature on proanthocyanidin (PA) accumulation in grape skins, despite its significance in berry composition and wine quality. Field-grown grapes (cv. Merlot) were cooled during the day or heated at night by +/–8 °C, from fruit set to véraison in three seasons, to determine the effect of temperature on PA accumulation. Total PA content per berry varied only in one year, when PA content was highest in heated berries (1.46 mg berry−1) and lowest in cooled berries (0.97 mg berry−1). In two years, cooling berries resulted in a significant increase in the proportion of (–)-epigallocatechin as an extension subunit. In the third year, rates of berry development, PA accumulation, and the expression levels of several genes involved in flavonoid biosynthesis were assessed. Heating and cooling berries altered the initial rates of PA accumulation, which was correlated strongly with the expression of core genes in the flavonoid pathway. Both heating and cooling altered the rate of berry growth and coloration, and the expression of several structural genes within the flavonoid pathway. PMID:22268158
Li, Hansheng; Lin, Yuling; Chen, Xiaohui; Bai, Yu; Wang, Congqiao; Xu, Xiaoping; Wang, Yun
2018-01-01
While flavonoid metabolism’s regulation under light conditions by structural genes and transcription factors is understood, the roles of microRNAs (miRNAs) in this pathway have been rarely reported. In this paper, the accurate control of light was firstly enabled through the specially designed plant growth chamber which ensures consistency and accuracy of the cultivation of longan ECs and the repeatability of the experiments. Then, longan ECs were cultured in this chamber for 25 days. The change of growth rate of longan ECs was compared under different light qualities (dark, blue, green, white, green), intensities (16, 32, 64, 128, 256 μmol ·m-2 ·s-1), and durations (8 h, 12 h, 16 h, 20h, 24h). Results indicated that longan ECs had a high growth rate in the condition of blue or green light, at intensity ranged from 16 μmol·m-2·s-1 to 64 μmol·m-2·s-1, and duration from 8 h to 16 h. In addition, the contents of total flavonoids, rutin, and epicatechin were determined. Results indicated that flavonoid contents of longan ECs reached the highest value under blue light, at 32 μmol·m-2·s-1 and 12h/d. Blue light promoted the accumulation of epicatechin, but inhibited the synthesis of rutin. Finally, the expressions of flavonoid pathway genes, miRNAs and target genes were analyzed by qPCR. These results indicated that miR393 and its target gene DlTIR1-3, miR394 and its target gene DlAlMT12, and miR395 and its target gene DlAPS1 had a negative regulating relationship under blue light in longan ECs. Furthermore, miR393, miR394, and miR395 acted on target genes, which negatively regulated flavonoid key genes DlFLS and positively regulated key genes DlCHS, DlCHI, DlF3′H, DlDFR, DlLAR, and finally affected the accumulation of flavonoids. The treatment of longan ECs under the blue light at the intensity of 32 μmol·m-2·s-1 for 12 h/d inhibited the expression of miR393, miR394 and miR395, which promoted the expression of target genes and the accumulation of flavonoids and epicatechin, but inhibited the synthesis of rutin. PMID:29381727
Li, Hansheng; Lin, Yuling; Chen, Xiaohui; Bai, Yu; Wang, Congqiao; Xu, Xiaoping; Wang, Yun; Lai, Zhongxiong
2018-01-01
While flavonoid metabolism's regulation under light conditions by structural genes and transcription factors is understood, the roles of microRNAs (miRNAs) in this pathway have been rarely reported. In this paper, the accurate control of light was firstly enabled through the specially designed plant growth chamber which ensures consistency and accuracy of the cultivation of longan ECs and the repeatability of the experiments. Then, longan ECs were cultured in this chamber for 25 days. The change of growth rate of longan ECs was compared under different light qualities (dark, blue, green, white, green), intensities (16, 32, 64, 128, 256 μmol ·m-2 ·s-1), and durations (8 h, 12 h, 16 h, 20h, 24h). Results indicated that longan ECs had a high growth rate in the condition of blue or green light, at intensity ranged from 16 μmol·m-2·s-1 to 64 μmol·m-2·s-1, and duration from 8 h to 16 h. In addition, the contents of total flavonoids, rutin, and epicatechin were determined. Results indicated that flavonoid contents of longan ECs reached the highest value under blue light, at 32 μmol·m-2·s-1 and 12h/d. Blue light promoted the accumulation of epicatechin, but inhibited the synthesis of rutin. Finally, the expressions of flavonoid pathway genes, miRNAs and target genes were analyzed by qPCR. These results indicated that miR393 and its target gene DlTIR1-3, miR394 and its target gene DlAlMT12, and miR395 and its target gene DlAPS1 had a negative regulating relationship under blue light in longan ECs. Furthermore, miR393, miR394, and miR395 acted on target genes, which negatively regulated flavonoid key genes DlFLS and positively regulated key genes DlCHS, DlCHI, DlF3'H, DlDFR, DlLAR, and finally affected the accumulation of flavonoids. The treatment of longan ECs under the blue light at the intensity of 32 μmol·m-2·s-1 for 12 h/d inhibited the expression of miR393, miR394 and miR395, which promoted the expression of target genes and the accumulation of flavonoids and epicatechin, but inhibited the synthesis of rutin.
The effect of pseudo-microgravity on the symbiosis of plants and microorganisms
NASA Astrophysics Data System (ADS)
Tomita-Yokotani, Kaori; Maki, Asano; Aoki, Toshio; Tamura, Kenji; Wada, Hidenori; Hashimoto, Hirofumi; Yamashita, Masamichi
The symbiosis of plants and microorganisms is important to conduct agriculture under space environment. However, we have less knowledge on whether this kind of symbiosis can be established under space condition. We examined the functional compounds responsible to symbiosis between rhizobiaum and Lotus japonicus as a model of symbiotic combination. The existence of the substances for their symbiosis, some flavonoids, have already been known from the study of gene expression, but the detail structures have not yet been elucidated. Pseudomicrogravity was generated by the 3D-clinorotation. Twenty flavonoids were found in the extracts of 16 days plants of Lotus japonicus grown under the normal gravity by HPLC. Content of two flavonoids among them was affected by the infection of Mesorhizobium loti to them. It has a possibility that the two flavonoids were key substances for their combination process. The productions of those flavonoids were confirmed also under the pseudo-microgravity. The amount of one flavonoid was increased by both infection of rhizobium and exposure to the normal and pseudo-micro gravity. Chemical species of these flavonoids were identified by LC- ESI/MS and spectroscopic analysis. To show the effects of pseudo-microgravity on the gene expression, enzymic activities related to the functional compounds are evaluated after the rhizobial infection.
Ogo, Yuko; Ozawa, Kenjiro; Ishimaru, Tsutomu; Murayama, Tsugiya; Takaiwa, Fumio
2013-08-01
Flavonoids possess diverse health-promoting benefits but are nearly absent from rice, because most of the genes encoding enzymes for flavonoid biosynthesis are not expressed in rice seeds. In the present study, a transgenic rice plant producing several classes of flavonoids in seeds was developed by introducing multiple genes encoding enzymes involved in flavonoid synthesis, from phenylalanine to the target flavonoids, into rice. Rice accumulating naringenin was developed by introducing phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS) genes. Rice producing other classes of flavonoids, kaempferol, genistein, and apigenin, was developed by introducing, together with PAL and CHS, genes encoding flavonol synthase/flavanone-3-hydroxylase, isoflavone synthase, and flavone synthases, respectively. The endosperm-specific GluB-1 promoter or embryo- and aleurone-specific 18-kDa oleosin promoters were used to express these biosynthetic genes in seed. The target flavonoids of naringenin, kaempferol, genistein, and apigenin were highly accumulated in each transgenic rice, respectively. Furthermore, tricin was accumulated by introducing hydroxylase and methyltransferase, demonstrating that modification to flavonoid backbones can be also well manipulated in rice seeds. The flavonoids accumulated as both aglycones and several types of glycosides, and flavonoids in the endosperm were deposited into PB-II-type protein bodies. Therefore, these rice seeds provide an ideal platform for the production of particular flavonoids due to efficient glycosylation, the presence of appropriate organelles for flavonoid accumulation, and the small effect of endogenous enzymes on the production of flavonoids by exogenous enzymes. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Petridis, Antonios; Döll, Stefanie; Nichelmann, Lars; Bilger, Wolfgang; Mock, Hans-Peter
2016-08-01
Flavonoid synthesis is predominantly regulated at the transcriptional level through the MYB-basic helix-loop-helix (bHLH)-WD40 (MBW) (MYB: transcription factor of the myeloblastosis protein family, WD40: tanscription factor with a short structural motif of 40 amino acids which terminates in an aspartic acid-tryptophan dipeptide) complex, and responds to both environmental and developmental stimuli. Although the developmental regulation of flavonoid accumulation in Arabidopsis thaliana has been examined in great detail, the response of the flavonoid synthesis pathway to abiotic stress (particularly low temperature) remains unclear. A screen of a Dissociation element (Ds) transposon-induced mutation collection identified two lines which exhibited an altered profile of phenylpropanoid accumulation following exposure to low-temperature stress. One of the mutated genes (BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1)) encoded a brassinosteroid enhanced expression transcription factor, while the other (G2-LIKE FLAVONOID REGULATOR (GFR)) encoded a G2-like flavonoid regulator. Phenylpropanoid-targeted analysis was performed using high-performance LC-MS, and gene expression analysis using quantitative reverse transcription-PCR. In both mutants, the accumulation of quercetins and scopolin was reduced under low-temperature growing conditions, whereas that of anthocyanin was increased. BEE1 and GFR were both shown to negatively regulate anthocyanin accumulation by inhibiting anthocyanin synthesis genes via the suppression of the bHLH (TRANSPARENT TESTA8 (TT8) and GLABROUS3 (GL3)) and/or the MYB (PRODUCTION OF ANTHOCYANIN PIGMENTS2 (PAP2)) components of the MBW complex. Our results provide new insight into the regulatory control of phenylpropanoid metabolism at low temperatures, and reveal that BEE1 and GFR act as important components of the signal transduction chain. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Azuma, Akifumi; Yakushiji, Hiroshi; Koshita, Yoshiko; Kobayashi, Shozo
2012-10-01
Temperature and light are important environmental factors that affect flavonoid biosynthesis in grape berry skin. However, the interrelationships between temperature and light effects on flavonoid biosynthesis have not been fully elucidated at the molecular level. Here, we investigated the effects of temperature and light conditions on the biosynthesis of flavonoids (anthocyanins and flavonols) and the expression levels of related genes in an in vitro environmental experiment using detached grape berries. Sufficient anthocyanin accumulation in the grape skin was observed under a low temperature (15 °C) plus light treatment, whereas high temperature (35 °C) or dark treatment severely suppressed anthocyanin accumulation. This indicates that the accumulation of anthocyanins is dependent on both low temperature and light. qRT-PCR analysis showed that the responses of three MYB-related genes (VlMYBA1-3, VlMYBA1-2, and VlMYBA2) to temperature and light differed greatly even though the products of all three genes had the ability to regulate anthocyanin biosynthesis pathway genes. Furthermore, the expression levels of other MYB-related genes and many flavonoid biosynthesis pathway genes were regulated independently by temperature and light. We also found that temperature and light conditions affected the anthocyanin composition in the skin through the regulation of flavonoid biosynthesis pathway genes. Our results suggest that low temperature and light have a synergistic effect on the expression of genes in the flavonoid biosynthesis pathway. These findings provide new information about the relationships between environmental factors and flavonoid accumulation in grape berry skin.
Zhu, Jia-Hong; Cao, Tian-Jun; Dai, Hao-Fu; Li, Hui-Liang; Guo, Dong; Mei, Wen-Li; Peng, Shi-Qing
2016-12-06
Dragon's blood is a red resin mainly extracted from Dracaena plants, and has been widely used as a traditional medicine in East and Southeast Asia. The major components of dragon's blood are flavonoids. Owing to a lack of Dracaena plants genomic information, the flavonoids biosynthesis and regulation in Dracaena plants remain unknown. In this study, three cDNA libraries were constructed from the stems of D. cambodiana after injecting the inducer. Approximately 266.57 million raw sequencing reads were de novo assembled into 198,204 unigenes, of which 34,873 unique sequences were annotated in public protein databases. Many candidate genes involved in flavonoid accumulation were identified. Differential expression analysis identified 20 genes involved in flavonoid biosynthesis, 27 unigenes involved in flavonoid modification and 68 genes involved in flavonoid transport that were up-regulated in the stems of D. cambodiana after injecting the inducer, consistent with the accumulation of flavonoids. Furthermore, we have revealed the differential expression of transcripts encoding for transcription factors (MYB, bHLH and WD40) involved in flavonoid metabolism. These de novo transcriptome data sets provide insights on pathways and molecular regulation of flavonoid biosynthesis and transport, and improve our understanding of molecular mechanisms of dragon's blood formation in D. cambodiana.
Zhu, Jia-Hong; Cao, Tian-Jun; Dai, Hao-Fu; Li, Hui-Liang; Guo, Dong; Mei, Wen-Li; Peng, Shi-Qing
2016-01-01
Dragon’s blood is a red resin mainly extracted from Dracaena plants, and has been widely used as a traditional medicine in East and Southeast Asia. The major components of dragon’s blood are flavonoids. Owing to a lack of Dracaena plants genomic information, the flavonoids biosynthesis and regulation in Dracaena plants remain unknown. In this study, three cDNA libraries were constructed from the stems of D. cambodiana after injecting the inducer. Approximately 266.57 million raw sequencing reads were de novo assembled into 198,204 unigenes, of which 34,873 unique sequences were annotated in public protein databases. Many candidate genes involved in flavonoid accumulation were identified. Differential expression analysis identified 20 genes involved in flavonoid biosynthesis, 27 unigenes involved in flavonoid modification and 68 genes involved in flavonoid transport that were up-regulated in the stems of D. cambodiana after injecting the inducer, consistent with the accumulation of flavonoids. Furthermore, we have revealed the differential expression of transcripts encoding for transcription factors (MYB, bHLH and WD40) involved in flavonoid metabolism. These de novo transcriptome data sets provide insights on pathways and molecular regulation of flavonoid biosynthesis and transport, and improve our understanding of molecular mechanisms of dragon’s blood formation in D. cambodiana. PMID:27922066
Lam, In Kei; Alex, Deepa; Wang, You-Hua; Liu, Ping; Liu, Ai-Lin; Du, Guan-Hua; Lee, Simon Ming Yuen
2012-06-01
Polymethoxylated flavonoids are present in citrus fruit in a range of chemical structures and abundance. These compounds have potential for anticarcinogenesis, antitumor, and cardiovascular protective activity, but the effect on angiogenesis has not been well studied. Human umbilical vein endothelial cells (HUVECs) in vitro and zebrafish (Danio rerio) in vivo models were used to screen and identify the antiangiogenesis activity of seven polymethoxylated flavonoids; namely, hesperetin, naringin, neohesperidin, nobiletin, scutellarein, scutellarein tetramethylether, and sinensetin. Five, excluding naringin and neohesperidin, showed different degrees of potency of antiangiogenesis activity. Sinensetin, which had the most potent antiangiogenesis activity and the lowest toxicity, inhibited angiogenesis by inducing cell cycle arrest in the G0/G1 phase in HUVEC culture and downregulating the mRNA expressions of angiogenesis genes flt1, kdrl, and hras in zebrafish. The in vivo structure-activity relationship (SAR) analysis indicated that a flavonoid with a methoxylated group at the C3' position offers a stronger antiangiogenesis activity, whereas the absence of a methoxylated group at the C8 position offers lower lethal toxicity in addition to enhancing the antiangiogenesis activity. This study provides new insight into how modification of the chemical structure of polymethoxylated flavonoids affects this newly identified antiangiogenesis activity. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flavonoid Accumulation Plays an Important Role in the Rust Resistance of Malus Plant Leaves.
Lu, Yanfen; Chen, Qi; Bu, Yufen; Luo, Rui; Hao, Suxiao; Zhang, Jie; Tian, Ji; Yao, Yuncong
2017-01-01
Cedar-apple rust ( Gymnosporangium yamadai Miyabe) is a fungal disease that causes substantial injury to apple trees and results in fruit with reduced size and quality and a lower commercial value. The molecular mechanisms underlying the primary and secondary metabolic effects of rust spots on the leaves of Malus apple cultivars are poorly understood. Using HPLC, we found that the contents of flavonoid compounds, especially anthocyanin and catechin, were significantly increased in rust-infected symptomatic tissue (RIT). The expression levels of structural genes and MYB transcription factors related to flavonoid biosynthesis were one- to seven-fold higher in the RIT. Among these genes, CHS, DFR, ANS, FLS and MYB10 showed more than a 10-fold increase, suggesting that these genes were expressed at significantly higher levels in the RIT. Hormone concentration assays showed that the levels of abscisic acid (ABA), ethylene (ETH), jasmonate (JA) and salicylic acid (SA) were higher in the RIT and were consistent with the expression levels of McNCED, McACS, McLOX and McNPR1 , respectively. Our study explored the complicated crosstalk of the signal transduction pathways of ABA, ETH, JA and SA; the primary metabolism of glucose, sucrose, fructose and sorbitol; and the secondary metabolism of flavonoids involved in the rust resistance of Malus crabapple leaves.
Li, Yukuo; Fang, Jinbao; Qi, Xiujuan; Lin, Miaomiao; Zhong, Yunpeng; Sun, Leiming; Cui, Wen
2018-05-15
To assess the interrelation between the change of metabolites and the change of fruit color, we performed a combined metabolome and transcriptome analysis of the flesh in two different Actinidia arguta cultivars: "HB" ("Hongbaoshixing") and "YF" ("Yongfengyihao") at two different fruit developmental stages: 70d (days after full bloom) and 100d (days after full bloom). Metabolite and transcript profiling was obtained by ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometer and high-throughput RNA sequencing, respectively. The identification and quantification results of metabolites showed that a total of 28,837 metabolites had been obtained, of which 13,715 were annotated. In comparison of HB100 vs. HB70, 41 metabolites were identified as being flavonoids, 7 of which, with significant difference, were identified as bracteatin, luteolin, dihydromyricetin, cyanidin, pelargonidin, delphinidin and (-)-epigallocatechin. Association analysis between metabolome and transcriptome revealed that there were two metabolic pathways presenting significant differences during fruit development, one of which was flavonoid biosynthesis, in which 14 structural genes were selected to conduct expression analysis, as well as 5 transcription factor genes obtained by transcriptome analysis. RT-qPCR results and cluster analysis revealed that AaF3H , AaLDOX , AaUFGT , AaMYB , AabHLH , and AaHB2 showed the best possibility of being candidate genes. A regulatory network of flavonoid biosynthesis was established to illustrate differentially expressed candidate genes involved in accumulation of metabolites with significant differences, inducing red coloring during fruit development. Such a regulatory network linking genes and flavonoids revealed a system involved in the pigmentation of all-red-fleshed and all-green-fleshed A. arguta , suggesting this conjunct analysis approach is not only useful in understanding the relationship between genotype and phenotype, but is also a powerful tool for providing more valuable information for breeding.
Cavallini, Erika; Zenoni, Sara; Finezzo, Laura; Guzzo, Flavia; Zamboni, Anita; Avesani, Linda; Tornielli, Giovanni Battista
2014-03-01
Flavonoids play a key role in grapevine physiology and also contribute substantially to the quality of berries and wines. VvMYB5a and VvMYB5b are R2R3-MYB transcription factors previously proposed to control the spatiotemporal expression of flavonoid structural genes during berry development. We investigated the functions of these two proteins in detail by heterologous expression in a petunia an2 mutant, which has negligible anthocyanin levels in the petals because it lacks the MYB protein PhAN2. We also expressed VvMYBA1, the grapevine ortholog of petunia PhAN2, in the same genetic background. The anthocyanin profiles induced by expressing these transgenes in the petals revealed that VvMYBA1 is the functional ortholog of PhAN2 and that, unlike VvMYB5a, VvMYB5b can partially complement the an2 mutation. Transcriptomic analysis of petals by microarray hybridization and quantitative PCR confirmed that VvMYB5b up-regulates a subset of anthocyanin structural genes, whereas VvMYB5a has a more limited impact on the expression of genes related to anthocyanin biosynthesis. Furthermore, we identified additional specific and common targets of these two regulators, related to vacuolar acidification and membrane remodeling. Taken together, these data provide insight into the role of VvMYB5a and VvMYB5b in flavonoid biosynthesis and provide evidence for additional regulatory roles in distinct pathways.
Yan, Junhui; Wang, Biao; Zhong, Yunpeng; Yao, Luming; Cheng, Linjing; Wu, Tianlong
2015-09-01
Soybean flavonoids, a group of important signaling molecules in plant-environment interaction, ubiquitously exist in soybean and are tightly regulated by many genes. Here we reported that GmMYB100, a gene encoding a R2R3 MYB transcription factor, is involved in soybean flavonoid biosynthesis. GmMYB100 is mainly expressed in flowers, leaves and immature embryo, and its level is decreased after pod ripening. Subcellular localization assay indicates that GmMYB100 is a nuclear protein. GmMYB100 has transactivation ability revealed by a yeast functional assay; whereas bioinformatic analysis suggests that GmMYB100 has a negative function in flavonoid biosynthesis. GmMYB100-overexpression represses the transcript levels of flavonoid-related genes in transgenic soybean hairy roots and Arabidopsis, and inhibits isoflavonoid (soybean) and flavonol (Arabidopsis) production in transgenic plants. Furthermore, the transcript levels of six flavonoid-related genes and flavonoid (isoflavonoid and flavone aglycones) accumulation are elevated in the GmMYB100-RNAi transgenic hairy roots. We also demonstrate that GmMYB100 protein depresses the promoter activities of soybean chalcone synthase and chalcone isomerase. These findings indicate that GmMYB100 is a negative regulator in soybean flavonoid biosynthesis pathway.
Vrancken, K; Holtappels, M; Schoofs, H; Deckers, T; Treutter, D; Valcke, R
2013-11-01
Flavonoids, which are synthesized by the phenylpropanoid-flavonoid pathway, not only contribute to fruit colour and photoprotection, they also may provide antimicrobial and structural components during interaction with micro-organisms. A possible response of this pathway was assessed in both mature and immature leaves of shoots of 2-year-old pear trees cv. Conférence, which were inoculated with the gram-negative bacterium Erwinia amylovora strain SGB 225/12, were mock-inoculated or were left untreated. The phenylpropanoid-flavonoid pathway was analysed by histological studies, by gene expression using RT-qPCR and by HPLC analyses of the metabolites at different time intervals after infection. Transcription patterns of two key genes anthocyanidin reductase (ANR) and chalcone synthase (CHS) related to the phenylpropanoid-flavonoid pathway showed differences between control, mock-inoculated and E. amylovora-inoculated mature leaves, with the strongest reaction 48 h after inoculation. The impact of E. amylovora was also visualised in histological sections, and confirmed by HPLC, as epicatechin -which is produced via ANR- augmented 72 h after inoculation in infected leaf tissue. Besides the effect of treatments, ontogenesis-related differences were found as well. The increase of certain key genes, the rise in epicatechin and the visualisation in several histological sections in this study suggest a non-negligible impact on the phenylpropanoid-flavonoid pathway in Pyrus communis due to inoculation with E. amylovora. In this study, we propose a potential role of this pathway in defence mechanisms, providing a detailed analysis of the response of this system attributable to inoculation with E. amylovora. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Wang, Nan; Zheng, Yi; Duan, Naibin; Zhang, Zongying; Ji, Xiaohao; Jiang, Shenghui; Sun, Shasha; Yang, Long; Bai, Yang; Fei, Zhangjun; Chen, Xuesen
2015-01-01
Transcriptome profiles of the red- and white-fleshed apples in an F1 segregating population of Malus sieversii f.Niedzwetzkyana and M.domestica ‘Fuji’ were generated using the next-generation high-throughput RNA sequencing (RNA-Seq) technology and compared. A total of 114 differentially expressed genes (DEGs) were obtained, of which 88 were up-regulated and 26 were down-regulated in red-fleshed apples. The 88 up-regulated genes were enriched with those related to flavonoid biosynthetic process and stress responses. Further analysis identified 22 genes associated with flavonoid biosynthetic process and 68 genes that may be related to stress responses. Furthermore, the expression of 20 up-regulated candidate genes (10 related to flavonoid biosynthesis, two encoding MYB transcription factors and eight related to stress responses) and 10 down-regulated genes were validated by quantitative real-time PCR. After exploring the possible regulatory network, we speculated that flavonoid metabolism might be involved in stress responses in red-fleshed apple. Our findings provide a theoretical basis for further enriching gene resources associated with flavonoid synthesis and stress responses of fruit trees and for breeding elite apples with high flavonoid content and/or increased stress tolerances. PMID:26207813
Wang, Nan; Zheng, Yi; Duan, Naibin; Zhang, Zongying; Ji, Xiaohao; Jiang, Shenghui; Sun, Shasha; Yang, Long; Bai, Yang; Fei, Zhangjun; Chen, Xuesen
2015-01-01
Transcriptome profiles of the red- and white-fleshed apples in an F1 segregating population of Malus sieversii f.Niedzwetzkyana and M.domestica 'Fuji' were generated using the next-generation high-throughput RNA sequencing (RNA-Seq) technology and compared. A total of 114 differentially expressed genes (DEGs) were obtained, of which 88 were up-regulated and 26 were down-regulated in red-fleshed apples. The 88 up-regulated genes were enriched with those related to flavonoid biosynthetic process and stress responses. Further analysis identified 22 genes associated with flavonoid biosynthetic process and 68 genes that may be related to stress responses. Furthermore, the expression of 20 up-regulated candidate genes (10 related to flavonoid biosynthesis, two encoding MYB transcription factors and eight related to stress responses) and 10 down-regulated genes were validated by quantitative real-time PCR. After exploring the possible regulatory network, we speculated that flavonoid metabolism might be involved in stress responses in red-fleshed apple. Our findings provide a theoretical basis for further enriching gene resources associated with flavonoid synthesis and stress responses of fruit trees and for breeding elite apples with high flavonoid content and/or increased stress tolerances.
Ogo, Yuko; Mori, Tetsuya; Nakabayashi, Ryo; Saito, Kazuki; Takaiwa, Fumio
2016-01-01
Plant-specialized (or secondary) metabolites represent an important source of high-value chemicals. In order to generate a new production platform for these metabolites, an attempt was made to produce flavonoids in rice seeds. Metabolome analysis of these transgenic rice seeds using liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometry was performed. A total of 4392 peaks were detected in both transgenic and non-transgenic rice, 20–40% of which were only detected in transgenic rice. Among these, 82 flavonoids, including 37 flavonols, 11 isoflavones, and 34 flavones, were chemically assigned. Most of the flavonols and isoflavones were O-glycosylated, while many flavones were O-glycosylated and/or C-glycosylated. Several flavonoids were acylated with malonyl, feruloyl, acetyl, and coumaroyl groups. These glycosylated/acylated flavonoids are thought to have been biosynthesized by endogenous rice enzymes using newly synthesized flavonoids whose biosynthesis was catalysed by exogenous enzymes. The subcellular localization of the flavonoids differed depending on the class of aglycone and the glycosylation/acylation pattern. Therefore, flavonoids with the intended aglycones were efficiently produced in rice seeds via the exogenous enzymes introduced, while the flavonoids were variously glycosylated/acylated by endogenous enzymes. The results suggest that rice seeds are useful not only as a production platform for plant-specialized metabolites such as flavonoids but also as a tool for expanding the diversity of flavonoid structures, providing novel, physiologically active substances. PMID:26438413
Castellarin, Simone D; Di Gaspero, Gabriele; Marconi, Raffaella; Nonis, Alberto; Peterlunger, Enrico; Paillard, Sophie; Adam-Blondon, Anne-Francoise; Testolin, Raffaele
2006-01-01
Background Structural genes of the phenyl-propanoid pathway which encode flavonoid 3'- and 3',5'-hydroxylases (F3'H and F3'5'H) have long been invoked to explain the biosynthesis of cyanidin- and delphinidin-based anthocyanin pigments in the so-called red cultivars of grapevine. The relative proportion of the two types of anthocyanins is largely under genetic control and determines the colour variation among red/purple/blue berry grape varieties and their corresponding wines. Results Gene fragments of VvF3'H and VvF3'5'H, that were isolated from Vitis vinifera 'Cabernet Sauvignon' using degenerate primers designed on plant homologous genes, translated into 313 and 239 amino acid protein fragments, respectively, with up to 76% and 82% identity to plant CYP75 cytochrome P450 monooxygenases. Putative function was assigned on the basis of sequence homology, expression profiling and its correlation with metabolite accumulation at ten different ripening stages. At the onset of colour transition, transcriptional induction of VvF3'H and VvF3'5'H was temporally coordinated with the beginning of anthocyanin biosynthesis, the expression being 2-fold and 50-fold higher, respectively, in red berries versus green berries. The peak of VvF3'5'H expression was observed two weeks later concomitantly with the increase of the ratio of delphinidin-/cyanidin-derivatives. The analysis of structural genomics revealed that two copies of VvF3'H are physically linked on linkage group no. 17 and several copies of VvF3'5'H are tightly clustered and embedded into a segmental duplication on linkage group no. 6, unveiling a high complexity when compared to other plant flavonoid hydroxylase genes known so far, mostly in ornamentals. Conclusion We have shown that genes encoding flavonoid 3'- and 3',5'-hydroxylases are expressed in any tissues of the grape plant that accumulate flavonoids and, particularly, in skin of ripening red berries that synthesise mostly anthocyanins. The correlation between transcript profiles and the kinetics of accumulation of red/cyanidin- and blue/delphinidin-based anthocyanins indicated that VvF3'H and VvF3'5'H expression is consistent with the chromatic evolution of ripening bunches. Local physical maps constructed around the VvF3'H and VvF3'5'H loci should help facilitate the identification of the regulatory elements of each isoform and the future manipulation of grapevine and wine colour through agronomical, environmental and biotechnological tools. PMID:16433923
TRANSPARENT TESTA GLABRA 1-Dependent Regulation of Flavonoid Biosynthesis
Zhang, Bipei
2017-01-01
The flavonoid composition of various tissues throughout plant development is of biological relevance and particular interest for breeding. Arabidopsis thaliana TRANSPARENT TESTA GLABRA 1 (AtTTG1) is an essential regulator of late structural genes in flavonoid biosynthesis. Here, we provide a review of the regulation of the pathway’s core enzymes through AtTTG1-containing R2R3-MYELOBLASTOSIS-basic HELIX-LOOP-HELIX-WD40 repeat (MBW(AtTTG1)) complexes embedded in an evolutionary context. We present a comprehensive collection of A. thaliana ttg1 mutants and AtTTG1 orthologs. A plethora of MBW(AtTTG1) mechanisms in regulating the five major TTG1-dependent traits is highlighted. PMID:29261137
Yu, Xiaofeng; Zhu, Yiling; Fan, Jingyi; Wang, Dujun; Gong, Xiaohui; Ouyang, Zhen
2017-08-01
In order to determine the molecular mechanism underlying the influence of frost on chemical changes in mulberry leaves, the UFGT activity, expression level, and accumulation of flavonoid glycosides in mulberry leaves (Morus alba L.) were studied. The expression of UFGT gene was investigated by quantitative real-time PCR (qRT-PCR) and the UFGT activity, accumulation of flavonoid glycosides was studied by high performance liquid chromatography. Then, the correlation between the expression level of UFGT, the UFGT activity, and the flavonoid glycosides accumulation with temperature was explored. The accumulation of isoquercitrin and astragalin is significantly positively correlated with UFGT gene expression and UFGT activity. On the contrary, the average temperature was significantly negatively correlated with the level of UFGT gene expression and UFGT activity. The results show that after frost, low temperature can induce the expression of UFGT gene in mulberry leaves, resulting in the accumulation of flavonoid glycosides. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H.; Trivedi, Prabodh K.
2016-01-01
Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana. PMID:27539368
Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H; Trivedi, Prabodh K
2016-08-19
Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana.
Ogo, Yuko; Mori, Tetsuya; Nakabayashi, Ryo; Saito, Kazuki; Takaiwa, Fumio
2016-01-01
Plant-specialized (or secondary) metabolites represent an important source of high-value chemicals. In order to generate a new production platform for these metabolites, an attempt was made to produce flavonoids in rice seeds. Metabolome analysis of these transgenic rice seeds using liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometry was performed. A total of 4392 peaks were detected in both transgenic and non-transgenic rice, 20-40% of which were only detected in transgenic rice. Among these, 82 flavonoids, including 37 flavonols, 11 isoflavones, and 34 flavones, were chemically assigned. Most of the flavonols and isoflavones were O-glycosylated, while many flavones were O-glycosylated and/or C-glycosylated. Several flavonoids were acylated with malonyl, feruloyl, acetyl, and coumaroyl groups. These glycosylated/acylated flavonoids are thought to have been biosynthesized by endogenous rice enzymes using newly synthesized flavonoids whose biosynthesis was catalysed by exogenous enzymes. The subcellular localization of the flavonoids differed depending on the class of aglycone and the glycosylation/acylation pattern. Therefore, flavonoids with the intended aglycones were efficiently produced in rice seeds via the exogenous enzymes introduced, while the flavonoids were variously glycosylated/acylated by endogenous enzymes. The results suggest that rice seeds are useful not only as a production platform for plant-specialized metabolites such as flavonoids but also as a tool for expanding the diversity of flavonoid structures, providing novel, physiologically active substances. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype.
Hong, Lilan; Qian, Qian; Tang, Ding; Wang, Kejian; Li, Ming; Cheng, Zhukuan
2012-07-01
The biosynthesis of flavonoids, important secondary plant metabolites, has been investigated extensively, but few mutants of genes in this pathway have been identified in rice (Oryza sativa). The rice gold hull and internode (gh) mutants exhibit a reddish-brown pigmentation in the hull and internode and their phenotype has long been used as a morphological marker trait for breeding and genetic study. Here, we characterized that the gh1 mutant was a mutant of the rice chalcone isomerase gene (OsCHI). The result showed that gh1 had a Dasheng retrotransposon inserted in the 5′ UTR of the OsCHI gene, which resulted in the complete loss of OsCHI expression. gh1 exhibited golden pigmentation in hulls and internodes once the panicles were exposed to light. The total flavonoid content in gh1 hulls was increased threefold compared to wild type. Consistent with the gh1 phenotype, OsCHI transcripts were expressed in most tissues of rice and most abundantly in internodes. It was also expressed at high levels in panicles before heading, distributed mainly in lemmas and paleae, but its expression decreased substantially after the panicles emerged from the sheath. OsCHI encodes a protein functionally and structurally conserved to chalcone isomerases in other species. Our findings demonstrated that the OsCHI gene was indispensable for flux of the flavonoid pathway in rice.
2010-01-01
Background Understanding the regulation of the flavonoid pathway is important for maximising the nutritional value of crop plants and possibly enhancing their resistance towards pathogens. The flavonoid 3'5'-hydroxylase (F3'5'H) enzyme functions at an important branch point between flavonol and anthocyanin synthesis, as is evident from studies in petunia (Petunia hybrida), and potato (Solanum tuberosum). The present work involves the identification and characterisation of a F3'5'H gene from tomato (Solanum lycopersicum), and the examination of its putative role in flavonoid metabolism. Results The cloned and sequenced tomato F3'5'H gene was named CYP75A31. The gene was inserted into the pYeDP60 expression vector and the corresponding protein produced in yeast for functional characterisation. Several putative substrates for F3'5'H were tested in vitro using enzyme assays on microsome preparations. The results showed that two hydroxylation steps occurred. Expression of the CYP75A31 gene was also tested in vivo, in various parts of the vegetative tomato plant, along with other key genes of the flavonoid pathway using real-time PCR. A clear response to nitrogen depletion was shown for CYP75A31 and all other genes tested. The content of rutin and kaempferol-3-rutinoside was found to increase as a response to nitrogen depletion in most parts of the plant, however the growth conditions used in this study did not lead to accumulation of anthocyanins. Conclusions CYP75A31 (NCBI accession number GQ904194), encodes a flavonoid 3'5'-hydroxylase, which accepts flavones, flavanones, dihydroflavonols and flavonols as substrates. The expression of the CYP75A31 gene was found to increase in response to nitrogen deprivation, in accordance with other genes in the phenylpropanoid pathway, as expected for a gene involved in flavonoid metabolism. PMID:20128892
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, C.A.; Phillips, D.A.
Flavonoid signals from alfalfa (Medicago sativa L.) induce transcription of nodulation (nod) genes in Rhizobium meliloti. Alfalfa roots release three major nod-gene inducers: 4{prime},7-dihydroxyflavanone, 4{prime},7-dihydroxyflavone, and 4,4{prime}-dihydroxy-2{prime}-methoxychalcone. The objective of the present study was to define temporal relationships between synthesis and exudation for those flavonoids. Requirements for concurrent flavonoid biosynthesis were assessed by treating roots of intact alfalfa seedlings with (U-{sup 14}C)-L-phenylalanine in the presence or absence of the phenylalanine ammonia-lyase inhibitor L-2-aminoxy-3-phenylpropionic acid (AOPP). In the absence of AOPP, each of the three flavonoids in exudates contained {sup 14}C. In the presence of AOPP, {sup 14}C labeling and releasemore » of all the exuded nod-gene inducers were reduced significantly. AOPP inhibited labeling and release of the strongest nod-gene inducer, methoxychalcone, by more than 90%. The release process responsible for exudation of nod-gene inducers appears to be specific rather than a general phenomenon such as a sloughing off of cells during root growth.« less
Wang, Huimin; Yang, Yan; Lin, Lin; Zhou, Wenlong; Liu, Minzhi; Cheng, Kedi; Wang, Wei
2016-08-04
Glycosylation of flavonoids is a promising approach to improve the pharmacokinetic properties and biological activities of flavonoids. Recently, many efforts such as enzymatic biocatalysis and the engineered Escherichia coli biotransformation have increased the production of flavonoid glucosides. However, the low yield of flavonoid glucosides can not meet the increasing demand for human medical and dietary needs. Saccharomyces cerevisiae is a generally regarded as safe (GRAS) organism that has several attractive characteristics as a metabolic engineering platform for the production of flavonoid glucosides. However, endogenous glucosidases of S. cerevisiae as a whole-cell biocatalyst reversibly hydrolyse the glucosidic bond and hinder the biosynthesis of the desired products. In this study, a model flavonoid, scutellarein, was used to exploit how to enhance the production of flavonoid glucosides in the engineered S. cerevisiae. To produce flavonoid glucosides, three flavonoid glucosyltransferases (SbGTs) from Scutellaria baicalensis Georgi were successfully expressed in E. coli, and their biochemical characterizations were identified. In addition, to synthesize the flavonoid glucosides in whole-cell S. cerevisiae, SbGT34 was selected for constructing the engineering yeast. Three glucosidase genes (EXG1, SPR1, YIR007W) were knocked out using homologous integration, and the EXG1 gene was determined to be the decisive gene of S. cerevisiae in the process of hydrolysing flavonoid glucosides. To further enhance the potential glycosylation activity of S. cerevisiae, two genes encoding phosphoglucomutase and UTP-glucose-1-phosphate uridylyltransferase involved in the synthetic system of uridine diphosphate glucose were over-expressed in S. cerevisiae. Consequently, approximately 4.8 g (1.2 g/L) of scutellarein 7-O-glucoside (S7G) was produced in 4 L of medium after 54 h of incubation in a 10-L fermenter while being supplied with ~3.5 g of scutellarein. The engineered yeast harbouring SbGT with a deletion of glucosidases produced more flavonoid glucosides than strains without a deletion of glucosidases. This platform without glucosidase activity could be used to modify a wide range of valued plant secondary metabolites and to explore of their biological functions using whole-cell S. cerevisiae as a biocatalyst.
Zhang, Kai; Lu, Kun; Qu, Cunmin; Liang, Ying; Wang, Rui; Chai, Yourong; Li, Jiana
2013-01-01
Yellow-seed (i.e., yellow seed coat) is one of the most important agronomic traits of Brassica plants, which is correlated with seed oil and meal qualities. Previous studies on the Brassicaceae, including Arabidopsis and Brassica species, proposed that the seed-color trait is correlative to flavonoid and lignin biosynthesis, at the molecular level. In Arabidopsis thaliana, the oxidative polymerization of flavonoid and biosynthesis of lignin has been demonstrated to be catalyzed by laccase 15, a functional enzyme encoded by the AtTT10 gene. In this study, eight Brassica TT10 genes (three from B. napus, three from B. rapa and two from B. oleracea) were isolated and their roles in flavonoid oxidation/polymerization and lignin biosynthesis were investigated. Based on our phylogenetic analysis, these genes could be divided into two groups with obvious structural and functional differentiation. Expression studies showed that Brassica TT10 genes are active in developing seeds, but with differential expression patterns in yellow- and black-seeded near-isogenic lines. For functional analyses, three black-seeded B. napus cultivars were chosen for transgenic studies. Transgenic B. napus plants expressing antisense TT10 constructs exhibited retarded pigmentation in the seed coat. Chemical composition analysis revealed increased levels of soluble proanthocyanidins, and decreased extractable lignin in the seed coats of these transgenic plants compared with that of the controls. These findings indicate a role for the Brassica TT10 genes in proanthocyanidin polymerization and lignin biosynthesis, as well as seed coat pigmentation in B. napus. PMID:23613820
Jaakola, Laura; Määttä, Kaisu; Pirttilä, Anna Maria; Törrönen, Riitta; Kärenlampi, Sirpa; Hohtola, Anja
2002-01-01
The production of anthocyanins in fruit tissues is highly controlled at the developmental level. We have studied the expression of flavonoid biosynthesis genes during the development of bilberry (Vaccinium myrtillus) fruit in relation to the accumulation of anthocyanins, proanthocyanidins, and flavonols in wild berries and in color mutants of bilberry. The cDNA fragments of five genes from the flavonoid pathway, phenylalanine ammonia-lyase, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase, were isolated from bilberry using the polymerase chain reaction technique, sequenced, and labeled with a digoxigenin-dUTP label. These homologous probes were used for determining the expression of the flavonoid pathway genes in bilberries. The contents of anthocyanins, proanthocyanidins, and flavonols in ripening bilberries were analyzed with high-performance liquid chromatography-diode array detector and were identified using a mass spectrometry interface. Our results demonstrate a correlation between anthocyanin accumulation and expression of the flavonoid pathway genes during the ripening of berries. At the early stages of berry development, procyanidins and quercetin were the major flavonoids, but the levels decreased dramatically during the progress of ripening. During the later stages of ripening, the content of anthocyanins increased strongly and they were the major flavonoids in the ripe berry. The expression of flavonoid pathway genes in the color mutants of bilberry was reduced. A connection between flavonol and anthocyanin synthesis in bilberry was detected in this study and also in previous data collected from flavonol and anthocyanin analyses from other fruits. In accordance with this, models for the connection between flavonol and anthocyanin syntheses in fruit tissues are presented. PMID:12376640
Wang, Yu; Dou, Ying; Wang, Rui; Guan, Xuelian; Hu, Zenghui; Zheng, Jian
2017-11-30
The flower color of Syringa oblata Lindl., which is often modulated by the flavonoid content, varies and is an important ornamental feature. Chalcone synthase (CHS) catalyzes the first key step in the flavonoid biosynthetic pathway. However, little is known about the role of S. oblata CHS (SoCHS) in flavonoid biosynthesis in this species. Here, we isolate and analyze the cDNA (SoCHS1) that encodes CHS in S. oblata. We also sought to analyzed the molecular characteristics and function of flavonoid metabolism by SoCHS1. We successfully isolated the CHS-encoding genomic DNA (gDNA) in S. oblata (SoCHS1), and the gene structural analysis indicated it had no intron. The opening reading frame (ORF) sequence of SoCHS1 was 1170bp long and encoded a 389-amino acid polypeptide. Multiple sequence alignment revealed that both the conserved CHS active site residues and CHS signature sequence were in the deduced amino acid sequence of SoCHS1. Crystallographic analysis revealed that the protein structure of SoCHS1 is highly similar to that of FnCHS1 in Freesia hybrida. The quantitative real-time polymerase chain reaction (PCR) performed to detect the SoCHS1 transcript expression levels in flowers, and other tissues revealed the expression was significantly correlated with anthocyanin accumulation during flower development. The ectopic expression results of Nicotiana tabacum showed that SoCHS1 overexpression in transgenic tobacco changed the flower color from pale pink to pink. In conclusion, these results suggest that SoCHS1 plays an essential role in flavonoid biosynthesis in S. oblata, and could be used to modify flavonoid components in other plant species. Copyright © 2017. Published by Elsevier B.V.
Yang, Jingwen; Lu, Bingguo; Jiang, Yaping; Chen, Haiyang; Hong, Yuwei; Wu, Binghua; Miao, Ying
2017-01-01
Chinese narcissus (Narcissus tazetta var. chinensis) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus “Jinzhanyintai” to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3ʹ5ʹH gene; the decreased expression of C4H, CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS, MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1/CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation of chlorophyll formation. Further, content change trends of various color metabolites detected by HPLC in tepals are consistent with the additive gene expression patterns in each pathway. Therefore, all three pathways exhibit negative control of color pigments synthesis in tepals, finally resulting in the formation of white tepals. Interestingly, the content of chlorophyll was more than 10-fold higher than flavonoids and carotenoids metabolites, which indicates that chlorophyll metabolic pathway may play the major role in deciding tepal color formation of Chinese narcissus. PMID:28885552
Ren, Yujun; Yang, Jingwen; Lu, Bingguo; Jiang, Yaping; Chen, Haiyang; Hong, Yuwei; Wu, Binghua; Miao, Ying
2017-09-08
Chinese narcissus ( Narcissus tazetta var. chinensis ) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus "Jinzhanyintai" to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3'5'H gene; the decreased expression of C4H , CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS , MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1 / CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation of chlorophyll formation. Further, content change trends of various color metabolites detected by HPLC in tepals are consistent with the additive gene expression patterns in each pathway. Therefore, all three pathways exhibit negative control of color pigments synthesis in tepals, finally resulting in the formation of white tepals. Interestingly, the content of chlorophyll was more than 10-fold higher than flavonoids and carotenoids metabolites, which indicates that chlorophyll metabolic pathway may play the major role in deciding tepal color formation of Chinese narcissus.
Xu, Yanqun; Charles, Marie Thérèse; Luo, Zisheng; Mimee, Benjamin; Veronneau, Pierre-Yves; Rolland, Daniel; Roussel, Dominique
2017-11-22
Preharvest ultraviolet C (UV-C) irradiation is an innovative approach for increasing the bioactive phytochemical content of strawberries to increase the disease resistance and nutritional value. This study investigated the changes in individual flavonoids in strawberry developed with three different cumulative doses of preharvest UV-C treatment (low, 9.6 kJ m -2 ; middle, 15 kJ m -2 ; and high , 29.4 kJ m -2 ). Significant accumulation (p < 0.05) of phenolics (25-75% increase), namely, cyanidin 3-glucoside, pelargonidin 3-glucoside/rutinoside, glucoside and glucuronide of quercetin and kaempferol, and ellagic acid, was found in the fruit subjected to low and middle supplemental doses of UV-C radiation. The expression of the flavonoid pathway structural genes, i.e., FaCHS1, FaCHI, FaFHT, FaDFR, FaFLS, and FaFGT, was upregulated in the low- and middle-dose groups, while the early stage genes were not affected by the high dose. FaMYB1 was also relatively enhanced in the low- and middle-dose groups, while FaASR was upregulated in only the low-dose group. Hormetic preharvest UV-C dose ranges for enhancing the polyphenol content of strawberries were established for the first time.
Anti-oxidative assays as markers for anti-inflammatory activity of flavonoids.
Chanput, Wasaporn; Krueyos, Narumol; Ritthiruangdej, Pitiporn
2016-11-01
The complexity of in vitro anti-inflammatory assays, the cost and time consumed, and the necessary skills can be a hurdle to apply to promising compounds in a high throughput setting. In this study, several antioxidative assays i.e. DPPH, ABTS, ORAC and xanthine oxidase (XO) were used to examine the antioxidative activity of three sub groups of flavonoids: (i) flavonol: quercetin, myricetin, (ii) flavanone: eriodictyol, naringenin (iii) flavone: luteolin, apigenin. A range of flavonoid concentrations was tested for their antioxidative activities and were found to be dose-dependent. However, the flavonoid concentrations over 50ppm were found to be toxic to the THP-1 monocytes. Therefore, 10, 20 and 50ppm of flavonoid concentrations were tested for their anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated THP-1 monocytes. Expression of inflammatory genes, IL-1β, IL-6, IL-8, IL-10 and TNF-α was found to be sequentially decreased when flavonoid concentration increased. Principle component analysis (PCA) was used to investigate the relationship between the data sets of antioxidative assays and the expression of inflammatory genes. The results showed that DPPH, ABTS and ORAC assays have an opposite correlation with the reduction of inflammatory genes. Pearson correlation exhibited a relationship between the ABTS assay and the expression of three out of five analyzed genes; IL-1β, IL-6 and IL-8. Our findings indicate that ABTS assay can potentially be an assay marker for anti-inflammatory activity of flavonoids. Copyright © 2016 Elsevier B.V. All rights reserved.
Yoshida, Kazuko; Ma, Dawei; Constabel, C. Peter
2015-01-01
Trees in the genus Populus (poplar) contain phenolic secondary metabolites including the proanthocyanidins (PAs), which help to adapt these widespread trees to diverse environments. The transcriptional activation of PA biosynthesis in response to herbivory and ultraviolet light stress has been documented in poplar leaves, and a regulator of this process, the R2R3-MYB transcription factor MYB134, has been identified. MYB134-overexpressing transgenic plants show a strong high-PA phenotype. Analysis of these transgenic plants suggested the involvement of additional MYB transcription factors, including repressor-like MYB factors. Here, MYB182, a subgroup 4 MYB factor, was found to act as a negative regulator of the flavonoid pathway. Overexpression of MYB182 in hairy root culture and whole poplar plants led to reduced PA and anthocyanin levels as well as a reduction in the expression of key flavonoid genes. Similarly, a reduced accumulation of transcripts of a MYB PA activator and a basic helix-loop-helix cofactor was observed in MYB182-overexpressing hairy roots. Transient promoter activation assays in poplar cell culture demonstrated that MYB182 can disrupt transcriptional activation by MYB134 and that the basic helix-loop-helix-binding motif of MYB182 was essential for repression. Microarray analysis of transgenic plants demonstrated that down-regulated targets of MYB182 also include shikimate pathway genes. This work shows that MYB182 plays an important role in the fine-tuning of MYB134-mediated flavonoid metabolism. PMID:25624398
Flavonoids modify root growth and modulate expression of SHORT-ROOT and HD-ZIP III.
Franco, Danilo Miralha; Silva, Eder Marques; Saldanha, Luiz Leonardo; Adachi, Sérgio Akira; Schley, Thayssa Rabelo; Rodrigues, Tatiane Maria; Dokkedal, Anne Ligia; Nogueira, Fabio Tebaldi Silveira; Rolim de Almeida, Luiz Fernando
2015-09-01
Flavonoids are a class of distinct compounds produced by plant secondary metabolism that inhibit or promote plant development and have a relationship with auxin transport. We showed that, in terms of root development, Copaifera langsdorffii leaf extracts has an inhibitory effect on most flavonoid components compared with the application of exogenous flavonoids (glycosides and aglycones). These compounds alter the pattern of expression of the SHORT-ROOT and HD-ZIP III transcription factor gene family and cause morpho-physiological alterations in sorghum roots. In addition, to examine the flavonoid auxin interaction in stress, we correlated the responses with the effects of exogenous application of auxin and an auxin transport inhibitor. The results show that exogenous flavonoids inhibit primary root growth and increase the development of lateral roots. Exogenous flavonoids also change the pattern of expression of specific genes associated with root tissue differentiation. These findings indicate that flavonoid glycosides can influence the polar transport of auxin, leading to stress responses that depend on auxin. Copyright © 2015 Elsevier GmbH. All rights reserved.
Sasaki, Kanako; Mito, Kouji; Ohara, Kazuaki; Yamamoto, Hirobumi; Yazaki, Kazufumi
2008-01-01
Prenylated flavonoids are natural compounds that often represent the active components in various medicinal plants and exhibit beneficial effects on human health. Prenylated flavonoids are hybrid products composed of a flavonoid core mainly attached to either 5-carbon (dimethylallyl) or 10-carbon (geranyl) prenyl groups derived from isoprenoid (terpenoid) metabolism, and the prenyl groups are crucial for their biological activity. Prenylation reactions in vivo are crucial coupling processes of two major metabolic pathways, the shikimate-acetate and isoprenoid pathways, in which these reactions are also known as a rate-limiting step. However, none of the genes responsible for the prenylation of flavonoids has been identified despite more than 30 years of research in this field. We have isolated a prenyltransferase gene from Sophora flavescens, SfN8DT-1, responsible for the prenylation of the flavonoid naringenin at the 8-position, which is specific for flavanones and dimethylallyl diphosphate as substrates. Phylogenetic analysis shows that SfN8DT-1 has the same evolutionary origin as prenyltransferases for vitamin E and plastoquinone. The gene expression of SfN8DT-1 is strictly limited to the root bark where prenylated flavonoids are solely accumulated in planta. The ectopic expression of SfN8DT-1 in Arabidopsis thaliana resulted in the formation of prenylated apigenin, quercetin, and kaempferol, as well as 8-prenylnaringenin. SfN8DT-1 represents the first flavonoid-specific prenyltransferase identified in plants and paves the way for the identification and characterization of further genes responsible for the production of this large and important class of secondary metabolites. PMID:18218974
Functional Characterization of a Flavonoid Glycosyltransferase in Sweet Orange (Citrus sinensis).
Liu, Xiaogang; Lin, Cailing; Ma, Xiaodi; Tan, Yan; Wang, Jiuzhao; Zeng, Ming
2018-01-01
Fruits of sweet orange ( Citrus sinensis ), a popular commercial Citrus species, contain high concentrations of flavonoids beneficial to human health. These fruits predominantly accumulate O -glycosylated flavonoids, in which the disaccharides [neohesperidose (rhamnosyl-α-1,2-glucose) or rutinose (rhamnosyl-α-1,6-glucose)] are linked to the flavonoid aglycones through the 3- or 7-hydroxyl sites. The biotransformation of the flavonoid aglycones into O -rutinosides or O -neohesperidosides in the Citrus plants usually consists of two glycosylation reactions involving a series of uridine diphosphate-sugar dependent glycosyltransferases (UGTs). Although several genes encoding flavonoid UGTs have been functionally characterized in the Citrus plants, full elucidation of the flavonoid glycosylation process remains elusive. Based on the available genomic and transcriptome data, we isolated a UGT with a high expression level in the sweet orange fruits that possibly encodes a flavonoid glucosyltransferase and/or rhamnosyltransferase. Biochemical analyses revealed that a broad range of flavonoid substrates could be glucosylated at their 3- and/or 7-hydrogen sites by the recombinant enzyme, including hesperetin, naringenin, diosmetin, quercetin, and kaempferol. Furthermore, overexpression of the gene could significantly increase the accumulations of quercetin 7- O -rhamnoside, quercetin 7- O -glucoside, and kaempferol 7- O -glucoside, implying that the enzyme has flavonoid 7- O -glucosyltransferase and 7- O -rhamnosyltransferase activities in vivo .
Functional Characterization of a Flavonoid Glycosyltransferase in Sweet Orange (Citrus sinensis)
Liu, Xiaogang; Lin, Cailing; Ma, Xiaodi; Tan, Yan; Wang, Jiuzhao; Zeng, Ming
2018-01-01
Fruits of sweet orange (Citrus sinensis), a popular commercial Citrus species, contain high concentrations of flavonoids beneficial to human health. These fruits predominantly accumulate O-glycosylated flavonoids, in which the disaccharides [neohesperidose (rhamnosyl-α-1,2-glucose) or rutinose (rhamnosyl-α-1,6-glucose)] are linked to the flavonoid aglycones through the 3- or 7-hydroxyl sites. The biotransformation of the flavonoid aglycones into O-rutinosides or O-neohesperidosides in the Citrus plants usually consists of two glycosylation reactions involving a series of uridine diphosphate-sugar dependent glycosyltransferases (UGTs). Although several genes encoding flavonoid UGTs have been functionally characterized in the Citrus plants, full elucidation of the flavonoid glycosylation process remains elusive. Based on the available genomic and transcriptome data, we isolated a UGT with a high expression level in the sweet orange fruits that possibly encodes a flavonoid glucosyltransferase and/or rhamnosyltransferase. Biochemical analyses revealed that a broad range of flavonoid substrates could be glucosylated at their 3- and/or 7-hydrogen sites by the recombinant enzyme, including hesperetin, naringenin, diosmetin, quercetin, and kaempferol. Furthermore, overexpression of the gene could significantly increase the accumulations of quercetin 7-O-rhamnoside, quercetin 7-O-glucoside, and kaempferol 7-O-glucoside, implying that the enzyme has flavonoid 7-O-glucosyltransferase and 7-O-rhamnosyltransferase activities in vivo. PMID:29497429
Wang, Cuicui; Fu, Daqi
2018-03-21
Eggplant ( Solanum melongena L.) fruits accumulate flavonoids in their cuticle and epidermal cells during ripening. Although many mutants available in model plant species, such as Arabidopsis thaliana and Medicago truncatula, are enabling the intricacies of flavonoid-related physiology to be deduced, the mechanisms whereby flavonoids influence eggplant fruit physiology are unknown. Virus-induced gene silencing (VIGS) is a reliable tool for the study of flavonoid function in fruit, and in this study, we successfully applied this technique to downregulate S. melongena chalcone synthase gene ( SmCHS) expression during eggplant fruit ripening. In addition to the expected change in fruit color attributable to a lack of anthocyanins, several other modifications, including differences in epidermal cell size and shape, were observed in the different sectors. We also found that silencing of CHS gene expression was associated with a negative gravitropic response in eggplant fruits. These observations indicate that epidermal cell expansion during ripening is dependent upon CHS expression and that there may be a relationship between CHS expression and gravitropism during eggplant fruit ripening.
Mitsunami, Tomoko; Nishihara, Masahiro; Galis, Ivan; Alamgir, Kabir Md; Hojo, Yuko; Fujita, Kohei; Sasaki, Nobuhiro; Nemoto, Keichiro; Sawasaki, Tatsuya; Arimura, Gen-ichiro
2014-01-01
Anthocyanin pigments and associated flavonoids have demonstrated antioxidant properties and benefits for human health. Consequently, current plant bioengineers have focused on how to modify flavonoid metabolism in plants. Most of that research, however, does not consider the role of natural biotic stresses (e.g., herbivore attack). To understand the influence of herbivore attack on the metabolic engineering of flavonoids, we examined tobacco plants overexpressing the Arabidopsis PAP1 gene (encoding an MYB transcription factor), which accumulated anthocyanin pigments and other flavonoids/phenylpropanoids. In comparison to wild-type and control plants, transgenic plants exhibited greater resistance to Spodoptera litura. Moreover, herbivory suppressed the PAP1-induced increase of transcripts of flavonoid/phenylpropanoid biosynthetic genes (e.g., F3H) and the subsequent accumulation of these genes' metabolites, despite the unaltered PAP1 mRNA levels after herbivory. The instances of down-regulation were independent of the signaling pathways mediated by defense-related jasmonates but were relevant to the levels of PAP1-induced and herbivory-suppressed transcription factors, An1a and An1b. Although initially F3H transcripts were suppressed by herbivory, after the S. litura feeding was interrupted, F3H transcripts increased. We hypothesize that in transgenic plants responding to herbivory, there is a complex mechanism regulating enriched flavonoid/phenylpropanoid compounds, via biotic stress signals. PMID:25268129
Ali, Mohammad B; Howard, Susanne; Chen, Shangwu; Wang, Yechun; Yu, Oliver; Kovacs, Laszlo G; Qiu, Wenping
2011-01-10
The complex and dynamic changes during grape berry development have been studied in Vitis vinifera, but little is known about these processes in other Vitis species. The grape variety 'Norton', with a major portion of its genome derived from Vitis aestivalis, maintains high levels of malic acid and phenolic acids in the ripening berries in comparison with V. vinifera varieties such as Cabernet Sauvignon. Furthermore, Norton berries develop a remarkably high level of resistance to most fungal pathogens while Cabernet Sauvignon berries remain susceptible to those pathogens. The distinct characteristics of Norton and Cabernet Sauvignon merit a comprehensive analysis of transcriptional regulation and metabolite pathways. A microarray study was conducted on transcriptome changes of Norton berry skin during the period of 37 to 127 days after bloom, which represents berry developmental phases from herbaceous growth to full ripeness. Samples of six berry developmental stages were collected. Analysis of the microarray data revealed that a total of 3,352 probe sets exhibited significant differences at transcript levels, with two-fold changes between at least two developmental stages. Expression profiles of defense-related genes showed a dynamic modulation of nucleotide-binding site-leucine-rich repeat (NBS-LRR) resistance genes and pathogenesis-related (PR) genes during berry development. Transcript levels of PR-1 in Norton berry skin clearly increased during the ripening phase. As in other grapevines, genes of the phenylpropanoid pathway were up-regulated in Norton as the berry developed. The most noticeable was the steady increase of transcript levels of stilbene synthase genes. Transcriptional patterns of six MYB transcription factors and eleven structural genes of the flavonoid pathway and profiles of anthocyanins and proanthocyanidins (PAs) during berry skin development were analyzed comparatively in Norton and Cabernet Sauvignon. Transcriptional patterns of MYB5A and MYB5B were similar during berry development between the two varieties, but those of MYBPA1 and MYBPA2 were strikingly different, demonstrating that the general flavonoid pathways are regulated under different MYB factors. The data showed that there were higher transcript levels of the genes encoding flavonoid-3'-O-hydroxylase (F3'H), flavonoid-3',5'-hydroxylase (F3'5'H), leucoanthocyanidin dioxygenase (LDOX), UDP-glucose:flavonoid 3'-O-glucosyltransferase (UFGT), anthocyanidin reductase (ANR), leucoanthocyanidin reductase (LAR) 1 and LAR2 in berry skin of Norton than in those of Cabernet Sauvignon. It was also found that the total amount of anthocyanins was markedly higher in Norton than in Cabernet Sauvignon berry skin at harvest, and five anthocyanin derivatives and three PA compounds exhibited distinctive accumulation patterns in Norton berry skin. This study provides an overview of the transcriptome changes and the flavonoid profiles in the berry skin of Norton, an important North American wine grape, during berry development. The steady increase of transcripts of PR-1 and stilbene synthase genes likely contributes to the developmentally regulated resistance during ripening of Norton berries. More studies are required to address the precise role of each stilbene synthase gene in berry development and disease resistance. Transcriptional regulation of MYBA1, MYBA2, MYB5A and MYBPA1 as well as expression levels of their putative targets F3'H, F3'5'H, LDOX, UFGT, ANR, LAR1, and LAR2 are highly correlated with the characteristic anthocyanin and PA profiles in Norton berry skin. These results reveal a unique pattern of the regulation of transcription and biosynthesis pathways underlying the viticultural and enological characteristics of Norton grape, and yield new insights into the understanding of the flavonoid pathway in non-vinifera grape varieties.
2011-01-01
Background The complex and dynamic changes during grape berry development have been studied in Vitis vinifera, but little is known about these processes in other Vitis species. The grape variety 'Norton', with a major portion of its genome derived from Vitis aestivalis, maintains high levels of malic acid and phenolic acids in the ripening berries in comparison with V. vinifera varieties such as Cabernet Sauvignon. Furthermore, Norton berries develop a remarkably high level of resistance to most fungal pathogens while Cabernet Sauvignon berries remain susceptible to those pathogens. The distinct characteristics of Norton and Cabernet Sauvignon merit a comprehensive analysis of transcriptional regulation and metabolite pathways. Results A microarray study was conducted on transcriptome changes of Norton berry skin during the period of 37 to 127 days after bloom, which represents berry developmental phases from herbaceous growth to full ripeness. Samples of six berry developmental stages were collected. Analysis of the microarray data revealed that a total of 3,352 probe sets exhibited significant differences at transcript levels, with two-fold changes between at least two developmental stages. Expression profiles of defense-related genes showed a dynamic modulation of nucleotide-binding site-leucine-rich repeat (NBS-LRR) resistance genes and pathogenesis-related (PR) genes during berry development. Transcript levels of PR-1 in Norton berry skin clearly increased during the ripening phase. As in other grapevines, genes of the phenylpropanoid pathway were up-regulated in Norton as the berry developed. The most noticeable was the steady increase of transcript levels of stilbene synthase genes. Transcriptional patterns of six MYB transcription factors and eleven structural genes of the flavonoid pathway and profiles of anthocyanins and proanthocyanidins (PAs) during berry skin development were analyzed comparatively in Norton and Cabernet Sauvignon. Transcriptional patterns of MYB5A and MYB5B were similar during berry development between the two varieties, but those of MYBPA1 and MYBPA2 were strikingly different, demonstrating that the general flavonoid pathways are regulated under different MYB factors. The data showed that there were higher transcript levels of the genes encoding flavonoid-3'-O-hydroxylase (F3'H), flavonoid-3',5'-hydroxylase (F3'5'H), leucoanthocyanidin dioxygenase (LDOX), UDP-glucose:flavonoid 3'-O-glucosyltransferase (UFGT), anthocyanidin reductase (ANR), leucoanthocyanidin reductase (LAR) 1 and LAR2 in berry skin of Norton than in those of Cabernet Sauvignon. It was also found that the total amount of anthocyanins was markedly higher in Norton than in Cabernet Sauvignon berry skin at harvest, and five anthocyanin derivatives and three PA compounds exhibited distinctive accumulation patterns in Norton berry skin. Conclusions This study provides an overview of the transcriptome changes and the flavonoid profiles in the berry skin of Norton, an important North American wine grape, during berry development. The steady increase of transcripts of PR-1 and stilbene synthase genes likely contributes to the developmentally regulated resistance during ripening of Norton berries. More studies are required to address the precise role of each stilbene synthase gene in berry development and disease resistance. Transcriptional regulation of MYBA1, MYBA2, MYB5A and MYBPA1 as well as expression levels of their putative targets F3'H, F3'5'H, LDOX, UFGT, ANR, LAR1, and LAR2 are highly correlated with the characteristic anthocyanin and PA profiles in Norton berry skin. These results reveal a unique pattern of the regulation of transcription and biosynthesis pathways underlying the viticultural and enological characteristics of Norton grape, and yield new insights into the understanding of the flavonoid pathway in non-vinifera grape varieties. PMID:21219654
Comparative Developmental Toxicity of Flavonoids Using an Integrative Zebrafish System
Bugel, Sean M.; Bonventre, Josephine A.; Tanguay, Robert L.
2016-01-01
Flavonoids are a large, structurally diverse class of bioactive naturally occurring chemicals commonly detected in breast milk, soy based infant formulas, amniotic fluid, and fetal cord blood. The potential for pervasive early life stage exposures raises concerns for perturbation of embryogenesis, though developmental toxicity and bioactivity information is limited for many flavonoids. Therefore, we evaluated a suite of 24 flavonoid and flavonoid-like chemicals using a zebrafish embryo-larval toxicity bioassay—an alternative model for investigating developmental toxicity of environmentally relevant chemicals. Embryos were exposed to 1–50 µM of each chemical from 6 to 120 h postfertilization (hpf), and assessed for 26 adverse developmental endpoints at 24, 72, and 120 hpf. Behavioral changes were evaluated in morphologically normal animals at 24 and 72 hpf, at 120 hpf using a larval photomotor response (LPR) assay. Gene expression was comparatively evaluated for all compounds for effects on biomarker transcripts indicative of AHR (cyp1a) and ER (cyp19a1b, esr1, lhb, vtg) pathway bioactivity. Overall, 15 of 24 flavonoids elicited adverse effects on one or more of the developmental or behavioral endpoints. Hierarchical clustering and principle component analyses compared toxicity profiles and identified 3 distinct groups of bioactive flavonoids. Despite robust induction of multiple estrogen-responsive biomarkers, co-exposure with ER and GPER antagonists did not ameliorate toxicity, suggesting ER-independence and alternative modes of action. Taken together, these studies demonstrate that development is sensitive to perturbation by bioactive flavonoids in zebrafish that are not related to traditional estrogen receptor mode of action pathways. This integrative zebrafish platform provides a useful framework for evaluating flavonoid developmental toxicity and hazard prioritization. PMID:27492224
Burbulis, I E; Iacobucci, M; Shirley, B W
1996-01-01
Flavonoids are a major class of secondary metabolites that serves a multitude of functions in higher plants, including a recently discovered role in male fertility. Surprisingly, Arabidopsis plants deficient in flavonoid biosynthesis appear to be fully fertile. Using RNA gel blot analysis and polymerase chain reaction-based assays, we have shown that a mutation at the 3' splice acceptor site in the Arabidopsis chalcone synthase gene completely disrupts synthesis of the active form of the enzyme. We also confirmed that this enzyme, which catalyzes the first step of flavonoid biosynthesis, is encoded by a single-copy gene. HPLC analysis of whole flowers and stamens was used to show that plants homozygous for the splice site mutation are completely devoid of flavonoids. This work provides compelling evidence that despite the high levels of these compounds in the pollen of most plant species, flavonoids are not universally required for fertility. The role of flavonoids in plant reproduction may therefore offer an example of convergent functional evolution in secondary metabolism. PMID:8672888
Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A.; Zaharia, L. Irina; Schernthaner, Johann P.; Gesell, Andreas; Abrams, Suzanne R.; Kennedy, James A.; Constabel, C. Peter
2012-01-01
Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3′-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3′5′-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of blueberry flavonoid biosynthesis. PMID:22086422
Light quality affects flavonoid production and related gene expression in Cyclocarya paliurus.
Liu, Yang; Fang, Shengzuo; Yang, Wanxia; Shang, Xulan; Fu, Xiangxiang
2018-02-01
Understanding the responses of plant growth and secondary metabolites to differential light conditions is very important to optimize cultivation conditions of medicinal woody plants. As a highly valued and multiple function tree species, Cyclocarya paliurus is planted and managed for timber production and medical use. In this study, LED-based light including white light (WL), blue light (BL), red light (RL), and green light (GL) were used to affect leaf biomass production, flavonoid accumulation and related gene expression of one-year C. paliurus seedlings in controlled environments. After the treatments of 60 days, the highest leaf biomass appeared in the treatment of WL, while the lowest leaf biomass was found under GL. Compared to WL, the total flavonoid contents of C. paliurus leaves were significantly higher in BL, RL, and GL, but the highest values of selected flavonoids (kaempferol, isoquercitrin and quercetin) were observed under BL. Furthermore, the greatest yields of total and selected flavonoids in C. paliurus leaves per seedling were also achieved under BL, indicating that blue light was effective for inducing the production of flavonoids in C. paliurus leaves. Pearson's correlation analysis showed that there were significantly positive correlations between leaf flavonoid content and relative gene expression of key enzymes (phenylalanine ammonia lyase, PAL; 4-coumaroyl CoA-ligase, 4CL; and chalcone synthase, CHS) in the upstream, which converting phenylalanine into the flavonoid skeleton of tetrahydroxy chalcone. It is concluded that manipulating light quality may be potential mean to achieve the highest yields of flavonoids in C. paliurus cultivation, however this needs to be further verified by more field trials. Copyright © 2018 Elsevier B.V. All rights reserved.
Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A; Zaharia, L Irina; Schernthaner, Johann P; Gesell, Andreas; Abrams, Suzanne R; Kennedy, James A; Constabel, C Peter
2012-01-01
Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of blueberry flavonoid biosynthesis.
Gonzales, Gerard Bryan; Smagghe, Guy; Grootaert, Charlotte; Zotti, Moises; Raes, Katleen; Van Camp, John
2015-05-01
Flavonoids are a group of polyphenols that provide health-promoting benefits upon consumption. However, poor bioavailability has been a major hurdle in their use as drugs or nutraceuticals. Low bioavailability has been associated with flavonoid interactions at various stages of the digestion, absorption and distribution process, which is strongly affected by their molecular structure. In this review, we use structure-activity/property relationship to discuss various flavonoid interactions with food matrices, digestive enzymes, intestinal transporters and blood proteins. This approach reveals specific bioactive properties of flavonoids in the gastrointestinal tract as well as various barriers for their bioavailability. In the last part of this review, we use these insights to determine the effect of different structural characteristics on the overall bioavailability of flavonoids. Such information is crucial when flavonoid or flavonoid derivatives are used as active ingredients in foods or drugs.
Ralston, Lyle; Subramanian, Senthil; Matsuno, Michiyo; Yu, Oliver
2005-01-01
Flavonoids and isoflavonoids are major plant secondary metabolites that mediate diverse biological functions and exert significant ecological impacts. These compounds play important roles in many essential physiological processes. In addition, flavonoids and isoflavonoids have direct but complex effects on human health, ranging from reducing cholesterol levels and preventing certain cancers to improving women's health. In this study, we cloned and functionally characterized five soybean (Glycine max) chalcone isomerases (CHIs), key enzymes in the phenylpropanoid pathway that produces flavonoids and isoflavonoids. Gene expression and kinetics analysis suggest that the soybean type I CHI, which uses naringenin chalcone as substrate, is coordinately regulated with other flavonoid-specific genes, while the type II CHIs, which use a variety of chalcone substrates, are coordinately regulated with an isoflavonoid-specific gene and specifically activated by nodulation signals. Furthermore, we found that some of the newly identified soybean CHIs do not require the 4′-hydroxy moiety on the substrate for high enzyme activity. We then engineered yeast (Saccharomyces cerevisiae) to produce flavonoid and isoflavonoid compounds. When one of the type II CHIs was coexpressed with an isoflavone synthase, the enzyme catalyzing the first committed step of isoflavonoid biosynthesis, various chalcone substrates added to the culture media were converted to an assortment of isoflavanones and isoflavones. We also reconstructed the flavonoid pathway by coexpressing CHI with either flavanone 3β-hydroxylase or flavone synthase II. The in vivo reconstruction of the flavonoid and isoflavonoid pathways in yeast provides a unique platform to study enzyme interactions and metabolic flux. PMID:15778463
Chen, Haimei; Guo, Baolin; Liu, Chang
2017-01-01
Epimedium pseudowushanense B.L.Guo, a light-demanding shade herb, is used in traditional medicine to increase libido and strengthen muscles and bones. The recognition of the health benefits of Epimedium has increased its market demand. However, its resource recycling rate is low and environmentally dependent. Furthermore, its natural sources are endangered, further increasing prices. Commercial culture can address resource constraints of it.Understanding the effects of environmental factors on the production of its active components would improve the technology for cultivation and germplasm conservation. Here, we studied the effects of light intensities on the flavonoid production and revealed the molecular mechanism using RNA-seq analysis. Plants were exposed to five levels of light intensity through the periods of germination to flowering, the flavonoid contents were measured using HPLC. Quantification of epimedin A, epimedin B, epimedin C, and icariin showed that the flavonoid contents varied with different light intensity levels. And the largest amount of epimedin C was produced at light intensity level 4 (I4). Next, the leaves under the treatment of three light intensity levels (“L”, “M” and “H”) with the largest differences in the flavonoid content, were subjected to RNA-seq analysis. Transcriptome reconstruction identified 43,657 unigenes. All unigene sequences were annotated by searching against the Nr, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. In total, 4008, 5260, and 3591 significant differentially expressed genes (DEGs) were identified between the groups L vs. M, M vs. H and L vs. H. Particularly, twenty-one full-length genes involved in flavonoid biosynthesis were identified. The expression levels of the flavonol synthase, chalcone synthase genes were strongly associated with light-induced flavonoid abundance with the highest expression levels found in the H group. Furthermore, 65 transcription factors, including 31 FAR1, 17 MYB-related, 12 bHLH, and 5 WRKY, were differentially expressed after light induction. Finally, a model was proposed to explain the light-induced flavonoid production. This study provided valuable information to improve cultivation practices and produced the first comprehensive resource for E. pseudowushanense transcriptomes. PMID:28786984
Pan, Junqian; Chen, Haimei; Guo, Baolin; Liu, Chang
2017-01-01
Epimedium pseudowushanense B.L.Guo, a light-demanding shade herb, is used in traditional medicine to increase libido and strengthen muscles and bones. The recognition of the health benefits of Epimedium has increased its market demand. However, its resource recycling rate is low and environmentally dependent. Furthermore, its natural sources are endangered, further increasing prices. Commercial culture can address resource constraints of it.Understanding the effects of environmental factors on the production of its active components would improve the technology for cultivation and germplasm conservation. Here, we studied the effects of light intensities on the flavonoid production and revealed the molecular mechanism using RNA-seq analysis. Plants were exposed to five levels of light intensity through the periods of germination to flowering, the flavonoid contents were measured using HPLC. Quantification of epimedin A, epimedin B, epimedin C, and icariin showed that the flavonoid contents varied with different light intensity levels. And the largest amount of epimedin C was produced at light intensity level 4 (I4). Next, the leaves under the treatment of three light intensity levels ("L", "M" and "H") with the largest differences in the flavonoid content, were subjected to RNA-seq analysis. Transcriptome reconstruction identified 43,657 unigenes. All unigene sequences were annotated by searching against the Nr, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. In total, 4008, 5260, and 3591 significant differentially expressed genes (DEGs) were identified between the groups L vs. M, M vs. H and L vs. H. Particularly, twenty-one full-length genes involved in flavonoid biosynthesis were identified. The expression levels of the flavonol synthase, chalcone synthase genes were strongly associated with light-induced flavonoid abundance with the highest expression levels found in the H group. Furthermore, 65 transcription factors, including 31 FAR1, 17 MYB-related, 12 bHLH, and 5 WRKY, were differentially expressed after light induction. Finally, a model was proposed to explain the light-induced flavonoid production. This study provided valuable information to improve cultivation practices and produced the first comprehensive resource for E. pseudowushanense transcriptomes.
Adaptation response of Arabidopsis thaliana to random positioning
NASA Astrophysics Data System (ADS)
Kittang, A.-I.; Winge, P.; van Loon, J. J. W. A.; Bones, A. M.; Iversen, T.-H.
2013-10-01
Arabidopsis thaliana seedlings were exposed on a Random Positioning Machine (RPM) under light conditions for 16 h and the samples were analysed using microarray techniques as part of a preparation for a space experiment on the International Space Station (ISS). The results demonstrated a moderate to low regulation of 55 genes (<0.2% of the analysed genes). Genes encoding proteins associated with the chaperone system (e.g. heat shock proteins, HSPs) and enzymes in the flavonoid biosynthesis were induced. Most of the repressed genes were associated with light and sugar responses. Significant up-regulation of selected HSP genes was found by quantitative Real-Time PCR in 1 week old plants after the RPM exposure both in light and darkness. Higher quantity of DPBA (diphenylboric acid 2-amino-ethyl ester) staining was observed in the whole root and in the root elongation zone of the seedlings exposed on the RPM by use of fluorescent microscopy, indicating higher flavonoid content. The regulated genes and an increase of flavonoids are related to several stresses, but increased occurrence of HSPs and flavonoids are also representative for normal growth (e.g. gravitropism). The response could be a direct stress response or an integrated response of the two signal pathways of light and gravity resulting in an overall light response.
Yang, Z Q; Chen, H; Tan, J H; Xu, H L; Jia, J; Feng, Y H
2016-12-23
Pinus massoniana Lamb. is an important timber and turpentine-producing tree species in China. Dendrolimus punctatus and Dasychira axutha are leaf-eating pests that have harmful effects on P. massoniana production. Few studies have focused on the molecular mechanisms underlying pest resistance in P. massoniana. Based on sequencing analysis of the transcriptomes of insect-resistant P. massoniana, three key genes involved in the flavonoid metabolic pathway were identified in the present study (PmF3H, PmF3'5'H, and PmC4H). Structural domain analysis showed that the PmF3H gene contains typical binding sites for the 2OG-Fe (II) oxygenase superfamily, while PmF3'5'H and PmC4H both contain the cytochrome P450 structural domain, which is specific for P450 enzymes. Phylogenetic analysis showed that each of the three P. massoniana genes, and the homologous genes in gymnosperms, clustered into a group. Expression of these three genes was highest in the stems, and was higher in the insect-resistant P. massoniana varieties than in the controls. The extent of the increased expression in the insect-resistant P. massoniana varieties indicated that these three genes are involved in defense mechanisms against pests in this species. In the insect-resistant varieties, rapid induction of PmF3H increased the levels of PmF3'5'H and PmC4H expression. The enhanced anti-pest capability of the insect-resistant varieties could be related to temperature and humidity. In addition, these results suggest that these three genes maycontribute to the change in flower color during female cone development.
Chemistry and Biological Activities of Flavonoids: An Overview
Kumar, Shashank; Pandey, Abhay K.
2013-01-01
There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production. PMID:24470791
Yang, Ran; Yu, Lanlan; Zeng, Huajin; Liang, Ruiling; Chen, Xiaolan; Qu, Lingbo
2012-11-01
In this work, the interactions of twelve structurally different flavonoids with Lysozyme (Lys) were studied by fluorescence quenching method. The interaction mechanism and binding properties were investigated. It was found that the binding capacities of flavonoids to Lys were highly depend on the number and position of hydrogen, the kind and position of glycosyl. To explore the selectivity of the bindings of flavonoids with Lys, the structure descriptors of the flavonoids were calculated under QSAR software package of Cerius2, the quantitative relationship between the structures of flavonoids and their binding activities to Lys (QSAR) was performed through genetic function approximation (GFA) regression analysis. The QSAR regression equation was K(A) = 37850.460 + 1630.01Dipole +3038.330HD-171.795MR. (r = 0.858, r(CV)(2) = 0.444, F((11,3)) = 7.48), where K(A) is binding constants, Dipole, HD and MR was dipole moment, number of hydrogen-bond donor and molecular refractivity, respectively. The obtained results make us understand better how the molecular structures influencing their binding to protein which may open up new avenues for the design of the most suitable flavonoids derivatives with structure variants.
