Sample records for flaw analysis presentation

  1. Formal verification of a fault tolerant clock synchronization algorithm

    NASA Technical Reports Server (NTRS)

    Rushby, John; Vonhenke, Frieder

    1989-01-01

    A formal specification and mechanically assisted verification of the interactive convergence clock synchronization algorithm of Lamport and Melliar-Smith is described. Several technical flaws in the analysis given by Lamport and Melliar-Smith were discovered, even though their presentation is unusally precise and detailed. It seems that these flaws were not detected by informal peer scrutiny. The flaws are discussed and a revised presentation of the analysis is given that not only corrects the flaws but is also more precise and easier to follow. Some of the corrections to the flaws require slight modifications to the original assumptions underlying the algorithm and to the constraints on its parameters, and thus change the external specifications of the algorithm. The formal analysis of the interactive convergence clock synchronization algorithm was performed using the Enhanced Hierarchical Development Methodology (EHDM) formal specification and verification environment. This application of EHDM provides a demonstration of some of the capabilities of the system.

  2. Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Yee, Andrew; Stewart, Dylan; Rogers, James; Henley, Stanley; Bugg, Chris; Cline, John; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz

    2018-04-01

    Ultrasonic measurements have become increasingly important non-destructive techniques to characterize flaws found within various in-service industrial components. The prediction of remaining useful life based on fracture analysis depends on the accurate estimation of flaw size and orientation. However, amplitude-based ultrasonic measurements are not able to estimate the plastic zones that exist ahead of crack tips. Estimating the size of the plastic zone is an advantage since some flaws may propagate faster than others. This paper presents a wavelet cross-correlation (WCC) algorithm that was applied to nonlinear analysis of ultrasonically guided waves (GW). By using this algorithm, harmonics present in the waveforms were extracted and nonlinearity parameters were used to indicate both the tip of the cracks and size of the plastic zone. B-scans performed with the quadratic nonlinearities were sensitive to micro-damage specific to plastic zones.

  3. Application of elastic and elastic-plastic fracture mechanics methods to surface flaws

    NASA Astrophysics Data System (ADS)

    McCabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.

    Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.

  4. Application of elastic and elastic-plastic fracture mechanics methods to surface flaws

    NASA Technical Reports Server (NTRS)

    Mccabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.

    1992-01-01

    Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.

  5. Flaw depth sizing using guided waves

    NASA Astrophysics Data System (ADS)

    Cobb, Adam C.; Fisher, Jay L.

    2016-02-01

    Guided wave inspection technology is most often applied as a survey tool for pipeline inspection, where relatively low frequency ultrasonic waves, compared to those used in conventional ultrasonic nondestructive evaluation (NDE) methods, propagate along the structure; discontinuities cause a reflection of the sound back to the sensor for flaw detection. Although the technology can be used to accurately locate a flaw over long distances, the flaw sizing performance, especially for flaw depth estimation, is much poorer than other, local NDE approaches. Estimating flaw depth, as opposed to other parameters, is of particular interest for failure analysis of many structures. At present, most guided wave technologies estimate the size of the flaw based on the reflected signal amplitude from the flaw compared to a known geometry reflection, such as a circumferential weld in a pipeline. This process, however, requires many assumptions to be made, such as weld geometry and flaw shape. Furthermore, it is highly dependent on the amplitude of the flaw reflection, which can vary based on many factors, such as attenuation and sensor installation. To improve sizing performance, especially depth estimation, and do so in a way that is not strictly amplitude dependent, this paper describes an approach to estimate the depth of a flaw based on a multimodal analysis. This approach eliminates the need of using geometric reflections for calibration and can be used for both pipeline and plate inspection applications. To verify the approach, a test set was manufactured on plate specimens with flaws of different widths and depths ranging from 5% to 100% of total wall thickness; 90% of these flaws were sized to within 15% of their true value. A description of the initial multimodal sizing strategy and results will be discussed.

  6. Analysis and Test of Deep Flaws in Thin Sheets of Aluminum and Titanium. Volume 2: Crack Opening Displacement and Stress-Strain Data

    NASA Technical Reports Server (NTRS)

    Finger, R. W.

    1978-01-01

    Static fracture tests were performed on surface flawed specimens of aluminum and titanium alloys. A simulated proof overload cycle was applied prior to all of the cyclic tests. Variables included in each test series were flaw shapes and thickness. Additionally, test temperature was a variable for the aluminum test series. The crack opening displacement and stress-strain data obtained are presented.

  7. Statistical flaws in design and analysis of fertility treatment studies on cryopreservation raise doubts on the conclusions

    PubMed Central

    van Gelder, P.H.A.J.M.; Nijs, M.

    2011-01-01

    Decisions about pharmacotherapy are being taken by medical doctors and authorities based on comparative studies on the use of medications. In studies on fertility treatments in particular, the methodological quality is of utmost importance in the application of evidence-based medicine and systematic reviews. Nevertheless, flaws and omissions appear quite regularly in these types of studies. Current study aims to present an overview of some of the typical statistical flaws, illustrated by a number of example studies which have been published in peer reviewed journals. Based on an investigation of eleven studies at random selected on fertility treatments with cryopreservation, it appeared that the methodological quality of these studies often did not fulfil the required statistical criteria. The following statistical flaws were identified: flaws in study design, patient selection, and units of analysis or in the definition of the primary endpoints. Other errors could be found in p-value and power calculations or in critical p-value definitions. Proper interpretation of the results and/or use of these study results in a meta analysis should therefore be conducted with care. PMID:24753877

  8. Statistical flaws in design and analysis of fertility treatment -studies on cryopreservation raise doubts on the conclusions.

    PubMed

    van Gelder, P H A J M; Nijs, M

    2011-01-01

    Decisions about pharmacotherapy are being taken by medical doctors and authorities based on comparative studies on the use of medications. In studies on fertility treatments in particular, the methodological quality is of utmost -importance in the application of evidence-based medicine and systematic reviews. Nevertheless, flaws and omissions appear quite regularly in these types of studies. Current study aims to present an overview of some of the typical statistical flaws, illustrated by a number of example studies which have been published in peer reviewed journals. Based on an investigation of eleven studies at random selected on fertility treatments with cryopreservation, it appeared that the methodological quality of these studies often did not fulfil the -required statistical criteria. The following statistical flaws were identified: flaws in study design, patient selection, and units of analysis or in the definition of the primary endpoints. Other errors could be found in p-value and power calculations or in critical p-value definitions. Proper -interpretation of the results and/or use of these study results in a meta analysis should therefore be conducted with care.

  9. Usability flaws of medication-related alerting functions: A systematic qualitative review.

    PubMed

    Marcilly, Romaric; Ammenwerth, Elske; Vasseur, Francis; Roehrer, Erin; Beuscart-Zéphir, Marie-Catherine

    2015-06-01

    Medication-related alerting functions may include usability flaws that limit their optimal use. A first step on the way to preventing usability flaws is to understand the characteristics of these usability flaws. This systematic qualitative review aims to analyze the type of usability flaws found in medication-related alerting functions. Papers were searched via PubMed, Scopus and Ergonomics Abstracts databases, along with references lists. Paper selection, data extraction and data analysis was performed by two to three Human Factors experts. Meaningful semantic units representing instances of usability flaws were the main data extracted. They were analyzed through qualitative methods: categorization following general usability heuristics and through an inductive process for the flaws specific to medication-related alerting functions. From the 6380 papers initially identified, 26 met all eligibility criteria. The analysis of the papers identified a total of 168 instances of usability flaws that could be classified into 13 categories of usability flaws representing either violations of general usability principles (i.e. they could be found in any system, e.g. guidance and workload issues) or infractions specific to medication-related alerting functions. The latter refer to issues of low signal-to-noise ratio, incomplete content of alerts, transparency, presentation mode and timing, missing alert features, tasks and control distribution. The list of 168 instances of usability flaws of medication-related alerting functions provides a source of knowledge for checking the usability of medication-related alerting functions during their design and evaluation process and ultimately constructs evidence-based usability design principles for these functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Evaluation of flaws in carbon steel piping. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahoor, A.; Gamble, R.M.; Mehta, H.S.