Lepikson-Neto, Jorge; Nascimento, Leandro C; Salazar, Marcela M; Camargo, Eduardo L O; Cairo, João P F; Teixeira, Paulo J; Marques, Wesley L; Squina, Fabio M; Mieczkowski, Piotr; Deckmann, Ana C; Pereira, Gonçalo A G
2014-11-19
Eucalyptus species are the most widely planted hardwood species in the world and are renowned for their rapid growth and adaptability. In Brazil, one of the most widely grown Eucalyptus cultivars is the fast-growing Eucalyptus urophylla x Eucalyptus grandis hybrid. In a previous study, we described a chemical characterization of these hybrids when subjected to flavonoid supplementation on 2 distinct timetables, and our results revealed marked differences between the wood composition of the treated and untreated trees. In this work, we report the transcriptional responses occurring in these trees that may be related to the observed chemical differences. Gene expression was analysed through mRNA-sequencing, and notably, compared to control trees, the treated trees display differential down-regulation of cell wall formation pathways such as phenylpropanoid metabolism as well as differential expression of genes involved in sucrose, starch and minor CHO metabolism and genes that play a role in several stress and environmental responses. We also performed enzymatic hydrolysis of wood samples from the different treatments, and the results indicated higher sugar contents and glucose yields in the flavonoid-treated plants. Our results further illustrate the potential use of flavonoids as a nutritional complement for modifying Eucalyptus wood, since, supplementation with flavonoids alters its chemical composition, gene expression and increases saccharification probably as part of a stress response.
Primetta, Anja K; Karppinen, Katja; Riihinen, Kaisu R; Jaakola, Laura
2015-09-01
MYBPA1-type R2R3 MYB transcription factor shows down-regulation in white mutant berries of Vaccinium uliginosum deficient in anthocyanins but not proanthocyanidins suggesting a role in the regulation of anthocyanin biosynthesis. Berries of the genus Vaccinium are among the best natural sources of flavonoids. In this study, the expression of structural and regulatory flavonoid biosynthetic genes and the accumulation of flavonoids in white mutant and blue-colored wild-type bog bilberry (V. uliginosum) fruits were measured at different stages of berry development. In contrast to high contents of anthocyanins in ripe blue-colored berries, only traces were detected by HPLC-ESI-MS in ripe white mutant berries. However, similar profile and high levels of flavonol glycosides and proanthocyanidins were quantified in both ripe white and ripe wild-type berries. Analysis with qRT-PCR showed strong down-regulation of structural genes chalcone synthase (VuCHS), dihydroflavonol 4-reductase (VuDFR) and anthocyanidin synthase (VuANS) as well as MYBPA1-type transcription factor VuMYBPA1 in white berries during ripening compared to wild-type berries. The profiles of transcript accumulation of chalcone isomerase (VuCHI), anthocyanidin reductase (VuANR), leucoanthocyanidin reductase (VuLAR) and flavonoid 3'5' hydroxylase (VuF3'5'H) were more similar between the white and the wild-type berries during fruit development, while expression of UDP-glucose: flavonoid 3-O-glucosyltransferase (VuUFGT) showed similar trend but fourfold lower level in white mutant. VuMYBPA1, the R2R3 MYB family member, is a homologue of VmMYB2 of V. myrtillus and VcMYBPA1 of V. corymbosum and belongs to MYBPA1-type MYB family which members are shown in some species to be related with proanthocyanidin biosynthesis in fruits. Our results combined with earlier data of the role of VmMYB2 in white mutant berries of V. myrtillus suggest that the regulation of anthocyanin biosynthesis in Vaccinium species could differ from other species studied.
Park, Sangkyu; Choi, Min Ji; Lee, Jong Yeol; Kim, Jae Kwang; Ha, Sun-Hwa; Lim, Sun-Hyung
2016-09-13
Anthocyanins and proanthocyanidins, the major flavonoids in black and red rice grains, respectively, are mainly derived from 3',4'-dihydroxylated leucocyanidin. 3'-Hydroxylation of flavonoids in rice is catalyzed by flavonoid 3'-hydroxylase (F3'H: EC 1.14.13.21). We isolated cDNA clones of the two rice F3'H genes (CYP75B3 and CYP75B4) from Korean varieties of white, black, and red rice. Sequence analysis revealed allelic variants of each gene containing one or two amino acid substitutions. Heterologous expression in yeast demonstrated that CYP75B3 preferred kaempferol to other substrates, and had a low preference for dihydrokaempferol. CYP75B4 exhibited a higher preference for apigenin than for other substrates. CYP75B3 from black rice showed an approximately two-fold increase in catalytic efficiencies for naringenin and dihydrokaempferol compared to CYP75B3s from white and red rice. The F3'H activity of CYP75B3 was much higher than that of CYP75B4. Gene expression analysis showed that CYP75B3, CYP75B4, and most other flavonoid pathway genes were predominantly expressed in the developing seeds of black rice, but not in those of white and red rice, which is consistent with the pigmentation patterns of the seeds. The expression levels of CYP75B4 were relatively higher than those of CYP75B3 in the developing seeds, leaves, and roots of white rice.
Li, Yong; Pang, Tao; Shi, Junli; Lu, Xiuping; Deng, Jianhua; Lin, Qian
2014-11-01
Plant flavonoids are very important secondary metabolites for insect and virus control of their host plant and are potent nutrients for humans. To be able to understand the bioavailability and functions of plant flavonoids, it is necessary to reveal their exact chemical structures. Liquid chromatography with tandem mass spectrometry is a powerful approach for structural elucidation of metabolites. In this report, a two-step precursor ion scanning based liquid chromatography with tandem mass spectrometry method was developed for the structural elucidation of plant flavonoids. The established method consists of the two-step precursor ions scanning for possible flavonoids extraction, MS(2) fragment spectra acquisition and comparison with an online database, liquid chromatography retention rules correction, and commercial standards verification. The developed method was used for the structure elucidation of flavonoids in flowers and leaves of tobacco (Nicotiana tabacum), and 17 flavonoids were identified in the tobacco variety Yunyan 97. Nine of the 17 identified flavonoids were considered to be found in tobacco flowers or/and leaves for the first time based on the available references. This method was proved to be very effective and can be used for the identification of flavonoids in other plants. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kumar, Vinay; Gill, Tejpal; Grover, Sunita; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar
2013-02-01
This study was aimed at to check the influence of human lactoferrin (hLF) expression on iron homeostasis, flavonoids, and antioxidants in transgenic tobacco. Transgenic tobacco expressing hLF cDNA under the control of a CaMV 35S promoter was produced. The iron content as well as chlorophyll content of transgenic tobacco was lower compared to mock and untransformed wild plants. Interestingly, hLF transgenic tobacco showed higher level of transcript expression for genes related to iron content regulation like iron transporter and metal transporter. While expression of genes related to iron storage such as ferritin 1 and ferritin 2 was downregulated. The transcript expression of genes encoding antioxidant enzymes such as glutathione reductase, glutathione-S-transferase, ascorbate peroxidase, and catalase was downregulated in hLF transgenic tobacco compared to controls. Further, the transcript expression of two important genes encoding dihydroflavonol reductase (DFR) and phenylalanine ammonia lyase regulatory enzymes of flavonoid biosynthesis pathway was analyzed. The expression of DFR was found to be downregulated, while PAL expression was upregulated in hLF transgenic tobacco compared to mock and untransformed wild plant. Total phenolics, flavonoids, and proanthocyanidins contents were found to be higher in hLF transgenic tobacco than the mock and untransformed wild plant. Results suggest that hLF expression in transgenic tobacco leads to iron deficiency, downregulation of antioxidant enzymes, and increase in total flavonoids.
Ni, Jun; Dong, Lixiang; Jiang, Zhifang; Yang, Xiuli; Chen, Ziying; Wu, Yuhuan; Xu, Maojun
2018-01-01
Ginkgo leaves are raw materials for flavonoid extraction. Thus, the timing of their harvest is important to optimize the extraction efficiency, which benefits the pharmaceutical industry. In this research, we compared the transcriptomes of Ginkgo leaves harvested at midday and midnight. The differentially expressed genes with the highest probabilities in each step of flavonoid biosynthesis were down-regulated at midnight. Furthermore, real-time PCR corroborated the transcriptome results, indicating the decrease in flavonoid biosynthesis at midnight. The flavonoid profiles of Ginkgo leaves harvested at midday and midnight were compared, and the total flavonoid content decreased at midnight. A detailed analysis of individual flavonoids showed that most of their contents were decreased by various degrees. Our results indicated that circadian rhythms affected the flavonoid contents in Ginkgo leaves, which provides valuable information for optimizing their harvesting times to benefit the pharmaceutical industry.
Structure, bioactivity, and synthesis of methylated flavonoids.
Wen, Lingrong; Jiang, Yueming; Yang, Jiali; Zhao, Yupeng; Tian, Miaomiao; Yang, Bao
2017-06-01
Methylated flavonoids are an important type of natural flavonoid derivative with potentially multiple health benefits; among other things, they have improved bioavailability compared with flavonoid precursors. Flavonoids have been documented to have broad bioactivities, such as anticancer, immunomodulation, and antioxidant activities, that can be elevated, to a certain extent, by methylation. Understanding the structure, bioactivity, and bioavailability of methylated flavonoids, therefore, is an interesting topic with broad potential applications. Though methylated flavonoids are widely present in plants, their levels are usually low. Because developing efficient techniques to produce these chemicals would likely be beneficial, we provide an overview of their chemical and biological synthesis. © 2017 New York Academy of Sciences.
Hoang, Van L T; Innes, David J; Shaw, P Nicholas; Monteith, Gregory R; Gidley, Michael J; Dietzgen, Ralf G
2015-07-30
Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316 bp. Variety IW had the highest SNP frequency (one SNP every 258 bp) while KP and NDM had similar frequencies (one SNP every 369 bp and 360 bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango.
Matus, José Tomás; Loyola, Rodrigo; Vega, Andrea; Peña-Neira, Alvaro; Bordeu, Edmundo; Arce-Johnson, Patricio; Alcalde, José Antonio
2009-01-01
Anthocyanins, flavan-3-ols, and flavonols are the three major classes of flavonoid compounds found in grape berry tissues. Several viticultural practices increase flavonoid content in the fruit, but the underlying genetic mechanisms responsible for these changes have not been completely deciphered. The impact of post-veraison sunlight exposure on anthocyanin and flavonol accumulation in grape berry skin and its relation to the expression of different transcriptional regulators known to be involved in flavonoid synthesis was studied. Treatments consisting of removing or moving aside the basal leaves which shade berry clusters were applied. Shading did not affect sugar accumulation or gene expression of HEXOSE TRANSPORTER 1, although in the leaf removal treatment, these events were retarded during the first weeks of ripening. Flavonols were the most drastically reduced flavonoids following shading and leaf removal treatments, related to the reduced expression of FLAVONOL SYNTHASE 4 and its putative transcriptional regulator MYB12. Anthocyanin accumulation and the expression of CHS2, LDOX, OMT, UFGT, MYBA1, and MYB5a genes were also affected. Other regulatory genes were less affected or not affected at all by these treatments. Non-transcriptional control mechanisms for flavonoid synthesis are also suggested, especially during the initial stages of ripening. Although berries from the leaf removal treatment received more light than shaded fruits, malvidin-3-glucoside and total flavonol content was reduced compared with the treatment without leaf removal. This work reveals that flavonol-related gene expression responds rapidly to field changes in light levels, as shown by the treatment in which shaded fruits were exposed to light in the late stages of ripening. Taken together, this study establishes MYB-specific responsiveness for the effect of sun exposure and sugar transport on flavonoid synthesis. PMID:19129169
Matus, José Tomás; Loyola, Rodrigo; Vega, Andrea; Peña-Neira, Alvaro; Bordeu, Edmundo; Arce-Johnson, Patricio; Alcalde, José Antonio
2009-01-01
Anthocyanins, flavan-3-ols, and flavonols are the three major classes of flavonoid compounds found in grape berry tissues. Several viticultural practices increase flavonoid content in the fruit, but the underlying genetic mechanisms responsible for these changes have not been completely deciphered. The impact of post-veraison sunlight exposure on anthocyanin and flavonol accumulation in grape berry skin and its relation to the expression of different transcriptional regulators known to be involved in flavonoid synthesis was studied. Treatments consisting of removing or moving aside the basal leaves which shade berry clusters were applied. Shading did not affect sugar accumulation or gene expression of HEXOSE TRANSPORTER 1, although in the leaf removal treatment, these events were retarded during the first weeks of ripening. Flavonols were the most drastically reduced flavonoids following shading and leaf removal treatments, related to the reduced expression of FLAVONOL SYNTHASE 4 and its putative transcriptional regulator MYB12. Anthocyanin accumulation and the expression of CHS2, LDOX, OMT, UFGT, MYBA1, and MYB5a genes were also affected. Other regulatory genes were less affected or not affected at all by these treatments. Non-transcriptional control mechanisms for flavonoid synthesis are also suggested, especially during the initial stages of ripening. Although berries from the leaf removal treatment received more light than shaded fruits, malvidin-3-glucoside and total flavonol content was reduced compared with the treatment without leaf removal. This work reveals that flavonol-related gene expression responds rapidly to field changes in light levels, as shown by the treatment in which shaded fruits were exposed to light in the late stages of ripening. Taken together, this study establishes MYB-specific responsiveness for the effect of sun exposure and sugar transport on flavonoid synthesis.
Moreau, Carol; Ambrose, Mike J.; Turner, Lynda; Hill, Lionel; Ellis, T.H. Noel; Hofer, Julie M.I.
2012-01-01
The inheritance of flower color in pea (Pisum sativum) has been studied for more than a century, but many of the genes corresponding to these classical loci remain unidentified. Anthocyanins are the main flower pigments in pea. These are generated via the flavonoid biosynthetic pathway, which has been studied in detail and is well conserved among higher plants. A previous proposal that the Clariroseus (B) gene of pea controls hydroxylation at the 5′ position of the B ring of flavonoid precursors of the anthocyanins suggested to us that the gene encoding flavonoid 3′,5′-hydroxylase (F3′5′H), the enzyme that hydroxylates the 5′ position of the B ring, was a good candidate for B. In order to test this hypothesis, we examined mutants generated by fast neutron bombardment. We found allelic pink-flowered b mutant lines that carried a variety of lesions in an F3′5′H gene, including complete gene deletions. The b mutants lacked glycosylated delphinidin and petunidin, the major pigments present in the progenitor purple-flowered wild-type pea. These results, combined with the finding that the F3′5′H gene cosegregates with b in a genetic mapping population, strongly support our hypothesis that the B gene of pea corresponds to a F3′5′H gene. The molecular characterization of genes involved in pigmentation in pea provides valuable anchor markers for comparative legume genomics and will help to identify differences in anthocyanin biosynthesis that lead to variation in pigmentation among legume species. PMID:22492867
Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells.
Park, Hyo-Hyun; Lee, Soyoung; Son, Hee-Young; Park, Seung-Bin; Kim, Mi-Sun; Choi, Eun-Ju; Singh, Thoudam S K; Ha, Jeoung-Hee; Lee, Maan-Gee; Kim, Jung-Eun; Hyun, Myung Chul; Kwon, Taeg Kyu; Kim, Yeo Hyang; Kim, Sang-Hyun
2008-10-01
Mast cells participate in allergy and inflammation by secreting inflammatory mediators such as histamine and proinflammatory cytokines. Flavonoids are naturally occurring molecules with antioxidant, cytoprotective, and antiinflammatory actions. However, effect of flavonoids on the release of histamine and proinflammatory mediator, and their comparative mechanism of action in mast cells were not well defined. Here, we compared the effect of six flavonoids (astragalin, fisetin, kaempferol, myricetin, quercetin, and rutin) on the mast cell-mediated allergic inflammation. Fisetin, kaempferol, myricetin, quercetin, and rutin inhibited IgE or phorbol-12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-mediated histamine release in RBL-2H3 cells. These five flavonoids also inhibited elevation of intracellular calcium. Gene expressions and secretion of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, IL-6, and IL-8 were assessed in PMACI-stimulated human mast cells (HMC-1). Fisetin, quercetin, and rutin decreased gene expression and production of all the proinflammatory cytokines after PMACI stimulation. Myricetin attenuated TNF-alpha and IL-6 but not IL-1beta and IL-8. Fisetin, myricetin, and rutin suppressed activation of NF-kappaB indicated by inhibition of nuclear translocation of NF-kappaB, NF-kappaB/DNA binding, and NF-kappaB-dependent gene reporter assay. The pharmacological actions of these flavonoids suggest their potential activity for treatment of allergic inflammatory diseases through the down-regulation of mast cell activation.
Characterization of an Isoflavonoid-Specific Prenyltransferase from Lupinus albus1[W][OA
Shen, Guoan; Huhman, David; Lei, Zhentian; Snyder, John; Sumner, Lloyd W.; Dixon, Richard A.
2012-01-01
Prenylated flavonoids and isoflavonoids possess antimicrobial activity against fungal pathogens of plants. However, only a few plant flavonoid and isoflavonoid prenyltransferase genes have been identified to date. In this study, an isoflavonoid prenyltransferase gene, designated as LaPT1, was identified from white lupin (Lupinus albus). The deduced protein sequence of LaPT1 shared high homologies with known flavonoid and isoflavonoid prenyltransferases. The LaPT1 gene was mainly expressed in roots, a major site for constitutive accumulation of prenylated isoflavones in white lupin. LaPT1 is predicted to be a membrane-bound protein with nine transmembrane regions and conserved functional domains similar to other flavonoid and isoflavonoid prenyltransferases; it has a predicted chloroplast transit peptide and is plastid localized. A microsomal fraction containing recombinant LaPT1 prenylated the isoflavone genistein at the B-ring 3′ position to produce isowighteone. The enzyme is also active with 2′-hydroxygenistein but has no activity with other flavonoid substrates. The apparent Km of recombinant LaPT1 for the dimethylallyl diphosphate prenyl donor is in a similar range to that of other flavonoid prenyltransferases, but the apparent catalytic efficiency with genistein is considerably higher. Removal of the transit peptide increased the apparent overall activity but also increased the Km. Medicago truncatula hairy roots expressing LaPT1 accumulated isowighteone, a compound that is not naturally produced in this species, indicating a strategy for metabolic engineering of novel antimicrobial compounds in legumes. PMID:22430842
Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis
Routaboul, Jean-Marc; Dubos, Christian; Beck, Gilles; Marquis, Catherine; Bidzinski, Przemyslaw; Loudet, Olivier; Lepiniec, Loïc
2012-01-01
Little is known about the range and the genetic bases of naturally occurring variation for flavonoids. Using Arabidopsis thaliana seed as a model, the flavonoid content of 41 accessions and two recombinant inbred line (RIL) sets derived from divergent accessions (Cvi-0×Col-0 and Bay-0×Shahdara) were analysed. These accessions and RILs showed mainly quantitative rather than qualitative changes. To dissect the genetic architecture underlying these differences, a quantitative trait locus (QTL) analysis was performed on the two segregating populations. Twenty-two flavonoid QTLs were detected that accounted for 11–64% of the observed trait variations, only one QTL being common to both RIL sets. Sixteen of these QTLs were confirmed and coarsely mapped using heterogeneous inbred families (HIFs). Three genes, namely TRANSPARENT TESTA (TT)7, TT15, and MYB12, were proposed to underlie their variations since the corresponding mutants and QTLs displayed similar specific flavonoid changes. Interestingly, most loci did not co-localize with any gene known to be involved in flavonoid metabolism. This latter result shows that novel functions have yet to be characterized and paves the way for their isolation. PMID:22442426
C-Glycosyltransferases catalyzing the formation of di-C-glucosyl flavonoids in citrus plants.
Ito, Takamitsu; Fujimoto, Shunsuke; Suito, Fumiaki; Shimosaka, Makoto; Taguchi, Goro
2017-07-01
Citrus plants accumulate many kinds of flavonoids, including di-C-glucosyl flavonoids, which have attracted considerable attention due to their health benefits. However, the biosynthesis of di-C-glucosyl flavonoids has not been elucidated at the molecular level. Here, we identified the C-glycosyltransferases (CGTs) FcCGT (UGT708G1) and CuCGT (UGT708G2) as the primary enzymes involved in the biosynthesis of di-C-glucosyl flavonoids in the citrus plants kumquat (Fortunella crassifolia) and satsuma mandarin (Citrus unshiu), respectively. The amino acid sequences of these CGTs were 98% identical, indicating that CGT genes are highly conserved in the citrus family. The recombinant enzymes FcCGT and CuCGT utilized 2-hydroxyflavanones, dihydrochalcone, and their mono-C-glucosides as sugar acceptors and produced corresponding di-C-glucosides. The K m and k cat values of FcCGT toward phloretin were <0.5 μm and 12.0 sec -1 , and those toward nothofagin (3'-C-glucosylphloretin) were 14.4 μm and 5.3 sec -1 , respectively; these values are comparable with those of other glycosyltransferases reported to date. Transcripts of both CGT genes were found to concentrate in various plant organs, and particularly in leaves. Our results suggest that di-C-glucosyl flavonoid biosynthesis proceeds via a single enzyme using either 2-hydroxyflavanones or phloretin as a substrate in citrus plants. In addition, Escherichia coli cells expressing CGT genes were found to be capable of producing di-C-glucosyl flavonoids, which is promising for commercial production of these valuable compounds. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Rojas Rodas, Felipe; Di, Shaokang; Murai, Yoshinori; Iwashina, Tsukasa; Sugawara, Satoko; Mori, Tetsuya; Nakabayashi, Ryo; Yonekura-Sakakibara, Keiko; Saito, Kazuki; Takahashi, Ryoji
2016-11-01
Flavonoids are important secondary metabolites in plants. Sugar-sugar glycosyltransferases are involved in the final step of flavonoid biosynthesis and contribute to the structural diversity of flavonoids. This manuscript describes the first cloning of a sugar-sugar glucosyltransferase gene in the UGT family that attaches glucose to the 6″-position of sugar bound to a flavonol. The results provide a glimpse on the possible evolution of sugar-sugar glycosyltransferase genes and identify putative amino acids responsible for the recognition of the hydroxyl group of the sugar moiety and specification of sugar. A scheme for the genetic control of flavonol glycoside biosynthesis is proposed. Flavonol glycosides (FGs) are predominant in soybean leaves and they show substantial differences among genotypes. In previous studies, we identified two flavonoid glycoside glycosyltransferase genes that segregated in recombinant inbred lines developed from a cross between cultivars Nezumisaya and Harosoy; one was responsible for the attachment of glucose to the 2″-position of glucose or galactose that is bound to the 3-position of kaempferol and the other was involved in the attachment of glucose to the 6″-position. This study was conducted to clone and characterize the 6″-glucosyltransferase gene. Linkage mapping indicated that the gene was located in the molecular linkage group I (chromosome 20). Based on the genome sequence, we cloned a candidate cDNA, GmF3G6"Gt from Harosoy but the corresponding cDNA could not be amplified by PCR from Nezumisaya. The coding region of GmF3G6″Gt in Harosoy is 1386 bp long encoding 462 amino acids. This gene was not expressed in leaves of Nezumisaya. The GmF3G6″Gt recombinant protein converted UDP-glucose and kaempferol 3-O-glucoside or kaempferol 3-O-galactoside to kaempferol 3-O-glucosyl-(1→6)-glucoside or kaempferol 3-O-glucosyl-(1→6)-galactoside, respectively. These results indicate that GmF3G6″Gt encodes a flavonol 3-O-glucoside/galactoside (1→6) glucosyltransferase and corresponds to the Fg1 gene. GmF3G6″Gt had an amino acid similarity of 82 % with GmF3G6″Rt encoding flavonol 3-O-glucoside/galactoside (1→6) rhamnosyltransferase, suggesting a recent evolutionary divergence of the two genes. This may be the first cloning of a sugar-sugar glucosyltransferase gene in the UGT family that attaches glucose to the 6″-position of sugar bound to a flavonol. A scheme for the control of FG biosynthesis is proposed.
Fine-tuning of the flavonoid and monolignol pathways during apple early fruit development.
Baldi, Paolo; Moser, Mirko; Brilli, Matteo; Vrhovsek, Urska; Pindo, Massimo; Si-Ammour, Azeddine
2017-05-01
A coordinated regulation of different branches of the flavonoid pathway was highlighted that may contribute to elucidate the role of this important class of compounds during the early stages of apple fruit development. Apple (Malus × domestica Borkh.) is an economically important fruit appreciated for its organoleptic characteristics and its benefits for human health. The first stages after fruit set represent a very important and still poorly characterized developmental process. To enable the profiling of genes involved in apple early fruit development, we combined the suppression subtractive hybridization (SSH) protocol to next-generation sequencing. We identified and characterized genes induced and repressed during fruit development in the apple cultivar 'Golden Delicious'. Our results showed an opposite regulation of genes coding for enzymes belonging to flavonoid and monolignol pathways, with a strong induction of the former and a simultaneous repression of the latter. Two isoforms of phenylalanine ammonia-lyase and 4-coumarate:CoA ligase, key enzymes located at the branching point between flavonoid and monolignol pathways, showed opposite expression patterns during the period in analysis, suggesting a possible regulation mechanism. A targeted metabolomic analysis supported the SSH results and revealed an accumulation of the monomers catechin and epicatechin as well as several forms of procyanidin oligomers in apple fruitlets starting early after anthesis, together with a decreased production of other classes of flavonoids such as some flavonols and the dihydrochalcone phlorizin. Moreover, gene expression and metabolites accumulation of 'Golden Delicious' were compared to a wild apple genotype of Manchurian crabapple (Malus mandshurica (Maxim.) Kom.). Significant differences in both gene expression and metabolites accumulation were found between the two genotypes.
The Flavonoid Pathway Regulates the Petal Colors of Cotton Flower
Tan, Jiafu; Wang, Maojun; Tu, Lili; Nie, Yichun; Lin, Yongjun; Zhang, Xianlong
2013-01-01
Although biochemists and geneticists have studied the cotton flower for more than one century, little is known about the molecular mechanisms underlying the dramatic color change that occurs during its short developmental life following blooming. Through the analysis of world cotton germplasms, we found that all of the flowers underwent color changes post-anthesis, but there is a diverse array of petal colors among cotton species, with cream, yellow and red colors dominating the color scheme. Genetic and biochemical analyses indicated that both the original cream and red colors and the color changes post-anthesis were related to flavonoid content. The anthocyanin content and the expression of biosynthesis genes were both increased from blooming to one day post-anthesis (DPA) when the flower was withering and undergoing abscission. Our results indicated that the color changes and flavonoid biosynthesis of cotton flowers were precisely controlled and genetically regulated. In addition, flavonol synthase (FLS) genes involved in flavonol biosynthesis showed specific expression at 11 am when the flowers were fully opened. The anthocyanidin reductase (ANR) genes, which are responsible for proanthocyanidins biosynthesis, showed the highest expression at 6 pm on 0 DPA, when the flowers were withered. Light showed primary, moderate and little effects on flavonol, anthocyanin and proanthocyanidin biosynthesis, respectively. Flavonol biosynthesis was in response to light exposure, while anthocyanin biosynthesis was involved in flower color changes. Further expression analysis of flavonoid genes in flowers of wild type and a flavanone 3-hydroxylase (F3H) silenced line showed that the development of cotton flower color was controlled by a complex interaction between genes and light. These results present novel information regarding flavonoids metabolism and flower development. PMID:23951318
Kenny, Thomas P; Keen, Carl L; Jones, Paul; Kung, Hsing-Jien; Schmitz, Harold H; Gershwin, M Eric
2004-03-01
Flavonoids isolated from cocoa have biological activities relevant to oxidant defenses, vascular health, tumor suppression, and immune function. The intake of certain dietary flavonoids, along with other dietary substances such as tocopherols, ascorbate, and carotenoids, is epidemiologically associated with a reduced risk of cardiovascular disease. Flavonoids have also been shown to modulate tumor pathology in vitro and in animal models. We took advantage of the conserved sequences found in tyrosine kinases to study the influence of cocoa fractions and controls on gene expression. We report that the pentameric procyanidin (molecular weight of 1442 daltons) fraction isolated from cocoa was a potent inhibitor of tyrosine kinase ErbB2 expression, a receptor important in angiogenesis regulation. Consistent with this primary observation, the cocoa flavonoid fraction also suppressed human aortic endothelial cell (HAEC) growth and decreased expression of two tyrosine kinases responsive to ErbB2 modulation, namely VEGFR-2/KDR and MapK 11/p38beta2. These inhibitory effects were observed when HAECs were treated with the flavonol fraction (molecular weight 280 daltons) isolated from cocoa, which comprise the structural subunits from which the procyanidin flavonoid subclass is biosynthetically constructed. Down-regulation of ErbB2 and inhibition of HAEC growth by cocoa procyanidins may have several downstream implications, including reduced vascular endothelial growth factor (VEGF) activity and angiogenic activity associated with tumor pathology. These results suggest specific dietary flavonoids are capable of selectively inhibiting ErbB2 and therefore may offer important insight into the design of therapeutic agents that target tumors overexpressing ErbB2.
Flavonoid Bioavailability and Attempts for Bioavailability Enhancement
Thilakarathna, Surangi H.; Rupasinghe, H. P. Vasantha
2013-01-01
Flavonoids are a group of phytochemicals that have shown numerous health effects and have therefore been studied extensively. Of the six common food flavonoid classes, flavonols are distributed ubiquitously among different plant foods whereas appreciable amounts of isoflavones are found in leguminous plant-based foods. Flavonoids have shown promising health promoting effects in human cell culture, experimental animal and human clinical studies. They have shown antioxidant, hypocholesterolemic, anti-inflammatory effects as well as ability to modulate cell signaling and gene expression related disease development. Low bioavailability of flavonoids has been a concern as it can limit or even hinder their health effects. Therefore, attempts to improve their bioavailability in order to improve the efficacy of flavonoids are being studied. Further investigations on bioavailability are warranted as it is a determining factor for flavonoid biological activity. PMID:23989753
Wright, Bernice; Watson, Kimberly A; McGuffin, Liam J; Lovegrove, Julie A; Gibbins, Jonathan M
2015-11-01
Flavonoids reduce cardiovascular disease risk through anti-inflammatory, anti-coagulant and anti-platelet actions. One key flavonoid inhibitory mechanism is blocking kinase activity that drives these processes. Flavonoids attenuate activities of kinases including phosphoinositide-3-kinase, Fyn, Lyn, Src, Syk, PKC, PIM1/2, ERK, JNK and PKA. X-ray crystallographic analyses of kinase-flavonoid complexes show that flavonoid ring systems and their hydroxyl substitutions are important structural features for their binding to kinases. A clearer understanding of structural interactions of flavonoids with kinases is necessary to allow construction of more potent and selective counterparts. We examined flavonoid (quercetin, apigenin and catechin) interactions with Src family kinases (Lyn, Fyn and Hck) applying the Sybyl docking algorithm and GRID. A homology model (Lyn) was used in our analyses to demonstrate that high-quality predicted kinase structures are suitable for flavonoid computational studies. Our docking results revealed potential hydrogen bond contacts between flavonoid hydroxyls and kinase catalytic site residues. Identification of plausible contacts indicated that quercetin formed the most energetically stable interactions, apigenin lacked hydroxyl groups necessary for important contacts and the non-planar structure of catechin could not support predicted hydrogen bonding patterns. GRID analysis using a hydroxyl functional group supported docking results. Based on these findings, we predicted that quercetin would inhibit activities of Src family kinases with greater potency than apigenin and catechin. We validated this prediction using in vitro kinase assays. We conclude that our study can be used as a basis to construct virtual flavonoid interaction libraries to guide drug discovery using these compounds as molecular templates. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Usman Amin, Muhammad; Khurram, Muhammad; Khan, Taj Ali; Faidah, Hani S.; Ullah Shah, Zia; Ur Rahman, Shafiq; Haseeb, Abdul; Ilyas, Muhammad; Ullah, Naseem; Umar Khayam, Sahibzada Muhammad; Iriti, Marcello
2016-01-01
The present study was designed to evaluate the effects of flavonoids luteolin (L) and quercetin + luteolin (Q + L) in combination with commonly used antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates and S. aureus (ATCC 43300). Minimum inhibitory concentrations (MICs) of L and Q + L, as well as the MICs of flavonoids in combination with antibiotics were determined and results showed an increased activity of flavonoids with antibiotics. The synergistic, additive, or antagonistic relationships between flavonoids (L and Q + L) and antibiotics were also evaluated, and additive and synergistic effects were observed for some antibiotic + flavonoid combinations. In addition, some combinations were also found to damage the bacterial cytoplasmic membrane, as assessed through potassium leakage assay. The effects of flavonoids and flavonoids + antibiotics on mecA gene mutations were also tested, and no functional variation was detected in the coding region. PMID:27879665
Deterrent activity of hops flavonoids and their derivatives against stored product pests.
Jackowski, J; Popłoński, J; Twardowska, K; Magiera-Dulewicz, J; Hurej, M; Huszcza, E
2017-10-01
Five flavonoids from hops, two of their derivatives, along with naringenin used as a model compound, were tested for their antifeedant activity against three coleopteran stored product pests: Sitophilus granarius L., Tribolium confusum Duv. and Trogoderma granarium Everts. The introduction, into the tested flavonoid molecules, of additional structural fragments such as prenyl or dimethylpyran moiety, is proposed to significantly alter the deterrent activity of the compounds. The prenyl moiety in flavonoids increased the deterrent activity of these compounds in all three of the grain feeding species used in the tests. It is also concluded that the introduction of dimethylpyran moiety to the flavonoid structure increases its deterrent activity in S. granarius and T. confusum, but in one of the test insects, T. granarium, an increased feeding was observed in response to the introduction of dimethylpyran moiety to the flavonoid structure.
Darsandhari, Sumangala; Dhakal, Dipesh; Shrestha, Biplav; Parajuli, Prakash; Seo, Joo-Hyun; Kim, Tae-Su; Sohng, Jae Kyung
2018-06-01
A flavonoid comprises polyphenol compounds with pronounced antiviral, antioxidant, anticarcinogenic, and anti-inflammatory effects. The flavonoid modification by methylation provides a greater stability and improved pharmacokinetic properties. The methyltransferase from plants or microorganisms is responsible for such substrate modifications in a regiospecific or a promiscuous manner. GerMIII, originally characterized as a putative methyltransferase in a dihydrochalcomycin biosynthetic gene cluster of the Streptomyces sp. KCTC 0041BP, was tested for the methylation of the substrates of diverse chemical structures. Among the various tested substrates, flavonoids emerged as the favored substrates for methylation. Further, among the flavonoids, quercetin is the most favorable substrate, followed by luteolin, myricetin, quercetin 3-O-β-D-glucoside, and fisetin, while only a single product was formed in each case. The products were confirmed by HPLC and mass-spectrometry analyses. A detailed NMR spectrometric analysis of the methylated quercetin and luteolin derivatives confirmed the regiospecific methylation at the 4'-OH position. Modeling and molecular docking provided further insight regarding the most favorable mechanism and substrate architecture for the enzymatic catalysis. Accordingly, a double bond between the C 2 and the C 3 and a single-ring-appended conjugate-hydroxyl group are crucial for the favorable enzymatic conversions of the GerMIII catalysis. Thus, in this study, the enzymatic properties of GerMIII and a mechanistic overview of the regiospecific modification that was implemented for the acceptance of quercetin as the most favorable substrate are presented. Copyright © 2018 Elsevier Inc. All rights reserved.
Combinatorial Synthesis of Structurally Diverse Triazole-Bridged Flavonoid Dimers and Trimers.
Sum, Tze Han; Sum, Tze Jing; Galloway, Warren R J D; Collins, Súil; Twigg, David G; Hollfelder, Florian; Spring, David R
2016-09-16
Flavonoids are a large family of compounds associated with a broad range of biologically useful properties. In recent years, synthetic compounds that contain two flavonoid units linked together have attracted attention in drug discovery and development projects. Numerous flavonoid dimer systems, incorporating a range of monomers attached via different linkers, have been reported to exhibit interesting bioactivities. From a medicinal chemistry perspective, the 1,2,3-triazole ring system has been identified as a particularly attractive linker moiety in dimeric derivatives (owing to several favourable attributes including proven biological relevance and metabolic stability) and triazole-bridged flavonoid dimers possessing anticancer and antimalarial activities have recently been reported. However, there are relatively few examples of libraries of triazole-bridged flavonoid dimers and the diversity of flavonoid subunits present within these is typically limited. Thus, this compound type arguably remains underexplored within drug discovery. Herein, we report a modular strategy for the synthesis of novel and biologically interesting triazole-bridged flavonoid heterodimers and also very rare heterotrimers from readily available starting materials. Application of this strategy has enabled step-efficient and systematic access to a library of structurally diverse compounds of this sort, with a variety of monomer units belonging to six different structural subclasses of flavonoid successfully incorporated.
Fatima, Tahira; Kesari, Vigya; Watt, Ian; Wishart, David; Todd, James F; Schroeder, William R; Paliyath, Gopinadhan; Krishna, Priti
2015-10-01
In this study, phenolic compounds were analyzed in developing berries of four Canadian grown sea buckthorn (Hippophae rhamnoides L.) cultivars ('RC-4', 'E6590', 'Chuyskaya' and 'Golden Rain') and in leaves of two of these cultivars. Among phenolic acids, p-coumaric acid was the highest in berries, while gallic acid was predominant in leaves. In the flavonoid class of compounds, myricetin/rutin, kaempferol, quercetin and isorhamnetin were detected in berries and leaves. Berries of the 'RC-4' cultivar had approximately ⩾ 2-fold higher levels of myricetin and quercetin at 17.5mg and 17.2 mg/100 g FW, respectively, than the other cultivars. The flavonoid content in leaves was considerably more than in berries with rutin and quercetin levels up to 135 mg and 105 mg/100 g FW, respectively. Orthologs of 15 flavonoid biosynthesis pathway genes were identified within the transcriptome of sea buckthorn mature seeds. Semi-quantitative RT-PCR analysis of these genes in developing berries indicated relatively higher expression of genes such as CHS, F3'H, DFR and LDOX in the 'RC-4' cultivar than in the 'Chuyskaya' cultivar. Vitamin C levels in ripened berries of the Canadian cultivars were on the high end of the concentration range reported for most other sea buckthorn cultivars. Orthologs of genes involved in vitamins C and E biosynthesis were also identified, expanding the genomic resources for this nutritionally important plant. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korte, Andrew R.; Song, Zhihong; Nikolau, Basil J.
Laser desorption/ionization (LDI) mass spectrometry imaging (MSI) was used to acquire chemical images of flavonoid metabolites on the surface of wild-type and mutant (tt7) Arabidopsis thaliana flowers. Flavonoids were localized to the petals and carpels of flowers, with tissue heterogeneity in the petals. Specifically, kaempferol and/or its glycosides were abundant in the distal region of petals and quercetin and its downstream flavonoids were highly enriched in the more proximal region of petals. As a result of a mutation in the TT7 gene which blocks the conversion of dihydrokaempferol to dihydroquercetin, the downstream metabolites, quercetin, isohamnetin, and their glycosides, were notmore » observed in the mutant flowers. Instead, the metabolites in an alternative pathway, kaempferol and/or its glycosides, were as highly abundant on the proximal region of the petals as in the distal region. In addition, the combined flavonoid amounts on the proximal region of petals in the wild-type are almost equivalent to the amounts of kaempferol and/or its glycosides in the mutant. This strongly suggests that the expression of the TT7 gene is localized on the proximal part of the petal while the other genes in the upper stream pathway are evenly expressed throughout the petal. Most importantly, this work demonstrates MSI of metabolites can be utilized for the localization of gene expression.« less
In Vitro Phytotoxicity and Antioxidant Activity of Selected Flavonoids
De Martino, Laura; Mencherini, Teresa; Mancini, Emilia; Aquino, Rita Patrizia; De Almeida, Luiz Fernando Rolim; De Feo, Vincenzo
2012-01-01
The knowledge of flavonoids involved in plant-plant interactions and their mechanisms of action are poor and, moreover, the structural characteristics required for these biological activities are scarcely known. The objective of this work was to study the possible in vitro phytotoxic effects of 27 flavonoids on the germination and early radical growth of Raphanus sativus L. and Lepidium sativum L., with the aim to evaluate the possible structure/activity relationship. Moreover, the antioxidant activity of the same compounds was also evaluated. Generally, in response to various tested flavonoids, germination was only slightly affected, whereas significant differences were observed in the activity of the various tested flavonoids against radical elongation. DPPH test confirms the antioxidant activity of luteolin, quercetin, catechol, morin, and catechin. The biological activity recorded is discussed in relation to the structure of compounds and their capability to interact with cell structures and physiology. No correlation was found between phytotoxic and antioxidant activities. PMID:22754304
Shitan, Nobukazu; Kamimoto, Yoshihisa; Minami, Shota; Kubo, Mizuki; Ito, Kozue; Moriyasu, Masataka; Yazaki, Kazufumi
2011-01-01
Yeast functional screening with a Sophora flavescens cDNA library was performed to identify the genes involved in the tolerant mechanism to the self-producing prenylated flavonoid sophoraflavanone G (SFG). One cDNA, which conferred SFG tolerance, encoded a regulatory particle triple-A ATPase 2 (SfRPT2), a member of the 26S proteasome subunit. The yeast transformant of SfRPT2 showed reduced SFG accumulation in the cells.
Brown, J E; Khodr, H; Hider, R C; Rice-Evans, C A
1998-01-01
The flavonoids constitute a large group of polyphenolic phytochemicals with antioxidant properties in vitro. The interactions of four structurally related flavonoids (quercetin, kaempferol, rutin and luteolin) with Cu2+ ions were investigated in terms of the extent to which they undergo complex formation through chelation or modification through oxidation, as well as in their structural dependence. The ortho 3',4'-dihydroxy substitution in the B ring is shown to be important for Cu2+-chelate formation, thereby influencing the antioxidant activity. The presence of a 3-hydroxy group in the flavonoid structure enhances the oxidation of quercetin and kaempferol, whereas luteolin and rutin, each lacking the 3-hydroxy group, do not oxidize as readily in the presence of Cu2+ ions. The results also demonstrate that the reactivities of the flavonoids in protecting low-density lipoprotein (LDL) against Cu2+ ion-induced oxidation are dependent on their structural properties in terms of the response of the particular flavonoid to Cu2+ ions, whether chelation or oxidation, their partitioning abilities between the aqueous compartment and the lipophilic environment within the LDL particle, and their hydrogen-donating antioxidant properties. PMID:9494082
Chaudhary, Priyanka R; Bang, Haejeen; Jayaprakasha, Guddadarangavvanahally K; Patil, Bhimanagouda S
2016-11-30
In the current study, the phytochemical contents and expression of genes involved in flavonoid biosynthesis in Rio Red grapefruit were studied at different developmental and maturity stages for the first time. Grapefruit were harvested in June, August, November, January, and April and analyzed for the levels of carotenoids, vitamin C, limonoids, flavonoids, and furocoumarins by HPLC. In addition, genes encoding for phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and 1,2-rhamnosyltransferase (2RT) were isolated, and their expression in grapefruit juice vesicles was studied. Fruit maturity had significant influence on the expression of the genes, with PAL, CHS, and CHI having higher expression in immature fruits (June), whereas 2RT expression was higher in mature fruits (November and January). The levels of flavonoids (except naringin and poncirin), vitamin C, and furocoumarins gradually decreased from June to April. Furthermore, limonin levels sharply decreased in January. Lycopene decreased whereas β-carotene gradually increased with fruit maturity. Naringin did not exactly follow the pattern of 2RT or of PAL, CHS, and CHI expression, indicating that the four genes may have complementary effects on the level of naringin. Nevertheless, of the marketable fruit stages, early-season grapefruits harvested in November contained more beneficial phytochemicals as compared to mid- and late-season fruits harvested in January and April, respectively.
Bhattacharjee, Snehasish; Chakraborty, Sandipan; Sengupta, Pradeep K; Bhowmik, Sudipta
2016-09-01
Guanine-rich sequences have the propensity to fold into a four-stranded DNA structure known as a G-quadruplex (G4). G4 forming sequences are abundant in the promoter region of several oncogenes and become a key target for anticancer drug binding. Here we have studied the interactions of two structurally similar dietary plant flavonoids fisetin and naringenin with G4 as well as double stranded (duplex) DNA by using different spectroscopic and modeling techniques. Our study demonstrates the differential binding ability of the two flavonoids with G4 and duplex DNA. Fisetin more strongly interacts with parallel G4 structure than duplex DNA, whereas naringenin shows stronger binding affinity to duplex rather than G4 DNA. Molecular docking results also corroborate our spectroscopic results, and it was found that both of the ligands are stacked externally in the G4 DNA structure. C-ring planarity of the flavonoid structure appears to be a crucial factor for preferential G4 DNA recognition of flavonoids. The goal of this study is to explore the critical effects of small differences in the structure of closely similar chemical classes of such small molecules (flavonoids) which lead to the contrasting binding properties with the two different forms of DNA. The resulting insights may be expected to facilitate the designing of the highly selective G4 DNA binders based on flavonoid scaffolds.
Ishiwa, J; Sato, T; Mimaki, Y; Sashida, Y; Yano, M; Ito, A
2000-01-01
Flavonoids including nobiletin are known to exert many biological actions in vitro. We investigated the chondroprotective effect of citrus flavonoids, especially nobiletin, using cultured rabbit synovial fibroblasts and articular chondrocytes. We examined the effects of citrus flavonoids on the production and gene expression of matrix metalloproteinases (MMP) and prostaglandin E2 (PGE2)production in rabbit synovial fibroblasts. Six flavonoids isolated from Citrus depressa Rutaceae including tangeretin, 6-demethoxytangeretin, nobiletin, 5-demethylnobiletin, 6-demethoxynobiletin, and sinensetin suppressed the interleukin 1 (IL-1) induced production of proMMP-9/progelatinase B in rabbit synovial cells in a dose dependent manner (<64 microM); nobiletin most effectively suppressed proMMP-9 production along with the decrease in its mRNA. Nobiletin also reduced IL-1 induced production of PGE2 in the synovial cells, but did not modify the synthesis of total protein. These suppressive effects of nobiletin were also observed in rabbit articular chondrocytes. Nobiletin inhibited proliferation of rabbit synovial fibroblasts in the growth phase. These results suggest nobiletin is a novel antiinflammatory candidate that has the potential to inhibit PGE2 production, matrix degradation of the articular cartilage, and pannus formation in osteoarthritis and rheumatoid arthritis.
Production of 7-O-Methyl Aromadendrin, a Medicinally Valuable Flavonoid, in Escherichia coli
Malla, Sailesh; Koffas, Mattheos A. G.; Kazlauskas, Romas J.
2012-01-01
7-O-Methyl aromadendrin (7-OMA) is an aglycone moiety of one of the important flavonoid-glycosides found in several plants, such as Populus alba and Eucalyptus maculata, with various medicinal applications. To produce such valuable natural flavonoids in large quantity, an Escherichia coli cell factory has been developed to employ various plant biosynthetic pathways. Here, we report the generation of 7-OMA from its precursor, p-coumaric acid, in E. coli for the first time. Primarily, naringenin (NRN) (flavanone) synthesis was achieved by feeding p-coumaric acid and reconstructing the plant biosynthetic pathway by introducing the following structural genes: 4-coumarate–coenzyme A (CoA) ligase from Petroselinum crispum, chalcone synthase from Petunia hybrida, and chalcone isomerase from Medicago sativa. In order to increase the availability of malonyl-CoA, a critical precursor of 7-OMA, genes for the acyl-CoA carboxylase α and β subunits (nfa9890 and nfa9940), biotin ligase (nfa9950), and acetyl-CoA synthetase (nfa3550) from Nocardia farcinica were also introduced. Thus, produced NRN was hydroxylated at position 3 by flavanone-3-hydroxylase from Arabidopsis thaliana, which was further methylated at position 7 to produce 7-OMA in the presence of 7-O-methyltransferase from Streptomyces avermitilis. Dihydrokaempferol (DHK) (aromadendrin) and sakuranetin (SKN) were produced as intermediate products. Overexpression of the genes for flavanone biosynthesis and modification pathways, along with malonyl-CoA overproduction in E. coli, produced 2.7 mg/liter (8.9 μM) 7-OMA upon supplementation with 500 μM p-coumaric acid in 24 h, whereas the strain expressing only the flavanone modification enzymes yielded 30 mg/liter (99.2 μM) 7-OMA from 500 μM NRN in 24 h. PMID:22101053
Catola, Stefano; Castagna, Antonella; Santin, Marco; Calvenzani, Valentina; Petroni, Katia; Mazzucato, Andrea; Ranieri, Annamaria
2017-08-01
The introgression of the A ft allele into domesticated tomato induced a shift from flavonol to anthocyanin production in response to UV-B radiation, while the hp - 1 allele negatively influenced the response of flavonoid biosynthesis to UV-B. Introgression of the dominant allele Anthocyanin fruit (Aft) from Solanum chilense induces anthocyanin accumulation in the peel of tomato (Solanum lycopersicum L.) fruit. UV-B radiation can influence plant secondary metabolism regulating the expression of several genes, among which those involved in flavonoid biosynthesis. Here, we investigated whether post-harvest UV-B treatment could up-regulate flavonoid production in tomato fruits and whether the Aft allele could affect flavonoid biosynthesis under UV-B radiation. Mature green fruits of an anthocyanin-rich tomato mutant line (SA206) and of its wild-type reference, cv. Roma, were daily subjected to post-harvest UV-B treatment until full ripening. Up-regulation of CHS and CHI transcription by UV-B treatment induced flavonoid accumulation in the peel of cv. Roma. Conversely, UV-B decreased the total flavonoid content and CHS transcript levels in the SA206 peel. SA206 being a double mutant containing also hp-1 allele, we investigated also the behavior of hp-1 fruit. The decreased peel flavonoid accumulation and gene transcription in response to UV-B suggest that hp-1 allele is involved in the marked down-regulation of the flavonoid biosynthesis observed in SA206 fruit. Interestingly, in SA206, UV-B radiation promoted the synthesis of delphinidin, petunidin, and malvidin by increasing F3'5'H and DFR transcription, but it decreased rutin production, suggesting a switch from flavonols to anthocyanins. Finally, although UV-B radiation does not reach the inner fruit tissues, it down-regulated flavonoid biosynthesis in the flesh of both genotypes. This study provides, for the first time, evidence that the presence of the functional Aft allele, under UV-B radiation, redirects flavonoid synthesis towards anthocyanin production and suggests that the hp-1 allele negatively influences the response of flavonoid biosynthesis to UV-B.
Distinct, crucial roles of flavonoids during legume nodulation.
Subramanian, Senthil; Stacey, Gary; Yu, Oliver
2007-07-01
RNA interference-mediated silencing of the key flavonoid and isoflavone biosynthesis enzyme, respectively, by two different research groups has provided direct genetic evidence for the essential roles that these compounds play in nodulation. Anton Wasson et al. have shown that flavonoids are essential for localized auxin transport inhibition during nodulation in the indeterminate legume Medicago truncatula. By contrast, Senthil Subramanian et al. have shown that isoflavones are essential for endogenous nod gene induction in the determinate legume soybean.
Zhang, Qunfeng; Liu, Meiya; Ruan, Jianyun
2017-03-20
As the predominant secondary metabolic pathway in tea plants, flavonoid biosynthesis increases with increasing temperature and illumination. However, the concentration of most flavonoids decreases greatly in light-sensitive tea leaves when they are exposed to light, which further improves tea quality. To reveal the metabolism and potential functions of flavonoids in tea leaves, a natural light-sensitive tea mutant (Huangjinya) cultivated under different light conditions was subjected to metabolomics analysis. The results showed that chlorotic tea leaves accumulated large amounts of flavonoids with ortho-dihydroxylated B-rings (e.g., catechin gallate, quercetin and its glycosides etc.), whereas total flavonoids (e.g., myricetrin glycoside, epigallocatechin gallate etc.) were considerably reduced, suggesting that the flavonoid components generated from different metabolic branches played different roles in tea leaves. Furthermore, the intracellular localization of flavonoids and the expression pattern of genes involved in secondary metabolic pathways indicate a potential photoprotective function of dihydroxylated flavonoids in light-sensitive tea leaves. Our results suggest that reactive oxygen species (ROS) scavenging and the antioxidation effects of flavonoids help chlorotic tea plants survive under high light stress, providing new evidence to clarify the functional roles of flavonoids, which accumulate to high levels in tea plants. Moreover, flavonoids with ortho-dihydroxylated B-rings played a greater role in photo-protection to improve the acclimatization of tea plants.
31P NMR Characterization of Tricin and Its Structurally Similar Flavonoids
Li, Mi; Pu, Yunqiao; Tschaplinski, Timothy J.; ...
2017-04-24
Tricin, a flavonoid metabolite, has been recently identified as a component of lignin in select monocot plants. This finding has initiated consideration on updating the lignin biosynthesis pathway. Here, we report a rapid method of determination of tricin in corn stover lignin, based on 31P nuclear magnetic resonance (NMR) spectroscopy by phosphitylating with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP). Nine other flavonoids, with similar structure to tricin, have also been examined using the current method. The application of 31P NMR enables rapid identification of tricin-like flavonoids in the heterogeneous lignin polymer. The well resolved spectroscopic peaks from these derivatized flavonoids and lignin functional groupsmore » provide important information for the determination of flavonoids individually or their association with lignin.« less
31P NMR Characterization of Tricin and Its Structurally Similar Flavonoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mi; Pu, Yunqiao; Tschaplinski, Timothy J.
Tricin, a flavonoid metabolite, has been recently identified as a component of lignin in select monocot plants. This finding has initiated consideration on updating the lignin biosynthesis pathway. Here, we report a rapid method of determination of tricin in corn stover lignin, based on 31P nuclear magnetic resonance (NMR) spectroscopy by phosphitylating with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP). Nine other flavonoids, with similar structure to tricin, have also been examined using the current method. The application of 31P NMR enables rapid identification of tricin-like flavonoids in the heterogeneous lignin polymer. The well resolved spectroscopic peaks from these derivatized flavonoids and lignin functional groupsmore » provide important information for the determination of flavonoids individually or their association with lignin.« less
Kahali, Bhaskar; Marquez, Stefanie B.; Thompson, Kenneth W.; Yu, Jinlong; Gramling, Sarah J.B.; Lu, Li; Aponick, Aaron; Reisman, David
2014-01-01
Flavonoids have been extensively studied and are well documented to have anticancer effects, but it is not entirely known how they impact cellular mechanisms to elicit these effects. In the course of this study, we found that a variety of different flavonoids readily restored Brahma (BRM) in BRM-deficient cancer cell lines. Flavonoids from each of the six different structural groups were effective at inducing BRM expression as well as inhibiting growth in these BRM-deficient cancer cells. By blocking the induction of BRM with shRNA, we found that flavonoid-induced growth inhibition was BRM dependent. We also found that flavonoids can restore BRM functionality by reversing BRM acetylation. In addition, we observed that an array of natural flavonoid-containing products both induced BRM expression as well as deacetylated the BRM protein. We also tested two of the BRM-inducing flavonoids (Rutin and Diosmin) at both a low and a high dose on the development of tumors in an established murine lung cancer model. We found that these flavonoids effectively blocked development of adenomas in the lungs of wild-type mice but not in that of BRMnull mice. These data demonstrate that BRM expression and function are regulated by flavonoids and that functional BRM appears to be a prerequisite for the anticancer effects of flavonoids both in vitro and in vivo. PMID:24876151
2012-01-01
Background Buckwheat, consisting of two cultivated species Fagopyrum tataricum and F. esculentum, is the richest source of flavonoid rutin. Vegetative tissues of both the Fagopyrum species contain almost similar amount of rutin; however, rutin content in seed of F. tataricum are ~50 folds of that in seed of F. esculentum. In order to understand the molecular basis of high rutin content in F. tataricum, differential transcript profiling through cDNA-AFLP has been utilized to decipher what genetic factors in addition to flavonoid structural genes contribute to high rutin content of F. tataricum compared to F. esculentum. Results Differential transcript profiling through cDNA-AFLP in seed maturing stages (inflorescence to seed maturation) with 32 primer combinations generated total of 509 transcript fragments (TDFs). 167 TDFs were then eluted, cloned and sequenced from F. tataricum and F. esculentum. Categorization of TDFs on the basis of their presence/absence (qualitative variation) or differences in the amount of expression (quantitative variation) between both the Fagopyrum species showed that majority of variants are quantitative (64%). The TDFs represented genes controlling different biological processes such as basic and secondary metabolism (33%), regulation (18%), signal transduction (14%), transportation (13%), cellular organization (10%), and photosynthesis & energy (4%). Most of the TDFs except belonging to cellular metabolism showed relatively higher transcript abundance in F. tataricum over F. esculentum. Quantitative RT-PCR analysis of nine TDFs representing genes involved in regulation, metabolism, signaling and transport of secondary metabolites showed that all the tested nine TDFs (Ubiquitin protein ligase, ABC transporter, sugar transporter) except MYB 118 showed significantly higher expression in early seed formation stage (S7) of F. tataricum compared to F. esculentum. qRT-PCR results were found to be consistent with the cDNA-AFLP results. Conclusions The present study concludes that in addition to structural genes, other classes of genes such as regulators, modifiers and transporters are also important in biosynthesis and accumulation of flavonoid content in plants. cDNA-AFLP technology was successfully utilized to capture genes that are contributing to differences in rutin content in seed maturing stages of Fagopyrum species. Increased transcript abundance of TDFs during transition from flowers to seed maturation suggests their involvement not only in the higher rutin content of F. tataricum over F. esculentum but also in nutritional superiority of the former. PMID:22686486
Catalase inhibition an anti cancer property of flavonoids: A kinetic and structural evaluation.
Majumder, Debashis; Das, Asmita; Saha, Chabita
2017-11-01
Flavonoids are dietary polyphenols that present abundantly in fruits and vegetables. Flavonoids have inhibitory effects on enzymes and catalase is one among them. Catalase is a common enzyme ubiquitously found in all living organisms exposed to oxygen. It catalyzes the decomposition of hydrogen peroxide to water and oxygen (2H 2 O 2 →2H 2 O+O 2 ) . Inhibition of pure and cellular catalase from K562 cells by flavonoids was similar and exhibited the following efficacy; Myrecetin>Quercetin>Kaempferol and Quercetin>Luteolin>Apigenin demonstrating structure activity relationship. Circular Dichroism (CD) spectra have shown distinct loss in α-helical structure of the catalase on interaction with the flavonoids. All flavonoids inhibited the catalase activity by uncompetitive mechanism. The K m and V max values of pure catalase were observed to be 294mM -1 and 0.222mM -1 s -1 respectively and on inhibition with myrecetin the values decreased to a minimum of 23mM -1 and 0.014mM -1 s -1 respectively. Inhibition of catalase will directly results in increased production of Reactive Oxygen Species (ROS) and pro-oxidant property of flavonoids. This inhibition was reversed in presence of Cu 2+ ions because of the chelating affect of flavonoids. Copyright © 2017 Elsevier B.V. All rights reserved.
Gonzalez, Antonio; Brown, Matthew; Hatlestad, Greg; Akhavan, Neda; Smith, Tyler; Hembd, Austin; Moore, Joshua; Montes, David; Mosley, Trenell; Resendez, Juan; Nguyen, Huy; Wilson, Lyndsey; Campbell, Annabelle; Sudarshan, Duncan; Lloyd, Alan
2016-11-01
The brown color of Arabidopsis seeds is caused by the deposition of proanthocyanidins (PAs or condensed tannins) in their inner testa layer. A transcription factor complex consisting of TT2, TT8 and TTG1 controls expression of PA biosynthetic genes, just as similar TTG1-dependent complexes have been shown to control flavonoid pigment pathway gene expression in general. However, PA synthesis is controlled by at least one other gene. TTG2 mutants lack the pigmentation found in wild-type seeds, but produce other flavonoid compounds, such as anthocyanins in the shoot, suggesting that TTG2 regulates genes in the PA biosynthetic branch of the flavonoid pathway. We analyzed the expression of PA biosynthetic genes within the developing seeds of ttg2-1 and wild-type plants for potential TTG2 regulatory targets. We found that expression of TT12, encoding a MATE type transporter, is dependent on TTG2 and that TTG2 can bind to the upstream regulatory region of TT12 suggesting that TTG2 directly regulates TT12. Ectopic expression of TT12 in ttg2-1 plants partially restores seed coat pigmentation. Moreover, we show that TTG2 regulation of TT12 is dependent on TTG1 and that TTG1 and TTG2 physically interact. The observation that TTG1 interacts with TTG2, a WRKY type transcription factor, proposes the existence of a novel TTG1-containing complex, and an addendum to the existing paradigm of flavonoid pathway regulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Fallah, S; Karimi, A; Panahi, G; Gerayesh Nejad, S; Fadaei, R; Seifi, M
2016-03-31
The mechanistic basis for the biological properties of Morus alba flavonoid extract (MFE) and chemotherapy drug of doxorubicin on human colon cancer HT-29 cell line death are unknown. The effect of doxorubicin and flavonoid extract on colon cancer HT-29 cell line death and identification of APC gene expression and PARP concentration of HT-29 cell line were investigated. The results showed that flavonoid extract and doxorubicin induce a dose dependent cell death in HT-29 cell line. MFE and doxorubicin exert a cytotoxic effect on human colon cancer HT-29 cell line by probably promoting or induction of apoptosis.
Zhao, Daqiu; Jiang, Yao; Ning, Chuanlong; Meng, Jiasong; Lin, Shasha; Ding, Wen; Tao, Jun
2014-08-19
Herbaceous peony (Paeonia lactiflora Pall.) is a traditional flower in China and a wedding attractive flower in worldwide. In its flower colour, yellow is the rarest which is ten times the price of the other colours. However, the breeding of new yellow P. lactiflora varieties using genetic engineering is severely limited due to the little-known biochemical and molecular mechanisms underlying its characteristic formation. In this study, two cDNA libraries generated from P. lactiflora chimaera with red outer-petal and yellow inner-petal were sequenced using an Illumina HiSeq™ 2000 platform. 66,179,398 and 65,481,444 total raw reads from red outer-petal and yellow inner-petal cDNA libraries were generated, which were assembled into 61,431 and 70,359 Unigenes with an average length of 628 and 617 nt, respectively. Moreover, 61,408 non-redundant All-unigenes were obtained, with 37,511 All-unigenes (61.08%) annotated in public databases. In addition, 6,345 All-unigenes were differentially expressed between the red outer-petal and yellow inner-petal, with 3,899 up-regulated and 2,446 down-regulated All-unigenes, and the flavonoid metabolic pathway related to colour development was identified using the Kyoto encyclopedia of genes and genomes database (KEGG). Subsequently, the expression patterns of 10 candidate differentially expressed genes (DEGs) involved in the flavonoid metabolic pathway were examined, and flavonoids were qualitatively and quantitatively analysed. Numerous anthoxanthins (flavone and flavonol) and a few anthocyanins were detected in the yellow inner-petal, which were all lower than those in the red outer-petal due to the low expression levels of the phenylalanine ammonialyase gene (PlPAL), flavonol synthase gene (PlFLS), dihydroflavonol 4-reductase gene (PlDFR), anthocyanidin synthase gene (PlANS), anthocyanidin 3-O-glucosyltransferase gene (Pl3GT) and anthocyanidin 5-O-glucosyltransferase gene (Pl5GT). Transcriptome sequencing (RNA-Seq) analysis based on the high throughput sequencing technology was an efficient approach to identify critical genes in P. lactiflora and other non-model plants. The flavonoid metabolic pathway and glucide metabolic pathway were identified as relatived yellow formation in P. lactiflora, PlPAL, PlFLS, PlDFR, PlANS, Pl3GT and Pl5GT were selected as potential candidates involved in flavonoid metabolic pathway, which inducing inhibition of anthocyanin biosynthesis mediated yellow formation in P. lactiflora. This study could lay a theoretical foundation for breeding new yellow P. lactiflora varieties.
Dare, Andrew P; Tomes, Sumathi; Jones, Midori; McGhie, Tony K; Stevenson, David E; Johnson, Ross A; Greenwood, David R; Hellens, Roger P
2013-05-01
We have identified in apple (Malus × domestica) three chalcone synthase (CHS) genes. In order to understand the functional redundancy of this gene family RNA interference knockout lines were generated where all three of these genes were down-regulated. These lines had no detectable anthocyanins and radically reduced concentrations of dihydrochalcones and flavonoids. Surprisingly, down-regulation of CHS also led to major changes in plant development, resulting in plants with shortened internode lengths, smaller leaves and a greatly reduced growth rate. Microscopic analysis revealed that these phenotypic changes extended down to the cellular level, with CHS-silenced lines showing aberrant cellular organisation in the leaves. Fruit collected from one CHS-silenced line was smaller than the 'Royal Gala' controls, lacked flavonoids in the skin and flesh and also had changes in cell morphology. Auxin transport experiments showed increased rates of auxin transport in a CHS-silenced line compared with the 'Royal Gala' control. As flavonoids are well known to be key modulators of auxin transport, we hypothesise that the removal of almost all flavonoids from the plant by CHS silencing creates a vastly altered environment for auxin transport to occur and results in the observed changes in growth and development. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.
Pandey, Ashutosh; Misra, Prashant; Choudhary, Dharmendra; Yadav, Reena; Goel, Ridhi; Bhambhani, Sweta; Sanyal, Indraneel; Trivedi, Ritu; Kumar Trivedi, Prabodh
2015-01-01
Plants synthesize secondary metabolites, including flavonoids, which play important role during various stresses for their survival. These metabolites are also considered as health-protective components in functional foods. Flavonols, one of the important groups of flavonoids, apart from performing several roles in plants have been recognized as potent phytoceuticals for human health. Tomato fruits are deficient in this group of flavonoids and have been an important target for enhancing the accumulation of flavonols through genetic manipulations. In the present study, AtMYB12 transcription factor of the Arabidopsis has been expressed under constitutive promoter in tomato. Transgenic tomato lines exhibited enhanced accumulation of flavonols and chlorogenic acid (CGA) in leaf and fruit accompanied with elevated expression of phenylpropanoid pathway genes involved in flavonol biosynthesis. In addition, global gene expression analysis in leaf and fruit suggested that AtMYB12 modulates number of molecular processes including aromatic amino acid biosynthesis, phytohormone signaling and stress responses. Besides this, a differential modulation of the genes in fruits and leaves is reported in this study. Taken together, results demonstrate that modulation of primary carbon metabolism and other pathways by AtMYB12 in tomato may lead to sufficient substrate supply for enhanced content of phenolics in general and flavonols in particular. PMID:26206248
Unraveling the Mechanism Underlying the Glycosylation and Methylation of Anthocyanins in Peach1[C][W
Cheng, Jun; Wei, Guochao; Zhou, Hui; Gu, Chao; Vimolmangkang, Sornkanok; Liao, Liao; Han, Yuepeng
2014-01-01
Modification of anthocyanin plays an important role in increasing its stability in plants. Here, six anthocyanins were identified in peach (Prunus persica), and their structural diversity is attributed to glycosylation and methylation. Interestingly, peach is quite similar to the wild species Prunus ferganensis but differs from both Prunus davidiana and Prunus kansueasis in terms of anthocyanin composition in flowers. This indicates that peach is probably domesticated from P. ferganensis. Subsequently, genes responsible for both methylation and glycosylation of anthocyanins were identified, and their spatiotemporal expression results in different patterns of anthocyanin accumulation in flowers, leaves, and fruits. Two tandem-duplicated genes encoding flavonoid 3-O-glycosyltransferase (F3GT) in peach, PpUGT78A1 and PpUGT78A2, showed different activity toward anthocyanin, providing an example of divergent evolution of F3GT genes in plants. Two genes encoding anthocyanin O-methyltransferase (AOMT), PpAOMT1 and PpAOMT2, are expressed in leaves and flowers, but only PpAOMT2 is responsible for the O-methylation of anthocyanins at the 3′ position in peach. In addition, our study reveals a novel branch of UGT78 genes in plants that lack the highly conserved intron 2 of the UGT gene family, with a great variation of the amino acid residue at position 22 of the plant secondary product glycosyltransferase box. Our results not only provide insights into the mechanisms underlying anthocyanin glycosylation and methylation in peach but will also aid in future attempts to manipulate flavonoid biosynthesis in peach as well as in other plants. PMID:25106821
FlavonoidSearch: A system for comprehensive flavonoid annotation by mass spectrometry.
Akimoto, Nayumi; Ara, Takeshi; Nakajima, Daisuke; Suda, Kunihiro; Ikeda, Chiaki; Takahashi, Shingo; Muneto, Reiko; Yamada, Manabu; Suzuki, Hideyuki; Shibata, Daisuke; Sakurai, Nozomu
2017-04-28
Currently, in mass spectrometry-based metabolomics, limited reference mass spectra are available for flavonoid identification. In the present study, a database of probable mass fragments for 6,867 known flavonoids (FsDatabase) was manually constructed based on new structure- and fragmentation-related rules using new heuristics to overcome flavonoid complexity. We developed the FlavonoidSearch system for flavonoid annotation, which consists of the FsDatabase and a computational tool (FsTool) to automatically search the FsDatabase using the mass spectra of metabolite peaks as queries. This system showed the highest identification accuracy for the flavonoid aglycone when compared to existing tools and revealed accurate discrimination between the flavonoid aglycone and other compounds. Sixteen new flavonoids were found from parsley, and the diversity of the flavonoid aglycone among different fruits and vegetables was investigated.
Marine natural flavonoids: chemistry and biological activities.
Martins, Beatriz T; Correia da Silva, Marta; Pinto, Madalena; Cidade, Honorina; Kijjoa, Anake
2018-05-04
As more than 70% of the world's surface is covered by oceans, marine organisms offer a rich and unlimited resource of structurally diverse bioactive compounds. These organisms have developed unique properties and bioactive compounds that are, in majority of them, unparalleled by their terrestrial counterparts due to the different surrounding ecological systems. Marine flavonoids have been extensively studied in the last decades due to a growing interest concerning their promising biological/pharmacological activities. The most common classes of marine flavonoids are flavones and flavonols, which are mostly isolated from marine plants. Although most of flavonoids are hydroxylated and methoxylated, some marine flavonoids possess an unusual substitution pattern, not commonly found in terrestrial organisms, namely the presence of sulphate, chlorine, and amino groups. This review presents, for the first time in a systematic way, the structure, natural occurrence, and biological activities of marine flavonoids.
The effects and mechanism of flavonoid-rePON1 interactions. Structure-activity relationship study.
Atrahimovich, Dana; Vaya, Jacob; Khatib, Soliman
2013-06-01
Flavonoids are plant phenolic secondary metabolites that are widely distributed in the human diet. These antioxidants have received much attention because of their neuroprotective, cardioprotective, and chemopreventive actions. While a major focus has been on the flavonoids' antioxidant properties, there is an emerging view that many of the potential health benefits of flavonoids and their in vivo metabolites are due to modulatory actions in cells through direct interactions with proteins, and not necessarily due to their antioxidant function. This view relies on the observations that flavonoids are present in the circulation at very low concentrations, which are not sufficient to exert effective antioxidant effects. The enzyme paraoxonase 1 (PON1) is associated with high-density lipoprotein (HDL), and is responsible for many of HDLs' antiatherogenic properties. We previously showed that the flavonoid glabridin binds to rePON1 and affects the enzyme's 3D structure. This interaction protects the enzyme from inhibition by an atherogenic component of the human carotid plaque. Here, we broadened our study to an investigation of the structure-activity relationships (SARs) of 12 flavonoids from different subclasses with rePON1 using Trp-fluorescence quenching, modeling calculations and Cu(2+)-induced low-density lipoprotein (LDL) oxidation methods. Our findings emphasize the 'protein-binding' mechanism by which flavonoids exert their beneficial biological role toward rePON1. Flavonoids' capacity to interact with the enzyme's rePON1 hydrophobic groove mostly dictates their pro/antioxidant behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.
Arung, Enos Tangke; Yoshikawa, Keisuke; Shimizu, Kuniyoshi; Kondo, Ryuichiro
2010-03-01
As a result of cytotoxicity-guided fractionation, nine flavonoids, artocarpin (1), cudraflavone C (2), 6-prenylapigenin (3), kuwanon C (4), norartocarpin (5), albanin A (6), cudraflavone B (7), brosimone I (8) and artocarpanone (9) were identified from the methanol extract of the wood of Artocarpus heterophyllus, known commonly as Nangka in Indonesia. A structure-activity investigation of the effect of these isolated compounds (1-9) and structurally related compounds on B16 melanoma cells indicated that isoprenoid moiety substitutions in flavonoids enhance their cytotoxicity, and that the position of attachment and the number of isoprenoid-substituent moieties per molecule influence flavonoid cytotoxicity. 2009 Elsevier B.V. All rights reserved.
Diamond-like nanoparticles influence on flavonoids transport: molecular modelling
NASA Astrophysics Data System (ADS)
Plastun, Inna L.; Agandeeva, Ksenia E.; Bokarev, Andrey N.; Zenkin, Nikita S.
2017-03-01
Intermolecular interaction of diamond-like nanoparticles and flavonoids is investigated by numerical simulation. Using molecular modelling by the density functional theory method, we analyze hydrogen bonds formation and their influence on IR - spectra and structure of molecular complex which is formed due to interaction between flavonoids and nanodiamonds surrounded with carboxylic groups. Enriched adamantane (1,3,5,7 - adamantanetetracarboxylic acid) is used as an example of diamond-like nanoparticles. Intermolecular forces and structure of hydrogen bonds are investigated. IR - spectra and structure parameters of quercetin - adamantanetetracarboxylic acid molecular complex are obtained by numerical simulation using the Gaussian software complex. Received data coincide well with experimental results. Intermolecular interactions and hydrogen bonding structure in the obtained molecular complex are examined. Possibilities of flavonoids interaction with DNA at the molecular level are also considered.
2013-01-01
Background Red coloration of fruit is an important trait in apple, and it is mainly attributed to the accumulation of anthocyanins, a class of plant flavonoid metabolites. Anthocyanin biosynthesis is genetically determined by structural and regulatory genes. Plant tissue pigmentation patterns are mainly controlled by expression profiles of regulatory genes. Among these regulatory genes are MYB transcription factors (TFs), wherein the class of two-repeats (R2R3) is deemed the largest, and these are associated with the anthocyanin biosynthesis pathway. Although three MdMYB genes, almost identical in nucleotide sequences, have been identified in apple, it is likely that there are other R2R3 MYB TFs that are present in the apple genome that are also involved in the regulation of coloration of red color pigmentation of the skin of apple fruits. Results In this study, a novel R2R3 MYB gene has been isolated and characterized in apple. This MYB gene is closely related to the Arabidopsis thaliana AtMYB3, and has been designated as MdMYB3. This TF belongs to the subgroup 4 R2R3 family of plant MYB transcription factors. This apple MdMYB3 gene is mapped onto linkage group 15 of the integrated apple genetic map. Transcripts of MdMYB3 are detected in all analyzed tissues including leaves, flowers, and fruits. However, transcripts of MdMYB3 are higher in excocarp of red-skinned apple cultivars than that in yellowish-green skinned apple cultivars. When this gene is ectopically expressed in Nicotiana tabacum cv. Petite Havana SR1, flowers of transgenic tobacco lines carrying MdMYB3 have exhibited increased pigmentation and accumulate higher levels of anthocyanins and flavonols than wild-type flowers. Overexpression of MdMYB3 has resulted in transcriptional activation of several flavonoid pathway genes, including CHS, CHI, UFGT, and FLS. Moreover, peduncles of flowers and styles of pistils of transgenic plants overexpressing MdMYB3 are longer than those of wild-type plants, thus suggesting that this TF is involved in regulation of flower development. Conclusions This study has identified a novel MYB transcription factor in the apple genome. This TF, designated as MdMYB3, is involved in transcriptional activation of several flavonoid pathway genes. Moreover, this TF not only regulates the accumulation of anthocyanin in the skin of apple fruits, but it is also involved in the regulation of flower development, particularly that of pistil development. PMID:24199943
Vimolmangkang, Sornkanok; Han, Yuepeng; Wei, Guochao; Korban, Schuyler S
2013-11-07
Red coloration of fruit is an important trait in apple, and it is mainly attributed to the accumulation of anthocyanins, a class of plant flavonoid metabolites. Anthocyanin biosynthesis is genetically determined by structural and regulatory genes. Plant tissue pigmentation patterns are mainly controlled by expression profiles of regulatory genes. Among these regulatory genes are MYB transcription factors (TFs), wherein the class of two-repeats (R2R3) is deemed the largest, and these are associated with the anthocyanin biosynthesis pathway. Although three MdMYB genes, almost identical in nucleotide sequences, have been identified in apple, it is likely that there are other R2R3 MYB TFs that are present in the apple genome that are also involved in the regulation of coloration of red color pigmentation of the skin of apple fruits. In this study, a novel R2R3 MYB gene has been isolated and characterized in apple. This MYB gene is closely related to the Arabidopsis thaliana AtMYB3, and has been designated as MdMYB3. This TF belongs to the subgroup 4 R2R3 family of plant MYB transcription factors. This apple MdMYB3 gene is mapped onto linkage group 15 of the integrated apple genetic map. Transcripts of MdMYB3 are detected in all analyzed tissues including leaves, flowers, and fruits. However, transcripts of MdMYB3 are higher in excocarp of red-skinned apple cultivars than that in yellowish-green skinned apple cultivars. When this gene is ectopically expressed in Nicotiana tabacum cv. Petite Havana SR1, flowers of transgenic tobacco lines carrying MdMYB3 have exhibited increased pigmentation and accumulate higher levels of anthocyanins and flavonols than wild-type flowers. Overexpression of MdMYB3 has resulted in transcriptional activation of several flavonoid pathway genes, including CHS, CHI, UFGT, and FLS. Moreover, peduncles of flowers and styles of pistils of transgenic plants overexpressing MdMYB3 are longer than those of wild-type plants, thus suggesting that this TF is involved in regulation of flower development. This study has identified a novel MYB transcription factor in the apple genome. This TF, designated as MdMYB3, is involved in transcriptional activation of several flavonoid pathway genes. Moreover, this TF not only regulates the accumulation of anthocyanin in the skin of apple fruits, but it is also involved in the regulation of flower development, particularly that of pistil development.
Meng, Shengnan; Wu, Baojian; Singh, Rashim; Yin, Taijun; Morrow, John Kenneth; Zhang, Shuxing; Hu, Ming
2012-01-01
Flavonoids are the polyphenolic compounds with various claimed health benefits, but the extensive metabolism by uridine-5'-diphospho-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) in liver and intestine led to poor oral bioavailabilities. The effects of structural changes on the sulfonation of flavonoids have not been systemically determined, although relevant effects of structural changes on the glucuronidation of flavonoids had. We performed the regiospecific sulfonation of sixteen flavonoids from five different subclasses of flavonoids, which are represented by apigenin (flavone), genistein (isoflavone), naringenin (flavanone), kaempherol (flavonol), and phloretin (chalcone). Additional studies were performed using 4 mono-hydroxyl flavonoids with –OH group at 3, 4’, 5 or 7 position, followed by 5 di-hydroxyl-flavonoids, and 2 tri-hydroxyl flavonoids by using expressed human SULT1A3 and Caco-2 cell lysates. We found that these compounds were exclusively sulfated at the 7-OH position by SULT1A3 and primarily sulfated at 7-OH position in Caco-2 cell lysates with minor amounts of 4’-O-sulfates formed as well. Sulfonation rates measured using SULT1A3 and Caco-2 cell lysates were highly correlated at substrate concentrations of 2.5 and 10 µM. Molecular docking studies provided structural explanations as to why sulfonation only occurred at the 7-OH position of flavones, flavonols and flavanones. In conclusion, molecular docking studies explain why SULT1A3 exclusively mediates sulfonation at the 7-OH position of flavones/flavonols, and correlation studies indicate that SULT1A3 is the main isoform responsible for flavonoid sulfonation in the Caco-2 cells. PMID:22352375
Recent discoveries of anticancer flavonoids.
Raffa, Demetrio; Maggio, Benedetta; Raimondi, Maria Valeria; Plescia, Fabiana; Daidone, Giuseppe
2017-12-15
In this review we report the recent advances in anticancer activity of the family of natural occurring flavonoids, covering the time span of the last five years. The bibliographic data will be grouped, on the basis of biological information, in two great categories: reports in which the extract plants bioactivity is reported and the identification of each flavonoid is present or not, and reports in which the anticancer activity is attributable to purified and identified flavonoids from plants. Wherever possible, the targets and mechanisms of action as well as the structure-activity relationships of the molecules will be reported. Also, in the review it was thoroughly investigated the recent discovery on flavonoids containing the 2-phenyl-4H-chromen-4-one system even if some examples of unusual flavonoids, bearing a non-aromatic B-ring or other ring condensed to the base structure are reported. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Guerrero, Ligia; Castillo, Julián; Quiñones, Mar; Garcia-Vallvé, Santiago; Arola, Lluis; Pujadas, Gerard; Muguerza, Begoña
2012-01-01
Previous studies have demonstrated that certain flavonoids can have an inhibitory effect on angiotensin-converting enzyme (ACE) activity, which plays a key role in the regulation of arterial blood pressure. In the present study, 17 flavonoids belonging to five structural subtypes were evaluated in vitro for their ability to inhibit ACE in order to establish the structural basis of their bioactivity. The ACE inhibitory (ACEI) activity of these 17 flavonoids was determined by fluorimetric method at two concentrations (500 µM and 100 µM). Their inhibitory potencies ranged from 17 to 95% at 500 µM and from 0 to 57% at 100 µM. In both cases, the highest ACEI activity was obtained for luteolin. Following the determination of ACEI activity, the flavonoids with higher ACEI activity (i.e., ACEI >60% at 500 µM) were selected for further IC50 determination. The IC50 values for luteolin, quercetin, rutin, kaempferol, rhoifolin and apigenin K were 23, 43, 64, 178, 183 and 196 µM, respectively. Our results suggest that flavonoids are an excellent source of functional antihypertensive products. Furthermore, our structure-activity relationship studies show that the combination of sub-structures on the flavonoid skeleton that increase ACEI activity is made up of the following elements: (a) the catechol group in the B-ring, (b) the double bond between C2 and C3 at the C-ring, and (c) the cetone group in C4 at the C-ring. Protein-ligand docking studies are used to understand the molecular basis for these results. PMID:23185345
Park, Sangkyu; Kim, Da-Hye; Lee, Jong-Yeol; Ha, Sun-Hwa; Lim, Sun-Hyung
2017-07-05
We isolated cDNAs encoding flavonol synthase (FLS) from the red onion "H6" (AcFLS-H6) and the yellow onion "Hwangryongball" (AcFLS-HRB). We found three amino acid variations between the two sequences. Kinetic analysis with recombinant proteins revealed that AcFLS-HRB exhibited approximately 2-fold higher catalytic efficiencies than AcFLS-H6 for dihydroflavonol substrates and that both proteins preferred dihydroquercetin to dihydrokaempferol. The expression patterns of flavonoid biosynthesis genes corresponded to the accumulation patterns of flavonoid aglycones in both onions. Whereas the other flavonoid biosynthesis genes were weakly expressed in the HRB sheath compared to that of H6, the expression of FLS was similar in both onions. This relatively enhanced FLS expression, along with the higher activity of AcFLS-HRB, could increase the quercetin production in the HRB sheath. The quercetin content was approximately 12-fold higher than the cyanidin content in the H6 sheath, suggesting that FLS has priority in the competition between FLS and dihydroflavonol 4-reductase (DFR) for their substrate dihydroquercetin.