    1986-10-01

    The objective of this program was to develop flaw evaluation procedures and allowable flaw sizes for ferritic piping used in light water reactor (LWR) power generation facilities. The program results provide relevant ASME Code groups with the information necessary to define flaw evaluation procedures, allowable flaw sizes, and their associated bases for Section XI of the code. Because there are several possible flaw-related failure modes for ferritic piping over the LWR operating temperature range, three analysis methods were employed to develop the evaluation procedures. These include limit load analysis for plastic collapse, elastic plastic fracture mechanics (EPFM) analysis for ductilemore » tearing, and linear elastic fracture mechanics (LEFM) analysis for non ductile crack extension. To ensure the appropriate analysis method is used in an evaluation, a step by step procedure also is provided to identify the relevant acceptance standard or procedure on a case by case basis. The tensile strength and toughness properties required to complete the flaw evaluation for any of the three analysis methods are included in the evaluation procedure. The flaw evaluation standards are provided in tabular form for the plastic collapse and ductile tearing modes, where the allowable part through flaw depth is defined as a function of load and flaw length. For non ductile crack extension, linear elastic fracture mechanics analysis methods, similar to those in Appendix A of Section XI, are defined. Evaluation flaw sizes and procedures are developed for both longitudinal and circumferential flaw orientations and normal/upset and emergency/faulted operating conditions. The tables are based on margins on load of 2.77 and 1.39 for circumferential flaws and 3.0 and 1.5 for longitudinal flaws for normal/upset and emergency/faulted conditions, respectively.« less

  11. Reliably detectable flaw size for NDE methods that use calibration

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2017-04-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh18232 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  12. Reliably Detectable Flaw Size for NDE Methods that Use Calibration

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2017-01-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh1823 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  13. A New Merit Function for Evaluating the Flaw Tolerance of Composite Laminates. Pt. 2; Arbitrary Size Holes and Center Cracks

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Sumpter, Rod

    1999-01-01

    In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or a center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.

  14. A New Merit Function for Evaluating the Flaw Tolerance of Composite Laminates. Part 2; Arbitrary Size Holes and Center Cracks

    NASA Technical Reports Server (NTRS)

    Martin, Mikulas M., Jr.; Sumpter, Rod

    2000-01-01

    In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.

  15. A New Merit Function for Evaluating the Flaw Tolerance of Composite Laminates. Part 2; Arbitrary Size Holes and Center Cracks

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Sumpter, Rod

    1997-01-01

    In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or a center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.

  16. Eddy current probe response to open and closed surface flaws

    NASA Technical Reports Server (NTRS)

    Auld, B. A.; Muennemann, F.; Winslow, D. K.

    1981-01-01

    A general analysis of eddy current response to certain types of open and closed surface flaws is presented for both standard low-frequency and ferromagnetic-resonance (FMR) probes. It is shown analytically that for two-dimensional and three-dimensional surface flaws interrogated by a uniform probe field, the crack opening sensitivity increases with the operating frequency of the probe, this behavior being due to the Faraday induction effect. Experiments with low-frequency probes operating at or below 1 MHz and with the FMR probe operating at approximately 1000 MHz confirm this increase of the crack mouth opening displacement for practical situations where the probe field is not uniform in the vicinity of the flaw.

  17. Surface flaw reliability analysis of ceramic components with the SCARE finite element postprocessor program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.; Nemeth, Noel N.

    1987-01-01

    The SCARE (Structural Ceramics Analysis and Reliability Evaluation) computer program on statistical fast fracture reliability analysis with quadratic elements for volume distributed imperfections is enhanced to include the use of linear finite elements and the capability of designing against concurrent surface flaw induced ceramic component failure. The SCARE code is presently coupled as a postprocessor to the MSC/NASTRAN general purpose, finite element analysis program. The improved version now includes the Weibull and Batdorf statistical failure theories for both surface and volume flaw based reliability analysis. The program uses the two-parameter Weibull fracture strength cumulative failure probability distribution model with the principle of independent action for poly-axial stress states, and Batdorf's shear-sensitive as well as shear-insensitive statistical theories. The shear-sensitive surface crack configurations include the Griffith crack and Griffith notch geometries, using the total critical coplanar strain energy release rate criterion to predict mixed-mode fracture. Weibull material parameters based on both surface and volume flaw induced fracture can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and grouped fracture data. The statistical fast fracture theories for surface flaw induced failure, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.

  18. Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.

    2014-02-01

    The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.

  19. NDE detectability of fatigue-type cracks in high-strength alloys: NDI reliability assessments

    NASA Technical Reports Server (NTRS)

    Christner, Brent K.; Long, Donald L.; Rummel, Ward D.

    1988-01-01

    This program was conducted to generate quantitative flaw detection capability data for the nondestructive evaluation (NDE) techniques typically practiced by aerospace contractors. Inconel 718 and Haynes 188 alloy test specimens containing fatigue flaws with a wide distribution of sizes were used to assess the flaw detection capabilities at a number of contractor and government facilities. During this program 85 inspection sequences were completed presenting a total of 20,994 fatigue cracks to 53 different inspectors. The inspection sequences completed included 78 liquid penetrant, 4 eddy current, and 3 ultrasonic evaluations. The results of the assessment inspections are presented and discussed. In generating the flaw detection capability data base, procedures for data collection, data analysis, and specimen care and maintenance were developed, demonstrated, and validated. The data collection procedures and methods that evolved during this program for the measurement of flaw detection capabilities and the effects of inspection variables on performance are discussed. The Inconel 718 and Haynes 188 test specimens that were used in conducting this program and the NDE assessment procedures that were demonstrated, provide NASA with the capability to accurately assess the flaw detection capabilities of specific inspection procedures being applied or proposed for use on current and future fracture control hardware program.

  20. Seven Pervasive Statistical Flaws in Cognitive Training Interventions

    PubMed Central

    Moreau, David; Kirk, Ian J.; Waldie, Karen E.

    2016-01-01

    The prospect of enhancing cognition is undoubtedly among the most exciting research questions currently bridging psychology, neuroscience, and evidence-based medicine. Yet, convincing claims in this line of work stem from designs that are prone to several shortcomings, thus threatening the credibility of training-induced cognitive enhancement. Here, we present seven pervasive statistical flaws in intervention designs: (i) lack of power; (ii) sampling error; (iii) continuous variable splits; (iv) erroneous interpretations of correlated gain scores; (v) single transfer assessments; (vi) multiple comparisons; and (vii) publication bias. Each flaw is illustrated with a Monte Carlo simulation to present its underlying mechanisms, gauge its magnitude, and discuss potential remedies. Although not restricted to training studies, these flaws are typically exacerbated in such designs, due to ubiquitous practices in data collection or data analysis. The article reviews these practices, so as to avoid common pitfalls when designing or analyzing an intervention. More generally, it is also intended as a reference for anyone interested in evaluating claims of cognitive enhancement. PMID:27148010

  1. Effect of Combined Loading Due to Bending and Internal Pressure on Pipe Flaw Evaluation Criteria

    NASA Astrophysics Data System (ADS)

    Miura, Naoki; Sakai, Shinsuke

    Considering a rule for the rationalization of maintenance of Light Water Reactor piping, reliable flaw evaluation criteria are essential for determining how a detected flaw will be detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes that must be considered for carbon steel piping and can be analyzed by elastic-plastic fracture mechanics. Some analytical efforts have provided various flaw evaluation criteria using load correction factors, such as the Z-factors in the JSME codes on fitness-for-service for nuclear power plants and the section XI of the ASME boiler and pressure vessel code. The present Z-factors were conventionally determined, taking conservativity and simplicity into account; however, the effect of internal pressure, which is an important factor under actual plant conditions, was not adequately considered. Recently, a J-estimation scheme, LBB.ENGC for the ductile fracture analysis of circumferentially through-wall-cracked pipes subjected to combined loading was developed for more accurate prediction under more realistic conditions. This method explicitly incorporates the contributions of both bending and tension due to internal pressure by means of a scheme that is compatible with an arbitrary combined-loading history. In this study, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. The Z-factor obtained in this study was compared with the presently used Z-factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of the internal pressure.

  2. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belle R. Upadhyaya; J. Wesley Hines

    2004-09-27

    Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research task using guided acoustic signals. A piezo-sensor suite was deployed to activate and collect Lamb wave signals that propagate along metallic specimens. The dispersion curves of Lamb waves along plate and tubular structures are generated through numerical analysis. Several advanced techniques were explored to extract representative features from acoustic time series. Among them, the Hilbert-Huang transform (HHT) is a recently developed technique for the analysis of non-linear and transient signals. A moving window method was introduced to generate the local peak characters from acousticmore » time series, and a zooming window technique was developed to localize the structural flaws. The time-frequency analysis and pattern recognition techniques were combined for classifying structural defects in brass tubes. Several types of flaws in brass tubes were tested, both in the air and in water. The techniques also proved to be effective under background/process noise. A detailed theoretical analysis of Lamb wave propagation was performed and simulations were carried out using the finite element software system ABAQUS. This analytical study confirmed the behavior of the acoustic signals acquired from the experimental studies. The report presents the background the analysis of acoustic signals acquired from piezo-electric transducers for structural defect monitoring. A comparison of the use of time-frequency techniques, including the Hilbert-Huang transform, is presented. The report presents the theoretical study of Lamb wave propagation in flat beams and tubular structures, and the need for mode separation in order to effectively perform defect diagnosis. The results of an extensive experimental study of detection, location, and isolation of structural defects in flat aluminum beams and brass tubes are presented. The results of this research show the feasibility of on-line monitoring of small structural flaws by the use of transient and nonlinear acoustic signal analysis, and its implementation by the proper design of a piezo-electric transducer suite.« less

  3. Analysis of Eddy Current Capabilities for the Detection of Outer Diameter Stress Corrosion Cracking in Small Bore Metallic Structures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Williams, Phillip; Simpson, John

    2007-01-01

    The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in Space Shuttle Primary Reaction Control System (PRCS) Thrusters. In this case, the detection of deeply buried stress corrosion cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite and boundary element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of stress corrosion cracking in Space Shuttle Primary Reaction Control System (PRCS) Thrusters.

  4. Vitamin D and depression: a systematic review and meta-analysis comparing studies with and without biological flaws.

    PubMed

    Spedding, Simon

    2014-04-11

    Efficacy of Vitamin D supplements in depression is controversial, awaiting further literature analysis. Biological flaws in primary studies is a possible reason meta-analyses of Vitamin D have failed to demonstrate efficacy. This systematic review and meta-analysis of Vitamin D and depression compared studies with and without biological flaws. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search was undertaken through four databases for randomized controlled trials (RCTs). Studies were critically appraised for methodological quality and biological flaws, in relation to the hypothesis and study design. Meta-analyses were performed for studies according to the presence of biological flaws. The 15 RCTs identified provide a more comprehensive evidence-base than previous systematic reviews; methodological quality of studies was generally good and methodology was diverse. A meta-analysis of all studies without flaws demonstrated a statistically significant improvement in depression with Vitamin D supplements (+0.78 CI +0.24, +1.27). Studies with biological flaws were mainly inconclusive, with the meta-analysis demonstrating a statistically significant worsening in depression by taking Vitamin D supplements (-1.1 CI -0.7, -1.5). Vitamin D supplementation (≥800 I.U. daily) was somewhat favorable in the management of depression in studies that demonstrate a change in vitamin levels, and the effect size was comparable to that of anti-depressant medication.

  5. Applicability of a Conservative Margin Approach for Assessing NDE Flaw Detectability

    NASA Technical Reports Server (NTRS)

    Koshti, ajay M.

    2007-01-01

    Nondestructive Evaluation (NDE) procedures are required to detect flaws in structures with a high percentage detectability and high confidence. Conventional Probability of Detection (POD) methods are statistical in nature and require detection data from a relatively large number of flaw specimens. In many circumstances, due to the high cost and long lead time, it is impractical to build the large set of flaw specimens that is required by the conventional POD methodology. Therefore, in such situations it is desirable to have a flaw detectability estimation approach that allows for a reduced number of flaw specimens but provides a high degree of confidence in establishing the flaw detectability size. This paper presents an alternative approach called the conservative margin approach (CMA). To investigate the applicability of the CMA approach, flaw detectability sizes determined by the CMA and POD approaches have been compared on actual datasets. The results of these comparisons are presented and the applicability of the CMA approach is discussed.

  6. Determination of Flaw Size from Thermographic Data

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Conventional methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size of the flaw. Since the heat diffuses in the plane parallel to the surface, the resulting temperature profile over the flaw is larger than the flaw. A variational method is presented for reducing the thermographic data to produce an estimated size for the flaw that is much closer to the true size of the flaw. The size is determined from the spatial thermal response of the exterior surface above the flaw and a constraint on the length of the contour surrounding the flaw. The technique is applied to experimental data acquired on a flat bottom hole composite specimen.

  7. Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Du, Mao-Kang; He, Bo; Wang, Yong

    2011-01-01

    Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14 (2009) 574) proposed a block encryption algorithm based on dynamic sequences of multiple chaotic systems. We analyze the potential flaws in the algorithm. Then, a chosen-plaintext attack is presented. Some remedial measures are suggested to avoid the flaws effectively. Furthermore, an improved encryption algorithm is proposed to resist the attacks and to keep all the merits of the original cryptosystem.

  8. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  9. A Secure and Robust User Authenticated Key Agreement Scheme for Hierarchical Multi-medical Server Environment in TMIS.

    PubMed

    Das, Ashok Kumar; Odelu, Vanga; Goswami, Adrijit

    2015-09-01

    The telecare medicine information system (TMIS) helps the patients to gain the health monitoring facility at home and access medical services over the Internet of mobile networks. Recently, Amin and Biswas presented a smart card based user authentication and key agreement security protocol usable for TMIS system using the cryptographic one-way hash function and biohashing function, and claimed that their scheme is secure against all possible attacks. Though their scheme is efficient due to usage of one-way hash function, we show that their scheme has several security pitfalls and design flaws, such as (1) it fails to protect privileged-insider attack, (2) it fails to protect strong replay attack, (3) it fails to protect strong man-in-the-middle attack, (4) it has design flaw in user registration phase, (5) it has design flaw in login phase, (6) it has design flaw in password change phase, (7) it lacks of supporting biometric update phase, and (8) it has flaws in formal security analysis. In order to withstand these security pitfalls and design flaws, we aim to propose a secure and robust user authenticated key agreement scheme for the hierarchical multi-server environment suitable in TMIS using the cryptographic one-way hash function and fuzzy extractor. Through the rigorous security analysis including the formal security analysis using the widely-accepted Burrows-Abadi-Needham (BAN) logic, the formal security analysis under the random oracle model and the informal security analysis, we show that our scheme is secure against possible known attacks. Furthermore, we simulate our scheme using the most-widely accepted and used Automated Validation of Internet Security Protocols and Applications (AVISPA) tool. The simulation results show that our scheme is also secure. Our scheme is more efficient in computation and communication as compared to Amin-Biswas's scheme and other related schemes. In addition, our scheme supports extra functionality features as compared to other related schemes. As a result, our scheme is very appropriate for practical applications in TMIS.