The biochemistry and medical significance of the flavonoids.
Havsteen, Bent H
2002-01-01
Flavonoids are plant pigments that are synthesised from phenylalanine, generally display marvelous colors known from flower petals, mostly emit brilliant fluorescence when they are excited by UV light, and are ubiquitous to green plant cells. The flavonoids are used by botanists for taxonomical classification. They regulate plant growth by inhibition of the exocytosis of the auxin indolyl acetic acid, as well as by induction of gene expression, and they influence other biological cells in numerous ways. Flavonoids inhibit or kill many bacterial strains, inhibit important viral enzymes, such as reverse transcriptase and protease, and destroy some pathogenic protozoans. Yet, their toxicity to animal cells is low. Flavonoids are major functional components of many herbal and insect preparations for medical use, e.g., propolis (bee's glue) and honey, which have been used since ancient times. The daily intake of flavonoids with normal food, especially fruit and vegetables, is 1-2 g. Modern authorised physicians are increasing their use of pure flavonoids to treat many important common diseases, due to their proven ability to inhibit specific enzymes, to simulate some hormones and neurotransmitters, and to scavenge free radicals.
Yuan, Yuan; Liu, Yunjun; Wu, Chong; Chen, Shunqin; Wang, Zhouyong; Yang, Zhaochun; Qin, Shuangshuang; Huang, Luqi
2012-01-01
The content of flavonoids especially baicalin and baicalein determined the medical quality of Scutellaria baicalensis which is a Chinese traditional medicinal plant. Here, we investigated the mechanism responsible for the content and composition of flavonoids in S. baicalensis under water deficit condition. The transcription levels of several genes which are involved in flavonoid biosynthesis were stimulated by water deficit. Under water deficit condition, fifteen up-regulated proteins, three down-regulated proteins and other six proteins were detected by proteomic analysis. The identified proteins include three gibberellin (GA)- or indoleacetic acid (IAA)-related proteins. Decreased endogenous GAs level and increased IAA level were observed in leaves of S. baicalensis which was treated with water deficit. Exogenous application of GA or α-naphthalene acelic acid (NAA) to plants grown under water deficit conditions led to the increase of endogenous GAs and the decrease of IAA and flavonoids, respectively. When the synthesis pathway of GA or IAA in plants was inhibited by application with the inhibitors, flavonoid levels were recovered. These results indicate that water deficit affected flavonoid accumulation might through regulating hormone metabolism in S. baicalensis Georgi.
R2R3 MYB transcription factors: key regulators of the flavonoid biosynthetic pathway in grapevine.
Czemmel, Stefan; Heppel, Simon C; Bogs, Jochen
2012-06-01
Flavonoids compose one of the most abundant and important subgroups of secondary metabolites with more than 6,000 compounds detected so far in higher plants. They are found in various compositions and concentrations in nearly all plant tissues. Besides the attraction of pollinators and dispersers to fruits and flowers, flavonoids also protect against a plethora of stresses including pathogen attack, wounding and UV irradiation. Flavonoid content and composition of fruits such as grapes, bilberries, strawberries and apples as well as food extracts such as green tea, wine and chocolate have been associated with fruit quality including taste, colour and health-promoting effects. To unravel the beneficial potentials of flavonoids on fruit quality, research has been focused recently on the molecular basis of flavonoid biosynthesis and regulation in economically important fruit-producing plants such as grapevine (Vitis vinifera L.). Transcription factors and genes encoding biosynthetic enzymes have been characterized, studies that set a benchmark for future research on the regulatory networks controlling flavonoid biosynthesis and diversity. This review summarizes recent advances in the knowledge of regulatory cascades involved in flavonoid biosynthesis in grapevine. Transcriptional regulation of flavonoid biosynthesis during berry development is highlighted, with a particular focus on MYB transcription factors as molecular clocks, key regulators and powerful biotechnological tools to identify novel pathway enzymes to optimize flavonoid content and composition in grapes.
Advances in the biotechnological glycosylation of valuable flavonoids.
Xiao, Jianbo; Muzashvili, Tamar S; Georgiev, Milen I
2014-11-01
The natural flavonoids, especially their glycosides, are the most abundant polyphenols in foods and have diverse bioactivities. The biotransformation of flavonoid aglycones into their glycosides is vital in flavonoid biosynthesis. The main biological strategies that have been used to achieve flavonoid glycosylation in the laboratory involve metabolic pathway engineering and microbial biotransformation. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoid glycosides using biotechnology, as well as the impact of glycosylation on flavonoid bioactivity. Uridine diphosphate glycosyltransferases play key roles in decorating flavonoids with sugars. Modern metabolic engineering and proteomic tools have been used in an integrated fashion to generate numerous structurally diverse flavonoid glycosides. In vitro, enzymatic glycosylation tends to preferentially generate flavonoid 3- and 7-O-glucosides; microorganisms typically convert flavonoids into their 7-O-glycosides and will produce 3-O-glycosides if supplied with flavonoid substrates having a hydroxyl group at the C-3 position. In general, O-glycosylation reduces flavonoid bioactivity. However, C-glycosylation can enhance some of the benefits of flavonoids on human health, including their antioxidant and anti-diabetic potential. Copyright © 2014 Elsevier Inc. All rights reserved.
Berim, Anna; Hyatt, David C.; Gang, David R.
2012-01-01
Polymethoxylated flavonoids occur in a number of plant families, including the Lamiaceae. To date, the metabolic pathways giving rise to the diversity of these compounds have not been studied. Analysis of our expressed sequence tag database for four sweet basil (Ocimum basilicum) lines afforded identification of candidate flavonoid O-methyltransferase genes. Recombinant proteins displayed distinct substrate preferences and product specificities that can account for all detected 7-/6-/4′-methylated, 8-unsubstituted flavones. Their biochemical specialization revealed only certain metabolic routes to be highly favorable and therefore likely in vivo. Flavonoid O-methyltransferases catalyzing 4′- and 6-O-methylations shared high identity (approximately 90%), indicating that subtle sequence changes led to functional differentiation. Structure homology modeling suggested the involvement of several amino acid residues in defining the proteins’ stringent regioselectivities. The roles of these individual residues were confirmed by site-directed mutagenesis, revealing two discrete mechanisms as a basis for the switch between 6- and 4′-O-methylation of two different substrates. These findings delineate major pathways in a large segment of the flavone metabolic network and provide a foundation for its further elucidation. PMID:22923679
Plant Flavonoids—Biosynthesis, Transport and Involvement in Stress Responses
Petrussa, Elisa; Braidot, Enrico; Zancani, Marco; Peresson, Carlo; Bertolini, Alberto; Patui, Sonia; Vianello, Angelo
2013-01-01
This paper aims at analysing the synthesis of flavonoids, their import and export in plant cell compartments, as well as their involvement in the response to stress, with particular reference to grapevine (Vitis vinifera L.). A multidrug and toxic compound extrusion (MATE) as well as ABC transporters have been demonstrated in the tonoplast of grape berry, where they perform a flavonoid transport. The involvement of a glutathione S-transferase (GST) gene has also been inferred. Recently, a putative flavonoid carrier, similar to mammalian bilitranslocase (BTL), has been identified in both grape berry skin and pulp. In skin the pattern of BTL expression increases from véraison to harvest, while in the pulp its expression reaches the maximum at the early ripening stage. Moreover, the presence of BTL in vascular bundles suggests its participation in long distance transport of flavonoids. In addition, the presence of a vesicular trafficking in plants responsible for flavonoid transport is discussed. Finally, the involvement of flavonoids in the response to stress is described. PMID:23867610
Flavonoid interactions with human transthyretin: combined structural and thermodynamic analysis.
Trivella, Daniela B B; dos Reis, Caio V; Lima, Luís Maurício T R; Foguel, Débora; Polikarpov, Igor
2012-10-01
Transthyretin (TTR) is a carrier protein involved in human amyloidosis. The development of small molecules that may act as TTR amyloid inhibitors is a promising strategy to treat these pathologies. Here we selected and characterized the interaction of flavonoids with the wild type and the V30M amyloidogenic mutant TTR. TTR acid aggregation was evaluated in vitro in the presence of the different flavonoids. The best TTR aggregation inhibitors were studied by Isothermal Titration Calorimetry (ITC) in order to reveal their thermodynamic signature of binding to TTRwt. Crystal structures of TTRwt in complex with the top binders were also obtained, enabling us to in depth inspect TTR interactions with these flavonoids. The results indicate that changing the number and position of hydroxyl groups attached to the flavonoid core strongly influence flavonoid recognition by TTR, either by changing ligand affinity or its mechanism of interaction with the two sites of TTR. We also compared the results obtained for TTRwt with the V30M mutant structure in the apo form, allowing us to pinpoint structural features that may facilitate or hamper ligand binding to the V30M mutant. Our data show that the TTRwt binding site is labile and, in particular, the central region of the cavity is sensible for the small differences in the ligands tested and can be influenced by the Met30 amyloidogenic mutation, therefore playing important roles in flavonoid binding affinity, mechanism and mutant protein ligand binding specificities. Copyright © 2012 Elsevier Inc. All rights reserved.
Flavonoids and terpenoids from Helichrysum forskahlii.
Al-Rehaily, Adnan J; Albishi, Omar A; El-Olemy, Mahmoud M; Mossa, Jaber S
2008-06-01
Three new flavonoids, namely helichrysone A (1), helichrysone B (2) and helichrysone C (3) were isolated from the aerial parts of Helichrysum forskahlii, together with 10 known flavonoids, three triterpenes, and one sesquiterpene. The structures of the new flavonoids 1-3 were established by 1D and 2D NMR spectral data. In addition, the antimicrobial activities of the isolated compounds were determined.
Zhang, Di; Liu, Yixiang; Chu, Le; Wei, Ying; Wang, Dan; Cai, Shengbao; Zhou, Feng; Ji, Baoping
2013-02-28
Various radical-scavenging activities (RSA) assessment assays are based on discrete mechanisms and on using different radical sources. Few studies have analyzed the structural significance of flavonoids in their peroxyl radical activities in the oxygen radical absorbance capacity (ORAC) assay. In this study, the RSA of 13 flavonoids in two ORAC assays with different probes (fluorescein and pyrogallol red) were investigated. Neither O-H bond dissociation enthalpy nor ionization potential values of flavonoids correlated with ORAC values. The proton affinity (PA) and electron transfer enthalpy (ETE) values, which were obtained via the sequential proton-loss electron-transfer mechanism, were significantly associated with the ORAC(pyrogallol Red) and ORAC(fluorescein) assays, respectively. Thus, PA represented the kinetic aspect of RSA, whereas ETE reflected the RSA extent. The PA values and the most acidic sites of flavonoids were affected by intramolecular electronic interactions, H-bonding, 3-hydroxyl group in the C ring, and conjugation systems. The stability of the deprotonated flavonoid determined the ETE value. Apart from the PA and ETE values in the first oxidation step of flavonoids, the PA and ETE values in the second oxidation step also affected the ORAC values of flavonoids.
Vikram, A; Jayaprakasha, G K; Jesudhasan, P R; Pillai, S D; Patil, B S
2010-08-01
This study investigated the quorum sensing, biofilm and type three secretion system (TTSS) inhibitory properties of citrus flavonoids. Flavonoids were tested for their ability to inhibit quorum sensing using Vibrio harveyi reporter assay. Biofilm assays were carried out in 96-well plates. Inhibition of biofilm formation in Escherichia coli O157:H7 and V. harveyi by citrus flavonoids was measured. Furthermore, effect of naringenin on expression of V. harveyi TTSS was investigated by semi-quantitative PCR. Differential responses for different flavonoids were observed for different cell-cell signalling systems. Among the tested flavonoids, naringenin, kaempferol, quercetin and apigenin were effective antagonists of cell-cell signalling. Furthermore, these flavonoids suppressed the biofilm formation in V. harveyi and E. coli O157:H7. In addition, naringenin altered the expression of genes encoding TTSS in V. harveyi. The results of the study indicate a potential modulation of bacterial cell-cell communication, E. coli O157:H7 biofilm and V. harveyi virulence, by flavonoids especially naringenin, quercetin, sinensetin and apigenin. Among the tested flavonoids, naringenin emerged as potent and possibly a nonspecific inhibitor of autoinducer-mediated cell-cell signalling. Naringenin and other flavonoids are prominent secondary metabolites present in citrus species. Therefore, citrus, being a major source of some of these flavonoids and by virtue of widely consumed fruit, may modulate the intestinal microflora. Currently, a limited number of naturally occurring compounds have demonstrated their potential in inhibition of cell-cell communications; therefore, citrus flavonoids may be useful as lead compounds for the development of antipathogenic agents.
Gao, Yongfeng; Liu, Jikai; Chen, Yongfu; Tang, Hai; Wang, Yang; He, Yongmei; Ou, Yongbin; Sun, Xiaochun; Wang, Songhu; Yao, Yinan
2018-01-01
The flavonoid compounds are important secondary metabolites with versatile human nutritive benefits and fulfill a multitude of functions during plant growth and development. The abundance of different flavonoid compounds are finely tuned with species-specific pattern by a ternary MBW complex, which consists of a MYB, a bHLH, and a WD40 protein, but the essential role of SlAN11, which is a WD40 protein, is not fully understood in tomato until now. In this study, a tomato WD40 protein named as SlAN11 was characterized as an effective transcription regulator to promote plant anthocyanin and seed proanthocyanidin (PA) contents, with late flavonoid biosynthetic genes activated in 35S::SlAN11 transgenic lines, while the dihydroflavonol flow to the accumulation of flavonols or their glycosylated derivatives was reduced by repressing the expression of SlFLS in this SlAN11 -overexpressed lines. The above changes were reversed in 35S::SlAN11-RNAi transgenic lines except remained levels of flavonol compounds and SlFLS expression. Interestingly, our data revealed that SlAN11 gene could affect seed dormancy by regulating the expressions of abscisic acid (ABA) signaling-related genes SlABI3 and SlABI5 , and the sensitivity to ABA treatment in seed germination is conversely changed by SlAN11 -overexpressed or -downregulated lines. Yeast two-hybrid assays demonstrated that SlAN11 interacted with bHLH but not with MYB proteins in the ternary MBW complex, whereas bHLH interacted with MYB in tomato. Our results indicated that low level of anthocyanins in tomato fruits, with low expression of bHLH ( SlTT8 ) and MYB ( SlANT1 and SlAN2 ) genes, remain unchanged upon modification of SlAN11 gene alone in the transgenic lines. These results suggest that the tomato WD40 protein SlAN11, coordinating with bHLH and MYB proteins, plays a crucial role in the fine adjustment of the flavonoid biosynthesis and seed dormancy in tomato.
Arroyo-Currás, Netzahualcóyotl; Rosas-García, Víctor M; Videa, Marcelo
2016-10-27
Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure-electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of -OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of -OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules.
The QSAR study of flavonoid-metal complexes scavenging rad OH free radical
NASA Astrophysics Data System (ADS)
Wang, Bo-chu; Qian, Jun-zhen; Fan, Ying; Tan, Jun
2014-10-01
Flavonoid-metal complexes have antioxidant activities. However, quantitative structure-activity relationships (QSAR) of flavonoid-metal complexes and their antioxidant activities has still not been tackled. On the basis of 21 structures of flavonoid-metal complexes and their antioxidant activities for scavenging rad OH free radical, we optimised their structures using Gaussian 03 software package and we subsequently calculated and chose 18 quantum chemistry descriptors such as dipole, charge and energy. Then we chose several quantum chemistry descriptors that are very important to the IC50 of flavonoid-metal complexes for scavenging rad OH free radical through method of stepwise linear regression, Meanwhile we obtained 4 new variables through the principal component analysis. Finally, we built the QSAR models based on those important quantum chemistry descriptors and the 4 new variables as the independent variables and the IC50 as the dependent variable using an Artificial Neural Network (ANN), and we validated the two models using experimental data. These results show that the two models in this paper are reliable and predictable.
Adolfsson, Lisa; Šimura, Jan; Beebo, Azeez; Aboalizadeh, Jila; Široká, Jitka
2017-01-01
Arbuscular mycorrhizas (AM) are the most common symbiotic associations between a plant’s root compartment and fungi. They provide nutritional benefit (mostly inorganic phosphate [Pi]), leading to improved growth, and nonnutritional benefits, including defense responses to environmental cues throughout the host plant, which, in return, delivers carbohydrates to the symbiont. However, how transcriptional and metabolic changes occurring in leaves of AM plants differ from those induced by Pi fertilization is poorly understood. We investigated systemic changes in the leaves of mycorrhized Medicago truncatula in conditions with no improved Pi status and compared them with those induced by high-Pi treatment in nonmycorrhized plants. Microarray-based genome-wide profiling indicated up-regulation by mycorrhization of genes involved in flavonoid, terpenoid, jasmonic acid (JA), and abscisic acid (ABA) biosynthesis as well as enhanced expression of MYC2, the master regulator of JA-dependent responses. Accordingly, total anthocyanins and flavonoids increased, and most flavonoid species were enriched in AM leaves. Both the AM and Pi treatments corepressed iron homeostasis genes, resulting in lower levels of available iron in leaves. In addition, higher levels of cytokinins were found in leaves of AM- and Pi-treated plants, whereas the level of ABA was increased specifically in AM leaves. Foliar treatment of nonmycorrhized plants with either ABA or JA induced the up-regulation of MYC2, but only JA also induced the up-regulation of flavonoid and terpenoid biosynthetic genes. Based on these results, we propose that mycorrhization and Pi fertilization share cytokinin-mediated improved shoot growth, whereas enhanced ABA biosynthesis and JA-regulated flavonoid and terpenoid biosynthesis in leaves are specific to mycorrhization. PMID:28698354
Enhanced Secondary- and Hormone Metabolism in Leaves of Arbuscular Mycorrhizal Medicago truncatula.
Adolfsson, Lisa; Nziengui, Hugues; Abreu, Ilka N; Šimura, Jan; Beebo, Azeez; Herdean, Andrei; Aboalizadeh, Jila; Široká, Jitka; Moritz, Thomas; Novák, Ondřej; Ljung, Karin; Schoefs, Benoît; Spetea, Cornelia
2017-09-01
Arbuscular mycorrhizas (AM) are the most common symbiotic associations between a plant's root compartment and fungi. They provide nutritional benefit (mostly inorganic phosphate [P i ]), leading to improved growth, and nonnutritional benefits, including defense responses to environmental cues throughout the host plant, which, in return, delivers carbohydrates to the symbiont. However, how transcriptional and metabolic changes occurring in leaves of AM plants differ from those induced by P i fertilization is poorly understood. We investigated systemic changes in the leaves of mycorrhized Medicago truncatula in conditions with no improved P i status and compared them with those induced by high-P i treatment in nonmycorrhized plants. Microarray-based genome-wide profiling indicated up-regulation by mycorrhization of genes involved in flavonoid, terpenoid, jasmonic acid (JA), and abscisic acid (ABA) biosynthesis as well as enhanced expression of MYC2 , the master regulator of JA-dependent responses. Accordingly, total anthocyanins and flavonoids increased, and most flavonoid species were enriched in AM leaves. Both the AM and P i treatments corepressed iron homeostasis genes, resulting in lower levels of available iron in leaves. In addition, higher levels of cytokinins were found in leaves of AM- and P i -treated plants, whereas the level of ABA was increased specifically in AM leaves. Foliar treatment of nonmycorrhized plants with either ABA or JA induced the up-regulation of MYC2 , but only JA also induced the up-regulation of flavonoid and terpenoid biosynthetic genes. Based on these results, we propose that mycorrhization and P i fertilization share cytokinin-mediated improved shoot growth, whereas enhanced ABA biosynthesis and JA-regulated flavonoid and terpenoid biosynthesis in leaves are specific to mycorrhization. © 2017 American Society of Plant Biologists. All Rights Reserved.
Flavonoids released naturally from alfalfa promote development of symbiotic glomus spores in vitro.
Tsai, S M; Phillips, D A
1991-05-01
Because flavonoids from legumes induce transcription of nodulation genes in symbiotic rhizobial bacteria, it is reasonable to test whether these compounds alter the development of vesicular-arbuscular mycorrhizal (VAM) fungi that infect those plants. Quercetin-3-O-galactoside, the dominant flavonoid released naturally from alfalfa (Medicago sativa L.) seeds, promoted spore germination of Glomus etunicatum and Glomus macrocarpum in vitro. Quercetin produced the maximum increases in spore germination, hyphal elongation, and hyphal branching in G. etunicatum at 1 to 2.5 muM concentrations. Two flavonoids exuded from alfalfa roots, 4',7-dihydroxyflavone and 4',7-dihydroxyflavanone, also enhanced spore germination of this fungal species. Formononetin, an isoflavone that is released from stressed alfalfa roots, inhibited germination of both Glomus species. These in vitro results suggest that plant flavonoids may facilitate or regulate the development of VAM symbioses and offer new hope for developing pure, plant-free cultures of VAM fungi.
Sun, L L; Li, Y; Li, S S; Wu, X J; Hu, B Z; Chang, Y
2014-12-30
Chalcone synthase (CHS) is an enzyme that catalyzes the first committed step in flavonoid biosynthesis, and its transcription level is regulated by light conditions. By using homology cloning and rapid amplification of cDNA ends, we cloned a chalcone synthase gene (DfCHS) from Dryopteris fragrans (L.) Schott. The full-length cDNA of DfCHS is 1,737 bp, with an open reading frame (ORF) of 1,122 bp (deposited in GenBank under Accession Number KF530802) encoding a predicted protein of 373 amino acids. The calculated molecular mass of DfCHS is 41.3 kDa. We studied the expression of DfCHS and total flavonoid contents in tissue culture seedlings cultured under the low temperature at 4ºC, high temperature at 35ºC and UV conditions, respectively. The results show that the expression of DfCHS are not the same, but all present rising trends, then flavonoid contents were increased. Overall, our results imply that the expression of DfCHS gene provide a certain theory basis in the status of evolution among ferns.
Modak, Brenda; Contreras, M Leonor; González-Nilo, Fernando; Torres, René
2005-01-17
Relationships between the structural characteristics of flavonoids isolated from the resinous exudate of Heliotropium sinuatum and their antioxidant activity were studied. Radical formation energies, DeltaH of dehydrogenation and spin densities were calculated using DFT methods (B3LYP/6-31G*). Results show that studied flavonoids can be divided into two sets according to their activity. It has been found that antioxidant activity depends both on substitution pattern of hydroxyl groups of the flavonoid skeleton and the presence of an unsaturation at the C2-C3 bond. A good tendency between DeltaH of dehydrogenation and antioxidant activity was established.
Wang, Tingting; Liu, Minxuan; Liu, Jing; Zhang, Zongwen
2017-01-01
Buckwheat is an important minor crop with pharmaceutical functions due to rutin enrichment in the seed. Seeds of common buckwheat cultivars (Fagopyrum esculentum, Fes) usually have much lower rutin content than tartary buckwheat (F. tartaricum, Ft). We previously found a wild species of common buckwheat (F. esculentum ssp. ancestrale, Fea), with seeds that are high in rutin, similar to Ft. In the present study, we investigated the mechanism by which rutin production varies among different buckwheat cultivars, Fea, a Ft variety (Xide) and a Fes variety (No.2 Pingqiao) using RNA sequencing of filling stage seeds. Sequencing data generated approximately 43.78-Gb of clean bases, all these data were pooled together and assembled 180,568 transcripts, and 109,952 unigenes. We established seed gene expression profiles of each buckwheat sample and assessed genes involved in flavonoid biosynthesis, storage proteins production, CYP450 family, starch and sucrose metabolism, and transcription factors. Differentially expressed genes between Fea and Fes were further analyzed due to their close relationship than with Ft. Expression levels of flavonoid biosynthesis gene FLS1 (Flavonol synthase 1) were similar in Fea and Ft, and much higher than in Fes, which was validated by qRT-PCR. This suggests that FLS1 transcript levels may be associated with rutin accumulation in filling stage seeds of buckwheat species. Further, we explored transcription factors by iTAK, and multiple gene families were identified as being involved in the coordinate regulation of metabolism and development. Our extensive transcriptomic data sets provide a complete description of metabolically related genes that are differentially expressed in filling stage buckwheat seeds and suggests that FLS1 is a key controller of rutin synthesis in buckwheat species. FLS1 can effectively convert dihydroflavonoids into flavonol products. These findings provide a basis for further studies of flavonoid biosynthesis in buckwheat breeding to help accelerate flavonoid metabolic engineering that would increase rutin content in cultivars of common buckwheat. PMID:29261741
Kape, R; Parniske, M; Brandt, S; Werner, D
1992-05-01
Isoflavonoid signal molecules from soybean (Glycine max (L.) Merr.) seed and root exudate induce the transcription of nodulation (nod) genes in Bradyrhizobium japonicum. In this study, a new compound with symbiotic activity was isolated from soybean root exudate. The isolated 2',4',4-trihydroxychalcone (isoliquiritigenin) is characterized by its strong inducing activity for the nod genes of B. japonicum. These genes are already induced at concentrations 1 order of magnitude below those required of the previously described isoflavonoid inducers genistein and daidzein. Isoliquiritigenin is also a potent inducer of glyceollin resistance in B. japonicum, which renders this bacterium insensitive to potentially bactericidal concentrations of glyceollin, the phytoalexin of G. max. No chemotactic effect of isoliquiritigenin was observed. The highly efficient induction of nod genes and glyceollin resistance by isoliquiritigenin suggests the ecological significance of this compound, although it is not a major flavonoid constituent of the soybean root exudate in quantitative terms.
Pourcel, Lucille; Routaboul, Jean-Marc; Kerhoas, Lucien; Caboche, Michel; Lepiniec, Loïc; Debeaujon, Isabelle
2005-01-01
The Arabidopsis thaliana transparent testa10 (tt10) mutant exhibits a delay in developmentally determined browning of the seed coat, also called the testa. Seed coat browning is caused by the oxidation of flavonoids, particularly proanthocyanidins, which are polymers of flavan-3-ol subunits such as epicatechin and catechin. The tt10 mutant seeds accumulate more epicatechin monomers and more soluble proanthocyanidins than wild-type seeds. Moreover, intact testa cells of tt10 cannot trigger H2O2-independent browning in the presence of epicatechin and catechin, in contrast with wild-type cells. UV–visible light detection and mass spectrometry revealed that the major oxidation products obtained with epicatechin alone are yellow dimers called dehydrodiepicatechin A. These products differ from proanthocyanidins in the nature and position of their interflavan linkages. Flavonol composition was also affected in tt10 seeds, which exhibited a higher ratio of quercetin rhamnoside monomers versus dimers than wild-type seeds. We identified the TT10 gene by a candidate gene approach. TT10 encodes a protein with strong similarity to laccase-like polyphenol oxidases. It is expressed essentially in developing testa, where it colocalizes with the flavonoid end products proanthocyanidins and flavonols. Together, these data establish that TT10 is involved in the oxidative polymerization of flavonoids and functions as a laccase-type flavonoid oxidase. PMID:16243908
Proença, Carina; Freitas, Marisa; Ribeiro, Daniela; Sousa, Joana L C; Carvalho, Félix; Silva, Artur M S; Fernandes, Pedro A; Fernandes, Eduarda
2018-01-01
The classical non-transmembrane protein tyrosine phosphatase 1B (PTP1B) has emerged as a key negative regulator of insulin signaling pathways that leads to insulin resistance, turning this enzyme a promising therapeutic target in the management of type 2 diabetes mellitus (T2DM). In the present work, the in vitro inhibitory activity of a panel of structurally related flavonoids, for recombinant human PTP1B was studied and the type of inhibition of the most active compounds further evaluated. The majority of the studied flavonoids was tested in this work for the first time, including flavonoid C13, which was the most potent inhibitor. It was observed that the ability to inhibit PTP1B depends on the nature, position and number of substituents in the flavonoid structure, as the presence of both 7- and 8-OBn groups in the A ring, together with the presence of both 3' and 4'-OMe groups in the B ring and the 3-OH group in the C ring; these substituents increase the flavonoids' ability to inhibit PTP1B. In conclusion, some of the tested flavonoids seem to be promising PTP1B inhibitors and potential effective agents in the management of T2DM, by increasing insulin sensitivity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shi, Shuyun; Zhang, Yuping; Chen, Xiaoqin; Peng, Mijun
2011-10-12
The effects of 1:1 flavonoid-Cu(2+) complexes of four flavonoids with different C-ring substituents, quercetin (QU), luteolin (LU), taxifolin (TA), and (+)-catechin (CA), on bovine serum albumin (BSA) were investigated and compared with corresponding free flavonoids by spectroscopic analysis in an attempt to characterize the chemical association taking place. The results indicated that all of the quenching mechanisms were based on static quenching combined with nonradiative energy transfer. Cu(2+) chelation changed the binding constants for BSA depending on the structures of flavonoids and the detected concentrations. The reduced hydroxyl groups, increased steric hindrance, and hydrophilicity of Cu(2+) chelation may be the main reasons for the reduced binding constants, whereas the formation of stable flavonoid-Cu(2+) complexes and synergistic action could increase the binding constants. The changed trends of critical energy transfer distance (R(0)) for Cu(2+) chelation were contrary to those of binding constants.
de Alcântara, Bianca Gonçalves Vasconcelos; Domingos, Olívia da Silva
2017-01-01
Flavonoids have demonstrated in vivo and in vitro leishmanicidal, trypanocidal, antioxidant, and prooxidant properties. The chemotherapy of trypanosomiasis and leishmaniasis lacks efficacy, presents high toxicity, and is related to the development of drug resistance. Thus, a series of 40 flavonoids were investigated with the purpose of correlating these properties via structure and activity analyses based on integrated networks and QSAR models. The classical groups for the antioxidant activity of flavonoids were combined in order to explain the influence of antioxidant and prooxidant activities on the antiparasitic properties. These analyses become useful for the development of efficient treatments for leishmaniasis and trypanosomiasis. Finally, the dual activity of flavonoids presenting both anti- and prooxidant activities revealed that the existence of a balance between these two features could be important to the development of adequate therapeutic strategies. PMID:28751930
Wu, Chong; Chen, Shunqin; Wang, Zhouyong; Yang, Zhaochun; Qin, Shuangshuang; Huang, Luqi
2012-01-01
The content of flavonoids especially baicalin and baicalein determined the medical quality of Scutellaria baicalensis which is a Chinese traditional medicinal plant. Here, we investigated the mechanism responsible for the content and composition of flavonoids in S. baicalensis under water deficit condition. The transcription levels of several genes which are involved in flavonoid biosynthesis were stimulated by water deficit. Under water deficit condition, fifteen up-regulated proteins, three down-regulated proteins and other six proteins were detected by proteomic analysis. The identified proteins include three gibberellin (GA)- or indoleacetic acid (IAA)-related proteins. Decreased endogenous GAs level and increased IAA level were observed in leaves of S. baicalensis which was treated with water deficit. Exogenous application of GA or α-naphthalene acelic acid (NAA) to plants grown under water deficit conditions led to the increase of endogenous GAs and the decrease of IAA and flavonoids, respectively. When the synthesis pathway of GA or IAA in plants was inhibited by application with the inhibitors, flavonoid levels were recovered. These results indicate that water deficit affected flavonoid accumulation might through regulating hormone metabolism in S. baicalensis Georgi. PMID:23077481
Flavonoids function as antioxidants: By scavenging reactive oxygen species or by chelating iron?
NASA Astrophysics Data System (ADS)
Wuguo, Deng; Xingwang, Fang; Jilan, Wu
1997-09-01
Flavonoids have been reported to exhibit strong antioxidative activity. In the present work, a systematic mechanistic study has been performed on five flavonoids (baicalin, hesperidin, naringin, quercetin and rutin) selected according to their structural characteristics. The experimental results reveal that flavonoids function as antioxidant mainly by chelating iron ions and by scavenging peroxyl radicals whereas their OH radical scavenging effect is much less important.
Naseem, Bushra; Shah, S W H; Hasan, Aurangzeb; Sakhawat Shah, S
2010-04-01
Quantitative parameters for interaction of flavonoids-the naturally occurring antioxidants, with solvents and surfactants are determined using UV-visible absorption spectroscopy. The availability of flavonoids; kaempferol, apigenin, kaempferide and rhamnetin in micelles of sodium dodecyl sulfate (SDS) is reflected in terms of partition coefficient, K(c). Thermodynamic calculations show that the process of transfer of flavonoid molecules to anionic micelles of SDS is energy efficient. A distortion in flavonoid's morphology occurs in case of kaempferol and apigenin in surfactant and water, exhibited in terms of a new band in the UV region of electronic spectra of these flavonoids. The partition coefficients of structurally related flavonoids are correlated with their antioxidant activities. Copyright 2010 Elsevier B.V. All rights reserved.
Echeverría, Javier; Opazo, Julia; Mendoza, Leonora; Urzúa, Alejandro; Wilkens, Marcela
2017-04-10
In this study, we tested eight naturally-occurring flavonoids-three flavanones and five flavones-for their possible antibacterial properties against four Gram-positive and four Gram-negative bacteria. Flavonoids are known for their antimicrobial properties, and due their structural diversity; these plant-derived compounds are a good model to study potential novel antibacterial mechanisms. The lipophilicity and the interaction of antibacterial compounds with the cell membrane define the success or failure to access its target. Therefore, through the determination of partition coefficients in a non-polar/aqueous phase, lipophilicity estimation and the quantification of the antibacterial activity of different flavonoids, flavanones, and flavones, a relationship between these parameters was assessed. Active flavonoids presented diffusion coefficients between 9.4 × 10 -10 and 12.3 × 10 -10 m²/s and lipophilicity range between 2.0 to 3.3. Active flavonoids against Gram-negative bacteria showed a narrower range of lipophilicity values, compared to active flavonoids against Gram-positive bacteria, which showed a wide range of lipophilicity and cell lysis. Galangin was the most active flavonoid, whose structural features are the presence of two hydroxyl groups located strategically on ring A and the absence of polar groups on ring B. Methylation of one hydroxyl group decreases the activity in 3- O -methylgalangin, and methylation of both hydroxyl groups caused inactivation, as shown for 3,7- O -dimethylgalangin. In conclusion, the amphipathic features of flavonoids play a crucial role in the antibacterial activity. In these compounds, hydrophilic and hydrophobic moieties must be present and could be predicted by lipophilicity analysis.
Zhang, Chenghao; Dong, Wenqi; Gen, Wei; Xu, Baoyu; Shen, Chenjia
2018-01-01
Abelmoschus esculentus (okra or lady’s fingers) is a vegetable with high nutritional value, as well as having certain medicinal effects. It is widely used as food, in the food industry, and in herbal medicinal products, but also as an ornamental, in animal feed, and in other commercial sectors. Okra is rich in bioactive compounds, such as flavonoids, polysaccharides, polyphenols, caffeine, and pectin. In the present study, the concentrations of total flavonoids and polysaccharides in five organs of okra were determined and compared. Transcriptome sequencing was used to explore the biosynthesis pathways associated with the active constituents in okra. Transcriptome sequencing of five organs (roots, stem, leaves, flowers, and fruits) of okra enabled us to obtain 293,971 unigenes, of which 232,490 were annotated. Unigenes related to the enzymes involved in the flavonoid biosynthetic pathway or in fructose and mannose metabolism were identified, based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. All of the transcriptional datasets were uploaded to Sequence Read Archive (SRA). In summary, our comprehensive analysis provides important information at the molecular level about the flavonoid and polysaccharide biosynthesis pathways in okra. PMID:29495525
NASA Astrophysics Data System (ADS)
Hou, J.; Liang, Q.; Shao, S.
2017-03-01
Flavanones are the main compound of licorice, and the C'-4 position substitution is a significant structural feature for their biological activity. The ability of three selected flavanones (liquiritigenin, liquiritin, and liquiritin apioside) bearing different substituents (hydroxyl groups, glucose, and glucose-apiose sugar moiety) at the C'-4 position and a chalcone ( isoliquiritigenin, an isomer of liquiritigenin) to bind bovine serum albumin (BSA) was studied by multispectroscopic and molecular docking methods under physiological conditions. The binding mechanism of fl avonoids to BSA can be explained by the formation of a flavonoids-BSA complex, and the binding affinity is the strongest for isoliquiritigenin, followed by liquiritin apioside, liquiritin, and liquiritigenin. The thermodynamic analysis and the molecular docking indicated that the interaction between flavonoids and BSA was dominated by the hydrophobic force and hydrogen bonds. The competitive experiments as well as the molecular docking results suggested the most possible binding site of licorice flavonoids on BSA at subdomain IIA. These results revealed that the basic skeleton structure and the substituents at the C'-4 position of flavanones significantly affect the structure-affinity relationships of the licorice flavonoid binding to BSA.
Activity of plant flavonoids against antibiotic-resistant bacteria.
Xu, H X; Lee, S F
2001-02-01
Thirty eight plant-derived flavonoids representing seven different structural groups were tested for activities against antibiotic-resistant bacteria using the disc-diffusion assay and broth dilution assay. Among the flavonoids examined, four flavonols (myricetin, datiscetin, kaempferol and quercetin) and two -flavones (flavone and luteolin) exhibited inhibitory activity against methicillin-resistant Staphylococcus aureus (MRSA). Myricetin was also found to inhibit the growth of multidrug-resistant Burkholderia -cepacia, vancomycin-resistant enterococci (VRE) and other medically important organisms such as -Klebsiella pneumoniae and Staphylococcus epidermidis. Myricetin was bactericidal to B. cepacia. The results of the radiolabel incorporation assay showed that myricetin inhibited protein synthesis by -B. cepacia. The structure-activity relationship of these flavonoids is discussed. Copyright 2001 John Wiley & Sons, Ltd.
Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita
2016-01-01
Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the 2 × 105 K format Brassica microarray. Expression differences were correlated to the structure-dependent response of flavonoid glycosides and hydroxycinnamic acid derivatives to alterations in either light or temperature. The altered metabolite accumulation was mainly reflected on gene expression level of core biosynthetic pathway genes and gave further hints to an isoform specific functional specialization.
Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita
2016-01-01
Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m−2 s−1 or 100 μmol m−2 s−1 at 10°C, or at 400 μmol m−2 s−1 with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the 2 × 105 K format Brassica microarray. Expression differences were correlated to the structure-dependent response of flavonoid glycosides and hydroxycinnamic acid derivatives to alterations in either light or temperature. The altered metabolite accumulation was mainly reflected on gene expression level of core biosynthetic pathway genes and gave further hints to an isoform specific functional specialization. PMID:27066016
Salim, Vonny; Jones, A Daniel; DellaPenna, Dean
2018-04-22
The medicinal plant Camptotheca acuminata accumulates camptothecin, 10-hydroxycamptothecin, and 10-methoxycamptothecin as its major bioactive monoterpene indole alkaloids. Here, we describe identification and functional characterization of 10-hydroxycamptothecin O-methyltransferase (Ca10OMT), a member of the Diverse subclade of Class II OMTs. Ca10OMT is highly active toward both its alkaloid substrate and a wide range of flavonoids in vitro and in this way contrasts with other alkaloid OMTs in the subclade that only utilize alkaloid substrates. Ca10OMT shows a strong preference for the A-ring 7-OH of flavonoids, which is structurally equivalent to the 10-OH of 10-hydroxycamptothecin. The substrates of other alkaloid OMTs in the subclade bear little similarity to flavonoids, but the 3-D positioning of the 7-OH, A- and C-rings of flavonoids is nearly identical to the 10-OH, A- and B-rings of 10-hydroxycamptothecin. This structural similarity likely explains the retention of flavonoid OMT activity by Ca10OMT and also why kaempferol and quercetin aglycones are potent inhibitors of its 10-hydroxycamptothecin activity. The catalytic promiscuity and strong inhibition of Ca10OMT by flavonoid aglycones in vitro prompted us to investigate the potential physiological roles of the enzyme in vivo. Based on its regioselectivity, kinetic parameters and absence of 7-OMT flavonoids in vivo, we conclude that the major and likely only substrate of Ca10OMT in vivo is 10-hydroxycamptothecin. This is likely accomplished by Ca10OMT being kept spatially separated at the tissue levels from potentially inhibitory flavonoid aglycones, and flavonoid aglycones being rapidly glycosylated to non-inhibitory flavonoid glycosides. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Wang, Hong-Jaan; Pao, Li-Heng; Hsiong, Cheng-Huei; Shih, Tung-Yuan; Lee, Meei-Shyuan; Hu, Oliver Yoa-Pu
2014-03-01
This study aims to improve the drug oral bioavailability by co-administration with flavonoid inhibitors of the CYP2C isozyme and to establish qualitative and quantitative (QSAR) structure-activity relationships (SAR) between flavonoids and CYP2C. A total of 40 naturally occurring flavonoids were screened in vitro for CYP2C inhibition. Enzyme activity was determined by measuring conversion of tolbutamide to 4-hydroxytolbutamide by rat liver microsomes. The percent inhibition and IC50 of each flavonoid were calculated and used to develop SAR and QSAR. The most effective flavonoid was orally co-administered in vivo with a cholesterol-reducing drug, fluvastatin, which is normally metabolized by CYP2C. The most potent CYP2C inhibitor identified in vitro was tamarixetin (IC50 = 1.4 μM). This flavonoid enhanced the oral bioavailability of fluvastatin in vivo, producing a >2-fold increase in the area under the concentration-time curve and in the peak plasma concentration. SAR analysis indicated that the presence of a 2,3-double bond in the C ring, hydroxylation at positions 5, 6, and 7, and glycosylation had important effects on flavonoid-CYP2C interactions. These findings should prove useful for predicting the inhibition of CYP2C activity by other untested flavonoid-like compounds. In the present study, tamarixetin significantly inhibited CYP2C activity in vitro and in vivo. Thus, the use of tamarixetin could improve the therapeutic efficacy of drugs with low bioavailability.
NASA Astrophysics Data System (ADS)
Naseem, Bushra; Shah, S. W. H.; Hasan, Aurangzeb; Sakhawat Shah, S.
2010-04-01
Quantitative parameters for interaction of flavonoids—the naturally occurring antioxidants, with solvents and surfactants are determined using UV-visible absorption spectroscopy. The availability of flavonoids; kaempferol, apigenin, kaempferide and rhamnetin in micelles of sodium dodecyl sulfate (SDS) is reflected in terms of partition coefficient, Kc. Thermodynamic calculations show that the process of transfer of flavonoid molecules to anionic micelles of SDS is energy efficient. A distortion in flavonoid's morphology occurs in case of kaempferol and apigenin in surfactant and water, exhibited in terms of a new band in the UV region of electronic spectra of these flavonoids. The partition coefficients of structurally related flavonoids are correlated with their antioxidant activities.
Li, Yannan; Ning, Jing; Wang, Yan; Wang, Chao; Sun, Chengpeng; Huo, Xiaokui; Yu, Zhenlong; Feng, Lei; Zhang, Baojing; Tian, Xiangge; Ma, Xiaochi
2018-05-09
The high risk of herb-drug interactions (HDIs) mediated by the herbal medicines and dietary supplements which containing abundant flavonoids had become more and more frequent in our daily life. In our study, the inhibition activities of 44 different structures of flavonoids toward human CYPs were systemically evaluated for the first time. According to our results, a remarkable structure-dependent inhibition behavior toward CYP3A4 was observed in vitro. Some flavonoids such as licoflavone (12) and irilone (30) exhibited the selective inhibition toward CYP3 A4 rather than other major human CYPs. To illustrate the interaction mechanism, the inhibition kinetics of various compounds was further performed. Sophoranone (1), apigenin (10), baicalein (11), 5,4'-dihydroxy-3,6,7,8,3'-pentamethoxyflavone (15), myricetin (23) and kushenol K (38) remarkably inhibited the CYP3 A4-catalyzed bufalin 5'-hydroxylation reaction, with K i values of 2.17 ± 0.29, 6.15 ± 0.39, 9.18 ± 3.40, 2.30 ± 0.36, 5.00 ± 2.77 and 1.35 ± 0.25 μM, respectively. Importantly, compounds 1, 11, 15, 23 and 38 could significantly inhibit the metabolism of some clinical drugs in vitro, and these drug-drug interactions (DDIs) of myricetin (23) or kushenol K (38) with clinical drug diazepam were further verified in human primary hepatocytes, respectively. Finally, a quantitative structure-activity relationship (QSAR) of flavonoids with their inhibitory effects toward CYP3 A4 was established using computational methods. Our findings illustrated the high risk of herb-drug interactions (HDIs) caused by flavonoids and revealed the vital structures requirement of natural flavonoids for the HDIs with clinical drugs eliminated by CYP3 A4. Our research provided the useful guidance to safely and rationally use herbal medicines and dietary supplements containing rich natural flavonoids components. Copyright © 2018 Elsevier B.V. All rights reserved.
Beker, Bilge Yıldoğan; Bakır, Temelkan; Sönmezoğlu, Inci; Imer, Filiz; Apak, Reşat
2011-11-01
Antioxidants are compounds that can delay or inhibit lipid oxidation. The peroxidation of linoleic acid (LA) in the absence and presence of Cu(II) ion-ascorbate combinations was investigated in aerated and incubated emulsions at 37°C and pH 7. LA peroxidation induced by copper(II)-ascorbic acid system followed first order kinetics with respect to hydroperoxides concentration. The extent of copper-initiated peroxide production in a LA system assayed by ferric thiocyanate method was used to determine possible antioxidant and prooxidant activities of the added flavonoids. The effects of three different flavonoids of similar structure, i.e. quercetin (QR), morin (MR) and catechin (CT), as potential antioxidant protectors were studied in the selected peroxidation system. The inhibitive order of flavonoids in the protection of LA peroxidation was: morin>catechin≥quercetin, i.e. agreeing with that of formal reduction potentials versus NHE at pH 7, i.e. 0.60, 0.57 and 0.33V for MR, CT, and QR, respectively. Morin showed antioxidant effect at all concentrations whereas catechin and quercetin showed both antioxidant and prooxidant effects depending on their concentrations. The structural requirements for antioxidant activity in flavonoids interestingly coincide with those for Cu(II)-induced prooxidant activity, because as the reducing power of a flavonoid increases, Cu(II)-Cu(I) reduction is facilitated that may end up with the production of reactive species. The findings of this study were evaluated in the light of structure-activity relationships of flavonoids, and the results are believed to be useful to better understand the actual conditions where flavonoids may act as prooxidants in the preservation of heterogeneous food samples containing traces of transition metal ions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Oh, Joonseok; Liu, Haining; Park, Hyun Bong; Ferreira, Daneel; Jeong, Gil-Saeng; Hamann, Mark T; Doerksen, Robert J; Na, MinKyun
2017-01-01
Inhibition of fatty acid synthase (FAS) is regarded as a sensible therapeutic strategy for the development of optimal anti-cancer agents. Flavonoids exhibit potent anti-neoplastic properties. The MeOH extract of Sophora flavescens was subjected to chromatographic analyses such as VLC and HPLC for the purification of active flavonoids. The DP4 chemical-shift analysis protocol was employed to investigate the elusive chirality of the lavandulyl moiety of the purified polyphenols. Induced Fit docking protocols and per-residue analyses were utilized to scrutinize structural prerequisites for hampering FAS activity. The FAS-inhibitory activity of the purified flavonoids was assessed via the incorporation of [ 3 H] acetyl-CoA into palmitate. Six flavonoids, including lavandulyl flavanones, were purified and evaluated for FAS inhibition. The lavandulyl flavanone sophoraflavanone G (2) exhibited the highest potency (IC 50 of 6.7±0.2μM), which was more potent than the positive controls. Extensive molecular docking studies revealed the structural requirements for blocking FAS. Per-residue interaction analysis demonstrated that the lavandulyl functional group in the active flavonoids (1-3 and 5) significantly contributed to increasing their binding affinity towards the target enzyme. This research suggests a basis for the in silico design of a lavandulyl flavonoid-based architecture showing anti-cancer effects via enhancement of the binding potential to FAS. FAS inhibition by flavonoids and their derivatives may offer significant potential as an approach to lower the risk of various cancer diseases and related fatalities. In silico technologies with available FAS crystal structures may be of significant use in optimizing preliminary leads. Copyright © 2016 Elsevier B.V. All rights reserved.
Oh, Joonseok; Liu, Haining; Park, Hyun Bong; Ferreira, Daneel; Jeong, Gil-Saeng; Hamann, Mark T.; Doerksen, Robert J.; Na, MinKyun
2016-01-01
Background Inhibition of fatty acid synthase (FAS) is regarded as a sensible therapeutic strategy for the development of optimal anti-cancer agents. Flavonoids exhibit potent anti-neoplastic properties. Methods The MeOH extract of Sophora flavescens was subjected to chromatographic analyses such as VLC and HPLC for the purification of active flavonoids. The DP4 chemical-shift analysis protocol was employed to investigate the elusive chirality of the lavandulyl moiety of the purified polyphenols. Induced Fit docking protocols and per-residue analyses were utilized to scrutinize structural prerequisites for hampering FAS activity. The FAS-inhibitory activity of the purified flavonoids was assessed via the incorporation of [3H] acetyl-CoA into palmitate. Results Six flavonoids, including lavandulyl flavanones, were purified and evaluated for FAS inhibition. The lavandulyl flavanone sophoraflavanone G (2) exhibited the highest potency (IC50 of 6.7 ± 0.2 μM), which was more potent than the positive controls. Extensive molecular docking studies revealed the structural requirements for blocking FAS. Per-residue interaction analysis demonstrated that the lavandulyl functional group in the active flavonoids (1–3 and 5) significantly contributed to increasing their binding affinity towards the target enzyme. Conclusion This research suggests a basis for the in silico design of a lavandulyl flavonoid-based architecture showing anti-cancer effects via enhancement of the binding potential to FAS. General significance FAS inhibition by flavonoids and their derivatives may offer significant potential as an approach to lower the risk of various cancer diseases and related fatalities. In silico technologies with available FAS crystal structures may be of significant use in optimizing preliminary leads. PMID:27531709
Probing the binding of flavonoids to catalase by molecular spectroscopy
NASA Astrophysics Data System (ADS)
Zhu, Jingfeng; Zhang, Xia; Li, Daojin; Jin, Jing
2007-10-01
The binding of flavonoids (quercetin and myricetin) to catalase was investigated by fluorescence and circular dichroism (CD) techniques under physiological conditions. The binding parameters and binding mode between flavonoids and catalase were determined, and the results of synchronous fluorescence spectra and CD indicated a conformational change of catalase with addition of flavonoids. The effect of both Cu 2+ and vitamin C on the binding constant of flavonoid-catalase was also examined. The experiment data show that the difference of the structure characteristics of quercetin and myricetin has a significant effect on their binding affinity for catalase.
Dietary flavonoids: molecular mechanisms of action as anti- inflammatory agents.
Marzocchella, Laura; Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Tresoldi, Ilaria; Modesti, Andrea; Bei, Roberto
2011-09-01
Flavonoids are a large group of polyphenolic compounds, which are ubiquitously expressed in plants. They are grouped according to their chemical structure and function into flavonols, flavones, flavan-3-ols, anthocyanins, flavanones and isoflavones. Many of flavonoids are found in fruits, vegetables and beverages. Flavonoids have been demonstrated to have advantageous effects on human health because their anti-allergic, anti-inflammatory, anti-platelet aggregation, anti-tumor and anti-oxidant behavior. This report reviews the current knowledge on the molecular mechanisms of action of flavonoids as anti-inflammatory agents and also discusses the relevant patents.
Vasquez-Martinez, Yesseny; Ohri, Rachana V.; Kenyon, Victor; Holman, Theodore R.; Sepúlveda-Boza, Silvia
2007-01-01
Human lipoxygenase (hLO) isozymes have been implicated in a number of disease states and have attracted much attention with respect to their inhibition. One class of inhibitors, the flavonoids, have been shown to be potent lipoxygenase inhibitors but their study has been restricted to those compounds found in nature, which have limited structural variability. We have therefore carried out a comprehensive study to determine the structural requirements for flavonoid potency and selectivity against platelet 12-hLO, reticulocyte 15-hLO-1 and prostate epithelial 15-hLO-2. We conclude from this study that catechols are essential for high potency, that isoflavones and isoflavanones tend to select against 12-hLO, that isoflavans tend to select against 15-hLO-1, but few flavonoids target 15-hLO-2. PMID:17869117
Blueberries and Tofu: Friend or Foe?
NASA Astrophysics Data System (ADS)
D'Ascoli, Jennifer; Lee, Susanne
2004-03-01
Two flavonoids, naringenin and genistein found in blueberries and soybeans, respectively, scavenge free radicals and exhibit anti- breast and prostate cancer properties. When consumed in foods, these flavonoids usually are subject to heat, yet all biological studies have been performed with unheated molecules. We have explored and will report on the three-dimensional, molecular structure changes we have thermally-induced in naringenin and genistein. We have measured and will discuss the flavonoids' thermodynamic properties as a function of temperature. Several endothermic transformations were observed along with a marked color change that remained when the flavonoids were dissolved in a solvent, indicating their molecular structures had been altered by the heat. Ultraviolet-Visible spectroscopy, and proton and carbon 1-D nuclear magnetic resonance will be presented that show the change was associated with a decrease in electron localization within the molecules. We will explain how such modified structures could scavenge free radicals more effectively and affect breast cancer cell proliferation.
Deep Sequencing Reveals the Effect of MeJA on Scutellarin Biosynthesis in Erigeron breviscapus
Xiao, Ying; Zhang, Feng; Chen, Jun-feng; Ji, Qian; Tan, He-Xin; Huang, Xin; Feng, Hao; Huang, Bao-Kang; Chen, Wan-Sheng; Zhang, Lei
2015-01-01
Background Erigeron breviscapus, a well-known traditional Chinese medicinal herb, is broadly used in the treatment of cerebrovascular disease. Scutellarin, a kind of flavonoids, is considered as the material base of the pharmaceutical activities in E. breviscapus. The stable and high content of scutellarin is critical for the quality and efficiency of E. breviscapus in the clinical use. Therefore, understanding the molecular mechanism of scutellarin biosynthesis is crucial for metabolic engineering to increase the content of the active compound. However, there is virtually no study available yet concerning the genetic research of scutellarin biosynthesis in E. breviscapus. Results Using Illumina sequencing technology, we obtained over three billion bases of high-quality sequence data and conducted de novo assembly and annotation without prior genome information. A total of 182,527 unigenes (mean length = 738 bp) were found. 63,059 unigenes were functionally annotated with a cut-off E-value of 10−5. Next, a total of 238 (200 up-regulated and 38 down-regulated genes) and 513 (375 up-regulated and 138 down-regulated genes) differentially expressed genes were identified at different time points after methyl jasmonate (MeJA) treatment, which fell into categories of ‘metabolic process’ and ‘cellular process’ using GO database, suggesting that MeJA-induced activities of signal pathway in plant mainly led to re-programming of metabolism and cell activity. In addition, 13 predicted genes that might participate in the metabolism of flavonoids were found by two co-expression analyses in E. breviscapus. Conclusions Our study is the first to provide a transcriptome sequence resource for E. breviscapus plants after MeJA treatment and it reveals transcriptome re-programming upon elicitation. As the result, several putative unknown genes involved in the metabolism of flavonoids were predicted. These data provide a valuable resource for the genetic and genomic studies of special flavonoids metabolism and further metabolic engineering in E. breviscapus. PMID:26656917
Lee, Danbi; Park, Hye Lin; Lee, Sang-Won; Bhoo, Seong Hee; Cho, Man-Ho
2017-05-26
Although they are less abundant in nature, methoxyflavonoids have distinct physicochemical and pharmacological properties compared to common nonmethylated flavonoids. Thus, enzymatic conversion and biotransformation using genetically engineered microorganisms of flavonoids have been attempted for the efficient production of methoxyflavonoids. Because of their regiospecificity, more than two flavonoid O-methyltransferases (FOMTs) and enzyme reactions are required to biosynthesize di(or poly)-methoxyflavonoids. For the one-step biotechnological production of bioactive di-O-methylflavonoids, we generated a multifunctional FOMT fusing a 3'-OMT (SlOMT3) and a 7-OMT (OsNOMT). The SlOMT3/OsNOMT fusion enzyme possessed both 3'- and 7-OMT activities to diverse flavonoid substrates, which were comparable to those of individual SlOMT3 and OsNOMT. The SlOMT3/OsNOMT enzyme also showed 3'- and 7-OMT activity for 7- or 3'-O-methylflavonoids, respectively, suggesting that the fusion enzyme can sequentially methylate flavonoids into di-O-methylflavonoids. The biotransformation of the flavonoids quercetin, luteolin, eriodictyol, and taxifolin using SlOMT3/OsNOMT-transformed Escherichia coli generated corresponding di-O-methylflavonoids, rhamnazin, velutin, 3',7-di-O-methyleriodictyol, and 3',7-di-O-methyltaxifolin, respectively. These results indicate that dimethoxyflavonoids may be efficiently produced from nonmethylated flavonoid precursors through a one-step biotransformation using the engineered E. coli harboring the SlOMT3/OsNOMT fusion gene.
Wassem, R; Marin, A M; Daddaoua, A; Monteiro, R A; Chubatsu, L S; Ramos, J L; Deakin, W J; Broughton, W J; Pedrosa, F O; Souza, E M
2017-03-01
Herbaspirillum seropedicae is an associative, endophytic non-nodulating diazotrophic bacterium that colonises several grasses. An ORF encoding a LysR-type transcriptional regulator, very similar to NodD proteins of rhizobia, was identified in its genome. This nodD-like gene, named fdeR, is divergently transcribed from an operon encoding enzymes involved in flavonoid degradation (fde operon). Apigenin, chrysin, luteolin and naringenin strongly induce transcription of the fde operon, but not that of the fdeR, in an FdeR-dependent manner. The intergenic region between fdeR and fdeA contains several generic LysR consensus sequences (T-N 11 -A) and we propose a binding site for FdeR, which is conserved in other bacteria. DNase I foot-printing revealed that the interaction with the FdeR binding site is modified by the four flavonoids that stimulate transcription of the fde operon. Moreover, FdeR binds naringenin and chrysin as shown by isothermal titration calorimetry. Interestingly, FdeR also binds in vitro to the nod-box from the nodABC operon of Rhizobium sp. NGR234 and is able to activate its transcription in vivo. These results show that FdeR exhibits two features of rhizobial NodD proteins: nod-box recognition and flavonoid-dependent transcription activation, but its role in H. seropedicae and related organisms seems to have evolved to control flavonoid metabolism. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Ganugapati, Jayasree; Baldwa, Aashish; Lalani, Sarfaraz
2012-01-01
Diabetes mellitus is a metabolic disorder caused due to insulin deficiency. Banana flower is a rich source of flavonoids that exhibit anti diabetic activity. Insulin receptor is a tetramer that belongs to a family of receptor tyrosine kinases. It contains two alpha subunits that form the extracellular domain and two beta subunits that constitute the intracellular tyrosine kinase domain. Insulin binds to the extracellular region of the receptor and causes conformational changes that lead to the activation of the tyrosine kinase. This leads to autophosphorylation, a step that is crucial in insulin signaling pathway. Hence, compounds that augment insulin receptor tyrosine kinase activity would be useful in the treatment of diabetes mellitus. The 3D structure of IR tyrosine kinase was obtained from PDB database. The list of flavonoids found in banana flower was obtained from USDA database. The structures of the flavonoids were obtained from NCBI Pubchem. Docking analysis of the flavonoids was performed using Autodock 4.0 and Autodock Vina. The results indicate that few of the flavonoids may be potential activators of IR tyrosine kinase.
3D-QSAR and docking studies of flavonoids as potent Escherichia coli inhibitors
Fang, Yajing; Lu, Yulin; Zang, Xixi; Wu, Ting; Qi, XiaoJuan; Pan, Siyi; Xu, Xiaoyun
2016-01-01
Flavonoids are potential antibacterial agents. However, key substituents and mechanism for their antibacterial activity have not been fully investigated. The quantitative structure-activity relationship (QSAR) and molecular docking of flavonoids relating to potent anti-Escherichia coli agents were investigated. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were developed by using the pIC50 values of flavonoids. The cross-validated coefficient (q2) values for CoMFA (0.743) and for CoMSIA (0.708) were achieved, illustrating high predictive capabilities. Selected descriptors for the CoMFA model were ClogP (logarithm of the octanol/water partition coefficient), steric and electrostatic fields, while, ClogP, electrostatic and hydrogen bond donor fields were used for the CoMSIA model. Molecular docking results confirmed that half of the tested flavonoids inhibited DNA gyrase B (GyrB) by interacting with adenosine-triphosphate (ATP) pocket in a same orientation. Polymethoxyl flavones, flavonoid glycosides, isoflavonoids changed their orientation, resulting in a decrease of inhibitory activity. Moreover, docking results showed that 3-hydroxyl, 5-hydroxyl, 7-hydroxyl and 4-carbonyl groups were found to be crucial active substituents of flavonoids by interacting with key residues of GyrB, which were in agreement with the QSAR study results. These results provide valuable information for structure requirements of flavonoids as antibacterial agents. PMID:27049530
Naringenin degradation by the endophytic diazotroph Herbaspirillum seropedicae SmR1.
Marin, A M; Souza, E M; Pedrosa, F O; Souza, L M; Sassaki, G L; Baura, V A; Yates, M G; Wassem, R; Monteiro, R A
2013-01-01
Several bacteria are able to degrade flavonoids either to use them as carbon sources or as a detoxification mechanism. Degradation pathways have been proposed for several bacteria, but the genes responsible are not known. We identified in the genome of the endophyte Herbaspirillum seropedicae SmR1 an operon potentially associated with the degradation of aromatic compounds. We show that this operon is involved in naringenin degradation and that its expression is induced by naringenin and chrysin, two closely related flavonoids. Mutation of fdeA, the first gene of the operon, and fdeR, its transcriptional activator, abolished the ability of H. seropedicae to degrade naringenin.
Li, Yueqing; Shan, Xiaotong; Gao, Ruifang; Yang, Song; Wang, Shucai; Gao, Xiang; Wang, Li
2016-01-01
The MBW complex, comprised by R2R3-MYB, basic helix-loop-helix (bHLH) and WD40, is a single regulatory protein complex that drives the evolution of multiple traits such as flavonoid biosynthesis and epidermal cell differentiation in plants. In this study, two IIIf Clade-bHLH regulator genes, FhGL3L and FhTT8L, were isolated and functionally characterized from Freesia hybrida. Different spatio-temporal transcription patterns were observed showing diverse correlation with anthocyanin and proanthocyanidin accumulation. When overexpressed in Arabidopsis, FhGL3L could enhance the anthocyanin accumulation through up-regulating endogenous regulators and late structural genes. Unexpectedly, trichome formation was inhibited associating with the down-regulation of AtGL2. Comparably, only the accumulation of anthocyanins and proanthocyanidins was strengthened in FhTT8L transgenic lines. Furthermore, transient expression assays demonstrated that FhGL3L interacted with AtPAP1, AtTT2 and AtGL1, while FhTT8L only showed interaction with AtPAP1 and AtTT2. In addition, similar activation of the AtDFR promoter was found between AtPAP1-FhGL3L/FhTT8L and AtPAP1- AtGL3/AtTT8 combinations. When FhGL3L was fused with a strong activation domain VP16, it could activate the AtGL2 promoter when co-transfected with AtGL1. Therefore, it can be concluded that the functionality of bHLH factors may have diverged, and a sophisticated interaction and hierarchical network might exist in the regulation of flavonoid biosynthesis and trichome formation. PMID:27465838
Li, Yueqing; Shan, Xiaotong; Gao, Ruifang; Yang, Song; Wang, Shucai; Gao, Xiang; Wang, Li
2016-07-28
The MBW complex, comprised by R2R3-MYB, basic helix-loop-helix (bHLH) and WD40, is a single regulatory protein complex that drives the evolution of multiple traits such as flavonoid biosynthesis and epidermal cell differentiation in plants. In this study, two IIIf Clade-bHLH regulator genes, FhGL3L and FhTT8L, were isolated and functionally characterized from Freesia hybrida. Different spatio-temporal transcription patterns were observed showing diverse correlation with anthocyanin and proanthocyanidin accumulation. When overexpressed in Arabidopsis, FhGL3L could enhance the anthocyanin accumulation through up-regulating endogenous regulators and late structural genes. Unexpectedly, trichome formation was inhibited associating with the down-regulation of AtGL2. Comparably, only the accumulation of anthocyanins and proanthocyanidins was strengthened in FhTT8L transgenic lines. Furthermore, transient expression assays demonstrated that FhGL3L interacted with AtPAP1, AtTT2 and AtGL1, while FhTT8L only showed interaction with AtPAP1 and AtTT2. In addition, similar activation of the AtDFR promoter was found between AtPAP1-FhGL3L/FhTT8L and AtPAP1- AtGL3/AtTT8 combinations. When FhGL3L was fused with a strong activation domain VP16, it could activate the AtGL2 promoter when co-transfected with AtGL1. Therefore, it can be concluded that the functionality of bHLH factors may have diverged, and a sophisticated interaction and hierarchical network might exist in the regulation of flavonoid biosynthesis and trichome formation.
Physico-chemical Properties of Supramolecular Complexes of Natural Flavonoids with Biomacromolecules
NASA Astrophysics Data System (ADS)
Barvinchenko, V. M.; Lipkovska, N. O.; Fedyanina, T. V.; Pogorelyi, V. K.
Polyvinylpyrrolidone (a water-soluble biopolymer) and human serum albumin (a globular protein) form supramolecular complexes with natural flavonoids quercetin and rutin in aqueous medium. The interaction with these biomacromolecules (BMM) causes the alteration of flavonoid spectral, protolytic, and other properties; in particular, it essentially increases their solubility. Absorption and solubility measurements revealed the supramolecular compounds of 1:1 stoichiometry for all systems studied. First it was demonstrated experimentally that the interaction with BMM promotes the tautomeric transformation in quercetin molecule. The mechanism of tautomerization via flavonoid molecular structure was discussed. Adsorption of BMM and their supramolecular compounds with flavonoids onto nanosilica was studied as a function of pH, and the properties of the biomacromolecules, flavonoids, and silica surface. It was found that BMM either complexed with quercetin (rutin) or preliminary immobilized on nanosilica increases the flavonoid adsorption.
Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke; Naka, Tetsuji; Shima, Yoshihito; Ohshima, Shiro; Fujimoto, Minoru; Yamadori, Tomoki; Kawase, Ichiro; Tanaka, Toshio
2004-06-01
We have previously shown that fisetin, a flavonol, inhibits IL-4 and IL-13 synthesis by allergen- or anti-IgE-antibody-stimulated basophils. This time, we investigated the inhibition of IL-4 and IL-13 production by basophils by other flavonoids and attempted to determine the fundamental structure of flavonoids related to inhibition. We additionally investigated whether flavonoids suppress leukotriene C4 synthesis by basophils and IL-4 synthesis by T cells in response to anti-CD3 antibody. Highly purified peripheral basophils were stimulated for 12 h with anti-IgE antibody alone or anti-IgE antibody plus IL-3 in the presence of various concentrations of 18 different kinds of flavones and flavonols. IL-4 and IL-13 concentrations in the supernatants were then measured. Leukotriene C4 synthesis was also measured after basophils were stimulated for 1 h in the presence of flavonoids. Regarding the inhibitory activity of flavonoids on IL-4 synthesis by T cells, peripheral blood mononuclear cells were cultured with flavonoids in anti-CD3-antibody-bound plates for 2 days. Luteolin, fisetin and apigenin were found to be the strongest inhibitors of both IL-4 and IL-13 production by basophils but did not affect leukotriene C4 synthesis. At higher concentrations, these flavonoids suppressed IL-4 production by T cells. Based on a hierarchy of inhibitory activity, the basic structure for IL-4 inhibition by basophils was determined. Due to the inhibitory activity of flavonoids on IL-4 and IL-13 synthesis, it can be expected that the intake of flavonoids, depending on the quantity and quality, may ameliorate allergic symptoms or prevent the onset of allergic diseases. Copyright 2004 S. Karger AG, Basel
Kim, Jeongwoon; Matsuba, Yuki; Ning, Jing; Schilmiller, Anthony L.; Hammar, Dagan; Jones, A. Daniel; Pichersky, Eran; Last, Robert L.
2014-01-01
Flavonoids are ubiquitous plant aromatic specialized metabolites found in a variety of cell types and organs. Methylated flavonoids are detected in secreting glandular trichomes of various Solanum species, including the cultivated tomato (Solanum lycopersicum). Inspection of the sequenced S. lycopersicum Heinz 1706 reference genome revealed a close homolog of Solanum habrochaites MOMT1 3′/5′ myricetin O-methyltransferase gene, but this gene (Solyc06g083450) is missing the first exon, raising the question of whether cultivated tomato has a distinct 3′ or 3′/5′ O-methyltransferase. A combination of mining genome and cDNA sequences from wild tomato species and S. lycopersicum cultivar M82 led to the identification of Sl-MOMT4 as a 3′ O-methyltransferase. In parallel, three independent ethyl methanesulfonate mutants in the S. lycopersicum cultivar M82 background were identified as having reduced amounts of di- and trimethylated myricetins and increased monomethylated myricetin. Consistent with the hypothesis that Sl-MOMT4 is a 3′ O-methyltransferase gene, all three myricetin methylation defective mutants were found to have defects in MOMT4 sequence, transcript accumulation, or 3′-O-methyltransferase enzyme activity. Surprisingly, no MOMT4 sequence is found in the Heinz 1706 reference genome sequence, and this cultivar accumulates 3-methyl myricetin and is deficient in 3′-methyl myricetins, demonstrating variation in this gene among cultivated tomato varieties. PMID:25128240
Endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice.
Sandhiya, G S; Sugitha, T C K; Balachandar, D; Kumar, K
2005-09-01
Nitrogen fixing endophytic Serratia sp. was isolated from rice and characterized. Re-colonization ability of Serratia sp. in the rice seedlings as endophyte was studied under laboratory condition. For detecting the re-colonization potential in the rice seedlings, Serratia sp. was marked with reporter genes (egfp and Kmr) using transposon mutagenesis. The conjugants were screened for re-colonization ability and presence of nif genes using PCR. Further, the influence of flavonoids and growth hormones on the endophytic colonization and in planta nitrogen fixation of Serratia was also investigated. The flavonoids, quercetin (3 microg/ml) and diadzein (2 microg/ml) significantly increased the re-colonization ability of the endophytic Serratia, whereas the growth hormones like IAA and NAA (5 microg/ml) reduced the endophytic colonization ability of Serratia sp. Similarly, the in planta nitrogen fixation by Serratia sp. in rice was significantly increased due to flavonoids. The inoculation of endophytic diazotrophs increased the plant biomass and biochemical constituents.
Tang, Xiaosheng; Tang, Ping; Liu, Liangliang
2017-06-23
Lotus leaf has gained growing popularity as an ingredient in herbal formulations due to its various activities. As main functional components of lotus leaf, the difference in structure of flavonoids affected their binding properties and activities. In this paper, the existence of 11 flavonoids in lotus leaf extract was confirmed by High Performance Liquid Chromatography (HPLC) analysis and 11 flavonoids showed various contents in lotus leaf. The interactions between lotus leaf extract and two kinds of serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA)) were investigated by spectroscopic methods. Based on the fluorescence quenching, the interactions between these flavonoids and serum albumins were further checked in detail. The relationship between the molecular properties of flavonoids and their affinities for serum albumins were analyzed and compared. The hydroxylation on 3 and 3' position increased the affinities for serum albumins. Moreover, both of the methylation on 3' position of quercetin and the C₂=C₃ double bond of apigenin and quercetin decreased the affinities for HSA and BSA. The glycosylation lowered the affinities for HSA and BSA depending on the type of sugar moiety. It revealed that the hydrogen bond force played an important role in binding flavonoids to HSA and BSA.
Poór, Miklós; Zrínyi, Zita; Kőszegi, Tamás
2016-10-01
Dietary flavonoids are abundant in the Plant Kingdom and they are extensively studied because of their manifold pharmacological activities. Recent studies highlighted that cell cycle arrest plays a key role in their antiproliferative effect in different tumor cells. However, structure-activity relationship of flavonoids is poorly characterized. In our study the influence of 18 flavonoid aglycones (as well as two metabolites) on cell cycle distribution was investigated. Since flavonoids are extensively metabolized by liver cells, HepG2 tumor cell line was applied, considering the potential metabolic activation/inactivation of flavonoids. Our major observations are the followings: (1) Among the tested compounds diosmetin, fisetin, apigenin, lutelin, and quercetin provoked spectacular extent of G2/M phase cell cycle arrest. (2) Inhibition of catechol-O-methyltransferase enzyme by entacapone decreased the antiproliferative effects of fisetin and quercetin. (3) Geraldol and isorhamnetin (3'-O-methylated metabolites of fisetin and quercetin, respectively) demonstrated significantly higher antiproliferative effect on HepG2 cells compared to the parent compounds. Based on these results, O-methylated flavonoid metabolites or their chemically modified derivatives may be suitable candidates of tumor therapy in the future. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Gonzales, Gerard Bryan; Raes, Katleen; Coelus, Sofie; Struijs, Karin; Smagghe, Guy; Van Camp, John
2014-01-03
In this paper, a strategy for the detection and structural elucidation of flavonoid glycosides from a complex matrix in a single chromatographic run using U(H)PLC-ESI-IMS-HDMS/MS(E) is presented. This system operates using alternative low and high energy voltages that is able to perform the task of conventional MS/MS in a data-independent way without re-injection of the sample, which saves analytical time. Also, ion mobility separation (IMS) was employed as an additional separation technique for compounds that are co-eluting after U(H)PLC separation. First, the fragmentation of flavonoid standards were analyzed and criteria was set for structural elucidation of flavonoids in a plant extract. Based on retention times, UV spectra, exact mass, and MS fragment characteristics, such as abundances of daughter ions and the presence of radical ions ([Y0-H](-)), a total 19 flavonoid glycosides, of which 8 non-acylated and 11 acylated, were detected and structurally characterized in a cauliflower waste extract. Kaempferol and quercetin were the main aglycones detected while sinapic and ferulic acid were the main phenolic acids. C-glycosides were also found although their structure could not be elucidated. The proposed method can be used as a rapid screening test for flavonoid identification and for routine analysis of plant extracts, such as these derived from cauliflower waste. The study also confirms that agroindustrial wastes, such as cauliflower leaves, could be seen as a valuable source of different bioactive phenolic compounds. Copyright © 2013 Elsevier B.V. All rights reserved.
di Gesso, Jessica L.; Kerr, Jason S.; Zhang, Qingzhi; Raheem, Saki; Yalamanchili, Sai Krishna; O'Hagan, David; Kay, Colin D.; O'Connell, Maria A.
2015-01-01
1 Scope Flavonoids are generally studied in vitro, in isolation, and as unmetabolized precursor structures. However, in the habitual diet, multiple flavonoids are consumed together and found present in the circulation as complex mixtures of metabolites. Using a unique study design, we investigated the potential for singular or additive anti‐inflammatory effects of flavonoid metabolites relative to their precursor structures. 2 Methods and results Six flavonoids, 14 flavonoid metabolites, and 29 combinations of flavonoids and their metabolites (0.1–10 μM) were screened for their ability to reduce LPS‐induced tumor necrosis factor‐α (TNF‐α) secretion in THP‐1 monocytes. One micromolar peonidin‐3‐glucoside, cyanidin‐3‐glucoside, and the metabolites isovanillic acid (IVA), IVA‐glucuronide, vanillic acid‐glucuronide, protocatechuic acid‐3‐sulfate, and benzoic acid‐sulfate significantly reduced TNF‐α secretion when in isolation, while there was no effect on TNF‐α mRNA expression. Four combinations of metabolites that included 4‐hydroxybenzoic acid (4HBA) and/or protocatechuic acid also significantly reduced TNF‐α secretion to a greater extent than the precursors or metabolites alone. The effects on LPS‐induced IL‐1β and IL‐10 secretion and mRNA expression were also examined. 4HBA significantly reduced IL‐1β secretion but none of the flavonoids or metabolites significantly modified IL‐10 secretion. 3 Conclusion This study provides novel evidence suggesting flavonoid bioactivity results from cumulative or additive effects of circulating metabolites. PMID:25801720
di Gesso, Jessica L; Kerr, Jason S; Zhang, Qingzhi; Raheem, Saki; Yalamanchili, Sai Krishna; O'Hagan, David; Kay, Colin D; O'Connell, Maria A
2015-06-01
Flavonoids are generally studied in vitro, in isolation, and as unmetabolized precursor structures. However, in the habitual diet, multiple flavonoids are consumed together and found present in the circulation as complex mixtures of metabolites. Using a unique study design, we investigated the potential for singular or additive anti-inflammatory effects of flavonoid metabolites relative to their precursor structures. Six flavonoids, 14 flavonoid metabolites, and 29 combinations of flavonoids and their metabolites (0.1-10 μM) were screened for their ability to reduce LPS-induced tumor necrosis factor-α (TNF-α) secretion in THP-1 monocytes. One micromolar peonidin-3-glucoside, cyanidin-3-glucoside, and the metabolites isovanillic acid (IVA), IVA-glucuronide, vanillic acid-glucuronide, protocatechuic acid-3-sulfate, and benzoic acid-sulfate significantly reduced TNF-α secretion when in isolation, while there was no effect on TNF-α mRNA expression. Four combinations of metabolites that included 4-hydroxybenzoic acid (4HBA) and/or protocatechuic acid also significantly reduced TNF-α secretion to a greater extent than the precursors or metabolites alone. The effects on LPS-induced IL-1β and IL-10 secretion and mRNA expression were also examined. 4HBA significantly reduced IL-1β secretion but none of the flavonoids or metabolites significantly modified IL-10 secretion. This study provides novel evidence suggesting flavonoid bioactivity results from cumulative or additive effects of circulating metabolites. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ishiguro, Kanako; Taniguchi, Masumi; Tanaka, Yoshikazu
2012-05-01
The enzymes flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) play an important role in flower color by determining the B-ring hydroxylation pattern of anthocyanins, the major floral pigments. F3'5'H is necessary for biosynthesis of the delphinidin-based anthocyanins that confer a violet or blue color to most plants. Antirrhinum majus does not produce delphinidin and lacks violet flower colour while A. kelloggii produces violet flowers containing delphinidin. To understand the cause of this inter-specific difference in the Antirrhinum genus, we isolated one F3'H and two F3'5'H homologues from the A. kelloggii petal cDNA library. Their amino acid sequences showed high identities to F3'Hs and F3'5'Hs of closely related species. Transgenic petunia expressing these genes had elevated amounts of cyanidin and delphinidin respectively, and flower color changes in the transgenics reflected the type of accumulated anthocyanidins. The results indicate that the homologs encode F3'H and F3'5'H, respectively, and that the ancestor of A. majus lost F3'5'H activity after its speciation from the ancestor of A. kelloggii.
Zhang, Xiao; Ding, Xiaoli; Ji, Yaxi; Wang, Shouchuang; Chen, Yingying; Luo, Jie; Shen, Yingbai; Peng, Li
2018-04-18
Plants respond to UV-B irradiation (280-315 nm wavelength) via elaborate metabolic regulatory mechanisms that help them adapt to this stress. To investigate the metabolic response of the medicinal herb Chinese liquorice (Glycyrrhiza uralensis) to UV-B irradiation, we performed liquid chromatography tandem mass spectrometry (LC-MS/MS)-based metabolomic analysis, combined with analysis of differentially expressed genes in the leaves of plants exposed to UV-B irradiation at various time points. Fifty-four metabolites, primarily amino acids and flavonoids, exhibited changes in levels after the UV-B treatment. The amino acid metabolism was altered by UV-B irradiation: the Asp family pathway was activated and closely correlated to Glu. Some amino acids appeared to be converted into antioxidants such as γ-aminobutyric acid and glutathione. Hierarchical clustering analysis revealed that various flavonoids with characteristic groups were induced by UV-B. In particular, the levels of some ortho-dihydroxylated B-ring flavonoids, which might function as scavengers of reactive oxygen species, increased in response to UV-B treatment. In general, unigenes encoding key enzymes involved in amino acid metabolism and flavonoid biosynthesis were upregulated by UV-B irradiation. These findings lay the foundation for further analysis of the mechanism underlying the response of G. uralensis to UV-B irradiation.
El-Esawi, Mohamed A; Elkelish, Amr; Elansary, Hosam O; Ali, Hayssam M; Elshikh, Mohamed; Witczak, Jacques; Ahmad, Margaret
2017-01-01
Lactuca serriola L. is a herbaceous species, used for human nutrition and medicinal purposes. The high antioxidant capacity of L. serriola indicates the possibility of enhancing its edible and health potential by increasing the flavonoid and phenolic contents. The present study aimed at enhancing the production of phenolics and flavonoids by hairy root cultures in Lactuca serriola transformed with Agrobacterium rhizogenes strain AR15834 harbouring the rolB gene. The genetic transformation of rolB in transformed roots was validated, and rolB expression level was evaluated using real-time qPCR analysis. Expression levels of flavonoid biosynthesis genes (CHI, PAL, FLS, and CHS) were assessed in the hairy and nontransformed roots. Results showed higher expression levels in the transgenic roots than in the nontransformed ones ( p < 0.01). Transgenic hairy roots exhibited a 54.8-96.7% increase in the total phenolic content, 38.1-76.2% increase in the total flavonoid content, and 56.7-96.7% increase in the total reducing power when compared with the nontransgenic roots ( p < 0.01). DPPH results also revealed that the transgenic hairy roots exhibited a 31.6-50% increase in antioxidant potential, when compared to normal roots. This study addressed the enhancement of secondary metabolite biosynthesis by hairy root induction in L. serriola .