  10. Vitamin D and Depression: A Systematic Review and Meta-Analysis Comparing Studies with and without Biological Flaws

    PubMed Central

    Spedding, Simon

    2014-01-01

    Efficacy of Vitamin D supplements in depression is controversial, awaiting further literature analysis. Biological flaws in primary studies is a possible reason meta-analyses of Vitamin D have failed to demonstrate efficacy. This systematic review and meta-analysis of Vitamin D and depression compared studies with and without biological flaws. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search was undertaken through four databases for randomized controlled trials (RCTs). Studies were critically appraised for methodological quality and biological flaws, in relation to the hypothesis and study design. Meta-analyses were performed for studies according to the presence of biological flaws. The 15 RCTs identified provide a more comprehensive evidence-base than previous systematic reviews; methodological quality of studies was generally good and methodology was diverse. A meta-analysis of all studies without flaws demonstrated a statistically significant improvement in depression with Vitamin D supplements (+0.78 CI +0.24, +1.27). Studies with biological flaws were mainly inconclusive, with the meta-analysis demonstrating a statistically significant worsening in depression by taking Vitamin D supplements (−1.1 CI −0.7, −1.5). Vitamin D supplementation (≥800 I.U. daily) was somewhat favorable in the management of depression in studies that demonstrate a change in vitamin levels, and the effect size was comparable to that of anti-depressant medication. PMID:24732019

  11. Crack propagation from a filled flaw in rocks considering the infill influences

    NASA Astrophysics Data System (ADS)

    Chang, Xu; Deng, Yan; Li, Zhenhua; Wang, Shuren; Tang, C. A.

    2018-05-01

    This study presents a numerical and experimental study of the cracking behaviour of rock specimen containing a single filled flaw under compression. The primary aim is to investigate the influences of infill on crack patterns, load-displacement response and specimen strength. The numerical code RFPA2D (Rock Failure Process Analysis) featured by the capability of modeling heterogeneous materials is employed to develop the numerical model, which is further calibrated by physical tests. The results indicate that there exists a critical infill strength which controls crack patterns for a given flaw inclination angle. For case of infill strength lower than the critical value, the secondary or anti-cracks are disappeared by increasing the infill strength. If the infill strength is greater than the critical value, the filled flaw has little influence on the cracking path and the specimen fails by an inclined crack, as if there is no flaw. The load-displacement responses show specimen stiffness increases by increasing infill strength until the infill strength reaches its critical value. The specimen strength increases by increasing the infill strength and almost keeps constant as the infill strength exceeds its critical value.

  12. In-situ thermography of automated fiber placement parts

    NASA Astrophysics Data System (ADS)

    Gregory, Elizabeth D.; Juarez, Peter D.

    2018-04-01

    Automated fiber placement (AFP) provides precision and repeatable manufacturing of both simple and complex geometry composite parts. However, AFP also introduces the possibility for unique flaws such as overlapping tows, gaps between tows, tow twists, lack of layer adhesion and foreign object debris. These types of flaws can all result in a significant loss of performance in the final part. The current inspection method for these flaws is a costly and time intensive visual inspection of each ply layer. This work describes some initial efforts to incorporate thermal inspection on the AFP head and analysis of the data to identify the previously mentioned flaws. Previous bench-top laboratory experiments demonstrated that laps, gaps, and twists were identified from a thermal image. The AFP head uses an on- board lamp to preheat the surface of the part during layup to increase ply consolidation. The preheated surface is used as a thermal source to observe the state of the new material after compaction. We will present data collected with the Integrated Structural Assembly of Advanced Composites (ISAAC) AFP machine at Langley Research Center showing that changes to the temperature profile is sufficient for identifying all types of flaws.

  13. Optimizing Probability of Detection Point Estimate Demonstration

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2017-01-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonen, E.P.; Johnson, K.I.; Simonen, F.A.

    The Vessel Integrity Simulation Analysis (VISA-II) code was developed to allow calculations of the failure probability of a reactor pressure vessel subject to defined pressure/temperature transients. A version of the code, revised by Pacific Northwest Laboratory for the US Nuclear Regulatory Commission, was used to evaluate the sensitivities of calculated through-wall flaw probability to material, flaw and calculational assumptions. Probabilities were more sensitive to flaw assumptions than to material or calculational assumptions. Alternative flaw assumptions changed the probabilities by one to two orders of magnitude, whereas alternative material assumptions typically changed the probabilities by a factor of two or less.more » Flaw shape, flaw through-wall position and flaw inspection were sensitivities examined. Material property sensitivities included the assumed distributions in copper content and fracture toughness. Methods of modeling flaw propagation that were evaluated included arrest/reinitiation toughness correlations, multiple toughness values along the length of a flaw, flaw jump distance for each computer simulation and added error in estimating irradiated properties caused by the trend curve correlation error.« less

  15. Apparatus and method for detecting flaws in conductive material

    DOEpatents

    Hockey, Ronald L.; Riechers, Douglas M.

    1999-01-01

    The present invention is an improved sensing unit for detecting flaws in conductive material wherein the sensing coil is positioned away from a datum of either the datum point, the datum orientation, or a combination thereof. Position of the sensing coil away from a datum increases sensitivity for detecting flaws having a characteristic volume less than about 1 mm.sup.3, and further permits detection of subsurface flaws. Use of multiple sensing coils permits quantification of flaw area or volume.

  16. ORNL Evaluation of Electrabel Safety Cases for Doel 3 / Tihange 2: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bass, Bennett Richard; Dickson, Terry L.; Gorti, Sarma B.

    Oak Ridge National Laboratory (ORNL) performed a detailed technical review of the 2015 Electrabel (EBL) Safety Cases prepared for the Belgium reactor pressure vessels (RPVs) at Doel 3 and Tihange 2 (D3/T2). The Federal Agency for Nuclear Control (FANC) in Belgium commissioned ORNL to provide a thorough assessment of the existing safety margins against cracking of the RPVs due to the presence of almost laminar flaws found in each RPV. Initial efforts focused on surveying relevant literature that provided necessary background knowledge on the issues related to the quasilaminar flaws observed in D3/T2 reactors. Next, ORNL proceeded to develop anmore » independent quantitative assessment of the entire flaw population in the two Belgian reactors according to the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, Appendix G, Fracture Toughness Criteria for Protection Against Failure, New York (1992 and 2004). That screening assessment of all EBL-characterized flaws in D3/T2 used ORNL tools, methodologies, and the ASME Code Case N-848, Alternative Characterization Rules for QuasiLaminar Flaws . Results and conclusions from the ORNL flaw acceptance assessments of D3/T2 were compared with those from the 2015 EBL Safety Cases. Specific findings of the ORNL evaluation of that part of the EBL structural integrity assessment focusing on stability of the flaw population subjected to primary design transients include the following: ORNL s analysis results were similar to those of EBL in that very few characterized flaws were found not compliant with the ASME (1992) acceptance criterion. ORNL s application of the more recent ASME Section XI (2004) produced only four noncompliant flaws, all due to LOCAs. The finding of a greater number of non-compliant flaws in the EBL screening assessment is due principally to a significantly more restrictive (conservative) criterion for flaw size acceptance used by EBL. ORNL s screening assessment results (obtained using an analysis methodology different from that of EBL) are interpreted herein as confirming the EBL screening results for D3/T2. ORNL s independent refined analysis demonstrated the EBL-characterized flaw 1660, which is non-compliant in the ORNL and EBL screening assessment, is rendered compliant when modeled as a more realistic individual quasi-laminar flaw using a 3-D XFEM analysis approach. ORNL s and EBL s refined analyses are in good agreement for the flaw 1660 close to the clad/base metal interface; ORNL is not persuaded that repeating this exercise for more than one non-compliant flaw is necessary to accept the EBL conclusions derived from the aggregate of EBL refined analysis results. ORNL General Conclusions Regarding the Structural Integrity Assessment (SIA) Conducted by EBL for D3/T2 Based on comparative evaluations of ORNL and EBL SIA analyses and on consideration of other results, ORNL is in agreement with the general conclusions reported by Electrabel in their RPV D3/T2 Technical Summary Note of April 14, 2015: More than 99 percent of flaws in D3/T2 meet the defined screening criterion, rendering them benign with respect to initiation in the event of a design transient. Refined analyses of non-compliant flaws from the screening assessment indicate that only 11 of the 16196 detected flaws have a critical reference-temperature material index (designated RTNDT) that implies the possibility of the initiation of cleavage fracture at some future time. For those 11 2 flaws, the calculated margin in RTNDT (a measure of acceptable embrittlement relative to end-ofservice-life conditions) is significant, being greater than 80 C. Fatigue crack growth is not a concern in the flaw-acceptability analyses. Primary stress re-evaluation confirms that the collapse pressure is more than 1.5 times the design pressure in the presence of defects detected in D3/T2. Sufficient conservatisms are built into the input data and into the different steps of the SIA; in some cases, those conservatisms are quantified and imply that additional margins exist in the SIA. Taken as a whole, the foregoing results and conclusions confirm the structural integrity of Doel 3 and Tihange 2 under all design transients with ample margin in the presence of the 16196 detected flaws.« less

  17. Flaws in Commercial Reading Materials.

    ERIC Educational Resources Information Center

    Axelrod, Jerome

    Three flaws found in commercial reading materials, such as workbooks and kits, are discussed in this paper, and examples of the flaws are taken from specific materials. The first problem noted is that illustrations frequently provide the information that the learner is supposed to supply through phonetic or structural analysis; the illustrations…

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.; Burnett, M.; Goodman, C.

    A survey of currency flaw severity was carried out using 300 banknotes and 37 judges. Each judge assigned each note to one of five flaw severity categories. These categories correspond to severity grades of 1 to 5 with 1 equivalent to ''always accepted'' and 5 ''never accepted.'' An average flaw severity grade for each note was obtained by taking the mean of the severity grades assigned to that note by the 37 judges. Thus, each note has a single numerical real-number flaw grade between 1 and 5. Mathematical modeling of the currency flaw survey results is continuing with some verymore » promising initial results. Our present model handles common excess ink and missing ink flaw types quite well. We plan to extend the model to ink level, mash, setoff and blanket impression flaw types.« less

  19. PROBLEMS OF RADIOLOGICAL PROTECTION IN FLAW DETECTION (in Polish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domanus, J.; Wolski, M.

    1962-01-01

    All industrial flaw detection laboratories are covered, with respect to their radiological protection, by the supervision of the Inst. of Electrotechnics. A discussion is given of the results of this action, especially the cases of exceeding the admissible doses. The analysis of endangerment by radiation of employees of flaw detection laboratories is given. (auth)

  20. Problems with the Fraser report Chapter 1: Pitfalls in BMI time trend analysis.

    PubMed

    Lo, Ernest

    2014-11-05

    The first chapter of the Fraser report "Obesity in Canada: Overstated Problems, Misguided Policy Solutions" presents a flawed and misleading analysis of BMI time trends. The objective of this commentary is to provide a tutorial on BMI time trend analysis through the examination of these flaws. Three issues are discussed: 1. Spotting regions of confidence interval overlap is a statistically flawed method of assessing trend; regression methods which measure the behaviour of the data as a whole are preferred. 2. Temporal stability in overweight (25≤BMI<30) prevalence must be interpreted in the context of the underlying population BMI distribution. 3. BMI is considered reliable for tracking population-level weight trends due to its high correlation with body fat percentage. BMI-defined obesity prevalence represents a conservative underestimate of the population at risk. The findings of the Fraser report Chapter 1 are either refuted or substantially mitigated once the above issues are accounted for, and we do not find that the 'Canadian situation largely lacks a disconcerting or negative trend', as claimed. It is hoped that this commentary will help guide public health professionals who need to interpret, or wish to perform their own, time trend analyses of BMI.

  1. On an image reconstruction method for ECT

    NASA Astrophysics Data System (ADS)

    Sasamoto, Akira; Suzuki, Takayuki; Nishimura, Yoshihiro

    2007-04-01

    An image by Eddy Current Testing(ECT) is a blurred image to original flaw shape. In order to reconstruct fine flaw image, a new image reconstruction method has been proposed. This method is based on an assumption that a very simple relationship between measured data and source were described by a convolution of response function and flaw shape. This assumption leads to a simple inverse analysis method with deconvolution.In this method, Point Spread Function (PSF) and Line Spread Function(LSF) play a key role in deconvolution processing. This study proposes a simple data processing to determine PSF and LSF from ECT data of machined hole and line flaw. In order to verify its validity, ECT data for SUS316 plate(200x200x10mm) with artificial machined hole and notch flaw had been acquired by differential coil type sensors(produced by ZETEC Inc). Those data were analyzed by the proposed method. The proposed method restored sharp discrete multiple hole image from interfered data by multiple holes. Also the estimated width of line flaw has been much improved compared with original experimental data. Although proposed inverse analysis strategy is simple and easy to implement, its validity to holes and line flaw have been shown by many results that much finer image than original image have been reconstructed.

  2. Web vulnerability study of online pharmacy sites.

    PubMed

    Kuzma, Joanne

    2011-01-01

    Consumers are increasingly using online pharmacies, but these sites may not provide an adequate level of security with the consumers' personal data. There is a gap in this research addressing the problems of security vulnerabilities in this industry. The objective is to identify the level of web application security vulnerabilities in online pharmacies and the common types of flaws, thus expanding on prior studies. Technical, managerial and legal recommendations on how to mitigate security issues are presented. The proposed four-step method first consists of choosing an online testing tool. The next steps involve choosing a list of 60 online pharmacy sites to test, and then running the software analysis to compile a list of flaws. Finally, an in-depth analysis is performed on the types of web application vulnerabilities. The majority of sites had serious vulnerabilities, with the majority of flaws being cross-site scripting or old versions of software that have not been updated. A method is proposed for the securing of web pharmacy sites, using a multi-phased approach of technical and managerial techniques together with a thorough understanding of national legal requirements for securing systems.

  3. Technical Letter Report Development of Flaw Size Distribution Tables Including Effects of Flaw Depth Sizing Errors for Draft 10CFR 50.61a (Alternate PTS Rule) JCN-N6398, Task 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonen, Fredric A.; Gosselin, Stephen R.; Doctor, Steven R.

    2013-04-22

    This document describes a new method to determine whether the flaws in a particular reactor pressure vessel are consistent with the assumptions regarding the number and sizes of flaws used in the analyses that formed the technical justification basis for the new voluntary alternative Pressurized Thermal Shock (PTS) rule (Draft 10 CFR 50.61a). The new methodology addresses concerns regarding prior methodology because ASME Code Section XI examinations do not detect all fabrication flaws, they have higher detection performance for some flaw types, and there are flaw sizing errors always present (e.g., significant oversizing of small flaws and systematic under sizingmore » of larger flaws). The new methodology allows direct comparison of ASME Code Section XI examination results with values in the PTS draft rule Tables 2 and 3 in order to determine if the number and sizes of flaws detected by an ASME Code Section XI examination are consistent with those assumed in the probabilistic fracture mechanics calculations performed in support of the development of 10 CFR 50.61a.« less

  4. Techniques for increasing boron fiber fracture strain

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1977-01-01

    Improvement in the strain-to-failure of CVD boron fibers is shown possible by contracting the tungsten boride core region and its inherent flaws. The results of three methods are presented in which etching and thermal processing techniques were employed to achieve core flaw contraction by internal stresses available in the boron sheath. After commercially and treatment induced surface flaws were removed from 203 micrometers (8 mil) fibers, the core flaw was observed to be essentially the only source of fiber fracture. Thus, fiber strain-to-failure was found to improve by an amount equal to the treatment induced contraction on the core flaw. Commercial feasibility considerations suggest as the most cost effective technique that method in which as-produced fibers are given a rapid heat treatment above 700 C. Preliminary results concerning the contraction kinetics and fracture behavior observed are presented and discussed both for high vacuum and argon gas heat treatment environments.