Haddad, Ahmed Q; Fleshner, Neil; Nelson, Colleen; Saour, Basil; Musquera, Mireia; Venkateswaran, Vasundara; Klotz, Laurence
2010-01-01
We have previously demonstrated the antiproliferative effect of two flavonoids-2,2'-dihydroxychalcone (DHC), a novel synthetic flavonoid, and fisetin, a naturally occurring flavonol-in prostate cancer cells. In this study, we further examine the mechanisms of these compounds on survival and proliferation pathways. DHC and fisetin (1-50 microM) caused a dose-dependent reduction in viability, a concomitant increase in apoptosis in PC3 cells at 72 h, and a decrease in clonogenic survival at 24 h treatment. DHC was considerably more potent than fisetin in these cytotoxicity assays. The mechanism of accelerated cellular senescence was not activated by either compound in PC3 or lymph node carcinoma of the prostate (LNCaP) cells. Gene expression alterations in PC3 and LNCaP cells treated with 15 muM DHC and 25 microM fisetin for 6 to 24 h were determined by oligonucleotide array. Amongst the most highly represented functional categories of genes altered by both compounds was the cell cycle category. In total, 100 cell cycle genes were altered by DHC and fisetin including 27 genes with key functions in G2/M phase that were downregulated by both compounds. Other functional categories altered included chromosome organization, apoptosis, and stress response. These results demonstrate the multiple mechanisms of antitumor activity of DHC and fisetin in prostate cancer cells in vitro.
NASA Astrophysics Data System (ADS)
Shirataki, Yoshiaki; Motohashi, Noboru
Sophora species of Leguminosae are abundantly present in the natural kingdom. Today, among Sophora plants, the flavonoids of the plant phenols occupy a remarkable position. For a very long time flavonoids have been used as natural pigments and dyes. Some of the colorful anthocyanins of the glucosides are used for color and flavor in foodstuffs. Therefore, these flavonoids are beneficial to daily human life. Herein we concentrate on flavonoids in Sophora plants, and the relationship between their chemical structures and nutraceutical effect. For this purpose, soy-based infant formulas, osteoporosis, antitumor activity, antimicrobial activity, anti-HIV activity, radical generation and O2 - scavenging activity, and enzyme inhibitory activity have been described.
Sathishkumar, Thiyagarajan; Baskar, Ramakrishnan; Aravind, Mohan; Tilak, Suryanarayanan; Deepthi, Sri; Bharathikumar, Vellalore Maruthachalam
2013-01-01
Flavonoids are exploited as antioxidants, antimicrobial, antithrombogenic, antiviral, and antihypercholesterolemic agents. Normally, conventional extraction techniques like soxhlet or shake flask methods provide low yield of flavonoids with structural loss, and thereby, these techniques may be considered as inefficient. In this regard, an attempt was made to optimize the flavonoid extraction using orthogonal design of experiment and subsequent structural elucidation by high-performance liquid chromatography-diode array detector-electron spray ionization/mass spectrometry (HPLC-DAD-ESI/MS) techniques. The shake flask method of flavonoid extraction was observed to provide a yield of 1.2 ± 0.13 (mg/g tissue). With the two different solvents, namely, ethanol and ethyl acetate, tried for the extraction optimization of flavonoid, ethanol (80.1 mg/g tissue) has been proved better than ethyl acetate (20.5 mg/g tissue). The optimal conditions of the extraction of flavonoid were found to be 85°C, 3 hours with a material ratio of 1 : 20, 75% ethanol, and 1 cycle of extraction. About seven different phenolics like robinin, quercetin, rutin, sinapoyl-hexoside, dicaffeic acid, and two unknown compounds were identified for the first time in the flowers of T. heyneana. The study has also concluded that L16 orthogonal design of experiment is an effective method for the extraction of flavonoid than the shake flask method. PMID:25969771
Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis
NASA Technical Reports Server (NTRS)
Brown, D. E.; Rashotte, A. M.; Murphy, A. S.; Normanly, J.; Tague, B. W.; Peer, W. A.; Taiz, L.; Muday, G. K.
2001-01-01
Polar transport of the plant hormone auxin controls many aspects of plant growth and development. A number of synthetic compounds have been shown to block the process of auxin transport by inhibition of the auxin efflux carrier complex. These synthetic auxin transport inhibitors may act by mimicking endogenous molecules. Flavonoids, a class of secondary plant metabolic compounds, have been suggested to be auxin transport inhibitors based on their in vitro activity. The hypothesis that flavonoids regulate auxin transport in vivo was tested in Arabidopsis by comparing wild-type (WT) and transparent testa (tt4) plants with a mutation in the gene encoding the first enzyme in flavonoid biosynthesis, chalcone synthase. In a comparison between tt4 and WT plants, phenotypic differences were observed, including three times as many secondary inflorescence stems, reduced plant height, decreased stem diameter, and increased secondary root development. Growth of WT Arabidopsis plants on naringenin, a biosynthetic precursor to those flavonoids with auxin transport inhibitor activity in vitro, leads to a reduction in root growth and gravitropism, similar to the effects of synthetic auxin transport inhibitors. Analyses of auxin transport in the inflorescence and hypocotyl of independent tt4 alleles indicate that auxin transport is elevated in plants with a tt4 mutation. In hypocotyls of tt4, this elevated transport is reversed when flavonoids are synthesized by growth of plants on the flavonoid precursor, naringenin. These results are consistent with a role for flavonoids as endogenous regulators of auxin transport.
Flavonoids: a metabolic network mediating plants adaptation to their real estate.
Mouradov, Aidyn; Spangenberg, German
2014-01-01
From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth's terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial, and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production.
Neolignan and flavonoid glycosides in Juniperus communis var. depressa.
Nakanishi, Tsutomu; Iida, Naoki; Inatomi, Yuka; Murata, Hiroko; Inada, Akira; Murata, Jin; Lang, Frank A; Iinuma, Munekazu; Tanaka, Toshiyuki
2004-01-01
Two neolignan glycosides (junipercomnosides A and B) were isolated from aerial parts of Juniperus communis var. depressa along with two known neolignan glycosides and seven flavonoid glycosides. The structures of the isolated compounds were determined by spectral analysis, in particular by 2D-NMR analysis. The significance of distribution of flavonoids in the chemotaxonomy of genus Juniperus was also discussed.
Flavonoids, Phenolic Acids and Coumarins from the Roots of Althaea officinalis.
Gudej, J
1991-06-01
From the roots of ALTHAEA OFFICINALIS two flavonoid glycosides were separated. Phenolic acids and coumarins were investigated chromatographically. The structures of the compounds were established on the basis of acid hydrolysis and spectroscopic methods (UV, (1)H-NMR, (13)C-NMR) as hypolaetin 8-glucoside and the new flavonoid sulphate - isoscutellarein 4'-methyl ether 8-glucoside-2''-SO (3)K.
Koch, Karoline; Havermann, Susannah; Büchter, Christian
2014-01-01
Flavonoids are secondary plant compounds that mediate diverse biological activities, for example, by scavenging free radicals and modulating intracellular signalling pathways. It has been shown in various studies that distinct flavonoid compounds enhance stress resistance and even prolong the life span of organisms. In the last years the model organism C. elegans has gained increasing importance in pharmacological and toxicological sciences due to the availability of various genetically modified nematode strains, the simplicity of modulating genes by RNAi, and the relatively short life span. Several studies have been performed demonstrating that secondary plant compounds influence ageing, stress resistance, and distinct signalling pathways in the nematode. Here we present an overview of the modulating effects of different flavonoids on oxidative stress, redox-sensitive signalling pathways, and life span in C. elegans introducing the usability of this model system for pharmacological and toxicological research. PMID:24895670
Urios, Paul; Grigorova-Borsos, Anne-Marie; Sternberg, Michel
2007-04-01
Glycoxidation of collagens contributes to development of vascular complications in diabetes. Since flavonoids are potent antioxidants present in vegetal foods, it was interesting to examine their effect on the formation of a cross-linking advanced glycation endproduct, pentosidine, in collagens. Collagen was incubated with glucose (250 mM), in the presence of different flavonoids. Pentosidine was measured by HPLC, hydroxyproline colorimetrically. Monomeric flavonoids (25 and 250 microM) markedly reduced pentosidine/hydroxyproline values in a concentration- and structure-dependent manner. In decreasing order of their specific inhibitory activity, they rank as follows: myricetin > or = quercetin > rutin > (+)catechin > kaempferol. Thus 3'-OH or 4-oxo + Delta(2-3) increase the inhibitory activity; conjugation by Rha-Glc on 3-OH decreases it. Procyanidin oligomers from grape seed were more active than pine bark procyanidin oligomers: this may be related to the galloyl residues present in grape seed oligomers only. Procyanidin oligomers are known to be cleaved into monomers in the gastric milieu and monomeric flavonoids to be absorbed and recovered at micromolar concentrations (with a long plasmatic half-life) in extracellular fluids, in contact with collagens. Flavonoids are very potent inhibitors of pentosidine formation in collagens. They are active at micromolar concentrations; these might be achieved in plasma of diabetic patients after oral intake of natural flavonoids.
Insights into dietary flavonoids as molecular templates for the design of anti-platelet drugs
Wright, Bernice; Spencer, Jeremy P.E.; Lovegrove, Julie A.; Gibbins, Jonathan M.
2013-01-01
Flavonoids are low-molecular weight, aromatic compounds derived from fruits, vegetables, and other plant components. The consumption of these phytochemicals has been reported to be associated with reduced cardiovascular disease (CVD) risk, attributed to their anti-inflammatory, anti-proliferative, and anti-thrombotic actions. Flavonoids exert these effects by a number of mechanisms which include attenuation of kinase activity mediated at the cell-receptor level and/or within cells, and are characterized as broad-spectrum kinase inhibitors. Therefore, flavonoid therapy for CVD is potentially complex; the use of these compounds as molecular templates for the design of selective and potent small-molecule inhibitors may be a simpler approach to treat this condition. Flavonoids as templates for drug design are, however, poorly exploited despite the development of analogues based on the flavonol, isoflavonone, and isoflavanone subgroups. Further exploitation of this family of compounds is warranted due to a structural diversity that presents great scope for creating novel kinase inhibitors. The use of computational methodologies to define the flavonoid pharmacophore together with biological investigations of their effects on kinase activity, in appropriate cellular systems, is the current approach to characterize key structural features that will inform drug design. This focussed review highlights the potential of flavonoids to guide the design of clinically safer, more selective, and potent small-molecule inhibitors of cell signalling, applicable to anti-platelet therapy. PMID:23024269
Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; ...
2014-10-24
Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR formore » metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.« less
Sun, Li; Di, Dongwei; Li, Guangjie; Kronzucker, Herbert J; Shi, Weiming
2017-05-01
Ammonium (NH 4 + ) is the predominant nitrogen (N) source in many natural and agricultural ecosystems, including flooded rice fields. While rice is known as an NH 4 + -tolerant species, it nevertheless suffers NH 4 + toxicity at elevated soil concentrations. NH 4 + excess rapidly leads to the disturbance of various physiological processes that ultimately inhibit shoot and root growth. However, the global transcriptomic response to NH 4 + stress in rice has not been examined. In this study, we mapped the spatio-temporal specificity of gene expression profiles in rice under excess NH 4 + and the changes in gene expression in root and shoot at various time points by RNA-Seq (Quantification) using Illumina HiSeqTM 2000. By comparative analysis, 307 and 675 genes were found to be up-regulated after 4h and 12h of NH 4 + exposure in the root, respectively. In the shoot, 167 genes were up-regulated at 4h, compared with 320 at 12h. According to KEGG analysis, up-regulated DEGs mainly participate in phenylpropanoid (such as flavonoid) and amino acid (such as proline, cysteine, and methionine) metabolism, which is believed to improve NH 4 + stress tolerance through adjustment of energy metabolism in the shoot, while defense and signaling pathways, guiding whole-plant acclimation, play the leading role in the root. We furthermore critically assessed the roles of key phytohormones, and found abscisic acid (ABA) and ethylene (ET) to be the major regulatory molecules responding to excess NH 4 + and activating the MAPK (mitogen-activated protein kinase) signal-transduction pathway. Moreover, we found up-regulated hormone-associated genes are involved in regulating flavonoid biosynthesis and are regulated by tissue flavonoid accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.
Shao, Yafang; Jin, Liang; Zhang, Gan; Lu, Yan; Shen, Yun; Bao, Jinsong
2011-03-01
Phytochemicals such as phenolics and flavonoids in rice grain are antioxidants that are associated with reduced risk of developing chronic diseases including cardiovascular disease, type-2 diabetes and some cancers. Understanding the genetic basis of these traits is necessary for the improvement of nutritional quality by breeding. Association mapping based on linkage disequilibrium has emerged as a powerful strategy for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, genome-wide association mapping using models controlling both population structure (Q) and relative kinship (K) were performed to identify the marker loci/QTLs underlying the naturally occurring variations of grain color and nutritional quality traits in 416 rice germplasm accessions including red and black rice. A total of 41 marker loci were identified for all the traits, and it was confirmed that Ra (i.e., Prp-b for purple pericarp) and Rc (brown pericarp and seed coat) genes were main-effect loci for rice grain color and nutritional quality traits. RM228, RM339, fgr (fragrance gene) and RM316 were important markers associated with most of the traits. Association mapping for the traits of the 361 white or non-pigmented rice accessions (i.e., excluding the red and black rice) revealed a total of 11 markers for four color parameters, and one marker (RM346) for phenolic content. Among them, Wx gene locus was identified for the color parameters of lightness (L*), redness (a*) and hue angle (H (o)). Our study suggested that the markers identified in this study can feasibly be used to improve nutritional quality or health benefit properties of rice by marker-assisted selection if the co-segregations of the marker-trait associations are validated in segregating populations.
Flavonoid engineering of flax potentiate its biotechnological application.
Zuk, Magdalena; Kulma, Anna; Dymińska, Lucyna; Szołtysek, Katarzyna; Prescha, Anna; Hanuza, Jerzy; Szopa, Jan
2011-01-28
Flavonoids are a group of secondary plant metabolites important for plant growth and development. They show also a protective effect against colon and breast cancer, diabetes, hypercholesterolemic atherosclerosis, lupus nephritis, and immune and inflammatory reactions. Thus, overproduction of these compounds in flax by genetic engineering method might potentiate biotechnological application of these plant products. Flax plants of third generation overexpressing key genes of flavonoid pathway cultivated in field were used as plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts and fibre from natural and transgenic flax plants were compared. The data obtained suggests that the introduced genes were stably inherited and expressed through plant generations. Overproduction of flavonoid compounds resulted in increase of fatty acids accumulation in oil from transgenic seeds due to protection from oxidation offered during synthesis and seed maturation. The biochemical analysis of seedcake extracts from seeds of transgenic flax revealed significant increase in flavonoids (kaempferol), phenolic acids (coumaric, ferulic, synapic acids) and lignan content. Fibres, another product of flax plant showed increase in the level of catechine and acetylvanillone and decrease in phenolic acids upon flax modification.Biochemical analysis results were confirmed using IR spectroscopy. The integral intensities of IR bands have been used for identification of the component of phenylpropanoid pathway in oil, seedcake extract and fibre from control and transgenic flax. It was shown that levels of flavonoids, phenolic acids and lignans in oil and seedcake extract was higher in transgenic flax products compared to control. An FT-IR study of fibres confirmed the biochemical data and revealed that the arrangement of the cellulose polymer in the transgenic fibres differs from the control; in particular a significant decrease in the number of hydrogen bonds was detected. All analysed products from generated transgenic plants were enriched with antioxidant compounds derived from phenylopropanoid pathway Thus the products provide valuable source of flavonoids, phenolic acids and lignan for biomedical application. The compounds composition and quantity from transgenic plants was confirmed by IR spectroscopy. Thus the infrared spectroscopy appeared to be suitable method for characterization of flax products.
Flavonoid engineering of flax potentiate its biotechnological application
2011-01-01
Background Flavonoids are a group of secondary plant metabolites important for plant growth and development. They show also a protective effect against colon and breast cancer, diabetes, hypercholesterolemic atherosclerosis, lupus nephritis, and immune and inflammatory reactions. Thus, overproduction of these compounds in flax by genetic engineering method might potentiate biotechnological application of these plant products. Results Flax plants of third generation overexpressing key genes of flavonoid pathway cultivated in field were used as plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts and fibre from natural and transgenic flax plants were compared. The data obtained suggests that the introduced genes were stably inherited and expressed through plant generations. Overproduction of flavonoid compounds resulted in increase of fatty acids accumulation in oil from transgenic seeds due to protection from oxidation offered during synthesis and seed maturation. The biochemical analysis of seedcake extracts from seeds of transgenic flax revealed significant increase in flavonoids (kaempferol), phenolic acids (coumaric, ferulic, synapic acids) and lignan content. Fibres, another product of flax plant showed increase in the level of catechine and acetylvanillone and decrease in phenolic acids upon flax modification. Biochemical analysis results were confirmed using IR spectroscopy. The integral intensities of IR bands have been used for identification of the component of phenylpropanoid pathway in oil, seedcake extract and fibre from control and transgenic flax. It was shown that levels of flavonoids, phenolic acids and lignans in oil and seedcake extract was higher in transgenic flax products compared to control. An FT-IR study of fibres confirmed the biochemical data and revealed that the arrangement of the cellulose polymer in the transgenic fibres differs from the control; in particular a significant decrease in the number of hydrogen bonds was detected. Conclusions All analysed products from generated transgenic plants were enriched with antioxidant compounds derived from phenylopropanoid pathway Thus the products provide valuable source of flavonoids, phenolic acids and lignan for biomedical application. The compounds composition and quantity from transgenic plants was confirmed by IR spectroscopy. Thus the infrared spectroscopy appeared to be suitable method for characterization of flax products. PMID:21276227
Casati, Paula; Walbot, Virginia
2003-01-01
Microarray hybridization was used to assess acclimation responses to four UV regimes by near isogenic maize (Zea mays) lines varying in flavonoid content. We found that 355 of the 2,500 cDNAs tested were regulated by UV radiation in at least one genotype. Among these, 232 transcripts are assigned putative functions, whereas 123 encode unknown proteins. UV-B increased expression of stress response and ribosomal protein genes, whereas photosynthesis-associated genes were down-regulated; lines lacking UV-absorbing pigments had more dramatic responses than did lines with these pigments, confirming the shielding role of these compounds. Sunlight filtered to remove UV-B or UV-B plus UV-A resulted in significant expression changes in many genes not previously associated with UV responses. Some pathways regulated by UV radiation are shared with defense, salt, and oxidative stresses; however, UV-B radiation can activate additional pathways not shared with other stresses. PMID:12913132
Li, Shutian; Zachgo, Sabine
2013-12-01
TCP proteins belong to the plant-specific bHLH transcription factor family, and function as key regulators of diverse developmental processes. Functional redundancy amongst family members and post-transcriptional down-regulation by miRJAW of several TCP genes complicate their functional characterization. Here, we explore the role of TCP3 by analyzing transgenic plants expressing miRJAW-resistant mTCP3 and dominant-negative TCP3SRDX. Seedlings and seeds of mTCP3 plants were found to hyper-accumulate flavonols, anthocyanins and proanthocyanidins, whereas levels of proanthocyanidins were slightly reduced in TCP3SRDX plants. R2R3-MYB proteins control not only early flavonoid biosynthetic steps but also activate late flavonoid biosynthetic genes by forming ternary R2R3-MYB/bHLH/WD40 (MBW) complexes. TCP3 interacted in yeast with R2R3-MYB proteins, which was further confirmed in planta using BiFC experiments. Yeast three-hybrid assays revealed that TCP3 significantly strengthened the transcriptional activation capacity of R2R3-MYBs bound by the bHLH protein TT8. Transcriptome analysis of mTCP3 and TCP3SRDX plants supported a role for TCP3 in enhancing flavonoid biosynthesis. Moreover, several auxin-related developmental abnormalities were observed in mTCP3 plants. Transcriptome data coupled with studies of an auxin response reporter and auxin efflux carriers showed that TCP3 negatively modulates the auxin response, probably by compromising auxin transport capacity. Genetic experiments revealed that the chalcone synthase mutant tt4-11 lacking flavonoid biosynthesis abrogated the auxin-related defects caused by mTCP3. Together, these data suggest that TCP3 interactions with R2R3-MYBs lead to enhanced flavonoid production, which further negatively modulates the auxin response. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Inhibition effect of flavonoids on monocarboxylate transporter 1 (MCT1) in Caco-2 cells.
Shim, Chang-Koo; Cheon, Eun-Pa; Kang, Keon Wook; Seo, Ki-Soo; Han, Hyo-Kyung
2007-11-01
This study aimed to investigate the inhibition effect of flavonoids on monocarboxylate transporter 1 (MCT1) in Caco-2 cells. The cellular uptake of benzoic acid was examined in the presence and the absence of naringin, naringenin, morin, silybin and quercetin in Caco-2 cells. All the tested flavonoids except naringin significantly inhibited (P<0.05) the cellular uptake of [(14)C]-benzoic acid. Particularly, naringenin and silybin exhibited strong inhibition effects with IC50 values of 23.4 and 30.2 microM, respectively. Kinetic analysis indicated that the inhibition mode of naringenin and silybin on MCT1 activity was competitive with a Ki of 15-20 microM. The effect of flavonoids on the gene expression of MCT1 was also examined by using RT-PCR and western blot analysis. Results indicated that the expression level of MCT1 was not affected by the treatment with naringenin or silybin. The cellular accumulation of naringenin in Caco-2 cells was not changed in the presence of benzoic acid or L-lactic acid, implying that naringenin might not be a substrate of MCT1. In conclusion, some flavonoids appeared to be competitive inhibitors of MCT1, suggesting the potential for diet-drug interactions between flavonoids and MCT1 substrates.
Kanazawa, Kazuki; Hashimoto, Takashi; Yoshida, Satoko; Sungwon, Park; Fukuda, Shinya
2012-05-02
It is desirable to increase the flavonoid contents of postharvest vegetables since flavonoids play a beneficial role in human health promotion. In the present study, we show that postharvest vegetables increasingly produced flavonoids when irradiated with light near the absorption wavelength of flavonoids in the plant. Three-day exposure to UV-B for 5 min, 98 μmol m⁻² s⁻¹ per day, increased the contents of jaceidin in spinach, kaempherol glycoside in radish sprout, apigenin glycosides in parsley, and isovitexin in Indian spinach after 6 days of storage in a refrigerator, compared to the contents in plants without irradiation. Six days of storage of unripe green strawberry under green light for 5 min, 98 μmol m⁻² s⁻¹ per day, enabled them to mature and turn red, accompanied by 3.5-fold increased contents of pelargonidin. Elucidation of the mechanism in parsley found the stimulating expression of the flavonoid synthesis gene, PAL, C4H, 4CL, CHS, and FNS, 6 h after exposure to single irradiation with UV-B for 5 min, and the higher expression was maintained for 24 h. After 3 days irradiation during 6 days of storage, parsley did not show adverse changes in the contents of ascorbic acid, β-carotene, chlorophyll, and moisture.
Lu, Yanfen; Bu, Yufen; Hao, Suxiao; Wang, Yaru; Zhang, Jie; Tian, Ji; Yao, Yuncong
2017-03-01
Fruit pigment accumulation, which represents an important indicator of nutrient quality and appearance value, is often affected by low light under rain, cloud, fog and haze conditions during the veraison period. It is not known whether continuous low light interferes with the production and accumulation of secondary metabolites in veraison fruit. In this paper, we measured pigments and the transcriptional level of genes related to secondary metabolites, i.e., flavonoid biosynthesis in the peel and flesh of Malus crabapple 'Radiant' fruit in response to normal light and shade from 10th July to 30th August. The results showed crosstalk between the flavonoid biosynthetic genes and the involvement of key transcription factors such as McMYB4, McMYB7, McMYB10, and McMYB16 in the regulation of the ratio of anthocyanins and flavanols, which accounted for the different colouration of the fruit peel and flesh under shade conditions. A model is proposed for the regulation of the flavonoid pathway in the peel and flesh of 'Radiant' fruit based on our study results. Moreover, the molecular mechanism for 'Radiant' fruit colouration provides reference information for understanding the light regulatory mechanism involved in the biosynthesis of flavonoids and for designing the next generation of apple breeding. Copyright © 2017 Elsevier B.V. All rights reserved.
MicroRNA858 Is a Potential Regulator of Phenylpropanoid Pathway and Plant Development1
Sharma, Deepika; Tiwari, Manish; Pandey, Ashutosh; Bhatia, Chitra; Sharma, Ashish; Trivedi, Prabodh Kumar
2016-01-01
MicroRNAs (miRNAs) are endogenous, noncoding small RNAs that function as critical regulators of gene expression. In plants, miRNAs have shown their potential as regulators of growth, development, signal transduction, and stress tolerance. Although the miRNA-mediated regulation of several processes is known, the involvement of miRNAs in regulating secondary plant product biosynthesis is poorly understood. In this study, we functionally characterized Arabidopsis (Arabidopsis thaliana) miR858a, which putatively targets R2R3-MYB transcription factors involved in flavonoid biosynthesis. Overexpression of miR858a in Arabidopsis led to the down-regulation of several MYB transcription factors regulating flavonoid biosynthesis. In contrast to the robust growth and early flowering of miR858OX plants, reduction of plant growth and delayed flowering were observed in Arabidopsis transgenic lines expressing an artificial miRNA target mimic (MIM858). Genome-wide expression analysis using transgenic lines suggested that miR858a targets a number of regulatory factors that modulate the expression of downstream genes involved in plant development and hormonal and stress responses. Furthermore, higher expression of MYBs in MIM858 lines leads to redirection of the metabolic flux towards the synthesis of flavonoids at the cost of lignin synthesis. Altogether, our study has established the potential role of light-regulated miR858a in flavonoid biosynthesis and plant growth and development. PMID:27208307
Sasaki, Kanako; Tsurumaru, Yusuke; Yamamoto, Hirobumi; Yazaki, Kazufumi
2011-01-01
Prenylated isoflavones are secondary metabolites that are mainly distributed in legume plants. They often possess divergent biological activities such as anti-bacterial, anti-fungal, and anti-oxidant activities and thus attract much attention in food, medicinal, and agricultural research fields. Prenyltransferase is the key enzyme in the biosynthesis of prenylated flavonoids by catalyzing a rate-limiting step, i.e. the coupling process of two major metabolic pathways, the isoprenoid pathway and shikimate/polyketide pathway. However, so far only two genes have been isolated as prenyltransferases involved in the biosynthesis of prenylated flavonoids, namely naringenin 8-dimethylallyltransferase from Sophora flavescens (SfN8DT-1) specific for some limited flavanones and glycinol 4-dimethylallyltransferase from Glycine max (G4DT), specific for pterocarpan substrate. We have in this study isolated two novel genes coding for membrane-bound flavonoid prenyltransferases from S. flavescens, an isoflavone-specific prenyltransferase (SfG6DT) responsible for the prenylation of the genistein at the 6-position and a chalcone-specific prenyltransferase designated as isoliquiritigenin dimethylallyltransferase (SfiLDT). These prenyltransferases were enzymatically characterized using a yeast expression system. Analysis on the substrate specificity of chimeric enzymes between SfN8DT-1 and SfG6DT suggested that the determinant region for the specificity of the flavonoids was the domain neighboring the fifth transmembrane α-helix of the prenyltransferases. PMID:21576242
Sasaki, Kanako; Tsurumaru, Yusuke; Yamamoto, Hirobumi; Yazaki, Kazufumi
2011-07-08
Prenylated isoflavones are secondary metabolites that are mainly distributed in legume plants. They often possess divergent biological activities such as anti-bacterial, anti-fungal, and anti-oxidant activities and thus attract much attention in food, medicinal, and agricultural research fields. Prenyltransferase is the key enzyme in the biosynthesis of prenylated flavonoids by catalyzing a rate-limiting step, i.e. the coupling process of two major metabolic pathways, the isoprenoid pathway and shikimate/polyketide pathway. However, so far only two genes have been isolated as prenyltransferases involved in the biosynthesis of prenylated flavonoids, namely naringenin 8-dimethylallyltransferase from Sophora flavescens (SfN8DT-1) specific for some limited flavanones and glycinol 4-dimethylallyltransferase from Glycine max (G4DT), specific for pterocarpan substrate. We have in this study isolated two novel genes coding for membrane-bound flavonoid prenyltransferases from S. flavescens, an isoflavone-specific prenyltransferase (SfG6DT) responsible for the prenylation of the genistein at the 6-position and a chalcone-specific prenyltransferase designated as isoliquiritigenin dimethylallyltransferase (SfiLDT). These prenyltransferases were enzymatically characterized using a yeast expression system. Analysis on the substrate specificity of chimeric enzymes between SfN8DT-1 and SfG6DT suggested that the determinant region for the specificity of the flavonoids was the domain neighboring the fifth transmembrane α-helix of the prenyltransferases.
Elkelish, Amr; Elansary, Hosam O.; Ali, Hayssam M.; Elshikh, Mohamed; Witczak, Jacques; Ahmad, Margaret
2017-01-01
Lactuca serriola L. is a herbaceous species, used for human nutrition and medicinal purposes. The high antioxidant capacity of L. serriola indicates the possibility of enhancing its edible and health potential by increasing the flavonoid and phenolic contents. The present study aimed at enhancing the production of phenolics and flavonoids by hairy root cultures in Lactuca serriola transformed with Agrobacterium rhizogenes strain AR15834 harbouring the rolB gene. The genetic transformation of rolB in transformed roots was validated, and rolB expression level was evaluated using real-time qPCR analysis. Expression levels of flavonoid biosynthesis genes (CHI, PAL, FLS, and CHS) were assessed in the hairy and nontransformed roots. Results showed higher expression levels in the transgenic roots than in the nontransformed ones (p < 0.01). Transgenic hairy roots exhibited a 54.8–96.7% increase in the total phenolic content, 38.1–76.2% increase in the total flavonoid content, and 56.7–96.7% increase in the total reducing power when compared with the nontransgenic roots (p < 0.01). DPPH results also revealed that the transgenic hairy roots exhibited a 31.6–50% increase in antioxidant potential, when compared to normal roots. This study addressed the enhancement of secondary metabolite biosynthesis by hairy root induction in L. serriola. PMID:28835782
Sircar, Debabrata; Cardoso, Hélia G; Mukherjee, Chiranjit; Mitra, Adinpunya; Arnholdt-Schmitt, Birgit
2012-05-01
Methyl-jasmonate (MJ)-treated hairy roots of Daucus carota L. were used to study the influence of alternative oxidase (AOX) in phenylpropanoid metabolism. Phenolic acid accumulation, as well as total flavonoids and lignin content of the MJ-treated hairy roots were decreased by treatment with salicylhydroxamic acid (SHAM), a known inhibitor of AOX. The inhibitory effect of SHAM was concentration dependent. Treatment with propyl gallate (PG), another inhibitor of AOX, also had a similar inhibitory effect on accumulation of phenolic acid, total flavonoids and lignin. The transcript levels of two DcAOX genes (DcAOX2a and DcAOX1a) were monitored at selected post-elicitation time points. A notable rise in the transcript levels of both DcAOX genes was observed preceding the MJ-induced enhanced accumulation of phenolics, flavonoids and lignin. An appreciable increase in phenylalanine ammonia-lyase (PAL) transcript level was also observed prior to enhanced phenolics accumulation. Both DcAOX genes showed differential transcript accumulation patterns after the onset of elicitation. The transcript levels of DcAOX1a and DcAOX2a attained peak at 6hours post elicitation (hpe) and 12hpe, respectively. An increase in the transcript levels of both DcAOX genes preceding the accumulation of phenylpropanoid-derivatives and lignin showed a positive correlation between AOX activity and phenylpropanoid biosynthesis. The results provide important new insight about the influence of AOX in phenylpropanoid biosynthesis. Copyright © 2012 Elsevier GmbH. All rights reserved.
Li, Huige; Xia, Ning; Brausch, Isolde; Yao, Ying; Förstermann, Ulrich
2004-09-01
Nitric oxide (NO) produced by endothelial nitric-oxide synthase (eNOS) represents an antithrombotic and anti-atherosclerotic principle in the vasculature. Hence, an enhanced expression of eNOS in response to pharmacological interventions could provide protection against cardiovascular diseases. In EA.hy 926 cells, a cell line derived from human umbilical vein endothelial cells (HUVECs), an artichoke leaf extract (ALE) increased the activity of the human eNOS promoter (determined by luciferase reporter gene assay). An organic subfraction from ALE was more potent in this respect than the crude extract, whereas an aqueous subfraction of ALE was without effect. ALE and the organic subfraction thereof also increased eNOS mRNA expression (measured by an RNase protection assay) and eNOS protein expression (determined by Western blot) both in EA.hy 926 cells and in native HUVECs. NO production (measured by NO-ozone chemiluminescence) was increased by both extracts. In organ chamber experiments, ex vivo incubation (18 h) of rat aortic rings with the organic subfraction of ALE enhanced the NO-mediated vasodilator response to acetylcholine, indicating that the up-regulated eNOS remained functional. Caffeoylquinic acids and flavonoids are two major groups of constituents of ALE. Interestingly, the flavonoids luteolin and cynaroside increased eNOS promoter activity and eNOS mRNA expression, whereas the caffeoylquinic acids cynarin and chlorogenic acid were without effect. Thus, in addition to the lipid-lowering and antioxidant properties of artichoke, an increase in eNOS gene transcription may also contribute to its beneficial cardiovascular profile. Artichoke flavonoids are likely to represent the active ingredients mediating eNOS up-regulation.
Structure and function of enzymes involved in the biosynthesis of phenylpropanoids
Ferrer, J.-L.; Austin, M.B.; Stewart, C.; Noel, J.P.
2010-01-01
As a major component of plant specialized metabolism, phenylpropanoid biosynthetic pathways provide anthocyanins for pigmentation, flavonoids such as flavones for protection against UV photodamage, various flavonoid and isoflavonoid inducers of Rhizobium nodulation genes, polymeric lignin for structural support and assorted antimicrobial phytoalexins. As constituents of plant-rich diets and an assortment of herbal medicinal agents, the phenylpropanoids exhibit measurable cancer chemopreventive, antimitotic, estrogenic, antimalarial, antioxidant and antiasthmatic activities. The health benefits of consuming red wine, which contains significant amounts of 3,4′,5-trihydroxystilbene (resveratrol) and other phenylpropanoids, highlight the increasing awareness in the medical community and the public at large as to the potential dietary importance of these plant derived compounds. As recently as a decade ago, little was known about the three-dimensional structure of the enzymes involved in these highly branched biosynthetic pathways. Ten years ago, we initiated X-ray crystallographic analyses of key enzymes of this pathway, complemented by biochemical and enzyme engineering studies. We first investigated chalcone synthase (CHS), the entry point of the flavonoid pathway, and its close relative stilbene synthase (STS). Work soon followed on the O-methyl transferases (OMTs) involved in modifications of chalcone, isoflavonoids and metabolic precursors of lignin. More recently, our groups and others have extended the range of phenylpropanoid pathway structural investigations to include the upstream enzymes responsible for the initial recruitment of phenylalanine and tyrosine, as well as a number of reductases, acyltransferases and ancillary tailoring enzymes of phenylpropanoid-derived metabolites. These structure–function studies collectively provide a comprehensive view of an important aspect of phenylpropanoid metabolism. More specifically, these atomic resolution insights into the architecture and mechanistic underpinnings of phenylpropanoid metabolizing enzymes contribute to our understanding of the emergence and on-going evolution of specialized phenylpropanoid products, and underscore the molecular basis of metabolic biodiversity at the chemical level. Finally, the detailed knowledge of the structure, function and evolution of these enzymes of specialized metabolism provide a set of experimental templates for the enzyme and metabolic engineering of production platforms for diverse novel compounds with desirable dietary and medicinal properties. PMID:18272377
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.
Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR formore » metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.« less
NASA Astrophysics Data System (ADS)
Jabeen, Erum; Janjua, Naveed Kausar; Ahmed, Safeer; Murtaza, Iram; Ali, Tahir; Masood, Nosheen; Rizvi, Aysha Sarfraz; Murtaza, Gulam
2017-12-01
The current study is aimed at the synthesis of Cu (II) and Fe (III) complexes of three flavonoids {morin (mor), quercetin (quer) and primuletin (prim)} and characterization through UV-Vis spectroscopy, cyclic voltammetry, FTIR, and thermal analysis. Structure prediction through DFT calculation was supported by experimental data. Benesi-Hildebrand equation was modified to function for 1:2 Cu-flavonoid and 1:3 Fe-flavonoid complexes. DFT predictions revealed that out of poly chelation sites present in morin and quercetin, 3-OH site was utilized as preferable chelation site while primuletin chelated through 5-OH position. In-vivo trials revealed the complexes to have better anti-diabetic potential than respective flavonoid. Fls/M-Fls proved as antagonistic to Alloxan induced diabetes and also retained anti-diabetic activity even in the presence of (2-hydroxypropyl)-β-cyclodextrin (HPβCD).
Vieyra, Faustino E Morán; Boggetti, Héctor J; Zampini, Iris C; Ordoñez, Roxana M; Isla, María I; Alvarez, Rosa M S; De Rosso, Veridiana; Mercadante, Adriana Z; Borsarelli, Claudio D
2009-06-01
The singlet oxygen (1O2) quenching and free radical (DPPH(*), ABTS(* +) and O2(* -)) scavenging ability of three structurally-related flavonoids (7-hydroxyflavanone HF, 2',4'-dihydroxychalcone DHC and 3,7-dihydroxyflavone DHF) present in the Argentinean native shrub Zuccagnia punctata Cav. were studied in solution by combining electrochemical and kinetic measurements, mass spectroscopy, end-point antioxidant assays and computational calculations. The results showed that the antioxidant properties of these flavonoids depend on several factors, such as their electron- and hydrogen atom donor capacity, the ionization degree of the more acidic group, solvatation effects and electrostatic interactions with the oxidant species. The theoretical calculations for both the gas and solution phases at the B3LYP level of theory for the Osanger reaction field model agreed with the experimental findings, thus supporting the characterization of the antioxidant mechanism of the Z. punctata flavonoids.
Synthesis of novel flavonoid alkaloids as α-glucosidase inhibitors.
Zhen, Jing; Dai, Yujie; Villani, Tom; Giurleo, Daniel; Simon, James E; Wu, Qingli
2017-10-15
A series of novel flavonoid alkaloids were synthesized with different flavonoids and attached nitrogen-containing moieties. These new compounds were screened for inhibitory activity of α-glucosidase, among which compound 23 was found to show the lowest IC 50 of 4.13μM. Kinetic analysis indicates that the synthesized compounds 15 and 23 inhibit the enzyme in a non-competitive model with Ki value of 37.8±0.8μM and 13.2±0.6μM. Further docking studies suggest that the preferred binding pocket is close to the catalytic center, correlating to the experimental results. Structure activity relationship studies (SAR) indicate that 4'-hyroxyl group and the 4-position carbonyl group in the flavonoid structure are important for this biological activity. Addition of extra hydrogen bonding and hydrophobic groups on ring A would increase the inhibitory activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rabausch, U.; Juergensen, J.; Ilmberger, N.; Böhnke, S.; Fischer, S.; Schubach, B.; Schulte, M.
2013-01-01
The functional detection of novel enzymes other than hydrolases from metagenomes is limited since only a very few reliable screening procedures are available that allow the rapid screening of large clone libraries. For the discovery of flavonoid-modifying enzymes in genome and metagenome clone libraries, we have developed a new screening system based on high-performance thin-layer chromatography (HPTLC). This metagenome extract thin-layer chromatography analysis (META) allows the rapid detection of glycosyltransferase (GT) and also other flavonoid-modifying activities. The developed screening method is highly sensitive, and an amount of 4 ng of modified flavonoid molecules can be detected. This novel technology was validated against a control library of 1,920 fosmid clones generated from a single Bacillus cereus isolate and then used to analyze more than 38,000 clones derived from two different metagenomic preparations. Thereby we identified two novel UDP glycosyltransferase (UGT) genes. The metagenome-derived gtfC gene encoded a 52-kDa protein, and the deduced amino acid sequence was weakly similar to sequences of putative UGTs from Fibrisoma and Dyadobacter. GtfC mediated the transfer of different hexose moieties and exhibited high activities on flavones, flavonols, flavanones, and stilbenes and also accepted isoflavones and chalcones. From the control library we identified a novel macroside glycosyltransferase (MGT) with a calculated molecular mass of 46 kDa. The deduced amino acid sequence was highly similar to sequences of MGTs from Bacillus thuringiensis. Recombinant MgtB transferred the sugar residue from UDP-glucose effectively to flavones, flavonols, isoflavones, and flavanones. Moreover, MgtB exhibited high activity on larger flavonoid molecules such as tiliroside. PMID:23686272
Zhang, Yang; De Stefano, Rosalba; Robine, Marie; Butelli, Eugenio; Bulling, Katharina; Hill, Lionel; Rejzek, Martin; Martin, Cathie; Schoonbeek, Henk-jan
2015-11-01
The shelf life of tomato (Solanum lycopersicum) fruit is determined by the processes of overripening and susceptibility to pathogens. Postharvest shelf life is one of the most important traits for commercially grown tomatoes. We compared the shelf life of tomato fruit that accumulate different flavonoids and found that delayed overripening is associated with increased total antioxidant capacity caused by the accumulation of flavonoids in the fruit. However, reduced susceptibility to Botrytis cinerea, a major postharvest fungal pathogen of tomato, is conferred by specific flavonoids only. We demonstrate an association between flavonoid structure, selective scavenging ability for different free radicals, and reduced susceptibility to B. cinerea. Our study provides mechanistic insight into how flavonoids influence the shelf life, information that could be used to improve the shelf life of tomato and, potentially, other soft fruit. © 2015 American Society of Plant Biologists. All Rights Reserved.
Iron and copper chelation by flavonoids: an electrospray mass spectrometry study.
Fernandez, M Tereza; Mira, M Lurdes; Florêncio, M Helena; Jennings, Keith R
2002-11-11
Flavonoids are well known as effective free radical scavengers exhibiting therefore an antioxidant behaviour. Another antioxidant mechanism however may result from the ability they have to chelate metal ions, rendering them inactive to participate in free radical generating reactions. Electrospray mass spectrometry has been used to study metal ion interactions with a set of flavonoids from different classes. Complexes with a range of stoichiometries, of metal: flavonoid, 1:1, 1:2, 2:2, 2:3 have been observed. The stoichiometry 1:2 is in general the preferred one. It is established for flavones and for the flavanone naringenin that the binding metal sites are preferentially at the 5-hydroxyl and 4-oxo groups. Redox reactions are also observed through the change of the oxidation state of the metal, jointly with the oxidation of the flavonoid by loss of hydrogen. Structures of the oxidized species of some flavonoids are proposed.
Zhang, Yang; De Stefano, Rosalba; Robine, Marie; Butelli, Eugenio; Bulling, Katharina; Hill, Lionel; Rejzek, Martin; Martin, Cathie; Schoonbeek, Henk-jan
2015-01-01
The shelf life of tomato (Solanum lycopersicum) fruit is determined by the processes of overripening and susceptibility to pathogens. Postharvest shelf life is one of the most important traits for commercially grown tomatoes. We compared the shelf life of tomato fruit that accumulate different flavonoids and found that delayed overripening is associated with increased total antioxidant capacity caused by the accumulation of flavonoids in the fruit. However, reduced susceptibility to Botrytis cinerea, a major postharvest fungal pathogen of tomato, is conferred by specific flavonoids only. We demonstrate an association between flavonoid structure, selective scavenging ability for different free radicals, and reduced susceptibility to B. cinerea. Our study provides mechanistic insight into how flavonoids influence the shelf life, information that could be used to improve the shelf life of tomato and, potentially, other soft fruit. PMID:26082399
Hussein, Sameh R; Marzouk, Mona M; Kassem, Mona E S; Abdel Latif, Rasha R; Mohammed, Reda S
2017-02-01
The chemosystematic relationship of four Diplotaxis species; Diplotaxis acris, Diplotaxis erucoides, Diplotaxis harra and Diplotaxis muralis were surveyed from the flavonoids point of view. These species were found to produce 33 flavonoids (7 flavones and 26 flavonols), including 11 compounds were isolated in the present study from D. acris. Among them, seven flavonoids were identified for the first time; luteolin (4), kaempferol (8), kaempferol 3-O-β-glucopyranoside-7-O-α-rhamnopyranoside (13), quercetin 3-O-β-glucopyranoside (16), quercetin 7-O-β-glucopyranoside (20), isorhamnetin (22) and isorhamnetin 3-O-β-glucopyranoside-7-O-α-rhamnopyranoside (32). Their structures were recognized on the basis of chemical and spectroscopic techniques (1D & 2D NMR, UV, EI & ESI/MS). The isolated flavonoids may provide useful taxonomic characters at the infraspecific levels of classification where the flavonoid profile of D. acris and D. harra is similar and different from the other species.
Matus, José Tomás; Aquea, Felipe; Arce-Johnson, Patricio
2008-01-01
Background The MYB superfamily constitutes the most abundant group of transcription factors described in plants. Members control processes such as epidermal cell differentiation, stomatal aperture, flavonoid synthesis, cold and drought tolerance and pathogen resistance. No genome-wide characterization of this family has been conducted in a woody species such as grapevine. In addition, previous analysis of the recently released grape genome sequence suggested expansion events of several gene families involved in wine quality. Results We describe and classify 108 members of the grape R2R3 MYB gene subfamily in terms of their genomic gene structures and similarity to their putative Arabidopsis thaliana orthologues. Seven gene models were derived and analyzed in terms of gene expression and their DNA binding domain structures. Despite low overall sequence homology in the C-terminus of all proteins, even in those with similar functions across Arabidopsis and Vitis, highly conserved motif sequences and exon lengths were found. The grape epidermal cell fate clade is expanded when compared with the Arabidopsis and rice MYB subfamilies. Two anthocyanin MYBA related clusters were identified in chromosomes 2 and 14, one of which includes the previously described grape colour locus. Tannin related loci were also detected with eight candidate homologues in chromosomes 4, 9 and 11. Conclusion This genome wide transcription factor analysis in Vitis suggests that clade-specific grape R2R3 MYB genes are expanded while other MYB genes could be well conserved compared to Arabidopsis. MYB gene abundance, homology and orientation within particular loci also suggests that expanded MYB clades conferring quality attributes of grapes and wines, such as colour and astringency, could possess redundant, overlapping and cooperative functions. PMID:18647406
Manner, Suvi; Skogman, Malena; Goeres, Darla; Vuorela, Pia; Fallarero, Adyary
2013-01-01
When single-cell (or suspended) bacteria switch into the biofilm lifestyle, they become less susceptible to antimicrobials, imposing the need for anti-biofilms research. Flavonoids are among the most extensively studied natural compounds with an unprecedented amount of bioactivity claims. Most studies focus on the antibacterial effects against suspended cells; fewer reports have researched their anti-biofilm properties. Here, a high throughput phenotypic platform was utilized to screen for the inhibitory activity of 500 flavonoids, including natural and synthetic derivatives, against Staphylococcus aureus biofilms. Since discrepancies among results from earlier antibacterial studies on flavonoids had been noted, the current study aimed to minimize sources of variations. After the first screen, flavonoids were classified as inactive (443), moderately active (47) or highly active (10). Further, exclusion criteria combining bioactivity and selectivity identified two synthetic flavans as the most promising. The body of data reported here serves three main purposes. First, it offers an improved methodological workflow for anti-biofilm screens of chemical libraries taking into account the (many times ignored) connections between anti-biofilm and antibacterial properties. This is particularly relevant for the study of flavonoids and other natural products. Second, it provides a large and freely available anti-biofilm bioactivity dataset that expands the knowledge on flavonoids and paves the way for future structure-activity relationship studies and structural optimizations. Finally, it identifies two new flavans that can successfully act on biofilms, as well as on suspended bacteria and represent more feasible antibacterial candidates. PMID:24071942
Sun, Wei; Liang, Lingjie; Meng, Xiangyu; Li, Yueqing; Gao, Fengzhan; Liu, Xingxue; Wang, Shucai; Gao, Xiang; Wang, Li
2016-01-01
The glycosylation of flavonoids increases their solubility and stability in plants. Flowers accumulate anthocyanidin and flavonol glycosides which are synthesized by UDP-sugar flavonoid glycosyltransferases (UFGTs). In our previous study, a cDNA clone (Fh3GT1) encoding UFGT was isolated from Freesia hybrida, which was preliminarily proved to be invovled in cyanidin 3-O-glucoside biosynthesis. Here, a variety of anthocyanin and flavonol glycosides were detected in flowers and other tissues of F. hybrida, implying the versatile roles of Fh3GT1 in flavonoids biosynthesis. To further unravel its multi-functional roles, integrative analysis between gene expression and metabolites was investigated. The results showed expression of Fh3GT1 was positively related to the accumulation of anthocyanins and flavonol glycosides, suggesting its potential roles in the biosynthesis of both flavonoid glycosides. Subsequently, biochemical analysis results revealed that a broad range of flavonoid substrates including flavonoid not naturally occurred in F. hybrida could be recognized by the recombinant Fh3GT1. Both UDP-glucose and UDP-galactose could be used as sugar donors by recombinant Fh3GT1, although UDP-galactose was transferred with relatively low activity. Furthermore, regiospecificity analysis demonstrated that Fh3GT1 was able to glycosylate delphinidin at the 3-, 4-′, and 7- positions in a sugar-dependent manner. And the introduction of Fh3GT1 into Arabidopsis UGT78D2 mutant successfully restored the anthocyanins and flavonols phenotypes caused by lost-of-function of the 3GT, indicating that Fh3GT1 functions as a flavonoid 3-O-glucosyltransferase in vivo. In summary, these results demonstrate that Fh3GT1 is a flavonoid 3-O-glycosyltransferase using UDP-glucose as the preferred sugar donor and may involve in flavonoid glycosylation in F. hybrida. PMID:27064818
Sun, Wei; Liang, Lingjie; Meng, Xiangyu; Li, Yueqing; Gao, Fengzhan; Liu, Xingxue; Wang, Shucai; Gao, Xiang; Wang, Li
2016-01-01
The glycosylation of flavonoids increases their solubility and stability in plants. Flowers accumulate anthocyanidin and flavonol glycosides which are synthesized by UDP-sugar flavonoid glycosyltransferases (UFGTs). In our previous study, a cDNA clone (Fh3GT1) encoding UFGT was isolated from Freesia hybrida, which was preliminarily proved to be invovled in cyanidin 3-O-glucoside biosynthesis. Here, a variety of anthocyanin and flavonol glycosides were detected in flowers and other tissues of F. hybrida, implying the versatile roles of Fh3GT1 in flavonoids biosynthesis. To further unravel its multi-functional roles, integrative analysis between gene expression and metabolites was investigated. The results showed expression of Fh3GT1 was positively related to the accumulation of anthocyanins and flavonol glycosides, suggesting its potential roles in the biosynthesis of both flavonoid glycosides. Subsequently, biochemical analysis results revealed that a broad range of flavonoid substrates including flavonoid not naturally occurred in F. hybrida could be recognized by the recombinant Fh3GT1. Both UDP-glucose and UDP-galactose could be used as sugar donors by recombinant Fh3GT1, although UDP-galactose was transferred with relatively low activity. Furthermore, regiospecificity analysis demonstrated that Fh3GT1 was able to glycosylate delphinidin at the 3-, 4-', and 7- positions in a sugar-dependent manner. And the introduction of Fh3GT1 into Arabidopsis UGT78D2 mutant successfully restored the anthocyanins and flavonols phenotypes caused by lost-of-function of the 3GT, indicating that Fh3GT1 functions as a flavonoid 3-O-glucosyltransferase in vivo. In summary, these results demonstrate that Fh3GT1 is a flavonoid 3-O-glycosyltransferase using UDP-glucose as the preferred sugar donor and may involve in flavonoid glycosylation in F. hybrida.
Casimiro-Soriguer, Inés; Narbona, Eduardo; Buide, M. L.; del Valle, José C.; Whittall, Justen B.
2016-01-01
Flower color polymorphisms are widely used as model traits from genetics to ecology, yet determining the biochemical and molecular basis can be challenging. Anthocyanin-based flower color variations can be caused by at least 12 structural and three regulatory genes in the anthocyanin biosynthetic pathway (ABP). We use mRNA-Seq to simultaneously sequence and estimate expression of these candidate genes in nine samples of Silene littorea representing three color morphs (dark pink, light pink and white) across three developmental stages in hopes of identifying the cause of flower color variation. We identified 29 putative paralogs for the 15 candidate genes in the ABP. We assembled complete coding sequences for 16 structural loci and nine of ten regulatory loci. Among these 29 putative paralogs, we identified 622 SNPs, yet only nine synonymous SNPs in Ans had allele frequencies that differentiated pigmented petals (dark pink and light pink) from white petals. These Ans allele frequency differences were further investigated with an expanded sequencing survey of 38 individuals, yet no SNPs consistently differentiated the color morphs. We also found one locus, F3h1, with strong differential expression between pigmented and white samples (>42x). This may be caused by decreased expression of Myb1a in white petal buds. Myb1a in S. littorea is a regulatory locus closely related to Subgroup 7 Mybs known to regulate F3h and other loci in the first half of the ABP in model species. We then compare the mRNA-Seq results with petal biochemistry which revealed cyanidin as the primary anthocyanin and five flavonoid intermediates. Concentrations of three of the flavonoid intermediates were significantly lower in white petals than in pigmented petals (rutin, quercetin and isovitexin). The biochemistry results for rutin, quercetin, luteolin and apigenin are consistent with the transcriptome results suggesting a blockage at F3h, possibly caused by downregulation of Myb1a. PMID:26973662
Antonczak, Serge; Fiorucci, Sébastien; Golebiowski, Jérôme; Cabrol-Bass, Daniel
2009-03-14
Quercetinase enzymatic activity consists in the addition of dioxygen onto flavonoids, some natural polyphenol compounds, leading to the production of both molecular carbon monoxide and to the structurally related depside compound. Experimental studies have reported degradation rates of various flavonoids by such enzymes that can not be directly correlated neither to the number nor to the place of the hydroxyl groups. In order to decipher the role of these functions, we have theoretically characterised the stationary points of various flavonoids oxygenolysis mechanisms by density functional quantum methods. Thus in the present study are reported the main energetic, structural and electronic features that drive this degradation. Together with previous analysis from MD simulations taking into account the dynamic behaviour of the substrate embedded in the enzyme cavity, the present results show that the role of the enzyme, in terms of structural and electronic effects, can not be neglected. Thus, we propose here that deformations of the substrate induced by the enzyme could originate the differences in the degradation rates experimentally observed.
USDA-ARS?s Scientific Manuscript database
Flavonoids such as anthocyanins possess significant health benefits to humans and play important physiological roles in plants. An interesting Purple gene mutation in cauliflower confers an abnormal pattern of anthocyanin accumulation, giving intense purple color in very young leaves, curds, and see...
Prenylated flavonoids from Desmodium caudatum and evaluation of their anti-MRSA activity.
Sasaki, Hisako; Kashiwada, Yoshiki; Shibata, Hirofumi; Takaishi, Yoshihisa
2012-10-01
Seven prenylated flavonoids and a prenylated chromanochroman derivative, together with eight known flavonoids, were isolated from roots of Desmodium caudatum. The 15 structures were elucidated by extensive spectroscopic analyses. The antibacterial activity of many of other compounds was evaluated against methicillin-resistant Staphylococcus aureus (MRSA: COL and 5) by a disc diffusion method, and the minimum inhibitory concentrations (MICs) to MRSA were determined. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gatica-Arias, A; Farag, M A; Stanke, M; Matoušek, J; Wessjohann, L; Weber, G
2012-01-01
Hop is an important source of secondary metabolites, such as flavonoids. Some of these are pharmacologically active. Nevertheless, the concentration of some classes as flavonoids in wild-type plants is rather low. To enhance the production in hop, it would be interesting to modify the regulation of genes in the flavonoid biosynthetic pathway. For this purpose, the regulatory factor PAP1/AtMYB75 from Arabidopsis thaliana L. was introduced into hop plants cv. Tettnanger by Agrobacterium-mediated genetic transformation. Twenty kanamycin-resistant transgenic plants were obtained. It was shown that PAP1/AtMYB75 was stably incorporated and expressed in the hop genome. In comparison to the wild-type plants, the color of female flowers and cones of transgenic plants was reddish to pink. Chemical analysis revealed higher levels of anthocyanins, rutin, isoquercitin, kaempferol-glucoside, kaempferol-glucoside-malonate, desmethylxanthohumol, xanthohumol, α-acids and β-acids in transgenic plants compared to wild-type plants.
Elmasri, Wael A; Zhu, Rui; Peng, Wenjing; Al-Hariri, Moustafa; Kobeissy, Firas; Tran, Phat; Hamood, Abdul N; Hegazy, Mohamed F; Paré, Paul W; Mechref, Yehia
2017-07-07
Growth inhibition of the pathogen Staphylococcus aureus with currently available antibiotics is problematic in part due to bacterial biofilm protection. Although recently characterized natural products, including 3',4',5-trihydroxy-6,7-dimethoxy-flavone [1], 3',4',5,6,7-pentahydroxy-flavone [2], and 5-hydroxy-4',7-dimethoxy-flavone [3], exhibit both antibiotic and biofilm inhibitory activities, the mode of action of such hydroxylated flavonoids with respect to S. aureus inhibition is yet to be characterized. Enzymatic digestion and high-resolution MS analysis of differentially expressed proteins from S. aureus with and without exposure to antibiotic flavonoids (1-3) allowed for the characterization of global protein alterations induced by metabolite treatment. A total of 56, 92, and 110 proteins were differentially expressed with bacterial exposure to 1, 2, or 3, respectively. The connectivity of the identified proteins was characterized using a search tool for the retrieval of interacting genes/proteins (STRING) with multitargeted S. aureus inhibition of energy metabolism and biosynthesis by the assayed flavonoids. Identifying the mode of action of natural products as antibacterial agents is expected to provide insight into the potential use of flavonoids alone or in combination with known therapeutic agents to effectively control S. aureus infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Haiyan; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070
Highlights: ► 4CLs play important roles in both lignin and flavonoids biosynthesis. ► PA and FA are the two main substrates of 4CL (Os4CL1/3/4/5) for lignin biosynthesis. ► Os4CL2 is suggested for flavonoid formation in defense against UV radiation. -- Abstract: 4-Coumarate:coenzyme A ligase (4CL) catalyzes the conversion of hydroxycinnamates into corresponding CoA esters for biosynthesis of flavonoids and lignin. In this study, five members of the 4CL gene family from rice were cloned and analyzed. Recombinant 4CL data revealed that 4-coumaric acid and ferulic acid were the two main substrates of 4CL (Os4CL1/3/4/5) for monolignol biosynthesis in rice. Os4CL2more » was specifically expressed in the anther and was strongly activated by UV irradiation, suggesting its potential involvement in flavonoid formation. Moreover, bioinformatics analysis showed that the existence of valine residue at the substrate-binding pocket may mainly affect rice 4CL activities toward sinapic acid.« less
[Structure, antioxidative and anticancer properties of flavonoids].
Czaplińska, Małgorzata; Czepas, Jan; Gwoździński, Krzysztof
2012-01-01
Flavonoids are compounds occuring in plants, e.g. in fruits and vegetables. Flavonoids have been identified as: flavones, flavanones, flavanols (flavan-3-ols), flavonols, anthocyanidines, isoflavonoids and neoflavonoids. Their antioxidative properties are connected with their ability to scavenge free radicals. Their antioxidant properties are linked to the ability to chelate transitional metal ions, mainly copper and iron and to increase antioxidant capacity by the stimulation of the activity of important antioxidant enzymes: superoxide dismutase, glutathione peroxidase and catalase. Flavonoids are able to inhibit the activities of prooxidant enzymes such as cyclooxygenase, lipooxygenase, xanthine oxidase and expression of inducible nitric oxide synthase. These compounds can also regenerate ascorbyl and tocoferoxyl radicals to corresponding vitamins. Pharmacological properties of flavonoids are manifested in different ways. They display antiviral, anti-allergic, anti-inflammatory and anticancer properties. Flavonoids play also a role as inhibitors of neurodegenerative diseases (Alzheimer and Parkinson's diseases) and ageing. Moreover, protective effects against ionizing and UV radiation have been shown for flavonoids. In this paper the antioxidative properties and antitumour action of flavonoids, such as blockade of cell cycle, activation of apoptosis pathways and inhibition of cancerogenesis by inactivation of some carcinogens are reviewed.
Lin, Yuguang; Vermeer, Mario A; Bos, Wil; van Buren, Leo; Schuurbiers, Eric; Miret-Catalan, Silvia; Trautwein, Elke A
2011-05-11
This study investigated the underlying mechanisms of action for blood lipid lowering effects of citrus flavonoids and their methoxylated analogues (n = 19; dose range: 0-100 μM) in HepG2 cells. Cholesterol (CH) and triglyceride (TG) syntheses were assessed by measuring the incorporation of (14)C-acetate and (14)C-glycerol, respectively, whereas apoB secretion was determined by ELISA. Results show that two polymethoxylated citrus flavonoids (PMFs), tangeretin and nobiletin, potently inhibited apoB secretion (IC(50) = 13 and 29 μM, respectively) and modestly inhibited CH synthesis (IC(50) = 49 and 68 μM) and TG synthesis (IC(50) = 14 and 73 μM), without effecting LDL-receptor activity. Other PMFs (e.g., sinensetin) and non-PMFs (e.g., hesperetin and naringenin) had only weak effects on CH and TG syntheses and apoB secretion (IC(50) > 100 μM). The structure-activity analysis indicated that a fully methoxylated A-ring of the flavonoid structure was associated with a potent inhibitory activity on hepatic apoB secretion. In conclusion, this study using HepG2 cells indicates that citrus flavonoids with a fully methoxylated A-ring may lower blood CH and TG concentrations primarily by suppressing hepatic apoB secretion as a main underlying mode of action.
Prinsi, Bhakti; Negri, Alfredo S; Quattrocchio, Francesca M; Koes, Ronald E; Espen, Luca
2016-01-10
The Petunia hybrida ANTHOCYANIN1 (AN1) gene encodes a transcription factor that regulates both the expression of genes involved in anthocyanin synthesis and the acidification of the vacuolar lumen in corolla epidermal cells. In this work, the comparison between the red flowers of the R27 line with the white flowers of the isogenic an1 mutant line W225 showed that the AN1 gene has further pleiotropic effects on flavonoid biosynthesis as well as on distant physiological traits. The proteomic profiling showed that the an1 mutation was associated to changes in accumulation of several proteins, affecting both anthocyanin synthesis and primary metabolism. The flavonoid composition study confirmed that the an1 mutation provoked a broad attenuation of the entire flavonoid pathway, probably by indirect biochemical events. Moreover, proteomic changes and variation of biochemical parameters revealed that the an1 mutation induced a delay in the onset of flower senescence in W225, as supported by the enhanced longevity of the W225 flowers in planta and the loss of sensitivity of cut flowers to sugar. This study suggests that AN1 is possibly involved in the perception and/or transduction of ethylene signal during flower senescence. Copyright © 2015 Elsevier B.V. All rights reserved.
Light-induced morphological alteration in anthocyanin-accumulating vacuoles of maize cells
Irani, Niloufer G; Grotewold, Erich
2005-01-01
Background Plant pigmentation is affected by a variety of factors. Light, an important plant developmental signal, influences the accumulation of anthocyanins primarily through the activation of the transcription factors that regulate the flavonoid biosynthetic pathway. In this study, we utilized maize Black Mexican Sweet (BMS) cells expressing the R and C1 regulators of anthocyanin biosynthesis from a light-insensitive promoter as a means to investigate the existence of additional levels of control of pigmentation by light. Results BMS cells expressing the R and C1 regulators from the CaMV 35S constitutive promoter accumulate anthocyanins when grown in complete darkness, suggesting that the transcription factors R and C1 are sufficient for the transcription of the genes corresponding to the structural enzymes of the pathway, with no requirement for additional light-induced regulators. Interestingly, light induces a "darkening" in the color of the purple anthocyanin pigmentation of transgenic BMS cells expressing R and C1. This change in the pigment hue is not associated with a variation in the levels or types of anthocyanins present, or with an alteration of the transcript levels of several flavonoid biosynthetic genes. However, cytological observations show that light drives unexpected changes in the morphology and distribution of the anthocyanins-containing vacuolar compartments. Conclusion By uncoupling the effect of light on anthocyanin accumulation, we have found light to induce the fusion of anthocyanin-containing vacuoles, the coalescence of anthocyanic vacuolar inclusion (AVI)-like structures contained, and the spread of anthocyanins from the inclusions into the vacuolar sap. Similar light-induced alterations in vacuolar morphology are also evident in the epidermal cells of maize floral whorls accumulating anthocyanins. Our findings suggest a novel mechanism for the action of light on the vacuolar storage of anthocyanin. PMID:15907203
Genes up-regulated during red coloration in UV-B irradiated lettuce leaves.
Park, Jong-Sug; Choung, Myoung-Gun; Kim, Jung-Bong; Hahn, Bum-Soo; Kim, Jong-Bum; Bae, Shin-Chul; Roh, Kyung-Hee; Kim, Yong-Hwan; Cheon, Choong-Ill; Sung, Mi-Kyung; Cho, Kang-Jin
2007-04-01
Molecular analysis of gene expression differences between green and red lettuce leaves was performed using the SSH method. BlastX comparisons of subtractive expressed sequence tags (ESTs) indicated that 7.6% of clones encoded enzymes involved in secondary metabolism. Such clones had a particularly high abundance of flavonoid-metabolism proteins (6.5%). Following SSH, 566 clones were rescreened for differential gene expression using dot-blot hybridization. Of these, 53 were found to overexpressed during red coloration. The up-regulated expression of six genes was confirmed by Northern blot analyses. The expression of chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and dihydroflavonol 4-reductase (DFR) genes showed a positive correlation with anthocyanin accumulation in UV-B-irradiated lettuce leaves; flavonoid 3',5'-hydroxylase (F3',5'H) and anthocyanidin synthase (ANS) were expressed continuously in both samples. These results indicated that the genes CHS, F3H, and DFR coincided with increases in anthocyanin accumulation during the red coloration of lettuce leaves. This study show a relationship between red coloration and the expression of up-regulated genes in lettuce. The subtractive cDNA library and EST database described in this study represent a valuable resource for further research for secondary metabolism in the vegetable crops.
Li, Ti; Hu, Peng; Dai, Taotao; Li, Panying; Ye, Xiaoqin; Chen, Jun; Liu, Chengmei
2018-05-04
Four kinds of flavonoids (apigenin, naringenin, kaempferol, genistein) were skillfully selected to investigate the interaction between flavonoids and β-lactoglobulin (β-LG) by multi-spectroscopy analysis and molecular docking. Hydrogenation on C2C3 double bond weakened the affinity of apigenin for β-LG and it's most obvious, followed by hydroxylation of C3 and position isomerism of phenyl ring B. The main interaction force for apigenin and naringenin binding to β-LG (van der Waals forces and hydrogen bonds) was different from that of genistein and kaempferol (hydrophobic interactions). Circular dichroism and fluorescence experiments indicated that conformation of β-LG became loose and surface hydrophobicity of β-LG was reduced in the presence of flavonoids. Molecular docking indicated that flavonoids interacted with specific amino acid residues located on the outer surface of β-LG. These findings can provide a deep understanding about the interaction mechanism between flavonoids and protein, and it may be valuable in dairy incorporation with flavonoids. Copyright © 2018. Published by Elsevier B.V.
Cavallini, Erika; Matus, José Tomás; Finezzo, Laura; Zenoni, Sara; Loyola, Rodrigo; Guzzo, Flavia; Schlechter, Rudolf; Ageorges, Agnès; Arce-Johnson, Patricio
2015-01-01
Because of the vast range of functions that phenylpropanoids possess, their synthesis requires precise spatiotemporal coordination throughout plant development and in response to the environment. The accumulation of these secondary metabolites is transcriptionally controlled by positive and negative regulators from the MYB and basic helix-loop-helix protein families. We characterized four grapevine (Vitis vinifera) R2R3-MYB proteins from the C2 repressor motif clade, all of which harbor the ethylene response factor-associated amphiphilic repression domain but differ in the presence of an additional TLLLFR repression motif found in the strong flavonoid repressor Arabidopsis (Arabidopsis thaliana) AtMYBL2. Constitutive expression of VvMYB4a and VvMYB4b in petunia (Petunia hybrida) repressed general phenylpropanoid biosynthetic genes and selectively reduced the amount of small-weight phenolic compounds. Conversely, transgenic petunia lines expressing VvMYBC2-L1 and VvMYBC2-L3 showed a severe reduction in petal anthocyanins and seed proanthocyanidins together with a higher pH of crude petal extracts. The distinct function of these regulators was further confirmed by transient expression in tobacco (Nicotiana benthamiana) leaves and grapevine plantlets. Finally, VvMYBC2-L3 was ectopically expressed in grapevine hairy roots, showing a reduction in proanthocyanidin content together with the down-regulation of structural and regulatory genes of the flavonoid pathway as revealed by a transcriptomic analysis. The physiological role of these repressors was inferred by combining the results of the functional analyses and their expression patterns in grapevine during development and in response to ultraviolet B radiation. Our results indicate that VvMYB4a and VvMYB4b may play a key role in negatively regulating the synthesis of small-weight phenolic compounds, whereas VvMYBC2-L1 and VvMYBC2-L3 may additionally fine tune flavonoid levels, balancing the inductive effects of transcriptional activators. PMID:25659381
Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation
Li, Bai; Li, Yu-Ying; Wu, Hua-Mao; Zhang, Fang-Fang; Li, Chun-Jie; Li, Xue-Xian; Lambers, Hans; Li, Long
2016-01-01
Plant diversity in experimental systems often enhances ecosystem productivity, but the mechanisms causing this overyielding are only partly understood. Intercropping faba beans (Vicia faba L.) and maize (Zea mays L.) result in overyielding and also, enhanced nodulation by faba beans. By using permeable and impermeable root barriers in a 2-y field experiment, we show that root–root interactions between faba bean and maize significantly increase both nodulation and symbiotic N2 fixation in intercropped faba bean. Furthermore, root exudates from maize promote faba bean nodulation, whereas root exudates from wheat and barley do not. Thus, a decline of soil nitrate concentrations caused by intercropped cereals is not the sole mechanism for maize promoting faba bean nodulation. Intercropped maize also caused a twofold increase in exudation of flavonoids (signaling compounds for rhizobia) in the systems. Roots of faba bean treated with maize root exudates exhibited an immediate 11-fold increase in the expression of chalcone–flavanone isomerase (involved in flavonoid synthesis) gene together with a significantly increased expression of genes mediating nodulation and auxin response. After 35 d, faba beans treated with maize root exudate continued to show up-regulation of key nodulation genes, such as early nodulin 93 (ENOD93), and promoted nitrogen fixation. Our results reveal a mechanism for how intercropped maize promotes nitrogen fixation of faba bean, where maize root exudates promote flavonoid synthesis in faba bean, increase nodulation, and stimulate nitrogen fixation after enhanced gene expression. These results indicate facilitative root–root interactions and provide a mechanism for a positive relationship between species diversity and ecosystem productivity. PMID:27217575
Light response and potential interacting proteins of a grape flavonoid 3'-hydroxylase gene promoter.
Sun, Run-Ze; Pan, Qiu-Hong; Duan, Chang-Qing; Wang, Jun
2015-12-01
Flavonoid 3'-hydroxylase (F3'H), a member of cytochrome P450 protein family, introduces B-ring hydroxyl group in the 3' position of the flavonoid. In this study, the cDNA sequence of a F3'H gene (VviF3'H), which contains an open reading frame of 1530 bp encoding a polypeptide of 509 amino acids, was cloned and characterized from Vitis vinifera L. cv. Cabernet Sauvignon. VviF3'H showed high homology to known F3'H genes, especially F3'Hs from the V. vinifera reference genome (Pinot Noir) and lotus. Expression profiling analysis using real-time PCR revealed that VviF3'H was ubiquitously expressed in all tested tissues including berries, leaves, flowers, roots, stems and tendrils, suggesting its important physiological role in plant growth and development. Moreover, the transcript level of VviF3'H gene in grape berries was relatively higher at early developmental stages and gradually decreased during véraison, and then increased in the mature phase. In addition, the promoter of VviF3'H was isolated by using TAIL-PCR. Yeast one-hybrid screening of the Cabernet Sauvignon cDNA library and subsequent in vivo/vitro validations revealed the interaction between VviF3'H promoter and several transcription factors, including members of HD-Zip, NAC, MYB and EIN families. A transcriptional regulation mechanism of VviF3'H expression is proposed for the first time. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Davis, Gina; Ananga, Anthony; Krastanova, Stoyanka; Sutton, Safira; Ochieng, Joel W; Leong, Stephen; Tsolova, Violetka
2012-06-01
Anthocyanins are antioxidants and are among the natural products synthesized via the flavonoid biosynthesis pathway. Anthocyanins have been recommended for dietary intake in the prevention of cardiovascular diseases, cancer, and age-related conditions such as Alzheimer's disease or dementia. With an increasingly aging population in many parts of the world, strategies for the commercial production of in vitro synchronized red cell cultures as natural antioxidants will be a significant contribution to human medicine. Red pigmented fruits such as grapes (Vitis sp.) are a major source of bioavailable anthocyanins and other polyphenols. Since the level of antioxidants varies among cultivars, this study is the first one that phytochemically and genetically characterizes native grape cultivars of North America to determine the optimal cultivar and berry cells for the production of anthocyanins as antioxidants. Using real-time PCR and bioinformatics approaches, we tested for the transcript expression of the chalcone synthase (CHS) gene, an enzyme involved in the flavonoid and anthocyanin biosynthesis pathway, in different parts of physiologically mature grape berries and in vitro synchronized red cells. A low level of expression was recorded in berry flesh, compared with an elevated expression in berry skins and in vitro synchronized red cells, suggesting increased production of flavonoids in skin and cell cultures. This preliminary study demonstrates the potential of functional genomics in natural products research as well as in systematic studies of North American native grapes, specifically in muscadine (Vitis rotundifolia).
Flavonoids and related compounds as anti-allergic substances.
Kawai, Mari; Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke; Maruta, Michiru; Kuwahara, Yusuke; Ohkawara, Tomoharu; Hagihara, Keisuke; Yamadori, Tomoki; Shima, Yoshihito; Ogata, Atsushi; Kawase, Ichiro; Tanaka, Toshio
2007-06-01
The prevalence of allergic diseases has increased all over the world during the last two decades. Dietary change is considered to be one of the environmental factors that cause this increase and worsen allergic symptoms. If this is the case, an appropriate intake of foods or beverages with anti-allergic activities is expected to prevent the onset of allergic diseases and ameliorate allergic symptoms. Flavonoids, ubiquitously present in vegetables, fruits or teas possess anti-allergic activities. Flavonoids inhibit histamine release, synthesis of IL-4 and IL-13 and CD40 ligand expression by basophils. Analyses of structure-activity relationships of 45 flavones, flavonols and their related compounds showed that luteolin, ayanin, apigenin and fisetin were the strongest inhibitors of IL-4 production with an IC(50) value of 2-5 microM and determined a fundamental structure for the inhibitory activity. The inhibitory activity of flavonoids on IL-4 and CD40 ligand expression was possibly mediated through their inhibitory action on activation of nuclear factors of activated T cells and AP-1. Administration of flavonoids into atopic dermatitis-prone mice showed a preventative and ameliorative effect. Recent epidemiological studies reported that a low incidence of asthma was significantly observed in a population with a high intake of flavonoids. Thus, this evidence will be helpful for the development of low molecular compounds for allergic diseases and it is expected that a dietary menu including an appropriate intake of flavonoids may provide a form of complementary and alternative medicine and a preventative strategy for allergic diseases. Clinical studies to verify these points are now in progress.
Kling, Beata; Bücherl, Daniel; Palatzky, Peter; Matysik, Frank-Michael; Decker, Michael; Wegener, Joachim; Heilmann, Jörg
2014-03-28
A real-time and label-free in vitro assay based on electric cell-substrate impedance sensing (ECIS) was established, validated, and compared to an end-point MTT assay within an experimental trial addressing the cytoprotective effects of 19 different flavonoids, flavonoid metabolites, and phenolic acids and their methyl esters on the HT-22 neuronal cell line, after induction of oxidative stress with tert-butyl hydroperoxide. Among the flavonoids under study, only those with a catechol unit and an additional 4-keto group provided cytoprotection. The presence of a 2,3-double bond was not a structural prerequisite for a neuroprotective effect. In the case of the phenolics, catechol substitution was the only structural requirement for activity. The flavonoids and other phenolics with a ferulic acid substitution or a single hydroxy group showed no activity. Electrochemical characterization of all compounds via square-wave voltammetry provided a rather specific correlation between cytoprotective activity and redox potential for the active flavonoids, but not for the active phenolics with a low molecular weight. Moreover this study was used to compare label-free ECIS recordings with results of the established MTT assay. Whereas the former provides time-resolved and thus entirely unbiased information on changes of cell morphology that are unequivocally associated with cell death, the latter requires predefined exposure times and a strict causality between metabolic activity and cell death. However, MTT assays are based on standard lab equipment and provide a more economic way to higher throughput.
Logemann, Elke; Tavernaro, Annette; Schulz, Wolfgang; Somssich, Imre E.; Hahlbrock, Klaus
2000-01-01
The UV light-induced synthesis of UV-protective flavonoids diverts substantial amounts of substrates from primary metabolism into secondary product formation and thus causes major perturbations of the cellular homeostasis. Results from this study show that the mRNAs encoding representative enzymes from various supply pathways are coinduced in UV-irradiated parsley cells (Petroselinum crispum) with two mRNAs of flavonoid glycoside biosynthesis, encoding phenylalanine ammonia-lyase and chalcone synthase. Strong induction was observed for mRNAs encoding glucose 6-phosphate dehydrogenase (carbohydrate metabolism, providing substrates for the shikimate pathway), 3-deoxyarabinoheptulosonate 7-phosphate synthase (shikimate pathway, yielding phenylalanine), and acyl-CoA oxidase (fatty acid degradation, yielding acetyl-CoA), and moderate induction for an mRNA encoding S-adenosyl-homocysteine hydrolase (activated methyl cycle, yielding S-adenosyl-methionine for B-ring methylation). Ten arbitrarily selected mRNAs representing various unrelated metabolic activities remained unaffected. Comparative analysis of acyl-CoA oxidase and chalcone synthase with respect to mRNA expression modes and gene promoter structure and function revealed close similarities. These results indicate a fine-tuned regulatory network integrating those functionally related pathways of primary and secondary metabolism that are specifically required for protective adaptation to UV irradiation. Although the response of parsley cells to UV light is considerably broader than previously assumed, it contrasts greatly with the extensive metabolic reprogramming observed previously in elicitor-treated or fungus-infected cells. PMID:10677554
Wang, Nan; Xu, Haifeng; Jiang, Shenghui; Zhang, Zongying; Lu, Ninglin; Qiu, Huarong; Qu, Changzhi; Wang, Yicheng; Wu, Shujing; Chen, Xuesen
2017-04-01
Flavonoids are major polyphenol compounds in plant secondary metabolism. Wild red-fleshed apples (Malus sieversii f. niedzwetzkyana) are an excellent resource because of their much high flavonoid content than cultivated apples. In this work, R6R6, R6R1 and R1R1 genotypes were identified in an F 1 segregating population of M. sieversii f. niedzwetzkyana. Significant differences in flavonoid composition and content were detected among the three genotypes by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry analysis. Furthermore, two putative flavonoid-related genes encoding R2R3-MYB transcription factors, designated MYB12 and MYB22, were cloned and characterized. The expression patterns of MYB12 and MYB22 directly correlated with those of leucoanthocyanidin reductase and flavonol synthase, respectively. Their roles in flavonoid biosynthesis were identified by overexpression in apple callus and ectopic expression in Arabidopsis. MYB12 expression in the Arabidopsis TT2 mutant complemented its proanthocyanidin-deficient phenotype. Likewise, MYB22 expression in an Arabidopsis triple mutant complemented its flavonol-deficient phenotype. MYB12 could interact with bHLH3 and bHLH33 and played an essential role in proanthocyanidin synthesis. MYB22 was found to activate flavonol pathways by combining directly with the flavonol synthase promoter. Our findings provide a valuable perspective on flavonoid synthesis and provide a basis for breeding elite functional apples with a high flavonoid content. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Luteolin, a flavonoid, inhibits AP-1 activation by basophils.
Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Matsuda, Hisashi; Yoshikawa, Masayuki; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Kawase, Ichiro; Tanaka, Toshio
2006-02-03
Flavonoids including luteolin, apigenin, and fisetin are inhibitors of IL-4 synthesis and CD40 ligand expression by basophils. This study was done to search for compounds with greater inhibitory activity of IL-4 expression and to clarify the molecular mechanisms through which flavonoids inhibit their expression. Of the 37 flavonoids and related compounds examined, ayanin, luteolin, and apigenin were the strongest inhibitors of IL-4 production by purified basophils in response to anti-IgE antibody plus IL-3. Luteolin did not suppress Syk or Lyn phosphorylation in basophils, nor did suppress p54/46 SAPK/JNK, p38 MAPK, and p44/42 MAPK activation by a basophilic cell line, KU812 cells, stimulated with A23187 and PMA. However, luteolin did inhibit phosphorylation of c-Jun and DNA binding activity of AP-1 in nuclear lysates from stimulated KU812 cells. These results provide a fundamental structure of flavonoids for IL-4 inhibition and demonstrate a novel action of flavonoids that suppresses the activation of AP-1.
NASA Astrophysics Data System (ADS)
Shi, Ji-yong; Zou, Xiao-bo; Zhao, Jie-wen; Mel, Holmes; Wang, Kai-liang; Wang, Xue; Chen, Hong
Total flavonoids content is often considered an important quality index of Ginkgo biloba leaf. The feasibility of using near infrared (NIR) spectra at the wavelength range of 10,000-4000 cm-1 for rapid and nondestructive determination of total flavonoids content in G. biloba leaf was investigated. 120 fresh G. biloba leaves in different colors (green, green-yellowish and yellow) were used to spectra acquisition and total flavonoids determination. Partial least squares (PLS), interval partial least squares (iPLS) and synergy interval partial least squares (SiPLS) were used to develop calibration models for total flavonoids content in two colors leaves (green-yellowish and yellow) and three colors leaves (green, green-yellowish and yellow), respectively. The level of total flavonoids content for green, green-yellowish and yellow leaves was in an increasing order. Two characteristic wavelength regions (5840-6090 cm-1 and 6620-6880 cm-1), which corresponded to the absorptions of two aromatic rings in basic flavonoid structure, were selected by SiPLS. The optimal SiPLS model for total flavonoids content in the two colors leaves (r2 = 0.82, RMSEP = 2.62 mg g-1) had better performance than PLS and iPLS models. It could be concluded that NIR spectroscopy has significant potential in the nondestructive determination of total flavonoids content in fresh G. biloba leaf.