  5. NON-DESTRUCTIVE FLAW DETECTION APPARATUS

    DOEpatents

    Stateman, M.J.; Holloway, H.R.

    1957-12-17

    An apparatus is described for the non-destructive detection of flaws in electrical conducting articles. The particular feature of the detection apparatus is that a flaw in the front or back of the test article will not be masked by signals caused by the passage of the end and front of the article through the detection apparatus. The present invention alleviates the above problem by mounting detection coils on directly opposite sides of the test passageway so that the axes of the pickup coils are perpendicular to the axis of an energizing coil through which the article is passed. A flaw in the article will cause a change in the voltage induced in one pickup coil, but passage of the end or front of the article will not produce unequal signals. The signals are compared in appropriate electrical circuitry to actuate a recorder only when unequal signals are present, indicating the presence of a flaw.

  6. Determination of Flaw Size and Depth From Temporal Evolution of Thermal Response

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Cramer, Elliott; Howell, Patricia A.

    2015-01-01

    Simple methods for reducing the pulsed thermographic responses of flaws have tended to be based on either the spatial or temporal response. This independent assessment limits the accuracy of characterization. A variational approach is presented for reducing the thermographic data to produce an estimated size for a flaw that incorporates both the temporal and spatial response to improve the characterization. The size and depth are determined from both the temporal and spatial thermal response of the exterior surface above a flaw and constraints on the length of the contour surrounding the delamination. Examples of the application of the technique to simulation and experimental data acquired are presented to investigate the limitations of the technique.

  7. Prediction Of Critical Crack Sizes In Solar Cells

    NASA Technical Reports Server (NTRS)

    Chen, Chern P.

    1989-01-01

    Report presents theoretical analysis of cracking in Si and GaAs solar photovoltaic cells subjected to bending or twisting. Analysis also extended to predict critical sizes for cracks in Ge substrate coated with thin film of GaAs. Analysis leads to general conclusions. Approach and results of study useful in development of guidelines for acceptance or rejection of slightly flawed cells during manufacture.

  8. Deep Flaw Detection with Giant Magnetoresistive (GMR) Based Self-Nulling Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Namkung, Min

    2004-01-01

    In this paper a design modification to the Very-Low Frequency GMR Based Self-Nulling Probe has been presented to enable improved signal to noise ratio for deeply buried flaws. The design change consists of incorporating a feedback coil in the center of the flux focusing lens. The use of the feedback coil enables cancellation of the leakage fields in the center of the probe and biasing of the GMR sensor to a location of high magnetic field sensitivity. The effect of the feedback on the probe output was examined, and experimental results for deep flaw detection were presented. The experimental results show that the modified probe is capable of clearly identifying flaws up to 1 cm deep in aluminum alloy structures.

  9. Flaw tolerance promoted by dissipative deformation mechanisms between material building blocks

    NASA Astrophysics Data System (ADS)

    Verho, Tuukka; Buehler, Markus J.

    2014-09-01

    Novel high-performance composite materials often draw inspiration from natural materials such as bone or mollusc shells. A prime feature of such composites is that they are, like their natural counterparts, quasibrittle. They are tolerant to material flaws up to a certain characteristic flaw-tolerant size scale, exhibiting high strength and toughness, but start to behave in a brittle manner when sufficiently large flaws are present. Here, we establish that better flaw tolerance can be achieved by maximizing fracture toughness relative to the maximum elastic energy available in the material, and we demonstrate this concept with simple two-dimensional coarse-grained simulations where the transition from brittle to quasibrittle behaviour is examined.

  10. Computer Tomography Analysis of Fastrac Composite Thrust Chamber Assemblies

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2000-01-01

    Computed tomography (CT) inspection has been integrated into the production process for NASA's Fastrac composite thrust chamber assemblies (TCAs). CT has been proven to be uniquely qualified to detect the known critical flaw for these nozzles, liner cracks that are adjacent to debonds between the liner and overwrap. CT is also being used as a process monitoring tool through analysis of low density indications in the nozzle overwraps. 3d reconstruction of CT images to produce models of flawed areas is being used to give program engineers better insight into the location and nature of nozzle flaws.

  11. Fracture mechanics. [review of fatigue crack propagation and technology of constructing safe structures

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.

    1974-01-01

    Fracture mechanics is a rapidly emerging discipline for assessing the residual strength of structures containing flaws due to fatigue, corrosion or accidental damage and for anticipating the rate of which such flaws will propagate if not repaired. The discipline is also applicable in the design of structures with improved resistance to such flaws. The present state of the design art is reviewed using this technology to choose materials, to configure safe and efficient structures, to specify inspection procedures, to predict lives of flawed structures and to develop reliability of current and future airframes.

  12. Usability Flaws in Medication Alerting Systems: Impact on Usage and Work System.

    PubMed

    Marcilly, R; Ammenwerth, E; Roehrer, E; Pelayo, S; Vasseur, F; Beuscart-Zéphir, M-C

    2015-08-13

    Previous research has shown that medication alerting systems face usability issues. There has been no previous attempt to systematically explore the consequences of usability flaws in such systems on users (i.e. usage problems) and work systems (i.e. negative outcomes). This paper aims at exploring and synthesizing the consequences of usability flaws in terms of usage problems and negative outcomes on the work system. A secondary analysis of 26 papers included in a prior systematic review of the usability flaws in medication alerting was performed. Usage problems and negative outcomes were extracted and sorted. Links between usability flaws, usage problems, and negative outcomes were also analyzed. Poor usability generates a large variety of consequences. It impacts the user from a cognitive, behavioral, emotional, and attitudinal perspective. Ultimately, usability flaws have negative consequences on the workflow, the effectiveness of the technology, the medication management process, and, more importantly, patient safety. Only few complete pathways leading from usability flaws to negative outcomes were identified. Usability flaws in medication alerting systems impede users, and ultimately their work system, and negatively impact patient safety. Therefore, the usability dimension may act as a hidden explanatory variable that could explain, at least partly, the (absence of) intended outcomes of new technology.

  13. Usability Flaws in Medication Alerting Systems: Impact on Usage and Work System

    PubMed Central

    Ammenwerth, E.; Roehrer, E.; Pelayo, S.; Vasseur, F.; Beuscart-Zéphir, M.-C.