Bais, Harsh Pal; Walker, Travis S; Kennan, Alan J; Stermitz, Frank R; Vivanco, Jorge M
2003-02-12
Invasive plants are believed to succeed in part by secretion of allelochemicals, thus displacing competing plant species. Centaurea maculosa (spotted knapweed) provides a classic example of this process. We have previously reported that spotted knapweed roots secrete (+/-)-catechin and that (-)-catechin, but not (+)-catechin, is phytotoxic and hence may be a major contributor to C. maculosa's invasive behavior in the rhizosphere. In this communication, we explore both structure/activity relationships for flavonoid phytotoxicity and possible biosynthetic pathways for root production of (+/-)-catechin. Kaempferol and dihydroquercetin were shown to be phytotoxic, while quercetin was not. Kaempferol was converted to dihydroquercetin and (+/-)-catechin when treated with total root protein extracts from C. maculosa, but quercetin was not. This finding suggests an alteration in the standard flavonoid biosynthetic pathway in C. maculosa roots, whereby kaempferol is not a dead-end product but serves as a precursor to dihydroquercetin, which in turn leads to (+/-)-catechin production.
Flavonoid C- and O-glycosides from the Mongolian medicinal plant Dianthus versicolor Fisch.
Obmann, Astrid; Werner, Ingrid; Presser, Armin; Zehl, Martin; Swoboda, Zita; Purevsuren, Sodnomtseren; Narantuya, Samdan; Kletter, Christa; Glasl, Sabine
2011-09-27
Eighteen flavonoids were identified from an aqueous extract of the aerial parts of Dianthus versicolor, a plant used in traditional Mongolian medicine against liver diseases. The flavonoid C- and O-glycosides isoorientin-7-O-rutinoside, isoorientin-7-O-rhamnosyl-galactoside, isovitexin-7-O-rutinoside, isovitexin-7-O-rhamnosyl-galactoside, isoscoparin-7-O-rutinoside, isoscoparin-7-O-rhamnosyl-galactoside, isoscoparin-7-O-galactoside, and isoorientin-7-O-galactoside were isolated and structurally elucidated. Their structures were established on the basis of extensive spectroscopic techniques including LC-UV-DAD, LC-MS(n), LC-HRMS, 1D and 2D NMR spectroscopy, and by GC-MS analysis after hydrolysis. Flavonoids with such a high glycosylation pattern are rare within the genus Dianthus. Furthermore, isovitexin-7-O-glucoside (saponarin), isovitexin-2″-O-rhamnoside, apigenin-6-glucoside (isovitexin), luteolin-7-O-glucoside, apigenin-7-O-glucoside, as well as the aglycons luteolin, apigenin, chrysoeriol, diosmetin, and acacetin were identified by TLC and LC-DAD-MS(n) in comparison to reference substances or literature data. The NMR data of seven structures have not been reported in the literature to date. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mendoza-Wilson, Ana María.; Lardizabal-Gutiérrez, Daniel; Torres-Moye, Enrique; Fuentes-Cobas, Luis; Balandrán-Quintana, René R.; Camacho-Dávila, Alejandro; Quintero-Ramos, Armando; Glossman-Mitnik, Daniel
2007-12-01
The purpose of this work was to evaluate the accuracy of the CHIH(medium)-DFT model chemistry (PBEg/CBSB2 ∗∗//PBEg/CBSB4) in the determination of the optimized structure and thermochemical properties of heterocyclic systems of medium size such as flavonoids, wherefore were selected three of the most abundant flavonoids in vegetable tissues, and which posses the higher antioxidant activity: quercetin, (+)-catechin and cyanidin. As reference systems were employed three cyclic compounds: phenol, catechol and resorcinol. The thermochemical properties evaluated were enthalpy of formation, bond dissociation enthalpy (BDE) and ionization potential (IP), following the scheme of isodesmic reactions. The theoretical results were compared with experimental data generated by X-ray diffraction and calorimetric techniques realized in part by us, whereas other data were taken from the literature. The results obtained in this work reveal that the CHIH(medium)-DFT model chemistry represents an accurate computational tool to calculate structural and thermochemical properties in the studied flavonoid and reference compounds. The average absolute deviation of enthalpy of formation for reference compounds was 3.0 kcal/mol, 2.64 kcal/mol for BDE, and 2.97 kcal/mol for IP.
Song, Xinyu; Diao, Jinjin; Ji, Jing; Wang, Gang; Guan, Chunfeng; Jin, Chao; Wang, Yurong
2016-01-01
Flavonoids, as plant secondary metabolites, are widespread throughout the plant kingdom and involved in many physiological and biochemical processes. Drought resistance is attributed to flavonoids with respect to protective functions in the cell wall and membranes. The flavanone 3-hydroxylase (F3H) gene which encodes flavanone 3-hydroxylase, is essential in flavonoids biosynthetic pathway. Lycium chinense (L. chinense) is a deciduous woody perennial halophyte that grows under a large variety of environmental conditions and survives under extreme drought stress. A novel cDNA sequence coding a F3H gene in Lycium chinense (LcF3H, GenBank: KJ636468.1) was isolated. The open reading frame of LcF3H comprised 1101 bp encoding a polypeptide of 366 amino acids with a molecular weight of about 42 kDa and an isoelectric point of 5.32. The deduced LcF3H protein showed high identities with other plant F3Hs, and the conserved motifs were found in LcF3H at similar positions like other F3Hs. The recombinant protein converted naringen into dihydrokaempferol in vitro. Since studies have shown that amongst flavonoids, flavan-3-ols (catechin and epicatechin) have direct free radical scavenging activity to maintain the normal physiological function of cells in vivo, these data support the possible relationship between the oxidative damage and the regulation of LcF3H gene expression in L. chinense under drought stress. In order to better understand the biotechnological potential of LcF3H, gene overexpression was conducted in tobacco. The content of flavan-3-ols and the tolerance to drought stress were increased in LcF3H overexpressing tobacco. Analysis of transgenic tobacco lines also showed that antioxidant enzyme activities were increased meanwhile the malondialdehyde (MDA) content and the content of H2O2 were reduced comparing to nontransformed tobacco plants. Furthermore, the photosynthesis rate was less decreased in the transgenetic plants. These results suggest that LcF3H plays a role in enhancing drought tolerance in L. chinense, and its overexpression increases tolerance to drought stress by improving the antioxidant system in tobacco. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Youns, Mаhmoud; Abdel Halim Hegazy, Wael
2017-01-01
Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.
Youns, Mаhmoud; Abdel Halim Hegazy, Wael
2017-01-01
Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes. PMID:28052097
Pérez-Díaz, Ricardo; Madrid-Espinoza, José; Salinas-Cornejo, Josselyn; González-Villanueva, Enrique; Ruiz-Lara, Simón
2016-01-01
In plant cells, flavonoids are synthesized in the cytosol and then are transported and accumulated in the vacuole. Glutathione S-transferase-mediated transport has been proposed as a mechanism involved in flavonoid transport, however, whether binding of flavonoids to glutathione S-transferase (GST) or their transport is glutathione-dependent is not well understood. Glutathione S-transferases from Vitis vinífera (VviGSTs) have been associated with the transport of anthocyanins, however, their ability to transport other flavonoids such as proanthocyanidins (PAs) has not been established. Following bioinformatics approaches, we analyzed the capability of VviGST1, VviGST3, VviGST4, and Arabidopsis TT19 to bind different flavonoids. Analyses of protein-ligand interactions indicate that these GSTs can bind glutathione and monomers of anthocyanin, PAs and flavonols. A total or partial overlap of the binding sites for glutathione and flavonoids was found in VviGST1, and a similar condition was observed in VviGST3 using anthocyanin and flavonols as ligands, whereas VviGST4 and TT19 have both sites for GSH and flavonoids separated. To validate the bioinformatics predictions, functional complementation assays using the Arabidopsis tt19 mutant were performed. Overexpression of VviGST3 in tt19-1 specifically rescued the dark seed coat phenotype associated to correct PA transport, which correlated with higher binding affinity for PA precursors. VviGST4, originally characterized as an anthocyanin-related GST, complemented both the anthocyanin and PA deposition, resembling the function of TT19. By contrast, VviGST1 only partially rescued the normal seed color. Furthermore the expression pattern of these VviGSTs showed that each of these genes could be associated with the accumulation of different flavonoids in specific tissues during grapevine fruit development. These results provide new insights into GST-mediated PA transport in grapevine and suggest that VviGSTs present different specificities for flavonoid ligands. In addition, our data provide evidence to suggest that GST-mediate flavonoid transport is glutathione-dependent. PMID:27536314
Antioxidant properties of di-tert-butylhydroxylated flavonoids.
Lebeau, J; Furman, C; Bernier, J L; Duriez, P; Teissier, E; Cotelle, N
2000-11-01
Epidemiological evidence suggests an inverse relationship between dietary intake of flavonoids and cardiovascular risk. The biological activities of flavonoids are related to their antioxidative effects, but they also can be mutagenic, due to the prooxidant activity of the catechol pattern. To prevent these problems, we synthesized new flavonoids where one or two di-tert-butylhydroxyphenyl (DBHP) groups replaced catechol moiety at position 2 of the benzopyrane heterocycle. Two DBHP moieties can also be arranged in an arylidene structure or one DBHP fixed on a chalcone structure. Position 7 on the flavone and arylidene or position 4 on the chalcone was substituted by H, OCH(3), or OH. New structures were compared with quercetin and BHT in an LDL oxidation system induced by Cu(II) ions. Arylidenes and chalcones had the best activities (ED(50) = 0.86 and 0.21) compared with vitamin E, BHT, and quercetin (ED(50) = 10.0, 7. 4, and 2.3 microM). Activity towards stable free radical 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) was measured by log Z and ECR(50) parameters. Synthesized flavones proved to be poor DPPH radical scavengers, the activity increasing with the number of DBHP units. In contrast, arylidenes and chalcones were stronger DPPH radical scavengers (log Z > 3, 0.3 < ECR(50) < 2.12) than BHT (log Z = 0.75, ECR(50) = 12.56) or quercetin (log Z = 2.76, ECR(50) = 0.43). Unlike quercetin, synthesized compounds neither chelated nor reduced copper, proving that these new flavonoids had no prooxidant activity in vitro.
Veberic, Robert; Slatnar, Ana; Koron, Darinka; Miosic, Silvija; Chen, Ming-Hui; Haselmair-Gosch, Christian; Halbwirth, Heidi; Mikulic-Petkovsek, Maja
2017-01-01
Relative expressions of structural genes and a number of transcription factors of the anthocyanin pathway relevant in Vaccinium species, and related key enzyme activities were compared with the composition and content of metabolites in skins of ripe fruits of wild albino and blue bilberry (Vaccinium myrtillus) found in Slovenia. Compared to the common blue type, the albino variant had a 151-fold lower total anthocyanin and a 7-fold lower total phenolic content in their berry skin, which correlated with lower gene expression of flavonoid 3-O-glycosyltransferase (FGT; 33-fold), flavanone 3-hydroxylase (FHT; 18-fold), anthocyanidin synthase (ANS; 11-fold), chalcone synthase (CHS, 7.6-fold) and MYBPA1 transcription factor (22-fold). The expression of chalcone isomerase (CHI), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin reductase (LAR), anthocyanidin reductase (ANR) and MYBC2 transcription factor was reduced only by a factor of 1.5–2 in the albino berry skins, while MYBR3 and flavonoid 3’,5’-hydroxylase (F3’5’H) were increased to a similar extent. Expression of the SQUAMOSA class transcription factor TDR4, in contrast, was independent of the color type and does therefore not seem to be correlated with anthocyanin formation in this variant. At the level of enzymes, significantly lower FHT and DFR activities, but not of phenylalanine ammonia-lyase (PAL) and CHS/CHI, were observed in the fruit skins of albino bilberries. A strong increase in relative hydroxycinnamic acid derivative concentrations indicates the presence of an additional bottleneck in the general phenylpropanoid pathway at a so far unknown step between PAL and CHS. PMID:29272302
Zorenc, Zala; Veberic, Robert; Slatnar, Ana; Koron, Darinka; Miosic, Silvija; Chen, Ming-Hui; Haselmair-Gosch, Christian; Halbwirth, Heidi; Mikulic-Petkovsek, Maja
2017-01-01
Relative expressions of structural genes and a number of transcription factors of the anthocyanin pathway relevant in Vaccinium species, and related key enzyme activities were compared with the composition and content of metabolites in skins of ripe fruits of wild albino and blue bilberry (Vaccinium myrtillus) found in Slovenia. Compared to the common blue type, the albino variant had a 151-fold lower total anthocyanin and a 7-fold lower total phenolic content in their berry skin, which correlated with lower gene expression of flavonoid 3-O-glycosyltransferase (FGT; 33-fold), flavanone 3-hydroxylase (FHT; 18-fold), anthocyanidin synthase (ANS; 11-fold), chalcone synthase (CHS, 7.6-fold) and MYBPA1 transcription factor (22-fold). The expression of chalcone isomerase (CHI), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin reductase (LAR), anthocyanidin reductase (ANR) and MYBC2 transcription factor was reduced only by a factor of 1.5-2 in the albino berry skins, while MYBR3 and flavonoid 3',5'-hydroxylase (F3'5'H) were increased to a similar extent. Expression of the SQUAMOSA class transcription factor TDR4, in contrast, was independent of the color type and does therefore not seem to be correlated with anthocyanin formation in this variant. At the level of enzymes, significantly lower FHT and DFR activities, but not of phenylalanine ammonia-lyase (PAL) and CHS/CHI, were observed in the fruit skins of albino bilberries. A strong increase in relative hydroxycinnamic acid derivative concentrations indicates the presence of an additional bottleneck in the general phenylpropanoid pathway at a so far unknown step between PAL and CHS.
Pham, Thi Thanh My; Pino Rodriguez, Nancy Johanna; Hijri, Mohamed; Sylvestre, Michel
2015-01-01
There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs) during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR) on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB) degradation, we determined the concentration of flavanone at which optimal PCB-degrading performance of strain U23A was achieved. We showed that it corresponded to the concentration required to fully induce the biphenyl catabolic pathway of the strain. Together, our data demonstrate that optimal PCB degradation during the rhizoremediation process will require the adjustment of several parameters, including the presence of the appropriate flavonoids at the proper concentrations and the presence of proper growth substrates that positively influence the ability of flavonoids to induce the pathway.
Hijri, Mohamed; Sylvestre, Michel
2015-01-01
There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs) during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR) on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB) degradation, we determined the concentration of flavanone at which optimal PCB-degrading performance of strain U23A was achieved. We showed that it corresponded to the concentration required to fully induce the biphenyl catabolic pathway of the strain. Together, our data demonstrate that optimal PCB degradation during the rhizoremediation process will require the adjustment of several parameters, including the presence of the appropriate flavonoids at the proper concentrations and the presence of proper growth substrates that positively influence the ability of flavonoids to induce the pathway. PMID:25970559
Aguadé, M
2001-01-01
The FAH1 and F3H genes encode ferulate-5-hydroxylase and flavanone-3-hydroxylase, which are enzymes in the pathways leading to the synthesis of sinapic acid esters and flavonoids, respectively. Nucleotide variation at these genes was surveyed by sequencing a sample of 20 worldwide Arabidopsis thaliana ecotypes and one Arabidopsis lyrata spp. petraea stock. In contrast with most previously studied genes, the percentage of singletons was rather low in both the FAH1 and the F3H gene regions. There was, therefore, no footprint of a recent species expansion in the pattern of nucleotide variation in these regions. In both FAH1 and F3H, nucleotide variation was structured into two major highly differentiated haplotypes. In both genes, there was a peak of silent polymorphism in the 5' part of the coding region without a parallel increase in silent divergence. In FAH1, the peak was centered at the beginning of the second exon. In F3H, nucleotide diversity was highest at the beginning of the gene. The observed pattern of variation in both FAH1 and F3H, although suggestive of balancing selection, was compatible with a neutral model with no recombination.
Naman, C Benjamin; Li, Jie; Moser, Arvin; Hendrycks, Jeffery M; Benatrehina, P Annécie; Chai, Heebyung; Yuan, Chunhua; Keller, William J; Kinghorn, A Douglas
2015-06-19
Melanodiol 4″-O-protocatechuate (1) and melanodiol (2) represent novel flavonoid derivatives isolated from a botanical dietary supplement ingredient, dried black chokeberry (Aronia melanocarpa) fruit juice. These noncrystalline compounds possess an unprecedented fused pentacyclic core with two contiguous hemiketals. Due to having significant hydrogen deficiency indices, their structures were determined using computer-assisted structure elucidation software. The in vitro hydroxyl radical-scavenging and quinone reductase-inducing activity of each compound are reported, and a plausible biogenetic scheme is proposed.
Naman, C. Benjamin; Li, Jie; Moser, Arvin; Hendrycks, Jeffery M.; Benatrehina, P. Annécie; Chai, Heebyung; Yuan, Chunhua; Keller, William J.; Kinghorn, A. Douglas
2015-01-01
Melanodiol 4″-O-protocatechuate (1) and melanodiol (2) represent novel flavonoid derivatives isolated from a botanical dietary supplement ingredient, dried black chokeberry (Aronia melanocarpa) fruit juice. These non-crystalline compounds possess an unprecedented fused pentacyclic core with two contiguous hemiketals. Due to having significant hydrogen deficiency indices, their structures were determined using computer-assisted structure elucidation software. The in vitro hydroxyl radical-scavenging and quinone reductase-inducing activity of each compound are reported, and a plausible biogenetic scheme is proposed PMID:26030740
España, Laura; Heredia-Guerrero, José A.; Reina-Pinto, José J.; Fernández-Muñoz, Rafael; Heredia, Antonio; Domínguez, Eva
2014-01-01
Tomato (Solanum lycopersicum) fruit ripening is accompanied by an increase in CHALCONE SYNTHASE (CHS) activity and flavonoid biosynthesis. Flavonoids accumulate in the cuticle, giving its characteristic orange color that contributes to the eventual red color of the ripe fruit. Using virus-induced gene silencing in fruits, we have down-regulated the expression of SlCHS during ripening and compared the cuticles derived from silenced and nonsilenced regions. Silenced regions showed a pink color due to the lack of flavonoids incorporated to the cuticle. This change in color was accompanied by several other changes in the cuticle and epidermis. The epidermal cells displayed a decreased tangential cell width; a decrease in the amount of cuticle and its main components, cutin and polysaccharides, was also observed. Flavonoids dramatically altered the cuticle biomechanical properties by stiffening the elastic and viscoelastic phase and by reducing the ability of the cuticle to deform. There seemed to be a negative relation between SlCHS expression and wax accumulation during ripening that could be related to the decreased cuticle permeability to water observed in the regions silencing SlCHS. A reduction in the overall number of ester linkages present in the cutin matrix was also dependent on the presence of flavonoids. PMID:25277718
Fruit polyphenols, immunity and inflammation.
González-Gallego, Javier; García-Mediavilla, M Victoria; Sánchez-Campos, Sonia; Tuñón, María J
2010-10-01
Flavonoids are a large class of naturally occurring compounds widely present in fruits, vegetables and beverages derived from plants. These molecules have been reported to possess a wide range of activities in the prevention of common diseases, including CHD, cancer, neurodegenerative diseases, gastrointestinal disorders and others. The effects appear to be related to the various biological/pharmacological activities of flavonoids. A large number of publications suggest immunomodulatory and anti-inflammatory properties of these compounds. However, almost all studies are in vitro studies with limited research on animal models and scarce data from human studies. The majority of in vitro research has been carried out with single flavonoids, generally aglycones, at rather supraphysiological concentrations. Few studies have investigated the anti-inflammatory effects of physiologically attainable flavonoid concentrations in healthy subjects, and more epidemiological studies and prospective randomised trials are still required. This review summarises evidence for the effects of fruit and tea flavonoids and their metabolites in inflammation and immunity. Mechanisms of effect are discussed, including those on enzyme function and regulation of gene and protein expression. Animal work is included, and evidence from epidemiological studies and human intervention trials is reviewed. Biological relevance and functional benefits of the reported effects, such as resistance to infection or exercise performance, are also discussed.
Woźniak, Agnieszka; Drzewiecka, Kinga; Kęsy, Jacek; Marczak, Łukasz; Narożna, Dorota; Grobela, Marcin; Motała, Rafał; Bocianowski, Jan; Morkunas, Iwona
2017-08-24
The aim of this study was to investigate the effect of an abiotic factor, i.e., lead at various concentrations (low causing a hormesis effect and causing high toxicity effects), on the generation of signalling molecules in pea ( Pisum sativum L. cv. Cysterski) seedlings and then during infestation by the pea aphid ( Acyrthosiphon pisum Harris). The second objective was to verify whether the presence of lead in pea seedling organs and induction of signalling pathways dependent on the concentration of this metal trigger defense responses to A. pisum . Therefore, the profile of flavonoids and expression levels of genes encoding enzymes of the flavonoid biosynthesis pathway (phenylalanine ammonialyase and chalcone synthase) were determined. A significant accumulation of total salicylic acid (TSA) and abscisic acid (ABA) was recorded in the roots and leaves of pea seedlings growing on lead-supplemented medium and next during infestation by aphids. Increased generation of these phytohormones strongly enhanced the biosynthesis of flavonoids, including a phytoalexin, pisatin. This research provides insights into the cross-talk between the abiotic (lead) and biotic factor (aphid infestation) on the level of the generation of signalling molecules and their role in the induction of flavonoid biosynthesis.
Radical scavenging behavior of eriodictyol and fustin flavonoid compounds - A DFT study
NASA Astrophysics Data System (ADS)
Sadasivam, K.; Praveena, R.; Anbakzhakan, K.
2018-05-01
The density functional theory (DFT) protocol together with B3LYP/6-311G(d,p) level of theory has been utilized to explore and compare the structural features and molecular characteristics of two naturally occurring flavonoid compounds eriodictyol and fustin. The -OH bond dissociation energy (BDE) for all the radical species have been computed and interpreted in accordance with the radical scavenging activity. The ionization potential (IP) value of fustin flavonoid compound was found to be within the range of synthetic food additives. The polar nature and their capacity to polarise other atoms are established through the dipole moment analysis. Additionally, various parameters that are relevant to chemical potential such as electron affinity, hardness, softness, electro negativity and electrophilic index were calculated and analysed in the light of quercetin flavonoid compound in view of their antioxidant activity. The antioxidant capability of fustin is found to be superior to eriodictyol flavonoid.
Sharma, Ranu; Panigrahi, Priyabrata; Suresh, C.G.
2014-01-01
Flavonoids are a class of plant secondary metabolites that act as storage molecules, chemical messengers, as well as participate in homeostasis and defense processes. They possess pharmaceutical properties important for cancer treatment such as antioxidant and anti-tumor activities. The drug-related properties of flavonoids can be improved by glycosylation. The enzymes glycosyltransferases (GTs) glycosylate acceptor molecules in a regiospecific manner with the help of nucleotide sugar donor molecules. Several plant GTs have been characterized and their amino acid sequences determined. However, three-dimensional structures of only a few are reported. Here, phylogenetic analysis using amino acid sequences have identified a group of GTs with the same regiospecific activity. The structures of these closely related GTs were modeled using homologous GT structures. Their substrate binding sites were elaborated by docking flavonoid acceptor and UDP-sugar donor molecules in the modeled structures. Eight regions near the acceptor binding site in the N- and C- terminal domain of GTs have been identified that bind and specifically glycosylate the 3-OH group of acceptor flavonoids. Similarly, a conserved motif in the C-terminal domain is known to bind a sugar donor substrate. In certain GTs, the substitution of a specific glutamine by histidine in this domain changes the preference of sugar from glucose to galactose as a result of changed pattern of interactions. The molecular modeling, docking, and molecular dynamics simulation studies have revealed the chemical and topological features of the binding site and thus provided insights into the basis of acceptor and donor recognition by GTs. PMID:24667893
Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity.
Mira, Lurdes; Fernandez, M Tereza; Santos, Marta; Rocha, Rui; Florêncio, M Helena; Jennings, Keith R
2002-11-01
The metal chelating properties of flavonoids suggest that they may play a role in metal-overload diseases and in all oxidative stress conditions involving a transition metal ion. A detailed study has been made of the ability of flavonoids to chelate iron (including Fe3+) and copper ions and its dependence of structure and pH. The acid medium may be important in some pathological conditions. In addition, the ability of flavonoids to reduce iron and copper ions and their activity-structure relationships were also investigated. To fulfill these objectives, flavones (apigenin, luteolin, kaempferol, quercetin, myricetin and rutin), isoflavones (daidzein and genistein), flavanones (taxifolin, naringenin and naringin) and a flavanol (catechin) were investigated. All flavonoids studied show higher reducing capacity for copper ions than for iron ions. The flavonoids with better Fe3+ reducing activity are those with a 2,3-double bond and possessing both the catechol group in the B-ring and the 3-hydroxyl group. The copper reducing activity seems to depend largely on the number of hydroxyl groups. The chelation studies were carried out by means of ultraviolet spectroscopy and electrospray ionisation mass spectrometry. Only flavones and the flavanol catechin interact with metal ions. At pH 7.4 and pH 5.5 all flavones studied appear to chelate Cu2+ at the same site, probably between the 5-hydroxyl and the 4-oxo groups. Myricetin and quercetin, however, at pH 7.4, appear to chelate Cu2+ additionally at the ortho-catechol group, the chelating site for catechin with Cu2+ at pH 7.4. Chelation studies of Fe3+ to flavonoids were investigated only at pH 5.5. Only myricetin and quercetin interact strongly with Fe3+, complexation probably occurring again between the 5-hydroxyl and the 4-oxo groups. Their behaviour can be explained by their ability to reduce Fe3+ at pH 5.5, suggesting that flavonoids reduce Fe3+ to Fe2+ before association.
Cell culture protection and in vivo neuroprotective capacity of flavonoids.
Dajas, Federico; Rivera, Felicia; Blasina, Fernanda; Arredondo, Florencia; Echeverry, Carolina; Lafon, Laura; Morquio, Andrea; Heinzen, Horacio; Heizen, Horacio
2003-01-01
Flavonoids are an important group of recognized antioxidants ubiquitous in fruits, vegetables and herbs. There are epidemiological evidences for the stroke-protecting capacity of flavonoids and while the neuroprotective power of complex extracts rich in flavonoids like those of Ginkgo biloba, green tea or lyophilized red wine have been demonstrated in several studies, neuroprotection by individual flavonoids has been poorly studied in vivo. The neuroprotective capacity of individual flavonoids was studied in PC12 cells in culture and in a model of permanent focal ischemia (permanent Middle Cerebral Artery Occlusion - pMCAO). In the in vivo experiments, flavonoids were administered in lecithin preparations to facilitate the crossing of the blood brain barrier. The simultaneous incubation of PC12 cells with 200 micro M hydrogen peroxide (H2O2) and different flavonoids for 30 min resulted in a conspicuous profile: quercetin, fisetin, luteolin and myricetin significantly increased cell survival while catechin, kaempherol and taxifolin did not. Quercetin was detected in brain tissue 30 min and 1 h after intraperitoneal administration. When one of the protective flavonoids (quercetin) and one of those that failed to increase PC12 cell survival (catechin) were assessed for their protective capacity in the pMCAO model, administered i.p. 30 min after vessel occlusion, quercetin significantly decreased the brain ischemic lesion while catechin did not. It is concluded that when administered in liposomal preparations, flavonoids structurally related to quercetin could become leads for the development of a new generation of molecules to be clinically effective in human brain ischemia.
USDA-ARS?s Scientific Manuscript database
Acai fruit (Euterpe oleracea Mart.) has been demonstrated to exhibit extremely high antioxidant capacity. Seven major flavonoids were isolated from freeze-dried acai pulp by various chromatographic methods. Their structures were elucidated as orientin (1), homoorientin (2), vitexin (3), luteolin (4)...
USDA-ARS?s Scientific Manuscript database
The pulp of açai fruit (Euterpe oleracea Mart.) has been demonstrated to exhibit extremely high antioxidant capacity. Seven major flavonoids were isolated from freeze-dried acai pulp by various chromatographic methods. Their structures were elucidated as orientin (1), homoorientin (2), vitexin (3), ...
USDA-ARS?s Scientific Manuscript database
Genome-wide association studies (GWAS) are a powerful method to dissect the genetic basis of traits, though in practice the effects of complex genetic architecture and population structure remain poorly understood. To compare mapping strategies we dissect the genetic control of flavonoid pigmentatio...
Li, Lingli; Zhang, Hehua; Liu, Zhongshuai; Cui, Xiaoyue; Zhang, Tong; Li, Yanfang; Zhang, Lingyun
2016-10-12
Blueberry is an economically important fruit crop in Ericaceae family. The substantial quantities of flavonoids in blueberry have been implicated in a broad range of health benefits. However, the information regarding fruit development and flavonoid metabolites based on the transcriptome level is still limited. In the present study, the transcriptome and gene expression profiling over berry development, especially during color development were initiated. A total of approximately 13.67 Gbp of data were obtained and assembled into 186,962 transcripts and 80,836 unigenes from three stages of blueberry fruit and color development. A large number of simple sequence repeats (SSRs) and candidate genes, which are potentially involved in plant development, metabolic and hormone pathways, were identified. A total of 6429 sequences containing 8796 SSRs were characterized from 15,457 unigenes and 1763 unigenes contained more than one SSR. The expression profiles of key genes involved in anthocyanin biosynthesis were also studied. In addition, a comparison between our dataset and other published results was carried out. Our high quality reads produced in this study are an important advancement and provide a new resource for the interpretation of high-throughput data for blueberry species whether regarding sequencing data depth or species extension. The use of this transcriptome data will serve as a valuable public information database for the studies of blueberry genome and would greatly boost the research of fruit and color development, flavonoid metabolisms and regulation and breeding of more healthful blueberries.
Warnsmann, Verena; Hainbuch, Saskia; Osiewacz, Heinz D
2018-01-01
Quercetin is a flavonoid that is ubiquitously found in vegetables and fruits. Like other flavonoids, it is active in balancing cellular reactive oxygen species (ROS) levels and has a cyto-protective function. Previously, a link between ROS balancing, aging, and the activity of O -methyltransferases was reported in different organisms including the aging model Podospora anserina. Here we describe a role of the S -adenosylmethionine-dependent O -methyltransferase PaMTH1 in quercetin-induced lifespan extension. We found that effects of quercetin treatment depend on the methylation state of the flavonoid. Specifically, we observed that quercetin treatment increases the lifespan of the wild type but not of the PaMth1 deletion mutant. The lifespan increasing effect is not associated with effects of quercetin on mitochondrial respiration or ROS levels but linked to the induction of the PaMth1 gene. Overall, our data demonstrate a novel role of O -methyltransferase in quercetin-induced longevity and identify the underlying pathway as part of a network of longevity assurance pathways with the perspective to intervene into mechanisms of biological aging.
Singlet Oxygen Reactions with Flavonoids. A Theoretical – Experimental Study
Morales, Javier; Günther, Germán; Zanocco, Antonio L.; Lemp, Else
2012-01-01
Detection of singlet oxygen emission, λmax = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, kT, and the reactive reaction rate constant, kr, for the reaction between singlet oxygen and several flavonoids. Values of kT determined in deuterated water, ranging from 2.4×107 M−1s−1 to 13.4×107 M−1s−1, for rutin and morin, respectively, and the values measured for kr, ranging from 2.8×105 M−1s−1 to 65.7×105 M−1s−1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid. PMID:22802966
Singlet oxygen reactions with flavonoids. A theoretical-experimental study.
Morales, Javier; Günther, Germán; Zanocco, Antonio L; Lemp, Else
2012-01-01
Detection of singlet oxygen emission, λ(max) = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T), and the reactive reaction rate constant, k(r), for the reaction between singlet oxygen and several flavonoids. Values of k(T) determined in deuterated water, ranging from 2.4×10(7) M(-1) s(-1) to 13.4×10(7) M(-1) s(-1), for rutin and morin, respectively, and the values measured for k(r), ranging from 2.8×10(5) M(-1) s(-1) to 65.7×10(5) M(-1) s(-1) for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.
Arif, Hussain; Rehmani, Nida; Farhan, Mohd; Ahmad, Aamir; Hadi, Sheikh Mumtaz
2015-11-09
Epidemiological studies have linked dietary consumption of plant polyphenols with lower incidence of various cancers. In particular, flavonoids (present in onion, tomato and other plant sources) induce apoptosis and cytotoxicity in cancer cells. These can therefore be used as lead compounds for the synthesis of novel anticancer drugs with greater bioavailability. In the present study, we examined the chemical basis of cytotoxicity of flavonoids by studying the structure-activity relationship of myricetin (MN), fisetin (FN), quercetin (QN), kaempferol (KL) and galangin (GN). Using single cell alkaline gel electrophoresis (comet assay), we established the relative efficiency of cellular DNA breakage as MN > FN > QN > KL > GN. Also, we determined that the cellular DNA breakage was the result of mobilization of chromatin-bound copper ions and the generation of reactive oxygen species. The relative DNA binding affinity order was further confirmed using molecular docking and thermodynamic studies through the interaction of flavonoids with calf thymus DNA. Our results suggest that novel anti-cancer molecules should have ortho-dihydroxy groups in B-ring and hydroxyl groups at positions 3 and 5 in the A-ring system. Additional hydroxyl groups at other positions further enhance the cellular cytotoxicity of the flavonoids.
Moghaddam, Ghazaal; Ebrahimi, Soltan Ahmad; Rahbar-Roshandel, Nahid; Foroumadi, Alireza
2012-07-01
Dracocephalum kotschyi Boiss. has been used as part of an ethnobotanical remedy against many forms of human cancer in Iran. It has been demonstrated that a flavonoid named xanthomicrol from D. kotschyi contributes to its preferential antiproliferative activity against malignant cells. In the present study, the antiproliferative activity of its flavonoid fraction was further characterized. Using liquid-liquid extraction and a semi-preparative reversed-phase HPLC method, eight flavonoid aglycones were isolated from the aerial parts of the plant and their identities were confirmed through MS and NMR analyses as luteolin, naringenin, apigenin, isokaempferide, cirsimaritin, penduletin, xanthomicrol and calycopterin. The in vitro antiproliferative activity of each compound was evaluated against a panel of established normal and malignant cell lines using the MTT assay and some structure-activity relationships were observed. The hydroxyflavones (luteolin, apigenin and isokaempferide) exerted comparable antiproliferative activities against malignant and normal cells, while the methoxylated hydroxyflavones (cirsimaritin, penduletin, xanthomicrol and calycopterin) showed preferential activities against tumor cells. This activity may be of value in treating tumors as it would exert few side effects in normal tissues. Xanthomicrol selectively inhibited the growth of human gastric adenocarcinoma, while calycopterin selectively prevented human acute promyelocytic leukemia and human colon carcinoma cells proliferation. Copyright © 2011 John Wiley & Sons, Ltd.
Wojakowska, Anna; Piasecka, Anna; García-López, Pedro M; Zamora-Natera, Francisco; Krajewski, Paweł; Marczak, Łukasz; Kachlicki, Piotr; Stobiecki, Maciej
2013-08-01
Flavonoid glycoconjugates from roots and leaves of eight North America lupine species (Lupinus elegans, Lupinus exaltatus, Lupinus hintonii, Lupinus mexicanus, Lupinus montanus, Lupinus rotundiflorus, Lupinus stipulatus, Lupinus sp.), three Mediterranean species (Lupinus albus, Lupinus angustifolius, Lupinus luteus) and one species from South America domesticated in Europe (Lupinus mutabilis) were analyzed using two LC/MS systems: low-resolution ion trap instrument and high-resolution quadrupole-time-of-flight spectrometer. As a result of the LC/MS profiling using the CID/MS(n) experiments structures of 175 flavonoid glycoconjugates found in 12 lupine species were identified at three confidence levels according to the Metabolomic Standard Initiative, mainly at level 2 and 3, some of them were classified to the level 1. Among the flavonoid derivatives recognized in the plant extracts were isomeric or isobaric compounds, differing in the degree of hydroxylation of the aglycones and the presence of glycosidic, acyl or alkyl groups in the molecules. The elemental composition of the glycoconjugate molecules was established from the exact m/z values of the protonated/deprotonated molecules ([M+H](+)/[M-H](-)) measured with the accuracy better than 5 ppm. Information concerning structures of the aglycones, the type of sugar moieties (hexose, deoxyhexose or pentose) and, in some cases, their placement on the aglycones as well as the acyl substituents of the flavonoid glycoconjugates was achieved in experiments, in which collision-induced dissociation was applied. Flavonoid aglycones present in the studied O-glycoconjugates were unambiguously identified after the comparison of the pseudo-MS(3) spectra with the spectra registered for the standards. Isomers of flavonoid glycoconjugates, in which one or two sugar moieties were attached to 4'- or 7-hydroxyl groups or directly to the C-6 or C-8 of the aglycones, could be distinguished on the basis of the MS(2) spectra. However, the collision energy applied in the CID experiments had to be optimized for each group of the compounds and there were no universal settings that allowed the acquisition of structural information for all the compounds present in the sample. Information obtained from the flavonoid conjugate profiling was used for the chemotaxonomic comparison of the studied lupine species. A clear-cut discrimination of the Mediterranean and North American lupines was obtained as a result of this analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
de Jong, Femke; Hanley, Steven J.; Beale, Michael H.; Karp, Angela
2015-01-01
Willow is an important biomass crop for the bioenergy industry, and therefore optimal growth with minimal effects of biotic and abiotic stress is essential. The phenylpropanoid pathway is responsible for the biosynthesis of not only lignin but also of flavonoids, condensed tannins, benzenoids and phenolic glycosides which all have a role in protecting the plant against biotic and abiotic stress. All products of the phenylpropanoid pathway are important for the healthy growth of short rotation cropping species such as willow. However, the phenylpropanoid pathway in willow remains largely uncharacterised. In the current study we identified and characterised five willow phenylalanine ammonia-lyase (PAL) genes, which encode enzymes that catalyse the deamination of l-phenylalanine to form trans-cinnamic acid, the entry point into the phenylpropanoid pathway. Willow PAL1, PAL2, PAL3 and PAL4 genes were orthologous to the poplar genes. However no orthologue of PAL5 appears to be present in willow. Moreover, two tandemly repeated PAL2 orthologues were identified in a single contig. Willow PALs show similar sub-cellular localisation to the poplar genes. However, the enzyme kinetics and gene expression of the willow PAL genes differed slightly, with willow PAL2 being more widely expressed than its poplar orthologues implying a wider role for PALs in the production of flavonoids, condensed tannins, benzenoids, and phenolic glycosides, in willow. PMID:26070140
Huang, Xuan; Yao, Jingwen; Zhao, Yangyang; Xie, Dengfeng; Jiang, Xue; Xu, Ziqin
2016-01-01
Transformed hairy roots had been efficiently induced from the seedlings of Fagopyrum tataricum Gaertn. due to the infection of Agrobacterium rhizogenes. Hairy roots were able to display active elongation with high root branching in 1/2 MS medium without growth regulators. The stable introduction of rolB and aux1 genes of A. rhizogenes WT strain 15834 into F. tataricum plants was confirmed by PCR analysis. Besides, the absence of virD gene confirmed hairy root was bacteria-free. After six different media and different sources of concentration were tested, the culturing of TB7 hairy root line in 1/2 MS liquid medium supplemented with 30 g l-1 sucrose for 20 days resulted in a maximal biomass accumulation (13.5 g l-1 fresh weight, 1.78 g l-1 dry weight) and rutin content (0.85 mg g-1). The suspension culture of hairy roots led to a 45-fold biomass increase and a 4.11-fold rutin content increase in comparison with the suspension culture of non-transformed roots. The transformation frequency was enhanced through preculturing for 2 days followed by infection for 20 min. The UV-B stress treatment of hairy roots resulted in a striking increase of rutin and quercetin production. Furthermore, the hairy root lines of TB3, TB7, and TB28 were chosen to study the specific effects of UV-B on flavonoid accumulation and flavonoid biosynthetic gene expression by qRT-PCR. This study has demonstrated that the UV-B radiation was an effective elicitor that dramatically changed in the transcript abundance of ftpAL, FtCHI, FtCHS, FtF3H, and FtFLS-1 in F. tataricum hairy roots. PMID:26870075
Sun, Yi; Huang, He; Meng, Li; Hu, Ke; Dai, Si-Lan
2013-10-01
As the key enzyme in the biosynthesis of blue flower color pigments, flavonoid 3',5'-hydroxylase (F3'5'H) can catalyze the conversion of its major substrates, 2-S naringenin and dihydrokaempferol, into 3',4',5'-hydroxylated pentahydroxyflavanone and dihydromyricetin, respectively. Unlike other F3'5'Hs belonging to the CYP75A subfamily, Asteraceae-specific F3'5'Hs belong to the CYP75B subfamily. Furthermore, cineraria F3'5'H expressed in yeast exhibited not only F3'H (flavonoid 3'-hydroxylase) activity but also F3'5'H activity in vitro. In this study, Southern blotting showed that there was only one copy of a homolog of the F3'5'H gene PCFH in the Pericallis × hybrida genome. This gene could be detected by Northern blot in the primary developmental stages of ligulate florets of the purple- and blue-flowered cultivars, and its transcripts also accumulated in the leaves. Heterologous expression of PCFH could produce new delphinidin derivatives in the corollas of transgenic tobacco plants, increased the content of cyanidin derivatives and lead to the blue- and red-shifting of flower color in T₀ generation plants. These results indicate that cineraria F3'5'H exhibited both F3'5'H- and F3'H-activity in vivo. The types and contents of anthocyanins and flower color phenotypes of the T₁ generation were similar to those of T₀ generation plants. PCFH exhibited stable inheritance and normal functions between generations. This study supplies new evidence to understand Asteraceae-specific F3'5'Hs and provides important references for the further study of molecular breeding of blue-flowered chrysanthemums using the PCFH gene. © 2013 Scandinavian Plant Physiology Society.
Takahashi, Ryoji; Dubouzet, Joseph G; Matsumura, Hisakazu; Yasuda, Kentaro; Iwashina, Tsukasa
2010-07-28
Glycine soja is a wild relative of soybean that has purple flowers. No flower color variant of Glycine soja has been found in the natural habitat. B09121, an accession with light purple flowers, was discovered in southern Japan. Genetic analysis revealed that the gene responsible for the light purple flowers was allelic to the W1 locus encoding flavonoid 3'5'-hydroxylase (F3'5'H). The new allele was designated as w1-lp. The dominance relationship of the locus was W1 >w1-lp >w1. One F2 plant and four F3 plants with purple flowers were generated in the cross between B09121 and a Clark near-isogenic line with w1 allele. Flower petals of B09121 contained lower amounts of four major anthocyanins (malvidin 3,5-di-O-glucoside, petunidin 3,5-di-O-glucoside, delphinidin 3,5-di-O-glucoside and delphinidin 3-O-glucoside) common in purple flowers and contained small amounts of the 5'-unsubstituted versions of the above anthocyanins, peonidin 3,5-di-O-glucoside, cyanidin 3,5-di-O-glucoside and cyanidin 3-O-glucoside, suggesting that F3'5'H activity was reduced and flavonoid 3'-hydroxylase activity was increased. F3'5'H cDNAs were cloned from Clark and B09121 by RT-PCR. The cDNA of B09121 had a unique base substitution resulting in the substitution of valine with methionine at amino acid position 210. The base substitution was ascertained by dCAPS analysis. The polymorphism associated with the dCAPS markers co-segregated with flower color in the F2 population. F3 progeny test, and dCAPS and indel analyses suggested that the plants with purple flowers might be due to intragenic recombination and that the 65 bp insertion responsible for gene dysfunction might have been eliminated in such plants. B09121 may be the first example of a flower color variant found in nature. The light purple flower was controlled by a new allele of the W1 locus encoding F3'5'H. The flower petals contained unique anthocyanins not found in soybean and G. soja. B09121 may be a useful tool for studies of the structural and functional properties of F3'5'H genes as well as investigations on the role of flower color in relation to adaptation of G. soja to natural habitats.
Li, Yong; Lin, Qian; Pang, Tao; Shi, Junli
2015-07-01
Flavonoids are very important secondary metabolites for tobacco plants. They are also considered as important flavor precursors for cigarettes. A method of ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established for the simultaneous determination of 12 flavonoids in tobacco leaves. The developed method determined 10 more flavonoids compared to the traditional method. A solution of methanol-water-chloroform (5:2:2, v/v/v) was used to extract the flavonoids from tobacco leaves and remove the pigment. Instrument analysis using the UPLC-MS/MS was completed in 13 min. The method validation was performed, and the results showed that the linear correlation coefficients (r2) of all the 12 flavonoids were more than 0.99. The limits of detection and the limits of quantification were in the range of 0.3-100 μg/L and 1.2-400 μg/L, respectively. Intra-day and Inter-day reproducibilities were in the range of 3.5%-7.4% and 5.2%-11.4%, respectively. The recoveries were 81.2%-111.9%. The established method was successfully used to analyze the flavonoids of tobacco leaves of 11 varieties. Significant concentration differences of the flavonoids were found among the determined varieties. Furthermore, significant positive correlation among the flavonoids with similar chemical structures (aglycones and their related glycosides, glycosides with the same aglycone, and similar aglycones) was found using the acquired data.
Juvvadi, Praveen Rao; Seshime, Yasuyo; Kitamoto, Katsuhiko
2005-12-01
Fungal secondary metabolites constitute a wide variety of compounds which either play a vital role in agricultural, pharmaceutical and industrial contexts, or have devastating effects on agriculture, animal and human affairs by virtue of their toxigenicity. Owing to their beneficial and deleterious characteristics, these complex compounds and the genes responsible for their synthesis have been the subjects of extensive investigation by microbiologists and pharmacologists. A majority of the fungal secondary metabolic genes are classified as type I polyketide synthases (PKS) which are often clustered with other secondary metabolism related genes. In this review we discuss on the significance of our recent discovery of chalcone synthase (CHS) genes belonging to the type III PKS superfamily in an industrially important fungus, Aspergillus oryzae. CHS genes are known to play a vital role in the biosynthesis of flavonoids in plants. A comparative genome analyses revealed the unique character of A. oryzae with four CHS-like genes (csyA, csyB, csyC and csyD) amongst other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus) which contained none of the CHS-like genes. Some other fungi such as Neurospora crassa, Fusarium graminearum, Magnaporthe grisea, Podospora anserina and Phanerochaete chrysosporium also contained putative type III PKSs, with a phylogenic distinction from bacteria and plants. The enzymatically active nature of these newly discovered homologues is expected owing to the conservation in the catalytic residues across the different species of plants and fungi, and also by the fact that a majority of these genes (csyA, csyB and csyD) were expressed in A. oryzae. While this finding brings filamentous fungi closer to plants and bacteria which until recently were the only ones considered to possess the type III PKSs, the presence of putative genes encoding other principal enzymes involved in the phenylpropanoid and flavonoid biosynthesis (viz., phenylalanine ammonia-lyase, cinnamic acid hydroxylase and p-coumarate CoA ligase) in the A. oryzae genome undoubtedly prove the extent of its metabolic diversity. Since many of these genes have not been identified earlier, knowledge on their corresponding products or activities remain undeciphered. In future, it is anticipated that these enzymes may be reasonable targets for metabolic engineering in fungi to produce agriculturally and nutritionally important metabolites.
Chen, Li; Liu, Yushan; Liu, Hongdi; Kang, Limin; Geng, Jinman; Gai, Yuzhuo; Ding, Yunlong; Sun, Haiyue; Li, Yadong
2015-01-01
Multidrug and toxic compound extrusion (MATE) proteins are the most recently identified family of multidrug transporters. In plants, this family is remarkably large compared to the human and bacteria counterpart, highlighting the importance of MATE proteins in this kingdom. Here 33 Unigenes annotated as MATE transporters were found in the blueberry fruit transcriptome, of which eight full-length cDNA sequences were identified and cloned. These proteins are composed of 477-517 residues, with molecular masses ~54 kDa, and theoretical isoelectric points from 5.35 to 8.41. Bioinformatics analysis predicted 10-12 putative transmembrane segments for VcMATEs, and localization to the plasma membrane without an N-terminal signal peptide. All blueberry MATE proteins shared 32.1-84.4% identity, among which VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8, and VcMATE9 were more similar to the MATE-type flavonoid transporters. Phylogenetic analysis showed VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8 and VcMATE9 clustered with MATE-type flavonoid transporters, indicating that they might be involved in flavonoid transport. VcMATE1 and VcMATE4 may be involved in the transport of secondary metabolites, the detoxification of xenobiotics, or the export of toxic cations. Real-time quantitative PCR demonstrated that the expression profile of the eight VcMATE genes varied spatially and temporally. Analysis of expression and anthocyanin accumulation indicated that there were some correlation between the expression profile and the accumulation of anthocyanins. These results showed VcMATEs might be involved in diverse physiological functions, and anthocyanins across the membranes might be mutually maintained by MATE-type flavonoid transporters and other mechanisms. This study will enrich the MATE-based transport mechanisms of secondary metabolite, and provide a new biotechonology strategy to develop better nutritional blueberry cultivars.
Chen, Li; Liu, Yushan; Liu, Hongdi; Kang, Limin; Geng, Jinman; Gai, Yuzhuo; Ding, Yunlong; Sun, Haiyue; Li, Yadong
2015-01-01
Multidrug and toxic compound extrusion (MATE) proteins are the most recently identified family of multidrug transporters. In plants, this family is remarkably large compared to the human and bacteria counterpart, highlighting the importance of MATE proteins in this kingdom. Here 33 Unigenes annotated as MATE transporters were found in the blueberry fruit transcriptome, of which eight full-length cDNA sequences were identified and cloned. These proteins are composed of 477–517 residues, with molecular masses ~54 kDa, and theoretical isoelectric points from 5.35 to 8.41. Bioinformatics analysis predicted 10–12 putative transmembrane segments for VcMATEs, and localization to the plasma membrane without an N-terminal signal peptide. All blueberry MATE proteins shared 32.1–84.4% identity, among which VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8, and VcMATE9 were more similar to the MATE-type flavonoid transporters. Phylogenetic analysis showed VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8 and VcMATE9 clustered with MATE-type flavonoid transporters, indicating that they might be involved in flavonoid transport. VcMATE1 and VcMATE4 may be involved in the transport of secondary metabolites, the detoxification of xenobiotics, or the export of toxic cations. Real-time quantitative PCR demonstrated that the expression profile of the eight VcMATE genes varied spatially and temporally. Analysis of expression and anthocyanin accumulation indicated that there were some correlation between the expression profile and the accumulation of anthocyanins. These results showed VcMATEs might be involved in diverse physiological functions, and anthocyanins across the membranes might be mutually maintained by MATE-type flavonoid transporters and other mechanisms. This study will enrich the MATE-based transport mechanisms of secondary metabolite, and provide a new biotechonology strategy to develop better nutritional blueberry cultivars. PMID:25781331
Wani, Tareq A.; Pandith, Shahzad A.; Gupta, Ajai P.; Chandra, Suresh; Sharma, Namrata
2017-01-01
Chalcone synthase constitutes a functionally diverse gene family producing wide range of flavonoids by catalyzing the initial step of the phenylpropanoid pathway. There is a pivotal role of flavonoids in pollen function as they are imperative for pollen maturation and pollen tube growth during sexual reproduction in flowering plants. Here we focused on medicinally important fruit-bearing shrub Grewia asiatica. It is a rich repository of flavonoids. The fruits are highly acclaimed for various putative health benefits. Despite its importance, full commercial exploitation is hampered due to two drawbacks which include short shelf life of its fruits and larger seed volume. To circumvent these constraints, seed abortion is one of the viable options. Molecular interventions tested in a number of economic crops have been to impair male reproductive function by disrupting the chalcone synthase (CHS) gene activity. Against this backdrop the aim of the present study included cloning and characterization of two full-length cDNA clones of GaCHS isoforms from the CHS multigene family. These included GaCHS1 (NCBI acc. KX129910) and GaCHS2 (NCBI acc. KX129911) with an ORF of 1176 and 1170 bp, respectively. GaCHSs were heterologously expressed and purified in E. coli to validate their functionality. Functionality of CHS isoforms was also characterized via enzyme kinetic studies using five different substrates. We observed differential substrate specificities in terms of their Km and Vmax values. Accumulation of flavonoid constituents naringenin and quercetin were also quantified and their relative concentrations corroborated well with the expression levels of GaCHSs. Further, our results demonstrate that GaCHS isoforms show differential expression patterns at different reproductive phenological stages. Transcript levels of GaCHS2 were more than its isoform GaCHS1 at the anthesis stage of flower development pointing towards its probable role in male reproductive maturity. PMID:28662128
Xu, Dongbin; Yuan, Huwei; Tong, Yafei; Zhao, Liang; Qiu, Lingling; Guo, Wenbin; Shen, Chenjia; Liu, Hongjia; Yan, Daoliang; Zheng, Bingsong
2017-01-01
Hickory (Carya cathayensis), a tree with high nutritional and economic value, is widely cultivated in China. Grafting greatly reduces the juvenile phase length and makes the large scale cultivation of hickory possible. To reveal the response mechanisms of this species to grafting, we employed a proteomics-based approach to identify differentially expressed proteins in the graft unions during the grafting process. Our study identified 3723 proteins, of which 2518 were quantified. A total of 710 differentially expressed proteins (DEPs) were quantified and these were involved in various molecular functional and biological processes. Among these DEPs, 341 were up-regulated and 369 were down-regulated at 7 days after grafting compared with the control. Four auxin-related proteins were down-regulated, which was in agreement with the transcription levels of their encoding genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the ‘Flavonoid biosynthesis’ pathway and ‘starch and sucrose metabolism’ were both significantly up-regulated. Interestingly, five flavonoid biosynthesis-related proteins, a flavanone 3-hyfroxylase, a cinnamate 4-hydroxylase, a dihydroflavonol-4-reductase, a chalcone synthase, and a chalcone isomerase, were significantly up-regulated. Further experiments verified a significant increase in the total flavonoid contents in scions, which suggests that graft union formation may activate flavonoid biosynthesis to increase the content of a series of downstream secondary metabolites. This comprehensive analysis provides fundamental information on the candidate proteins and secondary metabolism pathways involved in the grafting process for hickory. PMID:28496455
Davis, Gina; Ananga, Anthony; Krastanova, Stoyanka; Sutton, Safira; Ochieng, Joel W.; Leong, Stephen
2012-01-01
Anthocyanins are antioxidants and are among the natural products synthesized via the flavonoid biosynthesis pathway. Anthocyanins have been recommended for dietary intake in the prevention of cardiovascular diseases, cancer, and age-related conditions such as Alzheimer's disease or dementia. With an increasingly aging population in many parts of the world, strategies for the commercial production of in vitro synchronized red cell cultures as natural antioxidants will be a significant contribution to human medicine. Red pigmented fruits such as grapes (Vitis sp.) are a major source of bioavailable anthocyanins and other polyphenols. Since the level of antioxidants varies among cultivars, this study is the first one that phytochemically and genetically characterizes native grape cultivars of North America to determine the optimal cultivar and berry cells for the production of anthocyanins as antioxidants. Using real-time PCR and bioinformatics approaches, we tested for the transcript expression of the chalcone synthase (CHS) gene, an enzyme involved in the flavonoid and anthocyanin biosynthesis pathway, in different parts of physiologically mature grape berries and in vitro synchronized red cells. A low level of expression was recorded in berry flesh, compared with an elevated expression in berry skins and in vitro synchronized red cells, suggesting increased production of flavonoids in skin and cell cultures. This preliminary study demonstrates the potential of functional genomics in natural products research as well as in systematic studies of North American native grapes, specifically in muscadine (Vitis rotundifolia). PMID:22364203
Dietary flavonoid aglycones and their glycosides: Which show better biological significance?
Xiao, Jianbo
2017-06-13
The dietary flavonoids, especially their glycosides, are the most vital phytochemicals in diets and are of great general interest due to their diverse bioactivity. The natural flavonoids almost all exist as their O-glycoside or C-glycoside forms in plants. In this review, we summarized the existing knowledge on the different biological benefits and pharmacokinetic behaviors between flavonoid aglycones and their glycosides. Due to various conclusions from different flavonoid types and health/disease conditions, it is very difficult to draw general or universally applicable comments regarding the impact of glycosylation on the biological benefits of flavonoids. It seems as though O-glycosylation generally reduces the bioactivity of these compounds - this has been observed for diverse properties including antioxidant activity, antidiabetes activity, anti-inflammation activity, antibacterial, antifungal activity, antitumor activity, anticoagulant activity, antiplatelet activity, antidegranulating activity, antitrypanosomal activity, influenza virus neuraminidase inhibition, aldehyde oxidase inhibition, immunomodulatory, and antitubercular activity. However, O-glycosylation can enhance certain types of biological benefits including anti-HIV activity, tyrosinase inhibition, antirotavirus activity, antistress activity, antiobesity activity, anticholinesterase potential, antiadipogenic activity, and antiallergic activity. However, there is a lack of data for most flavonoids, and their structures vary widely. There is also a profound lack of data on the impact of C-glycosylation on flavonoid biological benefits, although it has been demonstrated that in at least some cases C-glycosylation has positive effects on properties that may be useful in human healthcare such as antioxidant and antidiabetes activity. Furthermore, there is a lack of in vivo data that would make it possible to make broad generalizations concerning the influence of glycosylation on the benefits of flavonoids for human health. It is possible that the effects of glycosylation on flavonoid bioactivity in vitro may differ from that seen in vivo. With in vivo (oral) treatment, flavonoid glycosides showed similar or even higher antidiabetes, anti-inflammatory, antidegranulating, antistress, and antiallergic activity than their flavonoid aglycones. Flavonoid glycosides keep higher plasma levels and have a longer mean residence time than those of aglycones. We should pay more attention to in vivo benefits of flavonoid glycosides, especially C-glycosides.
Luteolin, a flavonoid, inhibits AP-1 activation by basophils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke
Flavonoids including luteolin, apigenin, and fisetin are inhibitors of IL-4 synthesis and CD40 ligand expression by basophils. This study was done to search for compounds with greater inhibitory activity of IL-4 expression and to clarify the molecular mechanisms through which flavonoids inhibit their expression. Of the 37 flavonoids and related compounds examined, ayanin, luteolin, and apigenin were the strongest inhibitors of IL-4 production by purified basophils in response to anti-IgE antibody plus IL-3. Luteolin did not suppress Syk or Lyn phosphorylation in basophils, nor did suppress p54/46 SAPK/JNK, p38 MAPK, and p44/42 MAPK activation by a basophilic cell line, KU812more » cells, stimulated with A23187 and PMA. However, luteolin did inhibit phosphorylation of c-Jun and DNA binding activity of AP-1 in nuclear lysates from stimulated KU812 cells. These results provide a fundamental structure of flavonoids for IL-4 inhibition and demonstrate a novel action of flavonoids that suppresses the activation of AP-1.« less
NASA Astrophysics Data System (ADS)
Piantanida, Ivo; Mašić, Lozika; Rusak, Gordana
2009-04-01
Interactions of five flavonoids with dsRNA and single stranded ssRNA were studied by UV/vis titrations. The results obtained supported the intercalative binding mode as a dominant interaction of studied flavonoids with dsRNA as well as major interaction with ssRNA. Furthermore, changes of the UV/vis spectra of flavonoids induced by addition of poly G or poly C, respectively, are significantly stronger than changes induced by double stranded poly G-poly C, pointing to essential role of the free poly G or poly C sequence (not hydrogen bonded in double helix). Exclusively poly G caused significant batochromic shift of the UV/vis maxima of all studied flavonoids, whereby the intensity of batochromic shift is nicely correlated to the number of OH groups of flavonoid. Unlikely to poly G, addition of poly A and poly U induced measurable changes only in the UV/vis spectra of flavonoids characterised by no OH (galangin) or three OH groups (myricetin) on the phenyl part of the molecule. Consequently, flavonoids with one- or two-OH groups on the phenyl part of the molecule (luteolin, fisetin, kaempferol) specifically differentiate between poly A, poly U (negligible changes in the UV/Vis spectra) and poly G (strong changes in the UV/Vis spectra) as well as poly C (moderate changes in the UV/Vis spectra).
Sahihi, M; Ghayeb, Y
2014-08-01
Citrus flavonoids are natural compounds with important health benefits. The study of their interaction with a transport protein, such as bovine β-lactoglobulin (BLG), at the atomic level could be a valuable factor to control their transport to biological sites. In the present study, molecular docking and molecular dynamics simulation methods were used to investigate the interaction of hesperetin, naringenin, nobiletin and tangeretin as citrus flavonoids and BLG as transport protein. The molecular docking results revealed that these flavonoids bind in the internal cavity of BLG and the BLG affinity for binding the flavonoids follows naringenin>hesperetin>tangeretin>nobiletin. The docking results also indicated that the BLG-flavonoid complexes are stabilized through hydrophobic interactions, hydrogen bond interactions and π-π stacking interactions. The analysis of molecular dynamics (MD) simulation trajectories showed that the root mean square deviation (RMSD) of various systems reaches equilibrium and fluctuates around the mean value at various times. Time evolution of the radius of gyration, total solvent accessible surface of the protein and the second structure of protein showed as well that BLG and BLG-flavonoid complexes were stable around 2500ps, and there was not any conformational change as for BLG-flavonoid complexes. Further, the profiles of atomic fluctuations indicated the rigidity of the ligand binding site during the simulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Untergehrer, Monika; Bücherl, Daniel; Wittmann, Hans-Joachim; Strasser, Andrea; Heilmann, Jörg; Jürgenliemk, Guido
2015-08-01
Flavonoid glycosides are extensively metabolized to glucuronidated compounds after oral intake. Recently, a cleavage of quercetin glucuronides by β-glucuronidase has been found. To characterize the deglucuronidation reaction and its structural prerequisites among the flavonoid subtypes more precisely, four flavonol glucuronides with varying glucuronidation positions, five flavone 7-O-glucuronides with varying A- and B-ring substitution as well as one flavanone- and one isoflavone-7-O-glucuronide were analyzed in a human monocytic cell line. Investigation of the deglucuronidation rates by HPLC revealed a significant influence of the glucuronidation position on enzyme activity for flavonols. Across the flavonoid subtypes, the C-ring saturation also showed a significant influence on deglucuronidation, whereas A- and B-ring variations within the flavone-7-O-glucuronides did not affect the enzymes' activity. Results were compared to computational binding studies on human β-glucuronidase. Additionally, molecular modeling and dynamic studies were performed to obtain detailed insight into the binding and cleavage mode of the substrate at the active site of the human β-glucuronidase. Georg Thieme Verlag KG Stuttgart · New York.
Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes.
Nakatsuka, Takashi; Abe, Yoshiko; Kakizaki, Yuko; Yamamura, Saburo; Nishihara, Masahiro
2007-11-01
Orange- to red-colored flowers are difficult to produce by conventional breeding techniques in some floricultural plants. This is due to the deficiency in the formation of pelargonidin, which confers orange to red colors, in their flowers. Previous researchers have reported that brick-red colored flowers can be produced by introducing a foreign dihydroflavonol 4-reductase (DFR) with different substrate specificity in Petunia hybrida, which does not accumulate pelargonidin pigments naturally. However, because these experiments used dihydrokaempferol (DHK)-accumulated mutants as transformation hosts, this strategy cannot be applied directly to other floricultural plants. Thus in this study, we attempted to produce red-flowered plants by suppressing two endogenous genes and expressing one foreign gene using tobacco as a model plant. We used a chimeric RNAi construct for suppression of two genes (flavonol synthase [FLS] and flavonoid 3'-hydroxylase [F3'H]) and expression of the gerbera DFR gene in order to accumulate pelargonidin pigments in tobacco flowers. We successfully produced red-flowered tobacco plants containing high amounts of additional pelargonidin as confirmed by HPLC analysis. The flavonol content was reduced in the transgenic plants as expected, although complete inhibition was not achieved. Expression analysis also showed that reduction of the two-targeted genes and expression of the foreign gene occurred simultaneously. These results demonstrate that flower color modification can be achieved by multiple gene regulation without use of mutants if the vector constructs are designed resourcefully.
The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum.
Schnippenkoetter, Wendelin; Lo, Clive; Liu, Guoquan; Dibley, Katherine; Chan, Wai Lung; White, Jodie; Milne, Ricky; Zwart, Alexander; Kwong, Eunjung; Keller, Beat; Godwin, Ian; Krattinger, Simon G; Lagudah, Evans
2017-11-01
The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expressing the Lr34res ABC transporter. Transgenic sorghum lines that highly expressed the wheat Lr34res gene exhibited immunity to sorghum rust compared to the low-expressing single copy Lr34res genotype that conferred partial resistance. Pathogen-induced pigmentation mediated by flavonoid phytoalexins was evident on transgenic sorghum leaves following P. purpurea infection within 24-72 h, which paralleled Lr34res gene expression. Elevated expression of flavone synthase II, flavanone 4-reductase and dihydroflavonol reductase genes which control the biosynthesis of flavonoid phytoalexins characterized the highly expressing Lr34res transgenic lines 24-h post-inoculation with P. purpurea. Metabolite analysis of mesocotyls infected with C. sublineolum showed increased levels of 3-deoxyanthocyanidin metabolites were associated with Lr34res expression, concomitant with reduced symptoms of anthracnose. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Early phenylpropanoid biosynthetic steps in Cannabis sativa: link between genes and metabolites.
Docimo, Teresa; Consonni, Roberto; Coraggio, Immacolata; Mattana, Monica
2013-06-28
Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data.
Early Phenylpropanoid Biosynthetic Steps in Cannabis sativa: Link between Genes and Metabolites
Docimo, Teresa; Consonni, Roberto; Coraggio, Immacolata; Mattana, Monica
2013-01-01
Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data. PMID:23812081
Jeong, Yu-Jin; Choi, Yean-Jung; Kwon, Hyang-Mi; Kang, Sang-Wook; Park, Hyoung-Sook; Lee, Myungsook; Kang, Young-Hee
2005-05-01
High plasma level of cholesterol is a well-known risk factor for atherosclerotic diseases. Oxidized LDL induces cellular and nuclear damage that leads to apoptotic cell death. We tested the hypothesis that flavonoids may function as antioxidants with regard to LDL incubated with 5 microm-Cu(2+) alone or in combination with human umbilical vein endothelial cells (HUVEC). Cytotoxicity and formation of thiobarbituric acid-reactive substances induced by Cu(2+)-oxidized LDL were examined in the presence of various subtypes of flavonoid. Flavanols, flavonols and flavanones at a non-toxic dose of 50 microm markedly inhibited LDL oxidation by inhibiting the formation of peroxidative products. In contrast, the flavones luteolin and apigenin had no such effect, with >30 % of cells killed after exposure to 0.1 mg LDL/ml. Protective flavonoids, especially (-)-epigallocatechin gallate, quercetin, rutin and hesperetin, inhibited HUVEC nuclear condensation and fragmentation induced by Cu(2+)-oxidized LDL. In addition, immunochemical staining and Western blot analysis revealed that anti-apoptotic Bcl-2 expression was enhanced following treatment with these protective flavonoids. However, Bax expression and caspase-3 cleavage stimulated by 18 h incubation with oxidized LDL were reduced following treatment with these protective flavonoids. The down-regulation of Bcl-2 and up-regulation of caspase-3 activation were reversed by the cytoprotective flavonoids, (-)-epigallocatechin gallate, quercetin and hesperetin, at >/=10 microm. These results suggest that flavonoids may differentially prevent Cu(2+)-oxidized LDL-induced apoptosis and promote cell survival as potent antioxidants. Survival potentials of certain flavonoids against cytotoxic oxidized LDL appeared to stem from their disparate chemical structure. Furthermore, dietary flavonoids may have therapeutic potential for protecting the endothelium from oxidative stress and oxidized LDL-triggered atherogenesis.
2004-01-01
Flavonoids and other polyphenolic compounds have been shown to inhibit human topoisomerase IB (topo I) through both inhibition of relaxation activity and through stabilization of the cleavable complex (poisoning). Some flavonoids have also been shown to intercalate DNA, and an association of topoisomerase inhibition with intercalation has been noted. We surveyed 34 polyphenolic compounds, primarily flavonoid glycones and aglycones, for their ability to inhibit topo I and to intercalate DNA using an in vitro gel electrophoresis method. We show that the most potent topo I poisons are the flavones and flavonols, and that these generally, but not always, are found to be DNA intercalators. There was no clear correlation, however, of topo-I-poisoning activity with the degree of DNA unwinding. Surprisingly, both DNA intercalation and topo I poisoning were shown to occur with some flavone glycones, including the C-glycosylflavone orientin. Inhibition of relaxation activity by flavonoids was found to be difficult to quantify and was most likely to be due to non-specific inhibition through flavonoid aggregation. As part of a structure–activity analysis, we also investigated the acid–base chemistry of flavonoids and determined that many flavonoids show acid–base activity with a pKa in the physiological pH region. For this reason, subtle pH changes can have significant effects on solution activity of flavonoids and their concomitant biological activity. In addition, these effects may be complicated by pH-dependent aggregation and oxidative degradation. Finally, we develop a simple model for the intercalation of flavonoids into DNA and discuss possible consequences of intercalation and topoisomerase inhibition on a number of cellular processes. PMID:15312049
Cocoa and Chocolate in Human Health and Disease
Doughty, Kim; Ali, Ather
2011-01-01
Abstract Cocoa contains more phenolic antioxidants than most foods. Flavonoids, including catechin, epicatechin, and procyanidins predominate in antioxidant activity. The tricyclic structure of the flavonoids determines antioxidant effects that scavenge reactive oxygen species, chelate Fe2+ and Cu+, inhibit enzymes, and upregulate antioxidant defenses. The epicatechin content of cocoa is primarily responsible for its favorable impact on vascular endothelium via its effect on both acute and chronic upregulation of nitric oxide production. Other cardiovascular effects are mediated through anti-inflammatory effects of cocoa polyphenols, and modulated through the activity of NF-κB. Antioxidant effects of cocoa may directly influence insulin resistance and, in turn, reduce risk for diabetes. Further, cocoa consumption may stimulate changes in redox-sensitive signaling pathways involved in gene expression and the immune response. Cocoa can protect nerves from injury and inflammation, protect the skin from oxidative damage from UV radiation in topical preparations, and have beneficial effects on satiety, cognitive function, and mood. As cocoa is predominantly consumed as energy-dense chocolate, potential detrimental effects of overconsumption exist, including increased risk of weight gain. Overall, research to date suggests that the benefits of moderate cocoa or dark chocolate consumption likely outweigh the risks. Antioxid. Redox Signal. 15, 2779–2811. PMID:21470061
Recent advances in flower color variation and patterning of Japanese morning glory and petunia
Morita, Yasumasa; Hoshino, Atsushi
2018-01-01
The Japanese morning glory (Ipomoea nil) and petunia (Petunia hybrida), locally called “Asagao” and “Tsukubane-asagao”, respectively, are popular garden plants. They have been utilized as model plants for studying the genetic basis of floricultural traits, especially anthocyanin pigmentation in flower petals. In their long history of genetic studies, many mutations affecting flower pigmentation have been characterized, and both structural and regulatory genes for the anthocyanin biosynthesis pathway have been identified. In this review, we will summarize recent advances in the understanding of flower pigmentation in the two species with respect to flower hue and color patterning. Regarding flower hue, we will describe a novel enhancer of flavonoid production that controls the intensity of flower pigmentation, new aspects related to a flavonoid glucosyltransferase that has been known for a long time, and the regulatory mechanisms of vacuolar pH being a key determinant of red and blue coloration. On color patterning, we describe particular flower patterns regulated by epigenetic and RNA-silencing mechanisms. As high-quality whole genome sequences of the Japanese morning glory and petunia wild parents (P. axillaris and P. inflata, respectively) were published in 2016, further study on flower pigmentation will be accelerated. PMID:29681755
Cocoa and chocolate in human health and disease.
Katz, David L; Doughty, Kim; Ali, Ather
2011-11-15
Cocoa contains more phenolic antioxidants than most foods. Flavonoids, including catechin, epicatechin, and procyanidins predominate in antioxidant activity. The tricyclic structure of the flavonoids determines antioxidant effects that scavenge reactive oxygen species, chelate Fe2+ and Cu+, inhibit enzymes, and upregulate antioxidant defenses. The epicatechin content of cocoa is primarily responsible for its favorable impact on vascular endothelium via its effect on both acute and chronic upregulation of nitric oxide production. Other cardiovascular effects are mediated through anti-inflammatory effects of cocoa polyphenols, and modulated through the activity of NF-κB. Antioxidant effects of cocoa may directly influence insulin resistance and, in turn, reduce risk for diabetes. Further, cocoa consumption may stimulate changes in redox-sensitive signaling pathways involved in gene expression and the immune response. Cocoa can protect nerves from injury and inflammation, protect the skin from oxidative damage from UV radiation in topical preparations, and have beneficial effects on satiety, cognitive function, and mood. As cocoa is predominantly consumed as energy-dense chocolate, potential detrimental effects of overconsumption exist, including increased risk of weight gain. Overall, research to date suggests that the benefits of moderate cocoa or dark chocolate consumption likely outweigh the risks.
Transcriptional analysis of apple fruit proanthocyanidin biosynthesis.
Henry-Kirk, Rebecca A; McGhie, Tony K; Andre, Christelle M; Hellens, Roger P; Allan, Andrew C
2012-09-01
Proanthocyanidins (PAs) are products of the flavonoid pathway, which also leads to the production of anthocyanins and flavonols. Many flavonoids have antioxidant properties and may have beneficial effects for human health. PAs are found in the seeds and fruits of many plants. In apple fruit (Malus × domestica Borkh.), the flavonoid biosynthetic pathway is most active in the skin, with the flavan-3-ols, catechin, and epicatechin acting as the initiating units for the synthesis of PA polymers. This study examined the genes involved in the production of PAs in three apple cultivars: two heritage apple cultivars, Hetlina and Devonshire Quarrenden, and a commercial cultivar, Royal Gala. HPLC analysis shows that tree-ripe fruit from Hetlina and Devonshire Quarrenden had a higher phenolic content than Royal Gala. Epicatechin and catechin biosynthesis is under the control of the biosynthetic enzymes anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR1), respectively. Counter-intuitively, real-time quantitative PCR analysis showed that the expression levels of Royal Gala LAR1 and ANR were significantly higher than those of both Devonshire Quarrenden and Hetlina. This suggests that a compensatory feedback mechanism may be active, whereby low concentrations of PAs may induce higher expression of gene transcripts. Further investigation is required into the regulation of these key enzymes in apple.
El-Hela, Atef A; Al-Amier, Hussein A; Ibrahim, Taghreed A
2010-10-08
Verbena rigida L., Verbena tenera Spreng. and Verbena venosa L. were investigated for their flavonoid content. Analysis was carried out by high-performance liquid chromatography coupled to diode array UV detection (LC-UV), using different techniques, also using post-column addition of shift reagents, afforded precise structural information about the position of the free hydroxyl groups in the flavonoid nucleus. LC-MS using atmospheric pressure chemical ionization (APCI) in the positive mode provided the molecular weight, the number of hydroxyl groups, the number of sugars and an idea about the substitution pattern of the flavonoid. On-line UV and MS data demonstrated the presence of orientin, vitexin, isovitexin, luteolin, luteolin 7-O-glucoside, apigenin 7-O-glucoside in addition to luteolin, chryseriol and apigenin aglycones in the three Verbena species with different concentrations. Quantitative determination of flavonoid content revealed the presence of 69.84 mg/g dry sample, 88.26 mg/g dry sample and 85.82 mg/g dry sample total flavonoid compounds in V. rigida L., V. tenera Spreng. and V. venosa L., respectively. The method developed for identification is useful for further chromatographic fingerprinting of plant flavonoids. Copyright © 2010 Elsevier B.V. All rights reserved.
Chen, Jiajing; Zhang, Hongyan; Pang, Yibo; Cheng, Yunjiang; Deng, Xiuxin; Xu, Juan
2015-10-01
Four main flavanone glycosides (FGs) and four main polymethoxylated flavones (PMFs) were determined in fruits of 'Cara Cara' navel orange, 'Seike' navel orange, 'Anliu' and 'Honganliu' sweet orange (Citrus sinensis). No bitter neohesperidosides were detected in the FG profiles, indicating the functional inability of 1,2-rhamnosyltransferase, though relatively high transcription levels were detected in the fruit tissues of 'Anliu' and 'Honganliu' sweet oranges. Different to the FGs, the PMFs only exist abundantly in the peel and decreased gradually throughout fruit development of sweet oranges, suggesting the expression of methylation-related genes accounting for PMF biosynthesis have tissue-specificity. Significant changes in production of the eight flavonoids were found between red-flesh and blonde-flesh sweet oranges, indicating that lycopene accumulation might have direct or indirect effects on the modification of flavonoid biosynthesis in these citrus fruits. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, Scott, A; Tsai, Chung-jui; Lindroth, Richard, L
The project set out to use comparative (genotype and treatment) and transgenic approaches to investigate the determinants of condensed tannin (CT) accrual and chemical variability in Populus. CT type and amount are thought to effect the decomposition of plant detritus in the soil, and thereby the sequestering of carbon in the soil. The stated objectives were: 1. Genome-wide transcriptome profiling (microarrays) to analyze structural gene, transcription factor and metabolite control of CT partitioning; 2. Transcriptomic (microarray) and chemical analysis of ontogenetic effects on CT and PG partitioning; and 3. Transgenic manipulation of flavonoid biosynthetic pathway genes to modify the controlmore » of CT composition. Objective 1: A number of approaches for perturbing CT content and chemistry were tested in Objective 1, and those included nitrogen deficit, leaf wounding, drought, and salicylic acid spraying. Drought had little effect on CTs in the genotypes we used. Plants exhibited unpredictability in their response to salicylic acid spraying, leading us to abandon its use. Reduced plant nitrogen status and leaf wounding caused reproducible and magnitudinally striking increases in leaf CT content. Microarray submissions to NCBI from those experiments are the following: GSE ID 14515: Comparative transcriptomics analysis of Populus leaves under nitrogen limitation: clone 1979. Public on Jan 04, 2010; Contributor(s) Harding SA, Tsai C GSE ID 14893: Comparative transcriptomics analysis of Populus leaves under nitrogen limitation: clone 3200. Public on Feb 19, 2009; Contributor(s) Harding SA, Tsai C GSE ID 16783 Wound-induced gene expression changes in Populus: 1 week; clone RM5. Status Public on Dec 01, 2009; Contributor(s) Harding SA, Tsai C GSE ID 16785 Wound-induced gene expression changes in Populus: 90 hours; clone RM5 Status Public on Dec 01, 2009; Contributor(s) Harding SA, Tsai C Although CT amount changed in response to treatments, CT composition was essentially conserved. Overall phenylpropanoid composition exhibited changes due to large effects on phenolic glycosides containing a salicin moiety. There were no effects on lignin content. Efforts to publish this work continue, and depend on additional data which we are still collecting. This ongoing work is expected to strengthen our most provocative metabolic profiling data which suggests as yet unreported links controlling the balance between the two major leaf phenylpropanoid sinks, the CTs and the salicin-PGs. Objective 2: Ontogenic effects on leaf CT accrual and phenylpropanoid complexity (Objective 2) have been reported in the past and we contributed two manuscripts on how phenylpropanoid sinks in roots and stems could have an increasing effect on leaf CT as plants grow larger and plant proportions of stem, root and leaf change. Tsai C.-J., El Kayal W., Harding S.A. (2006) Populus, the new model system for investigating phenylpropanoid complexity. International Journal of Applied Science and Engineering 4: 221-233. We presented evidence that flavonoid precursors of CT rapidly decline in roots under conditions that favor CT accrual in leaves. Harding SA, Jarvie MM, Lindroth RL, Tsai C-J (2009) A comparative analysis of phenylpropanoid metabolism, N utilization and carbon partitioning in fast- and slow-growing Populus hybrid clones. Journal of Experimental Botany. 60:3443-3452. We presented evidence that nitrogen delivery to leaves as a fraction of nitrogen taken up by the roots is lower in high leaf CT genotypes. We presented a hypothesis from our data that N was sequestered in proportion to lignin content in stem tissues. Low leaf N content and high leaf CT in genotypes with high stem lignin was posited to be a systemic outcome of N demand in lignifiying stem tissues. Thereby, stem lignin and leaf CT accrual might be systemically linked, placing control of leaf phenylpropanoids under systemic rather than solely organ specific determinants. Analyses of total structural and non-structural carbohydrates contributed to the model presented. Harding SA, Xue L, Du L, Nyamdari B, Sykes R, Davis M, Lindroth RL, Tsai CJ (submitted March 2013) Condensed tannin biosynthesis in leaves conditions carbon use, defense and growth in Populus. (Invited submission to Tree Physiology) MS abstract: Condensed tannins (CT) are flavonoid end products that can comprise a large fraction of leaf, bark and root biomass in Populus species. CT accrual was investigated in relation to metabolic carbon and nitrogen use in young leaves and shoot tips (ST) where CT biosynthesis was most active. A slow-growing genotype (SG) and a fast-growing genotype (FG) were compared. Both genotypes exhibited the capacity to accrue similarly large reserves of salicortin a phenolic glycoside (PG), but the slow-growing line also produced CT. PG accrual was developmentally delayed in the slow-growing line, SG. Irrigation with low-N nutrients promoted PG accrual in FG plants, but PG accrual was suspended in CT-producing SG plants. In addition, the low C:N amide asparagine accumulated and glucose was depleted in ST and expanding leaves of SG plants. The monoamine phenylethylamine (PEA) was abundant in SG leaves and absent in FG leaves. Leaf metabolite and gene expression differences were observed between SG and FG that would be expected to impinge upon glycolysis, acetyl-CoA production and flavonoid production. A model that integrates PEA with those activities and CT accrual was developed. Briefly, the data support a model in which flavonoid biosynthesis depleted the acetyl-CoA pool, thereby promoting glycolytic and shikimic pathway fluxes in SG plants. PEA results from decarboxylation of the shikimic pathway end-product phenylalanine, and is proposed to have facilitated CT polymerization, thereby promoting the continued biosynthesis of flavonoid CT precursors in SG leaves. The leaf differentials described here were absent in young roots, as was PEA. The potential contribution of PEA to CT polymerization constituted a metabolic carbon drain in developing leaves that was not observed in the roots. We propose that PEA, in addition to other factors, including flavonoid pathway Myb transcription factors, is an important contributor to carbon management and plant defense in Populus. Objective 3: From work related to the first two objectives, it appeared that CT chemistry, at least in terms of the proportions of mono, di and tri hydroxylation at the phenylpropanoid-derived B-ring, changed little if at all when CT accrual per unit time was increased. A large number of transgenic Populus plants with alterations in the expression of flavonoid pathway genes and the potential to produce B-ring, chemically altered CT were generated during the project. Transgenic lines of Populus tremula Michx. Populus alba L. clone 717-1B4, a low CT producer, were produced that over- or under-express several mid and late flavonoid pathway genes including dihydroxyflavonol reductase (DFR-2 isoforms), leucoanthocyanidin reductase (LAR-3 isoforms), anthocyanidin reductase (ANR-2 isoforms), flavonol synthase (FLS-2 isoforms). A large number of additional transformation constructs (chalcone synthases, flavone synthases, and flavanol hydroxylases) were developed that failed to result in transgenic plants. We have purified CT from several of the successful lines and have obtained evidence from pyrolysis GC-MS that CT chemical composition was altered in transgenic lines harboring overexpression constructs for one of the two DFR isoforms. We have also observed increased CT levels in leaves of those lines, but the increases vary substantially in magnitude from experiment to experiment which has led to ongoing efforts to understand the variation before attempting to publish the findings. Preliminary results from some of the transgenic work were presented: An C*, Luo K, El Kayal W, Harding SA, Tsai C-J (2009) Transgenic manipulation of condensed tannins in Populus. IUFRO Tree Biotechnology Conference, Whistler, BC, Canada Work on the design of some of the constructs for the CT transgenics work has been published: Luo K, Harding SA, Tsai C-J (2008) A modified T-vector for simplified assembly of hairpin RNAi constructs. Biotechnology Letters 30: 1271-1274. DOE support from this project was also acknowledged in a book chapter: Douglas CJ, Ehlting J, Harding SA (2009) Phenylpropanoid and Phenolic Metabolism in Populus: Gene Family Structure and Comparative and Functional Genomics In Joshi, C.P., and S.P. DiFazio (eds). Genetics, Genomics and Breeding of Crop Plants: Poplar. Science Publishers, Enfield, New Hampshire. Pp. 304-326 Other work directly related to and supported in part by this project include: Qin H, Feng T, Harding SA, Tsai C-J, Zhang S (2008) An efficient method to identify differentially expressed genes in microarray experiments. Bioinformatics 24: 1583-1589. Tsai C-J, Ranjan P, DiFazio SP, Tuskan GA, Johnson V (2011) Poplar genome microarrays. In: Joshi CP, DiFazio SP and Kole C (eds), Genetics, Genomics and Breeding of Poplars. Science Publishers, Enfield, NH. pp. 112-127. Street N, Tsai C-J (2010) Populus resources and bioinformatics. In: Jansson S, Bhalerao R, and Groover AT (eds), Genetics and Genomics of Populus. Plant Genetics and Genomics: Crops and Models book series. Springer, New York, pp. 135-152.« less
Onions: a source of unique dietary flavonoids.
Slimestad, Rune; Fossen, Torgils; Vågen, Ingunn Molund
2007-12-12
Onion bulbs (Allium cepa L.) are among the richest sources of dietary flavonoids and contribute to a large extent to the overall intake of flavonoids. This review includes a compilation of the existing qualitative and quantitative information about flavonoids reported to occur in onion bulbs, including NMR spectroscopic evidence used for structural characterization. In addition, a summary is given to index onion cultivars according to their content of flavonoids measured as quercetin. Only compounds belonging to the flavonols, the anthocyanins, and the dihydroflavonols have been reported to occur in onion bulbs. Yellow onions contain 270-1187 mg of flavonols per kilogram of fresh weight (FW), whereas red onions contain 415-1917 mg of flavonols per kilogram of FW. Flavonols are the predominant pigments of onions. At least 25 different flavonols have been characterized, and quercetin derivatives are the most important ones in all onion cultivars. Their glycosyl moieties are almost exclusively glucose, which is mainly attached to the 4', 3, and/or 7-positions of the aglycones. Quercetin 4'-glucoside and quercetin 3,4'-diglucoside are in most cases reported as the main flavonols in recent literature. Analogous derivatives of kaempferol and isorhamnetin have been identified as minor pigments. Recent reports indicate that the outer dry layers of onion bulbs contain oligomeric structures of quercetin in addition to condensation products of quercetin and protocatechuic acid. The anthocyanins of red onions are mainly cyanidin glucosides acylated with malonic acid or nonacylated. Some of these pigments facilitate unique structural features like 4'-glycosylation and unusual substitution patterns of sugar moieties. Altogether at least 25 different anthocyanins have been reported from red onions, including two novel 5-carboxypyranocyanidin-derivatives. The quantitative content of anthocyanins in some red onion cultivars has been reported to be approximately 10% of the total flavonoid content or 39-240 mg kg (-1) FW. The dihydroflavonol taxifolin and its 3-, 7-, and 4'-glucosides have been identified in onions. Although the structural diversity of dihydroflavonols characterized from onions is restricted compared with the wide structural assortment of flavonols and anthocyanins identified, they may occur at high concentrations in some cultivars. From bulbs of the cultivar "Tropea", 5.9 mg of taxifolin 7-glucoside and 98.1 mg of taxifolin have been isolated per kilogram of FW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potapovich, Alla I.; Biology Department, Belarus State University, Skorina Prosp. 10, Minsk 220050; Lulli, Daniela
Molecular mechanisms underlying modulation of inflammatory responses in primary human keratinocytes by plant polyphenols (PPs), namely the glycosylated phenylpropanoid verbascoside, the stilbenoid resveratrol and its glycoside polydatin, and the flavonoid quercetin and its glycoside rutin were evaluated. As non-lethal stimuli, the prototypic ligand for epidermal growth factor receptor (EGFR) transforming growth factor alpha (TGFalpha), the combination of tumor necrosis factor (TNFalpha) and interferon (IFNgamma) (T/I), UVA + UVB irradiation, and bacterial lipopolysaccharide (LPS) were used. We demonstrated differential modulation of inflammatory responses in keratinocytes at signal transduction, gene transcription, and protein synthesis levels as a function of PP chemical structure,more » the pro-inflammatory trigger used, and PP interaction with intracellular detoxifying systems. The PPs remarkably inhibited constitutive, LPS- and T/I-induced but not TGFalpha-induced ERK phosphorylation. They also suppressed NFkappaB activation by LPS and T/I. Verbascoside and quercetin invariably impaired EGFR phosphorylation and UV-associated aryl hydrocarbon receptor (AhR)-mediated signaling, while rutin, polydatin and resveratrol did not affect EGFR phosphorylation and further activated AhR machinery in UV-exposed keratinocytes. In general, PPs down-regulated gene expression of pro-inflammatory cytokines/enzymes, except significant up-regulation of IL-8 observed under stimulation with TGFalpha. Both spontaneous and T/I-induced release of IL-8 and IP-10 was suppressed, although 50 {mu}M resveratrol and polydatin up-regulated IL-8. At this concentration, resveratrol activated both gene expression and de novo synthesis of IL-8 and AhR-mediated mechanisms were involved. We conclude that PPs differentially modulate the inflammatory response of human keratinocytes through distinct signal transduction pathways, including AhR and EGFR. - Graphical abstract: Display Omitted Highlights: > Effects of plant polyphenols on inflammatory responses in human keratinocytes. > Inflammatory stimuli used: TGFalpha, TNFalpha+IFNgamma, UVA+UVB, and LPS. > Inflammatory pathways connected with NFB, ERK1/2, EGFR, and AhR were investigated. > Plant polyphenols, flavonoids, stilbenoids, and phenylpropanoids, were studied. > Modulation of inflammation depends on phenolic core structure and glycosylation.« less
The R2R3MYB VvMYBPA1 from grape reprograms the phenylpropanoid pathway in tobacco flowers.
Passeri, Valentina; Martens, Stefan; Carvalho, Elisabete; Bianchet, Chantal; Damiani, Francesco; Paolocci, Francesco
2017-08-01
This work shows that, in tobacco, the ectopic expression of VvMYBPA1 , a grape regulator of proanthocyanidin biosynthesis, up- or down-regulates different branches of the phenylproanoid pathway, in a structure-specific fashion. Proanthocyanidins are flavonoids of paramount importance for animal and human diet. Research interest increasingly tilts towards generating crops enriched with these health-promoting compounds. Flavonoids synthesis is regulated by the MBW transcriptional complex, made of R2R3MYB, bHLH and WD40 proteins, with the MYB components liable for channeling the complex towards specific branches of the pathway. Hence, using tobacco as a model, here, we tested if the ectopic expression of the proanthocyanidin regulator VvMYBPA1 from grape induces the biosynthesis of these compounds in not-naturally committed cells. Here, we show, via targeted transcriptomic and metabolic analyses of primary transgenic lines and their progeny, that VvMYBPA1 alters the phenylpropanoid pathway in tobacco floral organs, in a structure-specific fashion. We also report that a modest VvMYBPA1 expression is sufficient to induce the expression of both proanthocyanidin-specific and early genes of the phenylpropanoid pathway. Consequently, proanthocyanidins and chlorogenic acids are induced or de novo synthetised in floral limbs, tubes and stamens. Other phenylpropanoid branches are conversely induced or depleted according to the floral structure. Our study documents a novel and distinct function of VvMYBPA1 with respect to other MYBs regulating proanthocyanidins. Present findings may have major implications in designing strategies for enriching crops with health-promoting compounds.
Jones, Robert S; Parker, Mark D; Morris, Marilyn E
2017-09-05
Monocarboxylate transporter 6 (MCT6; SLC16A5) has been recognized for its role as a xenobiotic transporter, with characterized substrates probenecid, bumetanide, and nateglinide. To date, the impact of commonly ingested dietary compounds on MCT6 function has not been investigated, and therefore, the objective of this study was to evaluate a variety of flavonoids for their potential MCT6-specific interactions. Flavonoids are a large group of polyphenolic phytochemicals found in commonly consumed plant-based products that have been recognized for their dietary health benefits. The uptake of bumetanide in human MCT6 gene-transfected Xenopus laevis oocytes was significantly decreased in the presence of a variety of flavonoids (e.g., quercetin, luteolin, phloretin, and morin), but was not significantly affected by flavonoid glycosides (e.g., naringin, rutin, phlorizin). The IC 50 values of quercetin, phloretin, and morin were determined to be 25.3 ± 3.36, 17.3 ± 2.37, and 33.1 ± 3.29 μM, respectively. The mechanism of inhibition of phloretin was reversible and competitive, with a K i value of 22.8 μM. Furthermore, typical MCT substrates were also investigated for their potential interactions with MCT6. Substrates of MCTs 1, 2, 4, 8, and 10 did not cause any significant decrease in MCT6-mediated bumetanide uptake, suggesting that MCT6 has distinct compound selectivity. In summary, these results suggest that dietary aglycon flavonoids may significantly alter the pharmacokinetics and pharmacodynamics of bumetanide and other MCT6-specific substrates, and may represent potential substrates for MCT6.
Pandey, Ramesh Prasad; Parajuli, Prakash; Koffas, Mattheos A G; Sohng, Jae Kyung
2016-01-01
In this review, we address recent advances made in pathway engineering, directed evolution, and systems/synthetic biology approaches employed in the production and modification of flavonoids from microbial cells. The review is divided into two major parts. In the first, various metabolic engineering and system/synthetic biology approaches used for production of flavonoids and derivatives are discussed broadly. All the manipulations/engineering accomplished on the microorganisms since 2000 are described in detail along with the biosynthetic pathway enzymes, their sources, structures of the compounds, and yield of each product. In the second part of the review, post-modifications of flavonoids by four major reactions, namely glycosylations, methylations, hydroxylations and prenylations using recombinant strains are described. Copyright © 2016 Elsevier Inc. All rights reserved.
Jannat, Susoma; Ali, Md Yousof; Kim, Hyeung-Rak; Jung, Hyun Ah; Choi, Jae Sue
2016-01-01
The aim of this study was to investigate the protective effects of juice powders from sweet orange [Citrus sinensis (L.) Osbeck], unshiu mikan (Citrus unshiu Marcow), and mini tomato (Solanum lycopersicum L.), and their major flavonoids, hesperidin, narirutin, and rutin in tert-butyl hydroperoxide (t-BHP)-induced oxidative stress in HepG2 cells. The increased reactive oxygen species and decreased glutathione levels observed in t-BHP-treated HepG2 cells were ameliorated by pretreatment with juice powders, indicating that the hepatoprotective effects of juice powders and their major flavonoids are mediated by induction of cellular defense against oxidative stress. Moreover, pretreatment with juice powders up-regulated phase-II genes such as heme oxygenase-1 (HO-1), thereby preventing cellular damage and the resultant increase in HO-1 expression. The high-performance liquid chromatography profiles of the juice powders confirmed that hesperidin, narirutin, and rutin were the key flavonoids present. Our results suggest that these fruit juice powders and their major flavonoids provide a significant cytoprotective effect against oxidative stress, which is most likely due to the flavonoid-related bioactive compounds present, leading to the normal redox status of cells. Therefore, these fruit juice powders could be advantageous as bioactive sources for the prevention of oxidative injury in hepatoma cells. PMID:27752497
Weng, Zi-Miao; Wang, Ping; Ge, Guang-Bo; Dai, Zi-Ru; Wu, Da-Chang; Zou, Li-Wei; Dou, Tong-Yi; Zhang, Tong-Yan; Yang, Ling; Hou, Jie
2017-11-01
Bacterial β-glucuronidases play key roles in the deconjugation of a variety of endogenous and drug glucuronides, thus have been recognized as important targets to modulate the enterohepatic circulation of various glucuronides. In this study, more than 30 natural flavonoids were collected and their inhibitory effects against E. coli β-glucuronidase (EcGUS) were assayed. The results demonstrated that some flavonoids including scutellarein, luteolin, baicalein, quercetin and scutellarin displayed strong to moderate inhibitory effects against EcGUS, with the IC 50 values ranging from 5.76 μM to 29.64 μM, while isoflavones and dihydroflavones displayed weak inhibitory effects against EcGUS. Further investigation on inhibition kinetics revealed that scutellarein and luteolin functioned as potent competitive inhibitors against EcGUS-mediated PNPG hydrolysis, with the K i values less than 3.0 μM. Molecular docking simulations demonstrated that scutellarein and luteolin could be well-docked into the catalytic site of EcGUS, while the binding areas of these two natural inhibitors on EcGUS were highly overlapped with that of PNPG on EcGUS. Additionally, the structure-inhibition relationships of natural flavonoids against EcGUS are also summarized, which will be very helpful for the medicinal chemists to design and develop more potent flavonoid-type inhibitors against EcGUS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of citrus flavonoids on HL-60 cell differentiation.
Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M
1999-01-01
Twenty-seven Citrus flavonoids were examined for their activity of induction of terminal differentiation of human promyelocytic leukemia cells (HL-60) by nitro blue tetrazolium (NBT) reducing, nonspecific esterase, specific esterase, and phagocytic activities. 10 flavonoids were judged to be active (percentage of NBT reducing cells was more than 40% at a concentration of 40 microM), and the rank order of potency was natsudaidain, luteolin, tangeretin, quercetin, apigenin, 3, 3, '4, '5, 6, 7, 8-heptamethoxyflavone, nobiletin, acacetin, eriodictyol, and taxifolin. These flavonoids exerted their activity in a dose-dependent manner. HL-60 cells treated with these flavonoids differentiated into mature monocyte/macrophage. The structure-activity relationship established from comparison between flavones and flavanones revealed that ortho-catechol moiety in ring B and C2-C3 double bond had an important role for induction of differentiation of HL-60. In polymethoxylated flavones, hydroxyl group at C3 and methoxyl group at C8 enhanced the differentiation-inducing activity.
NASA Astrophysics Data System (ADS)
Švecová, Marie; Ulbrich, Pavel; Dendisová, Marcela; Matějka, Pavel
2018-04-01
Spectroscopy of surface-enhanced Raman scattering (SERS) is nowadays widely used in the field of bio-science and medicine. These applications require new enhancing substrates with special properties. They should be non-toxic, environmentally friendly and (bio-) compatible with examined samples. Flavonoids are natural antioxidants with many positive effects on human health. Simultaneously, they can be used as reducing agent in preparation procedure of plasmonic enhancing substrate for SERS spectroscopy. The best amplifiers of Raman vibrational spectroscopic signal are generally silver nanoparticles (AgNPs). In this study, several flavonoids (forming a logical set) were used as reducing agent in AgNPs preparation procedures. Reactivity of 10 structurally arranged flavonoids (namely flavone, chrysin, apigenin, luteolin, tricetin, 3-hydroxyflavone, galangin, kaempferol, quercetin and myricetin) was compared and SERS-activity of prepared AgNPs was tested using model analyte riboflavin. Riboflavin was detected down to concentration 10-9 mol/l.
A comparative DFT study on the antioxidant activity of apigenin and scutellarein flavonoid compounds
NASA Astrophysics Data System (ADS)
Sadasivam, K.; Kumaresan, R.
2011-03-01
The potent antioxidant activity of flavonoids relevant to their ability to scavenge reactive oxygen species is the most important function of flavonoids. Density functional theory calculations were explored to investigate the antioxidant activity of flavonoid compounds such as apigenin and scutellarein. The biological characteristics are dependent on electronic parameters, describing the charge distribution on the rings of the flavonoid molecules. The computation of structural and various molecular descriptors such as polarizability, dipole moment, energy gap, homolytic O-H bond dissociation enthalpies (BDEs), ionization potential (IP), electron affinity, hardness, softness, electronegativity, electrophilic index and density plot of molecular orbital for neutral as well as radical species were carried out and studied. The B3LYP/6-311G(d,p) basis set was adopted for all the computations. This computation reveals that scutellarein exhibits higher degree of antioxidant activity than apigenin. Their dipole moment and polarizability analysis show that both the compounds are polar in nature and have the capacity to polarize other atoms.
USDA-ARS?s Scientific Manuscript database
Morus alba is an important plant for sericulture and has a high medicinal value. In this study, two flavonoids (kuwanons G and O) with antiparasitic activity were isolated from the root bark of M. alba by bioassay-guided fractionation. The chemical structures were determined by pectroscopic analys...
USDA-ARS?s Scientific Manuscript database
Five flavonoids, (2S,3S)-dihyrokaempferol 3-O-beta-D-glucoside (1) and its isomer (2R,3R)-dihydrokaempferol 3-O-'-D-glucoside (2) , isovitexin (3), velutin (4) and 5,4'-dihydroxy-7,3',5'-trimethoxyflavone (5), were isolated from acai (Euterpe oleracea Mart.) pulp. The structures of these compounds ...
Cao, Yunpeng; Han, Yahui; Li, Dahui; Lin, Yi; Cai, Yongping
2016-01-01
In plants, 4-coumarate:coenzyme A ligases (4CLs), comprising some of the adenylate-forming enzymes, are key enzymes involved in regulating lignin metabolism and the biosynthesis of flavonoids and other secondary metabolites. Although several 4CL-related proteins were shown to play roles in secondary metabolism, no comprehensive study on 4CL-related genes in the pear and other Rosaceae species has been reported. In this study, we identified 4CL-related genes in the apple, peach, yangmei, and pear genomes using DNATOOLS software and inferred their evolutionary relationships using phylogenetic analysis, collinearity analysis, conserved motif analysis, and structure analysis. A total of 149 4CL-related genes in four Rosaceous species (pear, apple, peach, and yangmei) were identified, with 30 members in the pear. We explored the functions of several 4CL and acyl-coenzyme A synthetase (ACS) genes during the development of pear fruit by quantitative real-time PCR (qRT-PCR). We found that duplication events had occurred in the 30 4CL-related genes in the pear. These duplicated 4CL-related genes are distributed unevenly across all pear chromosomes except chromosomes 4, 8, 11, and 12. The results of this study provide a basis for further investigation of both the functions and evolutionary history of 4CL-related genes. PMID:27775579
Cao, Yunpeng; Han, Yahui; Li, Dahui; Lin, Yi; Cai, Yongping
2016-10-19
In plants, 4-coumarate:coenzyme A ligases (4CLs), comprising some of the adenylate-forming enzymes, are key enzymes involved in regulating lignin metabolism and the biosynthesis of flavonoids and other secondary metabolites. Although several 4CL-related proteins were shown to play roles in secondary metabolism, no comprehensive study on 4CL-related genes in the pear and other Rosaceae species has been reported. In this study, we identified 4CL-related genes in the apple, peach, yangmei, and pear genomes using DNATOOLS software and inferred their evolutionary relationships using phylogenetic analysis, collinearity analysis, conserved motif analysis, and structure analysis. A total of 149 4CL-related genes in four Rosaceous species (pear, apple, peach, and yangmei) were identified, with 30 members in the pear. We explored the functions of several 4CL and acyl-coenzyme A synthetase (ACS) genes during the development of pear fruit by quantitative real-time PCR (qRT-PCR). We found that duplication events had occurred in the 30 4CL-related genes in the pear. These duplicated 4CL-related genes are distributed unevenly across all pear chromosomes except chromosomes 4, 8, 11, and 12. The results of this study provide a basis for further investigation of both the functions and evolutionary history of 4CL-related genes.
Flavonoids in horse chestnut (Aesculus hippocastanum) seeds and powdered waste water byproducts.
Kapusta, Ireneusz; Janda, Bogdan; Szajwaj, Barbara; Stochmal, Anna; Piacente, Sonia; Pizza, Cosimo; Franceschi, Federico; Franz, Chlodwig; Oleszek, Wieslaw
2007-10-17
Horse chestnut extracts are widely used in pharmacy and cosmetic industries. The main active constituents are saponins of oleane type, but seeds of horse chestnut also contain flavonoids, being glycosides of quercetin and kaempferol. Their contribution to the overall activity of the extracts was not clear. In the present work, the main flavonoids from horse chestnut seeds were isolated and their structures established with spectral methods. Seven glycosides were isolated, out of which six ( 2, 3, 4, 7, 11, 13) were previously reported and one ( 9) was identified as a new tamarixetin 3- O- [beta- d-glucopyranosyl(1-->3)]- O-beta- d-xylopyranosyl-(1-->2)- O-beta- d-glucopyranoside. The structures of three additional compounds 1, 10, and 12, not previously reported, were deduced on the basis of their LC-ESI/MS/MS fragmentation characteristics. A new ultraperformance liquid chromatographic (UPLC) method has been developed for profiling and quantitation of horse chestnut flavonoids. The method allowed good separation over 4.5 min. Thirteen compounds could be identified in the profile, out of which di- and triglycoisdes of quercetin and kaempferol were the dominant forms and their acylated forms occurred in just trace amounts. The total concentration of flavonoids in the powdered horse chestnut seed was 0.88% of dry matter. The alcohol extract contained 3.46%, and after purification on C18 solid phase, this concentration increased to 9.40% of dry matter. The flavonoid profile and their content were also measured in the horse chestnut wastewater obtained as byproduct in industrial processing of horse chestnut seeds. The total flavonoid concentration in the powder obtained after evaporation of water was 2.58%, while after purification on solid phase, this increased to 11.23% dry matter. It was concluded that flavonoids are present in a horse chestnut extract in a relatively high amount and have the potential to contribute to the overall activity of these extracts. Industrial horse chestnut wastewater can be used to obtain quercetine and kaempferol glycosides for cosmetic, nutraceutical, and food supplement industries.
USDA-ARS?s Scientific Manuscript database
Plant-released flavonoids induce the transcription of symbiotic genes in rhizobia and one of the first bacterial responses is the synthesis of so called Nod factors. They are responsible for the initial root hair curling during onset of root nodule development. This signal exchange is believed to be...
Effects of Flavonoids from Food and Dietary Supplements on Glial and Glioblastoma Multiforme Cells.
Vidak, Marko; Rozman, Damjana; Komel, Radovan
2015-10-23
Quercetin, catechins and proanthocyanidins are flavonoids that are prominently featured in foodstuffs and dietary supplements, and may possess anti-carcinogenic activity. Glioblastoma multiforme is the most dangerous form of glioma, a malignancy of the brain connective tissue. This review assesses molecular structures of these flavonoids, their importance as components of diet and dietary supplements, their bioavailability and ability to cross the blood-brain barrier, their reported beneficial health effects, and their effects on non-malignant glial as well as glioblastoma tumor cells. The reviewed flavonoids appear to protect glial cells via reduction of oxidative stress, while some also attenuate glutamate-induced excitotoxicity and reduce neuroinflammation. Most of the reviewed flavonoids inhibit proliferation of glioblastoma cells and induce their death. Moreover, some of them inhibit pro-oncogene signaling pathways and intensify the effect of conventional anti-cancer therapies. However, most of these anti-glioblastoma effects have only been observed in vitro or in animal models. Due to limited ability of the reviewed flavonoids to access the brain, their normal dietary intake is likely insufficient to produce significant anti-cancer effects in this organ, and supplementation is needed.
Xiao, Jianbo; Ni, Xiaoling; Kai, Guoyin; Chen, Xiaoqing
2015-01-01
The dietary polyphenols as aldose reductases inhibitors (ARIs) have attracted great interest among researchers. The aim of this review is to give an overview of the research reports on the structure-activity relationship of dietary polyphenols inhibiting aldose reductases (AR). The molecular structures influence the inhibition of the following: (1) The methylation and methoxylation of the hydroxyl group at C3, C3', and C4' of flavonoids decreased or little affected the inhibitory potency. However, the methylation and methoxylation of the hydroxyl group at C5, C6, and C8 significantly enhanced the inhibition. Moreover, the methylation and methoxylation of C7-OH influence the inhibitory activity depending on the substitutes on rings A and B of flavonoids. (2) The glycosylation on 3-OH of flavonoids significantly increased or little affected the inhibition. However, the glycosylation on 7-OH and 4'-OH of flavonoids significantly decreased the inhibition. (3) The hydroxylation on A-ring of flavones and isoflavones, especially at positions 5 and 7, significantly improved the inhibition and the hydroxylation on C3' and C4' of B-ring of flavonoids remarkably enhanced the inhibition; however, the hydroxylation on the ring C of flavones significantly weakened the inhibition. (4) The hydrogenation of the C2=C3 double bond of flavones reduced the inhibition. (5) The hydrogenation of α=β double bond of stilbenes hardly affected the inhibition and the hydroxylation on C3' of stilbenes decreased the inhibition. Moreover, the methylation of the hydroxyl group of stilbenes obviously reduced the activity. (6) The hydroxylation on C4 of chalcone significantly increased the inhibition and the methylation on C4 of chalcone remarkably weakened the inhibition.
Ahmed, Danish; Kumar, Vikas; Sharma, Manju; Verma, Amita
2014-05-13
Albizzia Lebbeck Benth. is traditionally important plant and is reported to possess a variety of pharmacological actions. The present research exertion was undertaken to isolate and characterized the flavonoids from the extract of stem bark of Albizzia Lebbeck Benth. and to evaluate the efficacy of the isolated flavonoids on in-vitro models of type-II diabetes. Furthermore, the results of in-vitro experimentation inveterate by the molecular docking studies of the isolated flavonoids on α-glucosidase and α-amylase enzymes. Isolation of the flavonoids from the methanolic extract of stem bark of A. Lebbeck Benth was executed by the Silica gel (Si) column chromatography to yield different fractions. These fractions were then subjected to purification to obtain three important flavonoids. The isolated flavonoids were then structurally elucidated with the assist of 1H-NMR, 13C-NMR, and Mass spectroscopy. In-vitro experimentation was performed with evaluation of α-glucosidase, α-amylase and DPPH inhibition capacity. Molecular docking study was performed with GLIDE docking software. Three flavonoids, (1) 5-deoxyflavone (geraldone), (2) luteolin and (3) Isookanin were isolated from the EtOAc fraction of the methanolic extract of Albizzia lebbeck Benth bark. (ALD). All the compounds revealed to inhibit the α-glucosidase and α-amylase enzymes in in-vitro investigation correlating to reduce the plasma glucose level. Molecular docking study radically corroborates the binding affinity and inhibition of α-glucosidase and α-amylase enzymes. The present research exertion demonstrates the anti-diabetic and antioxidant activity of the important isolated flavonoids with inhibition of α-glucosidase, α-amylase and DPPH which is further supported by molecular docking analysis.
2014-01-01
Background Albizzia Lebbeck Benth. is traditionally important plant and is reported to possess a variety of pharmacological actions. The present research exertion was undertaken to isolate and characterized the flavonoids from the extract of stem bark of Albizzia Lebbeck Benth. and to evaluate the efficacy of the isolated flavonoids on in-vitro models of type-II diabetes. Furthermore, the results of in-vitro experimentation inveterate by the molecular docking studies of the isolated flavonoids on α-glucosidase and α-amylase enzymes. Methods Isolation of the flavonoids from the methanolic extract of stem bark of A. Lebbeck Benth was executed by the Silica gel (Si) column chromatography to yield different fractions. These fractions were then subjected to purification to obtain three important flavonoids. The isolated flavonoids were then structurally elucidated with the assist of 1H-NMR, 13C-NMR, and Mass spectroscopy. In-vitro experimentation was performed with evaluation of α-glucosidase, α-amylase and DPPH inhibition capacity. Molecular docking study was performed with GLIDE docking software. Results Three flavonoids, (1) 5-deoxyflavone (geraldone), (2) luteolin and (3) Isookanin were isolated from the EtOAc fraction of the methanolic extract of Albizzia lebbeck Benth bark. (ALD). All the compounds revealed to inhibit the α-glucosidase and α-amylase enzymes in in-vitro investigation correlating to reduce the plasma glucose level. Molecular docking study radically corroborates the binding affinity and inhibition of α-glucosidase and α-amylase enzymes. Conclusion The present research exertion demonstrates the anti-diabetic and antioxidant activity of the important isolated flavonoids with inhibition of α-glucosidase, α-amylase and DPPH which is further supported by molecular docking analysis. PMID:24886138
The anti-cancer charm of flavonoids: a cup-of-tea will do!
Amin, Amr; Buratovich, Michael
2007-06-01
Hormone-dependent cancers of the breast, prostate and colon have, in the past decade, become the leading causes of morbidity and mortality. Billions of dollars have been, and still are being spent to study cancers like these, and, in the past three decades, thanks to work by thousands of dedicated scientists, tremendous advancements in the understanding and treatment of cancer have been made. Nevertheless, as there is no sure-fire cure for a variety of cancers to date, natural protection against cancer has been receiving a great deal of attention lately not only from cancer patients but, surprisingly, from physicians as well. Phytoestrogens, plant-derived secondary metabolites, are diphenolic substances with structural similarity to naturally-occurring human steroid hormones. Phytoestrogens are normally divided into three main classes: flavonoids, coumestans and lignans. Flavonoids are found in almost all plant families in the leaves, stems, roots, flowers and seeds of plants and are among the most popular anti-cancer candidates. Flavonoidic derivatives have a wide range of biological actions such as antibacterial, antiviral, anti-inflammatory, anticancer, and antiallergic activities. Some of these benefits are explained by the potent antioxidant effects of flavonoids, which include metal chelation and free-radical scavenging activities. Patent applications regarding flavonoids range from protocols for extraction and purification from natural resources and the establishment of various biological activities for these extracts to novel methods for the production and isolation of flavonoids with known biological activities. This review will bring the reader up to date on the current knowledge and research available in the field of flavonoids and hormone-dependent cancers, and many of the submitted patents that exploit flavonoids.
Xie, Haiyan; Wang, Jing-Rong; Yau, Lee-Fong; Liu, Yong; Liu, Liang; Han, Quan-Bin; Zhao, Zhongzhen; Jiang, Zhi-Hong
2014-04-10
The standard extract of Ginkgo biloba leaves (EGb761) is used clinically in Europe for the symptomatic treatment of impaired cerebral function in primary degenerative dementia syndromes, and the results of numerous in vivo and in vitro studies have supported such clinical use. The abnormal production and aggregation of amyloid β peptide (Aβ) and the deposition of fibrils in the brain are regarded as key steps in the onset of Alzheimer's Disease (AD), and the inhibition of Aβ aggregation and destabilization of the preformed fibrils represent viable approaches for the prevention and treatment of AD. Flavonoid glycosides and terpene trilactones (TTLs) are the two main components of EGb761 which represent 24 and 6% of the overall content, respectively. In our research, seven abundant flavonoid glycosides 1-7 were isolated from the extract of Ginkgo biloba leaves and characterized by spectroscopic analysis. Furthermore, an ultra-high performance liquid chromatography method was established for the simultaneous quantification of these seven flavonoids. The inhibitory activities of these flavonoids, as well as four TTLs, i.e., ginkgolides A, B, and C and bilobalide (compounds 8-11), were evaluated towards Aβ42 fibril formation using a thioflavin T fluorescence assay. It was found that three flavonoids 1, 3 and 4 exhibited moderate inhibitory activities, whereas the other four flavonoids 2, 5, 6 and 7, as well as the four terpene trilactones, showed poor activity. This is the first report of the inhibition of Aβ fibril formation of two characteristic acylated flavonoid glycosides 6, 7 in Ginkgo leaves, on the basis of which the structure-activity relationship of these flavonoids 1-7 was discussed.
Kongpichitchoke, Teeradate; Hsu, Jue-Liang; Huang, Tzou-Chi
2015-05-13
Although flavonoids have been reported for their benefits and nutraceutical potential use, the importance of their structure on their beneficial effects, especially on signal transduction mechanisms, has not been well clarified. In this study, three flavonoids, pinocembrin, naringenin, and eriodictyol, were chosen to determine the effect of hydroxyl groups on the B-ring of flavonoid structure on their antioxidant activity. In vitro assays, including DPPH scavenging activity, ROS quantification by flow cytometer, and proteins immunoblotting, and in silico analysis by molecular docking between the flavonoids and C1B domain of PKCδ phorbol ester binding site were both used to complete this study. Eriodictyol (10 μM), containing two hydroxyl groups on the B-ring, exhibited significantly higher (p < 0.05) antioxidant activity than pinocembrin and naringenin. The IC50 values of eriodictyol, naringenin, and pinocembrin were 17.4 ± 0.40, 30.2 ± 0.61, and 44.9 ± 0.57 μM, respectively. In addition, eriodictyol at 10 μM remarkably inhibited the phosphorylation of PKCδ at 63.4% compared with PMA-activated RAW264.7, whereas pinocembrin and naringenin performed inhibition activity at 76.8 and 72.6%, respectively. According to the molecular docking analysis, pinocembrin, naringenin, and eriodictyol showed -CDOCKER_energy values of 15.22, 16.95, and 21.49, respectively, reflecting that eriodictyol could bind with the binding site better than the other two flavonoids. Interestingly, eriodictyol had a remarkably different pose to bind with the kinase as a result of the two hydroxyl groups on its B-ring, which consequently contributed to greater antioxidant activity over pinocembrin and naringenin.
Deciphering the binding behavior of flavonoids to the cyclin dependent kinase 6/cyclin D complex.
Zhang, Jingxiao; Zhang, Lilei; Xu, Yangcheng; Jiang, Shanshan; Shao, Yueyue
2018-01-01
Flavonoids, a class of natural compounds with variable phenolic structures, have been found to possess anti-cancer activities by modulating different enzymes and receptors like CDK6. To understand the binding behavior of flavonoids that inhibit the active CDK6, molecular dynamics (MD) simulations were performed on six inhibitors, chrysin (M01), fisetin (M03), galangin (M04), genistein (M05), quercetin (M06) and kaempferol (M07), complexed with CDK6/cyclin D. For all six flavonoids, the 3'-OH and 4'-OH of B-ring were found to be favorable for hydrogen bond formation, but the 3-OH on the C-ring and 5-OH on the A-ring were unfavorable, which were confirmed by the MD simulation results of the test molecule, 3', 4', 7-trihydroxyflavone (M15). The binding efficiencies of flavonoids against the CDK6/cyclin D complex were mainly through the electrostatic (especially the H-bond force) and vdW interactions with residues ILE19, VAL27, ALA41, GLU61, PHE98, GLN103, ASP163 and LEU152. The order of binding affinities of these flavonoids toward the CDK6/cyclin D was M03 > M01 > M07 > M15 > M06 > M05 > M04. It is anticipated that the binding features of flavonoid inhibitors studied in the present work may provide valuable insights for the development of CDK6 inhibitors.
Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan
2016-01-01
The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124
De Keyser, Ellen; Desmet, Laurence; Van Bockstaele, Erik; De Riek, Jan
2013-06-24
Flower colour variation is one of the most crucial selection criteria in the breeding of a flowering pot plant, as is also the case for azalea (Rhododendron simsii hybrids). Flavonoid biosynthesis was studied intensively in several species. In azalea, flower colour can be described by means of a 3-gene model. However, this model does not clarify pink-coloration. The last decade gene expression studies have been implemented widely for studying flower colour. However, the methods used were often only semi-quantitative or quantification was not done according to the MIQE-guidelines. We aimed to develop an accurate protocol for RT-qPCR and to validate the protocol to study flower colour in an azalea mapping population. An accurate RT-qPCR protocol had to be established. RNA quality was evaluated in a combined approach by means of different techniques e.g. SPUD-assay and Experion-analysis. We demonstrated the importance of testing noRT-samples for all genes under study to detect contaminating DNA. In spite of the limited sequence information available, we prepared a set of 11 reference genes which was validated in flower petals; a combination of three reference genes was most optimal. Finally we also used plasmids for the construction of standard curves. This allowed us to calculate gene-specific PCR efficiencies for every gene to assure an accurate quantification. The validity of the protocol was demonstrated by means of the study of six genes of the flavonoid biosynthesis pathway. No correlations were found between flower colour and the individual expression profiles. However, the combination of early pathway genes (CHS, F3H, F3'H and FLS) is clearly related to co-pigmentation with flavonols. The late pathway genes DFR and ANS are to a minor extent involved in differentiating between coloured and white flowers. Concerning pink coloration, we could demonstrate that the lower intensity in this type of flowers is correlated to the expression of F3'H. Currently in plant research, validated and qualitative RT-qPCR protocols are still rare. The protocol in this study can be implemented on all plant species to assure accurate quantification of gene expression. We have been able to correlate flower colour to the combined regulation of structural genes, both in the early and late branch of the pathway. This allowed us to differentiate between flower colours in a broader genetic background as was done so far in flower colour studies. These data will now be used for eQTL mapping to comprehend even more the regulation of this pathway.
2013-01-01
Background Flower colour variation is one of the most crucial selection criteria in the breeding of a flowering pot plant, as is also the case for azalea (Rhododendron simsii hybrids). Flavonoid biosynthesis was studied intensively in several species. In azalea, flower colour can be described by means of a 3-gene model. However, this model does not clarify pink-coloration. The last decade gene expression studies have been implemented widely for studying flower colour. However, the methods used were often only semi-quantitative or quantification was not done according to the MIQE-guidelines. We aimed to develop an accurate protocol for RT-qPCR and to validate the protocol to study flower colour in an azalea mapping population. Results An accurate RT-qPCR protocol had to be established. RNA quality was evaluated in a combined approach by means of different techniques e.g. SPUD-assay and Experion-analysis. We demonstrated the importance of testing noRT-samples for all genes under study to detect contaminating DNA. In spite of the limited sequence information available, we prepared a set of 11 reference genes which was validated in flower petals; a combination of three reference genes was most optimal. Finally we also used plasmids for the construction of standard curves. This allowed us to calculate gene-specific PCR efficiencies for every gene to assure an accurate quantification. The validity of the protocol was demonstrated by means of the study of six genes of the flavonoid biosynthesis pathway. No correlations were found between flower colour and the individual expression profiles. However, the combination of early pathway genes (CHS, F3H, F3'H and FLS) is clearly related to co-pigmentation with flavonols. The late pathway genes DFR and ANS are to a minor extent involved in differentiating between coloured and white flowers. Concerning pink coloration, we could demonstrate that the lower intensity in this type of flowers is correlated to the expression of F3'H. Conclusions Currently in plant research, validated and qualitative RT-qPCR protocols are still rare. The protocol in this study can be implemented on all plant species to assure accurate quantification of gene expression. We have been able to correlate flower colour to the combined regulation of structural genes, both in the early and late branch of the pathway. This allowed us to differentiate between flower colours in a broader genetic background as was done so far in flower colour studies. These data will now be used for eQTL mapping to comprehend even more the regulation of this pathway. PMID:23800303
Xiang, Nan; Guo, Xinbo; Liu, Fengyuan; Li, Quan; Hu, Jianguang; Brennan, Charles Stephen
2017-06-10
Sweet corn is one of the most widely planted crops in China. Sprouting of grains is a new processes to increase the nutritional value of grain products. The present study explores the effects of light on the nutritional quality of sweet corn sprouts. Gene expression of phenolic biosynthesis, phytochemical profiles and antioxidant activity were studied. Two treatments (light and dark) were selected and the morphological structure of sweet corn sprouts, as well as their biochemical composition were investigated to determine the effects of light on the regulation of genes responsible for nutritional compounds. Transcription analyses for three key-encoding genes in the biosynthesis of the precursors of phenolic were studied. Results revealed a negative regulation in the expression of Zm PAL with total phenolic content (TPC) in the light group. TPC and total flavonoid content (TFC) increased during germination and this was correlated with an increase in antioxidant activity ( r = 0.95 and 1.0). The findings illustrate that the nutritional value of sweet corn for the consumer can be improved through germination to the euphylla stage.
[Study on flavonoids from stem bark of Pongamia pinnata].
Yin, Hao; Zhang, Si; Wu, Jun
2004-07-01
Seven flavonoids, pongaflavone (1), karanjin (2), pongapin (3), pongachromene (4), 3,7-Dimethoxy-3', 4'-methylenedioxyflavone (5), millettocalyxin C( 6), 3,3',4', 7-tetramethoxyflavone (7), were isolated from 50% EtOH syrup of the bark of Pongamia pinnata and structureal elucidated on the base of spectral data. Compound 6 was isolated for first time from the plant of the genus Pongamia.
Effect of structurally related flavonoids from Zuccagnia punctata Cav. on Caenorhabditis elegans.
D'Almeida, Romina E; Alberto, María R; Morgan, Phillip; Sedensky, Margaret; Isla, María I
2014-03-01
Zuccagnia punctata Cav. (Fabaceae), commonly called jarilla macho or pus-pus, is being used in traditional medicine as an antiseptic, anti-inflammatory and to relieve muscle and bone pain. The aim of this work was to study the anthelmintic effects of three structurally related flavonoids present in aerial parts of Z. punctata Cav. The biological activity of the flavonoids 7-hydroxyflavanone (HF), 3,7-dihydroxyflavone (DHF) and 2´,4´-dihydroxychalcone (DHC) was examined in the free-living nematode Caenorhabditis elegans. Our results showed that among the assayed flavonoids, only DHC showed an anthelmintic effect and alteration of egg hatching and larval development processes in C. elegans. DHC was able to kill 50% of adult nematodes at a concentration of 17 μg/mL. The effect on larval development was observed after 48 h in the presence of 25 and 50 μg/mL DHC, where 33.4 and 73.4% of nematodes remained in the L3 stage or younger. New therapeutic drugs with good efficacy against drug-resistant nematodes are urgently needed. Therefore, DHC, a natural compound present in Z. punctata, is proposed as a potential anthelmintic drug.
Savoi, Stefania; Wong, Darren C J; Degu, Asfaw; Herrera, Jose C; Bucchetti, Barbara; Peterlunger, Enrico; Fait, Aaron; Mattivi, Fulvio; Castellarin, Simone D
2017-01-01
Grapes are one of the major fruit crops and they are cultivated in many dry environments. This study comprehensively characterizes the metabolic response of grape berries exposed to water deficit at different developmental stages. Increases of proline, branched-chain amino acids, phenylpropanoids, anthocyanins, and free volatile organic compounds have been previously observed in grape berries exposed to water deficit. Integrating RNA-sequencing analysis of the transcriptome with large-scale analysis of central and specialized metabolites, we reveal that these increases occur via a coordinated regulation of key structural pathway genes. Water deficit-induced up-regulation of flavonoid genes is also coordinated with the down-regulation of many stilbene synthases and a consistent decrease in stilbenoid concentration. Water deficit activated both ABA-dependent and ABA-independent signal transduction pathways by modulating the expression of several transcription factors. Gene-gene and gene-metabolite network analyses showed that water deficit-responsive transcription factors such as bZIPs, AP2/ERFs, MYBs, and NACs are implicated in the regulation of stress-responsive metabolites. Enrichment of known and novel cis -regulatory elements in the promoters of several ripening-specific/water deficit-induced modules further affirms the involvement of a transcription factor cross-talk in the berry response to water deficit. Together, our integrated approaches show that water deficit-regulated gene modules are strongly linked to key fruit-quality metabolites and multiple signal transduction pathways may be critical to achieve a balance between the regulation of the stress-response and the berry ripening program. This study constitutes an invaluable resource for future discoveries and comparative studies, in grapes and other fruits, centered on reproductive tissue metabolism under abiotic stress.
Lv, Haiyan; Luo, Ming; Zeng, Shaohua; Pattanaik, Sitakanta; Yuan, Ling; Wang, Ying
2013-01-01
Herba epimedii (Epimedium), a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. The bioactive components in herba epimedii are mainly prenylated flavonol glycosides, end-products of the flavonoid pathway. Epimedium species are also used as garden plants due to the colorful flowers and leaves. Many R2R3-MYB transcription factors (TFs) have been identified to regulate the flavonoid and anthocyanin biosynthetic pathways. However, little is known about the R2R3-MYB TFs involved in regulation of the flavonoid pathway in Epimedium. Here, we reported the isolation and functional characterization of the first R2R3-MYB TF (EsMYBA1) from Epimedium sagittatum (Sieb. Et Zucc.) Maxim. Conserved domains and phylogenetic analysis showed that EsMYBA1 belonged to the subgroup 6 clade (anthocyanin-related MYB clade) of R2R3-MYB family, which includes Arabidopsis AtPAP1, apple MdMYB10 and legume MtLAP1. EsMYBA1 was preferentially expressed in leaves, especially in red leaves that contain higher content of anthocyanin. Alternative splicing of EsMYBA1 resulted in three transcripts and two of them encoded a MYB-related protein. Yeast two-hybrid and transient luciferase expression assay showed that EsMYBA1 can interact with several bHLH regulators of the flavonoid pathway and activate the promoters of dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS). In both transgenic tobacco and Arabidopsis, overexpression of EsMYBA1 induced strong anthocyanin accumulation in reproductive and/or vegetative tissues via up-regulation of the main flavonoid-related genes. Furthermore, transient expression of EsMYBA1 in E. sagittatum leaves by Agrobacterium infiltration also induced anthocyanin accumulation in the wounded area. This first functional characterization of R2R3-MYB TFs in Epimedium species will promote further studies of the flavonoid biosynthesis and regulation in medicinal plants. PMID:23936468
Dietary PUFA and flavonoids as deterrents for environmental pollutants.
Watkins, Bruce A; Hannon, Kevin; Ferruzzi, Mario; Li, Yong
2007-03-01
Various nutrients and plant-derived phytochemicals are associated with a reduced risk of many diet-related chronic diseases including cardiovascular disease, cancer, diabetes, arthritis and osteoporosis. A common theme that links many chronic diseases is uncontrolled inflammation. The long-chain (LC) omega-3 polyunsaturated fatty acids (PUFA) and flavonoids are known to possess anti-inflammatory actions in cell cultures, animal models and humans. Minimizing the condition of persistent inflammation has been a primary aim for drug development, but understanding how food components attenuate this process is at the nexus for improving the human condition. The prevalence of environmental toxins such as heavy metals and organics that contribute to diminished levels of antioxidants likely aggravates inflammatory states when intakes of omega-3 PUFA and flavonoids are marginal. Scientists at Purdue University have formed a collaboration to better understand the metabolism and physiology of flavonoids. This new effort is focused on determining how candidate flavonoids and their metabolites affect gene targets of inflammation in cell culture and animal models. The challenge of this research is to understand how LC omega-3 PUFA and flavonoids affect the biology of inflammation. The goal is to determine how nutrients and phytochemicals attenuate chronic inflammation associated with a number of diet-related diseases that occur throughout the life cycle. The experimental approach involves molecular, biochemical and physiological endpoints of aging, cancer, obesity and musculoskeletal diseases. Examples include investigations on the combined effects of PUFA and cyanidins on inflammatory markers in cultures of human cancer cells. The actions of catechins and PUFA on muscle loss and osteopenia are being studied in a rodent model of disuse atrophy to explain how muscle and bone communicate to prevent tissue loss associated with injury, disease and aging. The purpose of this review is to introduce the concept for studying food components that influence inflammation and how LC omega-3 PUFA and flavonoids could be used therapeutically against inflammation that is mediated by environmental pollutants.
The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis
Schwinn, Kathy E.; Ngo, Hanh; Kenel, Fernand; Brummell, David A.; Albert, Nick W.; McCallum, John A.; Pither-Joyce, Meeghan; Crowhurst, Ross N.; Eady, Colin; Davies, Kevin M.
2016-01-01
Bulb color is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species. PMID:28018399
The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis.
Schwinn, Kathy E; Ngo, Hanh; Kenel, Fernand; Brummell, David A; Albert, Nick W; McCallum, John A; Pither-Joyce, Meeghan; Crowhurst, Ross N; Eady, Colin; Davies, Kevin M
2016-01-01
Bulb color is an important consumer trait for onion ( Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic ( Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum maju s of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species.
Chalcone synthase genes from milk thistle (Silybum marianum): isolation and expression analysis.
Sanjari, Sepideh; Shobbar, Zahra Sadat; Ebrahimi, Mohsen; Hasanloo, Tahereh; Sadat-Noori, Seyed-Ahmad; Tirnaz, Soodeh
2015-12-01
Silymarin is a flavonoid compound derived from milk thistle (Silybum marianum) seeds which has several pharmacological applications. Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoids; thereby, the identification of CHS encoding genes in milk thistle plant can be of great importance. In the current research, fragments of CHS genes were amplified using degenerate primers based on the conserved parts of Asteraceae CHS genes, and then cloned and sequenced. Analysis of the resultant nucleotide and deduced amino acid sequences led to the identification of two different members of CHS gene family,SmCHS1 and SmCHS2. Third member, full-length cDNA (SmCHS3) was isolated by rapid amplification of cDNA ends (RACE), whose open reading frame contained 1239 bp including exon 1 (190 bp) and exon 2 (1049 bp), encoding 63 and 349 amino acids, respectively. In silico analysis of SmCHS3 sequence contains all the conserved CHS sites and shares high homology with CHS proteins from other plants.Real-time PCR analysis indicated that SmCHS1 and SmCHS3 had the highest transcript level in petals in the early flowering stage and in the stem of five upper leaves, followed by five upper leaves in the mid-flowering stage which are most probably involved in anthocyanin and silymarin biosynthesis.
Influence of Flavonoids on Mechanism of Modulation of Insulin Secretion.
Soares, Juliana Mikaelly Dias; Pereira Leal, Ana Ediléia Barbosa; Silva, Juliane Cabral; Almeida, Jackson R G S; de Oliveira, Helinando Pequeno
2017-01-01
The development of alternatives for insulin secretion control in vivo or in vitro represents an important aspect to be investigated. In this direction, natural products have been progressively explored with this aim. In particular, flavonoids are potential candidates to act as insulin secretagogue. To study the influence of flavonoid on overall modulation mechanisms of insulin secretion. The research was conducted in the following databases and platforms: PubMed, Scopus, ISI Web of Knowledge, SciELO, LILACS, and ScienceDirect, and the MeSH terms used for the search were flavonoids, flavones, islets of Langerhans, and insulin-secreting cells. Twelve articles were included and represent the basis of discussion on mechanisms of insulin secretion of flavonoids. Papers in ISI Web of Knowledge were in number of 1, Scopus 44, PubMed 264, ScienceDirect 511, and no papers from LILACS and SciELO databases. According to the literature, the majority of flavonoid subclasses can modulate insulin secretion through several pathways, in an indication that corresponding molecule is a potential candidate for active materials to be applied in the treatment of diabetes. The action of natural products on insulin secretion represents an important investigation topic due to their importance in the diabetes controlIn addition to their typical antioxidant properties, flavonoids contribute to the insulin secretionThe modulation of insulin secretion is induced by flavonoids according to different mechanisms. Abbreviations used: K ATP channels: ATP-sensitive K + channels, GLUT4: Glucose transporter 4, ERK1/2: Extracellular signal-regulated protein kinases 1 and 2, L-VDCCs: L-type voltage-dependent Ca +2 channels, GLUT1: Glucose transporter 1, AMPK: Adenosine monophosphate-activated protein kinase, PTP1B: Protein tyrosine phosphatase 1B, GLUT2: Glucose transporter 2, cAMP: Cyclic adenosine monophosphate, PKA: Protein kinase A, PTK: Protein tyrosine kinase, CaMK II: Ca 2+ /calmodulin-dependent protein kinase II, GSIS: Glucose-stimulated insulin secretion, Insig-1: Insulin-induced gene 1, IRS-2: Insulin receptor substrate 2, PDX-1: Pancreatic and duodenal homeobox 1, SREBP-1c: Sterol regulatory element binding protein-1c, DMC: Dihydroxy-6'-methoxy-3',5'-dimethylchalcone, GLP-1: Glucagon-like peptide-1, GLP-1R: Glucagon-like peptide 1 receptor.
Castellarin, Simone D; Matthews, Mark A; Di Gaspero, Gabriele; Gambetta, Gregory A
2007-12-01
Water deficits consistently promote higher concentrations of anthocyanins in red winegrapes and their wines. However, controversy remains as to whether there is any direct effect on berry metabolism other than inhibition of growth. Early (ED) and late (LD) season water deficits, applied before or after the onset of ripening (veraison), were imposed on field grown Vitis vinifera "Cabernet Sauvignon", and the responses of gene expression in the flavonoid pathway and their corresponding metabolites were determined. ED accelerated sugar accumulation and the onset of anthocyanin synthesis. Both ED and LD increased anthocyanin accumulation after veraison. Expression profiling revealed that the increased anthocyanin accumulation resulted from earlier and greater expression of the genes controlling flux through the anthocyanin biosynthetic pathway, including F3H, DFR, UFGT and GST. Increases in total anthocyanins resulted predominantly from an increase of 3'4'5'-hydroxylated forms through the differential regulation of F3'H and F3'5'H. There were limited effects on proanthocyanidin, other flavonols, and on expression of genes committed to their synthesis. These results demonstrate that manipulation of abiotic stress through applied water deficits not only modulates compositional changes during berry ripening, but also alters the timing of particular aspects of the ripening process.
Xu, Jianhua; Li, Miaomiao; Jiao, Peng; Tao, Hongxia; Wei, Ningning; Ma, Fengwang; Zhang, Junke
2015-01-01
Marssonina apple blotch, caused by the fungus Marssonina coronaria, is one of the most destructive apple diseases in China and East Asia. A better understanding of the plant's response to fungi during pathogenesis is urgently needed to improve plant resistance and to breed resistant cultivars. To address this, the transcriptomes of “Qinguan” (a cultivar with high resistance to M. coronaria) apple leaves were sequenced at 12, 24, 48, and 72 h post-inoculation (hpi) with Marssonina coronaria. The comparative results showed that a total of 1956 genes were differentially expressed between the inoculated and control samples at the 4 time points. Gene ontology (GO) term enrichment analysis of differentially expressed genes (DEGs) revealed changes in cellular component, secondary metabolism including chalcone isomerase activity, phytoalexin biosynthetic process, anthocyanin-containing compound biosynthetic process, lignin biosynthetic process, positive regulation of flavonoid biosynthetic process; and molecular functions or biological processes related to the defense response, biotic stimulus response, wounding response and fungus response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that DEGs were significantly enriched in flavonoid biosynthesis, vitamin B6 metabolism, phenylpropanoid biosynthesis, and the stilbenoid, diarylheptanoid and gingerol biosynthesis pathways. Furthermore, the importance of changes in cellular components and partial polyphenol compounds when encountering M. coronaria are discussed. PMID:26528306
Morkunas, Iwona; Woźniak, Agnieszka; Formela, Magda; Mai, Van Chung; Marczak, Łukasz; Narożna, Dorota; Borowiak-Sobkowiak, Beata; Kühn, Christina; Grimm, Bernhard
2016-07-01
The perception of aphid infestation induces highly coordinated and sequential defensive reactions in plants at the cellular and molecular levels. The aim of the study was to explore kinetics of induced antioxidative defence responses in leaf cells of Pisum sativum L.cv. Cysterski upon infestation of the pea aphid Acyrthosiphon pisum at varying population sizes, including accumulation of flavonoids, changes of carbon metabolism, and expression of nuclear genes involved in sugar transport. Within the first 96 h, after A. pisum infestation, flavonoid accumulation and increased peroxidase activity were observed in leaves. The level of pisatin increased after 48 h of infestation and reached a maximum at 96 h. At this time point, a higher concentration of flavonols was observed in the infested tissue than in the control. Additionally, strong post-infestation accumulation of chalcone synthase (CHS) and isoflavone synthase (IFS) transcription products was also found. The levels of sucrose and fructose in 24-h leaves infested by 10, 20, and 30 aphids were significantly lower than in the control. Moreover, in leaves infested by 30 aphids, the reduced sucrose level observed up to 48 h was accompanied by a considerable increase in the expression level of the PsSUT1 gene encoding the sucrose transporter. In conclusion, A. pisum infestation on pea leads to stimulation of metabolic pathways associated with defence.
Benavente-García, O; Castillo, J
2008-08-13
Significantly, much of the activity of Citrus flavonoids appears to impact blood and microvascular endothelial cells, and it is not surprising that the two main areas of research on the biological actions of Citrus flavonoids have been inflammation and cancer. Epidemiological and animal studies point to a possible protective effect of flavonoids against cardiovascular diseases and some types of cancer. Although flavonoids have been studied for about 50 years, the cellular mechanisms involved in their biological action are still not completely known. Many of the pharmacological properties of Citrus flavonoids can be linked to the abilities of these compounds to inhibit enzymes involved in cell activation. Attempts to control cancer involve a variety of means, including the use of suppressing, blocking, and transforming agents. Suppressing agents prevent the formation of new cancers from procarcinogens, and blocking agents prevent carcinogenic compounds from reaching critical initiation sites, while transformation agents act to facilitate the metabolism of carcinogenic components into less toxic materials or prevent their biological actions. Flavonoids can act as all three types of agent. Many epidemiological studies have shown that regular flavonoid intake is associated with a reduced risk of cardiovascular diseases. In coronary heart disease, the protective effects of flavonoids include mainly antithrombotic, anti-ischemic, anti-oxidant, and vasorelaxant. It is suggested that flavonoids decrease the risk of coronary heart disease by three major actions: improving coronary vasodilatation, decreasing the ability of platelets in the blood to clot, and preventing low-density lipoproteins (LDLs) from oxidizing. The anti-inflammatory properties of the Citrus flavonoids have also been studied. Several key studies have shown that the anti-inflammatory properties of Citrus flavonoids are due to its inhibition of the synthesis and biological activities of different pro-inflammatory mediators, mainly the arachidonic acid derivatives, prostaglandins E 2, F 2, and thromboxane A 2. The anti-oxidant and anti-inflammatory properties of Citrus flavonoids can play a key role in their activity against several degenerative diseases and particularly brain diseases. The most abundant Citrus flavonoids are flavanones, such as hesperidin, naringin, or neohesperidin. However, generally, the flavones, such as diosmin, apigenin, or luteolin, exhibit higher biological activity, even though they occur in much lower concentrations. Diosmin and rutin have a demonstrated activity as a venotonic agent and are present in several pharmaceutical products. Apigenin and their glucosides have been shown a good anti-inflammatory activity without the side effects of other anti-inflammatory products. In this paper, we discuss the relation between each structural factor of Citrus flavonoids and the anticancer, anti-inflammatory, and cardiovascular protection activity of Citrus flavonoids and their role in degenerative diseases.
Tian, Ji; Zhang, Jie; Han, Zhen-yun; Song, Ting-ting; Li, Jin-yan; Wang, Ya-ru; Yao, Yun-cong
2017-01-01
The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be mainly responsible for upregulating the expression of anthocyanin biosynthetic genes by binding to their promoters, but to be only partially responsible for regulating PAs biosynthetic genes. In contrast, McMYB12b showed preferential binding to the promoters of PAs biosynthetic genes. Overexpression of McMYB12a and McMYB12b in tobacco (Nicotiana tabacum) altered the expression of flavonoid biosynthetic genes and promoted the accumulation of PAs and anthocyanins in tobacco petals. Conversely, transient silencing their expression in crabapple plants, using a conserved gene region, resulted in reduced PAs and anthocyanin production a green leaf phenotype. Meanwhile, transient overexpression of the two genes and silenced McMYB12s in apple (Malus domestica) fruit had a similar effect as overexpression in tobacco and silenced in crabapple. This study reveals a new mechanism for the coordinated regulation of PAs and anthocyanin accumulation in crabapple leaves, which depends on an auto-regulatory balance involving McMYB12a and McMYB12b expression. PMID:28255171
Tian, Ji; Zhang, Jie; Han, Zhen-Yun; Song, Ting-Ting; Li, Jin-Yan; Wang, Ya-Ru; Yao, Yun-Cong
2017-03-03
The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be mainly responsible for upregulating the expression of anthocyanin biosynthetic genes by binding to their promoters, but to be only partially responsible for regulating PAs biosynthetic genes. In contrast, McMYB12b showed preferential binding to the promoters of PAs biosynthetic genes. Overexpression of McMYB12a and McMYB12b in tobacco (Nicotiana tabacum) altered the expression of flavonoid biosynthetic genes and promoted the accumulation of PAs and anthocyanins in tobacco petals. Conversely, transient silencing their expression in crabapple plants, using a conserved gene region, resulted in reduced PAs and anthocyanin production a green leaf phenotype. Meanwhile, transient overexpression of the two genes and silenced McMYB12s in apple (Malus domestica) fruit had a similar effect as overexpression in tobacco and silenced in crabapple. This study reveals a new mechanism for the coordinated regulation of PAs and anthocyanin accumulation in crabapple leaves, which depends on an auto-regulatory balance involving McMYB12a and McMYB12b expression.
Tan, Jiafu; Tu, Lili; Deng, Fenglin; Hu, Haiyan; Nie, Yichun; Zhang, Xianlong
2013-01-01
The cotton (Gossypium spp.) fiber is a unique elongated cell that is useful for investigating cell differentiation. Previous studies have demonstrated the importance of factors such as sugar metabolism, the cytoskeleton, and hormones, which are commonly known to be involved in plant cell development, while the secondary metabolites have been less regarded. By mining public data and comparing analyses of fiber from two cotton species (Gossypium hirsutum and Gossypium barbadense), we found that the flavonoid metabolism is active in early fiber cell development. Different flavonoids exhibited distinct effects on fiber development during ovule culture; among them, naringenin (NAR) could significantly retard fiber development. NAR is a substrate of flavanone 3-hydroxylase (F3H), and silencing the F3H gene significantly increased the NAR content of fiber cells. Fiber development was suppressed following F3H silencing, but the overexpression of F3H caused no obvious effects. Significant retardation of fiber growth was observed after the introduction of the F3H-RNA interference segment into the high-flavonoid brown fiber G. hirsutum T586 line by cross. A greater accumulation of NAR as well as much shorter fibers were also observed in the BC1 generation plants. These results suggest that NAR is negatively associated with fiber development and that the metabolism mediated by F3H is important in fiber development, thus highlighting that flavonoid metabolism represents a novel pathway with the potential for cotton fiber improvement. PMID:23535943
Morita, Yasumasa; Ishiguro, Kanako; Tanaka, Yoshikazu; Iida, Shigeru; Hoshino, Atsushi
2015-09-01
UDP-glucose:flavonoid 3- O -glucosyltransferase is essential for maintaining proper production quantity, acylation, and glucosylation of anthocyanin, and defects cause pale and dull flower pigmentation in morning glories. The Japanese (Ipomoea nil) and the common (I. purpurea) morning glory display bright blue and dark purple flowers, respectively. These flowers contain acylated and glucosylated anthocyanin pigments, and a number of flower color mutants have been isolated in I. nil. Of these, the duskish mutants of I. nil produce pale- and dull-colored flowers. We found that the Duskish gene encodes UDP-glucose:flavonoid 3-O-glucosyltransferase (3GT). The duskish-1 mutation is a frameshift mutation caused by a 4-bp insertion, and duskish-2 is an insertion of a DNA transposon, Tpn10, at 1.3 kb upstream of the 3GT start codon. In the duskish-2 mutant, excision of Tpn10 is responsible for restoration of the expression of the 3GT gene. The recombinant 3GT protein displays expected 3GT enzymatic activities to catalyze 3-O-glucosylation of anthocyanidins in vitro. Anthocyanin analysis of a duskish-2 mutant and its germinal revertant showing pale and normal pigmented flowers, respectively, revealed that the mutation caused around 80 % reduction of anthocyanin accumulation. We further characterized two I. purpurea mutants showing pale brownish-red flowers, and found that they carry the same frameshift mutation in the 3GT gene. Most of the flower anthocyanins in the mutants were previously found to be anthocyanidin 3-O-glucosides lacking several caffeic acid and glucose moieties that are attached to the anthocyanins in the wild-type plants. These results indicated that 3GT is essential not only for production, but also for proper acylation and glucosylation, of anthocyanin in the morning glories.
Zhang, Feng; Liu, Zhongchi; Li, Xiaoming; Li, Wenran; Ma, Yue; Li, He; Liu, Yuexue; Zhang, Zhihong
2013-01-01
Hawthorn (Crataegus spp.) is an important pome with a long history as a fruit, an ornamental, and a source of medicine. Fruits of hawthorn are marked by hard stony endocarps, but a hawthorn germplasm with soft and thin endocarp was found in Liaoning province of China. To elucidate the molecular mechanism underlying the soft endocarp of hawthorn, we conducted a de novo assembly of the fruit transcriptome of Crataegus pinnatifida and compared gene expression profiles between the soft-endocarp and the hard-endocarp hawthorn varieties. De novo assembly yielded 52,673 putative unigenes, 20.4% of which are longer than 1,000 bp. Among the high-quality unique sequences, 35,979 (68.3%) had at least one significant match to an existing gene model. A total of 1,218 genes, represented 2.31% total putative unigenes, were differentially expressed between the soft-endocarp hawthorn and the hard-endocarp hawthorn. Among these differentially expressed genes, a number of lignin biosynthetic pathway genes were down-regulated while almost all the flavonoid biosynthetic pathway genes were strongly up-regulated, concomitant with the formation of soft endocarp. In addition, we have identified some MYB and NAC transcription factors that could potentially control lignin and flavonoid biosynthesis. The altered expression levels of the genes encoding lignin biosynthetic enzymes, MYB and NAC transcription factors were confirmed by quantitative RT-PCR. This is the first transcriptome analysis of Crataegus genus. The high quality ESTs generated in this study will aid future gene cloning from hawthorn. Our study provides important insights into the molecular mechanisms underlying soft endocarp formation in hawthorn. PMID:24039819
The genome of Theobroma cacao.
Argout, Xavier; Salse, Jerome; Aury, Jean-Marc; Guiltinan, Mark J; Droc, Gaetan; Gouzy, Jerome; Allegre, Mathilde; Chaparro, Cristian; Legavre, Thierry; Maximova, Siela N; Abrouk, Michael; Murat, Florent; Fouet, Olivier; Poulain, Julie; Ruiz, Manuel; Roguet, Yolande; Rodier-Goud, Maguy; Barbosa-Neto, Jose Fernandes; Sabot, Francois; Kudrna, Dave; Ammiraju, Jetty Siva S; Schuster, Stephan C; Carlson, John E; Sallet, Erika; Schiex, Thomas; Dievart, Anne; Kramer, Melissa; Gelley, Laura; Shi, Zi; Bérard, Aurélie; Viot, Christopher; Boccara, Michel; Risterucci, Ange Marie; Guignon, Valentin; Sabau, Xavier; Axtell, Michael J; Ma, Zhaorong; Zhang, Yufan; Brown, Spencer; Bourge, Mickael; Golser, Wolfgang; Song, Xiang; Clement, Didier; Rivallan, Ronan; Tahi, Mathias; Akaza, Joseph Moroh; Pitollat, Bertrand; Gramacho, Karina; D'Hont, Angélique; Brunel, Dominique; Infante, Diogenes; Kebe, Ismael; Costet, Pierre; Wing, Rod; McCombie, W Richard; Guiderdoni, Emmanuel; Quetier, Francis; Panaud, Olivier; Wincker, Patrick; Bocs, Stephanie; Lanaud, Claire
2011-02-01
We sequenced and assembled the draft genome of Theobroma cacao, an economically important tropical-fruit tree crop that is the source of chocolate. This assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of these genes anchored on the 10 T. cacao chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example, flavonoid-related genes. It also provides a major source of candidate genes for T. cacao improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten T. cacao chromosomes were shaped from an ancestor through eleven chromosome fusions.
Kite, Geoffrey C; Rowe, Emily R; Lewis, Gwilym P; Veitch, Nigel C
2011-04-01
The foliar metabolome of Cladrastis kentukea (Leguminosae) contains a complex mixture of flavonoids including acylated derivatives of the 3-O-rhamnosyl(1→2)[rhamnosyl(1→6)]-galactosides of kaempferol and quercetin and their 7-O-rhamnosides, together with an array of non-acylated kaempferol and quercetin di-, tri- and tetraglycosides. Thirteen of the acylated flavonoids, 12 of which had not been reported previously, were characterised by spectroscopic and chemical methods. Eight of these were the four isomers of kaempferol 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E/Z-p-coumaroyl-β-d-galactopyranoside) and their 7-O-α-l-rhamnopyranosides, and three were isomers of quercetin 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E/Z-p-coumaroyl-β-d-galactopyranoside) - the remaining 4Z isomer was identified by LC-UV-MS analysis of a crude extract. The final two acylated flavonoids characterised by NMR were the 3E and 4E isomers of kaempferol 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E-feruloyl-β-d-galactopyranoside)-7-O-α-l-rhamnopyranoside while the 3Z and 4Z isomers were again detected by LC-UV-MS. Using the observed fragmentation behaviour of the isolated compounds following a variety of MS experiments, a further 18 acylated flavonoids were given tentative structures by LC-MS analysis of a crude extract. Acylated flavonoids were absent from the flowers of C. kentukea, which contained an array of non-acylated kaempferol and quercetin glycosides. Immature fruits contained kaempferol 3-O-α-rhamnopyranosyl(1→2)[α-rhamnopyranosyl(1→6)]-β-galactopyranoside and its 7-O-α-rhamnopyranoside as the major flavonoids with acylated flavonoids, different from those in the leaves, only present as minor constituents. The presence of acylated flavonoids distinguishes the foliar flavonoid metabolome of C. kentukea from that of a closely related legume, Styphnolobium japonicum, which contains a similar range of non-acylated flavonoids. Copyright © 2011 Elsevier Ltd. All rights reserved.
2010-01-01
flavonoids , sesquiterpenoids, and triterpenoids, among others, were CHEMISTRY & BIODIVERSITY – Vol. 7 (2010)1682 Table 1. Larvicidal Activities of Various...Gainesville, FL 32608, USA c) Department of Chemistry , Louisiana State University, Baton Rouge, Louisiana 70803, USA AnAedes aegypti larval toxicity...bioassay was performed on compounds representing many classes of natural compounds including polyacetylenes, phytosterols, flavonoids
Two new flavonoids from Artemisa sacrorum Ledeb and their antifungal activity
NASA Astrophysics Data System (ADS)
Wang, Qing-Hu; Wu, Jie-si; Wu, Rong-jun; Han, Na-ren-chao-ke-tu; Dai, Na-yin-tai
2015-05-01
Two new flavonoids, named as sacriflavone A (1) and sacriflavone B (2), were isolated from the CHCl3 extract of Artemisa sacrorum Ledeb (A. sacrorum). The structures of the isolated compounds have been elucidated unambiguously by UV, MS, and a series of 1D and 2D NMR analyses. The isolated compounds exhibited antifungal activity against different Fusarium oxysporum f. sp. dianthi pathotypes.
Peter, Sonia R; Peru, Kerry M; Fahlman, Brian; McMartin, Dena W; Headley, John V
2015-01-01
As part of an exchange technology program between the government of Barbados and Environment Canada, methanolic and aqueous extracts from the flavonoid-rich Lamiaceae family were characterized using negative-ion electrospray mass spectrometry. The species investigated is part of the Caribbean Pharmacopoeia, and is used for a variety of health issues, including colds, flu, diabetes, and hypertension. The extracts were investigated for structural elucidation of phenolics, identification of chemical taxonomic profile, and evidence of bio-accumulator potential. The methanolic and aqueous leaf extracts of Plectranthus amboinicus yielded rosmarinic acid, ladanein, cirsimaritin, and other methoxylated flavonoids. This genus also shows a tendency to form conjugates with monosaccharides, including glucose, galactose, and rhamnose. The aqueous extract yielded four isomeric rhamnosides. The formation of conjugates by Plectranthus amboinicus is thus evidence of high bioaccumulator significance.
da Rocha, Cláudia Quintino; Queiroz, Emerson Ferreira; Meira, Cássio Santana; Moreira, Diogo Rodrigo Magalhães; Soares, Milena Botelho Pereira; Marcourt, Laurence; Vilegas, Wagner; Wolfender, Jean-Luc
2014-06-27
The nonpolar fraction of an aqueous ethanol extract of the roots of Arrabidaea brachypoda, a Brazilian medicinal plant, demonstrated significant in vitro activity against Trypanosoma cruzi, the parasite responsible for Chagas disease. Targeted isolation of the active constituents led to the isolation of three new dimeric flavonoids (1-3), and their structures were elucidated using UV, NMR, and HRMS analysis, as well as by chemical derivatization. The anti-T. cruzi activity and cytotoxicity toward mammalian cells were determined for these substances. Compound 1 exhibited no activity toward T. cruzi, while flavonoids 2 and 3 exhibited selective activity against these trypomastigotes. Compounds 2 and 3 inhibited the parasite invasion process and its intracellular development in host cells with similar potencies to benznidazole. In addition, compound 2 reduced the blood parasitemia of T. cruzi-infected mice. This study has revealed that these two dimeric flavonoids represent potential anti-T. cruzi lead compounds for further drug development.
Studies on the flavonoid substrates of human UDP-glucuronosyl transferase (UGT) 2B7.
Xie, Shenggu; You, Linya; Zeng, Su
2007-08-01
Flavonoids are found in fruits, vegetables, nuts, seeds, herbs, spices, stems and flowers, as well as in tea and red wine. They are prominent components of citrus fruits and other food sources, are consumed regularly with the human diet, and have been shown to have many biological functions, including antioxidant and chelating properties. This study suggests features of the flavonoid structure necessary for it to act as a substrate of human UGT2B7. Generally speaking, flavonol has higher glucuronidation activity than flavones and isoflavones. Differences in C3' position have an important effect on UGT2B7 glucuronidation activity, and the various substituents have different influences on glucuronidation activity. For flavonol, the bulky group at C4' can enhance glucuronidation activity. Increasing the number of hydroxyl groups of flavonoids will increase their glucuronidation activity towards UGT2B7, while conjugation of glycon will weaken the activity, and hydroxyl position can also have an important role in activity. The high glucuronidation efficiency observed with many flavonoids suggests that the contribution of UGT2B7 to the metabolism of flavonoids may be significant. The results suggest that we should not only pay attention to glucuronidation activity, but should also attach importance to the regioselectivity of glucuronidation.
Luengo Escobar, Ana; Magnum de Oliveira Silva, Franklin; Acevedo, Patricio; Nunes-Nesi, Adriano; Alberdi, Miren; Reyes-Díaz, Marjorie
2017-09-01
UV-B radiation induces several physiological and biochemical effects that can influence regulatory plant processes. Vaccinium corymbosum responds differently to UV-B radiation depending on the UV-B resistance of cultivars, according to their physiological and biochemical features. In this work, the effect of two levels of UV-B radiation during long-term exposure on the phenylpropanoid biosynthesis, and the expression of genes associated with flavonoid biosynthesis as well as the absolute quantification of secondary metabolites were studied in two contrasting UV-B-resistant cultivars (Legacy, resistant and Bluegold, sensitive). Multivariate analyses were performed to understand the role of phenylpropanoids in UV-B defense mechanisms. The amount of phenylpropanoid compounds was generally higher in Legacy than in Bluegold. Different expression levels of flavonoid biosynthetic genes for both cultivars were transiently induced, showing that even in longer period of UV-B exposure; plants are still adjusting their phenylpropanoids at the transcription levels. Multivariate analysis in Legacy indicated no significant correlation between gene expression and the levels of the flavonoids and phenolic acids. By contrast, in the Bluegold cultivar higher number of correlations between secondary metabolite and transcript levels was found. Taken together, the results indicated different adjustments between the cultivars for a successful UV-B acclimation. While the sensitive cultivar depends on metabolite adjustments to respond to UV-B exposure, the resistant cultivar also possesses an intrinsically higher antioxidant and UV-B screening capacity. Thus, we conclude that UV-B resistance involves not only metabolite level adjustments during the acclimation period, but also depends on the intrinsic metabolic status of the plant and metabolic features of the phenylpropanoid compounds. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Shetty, Radhakrishna; Fretté, Xavier; Jensen, Birgit; Shetty, Nandini Prasad; Jensen, Jens Due; Jørgensen, Hans Jørgen Lyngs; Newman, Mari-Anne; Christensen, Lars Porskjær
2011-01-01
Application of 3.6 mm silicon (Si+) to the rose (Rosa hybrida) cultivar Smart increased the concentration of antimicrobial phenolic acids and flavonoids in response to infection by rose powdery mildew (Podosphaera pannosa). Simultaneously, the expression of genes coding for key enzymes in the phenylpropanoid pathway (phenylalanine ammonia lyase, cinnamyl alcohol dehydrogenase, and chalcone synthase) was up-regulated. The increase in phenolic compounds correlated with a 46% reduction in disease severity compared with inoculated leaves without Si application (Si−). Furthermore, Si application without pathogen inoculation induced gene expression and primed the accumulation of several phenolics compared with the uninoculated Si− control. Chlorogenic acid was the phenolic acid detected in the highest concentration, with an increase of more than 80% in Si+ inoculated compared with Si− uninoculated plants. Among the quantified flavonoids, rutin and quercitrin were detected in the highest concentrations, and the rutin concentration increased more than 20-fold in Si+ inoculated compared with Si− uninoculated plants. Both rutin and chlorogenic acid had antimicrobial effects on P. pannosa, evidenced by reduced conidial germination and appressorium formation of the pathogen, both after spray application and infiltration into leaves. The application of rutin and chlorogenic acid reduced powdery mildew severity by 40% to 50%, and observation of an effect after leaf infiltration indicated that these two phenolics can be transported to the epidermal surface. In conclusion, we provide evidence that Si plays an active role in disease reduction in rose by inducing the production of antifungal phenolic metabolites as a response to powdery mildew infection. PMID:22021421
Filho, Júlio César Conceição; Sarria, André Lúcio Franceschini; Becceneri, Amanda Blanque; Fuzer, Angelina Maria; Batalhão, Jaqueline Raquel; da Silva, Caio Marcio Paranhos; Carlos, Rose Maria; Vieira, Paulo Cezar; Fernandes, João Batista; Cominetti, Márcia Regina
2014-01-01
Cancer is the second leading cause of death worldwide and there is epidemiological evidence that demonstrates this tendency is emerging. Naringenin (NGEN) is a trihydroxyflavanone that shows various biological effects such as antioxidant, anticancer, anti-inflammatory, and antiviral activities. It belongs to flavanone class, which represents flavonoids with a C6-C3-C6 skeleton. Flavonoids do not exhibit sufficient activity to be used for chemotherapy, however they can be chemically modified by complexation with metals such as copper (Cu) (II) for instance, in order to be applied for adjuvant therapy. This study investigated the effects of Cu(II) and 2,2'-bipyridine complexation with naringenin on MDA-MB-231 cells. We demonstrated that naringenin complexed with Cu(II) and 2,2'-bipyridine (NGENCuB) was more efficient inhibiting colony formation, proliferation and migration of MDA-MB-231 tumor cells, than naringenin (NGEN) itself. Furthermore, we verified that NGENCuB was more effective than NGEN inhibiting pro-MMP9 activity by zymography assays. Finally, through flow cytometry, we showed that NGENCuB is more efficient than NGEN inducing apoptosis in MDA-MB-231 cells. These results were confirmed by gene expression analysis in real time PCR. We observed that NGENCuB upregulated the expression of pro-apoptotic gene caspase-9, but did not change the expression of caspase-8 or anti-apoptotic gene Bcl-2. There are only few works investigating the effects of Cu(II) complexation with naringenin on tumor cells. To the best of our knowledge, this is the first work describing the effects of Cu(II) complexation of a flavonoid on MDA-MB-231 breast tumor cells.
RNA interference silencing of CHS greatly alters the growth pattern of apple (Malus x domestica).
Dare, Andrew P; Hellens, Roger P
2013-08-01
Plants produce a vast array of phenolic compounds which are essential for their survival on land. One major class of polyphenols are the flavonoids and their formation is dependent on the enzyme chalcone synthase (CHS). In a recent study we silenced the CHS genes of apple (Malus × domestica Borkh.) and observed a loss of pigmentation in the fruit skin, flowers and stems. More surprisingly, highly silenced lines were significantly reduced in size, with small leaves and shortened internode lengths. Chemical analysis also revealed that the transgenic shoots contained greatly reduced concentrations of flavonoids which are known to modulate auxin flow. An auxin transport study verified this, with an increased auxin transport in the CHS-silenced lines. Overall, these findings suggest that auxin transport in apple has adapted to take place in the presence of high endogenous concentrations of flavonoids. Removal of these compounds therefore results in abnormal auxin movement and a highly disrupted growth pattern.