    2015-01-01

    Summary Objectives Previous research has shown that medication alerting systems face usability issues. There has been no previous attempt to systematically explore the consequences of usability flaws in such systems on users (i.e. usage problems) and work systems (i.e. negative outcomes). This paper aims at exploring and synthesizing the consequences of usability flaws in terms of usage problems and negative outcomes on the work system. Methods A secondary analysis of 26 papers included in a prior systematic review of the usability flaws in medication alerting was performed. Usage problems and negative outcomes were extracted and sorted. Links between usability flaws, usage problems, and negative outcomes were also analyzed. Results Poor usability generates a large variety of consequences. It impacts the user from a cognitive, behavioral, emotional, and attitudinal perspective. Ultimately, usability flaws have negative consequences on the workflow, the effectiveness of the technology, the medication management process, and, more importantly, patient safety. Only few complete pathways leading from usability flaws to negative outcomes were identified. Conclusion Usability flaws in medication alerting systems impede users, and ultimately their work system, and negatively impact patient safety. Therefore, the usability dimension may act as a hidden explanatory variable that could explain, at least partly, the (absence of) intended outcomes of new technology. PMID:26123906

  14. Flaw Tolerance In Lap Shear Brazed Joints. Part 2

    NASA Technical Reports Server (NTRS)

    Wang, Len; Flom, Yury

    2003-01-01

    This paper presents results of the second part of an on-going effort to gain better understanding of defect tolerance in braze joints. In the first part of this three-part series, we mechanically tested and modeled the strength of the lap joints as a function of the overlap distance. A failure criterion was established based on the zone damage theory, which predicts the dependence of the lap joint shear strength on the overlap distance, based on the critical size of a finite damage zone or an overloaded region in the joint. In this second part of the study, we experimentally verified the applicability of the damage zone criterion on prediction of the shear strength of the lap joint and introduced controlled flaws into the lap joints. The purpose of the study was to evaluate the lap joint strength as a function of flaw size and its location through mechanical testing and nonlinear finite element analysis (FEA) employing damage zone criterion for definition of failure. The results obtained from the second part of the investigation confirmed that the failure of the ductile lap shear brazed joints occurs when the damage zone reaches approximately 10% of the overlap width. The same failure criterion was applicable to the lap joints containing flaws.

  15. Steam generator tubes integrity: In-service-inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comby, R.J.

    1997-02-01

    The author`s approach to tube integrity is in terms of looking for flaws in tubes. The basis for this approach is that no simple rules can be fixed to adopt a universal inspection methodology because of various concepts related to experience, leak acceptance, leak before break approach, etc. Flaw specific management is probably the most reliable approach as a compromise between safety, availability and economic issues. In that case, NDE capabilities have to be in accordance with information required by structural integrity demonstration. The author discusses the types of probes which can be used to search for flaws in additionmore » to the types of flaws which are being sought, with examples of specific analysis experiences. The author also discusses the issue of a reporting level as it relates to avoiding false calls, classifying faults, and allowing for automation in analysis.« less

  16. Improved flaw detection and characterization with difference thermography

    NASA Astrophysics Data System (ADS)

    Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.

    2011-05-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites is often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, variations in fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These variations result in a noise floor that increases the difficulty of detecting and characterizing deeper flaws. The paper investigates comparing thermographic responses taken before and after a change in state in a composite to improve the detection of subsurface flaws. A method is presented for registration of the responses before finding the difference. A significant improvement in the detectability is achieved by comparing the differences in response. Examples of changes in state due to application of a load and impact are presented.

  17. Improved Flaw Detection and Characterization with Difference Thermography

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.

    2011-01-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites is often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, variations in fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These variations result in a noise floor that increases the difficulty of detecting and characterizing deeper flaws. The paper investigates comparing thermographic responses taken before and after a change in state in a composite to improve the detection of subsurface flaws. A method is presented for registration of the responses before finding the difference. A significant improvement in the detectability is achieved by comparing the differences in response. Examples of changes in state due to application of a load and impact are presented.

  18. Investigating the Effectiveness of Special Education: An Analysis of Methodology.

    ERIC Educational Resources Information Center

    Tindal, Gerald

    1985-01-01

    The review examines evaluations of the efficacy of special education programs for mildly disabled children. The author suggests that serious methodological flaws make our present knowledge in this area very weak and proposes a methodology to address and overcome many of the limitations of previous research. (Author)

  19. Holographic analysis as an inspection method for welded thin-wall tubing

    NASA Technical Reports Server (NTRS)

    Brooks, Lawrence; Mulholland, John; Genin, Joseph; Matthews, Larryl

    1990-01-01

    The feasibility of using holographic interferometry for locating flaws in welded tubing is explored. Two holographic techniques are considered: traditional holographic interferometry and electronic speckle pattern interferometry. Several flaws including cold laps, discontinuities, and tube misalignments are detected.

  20. Analysis of case reports submitted to the European Annals of Otorhinolaryngology Head & Neck Diseases.

    PubMed

    Laccourreye, O; Bonfils, P; Denoyelle, F; Garrel, R; Jankowski, R; Karkas, A; Makeieff, M; Righini, C; Vincent, C; Martin, C

    2016-06-01

    To assess flaws, rejection rate and reasons for rejection of case reports submitted for publication in the European Annals of Otorhinolaryngology Head & Neck Diseases. A prospective analysis of flaws noted in reviewing 118 case reports from 29 countries consecutively submitted to the European Annals of Otorhinolaryngology Head & Neck Diseases during the period Sept. 1, 2014 to Sept. 30, 2015. The most frequent flaws, noted in 74.5% of cases, were: lack of originality (more than 15 such cases previously reported in the medical literature) and lack of new data contributing to the medical literature. Overall, 5% of the cases were accepted for publication, 7% were not resubmitted by the authors, and 88% were rejected. On univariate analysis, none of the variables under analysis correlated with acceptance or rejection of the submitted case. Editorial decision time varied from 1 to 7months (median, 1 month). In 16.3% of the 104 cases of rejection (17/104), the editors suggested resubmission in the section "Letter to the Editor" or "What is your diagnosis?"; 15 of the 17 reports were resubmitted, and 10 (66.6%) were ultimately accepted for publication. The editorial committee of the European Annals of Otorhinolaryngology Head & Neck Diseases hope that the present data and review of the literature will provide authors with a framework to avoid major errors leading to rejection and will speed publication of the case reports they submit to our columns in the near future. Copyright © 2016. Published by Elsevier Masson SAS.

  1. Simulation of the Thermographic Response of Near Surface Flaws in Reinforced Carbon-Carbon Panels

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Howell, Patricia A.; Burke, Eric R.

    2009-01-01

    Thermographic inspection is a viable technique for detecting in-service damage in reinforced carbon-carbon (RCC) composites that are used for thermal protection in the leading edge of the shuttle orbiter. A thermographic technique for detection of near surface flaws in RCC composite structures is presented. A finite element model of the heat diffusion in structures with expected flaw configurations is in good agreement with the experimental measurements.

  2. Least Squares Best Fit Method for the Three Parameter Weibull Distribution: Analysis of Tensile and Bend Specimens with Volume or Surface Flaw Failure

    NASA Technical Reports Server (NTRS)

    Gross, Bernard

    1996-01-01

    Material characterization parameters obtained from naturally flawed specimens are necessary for reliability evaluation of non-deterministic advanced ceramic structural components. The least squares best fit method is applied to the three parameter uniaxial Weibull model to obtain the material parameters from experimental tests on volume or surface flawed specimens subjected to pure tension, pure bending, four point or three point loading. Several illustrative example problems are provided.

  3. Elastic-Plastic Fracture Mechanics Analysis of Critical Flaw Size in ARES I-X Flange-to-Skin Welds

    NASA Technical Reports Server (NTRS)

    Chell, G. Graham; Hudak, Stephen J., Jr.