Anbazhagan, V; Kalaiselvan, A; Jaccob, M; Venuvanalingam, P; Renganathan, R
2008-05-29
The fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by seven flavonoids namely flavone, flavanone, quercetin, rutin, genistein, diadzein and chrysin has been investigated in acetonitrile and dichloromethane solvents. The bimolecular quenching rate constants lie in the range of 0.09-5.75 x 10(9)M(-1)s(-1) and are explained in terms of structure of the flavonoids studied. The reactivity of flavonoids are in the order: quercetin>rutin>genistein>diadzein>chrysin>flavone>flavanone. The quenching rate constants (k(q)) increase with increase in the number of -OH groups. The endergonic thermodynamic values of DeltaG(et) reveal that electron transfer quenching mechanism can be ruled out. Bond dissociation enthalpy calculations reveal that the position of -OH is important. Further in vitro-antioxidant activities of flavonoids were evaluated with rat liver catalase by gel electrophoresis. The deuterium isotope effect thus observed in this work provides evidence for hydrogen abstraction involved in the quenching process of singlet excited DBO by flavonoids. The data suggest the involvement of direct hydrogen atom transfer (radical scavenging) in the fluorescence quenching of DBO. Bond dissociation enthalpy calculation performed at B3LYP/6-31G(p')//B3LYP/3-21G level are in excellent agreement with the above observations and further reveal that the number OH groups and position of them decide the quenching ability of the flavonoids.
Arima, Hidetoshi; Danno, Gen-ichi
2002-08-01
Four antibacterial compounds were isolated from leaves of guava (Psidium guajava L.), and the structures of these compounds were established on the basis of chemical and spectroscopic evidence. Two new flavonoid glycosides, morin-3-O-alpha-L-lyxopyranoside and morin-3-O-alpha-L-arabopyranoside, and two known flavonoids, guaijavarin and quercetin, were identified. The minimum inhibition concentration of morin-3-O-alpha-L-lyxopyranoside and morin-3-O-alpha-L-arabopyranoside was 200 microg/ml for each against Salmonella enteritidis, and 250 microg/ml and 300 microg/ml against Bacillus cereus, respectively.
Plant isoflavone and isoflavanone O-methyltransferase genes
Broeckling, Bettina E.; Liu, Chang-Jun; Dixon, Richard A.
2014-08-19
The invention provides enzymes that encode O-methyltransferases (OMTs) from Medicago truncatula that allow modification to plant (iso)flavonoid biosynthetic pathways. In certain aspects of the invention, the genes encoding these enzymes are provided. The invention therefore allows the modification of plants for isoflavonoid content. Transgenic plants comprising such enzymes are also provided, as well as methods for improving disease resistance in plants. Methods for producing food and nutraceuticals, and the resulting compositions, are also provided.
Molecular Signals Controlling the Inhibition of Nodulation by Nitrate in Medicago truncatula
van Noorden, Giel E.; Verbeek, Rob; Dinh, Quy Dung; Jin, Jian; Green, Alexandra; Ng, Jason Liang Pin; Mathesius, Ulrike
2016-01-01
The presence of nitrogen inhibits legume nodule formation, but the mechanism of this inhibition is poorly understood. We found that 2.5 mM nitrate and above significantly inhibited nodule initiation but not root hair curling in Medicago trunatula. We analyzed protein abundance in M. truncatula roots after treatment with either 0 or 2.5 mM nitrate in the presence or absence of its symbiont Sinorhizobium meliloti after 1, 2 and 5 days following inoculation. Two-dimensional gel electrophoresis combined with mass spectrometry was used to identify 106 differentially accumulated proteins responding to nitrate addition, inoculation or time point. While flavonoid-related proteins were less abundant in the presence of nitrate, addition of Nod gene-inducing flavonoids to the Sinorhizobium culture did not rescue nodulation. Accumulation of auxin in response to rhizobia, which is also controlled by flavonoids, still occurred in the presence of nitrate, but did not localize to a nodule initiation site. Several of the changes included defense- and redox-related proteins, and visualization of reactive oxygen species indicated that their induction in root hairs following Sinorhizobium inoculation was inhibited by nitrate. In summary, the presence of nitrate appears to inhibit nodulation via multiple pathways, including changes to flavonoid metabolism, defense responses and redox changes. PMID:27384556
da Silva, Cecília Rocha; de Andrade Neto, João Batista; de Sousa Campos, Rosana; Figueiredo, Narjara Silvestre; Sampaio, Letícia Serpa; Magalhães, Hemerson Iury Ferreira; Cavalcanti, Bruno Coêlho; Gaspar, Danielle Macêdo; de Andrade, Geanne Matos; Lima, Iri Sandro Pampolha; de Barros Viana, Glauce Socorro; de Moraes, Manoel Odorico; Lobo, Marina Duarte Pinto; Grangeiro, Thalles Barbosa
2014-01-01
Flavonoids are a class of phenolic compounds commonly found in fruits, vegetables, grains, flowers, tea, and wine. They differ in their chemical structures and characteristics. Such compounds show various biological functions and have antioxidant, antimicrobial, anti-inflammatory, and antiapoptotic properties. The aim of this study was to evaluate the in vitro interactions of flavonoids with fluconazole against Candida tropicalis strains resistant to fluconazole, investigating the mechanism of synergism. Three combinations formed by the flavonoids (+)-catechin hydrated, hydrated quercetin, and (−)-epigallocatechin gallate at a fixed concentration with fluconazole were tested. Flavonoids alone had no antifungal activity within the concentration range tested, but when they were used as a cotreatment with fluconazole, there was significant synergistic activity. From this result, we set out to evaluate the possible mechanisms of cell death involved in this synergism. Isolated flavonoids did not induce morphological changes or changes in membrane integrity in the strains tested, but when they were used as a cotreatment with fluconazole, these changes were quite significant. When evaluating mitochondrial damage and the production of reactive oxygen species (ROS) only in the cotreatment, changes were observed. Flavonoids combined with fluconazole were shown to cause a significant increase in the rate of damage and the frequency of DNA damage in the tested strains. The cotreatment also induced an increase in the externalization of phosphatidylserine, an important marker of early apoptosis. It is concluded that flavonoids, when combined with fluconazole, show activity against strains of C. tropicalis resistant to fluconazole, promoting apoptosis by exposure of phosphatidylserine in the plasma membrane and morphological changes, mitochondrial depolarization, intracellular accumulation of ROS, condensation, and DNA fragmentation. PMID:24366745
Wang, Ruishan; Chen, Ridao; Li, Jianhua; Liu, Xiao; Xie, Kebo; Chen, Dawei; Yin, Yunze; Tao, Xiaoyu; Xie, Dan; Zou, Jianhua; Yang, Lin; Dai, Jungui
2014-12-26
Prenylated flavonoids are attractive specialized metabolites with a wide range of biological activities and are distributed in several plant families. The prenylation catalyzed by prenyltransferases represents a Friedel-Crafts alkylation of the flavonoid skeleton in the biosynthesis of natural prenylated flavonoids and contributes to the structural diversity and biological activities of these compounds. To date, all identified plant flavonoid prenyltransferases (FPTs) have been identified in Leguminosae. In the present study two new FPTs, Morus alba isoliquiritigenin 3'-dimethylallyltransferase (MaIDT) and Cudrania tricuspidata isoliquiritigenin 3'-dimethylallyltransferase (CtIDT), were identified from moraceous plants M. alba and C. tricuspidata, respectively. MaIDT and CtIDT shared low levels of homology with the leguminous FPTs. MaIDT and CtIDT are predicted to be membrane-bound proteins with predicted transit peptides, seven transmembrane regions, and conserved functional domains that are similar to other homogentisate prenyltransferases. Recombinant MaIDT and CtIDT were able to regioselectively introduce dimethylallyl diphosphate into the A ring of three flavonoids with different skeleton types (chalcones, isoflavones, and flavones). Phylogenetic analysis revealed that MaIDT and CtIDT are distantly related to their homologs in Leguminosae, which suggests that FPTs in Moraceae and Leguminosae might have evolved independently. MaIDT and CtIDT represent the first two non-Leguminosae FPTs to be identified in plants and could thus lead to the identification of additional evolutionarily varied FPTs in other non-Leguminosae plants and could elucidate the biosyntheses of prenylated flavonoids in various plants. Furthermore, MaIDT and CtIDT might be used for regiospecific prenylation of flavonoids to produce bioactive compounds for potential therapeutic applications due to their high efficiency and catalytic promiscuity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Hooper, Lee; Kroon, Paul A; Rimm, Eric B; Cohn, Jeffrey S; Harvey, Ian; Le Cornu, Kathryn A; Ryder, Jonathan J; Hall, Wendy L; Cassidy, Aedín
2008-07-01
The beneficial effects of flavonoid consumption on cardiovascular risk are supported by mechanistic and epidemiologic evidence. We aimed to systematically review the effectiveness of different flavonoid subclasses and flavonoid-rich food sources on cardiovascular disease (CVD) and risk factors--ie, lipoproteins, blood pressure, and flow-mediated dilatation (FMD). Methods included a structured search strategy on MEDLINE, EMBASE, and Cochrane databases; formal inclusion or exclusion, data extraction, and validity assessment; and meta-analysis. One hundred thirty-three trials were included. No randomized controlled trial studied effects on CVD morbidity or mortality. Significant heterogeneity confirmed differential effects between flavonoid subclasses and foods. Chocolate increased FMD after acute (3.99%; 95% CI: 2.86, 5.12; 6 studies) and chronic (1.45%; 0.62, 2.28; 2 studies) intake and reduced systolic (-5.88 mm Hg; -9.55, -2.21; 5 studies) and diastolic (-3.30 mm Hg; -5.77, -0.83; 4 studies) blood pressure. Soy protein isolate (but not other soy products or components) significantly reduced diastolic blood pressure (-1.99 mm Hg; -2.86, -1.12; 9 studies) and LDL cholesterol (-0.19 mmol/L; -0.24, -0.14; 39 studies). Acute black tea consumption increased systolic (5.69 mm Hg; 1.52, 9.86; 4 studies) and diastolic (2.56 mm Hg; 1.03, 4.10; 4 studies) blood pressure. Green tea reduced LDL (-0.23 mmol/L; -0.34, -0.12; 4 studies). For many of the other flavonoids, there was insufficient evidence to draw conclusions about efficacy. To date, the effects of flavonoids from soy and cocoa have been the main focus of attention. Future studies should focus on other commonly consumed subclasses (eg, anthocyanins and flavanones), examine dose-response effects, and be of long enough duration to allow assessment of clinically relevant endpoints.
Wang, Ruishan; Chen, Ridao; Li, Jianhua; Liu, Xiao; Xie, Kebo; Chen, Dawei; Yin, Yunze; Tao, Xiaoyu; Xie, Dan; Zou, Jianhua; Yang, Lin; Dai, Jungui
2014-01-01
Prenylated flavonoids are attractive specialized metabolites with a wide range of biological activities and are distributed in several plant families. The prenylation catalyzed by prenyltransferases represents a Friedel-Crafts alkylation of the flavonoid skeleton in the biosynthesis of natural prenylated flavonoids and contributes to the structural diversity and biological activities of these compounds. To date, all identified plant flavonoid prenyltransferases (FPTs) have been identified in Leguminosae. In the present study two new FPTs, Morus alba isoliquiritigenin 3′-dimethylallyltransferase (MaIDT) and Cudrania tricuspidata isoliquiritigenin 3′-dimethylallyltransferase (CtIDT), were identified from moraceous plants M. alba and C. tricuspidata, respectively. MaIDT and CtIDT shared low levels of homology with the leguminous FPTs. MaIDT and CtIDT are predicted to be membrane-bound proteins with predicted transit peptides, seven transmembrane regions, and conserved functional domains that are similar to other homogentisate prenyltransferases. Recombinant MaIDT and CtIDT were able to regioselectively introduce dimethylallyl diphosphate into the A ring of three flavonoids with different skeleton types (chalcones, isoflavones, and flavones). Phylogenetic analysis revealed that MaIDT and CtIDT are distantly related to their homologs in Leguminosae, which suggests that FPTs in Moraceae and Leguminosae might have evolved independently. MaIDT and CtIDT represent the first two non-Leguminosae FPTs to be identified in plants and could thus lead to the identification of additional evolutionarily varied FPTs in other non-Leguminosae plants and could elucidate the biosyntheses of prenylated flavonoids in various plants. Furthermore, MaIDT and CtIDT might be used for regiospecific prenylation of flavonoids to produce bioactive compounds for potential therapeutic applications due to their high efficiency and catalytic promiscuity. PMID:25361766
Flavonoids from Argentine Tagetes (Asteraceae) with antimicrobial activity.
Tereschuk, María L; Baigorí, Mario D; De Figueroa, Lucia I C; Abdala, Lidia R
2004-01-01
The flavonoids, constituting one of the most numerous and widespread groups of natural plant constituents, are important to humans not only because they contribute to plant colors but also because many members are physiologically active. These low-molecular-weight substances, found in all vascular plants, are phenylbenzopyrones. Over 4000 structures have been identified in plant sources, and they are categorized into several groups. Primarily recognized as pigments responsible for the autumnal burst of hues and the many shades of yellow, orange, and red in flowers and food, the flavonoids are found in fruits, vegetables, nuts, seeds, stems, flowers, and leaves as well as tea and wine and are important constituents of the human diet. They are prominent components of citrus fruits and other food sources. Flavonols (quercetin, myricetin, and kaempferol) and flavones (apigenin and luteolin) are the most common phenolics in plant-based foods. Quercetin is also a predominant component of onions, apples, and berries. Such flavanones as naringin are typically present in citrus fruit, and flavanols, particularly catechin, are present as catechin gallate in such beverages as green or black tea and wine. Some major sources of flavonoids are outlined in Table 1. The daily intake of flavonoids in humans has been estimated to be approx 25 mg/d, a quantity that could provide pharmacologically significant concentrations in body fluids and tissues, assuming good absorption from the gastrointestinal tract. Biological activity of flavonoids was first suggested by Szent-Gÿorgyi 1938, who reported that citrus peel flavonoids were effective in preventing the capillary bleeding and fragility associated with scurvy. The broad spectrum of biological activity within the group and the multiplicity of actions displayed by a certain individual members make the flavonoids one of the most promising classes of biologically active compounds.
Park, Wanki; Ahn, Chan-Hong; Cho, Hyunjoo; Kim, Chang-Kwon; Shin, Jongheon; Oh, Ki-Bong
2017-08-28
Seven flavonoids were isolated from Spatholobus suberectus via repetitive column chromatography and high-performance liquid chromatography. The chemical structures of these compounds were identified by spectroscopic analysis and comparison with values reported in the literature. Among the flavonoids tested, 7-hydroxy-6-methoxyflavanone ( 1 ) and formononetin ( 4 ) exhibited strong inhibitory activity against Streptococcus mutans SrtA, with IC 50 values of 46.1 and 41.8 µM, respectively, but did not affect cell viability. The onset and magnitude of inhibition of saliva-induced aggregation in S. mutans treated with compounds 1 and 4 were comparable to the behavior of a srtA -deletion mutant without treatment.
Four New Flavonoids with α-Glucosidase Inhibitory Activities from Morus alba var. tatarica.
Zhang, Ya-Long; Luo, Jian-Guang; Wan, Chuan-Xing; Zhou, Zhong-Bo; Kong, Ling-Yi
2015-11-01
Four new flavonoids, mortatarins A-D (1-4, resp.), along with eight known flavonoids (5-12) were isolated from the root bark of Morus alba var. tatarica. Their structures were established on the basis of spectroscopic data analysis, and the absolute configuration of 4 was determined by analysis of its CD spectrum. All isolates were tested for inhibitory activities against α-glucosidase. Compounds 4, 7, and 8 exhibited a significant degree of inhibition with IC50 values of 5.0 ± 0.3, 7.5 ± 0.5, and 5.9 ± 0.2 μM, respectively. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Antiproliferative activity of flavonoids on several cancer cell lines.
Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M
1999-05-01
Twenty-seven Citrus flavonoids were examined for their antiproliferative activities against several tumor and normal human cell lines. As a result, 7 flavonoids were judged to be active against the tumor cell lines, while they had weak antiproliferative activity against the normal human cell lines. The rank order of potency was luteolin, natsudaidain, quercetin, tangeretin, eriodictyol, nobiletin, and 3,3',4',5,6,7,8-heptamethoxyflavone. The structure-activity relationship established from comparison among these flavones and flavanones showed that the ortho-catechol moiety in ring B and a C2-C3 double bond were important for the antiproliferative activity. As to polymethoxylated flavones, C-3 hydroxyl and C-8 methoxyl groups were essential for high activity.
Huh, Jungmoo; Ha, Thi Kim Quy; Kang, Kyo Bin; Kim, Ki Hyun; Oh, Won Keun; Kim, Jinwoong; Sung, Sang Hyun
2017-10-27
Thirteen C-methylated flavonoid glycosides (1-13), along with 15 previously known flavonoids (14-28), were isolated from rhizomes of Pentarhizidium orientale. Among these compounds, matteuorienates D-K (1-8) were obtained as analogues of matteuorienates A-C (14-16), which contain a characteristic 3-hydroxy-3-methylglutaryl (HMG) moiety. The structures of 1-13 were characterized by spectroscopic analysis and chemical derivatization. The isolates were evaluated for their antiviral activities against influenza virus (H1N1), with compounds 21, 22, 23, 25, and 26 showing inhibitory effects (IC 50 of 23.9-30.3 μM) against neuraminidases.
2011-01-01
An EtOAc extract from the roots of Sophora flavescens (Kushen) potentiated γ -aminobutyric acid (GABA)-induced chloride influx in Xenopus oocytes transiently expressing GABAA receptors with subunit composition, α1β2γ2S. HPLC-based activity profiling of the extract led to the identification of 8-lavandulyl flavonoids, kushenol I, sophoraflavanone G, (–)-kurarinone, and kuraridine as GABAA receptor modulators. In addition, a series of inactive structurally related flavonoids were characterized. Among these, kushenol Y (4) was identified as a new natural product. The 8-lavandulyl flavonoids are first representatives of a novel scaffold for the target. PMID:21207144
Comparative Analysis of the Interaction between Different Flavonoids and PDIA3
Giamogante, Flavia; Marrocco, Ilaria; Romaniello, Donatella; Eufemi, Margherita; Chichiarelli, Silvia
2016-01-01
Flavonoids, plant secondary metabolites present in fruits, vegetables, and products such as tea and red wine, show antioxidant, anti-inflammatory, antithrombotic, antiviral, and antitumor activity. PDIA3 is a member of the protein disulfide isomerase family mainly involved in the correct folding of newly synthetized glycoproteins. PDIA3 is associated with different human pathologies such as cancer, prion disorders, Alzheimer's disease, and Parkinson's diseases and it has the potential to be a pharmacological target. The interaction of different flavonoids with PDIA3 was investigated by quenching fluorescence analysis and the effects on protein activity were evaluated. A higher affinity was observed for eupatorin-5-methyl ether and eupatorin which also inhibit reductase activity of PDIA3 but do not significantly affect its DNA binding activity. The use of several flavonoids differing in chemical structure and functional groups allows us to make some consideration about the relationship between ligand structure and the affinity for PDIA3. The specific flavone backbone conformation and the degree of polarity seem to play an important role for the interaction with PDIA3. The binding site is probably similar but not equivalent to that of green tea catechins, which, as previously demonstrated, can bind to PDIA3 and prevent its interaction with DNA. PMID:28044092
Molecular imaging of the biological effects of quercetin and quercetin-rich foods.
Moskaug, Jan Øivind; Carlsen, Harald; Myhrstad, Mari; Blomhoff, Rune
2004-04-01
The human diet contains several thousands of organic plant molecules (i.e. phytochemicals), many of which have significant bioactivities. The specific physiological effects of these compounds are impossible to predict from in vitro studies using cell cultures and cell-free model systems. Nutrigenomics, which may be defined as the application of genomic tools to study the integrated effects of nutrients on gene regulation, however, holds great promise in increasing the understanding of how nutrients affect molecular events in an organism. Quercetin, a phytochemical belonging to the flavonoids, has antioxidant activities, inhibit protein kinases, inhibit DNA topoisomerases and regulate gene expression. The aim of the present review is to describe some of the many effects of quercetin, and how molecular imaging using transgenic reporter mice may serve as a tool to study the integrated influence of quercetin and other dietary phytochemicals on gene expression in vivo. We are using the bioluminescence emitted from firefly luciferase as the reporter since light originating from the inside of a cell or organism can be detected externally in an intact living organism. Molecular imaging using reporter models is therefore a unique technology to study the integrated effects of environmental insults and dietary substances on the influence of gene expression in disease development. We utilize these in vivo models to elucidate the role of various flavonoids, such as quercetin, for modulating gene expression related to oxidative stress and the antioxidant defence system.
VALKAMA, ELENA; SALMINEN, JUHA‐PEKKA; KORICHEVA, JULIA; PIHLAJA, KALEVI
2003-01-01
The morphology, ultrastructure, density and distribution of trichomes on leaves of Betula pendula, B. pubescens ssp. pubescens, B. pubescens ssp. czerepanovii and B. nana were examined by means of light, scanning and transmission electron microscopy. The composition of flavonoids in ethanolic leaf surface extracts was analysed by high pressure liquid chromatography. All taxa examined contained both glandular and non‐glandular trichomes (short and/or long hairs) but differed from each other in trichome ultrastructure, density and location on the leaf. Leaves of B. pubescens were more hairy than those of B. pendula, but the latter species had a higher density of glandular trichomes. Of the two subspecies of B. pubescens, leaves of ssp. pubescens had more short hairs on the leaf surface and four times the density of glandular trichomes of leaves of ssp. czerepanovii, whereas, in the latter subspecies, short hairs occurred largely on leaf veins, as in B. nana. The glandular trichomes were peltate glands, consisting of medullar and cortical cells, which differed structurally. Cortical cells possessed numerous small, poorly developed plastids and small vacuoles, whereas medullar cells had several large plastids with well‐developed thylakoid systems and fewer vacuoles. In B. pubescens subspecies, vacuoles of the glandular cells contained osmiophilic deposits, which were probably phenolic, whereas in B. pendula, vacuoles of glandular trichomes were characterized by the presence of numerous myelin‐like membranes. The composition of epicuticular flavonoids also differed among species. The two subspecies of B. pubescens and B. nana shared the same 12 compounds, but five of these occurred only in trace amounts in B. nana. Leaf surface extracts of B. pendula contained just six flavonoids, three of which occurred only in this species. In summary, the structure, density and distribution of leaf trichomes and the composition of epicuticular flavonoids represent good taxonomic markers for Finnish birch species. PMID:12714363
Lipson, Steven M; Ozen, Fatma S; Louis, Samantha; Karthikeyan, Laina
2015-01-01
A number of secondary plant metabolites (e.g., flavonoids) possess antiviral/antimicrobial activity. Most flavonoids, however, are difficult to study, as they are immiscible in water-based systems. The relatively new semisynthetic α-glucosyl hesperitin (GH), and the natural plant product epigallocatechin gallate (EGCG) are unique among most flavonoids, as these flavonoids are highly soluble. The antiviral activity of these plant metabolites were investigated using the rotavirus as a model enteric virus system. Direct loss of virus structural integrity in cell-free suspension and titration of amplified RTV in host cell cultures was measured by a quantitative enzyme-linked immunosorbent assay (qEIA). After 30 min. 100 × 10(3) μg/ml GH reduced RTV antigen levels by ca. 90%. The same compound reduced infectivity (replication in cell culture) by a similar order of magnitude 3 to 4 days post inoculation. After 3 days in culture, EGCG concentrations of 80, 160, and 320 μg/ml reduced RTV infectivity titer levels to ca. 50, 20, and 15% of the control, respectively. Loss of RTV infectivity titers occurred following viral treatment by parallel testing of both GH and EGCG, with the latter, markedly more effective. Cytotoxicity testing showed no adverse effects by the phenolic concentrations used in this study. The unique chemical structure of each flavonoid rather than each phenolic's inherent solubility may be ascribed to those marked differences between each molecule's antiviral (anti-RTV) effects. The solubility of EGCG and GH obviated our need to use potentially confounding or obfuscating carrier molecules (e.g., methanol, ethanol, DMSO) denoting our use of a pure system environ. Our work further denotes the need to address the unique chemical nature of secondary plant metabolites before any broad generalizations in flavonoid (antiviral) activity may be proposed.
Transcriptional profiling of cork oak phellogenic cells isolated by laser microdissection.
Teixeira, Rita Teresa; Fortes, Ana Margarida; Bai, Hua; Pinheiro, Carla; Pereira, Helena
2018-02-01
The phenylpropanoid pathway impacts the cork quality development. In cork of bad quality, the flavonoid route is favored, whereas in good quality, cork lignin and suberin production prevails. Cork oaks develop a thick cork tissue as a protective shield that results of the continuous activity of a secondary meristem, the cork cambium, or phellogen. Most studies applied to developmental processes do not consider the cell types from which the samples were extracted. Here, laser microdissection (LM) coupled with transcript profiling using RNA sequencing (454 pyrosequencing) was applied to phellogen cells of trees producing low- and good quality cork. Functional annotation and functional enrichment analyses showed that stress-related genes are enriched in samples extracted from trees producing good quality cork (GQC). This process is under tight transcriptional (transcription factors, kinases) regulation and also hormonal control involving ABA, ethylene, and auxins. The phellogen cells collected from trees producing bad quality cork (BQC) show a consistent up-regulation of genes belonging to the flavonoid pathway as a response to stress. They also display a different modulation of cell wall genes resulting into a thinner cork layer, i.e., less meristematic activity. Based on the analysis of the phenylpropanoid pathway regulating genes, in GQC, the synthesis of lignin and suberin is promoted, whereas in BQC, the same pathway favors the biosynthesis of free phenolic compounds. This study provided new insights of how cell-specific gene expression can determine tissue and organ morphology and physiology and identified robust candidate genes that can be used in breeding programs aiming at improving cork quality.
Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Yang, Tae-Jin; Hur, Yoonkang; Nou, Ill-Sup
2014-10-15
Flavonoids including anthocyanins provide flower and leaf colors, as well as other derivatives that play diverse roles in plant development and interactions with the environment. Dihydroflavonol 4-reductase (DFR) is part of an important step in the flavonoid biosynthetic pathway of anthocyanins. This study characterized 12 DFR genes of Brassica rapa and investigated their association with anthocyanin coloration, as well as cold and freezing stress in several genotypes of B. rapa. Comparison of sequences of these genes with DFR gene sequences from other species revealed a high degree of homology. Constitutive expression of the genes in several pigmented and non-pigmented lines of B. rapa demonstrated correlation with anthocyanin accumulation for BrDFR8 and 9. Conversely, BrDFR2, 4, 8 and 9 only showed very high responses to cold stress in pigmented B. rapa samples. BrDFR1, 3, 5, 6 and 10 responded to cold and freezing stress treatments, regardless of pigmentation. BrDFRs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold and freezing stress. Thus, the above results suggest that these genes are associated with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold and/or freezing stress resistant Brassica crops with desirable colors as well. These findings may also facilitate exploration of the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stresses. Copyright © 2014 Elsevier B.V. All rights reserved.
Brugliera, Filippa; Tao, Guo-Qing; Tems, Ursula; Kalc, Gianna; Mouradova, Ekaterina; Price, Kym; Stevenson, Kim; Nakamura, Noriko; Stacey, Iolanda; Katsumoto, Yukihisa; Tanaka, Yoshikazu; Mason, John G
2013-10-01
Chrysanthemums (Chrysanthemum×morifolium Ramat.) are an important cut-flower and potted plant crop in the horticultural industry world wide. Chrysanthemums express the flavonoid 3'-hydroxylase (F3'H) gene and thus accumulate anthocyanins derived from cyanidin in their inflorescences which appear pink/red. Delphinidin-based anthocyanins are lacking due to the deficiency of a flavonoid 3', 5'-hydroxylase (F3'5'H), and so violet/blue chrysanthemum flower colors are not found. In this study, together with optimization of transgene expression and selection of the host cultivars and gene source, F3'5'H genes have been successfully utilized to produce transgenic bluish chrysanthemums that accumulate delphinidin-based anthocyanins. HPLC analysis and feeding experiments with a delphinidin precursor identified 16 cultivars of chrysanthemums out of 75 that were predicted to turn bluish upon delphinidin accumulation. A selection of eight cultivars were successfully transformed with F3'5'H genes under the control of different promoters. A pansy F3'5'H gene under the control of a chalcone synthase promoter fragment from rose resulted in the effective diversion of the anthocyanin pathway to produce delphinidin in transgenic chrysanthemum flower petals. The resultant petal color was bluish, with 40% of total anthocyanidins attributed to delphinidin. Increased delphinidin levels (up to 80%) were further achieved by hairpin RNA interference-mediated silencing of the endogenous F3'H gene. The resulting petal colors were novel bluish hues, not possible by hybridization breeding. This is the first report of the production of anthocyanins derived from delphinidin in chrysanthemum petals leading to novel flower color.
Pillai, Bhinu V. S.; Swarup, Sanjay
2002-01-01
Flavonoids are 15-carbon plant secondary metabolites exuded in the rhizosphere that hosts several flavonoid-degrading bacteria. We studied flavonoid catabolism in a plant growth-promoting rhizobacterial strain of Pseudomonas by using a combination of biochemical and genetic approaches. Transposants carrying mini-Tn5gfp insertions were screened for flavonoid auxotrophy, and these mutant strains were found to be unable to grow in the flavonols naringenin and quercetin, while their growth in glycerol was comparable to that of the parental strain. In order to understand flavonoid catabolism, culture supernatants, whole-cell fractions, cell lysate, and cell debris of the wild-type and mutant strains were analyzed. Intermediates that accumulated intracellularly and those secreted in the medium were identified by a combination of reversed-phase high-pressure liquid chromatography and electrospray ionization-mass spectrometry. Structures of four key intermediates were confirmed by one-dimensional nuclear magnetic resonance spectroscopy. Comparative metabolic profiling of the compounds in the wild-type and mutant strains allowed us to understand the degradation events and to identify six metabolic intermediates. The first step in the pathway involves 3,3′-didehydroxylation, followed by hydrolysis and cleavage of the C-ring, leading via subsequent oxidations to the formation of protocatechuate. This is the first report on quercetin dehydroxylation in aerobic conditions leading to naringenin accumulation. PMID:11772620
Wen, Lei; Lin, Yunliang; Lv, Ruimin; Yan, Huijiao; Yu, Jinqian; Zhao, Hengqiang; Wang, Xiao; Wang, Daijie
2017-05-09
In this work, flavonoid fraction from the leaves of Crataegus pinnatifida was separated into its seven main constituents using a combination of HSCCC coupled with pre-HPLC. In the first step, the total flavonoid extract was subjected to HSCCC with a two-solvent system of chloroform/methanol/water/ n -butanol (4:3:2:1.5, v/v ), yielding four pure compounds, namely (-)-epicatechin ( 1 ), quercetin-3- O -(2,6-di-α-l-rhamnopyranosyl)-β-d-galactopyranoside ( 2 ), 4''- O -glucosylvitexin ( 3 ) and 2''- O -rhamnosylvitexin ( 4 ) as well as a mixture of three further flavonoids. An extrusion mode was used to rapidly separate quercetin-3- O -(2,6-di-α-l-rhamnopyranosyl)-β-d-galactopyranoside with a big K D -value. In the second step, the mixture that resulted from HSCCC was separated by pre-HPLC, resulting in three pure compounds including: vitexin ( 5 ), hyperoside ( 6 ) and isoquercitrin ( 7 ). The purities of the isolated compounds were established to be over 98%, as determined by HPLC. The structures of these seven flavonoids were elucidated by ESI-MS and NMR spectroscopic analyses.
Investigation of flavonoid influence on peroxidation processes intensity in the blood
NASA Astrophysics Data System (ADS)
Navolokin, N. A.; Mudrak, D. A.; Plastun, I. L.; Bucharskaya, A. B.; Agandeeva, K. E.; Ivlichev, A. V.; Tychina, S. A.; Afanasyeva, G. A.; Polukonova, N. V.; Maslyakova, G. N.
2017-03-01
Influence of flavonoids on the intensity of peroxidation processes in the blood is investigated by numerical modeling and by experiment in vivo. As an example we consider the effects of flavonoid-containing extract of Helichrysum arenarium L. with antitumor activity on serum of rats with transplanted liver cancer PC-1. It was found that the content of malondialdehyde, lipid hydroperoxides and average mass molecules were decreased in animals with transplanted liver cancer after intramuscular and oral administration of Helichrysum arenarium L extract in a dose of 1000 mg/mL. The extract reduces the intensity of lipid peroxidation processes in animals. The compound formation possibility of flavonoids and products of lipid peroxidation is investigated by numerical simulations. Using the density functional theory method of molecular modeling, we analyze hydrogen bonds formation and their influence on IR - spectra and structure of molecular complex which is formed due to interaction between flavonoids and products of lipid peroxidation processes on example of naringine and malondialdehyde. We have found that naringine can form a steady molecular complex with malondialdehyde by hydrogen bonds formation. Thus, the application of Helichrysum arenarium L. extract for suppression processes of lipid peroxidation and activation of enzymatic and non-enzymatic antioxidant systems is promising.
Paczkowski, Jon E.; Mukherjee, Sampriti; McCready, Amelia R.; Cong, Jian-Ping; Aquino, Christopher J.; Kim, Hahn; Henke, Brad R.; Smith, Chari D.; Bassler, Bonnie L.
2017-01-01
Quorum sensing is a process of cell-cell communication that bacteria use to regulate collective behaviors. Quorum sensing depends on the production, detection, and group-wide response to extracellular signal molecules called autoinducers. In many bacterial species, quorum sensing controls virulence factor production. Thus, disrupting quorum sensing is considered a promising strategy to combat bacterial pathogenicity. Several members of a family of naturally produced plant metabolites called flavonoids inhibit Pseudomonas aeruginosa biofilm formation by an unknown mechanism. Here, we explore this family of molecules further, and we demonstrate that flavonoids specifically inhibit quorum sensing via antagonism of the autoinducer-binding receptors, LasR and RhlR. Structure-activity relationship analyses demonstrate that the presence of two hydroxyl moieties in the flavone A-ring backbone are essential for potent inhibition of LasR/RhlR. Biochemical analyses reveal that the flavonoids function non-competitively to prevent LasR/RhlR DNA binding. Administration of the flavonoids to P. aeruginosa alters transcription of quorum sensing-controlled target promoters and suppresses virulence factor production, confirming their potential as anti-infectives that do not function by traditional bacteriocidal or bacteriostatic mechanisms. PMID:28119451
Wu, Junjun; Du, Guocheng; Zhou, Jingwen; Chen, Jian
2014-10-20
Flavonoids possess pharmaceutical potential due to their health-promoting activities. The complex structures of these products make extraction from plants difficult, and chemical synthesis is limited because of the use of many toxic solvents. Microbial production offers an alternate way to produce these compounds on an industrial scale in a more economical and environment-friendly manner. However, at present microbial production has been achieved only on a laboratory scale and improvements and scale-up of these processes remain challenging. Naringenin and pinocembrin, which are flavonoid scaffolds and precursors for most of the flavonoids, are the model molecules that are key to solving the current issues restricting industrial production of these chemicals. The emergence of systems metabolic engineering, which combines systems biology with synthetic biology and evolutionary engineering at the systems level, offers new perspectives on strain and process optimization. In this review, current challenges in large-scale fermentation processes involving flavonoid scaffolds and the strategies and tools of systems metabolic engineering used to overcome these challenges are summarized. This will offer insights into overcoming the limitations and challenges of large-scale microbial production of these important pharmaceutical compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhou, Jing; Chen, Yan; Wang, Ying; Gao, Xia; Qu, Ding; Liu, Congyan
2013-12-24
The aim of this study was to compare the significance of the intestinal hydrolysis of prenylated flavonoids in Herba Epimedii by an intestinal enzyme and flora. Flavonoids were incubated at 37 °C with rat intestinal enzyme and intestinal flora. HPLC-UV was used to calculate the metabolic rates of the parent drug in the incubation and LC/MS/MS was used to determine the chemical structures of metabolites generated by different flavonoid glycosides. Rates of flavonoid metabolism by rat intestinal enzyme were quicker than those of intestinal flora. The sequence of intestinal flora metabolic rates was icariin>epimedin B>epimedin A>epimedin C>baohuoside I, whereas the order of intestinal enzyme metabolic rates was icariin>epimedin A>epimedin C>epimedin B>baohuoside I. Meanwhile, the LC/MS/MS graphs showed that icariin produced three products, epimedin A/B/C had four and baohuoside I yielded one product in incubations of both intestinal enzyme and flora, which were more than the results of HPLC-UV due to the fact LC/MS/MS has lower detectability and higher sensitivity. Moreover, the outcomes indicated that the rate of metabolization of flavonoids by intestinal enzyme were faster than those of intestinal flora, which was consistent with the HPLC-UV results. In conclusion, the metabolic pathways of the same components by intestinal flora and enzyme were the same. What's more, an intestinal enzyme such as lactase phlorizin hydrolase exhibited a more significant metabolic role in prenylated flavonoids of Herba Epimedi compared with intestinal flora.
Transcriptional analysis of apple fruit proanthocyanidin biosynthesis
Henry-Kirk, Rebecca A.
2012-01-01
Proanthocyanidins (PAs) are products of the flavonoid pathway, which also leads to the production of anthocyanins and flavonols. Many flavonoids have antioxidant properties and may have beneficial effects for human health. PAs are found in the seeds and fruits of many plants. In apple fruit (Malus × domestica Borkh.), the flavonoid biosynthetic pathway is most active in the skin, with the flavan-3-ols, catechin, and epicatechin acting as the initiating units for the synthesis of PA polymers. This study examined the genes involved in the production of PAs in three apple cultivars: two heritage apple cultivars, Hetlina and Devonshire Quarrenden, and a commercial cultivar, Royal Gala. HPLC analysis shows that tree-ripe fruit from Hetlina and Devonshire Quarrenden had a higher phenolic content than Royal Gala. Epicatechin and catechin biosynthesis is under the control of the biosynthetic enzymes anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR1), respectively. Counter-intuitively, real-time quantitative PCR analysis showed that the expression levels of Royal Gala LAR1 and ANR were significantly higher than those of both Devonshire Quarrenden and Hetlina. This suggests that a compensatory feedback mechanism may be active, whereby low concentrations of PAs may induce higher expression of gene transcripts. Further investigation is required into the regulation of these key enzymes in apple. Abbreviations:ANOVAanalysis of varianceANRanthocyanidin reductaseDADdiode array detectorDAFBdays after full bloomDFRdihydroflavonol reductaseLARleucoanthocyanidin reductaseLC-MSliquid chromatography/mass spectrometryPAproanthocyanidinqPCRreal-time quantitative PCR PMID:22859681
Yellow flowers generated by expression of the aurone biosynthetic pathway
Ono, Eiichiro; Fukuchi-Mizutani, Masako; Nakamura, Noriko; Fukui, Yuko; Yonekura-Sakakibara, Keiko; Yamaguchi, Masaatsu; Nakayama, Toru; Tanaka, Takaharu; Kusumi, Takaaki; Tanaka, Yoshikazu
2006-01-01
Flower color is most often conferred by colored flavonoid pigments. Aurone flavonoids confer a bright yellow color on flowers such as snapdragon (Antirrhinum majus) and dahlia (Dahlia variabilis). A. majus aureusidin synthase (AmAS1) was identified as the key enzyme that catalyzes aurone biosynthesis from chalcones, but transgenic flowers overexpressing AmAS1 gene failed to produce aurones. Here, we report that chalcone 4′-O-glucosyltransferase (4′CGT) is essential for aurone biosynthesis and yellow coloration in vivo. Coexpression of the Am4′CGT and AmAS1 genes was sufficient for the accumulation of aureusidin 6-O-glucoside in transgenic flowers (Torenia hybrida). Furthermore, their coexpression combined with down-regulation of anthocyanin biosynthesis by RNA interference (RNAi) resulted in yellow flowers. An Am4′CGT-GFP chimeric protein localized in the cytoplasm, whereas the AmAS1(N1-60)-RFP chimeric protein was localized to the vacuole. We therefore conclude that chalcones are 4′-O-glucosylated in the cytoplasm, their 4′-O-glucosides transported to the vacuole, and therein enzymatically converted to aurone 6-O-glucosides. This metabolic pathway is unique among the known examples of flavonoid, including anthocyanin biosynthesis because, for all other compounds, the carbon backbone is completed before transport to the vacuole. Our findings herein not only demonstrate the biochemical basis of aurone biosynthesis but also open the way to engineering yellow flowers for major ornamental species lacking this color variant. PMID:16832053
Iaria, Domenico L.; Chiappetta, Adriana; Muzzalupo, Innocenzo
2016-01-01
Highlights A de novo transcriptome reconstruction of olive drupes was performed in two genotypesGene expression was monitored during drupe development in two olive cultivarsTranscripts involved in flavonoid and anthocyanin pathways were analyzed in Cassanese and Leucocarpa cultivarsBoth cultivar and developmental stage impact gene expression in Olea europaea fruits. During ripening, the fruits of the olive tree (Olea europaea L.) undergo a progressive chromatic change characterized by the formation of a red-brown “spot” which gradually extends on the epidermis and in the innermost part of the mesocarp. This event finds an exception in the Leucocarpa cultivar, in which we observe a destabilized equilibrium between the metabolisms of chlorophyll and other pigments, particularly the anthocyanins whose switch-off during maturation promotes the white coloration of fruits. Despite its importance, genomic information on the olive tree is still lacking. Different RNA-seq libraries were generated from drupes of “Leucocarpa” and “Cassanese” olive genotypes, sampled at 100 and 130 days after flowering (DAF), and were used in order to identify transcripts involved in the main phenotypic changes of fruits during maturation and their corresponding expression patterns. A total of 103,359 transcripts were obtained and 3792 and 3064 were differentially expressed in “Leucocarpa” and “Cassanese” genotypes, respectively, during 100–130 DAF transition. Among them flavonoid and anthocyanin related transcripts such as phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonol 3′-hydrogenase (F3′H), flavonol 3′5 ′-hydrogenase (F3′5′H), flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), UDP-glucose:anthocianidin: flavonoid glucosyltransferase (UFGT) were identified. These results contribute to reducing the current gap in information regarding metabolic processes, including those linked to fruit pigmentation in the olive. PMID:26834761
Chen, Shao-Dan; Gao, Hao; Zhu, Qin-Chang; Wang, Ya-Qi; Li, Ting; Mu, Zhen-Qiang; Wu, Hong-Ling; Peng, Tao; Yao, Xin-Sheng
2012-04-06
Houttuynoids A-E (1-5), a new type of flavonoid with houttuynin tethered to hyperoside, and their presumed biosynthetic precursor hyperoside (6) were isolated from the whole plant of Houttuynia cordata. Their structures were elucidated by analysis of 1D and 2D NMR. A hypothetical biogenetic pathway for houttuynoids A-E was proposed. Compounds 1-5 exhibited potent anti-HSV (herpes simplex viruses) activity.
Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro
2006-07-01
Isoprenoid-substituted flavonoids were isolated from the wood of Artocarpus heterophyllus by means of activity-guided fractionation. Artocarpin (1), cudraflavone C (2), 6-prenylapigenin (3), kuwanon C (4), norartocarpin (5) and albanin A (6) inhibited melanin biosynthesis in B16 melanoma cells without inhibiting tyrosinase. A structure-activity investigation indicated that the presence of the isoprenoid-substituted moiety enhanced the inhibitory activity on melanin production in B16 melanoma cells.
Apigenin impacts growth of the gut microbiota and alters gene expression of Enterococcus
USDA-ARS?s Scientific Manuscript database
Apigenin is a major dietary flavonoid widely distributed in plants with many bioactivities. Apigenin reaches the colon region intact and interacts with the human gut microbiota; however, there is little research on how apigenin affects gut bacteria. This study investigated the effect of pure apigeni...
Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus.
Wang, Minqian; Firrman, Jenni; Zhang, Liqing; Arango-Argoty, Gustavo; Tomasula, Peggy; Liu, LinShu; Xiao, Weidong; Yam, Kit
2017-08-03
Apigenin is a major dietary flavonoid with many bioactivities, widely distributed in plants. Apigenin reaches the colon region intact and interacts there with the human gut microbiota, however there is little research on how apigenin affects the gut bacteria. This study investigated the effect of pure apigenin on human gut bacteria, at both the single strain and community levels. The effect of apigenin on the single gut bacteria strains Bacteroides galacturonicus , Bifidobacterium catenulatum , Lactobacillus rhamnosus GG, and Enterococcus caccae , was examined by measuring their anaerobic growth profiles. The effect of apigenin on a gut microbiota community was studied by culturing a fecal inoculum under in vitro conditions simulating the human ascending colon. 16S rRNA gene sequencing and GC-MS analysis quantified changes in the community structure. Single molecule RNA sequencing was used to reveal the response of Enterococcus caccae to apigenin. Enterococcus caccae was effectively inhibited by apigenin when cultured alone, however, the genus Enterococcus was enhanced when tested in a community setting. Single molecule RNA sequencing found that Enterococcus caccae responded to apigenin by up-regulating genes involved in DNA repair, stress response, cell wall synthesis, and protein folding. Taken together, these results demonstrate that apigenin affects both the growth and gene expression of Enterococcus caccae .
Vachálková, A; Novotný, L; Nejedlíková, M; Suchý, V
1995-01-01
Polarographic behavior of three homoisoflavanoids and four flavanoids isolated from the dragon's blood (Resina sanguinis draconis. Dracaena cinnabari Balf.), collected at Sokotra, was investigated in aprotic solution and an index of potential carcinogenicity tg alpha was determined. Generally, homoisoflavanoids and flavanoids were reduced in two two-electron steps, the first being reversible and the second one irreversible. The parameter tg alpha values indicated that the majority of these compounds possesses no or only marginal potential carcinogenic activity. However, it was demonstrated that some structural modifications in basic flavonoid structure lead to changed electrochemical properties and a substantial increase of derivative potential carcinogenicity.
Jin, Yu; Xiao, Yuan-sheng; Zhang, Fei-fang; Xue, Xing-ya; Xu, Qing; Liang, Xin-miao
2008-02-13
The traditional Chinese medicine (TCM) is a complex system, which always consists of numerous compounds with significant difference in the content and physical and chemical properties. In this paper, a screening method based on target molecular weights was developed to characterize the flavonoid glycosides in the flower of Carthamus tinctorius L. The screening tables of aglycone and glycan were designed, respectively, in order to select and combine freely. The multiple reaction monitoring (MRM) scan mode with higher sensitivity and selectivity was adopted in the screening, which benefit the characterization for the minor components. Seventy-seven flavonoid glycosides were screened out finally, and their structures were characterized by tandem mass spectrometric method in both positive and negative ion modes. The glycosylation mode, aglycone, sequence and/or the interglycosidic linkages of the glycan portion and glycosylation position were elucidated by the fragmentation rule in the MS. Numerous compounds screened out with this method showed the structure variety in secondary plant metabolites, and the purposeful screening systemically and subsequent structure characterization offered more information about the chemical constitutions of TCM.
Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan; ...
2015-06-17
In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins.more » Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Altogether, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan
In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins.more » Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Altogether, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.« less
Oxygenolysis of flavonoid compounds: DFT description of the mechanism for quercetin.
Fiorucci, Sébastien; Golebiowski, Jerôme; Cabrol-Bass, Daniel; Antonczak, Serge
2004-11-12
Flavonoids are naturally occurring phenol derivatives present in substantial amounts in a large variety of plants, fruits and vegetables daily eaten by humans. Most of these compounds exhibit several interesting biological activities, such as antiradical and antioxidant actions. Indeed, by complexation with specific enzymes, flavonoids are notably liable to metabolize molecular dioxygen. On the basis of experimental results describing oxygenolysis of the flavonoid quercetin, activated by the enzyme quercetin 2,3-dioxygenase (2,3-QD),ur attention has focused on the role of metal center in the activation of the substrate quercetin. Thus, in the present study, by means of DFT calculations at the B3LYP/ 6-31(+)G* level on model molecular systems, we describe different mechanisms for dioxygen metabolization by quercetin. Stationary points are described, and energetic and structural analyses along the reaction paths are reported. Our calculations show that the copper cation must act as an oxidant towards the substrate and that the reaction proceeds through a 1,3-cycloaddition.
A new triglycosyl flavonoid isolated from leaf juice of Kalanchoe gastonis-bonnieri (Crassulaceae).
Costa, Sônia Soares; Corrêa, Maria Fernanda Paresqui; Casanova, Livia Marques
2015-03-01
Kalanchoe gastonis-bonnieri R. Hamet & H. Perrier (Crassulaceae) is a succulent species empirically used as a vaginal contraceptive as well as to heal genitourinary infections. A phytochemical study of leaf juice prepared from specimens collected in the flowering season resulted in the isolation of the new flavonoid quercetin 3-O-α-rhamnopyranoside-7-O-β-D-glucopyranosyl-(1-->3)-α-L-rhamnopyranoside, as well as the already known 6-C-β-D-glucopyranosyl- 8-C-β-D-glucopyranosylapigenin (vicenin-2). The NMR spectra of this flavonoid at room temperature exhibited broad and duplicated signals, suggesting the existence of rotameric conformers, which was confirmed by coalescence of the signals at 40°C. The structural elucidation was based on 1H and 13C NMR (HMQC and HMBC) analyses and MS data. This is the first report of a C-glycosyl flavonoid (vicenin-2) in the Crassulaceae family. Additionally, this is the first study in which atropoisomerism has been shown for vicenin-2.
Zhang, Yi-Xuan; Li, Qiu-Yue; Yan, Li-Li; Shi, Yue
2011-08-15
Biflavonoids, a special class of flavonoids, are widely distributed in gymnosperm plants and have various biological activities. They are also major bioactive ingredients in Selaginella tamariscina. In this work, we report the use of high-performance liquid chromatography with a diode-array detector (HPLC-DAD) and electrospray ionization multi-stage tandem mass spectrometry (ESI-MS(n)) to study the fragmentation behavior of three main types of biflavonoids using seven biflavonoid reference compounds and analyze the biflavonoids in Selaginella tamariscina. The most useful fragmentations in terms of structural identification are those involving the C-ring cleavage of biflavonoids. For amentoflavone-type biflavonoids (containing flavonoid parts I and II), fragmentation on the flavonoid part II at positions 1/3 and 0/4 are the primary pathways, whereas the chances are greater for C-ring cleavage fragmentation occurring on flavonoid part I at positions 1/3 and 1/4 for robustaflavone-type biflavonoids. However, the predominant diagnostic ions of the specific C-O-C-connected hinokiflavone-type biflavonoids are a series of ions resulting from the rupture of the connective C-O bond. Based on the fragmentation patterns of these reference compounds, 17 biflavonoids were identified in an extract of Selaginella tamariscina, three of which have not been previously reported as constituents of this plant. This study provides a powerful approach for the online structural elucidation and identification of different types of biflavonoids and positional isomers from Selaginella tamariscina and other biflavonoids distributed in related plants and prescriptions. Copyright © 2011 John Wiley & Sons, Ltd.
Three New Isoprenylated Flavonoids from the Root Bark of Morus alba.
Jung, Jae-Woo; Park, Ji-Hae; Lee, Yeong-Geun; Seo, Kyeong-Hwa; Oh, Eun-Ji; Lee, Dae-Young; Lim, Dong-Wook; Han, Daeseok; Baek, Nam-In
2016-08-24
Phytochemical investigation of the root bark of Morus alba has led to the isolation and identification of three new isoprenylated flavonoids, namely sanggenon U (1), sanggenon V (2), and sanggenon W (3), along with four known isoprenylated flavonoids: euchrenone a₇ (4), sanggenon J (5), kuwanon E (6), and kuwanon S (7). All compounds were isolated by repeated silica gel (SiO₂), octadecyl SiO₂ (ODS), and Sephadex LH-20 open column chromatography. The structure of the compounds were determined based on spectroscopic analyses, including nuclear magnetic resonance (NMR), mass spectrometry (MS), circular dichroism (CD), and infrared (IR). In addition, compounds 1-4 were isolated for the first time from the root bark of M. alba in this study.
Anticoagulant flavonoid oligomers from the rhizomes of Alpinia platychilus.
Shen, Chuan-Pu; Luo, Jian-Guang; Yang, Ming-Hua; Kong, Ling-Yi
2015-10-01
Two pairs of enantiomers of flavonoid oligomers (1a and 1b, 2a and 2b) along with one known chalcone (3) were isolated from the rhizomes of Alpinia platychilus. Their structures were elucidated on the basis of spectroscopic data (MS and 1D/2D NMR). The absolute configurations of the flavonoid oligomers were established by their ECD spectra. Separation of the enantiomeric mixtures (1a and 1b, 2a and 2b) was achieved on a chiral column using hexane:isopropyl alcohol:ethanol (7:2:1) as eluents. The anticoagulant assay showed that 2a, 2b and 3 exhibited potent activities to prolong the prothrombin times (PT) and the thrombin times (TT). Copyright © 2015 Elsevier B.V. All rights reserved.
Synthesis, characterization and antioxidant activity copper-quercetin complex.
Bukhari, S Birjees; Memon, Shahabuddin; Mahroof-Tahir, M; Bhanger, M I
2009-01-01
Quercetin (3,3',4',5,7-pentahydroxyflavone) one of the most abundant dietary flavonoids, has been investigated in the presence of Cu(II) in methanol. The spectroscopic studies (UV-vis, (1)H NMR and IR) were useful to assess the relevant interaction of Quercetin with Cu(II) ions, the chelation sites and dependence of the complex structure from the metal/ligand ratio. A 1:2 (L:M) complex was indicated by Job's method of continuous variation, which was applied to ascertain the stoichiometric composition of the complex. The antioxidant activities of the compounds were evaluated by using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. The complexed flavonoid was much more effective free radical scavengers than the free flavonoids.
Synthesis, characterization and antioxidant activity copper-quercetin complex
NASA Astrophysics Data System (ADS)
Bukhari, S. Birjees; Memon, Shahabuddin; Mahroof-Tahir, M.; Bhanger, M. I.
2009-01-01
Quercetin (3,3',4',5,7-pentahydroxyflavone) one of the most abundant dietary flavonoids, has been investigated in the presence of Cu(II) in methanol. The spectroscopic studies (UV-vis, 1H NMR and IR) were useful to assess the relevant interaction of Quercetin with Cu(II) ions, the chelation sites and dependence of the complex structure from the metal/ligand ratio. A 1:2 (L:M) complex was indicated by Job's method of continuous variation, which was applied to ascertain the stoichiometric composition of the complex. The antioxidant activities of the compounds were evaluated by using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. The complexed flavonoid was much more effective free radical scavengers than the free flavonoids.
Fassihi, Afshin; Sabet, Razieh
2008-01-01
Quantitative relationships between molecular structure and p56lck protein tyrosine kinase inhibitory activity of 50 flavonoid derivatives are discovered by MLR and GA-PLS methods. Different QSAR models revealed that substituent electronic descriptors (SED) parameters have significant impact on protein tyrosine kinase inhibitory activity of the compounds. Between the two statistical methods employed, GA-PLS gave superior results. The resultant GA-PLS model had a high statistical quality (R2 = 0.74 and Q2 = 0.61) for predicting the activity of the inhibitors. The models proposed in the present work are more useful in describing QSAR of flavonoid derivatives as p56lck protein tyrosine kinase inhibitors than those provided previously. PMID:19325836
Xiang, Nan; Guo, Xinbo; Liu, Fengyuan; Li, Quan; Hu, Jianguang; Brennan, Charles Stephen
2017-01-01
Sweet corn is one of the most widely planted crops in China. Sprouting of grains is a new processes to increase the nutritional value of grain products. The present study explores the effects of light on the nutritional quality of sweet corn sprouts. Gene expression of phenolic biosynthesis, phytochemical profiles and antioxidant activity were studied. Two treatments (light and dark) were selected and the morphological structure of sweet corn sprouts, as well as their biochemical composition were investigated to determine the effects of light on the regulation of genes responsible for nutritional compounds. Transcription analyses for three key-encoding genes in the biosynthesis of the precursors of phenolic were studied. Results revealed a negative regulation in the expression of ZmPAL with total phenolic content (TPC) in the light group. TPC and total flavonoid content (TFC) increased during germination and this was correlated with an increase in antioxidant activity (r = 0.95 and 1.0). The findings illustrate that the nutritional value of sweet corn for the consumer can be improved through germination to the euphylla stage. PMID:28604597
Dietary polyphenols and chromatin remodeling.
Russo, Gian Luigi; Vastolo, Viviana; Ciccarelli, Marco; Albano, Luigi; Macchia, Paolo Emidio; Ungaro, Paola
2017-08-13
Polyphenols are the most abundant phytochemicals in fruits, vegetables, and plant-derived beverages. Recent findings suggest that polyphenols display the ability to reverse adverse epigenetic regulation involved in pathological conditions, such as obesity, metabolic disorder, cardiovascular and neurodegenerative diseases, and various forms of cancer. Epigenetics, defined as heritable changes to the transcriptome, independent from those occurring in the genome, includes DNA methylation, histone modifications, and posttranscriptional gene regulation by noncoding RNAs. Sinergistically and cooperatively, these processes regulate gene expression by changing chromatin organization and DNA accessibility. Such induced epigenetic changes can be inherited during cell division, resulting in permanent maintenance of the acquired phenotype, but they may also occur throughout an individual life-course and may ultimately influence phenotypic outcomes (health and disease risk). In the last decade, a number of studies have shown that nutrients can affect metabolic traits by altering the structure of chromatin and directly regulate both transcription and translational processes. In this context, dietary polyphenol-targeted epigenetics becomes an attractive approach for disease prevention and intervention. Here, we will review how polyphenols, including flavonoids, curcuminoids, and stilbenes, modulate the establishment and maintenance of key epigenetic marks, thereby influencing gene expression and, hence, disease risk and health.
Trezza, Alfonso; Cicaloni, Vittoria; Porciatti, Piera; Langella, Andrea; Fusi, Fabio; Saponara, Simona; Spiga, Ottavia
2018-01-01
ATP-sensitive inward rectifier potassium channels (Kir), are a potassium channel family involved in many physiological processes. K ATP dysfunctions are observed in several diseases such as hypoglycaemia, hyperinsulinemia, Prinzmetal angina-like symptoms, cardiovascular diseases. A broader view of the K ATP mechanism is needed in order to operate on their regulation, and in this work we clarify the structure of the Rattus norvegicus ATP-sensitive inward rectifier potassium channel 8 (Kir6.1), which has been obtained through a homology modelling procedure. Due to the medical use of flavonoids, a considerable increase in studies on their influence on human health has recently been observed, therefore our aim is to study, through computational methods, the three-dimensional (3D) conformation together with mechanism of action of Kir6.1 with three flavonoids. Computational analysis by performing molecular dynamics (MD) and docking simulation on rat 3D modelled structure have been completed, in its closed and open conformation state and in complex with Quercetin, 5-Hydroxyflavone and Rutin flavonoids. Our study showed that only Quercetin and 5-Hydroxyflavone were responsible for a significant down-regulation of the Kir6.1 activity, stabilising it in a closed conformation. This hypothesis was supported by in vitro experiments demonstrating that Quercetin and 5-Hydroxyflavone were capable to inhibit K ATP currents of rat tail main artery myocytes recorded by the patch-clamp technique. Combined methodological approaches, such as molecular modelling, docking and MD simulations of Kir6.1 channel, used to elucidate flavonoids intrinsic mechanism of action, are introduced, revealing a new potential druggable protein site.
Antioxidant and Antiproliferative Activities of Twenty-Four Vitis vinifera Grapes
Liang, Zhenchang; Cheng, Lailiang; Zhong, Gan-Yuan; Liu, Rui Hai
2014-01-01
Grapes are rich in phytochemicals with many proven health benefits. Phenolic profiles, antioxidant and antiproliferative activities of twenty-four selected Vitis vinifera grape cultivars were investigated in this study. Large ranges of variation were found in these cultivars for the contents of total phenolics (95.3 to 686.5 mg/100 g) and flavonoids (94.7 to 1055 mg/100 g) and antioxidant activities (oxygen radical absorbance capacity 378.7 to 3386.0 mg of Trolox equivalents/100 g and peroxylradical scavenging capacity14.2 to 557 mg of vitamin C equivalents/100 g), cellular antioxidant activities (3.9 to 139.9 µmol of quercetin equivalents/100 g without PBS wash and 1.4 to 95.8 µmol of quercetin equivalents /100 g with PBS wash) and antiproliferative activities (25 to 82% at the concentrations of 100 mg/mL extracts).The total antioxidant activities were significantly correlated with the total phenolics and flavonoids. However, no significant correlations were found between antiproliferative activities and total phenolics or total flavonoids content. Wine grapes and color grapes showed much higher levels of phytochemicals and antioxidant activities than table grapes and green/yellow grapes. Several germplasm accessions with much high contents of phenolics and flavonoids, and total antioxidant activity were identified. These germplasm can be valuable sources of genes for breeding grape cultivars with better nutritional qualities of wine and table grapes in the future. PMID:25133401
Gao, Wen; Chen, Chao; Kong, De-Yun
2013-01-01
Four new flavonol glycosides (1-4), hippophins C-F, together with one known flavonoid (5), were isolated from the seed residue of Hippophae rhamnoides subsp. sinensis. The chemical structures of these compounds were characterized by 1D and 2D NMR, and HR-ESI-MS data. This report is a continuous research work on the systematic chemical investigation of plants of the genus Hippophae in our laboratory.
Li, Man-Wah; Muñoz, Nacira B; Wong, Chi-Fai; Wong, Fuk-Ling; Wong, Kwong-Sen; Wong, Johanna Wing-Hang; Qi, Xinpeng; Li, Kwan-Pok; Ng, Ming-Sin; Lam, Hon-Ming
2016-01-01
Soybean seeds are a rich source of phenolic compounds, especially isoflavonoids, which are important nutraceuticals. Our study using 14 wild- and 16 cultivated-soybean accessions shows that seeds from cultivated soybeans generally contain lower total antioxidants compared to their wild counterparts, likely an unintended consequence of domestication or human selection. Using a recombinant inbred population resulting from a wild and a cultivated soybean parent and a bin map approach, we have identified an overlapping genomic region containing major quantitative trait loci (QTLs) that regulate the seed contents of total antioxidants, phenolics, and flavonoids. The QTL for seed antioxidant content contains 14 annotated genes based on the Williams 82 reference genome (Gmax1.01). None of these genes encodes functions that are related to the phenylpropanoid pathway of soybean. However, we found three putative Multidrug And Toxic Compound Extrusion (MATE) transporter genes within this QTL and one adjacent to it (GmMATE1-4). Moreover, we have identified non-synonymous changes between GmMATE1 and GmMATE2, and that GmMATE3 encodes an antisense transcript that expresses in pods. Whether the polymorphisms in GmMATE proteins are major determinants of the antioxidant contents, or whether the antisense transcripts of GmMATE3 play important regulatory roles, awaits further functional investigations.
Transcriptomes That Confer to Plant Defense against Powdery Mildew Disease in Lagerstroemia indica
Shi, Weibing; Rinehart, Timothy
2015-01-01
Transcriptome analysis was conducted in two popular Lagerstroemia cultivars: “Natchez” (NAT), a white flower and powdery mildew resistant interspecific hybrid and “Carolina Beauty” (CAB), a red flower and powdery mildew susceptible L. indica cultivar. RNA-seq reads were generated from Erysiphe australiana infected leaves and de novo assembled. A total of 37,035 unigenes from 224,443 assembled contigs in both genotypes were identified. Approximately 85% of these unigenes have known function. Of them, 475 KEGG genes were found significantly different between the two genotypes. Five of the top ten differentially expressed genes (DEGs) involved in the biosynthesis of secondary metabolites (plant defense) and four in flavonoid biosynthesis pathway (antioxidant activities or flower coloration). Furthermore, 5 of the 12 assembled unigenes in benzoxazinoid biosynthesis and 7 of 11 in flavonoid biosynthesis showed higher transcript abundance in NAT. The relative abundance of transcripts for 16 candidate DEGs (9 from CAB and 7 from NAT) detected by qRT-PCR showed general agreement with the abundances of the assembled transcripts in NAT. This study provided the first transcriptome analyses in L. indica. The differential transcript abundance between two genotypes indicates that it is possible to identify candidate genes that are associated with the plant defenses or flower coloration. PMID:26247009
Gitzinger, Marc; Kemmer, Christian; El-Baba, Marie Daoud; Weber, Wilfried; Fussenegger, Martin
2009-06-30
Adjustable control of therapeutic transgenes in engineered cell implants after transdermal and topical delivery of nontoxic trigger molecules would increase convenience, patient compliance, and elimination of hepatic first-pass effect in future therapies. Pseudomonas putida DOT-T1E has evolved the flavonoid-triggered TtgR operon, which controls expression of a multisubstrate-specific efflux pump (TtgABC) to resist plant-derived defense metabolites in its rhizosphere habitat. Taking advantage of the TtgR operon, we have engineered a hybrid P. putida-mammalian genetic unit responsive to phloretin. This flavonoid is contained in apples, and, as such, or as dietary supplement, regularly consumed by humans. The engineered mammalian phloretin-adjustable control element (PEACE) enabled adjustable and reversible transgene expression in different mammalian cell lines and primary cells. Due to the short half-life of phloretin in culture, PEACE could also be used to program expression of difficult-to-produce protein therapeutics during standard bioreactor operation. When formulated in skin lotions and applied to the skin of mice harboring transgenic cell implants, phloretin was able to fine-tune target genes and adjust heterologous protein levels in the bloodstream of treated mice. PEACE-controlled target gene expression could foster advances in biopharmaceutical manufacturing as well as gene- and cell-based therapies.
Gitzinger, Marc; Kemmer, Christian; El-Baba, Marie Daoud; Weber, Wilfried; Fussenegger, Martin
2009-01-01
Adjustable control of therapeutic transgenes in engineered cell implants after transdermal and topical delivery of nontoxic trigger molecules would increase convenience, patient compliance, and elimination of hepatic first-pass effect in future therapies. Pseudomonas putida DOT-T1E has evolved the flavonoid-triggered TtgR operon, which controls expression of a multisubstrate-specific efflux pump (TtgABC) to resist plant-derived defense metabolites in its rhizosphere habitat. Taking advantage of the TtgR operon, we have engineered a hybrid P. putida–mammalian genetic unit responsive to phloretin. This flavonoid is contained in apples, and, as such, or as dietary supplement, regularly consumed by humans. The engineered mammalian phloretin-adjustable control element (PEACE) enabled adjustable and reversible transgene expression in different mammalian cell lines and primary cells. Due to the short half-life of phloretin in culture, PEACE could also be used to program expression of difficult-to-produce protein therapeutics during standard bioreactor operation. When formulated in skin lotions and applied to the skin of mice harboring transgenic cell implants, phloretin was able to fine-tune target genes and adjust heterologous protein levels in the bloodstream of treated mice. PEACE-controlled target gene expression could foster advances in biopharmaceutical manufacturing as well as gene- and cell-based therapies. PMID:19549857
Das, Sreeparna; Mitra, Indrani; Batuta, Shaikh; Niharul Alam, Md; Roy, Kunal; Begum, Naznin Ara
2014-11-01
A series of flavonoid analogues were synthesized and screened for the in vitro antioxidant activity through their ability to quench 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical. The activity of these compounds, measured in comparison to the well-known standard antioxidants (29-32), their precursors (38-42) and other bioactive moieties (38-42) resembling partially the flavone skeleton was analyzed further to develop Quantitative Structure-Activity Relationship (QSAR) models using the Genetic Function Approximation (GFA) technique. Based on the essential structural requirements predicted by the QSAR models, some analogues were designed, synthesized and tested for activity. The predicted and experimental activities of these compounds were well correlated. Flavone analogue 20 was found to be the most potent antioxidant. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Lei; Xu, Liang; Xiao, Shan-Shan; Liao, Qiong-Feng; Li, Qing; Liang, Jian; Chen, Xiao-Hui; Bi, Kai-Shun
2007-09-03
A method coupling high-performance liquid chromatography (HPLC) with diode-array detector (DAD) and electrospray ionization mass spectrometry (ESI) was established for the separation and characterization of flavonoids in Sophora flavescens Ait. Based on the chromatographic separation of most flavonoids present in S. flavescens Ait., a total of 24 flavonoids were identified. Fourteen compounds were unambiguously identified comparing experimental data for retention time (t(R)), UV and MS spectra with those of the authentic compounds: 3',7-dihydroxy-4'-methoxy-isoflavone (13), trifolirhizin (14), kurarinol (18), formononetin (19), 7,4'-dihydroxy-5-methoxy-8-(gamma,gamma-dimethylallyl)-flavanone (22), maackiain (21), isoxanthohumol (23), kuraridine (26), kuraridinol (27), sophoraflavanone G (30), xanthohumol (31), isokurarinone (33), kurarinone (35) and kushenol D (38), and additional 10 compounds were tentatively identified as kushenol O (10), trifolirhizin-6''-malonate (15), sophoraisoflavanone A (20), norkurarinol/kosamol Q (24), kushenol I/N (25), kushenol C (28), 2'-methoxykurarinone (29), kosamol R (32), kushecarpin A (34) and kushenol A (37) by comparing experimental data for UV and MS spectra with those of literature. Furthermore, fragmentation pathways in positive ions mode of 24 flavonoid compounds of types of flavanone, flavanonol, flavonol, chalcone, isoflavone, isoflavanone and ptercocarpane were summarized. Some common features, such as CH(3)., H(2)O, CO, CO(2), C(3)O(2) and C(2)H(2)O losses, together with Retro-Diels-Alder fragmentations were observed in the prenylated flavonoids in S. flavescens Ait. The loss of the lanandulyl chain was their characteristic fragmentation, which might help deducing the structure of unknown flavonoid compounds. The present study provided an approach to rapidly characterize bioactive constituents in S. flavescens Ait.
Fu, Lili; Ding, Zehong; Han, Bingying; Hu, Wei; Li, Yajun; Zhang, Jiaming
2016-02-25
Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG) treatments. Five traits, including peroxidase (POD) activity, proline content, malondialdehyde (MDA), soluble sugar and soluble protein, were all dramatically induced in response to PEG treatment. RNA-seq analysis revealed a gradient decrease of differentially expressed (DE) gene number in tissues from bottom to top of a plant, suggesting that cassava root has a quicker response and more induced/depressed DE genes than leaves in response to drought. Overall, dynamic changes of gene expression profiles in cassava root and leaves were uncovered: genes related to glycolysis, abscisic acid and ethylene biosynthesis, lipid metabolism, protein degradation, and second metabolism of flavonoids were significantly induced, while genes associated with cell cycle/organization, cell wall synthesis and degradation, DNA synthesis and chromatin structure, protein synthesis, light reaction of photosynthesis, gibberelin pathways and abiotic stress were greatly depressed. Finally, novel pathways in ABA-dependent and ABA-independent regulatory networks underlying PEG-induced dehydration response in cassava were detected, and the RNA-Seq results of a subset of fifteen genes were confirmed by real-time PCR. The findings will improve our understanding of the mechanism related to dehydration stress-tolerance in cassava and will provide useful candidate genes for breeding of cassava varieties better adapted to drought environment.
Fu, Lili; Ding, Zehong; Han, Bingying; Hu, Wei; Li, Yajun; Zhang, Jiaming
2016-01-01
Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG) treatments. Five traits, including peroxidase (POD) activity, proline content, malondialdehyde (MDA), soluble sugar and soluble protein, were all dramatically induced in response to PEG treatment. RNA-seq analysis revealed a gradient decrease of differentially expressed (DE) gene number in tissues from bottom to top of a plant, suggesting that cassava root has a quicker response and more induced/depressed DE genes than leaves in response to drought. Overall, dynamic changes of gene expression profiles in cassava root and leaves were uncovered: genes related to glycolysis, abscisic acid and ethylene biosynthesis, lipid metabolism, protein degradation, and second metabolism of flavonoids were significantly induced, while genes associated with cell cycle/organization, cell wall synthesis and degradation, DNA synthesis and chromatin structure, protein synthesis, light reaction of photosynthesis, gibberelin pathways and abiotic stress were greatly depressed. Finally, novel pathways in ABA-dependent and ABA-independent regulatory networks underlying PEG-induced dehydration response in cassava were detected, and the RNA-Seq results of a subset of fifteen genes were confirmed by real-time PCR. The findings will improve our understanding of the mechanism related to dehydration stress-tolerance in cassava and will provide useful candidate genes for breeding of cassava varieties better adapted to drought environment. PMID:26927071
The purple cauliflower arises from activation of a MYB transcription factor.
Chiu, Li-Wei; Zhou, Xiangjun; Burke, Sarah; Wu, Xianli; Prior, Ronald L; Li, Li
2010-11-01
Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissues. To unravel the nature of the Pr mutation in cauliflower, we isolated the Pr gene via a combination of candidate gene analysis and fine mapping. Pr encoded a R2R3 MYB transcription factor that exhibited tissue-specific expression, consistent with an abnormal anthocyanin accumulation pattern in the mutant. Transgenic Arabidopsis (Arabidopsis thaliana) and cauliflower plants expressing the Pr-D allele recapitulated the mutant phenotype, confirming the isolation of the Pr gene. Up-regulation of Pr specifically activated a basic helix-loop-helix transcription factor and a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase to confer ectopic accumulation of pigments in the purple cauliflower. Our results indicate that the genetic variation including a Harbinger DNA transposon insertion in the upstream regulatory region of the Pr-D allele is responsible for the up-regulation of the Pr gene in inducing phenotypic change in the plant. The successful isolation of Pr provides important information on the regulatory control of anthocyanin biosynthesis in Brassica vegetables, and offers a genetic resource for development of new varieties with enhanced health-promoting properties and visual appeal.
The Purple Cauliflower Arises from Activation of a MYB Transcription Factor1[W][OA
Chiu, Li-Wei; Zhou, Xiangjun; Burke, Sarah; Wu, Xianli; Prior, Ronald L.; Li, Li
2010-01-01
Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissues. To unravel the nature of the Pr mutation in cauliflower, we isolated the Pr gene via a combination of candidate gene analysis and fine mapping. Pr encoded a R2R3 MYB transcription factor that exhibited tissue-specific expression, consistent with an abnormal anthocyanin accumulation pattern in the mutant. Transgenic Arabidopsis (Arabidopsis thaliana) and cauliflower plants expressing the Pr-D allele recapitulated the mutant phenotype, confirming the isolation of the Pr gene. Up-regulation of Pr specifically activated a basic helix-loop-helix transcription factor and a subset of anthocyanin structural genes encoding flavonoid 3’-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase to confer ectopic accumulation of pigments in the purple cauliflower. Our results indicate that the genetic variation including a Harbinger DNA transposon insertion in the upstream regulatory region of the Pr-D allele is responsible for the up-regulation of the Pr gene in inducing phenotypic change in the plant. The successful isolation of Pr provides important information on the regulatory control of anthocyanin biosynthesis in Brassica vegetables, and offers a genetic resource for development of new varieties with enhanced health-promoting properties and visual appeal. PMID:20855520
USDA-ARS?s Scientific Manuscript database
Ginkgo biloba is one of the oldest living tree species and has been extensively investigated as a source of bioactive natural compounds, including flavonoids, diterpene lactones, terpenoids and polysaccharides which accumulate in leaf tissues. Relatively few genes associated with biosynthetic pathwa...
USDA-ARS?s Scientific Manuscript database
Background: Purple carrots accumulate large quantities of anthocyanins in their roots and leaves. These flavonoid pigments possess antioxidant activity and are implicated in providing health benefits. The lack of informative and saturated linkage maps associated with well characterized populations s...
Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin.
Wu, Chung-Chun; Fang, Chih-Yeu; Cheng, Yu-Jhen; Hsu, Hui-Yu; Chou, Sheng-Ping; Huang, Sheng-Yen; Tsai, Ching-Hwa; Chen, Jen-Yang
2017-01-05
Lytic reactivation of EBV has been reported to play an important role in human diseases, including NPC carcinogenesis. Inhibition of EBV reactivation is considered to be of great benefit in the treatment of virus-associated diseases. For this purpose, we screened for inhibitory compounds and found that apigenin, a flavonoid, seemed to have the ability to inhibit EBV reactivation. We performed western blotting, immunofluorescence and luciferase analyses to determine whether apigenin has anti-EBV activity. Apigenin inhibited expression of the EBV lytic proteins, Zta, Rta, EAD and DNase in epithelial and B cells. It also reduced the number of EBV-reactivating cells detectable by immunofluorescence analysis. In addition, apigenin has been found to reduce dramatically the production of EBV virions. Luciferase reporter analysis was performed to determine the mechanism by which apigenin inhibits EBV reactivation: apigenin suppressed the activity of the immediate-early (IE) gene Zta and Rta promoters, suggesting it can block initiation of the EBV lytic cycle. Taken together, apigenin inhibits EBV reactivation by suppressing the promoter activities of two viral IE genes, suggesting apigenin is a potential dietary compound for prevention of EBV reactivation.
Arif, Hussain; Rehmani, Nida; Farhan, Mohd; Ahmad, Aamir; Hadi, Sheikh Mumtaz
2015-01-01
Epidemiological studies have linked dietary consumption of plant polyphenols with lower incidence of various cancers. In particular, flavonoids (present in onion, tomato and other plant sources) induce apoptosis and cytotoxicity in cancer cells. These can therefore be used as lead compounds for the synthesis of novel anticancer drugs with greater bioavailability. In the present study, we examined the chemical basis of cytotoxicity of flavonoids by studying the structure–activity relationship of myricetin (MN), fisetin (FN), quercetin (QN), kaempferol (KL) and galangin (GN). Using single cell alkaline gel electrophoresis (comet assay), we established the relative efficiency of cellular DNA breakage as MN > FN > QN > KL > GN. Also, we determined that the cellular DNA breakage was the result of mobilization of chromatin-bound copper ions and the generation of reactive oxygen species. The relative DNA binding affinity order was further confirmed using molecular docking and thermodynamic studies through the interaction of flavonoids with calf thymus DNA. Our results suggest that novel anti-cancer molecules should have ortho-dihydroxy groups in B-ring and hydroxyl groups at positions 3 and 5 in the A-ring system. Additional hydroxyl groups at other positions further enhance the cellular cytotoxicity of the flavonoids. PMID:26569217
Bedon, Frank; Bomal, Claude; Caron, Sébastien; Levasseur, Caroline; Boyle, Brian; Mansfield, Shawn D.; Schmidt, Axel; Gershenzon, Jonathan; Grima-Pettenati, Jacqueline; Séguin, Armand; MacKay, John
2010-01-01
Transcription factors play a fundamental role in plants by orchestrating temporal and spatial gene expression in response to environmental stimuli. Several R2R3-MYB genes of the Arabidopsis subgroup 4 (Sg4) share a C-terminal EAR motif signature recently linked to stress response in angiosperm plants. It is reported here that nearly all Sg4 MYB genes in the conifer trees Picea glauca (white spruce) and Pinus taeda (loblolly pine) form a monophyletic clade (Sg4C) that expanded following the split of gymnosperm and angiosperm lineages. Deeper sequencing in P. glauca identified 10 distinct Sg4C sequences, indicating over-represention of Sg4 sequences compared with angiosperms such as Arabidopsis, Oryza, Vitis, and Populus. The Sg4C MYBs share the EAR motif core. Many of them had stress-responsive transcript profiles after wounding, jasmonic acid (JA) treatment, or exposure to cold in P. glauca and P. taeda, with MYB14 transcripts accumulating most strongly and rapidly. Functional characterization was initiated by expressing the P. taeda MYB14 (PtMYB14) gene in transgenic P. glauca plantlets with a tissue-preferential promoter (cinnamyl alcohol dehydrogenase) and a ubiquitous gene promoter (ubiquitin). Histological, metabolite, and transcript (microarray and targeted quantitiative real-time PCR) analyses of PtMYB14 transgenics, coupled with mechanical wounding and JA application experiments on wild-type plantlets, allowed identification of PtMYB14 as a putative regulator of an isoprenoid-oriented response that leads to the accumulation of sesquiterpene in conifers. Data further suggested that PtMYB14 may contribute to a broad defence response implicating flavonoids. This study also addresses the potential involvement of closely related Sg4C sequences in stress responses and plant evolution. PMID:20732878
Xianjun, Peng; Linhong, Teng; Xiaoman, Wang; Yucheng, Wang; Shihua, Shen
2014-01-01
The paper mulberry is one of the multifunctional tree species in agroforestry systems and is also commonly utilized in traditional medicine in China and other Asian countries. However, little is known about its molecular genetics, which hinders research on and exploitation of this valuable resource. To discern the correlation between gene expression and the essential properties of the paper mulberry, we performed a transcriptomics analysis, assembling a total of 37,725 unigenes from 54,638,676 reads generated by RNA-seq. Among these, 22,692 unigenes showed greater than 60% similarity with genes from other species. The lengths of 13,566 annotated unigenes were longer than 1,000 bp. Functional clustering analysis with COG (Cluster of Orthologous Groups) revealed that 17,184 unigenes are primarily involved in transcription, translation, signal transduction, carbohydrate metabolism, secondary metabolism, and energy metabolism. GO (Gene Ontology) annotation suggests enrichment of genes encoding antioxidant activity, transporter activity, biosynthesis, metabolism and stress response, with a total of 30,659 unigenes falling in these categories. KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic pathway analysis showed that 7,199 unigenes are associated with 119 metabolic pathways. In addition to the basic metabolism, these genes are enriched for plant pathogen interaction, flavonoid metabolism and other secondary metabolic processes. Furthermore, differences in the transcriptomes of leaf, stem and root tissues were analyzed and 7,233 specifically expressed unigenes were identified. This global expression analysis provided novel insights about the molecular mechanisms of the biosynthesis of flavonoid, lignin and cellulose, as well as on the response to biotic and abiotic stresses including the remediation of contaminated soil by the paper mulberry.
Gene Expression and Metabolism in Tomato Fruit Surface Tissues1[C][W
Mintz-Oron, Shira; Mandel, Tali; Rogachev, Ilana; Feldberg, Liron; Lotan, Ofra; Yativ, Merav; Wang, Zhonghua; Jetter, Reinhard; Venger, Ilya; Adato, Avital; Aharoni, Asaph
2008-01-01
The cuticle, covering the surface of all primary plant organs, plays important roles in plant development and protection against the biotic and abiotic environment. In contrast to vegetative organs, very little molecular information has been obtained regarding the surfaces of reproductive organs such as fleshy fruit. To broaden our knowledge related to fruit surface, comparative transcriptome and metabolome analyses were carried out on peel and flesh tissues during tomato (Solanum lycopersicum) fruit development. Out of 574 peel-associated transcripts, 17% were classified as putatively belonging to metabolic pathways generating cuticular components, such as wax, cutin, and phenylpropanoids. Orthologs of the Arabidopsis (Arabidopsis thaliana) SHINE2 and MIXTA-LIKE regulatory factors, activating cutin and wax biosynthesis and fruit epidermal cell differentiation, respectively, were also predominantly expressed in the peel. Ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and gas chromatography-mass spectrometry using a flame ionization detector identified 100 metabolites that are enriched in the peel tissue during development. These included flavonoids, glycoalkaloids, and amyrin-type pentacyclic triterpenoids as well as polar metabolites associated with cuticle and cell wall metabolism and protection against photooxidative stress. Combined results at both transcript and metabolite levels revealed that the formation of cuticular lipids precedes phenylpropanoid and flavonoid biosynthesis. Expression patterns of reporter genes driven by the upstream region of the wax-associated SlCER6 gene indicated progressive activity of this wax biosynthetic gene in both fruit exocarp and endocarp. Peel-associated genes identified in our study, together with comparative analysis of genes enriched in surface tissues of various other plant species, establish a springboard for future investigations of plant surface biology. PMID:18441227
Sun, Haiyue; Liu, Yushan; Gai, Yuzhuo; Geng, Jinman; Chen, Li; Liu, Hongdi; Kang, Limin; Tian, Youwen; Li, Yadong
2015-09-02
Cranberries (Vaccinium macrocarpon Ait.), renowned for their excellent health benefits, are an important berry crop. Here, we performed transcriptome sequencing of one cranberry cultivar, from fruits at two different developmental stages, on the Illumina HiSeq 2000 platform. Our main goals were to identify putative genes for major metabolic pathways of bioactive compounds and compare the expression patterns between white fruit (W) and red fruit (R) in cranberry. In this study, two cDNA libraries of W and R were constructed. Approximately 119 million raw sequencing reads were generated and assembled de novo, yielding 57,331 high quality unigenes with an average length of 739 bp. Using BLASTx, 38,460 unigenes were identified as putative homologs of annotated sequences in public protein databases, including NCBI NR, NT, Swiss-Prot, KEGG, COG and GO. Of these, 21,898 unigenes mapped to 128 KEGG pathways, with the metabolic pathways, secondary metabolites, glycerophospholipid metabolism, ether lipid metabolism, starch and sucrose metabolism, purine metabolism, and pyrimidine metabolism being well represented. Among them, many candidate genes were involved in flavonoid biosynthesis, transport and regulation. Furthermore, digital gene expression (DEG) analysis identified 3,257 unigenes that were differentially expressed between the two fruit developmental stages. In addition, 14,473 simple sequence repeats (SSRs) were detected. Our results present comprehensive gene expression information about the cranberry fruit transcriptome that could facilitate our understanding of the molecular mechanisms of fruit development in cranberries. Although it will be necessary to validate the functions carried out by these genes, these results could be used to improve the quality of breeding programs for the cranberry and related species.
Chen, Wen-Huei; Hsu, Chi-Yin; Cheng, Hao-Yun; Chang, Hsiang; Chen, Hong-Hwa; Ger, Mang-Jye
2011-06-01
Anthocyanin is the primary pigment contributing to red, violet, and blue flower color formation. The solubility of anthocyanins is enhanced by UDP glucose: flavonoid 3-O-glucosyltransferase (UFGT) through transfer of the glucosyl moiety from UDP-glucose to 3-hydroxyl group to produce the first stable pigments. To assess the possibility that UFGT is involved in the flower color formation in Phalaenopsis, the transcriptional activities of PeUFGT3, and other flower color-related genes in developing red or white flower buds were examined using RT-PCR analysis. In contrast with chalcone synthase, chalcone isomerase, and anthocyanidin synthase genes, PeUFGT3 transcriptional activity was higher expressed in the red color of Phalaenopsis cultivars. In the red labellum of Phalaenopsis 'Luchia Lady', PeUFGT3 also showed higher expression levels than that in the white perianth. PeUFGT3 was predominantly expressed in the red region of flower among various Phalaenopsis cultivars. To investigate the role of PeUFGT3 in red flower color formation, PeUFGT3 was specifically knocked down using RNA interference technology via virus inducing gene silencing in Phalaenopsis. The PeUFGT3-suppressed Phalaenopsis exhibited various levels of flower color fading that was well correlated with the extent of reduced level of PeUFGT3 transcriptional activity. Furthermore, there was a significant decrease in anthocyanin content in the PeUFGT3-suppressed Phalaenopsis flowers. The decrease of anthocyanin content due to PeUFGT3 gene silencing possibly caused the faded flower color in PeUFGT3-suppressed Phalaenopsis. Consequently, these results suggested that the glycosylation-related gene PeUFGT3 plays a critical role in red color formation in Phalaenopsis.
Wang, Qing-Hui; Guo, Shuai; Yang, Xue-Yan; Zhang, Yi-Fan; Shang, Ming-Ying; Shang, Ying-Hui; Xiao, Jun-Jun; Cai, Shao-Qing
2017-03-01
Four prenylated flavonoids compounds 1-4, named sinopodophyllines A-D, and a flavonoid glycoside (compound 13), sinopodophylliside A, together with 19 known compounds (compounds 5-12 and 14-24) were isolated from the fruits of Sinopodophyllum hexandrum. The structures of new compounds were elucidated by extensive spectroscopic analysis, including HRESIMS, 1D and 2D NMR. Compounds 1-6, 9-11, and 14-17 were tested for their cytotoxicity against human breast-cancer T47D, MCF-7 and MDA-MB-231 cells in vitro, and compounds 2, 5, 6, 10 and 11 showed significant cytotoxicity (IC 50 values < 10 μmol·L -1 ) against T47D cells. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Han, Qing-Tong; Ren, Yan; Li, Gui-Sheng; Xiang, Kang-Lin; Dai, Sheng-Jun
2018-05-11
Four undescribed flavonoid alkaloids, as two pairs of enantiomers, were initially isolated as a racemate from the whole plant of Scutellaria moniliorrhiza. By means of chiral HPLC, four isomers, named scumonilines A-D, were successfully separated, and their chemical structures including absolute configurations were established by mass as well as NMR spectroscopy and CD technique. In vitro, four flavonoid alkaloids showed anti-inflammatory activities, with IC 50 values against the release of β-glucuronidase from polymorphonuclear leukocytes of rats being in the range 5.16-5.85 μΜ. Moreover, four compounds were evaluated for their inhibitory activities against aldose reductase, and gave IC 50 values in the range 2.29-3.03 μΜ. Copyright © 2018 Elsevier Ltd. All rights reserved.
Leopoldini, Monica; Malaj, Naim; Toscano, Marirosa; Sindona, Giovanni; Russo, Nino
2010-10-13
Density functional theory was applied to study the binding mode of new flavonoids as possible inhibitors of the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), an enzyme that catalyzes the four-electron reduction of HMGCoA to mevalonate, the committed step in the biosynthesis of sterols. The investigated flavonoid conjugates brutieridin and melitidin were recently quantified in the bergamot fruit extracts and identified to be structural analogues of statins, lipids concentration lowering drugs that inhibit HMGR. Computations allowed us to perform a detailed analysis of the geometrical and electronic features affecting the binding of these compounds, as well as that of the excellent simvastatin drug, to the active site of the enzyme and to give better insight into the inhibition process.
A novel icariin type flavonoid from Epimedium pseudowushanense.
Ti, Huihui; Wu, Ping; Xu, Liangxiong; Wei, Xiaoyi
2018-06-06
A novel icariin type flavonoid glycoside with a malonaldehydic acid intramolecular ester and two known flavonoid glycosides were isolated from Epimedium pseudowushanense. Their structures were elucidated on the basis of spectroscopic analysis and comparison of their data to the values reported in the literatures. The anti-inflammatory activities of these compounds icariin 3'''-O-malonaldehydic acid intramolecular 1'''', 2''' ester (1), icariin (2) and epimedin C (3) were tested. The results indicated that compounds 1, 2 and 3 showed maximal inhibitory ratio of 27.91, 44.80 and 46.61%, respectively in in vitro anti-inflammatory activity on LPS-induced TNF-α secretion in RAW264.7 cells. Compounds icariin (2) and epimedin C (3) were found to inhibit the secretion of TNF-α to a comparable degree as quercetin.
Cloning and Characterization of a Flavonoid 3′-Hydroxylase Gene from Tea Plant (Camellia sinensis)
Zhou, Tian-Shan; Zhou, Rui; Yu, You-Ben; Xiao, Yao; Li, Dong-Hua; Xiao, Bin; Yu, Oliver; Yang, Ya-Jun
2016-01-01
Tea leaves contain abundant flavan-3-ols, which include dihydroxylated and trihydroxylated catechins. Flavonoid 3′-hydroxylase (F3′H: EC 1.14.13.21) is one of the enzymes in the establishment of the hydroxylation pattern. A gene encoding F3′H, designated as CsF3′H, was isolated from Camellia sinensis with a homology-based cloning technique and deposited in the GenBank (GenBank ID: KT180309). Bioinformatic analysis revealed that CsF3′H was highly homologous with the characterized F3′Hs from other plant species. Four conserved cytochrome P450-featured motifs and three F3′H-specific conserved motifs were discovered in the protein sequence of CsF3′H. Enzymatic analysis of the heterologously expressed CsF3′H in yeast demonstrated that tea F3′H catalyzed the 3′-hydroxylation of naringenin, dihydrokaempferol and kaempferol. Apparent Km values for these substrates were 17.08, 143.64 and 68.06 μM, and their apparent Vmax values were 0.98, 0.19 and 0.44 pM·min−1, respectively. Transcription level of CsF3′H in the new shoots, during tea seed germination was measured, along with that of other key genes for flavonoid biosynthesis using real-time PCR technique. The changes in 3′,4′-flavan-3-ols, 3′,4′,5′-flavan-3-ols and flavan-3-ols, were consistent with the expression level of CsF3′H and other related genes in the leaves. In the study of nitrogen supply for the tea plant growth, our results showed the expression level of CsF3′H and all other tested genes increased in response to nitrogen depletion after 12 days of treatment, in agreement with a corresponding increase in 3′,4′-catechins, 3′,4′,5′-catechins and flavan 3-ols content in the leaves. All these results suggest the importance of CsF3′H in the biosynthesis of 3′,4′-catechins, 3′,4′,5′-catechins and flavan 3-ols in tea leaves. PMID:26907264
Chaves-Silva, Samuel; Santos, Adolfo Luís Dos; Chalfun-Júnior, Antonio; Zhao, Jian; Peres, Lázaro E P; Benedito, Vagner Augusto
2018-05-24
Anthocyanins are naturally occurring flavonoids derived from the phenylpropanoid pathway. There is increasing evidence of the preventative and protective roles of anthocyanins against a broad range of pathologies, including different cancer types and metabolic diseases. However, most of the fresh produce available to consumers typically contains only small amounts of anthocyanins, mostly limited to the epidermis of plant organs. Therefore, transgenic and non-transgenic approaches have been proposed to enhance the levels of this phytonutrient in vegetables, fruits, and cereals. Here, were review the current literature on the anthocyanin biosynthesis pathway in model and crop species, including the structural and regulatory genes involved in the differential pigmentation patterns of plant structures. Furthermore, we explore the genetic regulation of anthocyanin biosynthesis and the reasons why it is strongly repressed in specific cell types, in order to create more efficient breeding strategies to boost the biosynthesis and accumulation of anthocyanins in fresh fruits and vegetables. Copyright © 2018. Published by Elsevier Ltd.
Kanehira, Yuka; Kawakami, Susumu; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki
2016-10-01
Extensive isolation work on the 1-BuOH-soluble fraction of a MeOH extract of the aerial parts of Dianthus japonicus afforded three further triterpene glycosyl estsers, termed dianthosaponins G-I, an anthranilic acid amide glucoside and a C-glycosyl flavonoid along with one known triterpene saponin. Their structures were elucidated from spectroscopic evidence. The cytotoxicity of the isolated compounds toward A549 cells was evaluated.
Schmidt, Adam; Li, Chao; Shi, Feng; Jones, A. Daniel; Pichersky, Eran
2011-01-01
Flavonoids are a class of metabolites found in many plant species. They have been reported to serve several physiological roles, such as in defense against herbivores and pathogens and in protection against harmful ultraviolet radiation. They also serve as precursors of pigment compounds found in flowers, leaves, and seeds. Highly methylated, nonglycosylated derivatives of the flavonoid myricetin flavonoid, have been previously reported from a variety of plants, but O-methyltransferases responsible for their synthesis have not yet been identified. Here, we show that secreting glandular trichomes (designated types 1 and 4) and storage glandular trichomes (type 6) on the leaf surface of wild tomato (Solanum habrochaites accession LA1777) plants contain 3,7,3′-trimethyl myricetin, 3,7,3′,5′-tetramethyl myricetin, and 3,7,3′,4′,5′-pentamethyl myricetin, with gland types 1 and 4 containing severalfold more of these compounds than type 6 glands and with the tetramethylated compound predominating in all three gland types. We have also identified transcripts of two genes expressed in the glandular trichomes and showed that they encode enzymes capable of methylating myricetin at the 3′ and 5′ and the 7 and 4′ positions, respectively. Both genes are preferentially expressed in secreting glandular trichome types 1 and 4 and to a lesser degree in storage trichome type 6, and the levels of the proteins they encode are correspondingly higher in types 1 and 4 glands compared with type 6 glands. PMID:21343428
Maximova, Siela N; Florez, Sergio; Shen, Xiangling; Niemenak, Nicolas; Zhang, Yufan; Curtis, Wayne; Guiltinan, Mark J
2014-07-16
Theobroma cacao L. is a tropical fruit tree, the seeds of which are used to create chocolate. In vitro somatic embryogenesis (SE) of cacao is a propagation system useful for rapid mass-multiplication to accelerate breeding programs and to provide plants directly to farmers. Two major limitations of cacao SE remain: the efficiency of embryo production is highly genotype dependent and the lack of full cotyledon development results in low embryo to plant conversion rates. With the goal to better understand SE development and to improve the efficiency of SE conversion we examined gene expression differences between zygotic and somatic embryos using a whole genome microarray. The expression of 28,752 genes was determined at 4 developmental time points during zygotic embryogenesis (ZE) and 2 time points during cacao somatic embryogenesis (SE). Within the ZE time course, 10,288 differentially expressed genes were enriched for functions related to responses to abiotic and biotic stimulus, metabolic and cellular processes. A comparison ZE and SE expression profiles identified 10,175 differentially expressed genes. Many TF genes, putatively involved in ethylene metabolism and response, were more strongly expressed in SEs as compared to ZEs. Expression levels of genes involved in fatty acid metabolism, flavonoid biosynthesis and seed storage protein genes were also differentially expressed in the two types of embryos. Large numbers of genes were differentially regulated during various stages of both ZE and SE development in cacao. The relatively higher expression of ethylene and flavonoid related genes during SE suggests that the developing tissues may be experiencing high levels of stress during SE maturation caused by the in vitro environment. The expression of genes involved in the synthesis of auxin, polyunsaturated fatty acids and secondary metabolites was higher in SEs relative to ZEs despite lack of lipid and metabolite accumulation. These differences in gene transcript levels associated with critical processes during seed development are consistent with the fact that somatic embryos do not fully develop the large storage cotyledons found in zygotic embryos. These results provide insight towards design of improved protocols for cacao somatic embryogenesis.
2014-01-01
Background Theobroma cacao L. is a tropical fruit tree, the seeds of which are used to create chocolate. In vitro somatic embryogenesis (SE) of cacao is a propagation system useful for rapid mass-multiplication to accelerate breeding programs and to provide plants directly to farmers. Two major limitations of cacao SE remain: the efficiency of embryo production is highly genotype dependent and the lack of full cotyledon development results in low embryo to plant conversion rates. With the goal to better understand SE development and to improve the efficiency of SE conversion we examined gene expression differences between zygotic and somatic embryos using a whole genome microarray. Results The expression of 28,752 genes was determined at 4 developmental time points during zygotic embryogenesis (ZE) and 2 time points during cacao somatic embryogenesis (SE). Within the ZE time course, 10,288 differentially expressed genes were enriched for functions related to responses to abiotic and biotic stimulus, metabolic and cellular processes. A comparison ZE and SE expression profiles identified 10,175 differentially expressed genes. Many TF genes, putatively involved in ethylene metabolism and response, were more strongly expressed in SEs as compared to ZEs. Expression levels of genes involved in fatty acid metabolism, flavonoid biosynthesis and seed storage protein genes were also differentially expressed in the two types of embryos. Conclusions Large numbers of genes were differentially regulated during various stages of both ZE and SE development in cacao. The relatively higher expression of ethylene and flavonoid related genes during SE suggests that the developing tissues may be experiencing high levels of stress during SE maturation caused by the in vitro environment. The expression of genes involved in the synthesis of auxin, polyunsaturated fatty acids and secondary metabolites was higher in SEs relative to ZEs despite lack of lipid and metabolite accumulation. These differences in gene transcript levels associated with critical processes during seed development are consistent with the fact that somatic embryos do not fully develop the large storage cotyledons found in zygotic embryos. These results provide insight towards design of improved protocols for cacao somatic embryogenesis. PMID:25030026
Shin, Yoshimura; Kentaro, Kawano; Ryusuke, Matsumura; Narumi, Sugihara; Koji, Furuno
2009-01-01
N-acetyl 5-aminosalicylic acid (5-AcASA) that was intracellularly formed from 5-aminosalicylic acid (5-ASA) at 200 μM was discharged 5.3, 7.1, and 8.1-fold higher into the apical site than into the basolateral site during 1, 2, and 4-hour incubations, respectively, in Caco-2 cells grown in Transwells. The addition of flavonols (100 μM) such as fisetin and quercetin with 5-ASA remarkably decreased the apically directed efflux of 5-AcASA. When 5-ASA (200 μM) was added to Caco-2 cells grown in tissue culture dishes, the formation of 5-AcASA decreased, and, in addition, the formed 5-AcASA was found to be accumulated within the cells in the presence of such flavonols. Thus, the decrease in 5-AcASA efflux by such flavonols was attributed not only to the inhibition of N-acetyl-conjugation of 5-ASA but to the predominant cellular accumulation of 5-AcASA. Various flavonoids also had both of the effects with potencies that depend on their specific structures. The essential structure of flavonoids was an absence of a hydroxyl substitution at the C5 position on the A-ring of flavone structure for the inhibitory effect on the N-acetyl-conjugation of 5-ASA, and a presence of hydroxyl substitutions at the C3′ or C4′ position on the B-ring of flavone structure for the promoting effect on the cellular accumulation of 5-AcASA. Both the decrease in 5-AcASA apical efflux and the increase in 5-AcASA cellular accumulation were also caused by MK571 and indomethacin, inhibitors of MRPs, but not by quinidine, cyclosporin A, P-glycoprotein inhibitors, and mitoxantrone, a BCRP substrate. These results suggest that certain flavonoids suppress the apical efflux of 5-AcASA possibly by inhibiting MRPs pumps located on apical membranes in Caco-2 cells. PMID:19688110
Persic, Martina; Mikulic-Petkovsek, Maja; Halbwirth, Heidi; Solar, Anita; Veberic, Robert; Slatnar, Ana
2018-03-21
A rare walnut variant with a red seed coat (pellicle) was examined for alterations in its phenolic profile during development. The red-walnut (RW) pellicle was compared with two commonly colored walnut varieties: 'Lara' (brown) and 'Fernor' (light brown). Furthermore, the activities of selected enzymes of the phenylpropanoid- and flavonoid-related pathways and the relative expressions of the structural genes phenylalanine ammonia lyase ( PAL) and anthocyanidin synthase ( ANS) were examined in the pellicles of the three varieties. In the pellicles of the RWs, phenylalanine ammonia lyase (PAL) activity and related PAL expression was most pronounced in August, about one month before commercial maturity, suggesting a high synthesis rate of phenolic compounds at this development stage. The most pronounced differences between the red and light- and dark-brown varieties were the increased PAL activity, PAL expression, and ANS expression in RWs in August. The vibrant color of the RW pellicle is based on the presence of four derivatives of cyanidin- and delphinidin-hexosides.
Günther, Germán; Berríos, Eduardo; Pizarro, Nancy; Valdés, Karina; Montero, Guillermo; Arriagada, Francisco; Morales, Javier
2015-01-01
In this work, the relationship between the molecular structure of three flavonoids (kaempferol, quercetin and morin), their relative location in microheterogeneous media (liposomes and erythrocyte membranes) and their reactivity against singlet oxygen was studied. The changes observed in membrane fluidity induced by the presence of these flavonoids and the influence of their lipophilicity/hydrophilicity on the antioxidant activity in lipid membranes were evaluated by means of fluorescent probes such as Laurdan and diphenylhexatriene (DPH). The small differences observed for the value of generalized polarization of Laurdan (GP) curves in function of the concentration of flavonoids, indicate that these three compounds promote similar alterations in liposomes and erythrocyte membranes. In addition, these compounds do not produce changes in fluorescence anisotropy of DPH, discarding their location in deeper regions of the lipid bilayer. The determined chemical reactivity sequence is similar in all the studied media (kaempferol < quercetin < morin). Morin is approximately 10 times more reactive than quercetin and 20 to 30 times greater than kaempferol, depending on the medium. PMID:26098745
Treatment of metastatic melanoma B16F10 by the flavonoids tangeretin, rutin, and diosmin.
Martínez Conesa, Cristina; Vicente Ortega, Vicente; Yáñez Gascón, M Josefa; Alcaraz Baños, Miguel; Canteras Jordana, Manuel; Benavente-García, Obdulio; Castillo, Julián
2005-08-24
Melanoma is one of the most frequently metastasizing malignant neoplasias. This study examines an experimental model of pulmonary metastasis and the B16F10 cell subline, highly metastatic in the lung. Antimetastatic effects of the flavonoids tangeretin, rutin, and diosmin were analyzed, and at the same time an analysis of the metastatic activity of ethanol was performed, considered to be necessary because it is used as a vehicle for administering the flavonoids. Lentini's model, which complements the macroscopic evaluation of nodule numbers by using a stereoscopic microscope and image analysis at the microscopic level, was used. The greatest reduction in the number of metastatic nodules (52%) was obtained with diosmin; similarly, the percentages of implantation, growth index, and invasion index (79.40, 67.44, and 45.23%, respectively), were all compared with those of the ethanol group, considered to be an effective control group. Rutin- and tangeretin-treated groups also showed reductions of the same index compared with the ethanol group. It would seem that structural factors would better explain these results and the antimetastatic activity of each flavonoid and the respective metabolites.
Identification of a flavonoid C-glycoside as potent antioxidant.
Wen, Lingrong; Zhao, Yupeng; Jiang, Yueming; Yu, Limei; Zeng, Xiaofang; Yang, Jiali; Tian, Miaomiao; Liu, Huiling; Yang, Bao
2017-09-01
Flavonoids have been documented to have good antioxidant activities in vitro. However, reports on the cellular antioxidant activities of flavonoid C-glycosides are very limited. In this work, an apigenin C-glycoside was purified from Artocarpus heterophyllus by column chromatography and was identified to be 2″-O-β-D-xylosylvitexin by nuclear magnetic resonance spectroscopy. The cellular antioxidant activity and anticancer activity of 2″-O-β-D-xylosylvitexin were evaluated for the first time. The quantitative structure-activity relationship was analysed by molecular modeling. Apigenin presented an unexpected cellular antioxidation behaviour. It had an antioxidant activity at low concentration and a prooxidant activity at high concentration, whereas 2″-O-β-D-xylosylvitexin showed a dose-dependent cellular antioxidant activity. It indicated that C-glycosidation improved the cellular antioxidation performance of apigenin and eliminated the prooxidant effect. The ortho-dihydroxyl at C-3'/C-4' and C-3 hydroxyl in the flavonoid skeleton play important roles in the antioxidation behaviour. The cell proliferation assay revealed a low cytotoxicity of 2″-O-β-D-xylosylvitexin. Copyright © 2017 Elsevier Inc. All rights reserved.
Induction of cellular and molecular immunomodulatory pathways by vitamin A and Flavonoids
Patel, Sapna; Vajdy, Michael
2016-01-01
Introduction A detailed study of reports on the immunomodulatory properties of vitamin A and select flavonoids may pave the way for using these natural compounds or compounds with similar structures in novel drug and vaccine designs against infectious and autoimmune diseases and cancers. Areas Covered Intracellular transduction pathways, cellular differentiation and functional immunomodulatory responses have been reviewed. The reported studies encompass in vitro, in vivo preclinical and clinical studies that address the role of Vitamin A and select flavonoids in induction of innate and adaptive B and T cell responses, including TH1, TH2 and Treg. Expert Opinion While the immunomodulatory role of vitamin A, and related compounds, is well-established in many preclinical studies, its role in humans has begun to gain wider acceptance. In contrast, the role of flavonoids is mostly controversial in clinical trials, due to the diversity of the various classes of these compounds, and possibly due to the purity and the selected doses of the compounds. However, current preclinical and clinical studies warrant further detailed studies of these promising immuno-modulatory compounds. PMID:26185959
Kaempferol Modulates DNA Methylation and Downregulates DNMT3B in Bladder Cancer.
Qiu, Wei; Lin, Jun; Zhu, Yichen; Zhang, Jian; Zeng, Liping; Su, Ming; Tian, Ye
2017-01-01
Genomic DNA methylation plays an important role in both the occurrence and development of bladder cancer. Kaempferol (Kae), a natural flavonoid that is present in many fruits and vegetables, exhibits potent anti-cancer effects in bladder cancer. Similar to other flavonoids, Kae possesses a flavan nucleus in its structure. This structure was reported to inhibit DNA methylation by suppressing DNA methyltransferases (DNMTs). However, whether Kae can inhibit DNA methylation remains unclear. Nude mice bearing bladder cancer were treated with Kae for 31 days. The genomic DNA was extracted from xenografts and the methylation changes was determined using an Illumina Infinium HumanMethylation 450 BeadChip Array. The ubiquitination was detected using immuno-precipitation assay. Our data indicated that Kae modulated DNA methylation in bladder cancer, inducing 103 differential DNA methylation positions (dDMPs) associated with genes (50 hyper-methylated and 53 hypo-methylated). DNA methylation is mostly relied on the levels of DNMTs. We observed that Kae specifically inhibited the protein levels of DNMT3B without altering the expression of DNMT1 or DNMT3A. However, Kae did not downregulate the transcription of DNMT3B. Interestingly, we observed that Kae induced a premature degradation of DNMT3B by inhibiting protein synthesis with cycloheximide (CHX). By blocking proteasome with MG132, we observed that Kae induced an increased ubiquitination of DNMT3B. These results suggested that Kae could induce the degradation of DNMT3B through ubiquitin-proteasome pathway. Our data indicated that Kae is a novel DNMT3B inhibitor, which may promote the degradation of DNMT3B in bladder cancer. © 2017 The Author(s)Published by S. Karger AG, Basel.
Tadra-Sfeir, Michelle Z; Faoro, Helisson; Camilios-Neto, Doumit; Brusamarello-Santos, Liziane; Balsanelli, Eduardo; Weiss, Vinicius; Baura, Valter A; Wassem, Roseli; Cruz, Leonardo M; De Oliveira Pedrosa, Fábio; Souza, Emanuel M; Monteiro, Rose A
2015-01-01
Herbaspirillum seropedicae is a diazotrophic bacterium which associates endophytically with economically important gramineae. Flavonoids such as naringenin have been shown to have an effect on the interaction between H. seropedicae and its host plants. We used a high-throughput sequencing based method (RNA-Seq) to access the influence of naringenin on the whole transcriptome profile of H. seropedicae. Three hundred and four genes were downregulated and seventy seven were upregulated by naringenin. Data analysis revealed that genes related to bacterial flagella biosynthesis, chemotaxis and biosynthesis of peptidoglycan were repressed by naringenin. Moreover, genes involved in aromatic metabolism and multidrug transport efllux were actived.
Zhang, Wei; Qiao, Haishi; Lv, Yuanzi; Wang, Jingjing; Chen, Xiaoqing; Hou, Yayi; Tan, Renxiang; Li, Erguang
2014-01-01
Flavonoids are widely distributed natural products with broad biological activities. Apigenin is a dietary flavonoid that has recently been demonstrated to interact with heterogeneous nuclear ribonucleoproteins (hnRNPs) and interferes with their RNA editing activity. We investigated whether apigenin possessed antiviral activity against enterovirus-71 (EV71) infection since EV71 infection requires of hnRNP proteins. We found that apigenin selectively blocks EV71 infection by disrupting viral RNA association with hnRNP A1 and A2 proteins. The estimated EC50 value for apigenin to block EV71 infection was determined at 10.3 µM, while the CC50 was estimated at 79.0 µM. The anti-EV71 activity was selective since no activity was detected against several DNA and RNA viruses. Although flavonoids in general share similar structural features, apigenin and kaempferol were among tested compounds with significant activity against EV71 infection. hnRNP proteins function as trans-acting factors regulating EV71 translation. We found that apigenin treatment did not affect EV71-induced nucleocytoplasmic redistribution of hnRNP A1 and A2 proteins. Instead, it prevented EV71 RNA association with hnRNP A1 and A2 proteins. Accordingly, suppression of hnRNP A1 and A2 expression markedly reduced EV71 infection. As a positive sense, single strand RNA virus, EV71 has a type I internal ribosome entry site (IRES) that cooperates with host factors and regulates EV71 translation. The effect of apigenin on EV71 infection was further demonstrated using a bicistronic vector that has the expression of a GFP protein under the control of EV71 5′-UTR. We found that apigenin treatment selectively suppressed the expression of GFP, but not a control gene. In addition to identification of apigenin as an antiviral agent against EV71 infection, this study also exemplifies the significance in antiviral agent discovery by targeting host factors essential for viral replication. PMID:25330384
Structural, electronic, and optical properties of representative Cu-flavonoid complexes.
Lekka, Ch E; Ren, Jun; Meng, Sheng; Kaxiras, Efthimios
2009-05-07
We present density functional theory (DFT) results on the structural, electronic, and optical properties of Cu-flavonoid complexes for molar ratios 1:1, 1:2, and 1:3. We find that the preferred chelating site is close to the 4-oxo group and in particular the 3-4 site followed by the 3'-4' dihydroxy group in ring B. For the Cu-quercetin complexes, the large bathochromic shift of the first absorbance band upon complexation, which is in good agreement with experimental UV-vis spectra, results from the reduction of the electronic energy gap. The HOMO states for these complexes are characterized by pi-bonding between the Cu d orbitals and the C, O p orbitals except for the case of 1:1 complex (spin minority), which corresponds to sigma-type bonds. The LUMO states are attributed to the contribution of Cu p(z) orbitals. Consequently, the main features of the first optical absorption maxima are essentially due to pi --> pi transitions, while the 1:1 complex exhibits also sigma --> pi transitions. Our optical absorption calculations based on time-dependent DFT demonstrate that the 1:1 complex is responsible for the spectroscopic features at pH 5.5, whereas the 1:2 complex is mainly the one responsible for the characteristic spectra at pH 7.4. These theoretical predictions explain in detail the behavior of the optical absorption for the Cu-flavonoid complexes observed in experiments and are thus useful in elucidating the complexation mechanism and antioxidant activity of flavonoids.
Omotuyi, Olaposi Idowu; Nash, Oyekanmi; Inyang, Olumide Kayode; Ogidigo, Joyce; Enejoh, Ojochenemi; Okpalefe, Okiemute; Hamada, Tsuyoshi
2018-02-01
Chromolaena odorata is a major bio-resource in folkloric treatment of diabetes. In the present study, its anti-diabetic component and underlying mechanism were investigated. A library containing 140 phytocompounds previously characterized from C. odorata was generated and docked (Autodock Vina) into homology models of dipeptidyl peptidase (DPP)-4, Takeda-G-protein-receptor-5 (TGR5), glucagon-like peptide 1 (GLP1) receptor, renal sodium dependent glucose transporter (SGLUT)-1/2 and nucleotide-binding oligomerization domain (NOD) proteins 1&2. GLP-1 gene (RT-PCR) modulation and its release (EIA) by C. odorata were confirmed in vivo. From the docking result above, TGR5 was identified as a major target for two key C. odorata flavonoids (5,7-dihydroxy-6-4-dimethoxyflavanone and homoesperetin-7-rutinoside); sodium taurocholate and C. odorata powder included into the diet of the animals both raised the intestinal GLP-1 expression versus control ( p < 0.05); When treated with flavonoid-rich extract of C. odorata (CoF) or malvidin, circulating GLP-1 increased by 130.7% in malvidin-treated subjects (0 vs. 45 min). CoF treatment also resulted in 128.5 and 275% increase for 10 and 30 mg/kg b.w., respectively. The results of this study support that C. odorata flavonoids may modulate the expression of GLP-1 and its release via TGR5. This finding may underscore its anti-diabetic potency.
The coffee genome provides insight into the convergent evolution of caffeine biosynthesis.
Denoeud, France; Carretero-Paulet, Lorenzo; Dereeper, Alexis; Droc, Gaëtan; Guyot, Romain; Pietrella, Marco; Zheng, Chunfang; Alberti, Adriana; Anthony, François; Aprea, Giuseppe; Aury, Jean-Marc; Bento, Pascal; Bernard, Maria; Bocs, Stéphanie; Campa, Claudine; Cenci, Alberto; Combes, Marie-Christine; Crouzillat, Dominique; Da Silva, Corinne; Daddiego, Loretta; De Bellis, Fabien; Dussert, Stéphane; Garsmeur, Olivier; Gayraud, Thomas; Guignon, Valentin; Jahn, Katharina; Jamilloux, Véronique; Joët, Thierry; Labadie, Karine; Lan, Tianying; Leclercq, Julie; Lepelley, Maud; Leroy, Thierry; Li, Lei-Ting; Librado, Pablo; Lopez, Loredana; Muñoz, Adriana; Noel, Benjamin; Pallavicini, Alberto; Perrotta, Gaetano; Poncet, Valérie; Pot, David; Priyono; Rigoreau, Michel; Rouard, Mathieu; Rozas, Julio; Tranchant-Dubreuil, Christine; VanBuren, Robert; Zhang, Qiong; Andrade, Alan C; Argout, Xavier; Bertrand, Benoît; de Kochko, Alexandre; Graziosi, Giorgio; Henry, Robert J; Jayarama; Ming, Ray; Nagai, Chifumi; Rounsley, Steve; Sankoff, David; Giuliano, Giovanni; Albert, Victor A; Wincker, Patrick; Lashermes, Philippe
2014-09-05
Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin. Copyright © 2014, American Association for the Advancement of Science.
Antioxidant constituents of the aerial parts of Globularia alypum growing in Morocco.
Es-Safi, Nour-Eddine; Khlifi, Samira; Kerhoas, Lucien; Kollmann, Albert; El Abbouyi, Ahmed; Ducrot, Paul-Henri
2005-08-01
Three new phenolic compounds were isolated from the aerial parts of Globularia alypum. Their structures were determined as 6-hydroxyluteolin 7-O-laminaribioside (1), eriodictyol 7-O-sophoroside (2), and 6'-O-coumaroyl-1'-O-[2-(3,4-dihydroxyphenyl)ethyl]-beta-D-glucopyranoside (3). In addition, three phenylethanoid glycosides (acteoside, isoacteoside, and forsythiaside) and two flavonoid glycosides (6-hydroxyluteolin 7-O-beta-D-glucopyranoside and luteolin 7-O-sophoroside) were also isolated and are reported here for the first time in this plant. The structures of compounds 1-3 were established on the basis of their spectroscopic data analysis. Evaluation of the antioxidative activity, conducted in vitro, showed that the isolated phenylethanoids and flavonoid glycosides possess strong effects of this type.
Kim, Da-Hye; Park, Sangkyu; Lee, Jong-Yeol; Ha, Sun-Hwa; Lim, Sun-Hyung
2018-01-01
Flower color is a main target for flower breeding. A transgenic approach for flower color modification requires a transgene and a flower-specific promoter. Here, we expressed the B-peru gene encoding a basic helix loop helix (bHLH) transcription factor (TF) together with the mPAP1 gene encoding an R2R3 MYB TF to enhance flower color in tobacco (Nicotiana tabacum L.), using the tobacco anthocyanidin synthase (ANS) promoter (PANS) to drive flower-specific expression. The transgenic tobacco plants grew normally and produced either dark pink (PANSBP_DP) or dark red (PANSBP_DR) flowers. Quantitative real time polymerase chain reaction (qPCR) revealed that the expression of five structural genes in the flavonoid biosynthetic pathway increased significantly in both PANSBP_DP and PANSBP_DR lines, compared with the non-transformed (NT) control. Interestingly, the expression of two regulatory genes constituting the active MYB-bHLH-WD40 repeat (WDR) (MBW) complex decreased significantly in the PANSBP_DR plants but not in the PANSBP_DP plants. Total flavonol and anthocyanin abundance correlated with flower color, with an increase of 1.6–43.2 fold in the PANSBP_DP plants and 2.0–124.2 fold in the PANSBP_DR plants. Our results indicate that combinatorial expression of B-peru and mPAP1 genes under control of the ANS promoter can be a useful strategy for intensifying flower color without growth retardation. PMID:29361688
HPLC-DAD-ESI-MS Analysis of Flavonoids from Leaves of Different Cultivars of Sweet Osmanthus.
Wang, Yiguang; Fu, Jianxin; Zhang, Chao; Zhao, Hongbo
2016-09-14
Osmanthus fragrans Lour. has traditionally been a popular ornamental plant in China. In this study, ethanol extracts of the leaves of four cultivar groups of O. fragrans were analyzed by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) and high-performance liquid chromatography with electrospray ionization and mass spectrometry (HPLC-ESI-MS). The results suggest that variation in flavonoids among O. fragrans cultivars is quantitative, rather than qualitative. Fifteen components were detected and separated, among which, the structures of 11 flavonoids and two coumarins were identified or tentatively identified. According to principal component analysis (PCA) and hierarchical cluster analysis (HCA) based on the abundance of these components (expressed as rutin equivalents), 22 selected cultivars were classified into four clusters. The seven cultivars from Cluster III ('Xiaoye Sugui', 'Boye Jingui', 'Wuyi Dangui', 'Yingye Dangui', 'Danzhuang', 'Foding Zhu', and 'Tianxiang Taige'), which are enriched in rutin and total flavonoids, and 'Sijigui' from Cluster II which contained the highest amounts of kaempferol glycosides and apigenin 7-O-glucoside, could be selected as potential pharmaceutical resources. However, the chemotaxonomy in this paper does not correlate with the distribution of the existing cultivar groups, demonstrating that the distribution of flavonoids in O. fragrans leaves does not provide an effective means of classification for O. fragrans cultivars based on flower color.
Flavonoid intake and all-cause mortality.
Ivey, Kerry L; Hodgson, Jonathan M; Croft, Kevin D; Lewis, Joshua R; Prince, Richard L
2015-05-01
Flavonoids are bioactive compounds found in foods such as tea, chocolate, red wine, fruit, and vegetables. Higher intakes of specific flavonoids and flavonoid-rich foods have been linked to reduced mortality from specific vascular diseases and cancers. However, the importance of flavonoids in preventing all-cause mortality remains uncertain. The objective was to explore the association between flavonoid intake and risk of 5-y mortality from all causes by using 2 comprehensive food composition databases to assess flavonoid intake. The study population included 1063 randomly selected women aged >75 y. All-cause, cancer, and cardiovascular mortalities were assessed over 5 y of follow-up through the Western Australia Data Linkage System. Two estimates of flavonoid intake (total flavonoidUSDA and total flavonoidPE) were determined by using food composition data from the USDA and the Phenol-Explorer (PE) databases, respectively. During the 5-y follow-up period, 129 (12%) deaths were documented. Participants with high total flavonoid intake were at lower risk [multivariate-adjusted HR (95% CI)] of 5-y all-cause mortality than those with low total flavonoid consumption [total flavonoidUSDA: 0.37 (0.22, 0.58); total flavonoidPE: 0.36 (0.22, 0.60)]. Similar beneficial relations were observed for both cardiovascular disease mortality [total flavonoidUSDA: 0.34 (0.17, 0.69); flavonoidPE: 0.32 (0.16, 0.61)] and cancer mortality [total flavonoidUSDA: 0.25 (0.10, 0.62); flavonoidPE: 0.26 (0.11, 0.62)]. Using the most comprehensive flavonoid databases, we provide evidence that high consumption of flavonoids is associated with reduced risk of mortality in older women. The benefits of flavonoids may extend to the etiology of cancer and cardiovascular disease. © 2015 American Society for Nutrition.
Santoro, Adriana Leandra; Carrilho, Emanuel; Lanças, Fernando Mauro; Montanari, Carlos Alberto
2016-06-10
The pharmacokinetic properties of flavonoids with differing degrees of lipophilicity were investigated using immobilized artificial membranes (IAMs) as the stationary phase in high performance liquid chromatography (HPLC). For each flavonoid compound, we investigated whether the type of column used affected the correlation between the retention factors and the calculated octanol/water partition (log Poct). Three-dimensional (3D) molecular descriptors were calculated from the molecular structure of each compound using i) VolSurf software, ii) the GRID method (computational procedure for determining energetically favorable binding sites in molecules of known structure using a probe for calculating the 3D molecular interaction fields, between the probe and the molecule), and iii) the relationship between partition and molecular structure, analyzed in terms of physicochemical descriptors. The VolSurf built-in Caco-2 model was used to estimate compound permeability. The extent to which the datasets obtained from different columns differ both from each other and from both the calculated log Poct and the predicted permeability in Caco-2 cells was examined by principal component analysis (PCA). The immobilized membrane partition coefficients (kIAM) were analyzed using molecular descriptors in partial least square regression (PLS) and a quantitative structure-retention relationship was generated for the chromatographic retention in the cholesterol column. The cholesterol column provided the best correlation with the permeability predicted by the Caco-2 cell model and a good fit model with great prediction power was obtained for its retention data (R(2)=0.96 and Q(2)=0.85 with four latent variables). Copyright © 2015 Elsevier B.V. All rights reserved.
Calvert, Matthew B; Sperry, Jonathan
2015-04-11
Guided by a biosynthetic hypothesis, a serendipitous total synthesis of yuremamine has resulted in its structural revision from the putative pyrroloindole (1) to the flavonoidal indole (2), which was initially proposed as a biosynthetic intermediate.
Flavones from Erythrina falcata are modulators of fear memory.
de Oliveira, Daniela Rodrigues; Zamberlam, Cláudia R; Gaiardo, Renan Barreta; Rêgo, Gizelda Maia; Cerutti, Janete M; Cavalheiro, Alberto J; Cerutti, Suzete M
2014-08-05
Flavonoids, which have been identified in a variety of plants, have been demonstrated to elicit beneficial effects on memory. Some studies have reported that flavonoids derived from Erythrina plants can provide such beneficial effects on memory. The aim of this study was to identify the flavonoids present in the stem bark crude extract of Erythrina falcata (CE) and to perform a bioactivity-guided study on conditioned fear memory. The secondary metabolites of CE were identified by high performance liquid chromatography combined with a diode array detector, electrospray ionization tandem mass spectrometry (HPLC-DAD-ESI/MSn) and nuclear magnetic resonance (NMR). The buthanolic fraction (BuF) was obtained by partitioning. Subfractions from BuF (BuF1 - BuF6) and fraction flavonoidic (FfA and FfB) were obtained by flash chromatography. The BuF3 and BuF4 fractions were used for the isolation of flavonoids, which was performed using HPLC-PAD. The isolated substances were quantified by HPLC-DAD and their structures were confirmed by nuclear magnetic resonance (NMR). The activities of CE and the subfractions were monitored using a one-trial, step-down inhibitory avoidance (IA) task to identify the effects of these substances on the acquisition and extinction of conditioned fear in rats. Six subclasses of flavonoids were identified for the first time in CE. According to our behavioral data, CE, BuF, BuF3 and BuF4, the flavonoidic fractions, vitexin, isovitexin and 6-C-glycoside-diosmetin improved the acquisition of fear memory. Rats treated with BuF, BuF3 and BuF4 were particularly resistant to extinction. Nevertheless, rats treated with FfA and FfB, vitexin, isovitexin and 6-C-glycoside-diosmetin exhibited gradual reduction in conditioned fear response during the extinction retest session, which was measured at 48 to 480 h after conditioning. Our results demonstrate that vitexin, isovitexin and diosmetin-6-C-glucoside and flavonoidic fractions resulted in a significant retention of fear memory but did not prevent the extinction of fear memory. These results further substantiate that the treatment with pure flavonoids or flavanoid-rich fractions might represent potential therapeutic approaches for the treatment of neurocognitive disorders, improvement of memory acquisition and spontaneous recovery of fear.
Li, Jianzhong; Chen, Linlin; Wu, Hongyuan; Lu, Yiming; Hu, Zhenlin; Lu, Bin; Zhang, Liming; Chai, Yifeng; Zhang, Junping
2015-01-01
Sulfur mustard (SM) is a vesicating chemical warfare agent used in numerous military conflicts and remains a potential chemical threat to the present day. Exposure to SM causes the depletion of cellular antioxidant thiols, mainly glutathione (GSH), which may lead to a series of SM-associated toxic responses. MSTF is the mixture of salvianolic acids (SA) of Salvia miltiorrhiza and total flavonoids (TFA) of Anemarrhena asphodeloides. SA is the main water-soluble phenolic compound in Salvia miltiorrhiza. TFA mainly includes mangiferin, isomangiferin and neomangiferin. SA and TFA possess diverse activities, including antioxidant and anti-inflammation activities. In this study, we mainly investigated the therapeutic effects of MSTF on SM toxicity in Sprague Dawley rats. Treatment with MSTF 1 h after subcutaneous injection with 3.5 mg/kg (equivalent to 0.7 LD50) SM significantly increased the survival levels of rats and attenuated the SM-induced morphological changes in the testis, small intestine and liver tissues. Treatment with MSTF at doses of 60 and 120 mg/kg caused a significant (p < 0.05) reversal in SM-induced GSH depletion. Gene expression profiles revealed that treatment with MSTF had a dramatic effect on gene expression changes caused by SM. Treatment with MSTF prevented SM-induced differential expression of 93.8% (973 genes) of 1037 genes. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 36 pathways, such as the MAPK signaling pathway, pathways in cancer, antigen processing and presentation. These data suggest that MSTF attenuates SM-induced injury by increasing GSH and targeting multiple pathways, including the MAPK signaling pathway, as well as antigen processing and presentation. These results suggest that MSTF has the potential to be used as a potential therapeutic agent against SM injuries. PMID:26501264
A new diterpenoid glucoside and two new diterpenoids from the fruit of Vitex agnus-castus.
Ono, Masateru; Eguchi, Keisuke; Konoshita, Masatarou; Furusawa, Chisato; Sakamoto, Junich; Yasuda, Shin; Ikeda, Tsuyoshi; Okawa, Masafumi; Kinjo, Junei; Yoshimitsu, Hitoshi; Nohara, Toshihiro
2011-01-01
A new labdane-type diterpenoid glucoside and two new labdane-type diterpenoids were isolated from the fruit (chasteberry) of Vitex agnus-castus L. (Verbenaceae) along with 14 known compounds comprising seven labdane-type diterpenoids, one halimane-type diterpenoid, two oleanane-type triterpenoids, two ursane-type triterpenoids, one aromadendrane-type sesquiterpenoid, and one flavonoid. Their structures were characterized on the basis of spectroscopic data as well as chemical evidence. Furthermore, the antioxidative activities of the flavonoid were evaluated using five different analyses.
Flavonoids from the flowers of Aesculus hippocastanum.
Dudek-Makuch, Marlena; Matławska, Irena
2011-01-01
The flavonoids, kaempferol derivatives: 3-O-alpha-arabinofuranoside, 3-O-beta-glucopyranoside, 3-O-alpha-rhamnopyranoside, 3-O-alpha-rhamnopyranosyl (1 --> 6)-O-beta-glucopyranoside and quercetin derivatives: 3-O-alpha-arabinofuranoside, 3-O-beta-glucopyranoside, 3-O-alpha-rhamnopyranosyl (1 --> 6)-O-beta-glucopyranoside, were isolated from the flowers of Aesculus hippocastanum and identified. The structures of these compounds were confirmed by a chemical analysis and spectrophotometric methods (UV, 1H-, 13C-NMR, ESI-MS). The presence of free aglycones: kaempferol and quercetin was confirmed chromatographically by comparison with standards.
2008-08-01
about the fundamental molecular biology and bio- chemistry involved in the detoxification of this phytotoxin (Hannink et al., 2002). Active uptake into...fragment with a mass m/z 254, [M-H]-120 corre- sponded to a fragmentation 0,2X, in agreement with the fragmentation of the C-glucosides of flavonoids ...Trends Plant Sci. 2, 144–151. Cuyckens, F. and Claeys, M. (2004) Mass spectrometry in the structural analysis of flavonoids . J. Mass Spectrom. 39, 1–15
Okoye, Festus B C; Sawadogo, Wamtinga Richard; Sendker, Jandirk; Aly, Amal H; Quandt, Bettina; Wray, Victor; Hensel, Andreas; Esimone, Charles O; Debbab, Abdessamad; Diederich, Marc; Proksch, Peter
2015-12-24
Olax mannii Oliv. (Olacaceae) is among the many medicinal plants used in Nigeria for the ethnomedicinal management of both cancer and inflammation. Such plants represent potential sources of innovative therapeutic agents for the treatment of cancer and other malignant disorders. While the majority of medicinal plants exert their anticancer effects by direct cytotoxicity on tumor cells, it is important that other mechanisms through which these plants can exhibit anticancer effects are investigated. Preliminary studies indicated that Olax mannii leaves are rich sources of novel flavonoid glycosides. The detailed chemistry as well the mechanisms through which these flavonoid constituents may exert their cancer chemo-preventive and therapeutic effects are, however, not yet investigated. The aim of this study is to carry out a detailed chemical investigation of Olax mannii leaves and the effects of the isolated constituents on the nuclear factor kappa B (NF-κB) pathway. A methanol leaf extract was subjected to various chromatographic separations to achieve isolation of flavonoid glycosides and the structures of the isolated compounds were elucidated by a combination of 1D and 2D NMR and high resolution mass spectrometry. Biological activities were assessed by measurement of cellular viability and proliferation using quantitative IncuCyte videomicroscopy, trypan blue staining and by quantification of the number of metabolically active K562 cells based on quantitation of ATP. The effect of the compounds on the inhibition of the NF-κB pathway as well as toxicity towards peripheral blood mononuclear cells to evaluate differential toxicity was also assayed. Chemical investigation of the methanol leaf extract of the plant material led to the isolation of three new flavonoid triglycosides, kaempferol 3-O-[α-D-apiofuranosyl-(1 → 2)-α-L-arabinofuranoside]-7-O-α-L-rhamnopyranoside (1), kaempferol 3-O-[β-D-glucopyranosyl-(1 → 2)-α-L-arabinofuranoside]-7-O-α-L-rhamnopyranoside (2), kaempferol 3-O-[β-D-arabinopyranosyl-(1→4)-α-L-rhamnopyranoside]-7-O-α-L-rhamnopyranoside (3), in addition to fourteen known flavonoid glycosides (4-17). Of all the tested compounds, only compound 9 (kaempferol 3-O-α-L-rhamnopyranoside) exhibited promising and specific antiproliferative activity on human K562 chronic myelogenous leukemia cells and dose-dependently inhibited NF-κB transactivation. The presence of this flavonoid glycoside and derivatives may account for the reported efficacy of Olax mannii leaf extract in the ethnomedicinal management of cancer and inflammation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Sanna, Daniele; Ugone, Valeria; Fadda, Angela; Micera, Giovanni; Garribba, Eugenio
2016-08-01
The radical production capability and the antioxidant properties of some V(IV)O complexes formed by flavonoid ligands were examined. In particular, the bis-chelated species of quercetin (que), [VO(que)2](2-), and morin (mor), [VO(mor)2], were evaluated for their capability to reduce the stable radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and produce the hydroxyl radical (•)OH by Fenton-like reactions, where the reducing agent is V(IV)O(2+). The results were compared with those displayed by other V(IV)O complexes, such as [VO(H2O)5](2+), [VO(acac)2] (acac=acetylacetonate) and [VO(cat)2](2-) (cat=catecholate). The capability of the V(IV)O flavonoids complexes to reduce DPPH is much larger than that of the V(IV)O species formed by non-antioxidant ligands and it is due mainly to the flavonoid molecule. Through the 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin trapping assay of the hydroxyl radical it was possible to demonstrate that in acidic solution V(IV)O(2+) has an effectiveness in producing (•)OH radicals comparable to that of Fe(2+). When V(IV)O complexes of flavonoids were taken into account, the amount of hydroxyl radicals produced in Fenton-like reactions depends on the specific structure of the ligand and on their capability to reduce H2O2 to give (•)OH. Both the formation of reactive oxygen species (ROS) under physiological conditions by V(IV)O complexes of flavonoid ligands and their radical scavenging capability can be put in relationship with their antitumor effectiveness and it could be possible to modulate these actions by changing the features of the flavonoid coordinated to the V(IV)O(2+) ion, such as the entity, nature and position of the substituents and the number of phenolic groups. Copyright © 2016 Elsevier Inc. All rights reserved.
Hossain, Mohammad Rashed; Kim, Hoy-Taek; Shanmugam, Ashokraj; Nath, Ujjal Kumar; Goswami, Gayatri; Song, Jae-Young; Park, Jong-In; Nou, Ill-Sup
2018-02-26
Anthocyanins are the resultant end-point metabolites of phenylapropanoid/flavonoid (F/P) pathway which is regulated at transcriptional level via a series of structural genes. Identifying the key genes and their potential interactions can provide us with the clue for novel points of intervention for improvement of the trait in strawberry. We profiled the expressions of putative regulatory and biosynthetic genes of cultivated strawberry in three developmental and characteristically colored stages of fruits of contrastingly anthocyanin rich cultivars: Tokun, Maehyang and Soelhyang. Besides FaMYB10, a well-characterized positive regulator, FaMYB5 , FabHLH3 and FabHLH3-delta might also act as potential positive regulators, while FaMYB11 , FaMYB9 , FabHLH33 and FaWD44-1 as potential negative regulators of anthocyanin biosynthesis in these high-anthocyanin cultivars. Among the early BGs, Fa4CL7 , FaF3H , FaCHI1 , FaCHI3 , and FaCHS, and among the late BGs, FaDFR4-3 , FaLDOX , and FaUFGT2 showed significantly higher expression in ripe fruits of high anthocyanin cultivars Maehyang and Soelhyang. Multivariate analysis revealed the association of these genes with total anthocyanins. Increasingly higher expressions of the key genes along the pathway indicates the progressive intensification of pathway flux leading to final higher accumulation of anthocyanins. Identification of these key genetic determinants of anthocyanin regulation and biosynthesis in Korean cultivars will be helpful in designing crop improvement programs.
Li, Weiwei; Zhao, Lei; Meng, Fei; Wang, Yunsheng; Tan, Huarong; Yang, Hua; Wei, Chaoling; Wan, Xiaochun; Gao, Liping; Xia, Tao
2013-01-01
Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid chromatography in tandem mass spectrometry technology. Of which 29 phenolic compounds were quantified based on their fragmentation behaviors. Most of the phenolic compounds were higher in the younger leaves than that in the stem and root, whereas the total amount of proanthocyanidins were unexpectedly higher in the root. The expression patterns of 63 structural and regulator genes involved in the shikimic acid, phenylpropanoid, and flavonoid pathways were analyzed by quantitative real-time polymerase chain reaction and cluster analysis. Based on the similarity of their expression patterns, the genes were classified into two main groups: C1 and C2; and the genes in group C1 had high relative expression level in the root or low in the bud and leaves. The expression patterns of genes in C2-2-1 and C2-2-2-1 groups were probably responsible for the development-dependent accumulation of phenolic compounds in the leaves. Enzymatic analysis suggested that the accumulation of catechins was influenced simultaneously by catabolism and anabolism. Further research is recommended to know the expression patterns of various genes and the reason for the variation in contents of different compounds in different growth stages and also in different organs. PMID:23646127
Somerset, Shawn; Papier, Keren
2014-01-01
Flavonoids, a broad category of nonnutrient food components, are potential protective dietary factors in the etiology of some cancers. However, previous epidemiological studies showing associations between flavonoid intake and cancer risk have used unvalidated intake assessment methods. A 62-item food frequency questionnaire (FFQ) based on usual intake of a representative Australian adult population sample was validated against a 3-day diet diary method in 60 young adults. Spearman's rank correlations showed 17 of 25 individual flavonoids, 3 of 5 flavonoid subgroups, and total flavonoids having strong/moderate correlation coefficients (0.40-0.70), and 8 of 25 individual flavonoids and 2 of 5 flavonoid subgroups having weak/insignificant correlations (0.01-0.39) between the 2 methods. Bland-Altman plots showed most subjects within ±1.96 SD for intakes of flavonoid subgroups and total flavonoids. The FFQ classified 73-90% of participants for all flavonoids except isorhamnetin, cyanidin, delphinidin, peonidin, and pelargonidin; 73.3-85.0% for all flavonoid subgroups except Anthocyanidins; and 86.7% for total flavonoid intake in the same/adjacent quartile determined by the 3-day diary. Weighted kappa values ranged from 0.00 (Isorhamnetin, Pelargonidin) to 0.60 (Myricetin) and were statistically significant for 18 of 25 individual flavonoids, 3 of 5 subgroups, and total flavonoids. This FFQ provides a simple and inexpensive means to estimate total flavonoid and flavonoid subgroup intake.
Zaki, Mohamed A; Nanayakkara, N P Dhammika; Hetta, Mona H; Jacob, Melissa R; Khan, Shabana I; Mohammed, Rabab; Ibrahim, Mohamed A; Samoylenko, Volodymyr; Coleman, Christina; Fronczek, Frank R; Ferreira, Daneel; Muhammad, Ilias
2016-09-23
Two new flavonoids, rac-6-formyl-5,7-dihydroxyflavanone (1) and 2',6'-dihydroxy-4'-methoxy-3'-methylchalcone (2), together with five known derivatives, rac-8-formyl-5,7-dihydroxyflavanone (3), 4',6'-dihydroxy-2'-methoxy-3'-methyldihydrochalcone (4), rac-7-hydroxy-5-methoxy-6-methylflavanone (5), 3'-formyl-2',4',6'-trihydroxy-5'-methyldihydrochalcone (6), and 3'-formyl-2',4',6'-trihydroxydihydrochalcone (7), were isolated from the leaves of Eugenia rigida. The individual (S)- and (R)-enantiomers of 1 and 3, together with the corresponding formylated flavones 8 (6-formyl-5,7-dihydroxyflavone) and 9 (8-formyl-5,7-dihydroxyflavone), as well as 2',4',6'-trihydroxychalcone (10), 3'-formyl-2',4',6'-trihydroxychalcone (11), and the corresponding 3'-formyl-2',4',6'-trihydroxydihydrochalcone (7) and 2',4',6'-trihydroxydihydrochalcone (12), were synthesized. The structures of the isolated and synthetic compounds were established via NMR, HRESIMS, and electronic circular dichroism data. In addition, the structures of 3, 5, and 8 were confirmed by single-crystal X-ray diffraction crystallography. The isolated and synthetic flavonoids were evaluated for their antimicrobial and cytotoxic activities against a panel of microorganisms and solid tumor cell lines.
Amato, Alessandra; Cavallini, Erika; Zenoni, Sara; Finezzo, Laura; Begheldo, Maura; Ruperti, Benedetto; Tornielli, Giovanni Battista
2016-01-01
A small set of TTG2-like homolog proteins from different species belonging to the WRKY family of transcription factors were shown to share a similar mechanism of action and to control partially conserved biochemical/developmental processes in their native species. In particular, by activating P-ATPases residing on the tonoplast, PH3 from Petunia hybrida promotes vacuolar acidification in petal epidermal cells whereas TTG2 from Arabidopsis thaliana enables the accumulation of proanthocyanidins in the seed coat. In this work we functionally characterized VvWRKY26 identified as the closest grapevine homolog of PhPH3 and AtTTG2 . When constitutively expressed in petunia ph3 mutant, VvWRKY26 can fulfill the PH3 function in the regulation of vacuolar pH and restores the wild type pigmentation phenotype. By a global correlation analysis of gene expression and by transient over-expression in Vitis vinifera , we showed transcriptomic relationships of VvWRKY26 with many genes related to vacuolar acidification and transport in grapevine. Moreover, our results indicate an involvement in flavonoid pathway possibly restricted to the control of proanthocyanidin biosynthesis that is consistent with its expression pattern in grape berry tissues. Overall, the results show that, in addition to regulative mechanisms and biological roles shared with TTG2-like orthologs, VvWRKY26 can play roles in fleshy fruit development that have not been previously reported in studies from dry fruit species. This study paves the way toward the comprehension of the regulatory network controlling vacuolar acidification and flavonoid accumulation mechanisms that contribute to the final berry quality traits in grapevine.
Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.
Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.
1995-01-01
Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present study we report that cotreatment of human endothelial cells with certain hydroxyflavones and flavanols blocks cytokine-induced ICAM-1, VCAM-1, and E-selectin expression on human endothelial cells. One of the most potent flavones, apigenin, exhibited a dose- and time-dependent, reversible effect on adhesion protein expression as well as inhibiting adhesion protein upregulation at the transcriptional level. Apigenin also inhibited IL-1 alpha-induced prostaglandin synthesis and TNF-alpha-induced IL-6 and IL-8 production, suggesting that the hydroxyflavones may act as general inhibitors of cytokine-induced gene expression. Although apigenin did not inhibit TNF-alpha-induced nuclear translocation of NF-kappa B(p50(NFKB1)/p65(RelA)) we found this flavonoid did inhibit TNF-alpha induced beta-galactosidase activity in SW480 cells stably transfected with a beta-galactosidase reporter construct driven by four NF-kappa B elements, suggesting an action on NF-kappa B transcriptional activation. Adhesion of leukocytes to cytokine-treated endothelial cells was blocked in endothelial cells cotreated with apigenin. Finally, apigenin demonstrated potent anti-inflammatory activity in carrageenan induced rat paw edema and delayed type hypersensitivity in the mouse. We conclude that flavonoids offer important therapeutic potential for the treatment of a variety of inflammatory diseases involving an increase in leukocyte adhesion and trafficking. Images Figure 7 Figure 8 Figure 11 PMID:7543732
Amato, Alessandra; Cavallini, Erika; Zenoni, Sara; Finezzo, Laura; Begheldo, Maura; Ruperti, Benedetto; Tornielli, Giovanni Battista
2017-01-01
A small set of TTG2-like homolog proteins from different species belonging to the WRKY family of transcription factors were shown to share a similar mechanism of action and to control partially conserved biochemical/developmental processes in their native species. In particular, by activating P-ATPases residing on the tonoplast, PH3 from Petunia hybrida promotes vacuolar acidification in petal epidermal cells whereas TTG2 from Arabidopsis thaliana enables the accumulation of proanthocyanidins in the seed coat. In this work we functionally characterized VvWRKY26 identified as the closest grapevine homolog of PhPH3 and AtTTG2. When constitutively expressed in petunia ph3 mutant, VvWRKY26 can fulfill the PH3 function in the regulation of vacuolar pH and restores the wild type pigmentation phenotype. By a global correlation analysis of gene expression and by transient over-expression in Vitis vinifera, we showed transcriptomic relationships of VvWRKY26 with many genes related to vacuolar acidification and transport in grapevine. Moreover, our results indicate an involvement in flavonoid pathway possibly restricted to the control of proanthocyanidin biosynthesis that is consistent with its expression pattern in grape berry tissues. Overall, the results show that, in addition to regulative mechanisms and biological roles shared with TTG2-like orthologs, VvWRKY26 can play roles in fleshy fruit development that have not been previously reported in studies from dry fruit species. This study paves the way toward the comprehension of the regulatory network controlling vacuolar acidification and flavonoid accumulation mechanisms that contribute to the final berry quality traits in grapevine. PMID:28105033
Functional Promiscuity of Two Divergent Paralogs of Type III Plant Polyketide Synthases1
Pandith, Shahzad A.; Dhar, Niha; Bhat, Wajid Waheed; Kushwaha, Manoj; Gupta, Ajai P.; Shah, Manzoor A.; Vishwakarma, Ram
2016-01-01
Plants effectively defend themselves against biotic and abiotic stresses by synthesizing diverse secondary metabolites, including health-protective flavonoids. These display incredible chemical diversity and ubiquitous occurrence and confer impeccable biological and agricultural applications. Chalcone synthase (CHS), a type III plant polyketide synthase, is critical for flavonoid biosynthesis. It catalyzes acyl-coenzyme A thioesters to synthesize naringenin chalcone through a polyketidic intermediate. The functional divergence among the evolutionarily generated members of a gene family is pivotal in driving the chemical diversity. Against this backdrop, this study was aimed to functionally characterize members of the CHS gene family from Rheum emodi, an endangered and endemic high-altitude medicinal herb of northwestern Himalayas. Two full-length cDNAs (1,179 bp each), ReCHS1 and ReCHS2, encoding unique paralogs were isolated and characterized. Heterologous expression and purification in Escherichia coli, bottom-up proteomic characterization, high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis, and enzyme kinetic studies using five different substrates confirmed their catalytic potential. Phylogenetic analysis revealed the existence of higher synonymous mutations in the intronless divergents of ReCHS. ReCHS2 displayed significant enzymatic efficiency (Vmax/Km) with different substrates. There were significant spatial and altitudinal variations in messenger RNA transcript levels of ReCHSs correlating positively with metabolite accumulation. Furthermore, the elicitations in the form of methyl jasmonate, salicylic acid, ultraviolet B light, and wounding, chosen on the basis of identified cis-regulatory promoter elements, presented considerable differences in the transcript profiles of ReCHSs. Taken together, our results demonstrate differential propensities of CHS paralogs in terms of the accumulation of flavonoids and their relative substrate selectivities. PMID:27268960
Ginkgo biloba Responds to Herbivory by Activating Early Signaling and Direct Defenses
Atsbaha Zebelo, Simon; Foti, Maria; Fliegmann, Judith; Bossi, Simone; Maffei, Massimo E.; Bertea, Cinzia M.
2012-01-01
Background Ginkgo biloba (Ginkgoaceae) is one of the most ancient living seed plants and is regarded as a living fossil. G. biloba has a broad spectrum of resistance or tolerance to many pathogens and herbivores because of the presence of toxic leaf compounds. Little is known about early and late events occurring in G. biloba upon herbivory. The aim of this study was to assess whether herbivory by the generalist Spodoptera littoralis was able to induce early signaling and direct defense in G. biloba by evaluating early and late responses. Methodology/Principal Findings Early and late responses in mechanically wounded leaves and in leaves damaged by S. littoralis included plasma transmembrane potential (Vm) variations, time-course changes in both cytosolic calcium concentration ([Ca2+]cyt) and H2O2 production, the regulation of genes correlated to terpenoid and flavonoid biosynthesis, the induction of direct defense compounds, and the release of volatile organic compounds (VOCs). The results show that G. biloba responded to hebivory with a significant Vm depolarization which was associated to significant increases in both [Ca2+]cyt and H2O2. Several defense genes were regulated by herbivory, including those coding for ROS scavenging enzymes and the synthesis of terpenoids and flavonoids. Metabolomic analyses revealed the herbivore-induced production of several flavonoids and VOCs. Surprisingly, no significant induction by herbivory was found for two of the most characteristic G. biloba classes of bioactive compounds; ginkgolides and bilobalides. Conclusions/Significance By studying early and late responses of G. biloba to herbivory, we provided the first evidence that this “living fossil” plant responds to herbivory with the same defense mechanisms adopted by the most recent angiosperms. PMID:22448229
Byrne, P F; McMullen, M D; Snook, M E; Musket, T A; Theuri, J M; Widstrom, N W; Wiseman, B R; Coe, E H
1996-01-01
Interpretation of quantitative trait locus (QTL) studies of agronomic traits is limited by lack of knowledge of biochemical pathways leading to trait expression. To more fully elucidate the biological significance of detected QTL, we chose a trait that is the product of a well-characterized pathway, namely the concentration of maysin, a C-glycosyl flavone, in silks of maize, Zea mays L. Maysin is a host-plant resistance factor against the corn earworm, Helicoverpa zea (Boddie). We determined silk maysin concentrations and restriction fragment length polymorphism genotypes at flavonoid pathway loci or linked markers for 285 F2 plants derived from the cross of lines GT114 and GT119. Single-factor analysis of variance indicated that the p1 region on chromosome 1 accounted for 58.0% of the phenotypic variance and showed additive gene action. The p1 locus is a transcription activator for portions of the flavonoid pathway. A second QTL, represented by marker umc 105a near the brown pericarp1 locus on chromosome 9, accounted for 10.8% of the variance. Gene action of this region was dominant for low maysin, but was only expressed in the presence of a functional p1 allele. The model explaining the greatest proportion of phenotypic variance (75.9%) included p1, umc105a, umc166b (chromosome 1), r1 (chromosome 10), and two epistatic interaction terms, p1 x umc105a and p1 x r1. Our results provide evidence that regulatory loci have a central role and that there is a complex interplay among different branches of the flavonoid pathway in the expression of this trait. PMID:11607699
USDA-ARS?s Scientific Manuscript database
Little is known about the impact of temperature on proanthocyanidin (PA) accumulation in grape skins, despite its significance in berry composition and wine quality. Field grown grapes (cv. Merlot) were cooled during the day or heated at night by +/- 8 °C, from fruit set to véraison in three seasons...
Khalid, Muhammad; Hassani, Danial; Bilal, Muhammad; Liao, Jianli
2017-01-01
This work evaluated the impact of exogenous soil inoculation of beneficial fungal strain Piriformospora indica on phytochemical changes and the related genes expression of Chinese cabbage (Brassica campestris ssp. chinensis L.) by greenhouse pot experiments. High performance liquid chromatography (HPLC) affirmed that among the different combinations of fungal and organic fertilizer treatments, the phenolic acids and flavonoids were considerably enriched in organic fertilizer and fungi (OP) followed by organic fertilizer, biochar, fungi (OBP) treated plants. The antiradical activity was higher in OP (61.29%) followed by P (60%) and organic fertilizer (OF) (53.84%) inoculated plants which positively correlated with chlorophyll, carotenoids and flavonoids level (P<0.05). Furthermore, results showed that the exogenous application of P. indica significantly (P<0.05) enhanced plant growth, as well as stimulating the activation of chlorophyll, carotenoids and other antioxidant related pathways. The RT-qPCR analysis indicated that key FLS gene triggering the synthesis of kaemferol was up-regulated by the inoculation of P. indica. In conclusion, the results revealed that organic fertilizer and P. indica (OP) is the most appropriate combination for improving phytochemical and antiradical properties in Pakchoi. PMID:28493970
Yang, Dan; Wang, Xiang-Yu; Gan, Lu-Jing; Zhang, Hua; Shin, Jung-Ah; Lee, Ki-Teak; Hong, Soon-Taek
2015-05-01
In this study, we have produced a structured lipid with a low ω6/ω3 ratio by lipase-catalysed interesterification with perilla and grape seed oils (1:3, wt/wt). A Ginkgo biloba leaf extract was fractionated in a column packed with HP-20 resin, producing a flavonoid glycoside fraction (FA) and a biflavone fraction (FB). FA exhibited higher antioxidant capacity than FB, showing 58.4 mmol gallic acid equivalent (GAE)/g-of-total-phenol-content, 58.8 mg quercetin equivalent (QUE)/g-of-total-flavonoid-content, 4.5 mmol trolox/g-of-trolox-equivalent antioxidant capacity, 0.14 mg extract/mL-of-free-radical-scavenging-activity (DPPH assay, IC50), and 2.3 mmol Fe2SO4 · 7H2O/g-of-ferric-reducing-antioxidant-power. The oil-in-water emulsion containing the stripped structured lipid as an oil phase with FA exhibited the highest stability and the lowest oil globule diameters (d43 and d32), where the aggregation was unnoticeable by Turbiscan and particle size analyses during 30 days of storage. Furthermore, FA was effective in retarding the oxidation of the emulsions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lee, Jin-Hyung; Regmi, Sushil Chandra; Kim, Jung-Ae; Cho, Moo Hwan; Yun, Hyungdon; Lee, Chang-Soo; Lee, Jintae
2011-01-01
Pathogenic biofilms have been associated with persistent infections due to their high resistance to antimicrobial agents, while commensal biofilms often fortify the host's immune system. Hence, controlling biofilm formation of both pathogenic bacteria and commensal bacteria is important in bacterium-related diseases. We investigated the effect of plant flavonoids on biofilm formation of enterohemorrhagic Escherichia coli O157:H7. The antioxidant phloretin, which is abundant in apples, markedly reduced E. coli O157:H7 biofilm formation without affecting the growth of planktonic cells, while phloretin did not harm commensal E. coli K-12 biofilms. Also, phloretin reduced E. coli O157:H7 attachment to human colon epithelial cells. Global transcriptome analyses revealed that phloretin repressed toxin genes (hlyE and stx2), autoinducer-2 importer genes (lsrACDBF), curli genes (csgA and csgB), and dozens of prophage genes in E. coli O157:H7 biofilm cells. Electron microscopy confirmed that phloretin reduced fimbria production in E. coli O157:H7. Also, phloretin suppressed the tumor necrosis factor alpha-induced inflammatory response in vitro using human colonic epithelial cells. Moreover, in the rat model of colitis induced by trinitrobenzene sulfonic acid (TNBS), phloretin significantly ameliorated colon inflammation and body weight loss. Taken together, our results suggest that the antioxidant phloretin also acts as an inhibitor of E. coli O157:H7 biofilm formation as well as an anti-inflammatory agent in inflammatory bowel diseases without harming beneficial commensal E. coli biofilms. PMID:21930760
Lee, Jin-Hyung; Regmi, Sushil Chandra; Kim, Jung-Ae; Cho, Moo Hwan; Yun, Hyungdon; Lee, Chang-Soo; Lee, Jintae
2011-12-01
Pathogenic biofilms have been associated with persistent infections due to their high resistance to antimicrobial agents, while commensal biofilms often fortify the host's immune system. Hence, controlling biofilm formation of both pathogenic bacteria and commensal bacteria is important in bacterium-related diseases. We investigated the effect of plant flavonoids on biofilm formation of enterohemorrhagic Escherichia coli O157:H7. The antioxidant phloretin, which is abundant in apples, markedly reduced E. coli O157:H7 biofilm formation without affecting the growth of planktonic cells, while phloretin did not harm commensal E. coli K-12 biofilms. Also, phloretin reduced E. coli O157:H7 attachment to human colon epithelial cells. Global transcriptome analyses revealed that phloretin repressed toxin genes (hlyE and stx(2)), autoinducer-2 importer genes (lsrACDBF), curli genes (csgA and csgB), and dozens of prophage genes in E. coli O157:H7 biofilm cells. Electron microscopy confirmed that phloretin reduced fimbria production in E. coli O157:H7. Also, phloretin suppressed the tumor necrosis factor alpha-induced inflammatory response in vitro using human colonic epithelial cells. Moreover, in the rat model of colitis induced by trinitrobenzene sulfonic acid (TNBS), phloretin significantly ameliorated colon inflammation and body weight loss. Taken together, our results suggest that the antioxidant phloretin also acts as an inhibitor of E. coli O157:H7 biofilm formation as well as an anti-inflammatory agent in inflammatory bowel diseases without harming beneficial commensal E. coli biofilms.
VanderMolen, Karen M.; Cech, Nadja B.; Paine, Mary F.
2013-01-01
Introduction Grapefruit juice can increase or decrease the systemic exposure of myriad oral medications, leading to untoward effects or reduced efficacy. Furanocoumarins in grapefruit juice have been established as inhibitors of cytochrome P450 3A (CYP3A)-mediated metabolism and P-glycoprotein (P-gp)-mediated efflux, while flavonoids have been implicated as inhibitors of organic anion transporting polypeptide (OATP)-mediated absorptive uptake in the intestine. The potential for drug interactions with a food product necessitates an understanding of the expected concentrations of a suite of structurally diverse and potentially bioactive compounds. Objective Develop methods for the rapid quantitation of two furanocoumarins (bergamottin and 6′,7′-dihydroxybergamottin) and four flavonoids (naringin, naringenin, narirutin, and hesperidin) in five grapefruit juice products using ultra performance liquid chromatography (UPLC). Methodology Grapefruit juice products were extracted with ethyl acetate; the concentrated extract was analyzed by UPLC using acetonitrile:water gradients and a C18 column. Analytes were detected using a photodiode array detector, set at 250 nm (furanocoumarins) and 310 nm (flavonoids). Intraday and interday precision and accuracy and limits of detection and quantitation were determined. Results Rapid (<5.0 min) UPLC methods were developed to measure the aforementioned furanocoumarins and flavonoids. R2 values for the calibration curves of all analytes were >0.999. Considerable between-juice variation in the concentrations of these compounds was observed, and the quantities measured were in agreement with the concentrations published in HPLC studies. Conclusion These analytical methods provide an expedient means to quantitate key furanocoumarins and flavonoids in grapefruit juice and other foods used in dietary substance-drug interaction studies. PMID:23780830
Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes
2004-01-01
The facilitative glucose transporter, GLUT4, mediates insulin-stimulated glucose uptake in adipocytes and muscles, and the participation of GLUT4 in the pathogenesis of various clinical conditions associated with obesity, visceral fat accumulation and insulin resistance has been proposed. Glucose uptake by some members of the GLUT family, mainly GLUT1, is inhibited by flavonoids, the natural polyphenols present in fruits, vegetables and wine. Therefore it is of interest to establish if these polyphenolic compounds present in the diet, known to be effective antioxidants but also endowed with several other biological activities such as protein-tyrosine kinase inhibition, interfere with GLUT4 function. In the present study, we show that three flavonoids, quercetin, myricetin and catechin-gallate, inhibit the uptake of methylglucose by adipocytes over the concentration range of 10–100 μM. These three flavonoids show a competitive pattern of inhibition, with Ki=16, 33.5 and 90 μM respectively. In contrast, neither catechin nor gallic acid inhibit methylglucose uptake. To obtain a better understanding of the interaction among GLUT4 and flavonoids, we have derived a GLUT4 three-dimensional molecular comparative model, using structural co-ordinates from a GLUT3 comparative model and a mechanosensitive ion channel [PDB (Protein Data Bank) code 1MSL] solved by X-ray diffraction. On the whole, the experimental evidence and computer simulation data favour a transport inhibition mechanism in which flavonoids and GLUT4 interact directly, rather than by a mechanism related to protein-tyrosine kinase and insulin signalling inhibition. Furthermore, the results suggest that GLUT transporters are involved in flavonoid incorporation into cells. PMID:15469417
Vandermolen, Karen M; Cech, Nadja B; Paine, Mary F; Oberlies, Nicholas H
2013-01-01
Grapefruit juice can increase or decrease the systemic exposure of myriad oral medications, leading to untoward effects or reduced efficacy. Furanocoumarins in grapefruit juice have been established as inhibitors of cytochrome P450 3A (CYP3A)-mediated metabolism and P-glycoprotein (P-gp)-mediated efflux, while flavonoids have been implicated as inhibitors of organic anion transporting polypeptide (OATP)-mediated absorptive uptake in the intestine. The potential for drug interactions with a food product necessitates an understanding of the expected concentrations of a suite of structurally diverse and potentially bioactive compounds. Develop methods for the rapid quantitation of two furanocoumarins (bergamottin and 6',7'-dihydroxybergamottin) and four flavonoids (naringin, naringenin, narirutin and hesperidin) in five grapefruit juice products using ultra-performance liquid chromatography (UPLC). Grapefruit juice products were extracted with ethyl acetate; the concentrated extract was analysed by UPLC using acetonitrile:water gradients and a C18 -column. Analytes were detected using a photodiode array detector, set at 250 nm (furanocoumarins) and 310 nm (flavonoids). Intraday and interday precision and accuracy and limits of detection and quantitation were determined. Rapid (< 5.0 min) UPLC methods were developed to measure the aforementioned furanocoumarins and flavonoids. R(2) values for the calibration curves of all analytes were >0.999. Considerable between-juice variation in the concentrations of these compounds was observed, and the quantities measured were in agreement with the concentrations published in HPLC studies. These analytical methods provide an expedient means to quantitate key furanocoumarins and flavonoids in grapefruit juice and other foods used in dietary substance-drug interaction studies. Copyright © 2013 John Wiley & Sons, Ltd.
Cherrak, Sabri Ahmed; Mokhtari-Soulimane, Nassima; Berroukeche, Farid; Bensenane, Bachir; Cherbonnel, Angéline; Merzouk, Hafida; Elhabiri, Mourad
2016-01-01
Natural flavonoids such as quercetin, (+)catechin and rutin as well as four methoxylated derivatives of quercetin used as models were investigated to elucidate their impact on the oxidant and antioxidant status of human red blood cells (RBCs). The impact of these compounds against metal toxicity was studied as well as their antiradical activities with DPPH assay. Antihemolytic experiments were conducted on quercetin, (+)catechin and rutin with excess of Fe, Cu and Zn (400 μM), and the oxidant (malondialdehyde, carbonyl proteins) and antioxidant (reduced glutathione, catalase activity) markers were evaluated. The results showed that Fe and Zn have the highest prooxidant effect (37 and 33% of hemolysis, respectively). Quercetin, rutin and (+)catechin exhibited strong antioxidant properties toward Fe, but this effect was decreased with respect to Zn ions. However, the Cu showed a weak antioxidant effect at the highest flavonoid concentration (200 μM), while a prooxidant effect was observed at the lowest flavonoid concentration (100 μM). These results are in agreement with the physico-chemical and antiradical data which demonstrated that binding of the metal ions (for FeNTA: (+)Catechin, KLFeNTA = 1.6(1) × 106 M-1 > Rutin, KLFeNTA = 2.0(9) × 105 M-1 > Quercetin, KLFeNTA = 1.0(7) × 105 M-1 > Q35OH, KLFeNTA = 6.3(8.7) × 104 M-1 > Quercetin3’4’OH and Quercetin 3OH, KLFeNTA ~ 2 × 104 M-1) reflects the (anti)oxidant status of the RBCs. This study reveals that flavonoids have both prooxidant and antioxidant activity depending on the nature and concentration of the flavonoids and metal ions. PMID:27788249