    2008-01-01

    NASA's Ares 1 Upper Stage Simulator (USS) is being fabricated from welded A516 steel. In order to insure the structural integrity of these welds it is of interest to calculate the critical initial flaw size (CIFS) to establish rational inspection requirements. The CIFS is in turn dependent on the critical final flaw size (CFS), as well as fatigue flaw growth resulting from transportation, handling and service-induced loading. These calculations were made using linear elastic fracture mechanics (LEFM), which are thought to be conservative because they are based on a lower bound, so called elastic, fracture toughness determined from tests that displayed significant plasticity. Nevertheless, there was still concern that the yield magnitude stresses generated in the flange-to-skin weld by the combination of axial stresses due to axial forces, fit-up stresses, and weld residual stresses, could give rise to significant flaw-tip plasticity, which might render the LEFM results to be non-conservative. The objective of the present study was to employ Elastic Plastic Fracture Mechanics (EPFM) to determine CFS values, and then compare these values to CFS values evaluated using LEFM. CFS values were calculated for twelve cases involving surface and embedded flaws, EPFM analyses with and without plastic shakedown of the stresses, LEFM analyses, and various welding residual stress distributions. For the cases examined, the computed CFS values based on elastic analyses were the smallest in all instances where the failures were predicted to be controlled by the fracture toughness. However, in certain cases, the CFS values predicted by the elastic-plastic analyses were smaller than those predicted by the elastic analyses; in these cases the failure criteria were determined by a breakdown in stress intensity factor validity limits for deep flaws (a greater than 0.90t), rather than by the fracture toughness. Plastic relaxation of stresses accompanying shakedown always increases the calculated CFS values compared to the CFS values determined without shakedown. Thus, it is conservative to ignore shakedown effects.

  4. New techniques for modeling the reliability of reactor pressure vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.I.; Simonen, F.A.; Liebetrau, A.M.

    1985-12-01

    In recent years several probabilistic fracture mechanics codes, including the VISA code, have been developed to predict the reliability of reactor pressure vessels. This paper describes new modeling techniques used in a second generation of the VISA code entitled VISA-II. Results are presented that show the sensitivity of vessel reliability predictions to such factors as inservice inspection to detect flaws, random positioning of flaws within the vessel walls thickness, and fluence distributions that vary through-out the vessel. The algorithms used to implement these modeling techniques are also described. Other new options in VISA-II are also described in this paper. Themore » effect of vessel cladding has been included in the heat transfer, stress, and fracture mechanics solutions in VISA-II. The algorithm for simulating flaws has been changed to consider an entire vessel rather than a single flaw in a single weld. The flaw distribution was changed to include the distribution of both flaw depth and length. A menu of several alternate equations has been included to predict the shift in RTNDT. For flaws that arrest and later re-initiate, an option was also included to allow correlating the current arrest thoughness with subsequent initiation toughnesses. 21 refs.« less

  5. Feasibility study in the application of optical signal analysis to non-destructive testing of complex structures

    NASA Technical Reports Server (NTRS)

    Baker, B.; Brown, H.

    1974-01-01

    Advantages of the large time bandwidth product of optical processing are presented. Experiments were performed to study the feasibility of the use of optical spectral analysis for detection of flaws in structural elements excited by random noise. Photographic and electronic methods of comparison of complex spectra were developed. Limitations were explored, and suggestions for further work are offered.

  6. Psychosocial development in racially and ethnically diverse youth: conceptual and methodological challenges in the 21st century.

    PubMed

    Swanson, Dena Phillips; Spencer, Margaret Beale; Harpalani, Vinay; Dupree, Davido; Noll, Elizabeth; Ginzburg, Sofia; Seaton, Gregory

    2003-01-01

    As the US population becomes more diverse in the 21st century, researchers face many conceptual and methodological challenges in working with diverse populations. We discuss these issues for racially and ethnically diverse youth, using Spencer's phenomenological variant of ecological systems theory (PVEST) as a guiding framework. We present a brief historical background and discuss recurring conceptual flaws in research on diverse youth, presenting PVEST as a corrective to these flaws. We highlight the interaction of race, culture, socioeconomic status, and various contexts of development with identity formation and other salient developmental processes. Challenges in research design and interpretation of data are also covered with regard to both assessment of contexts and developmental processes. We draw upon examples from neighborhood assessments, ethnic identity development, and attachment research to illustrate conceptual and methodological challenges, and we discuss strategies to address these challenges. The policy implications of our analysis are also considered.

  7. Research of flaw image collecting and processing technology based on multi-baseline stereo imaging

    NASA Astrophysics Data System (ADS)

    Yao, Yong; Zhao, Jiguang; Pang, Xiaoyan

    2008-03-01

    Aiming at the practical situations such as accurate optimal design, complex algorithms and precise technical demands of gun bore flaw image collecting, the design frame of a 3-D image collecting and processing system based on multi-baseline stereo imaging was presented in this paper. This system mainly including computer, electrical control box, stepping motor and CCD camera and it can realize function of image collection, stereo matching, 3-D information reconstruction and after-treatments etc. Proved by theoretical analysis and experiment results, images collected by this system were precise and it can slake efficiently the uncertainty problem produced by universally veins or repeated veins. In the same time, this system has faster measure speed and upper measure precision.

  8. The effectiveness of the practice of correction and republication in the biomedical literature

    PubMed Central

    Peterson, Gabriel M

    2010-01-01

    Objective: This research measures the effectiveness of the practice of correction and republication of invalidated articles in the biomedical literature by analyzing the rate of citation of the flawed and corrected versions of scholarly articles over time. If the practice of correction and republication is effective, then the incidence of citation of flawed versions should diminish over time and increased incidence of citation of the republication should be observed. Methods: This is a bibliometric study using citation analysis and statistical analysis of pairs of flawed and corrected articles in MEDLINE and Web of Science. Results: The difference between citation levels of flawed originals and corrected republications does not approach statistical significance until eight to twelve years post-republication. Results showed substantial variability among bibliographic sources in their provision of authoritative bibliographic information. Conclusions: Correction and republication is a marginally effective biblioremediative practice. The data suggest that inappropriate citation behavior may be partly attributable to author ignorance. PMID:20428278

  9. The acousto-ultrasonic approach

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1987-01-01

    The nature and underlying rationale of the acousto-ultrasonic approach is reviewed, needed advanced signal analysis and evaluation methods suggested, and application potentials discussed. Acousto-ultrasonics is an NDE technique combining aspects of acoustic emission methodology with ultrasonic simulation of stress waves. This approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are underlying factors.

  10. Stress corrosion in silica optical fibers: Review of fatigue testing procedures

    NASA Astrophysics Data System (ADS)

    Severin, Irina; Borda, Claudia; Dumitrache-Rujinski, Alexandru; Caramihai, Mihai; Abdi, Rochdi El

    2018-02-01

    The expected lifetime of optical fibers used either in telecommunication technologies or smart applications are closely related to the chemical reaction on the silica network. Due to the manufacturing processes or the handling procedures, the flaws spread on the fiber surface are inherently present. The aging mechanism is assumed to enlarge or to extend these flaws. Based on systematic experiments one may notice that water may induce a certain curing effect. Silica optical fibers have been aged in water; series of samples have been subjected to overlapped stretching or bending. Other series have been subjected to overlapped aging effect of microwaves and hot water. Finally, samples were submitted to dynamic tensile testing. The Weibull's diagram analysis shows mono or bimodal dispersions of flaws on the fiber surface, but the polymer coating appears vital for fiber lifetime. While humidity usually affects the fiber strength, the series of testing has revealed that in controlled conditions of chemical environment and controlled applied stress, fiber strength may be increased. A similar effect may be obtained by external factors such as microwaves or previous elongation, too.

  11. On self-propagating methodological flaws in performance normalization for strength and power sports.

    PubMed

    Arandjelović, Ognjen

    2013-06-01

    Performance in strength and power sports is greatly affected by a variety of anthropometric factors. The goal of performance normalization is to factor out the effects of confounding factors and compute a canonical (normalized) performance measure from the observed absolute performance. Performance normalization is applied in the ranking of elite athletes, as well as in the early stages of youth talent selection. Consequently, it is crucial that the process is principled and fair. The corpus of previous work on this topic, which is significant, is uniform in the methodology adopted. Performance normalization is universally reduced to a regression task: the collected performance data are used to fit a regression function that is then used to scale future performances. The present article demonstrates that this approach is fundamentally flawed. It inherently creates a bias that unfairly penalizes athletes with certain allometric characteristics, and, by virtue of its adoption in the ranking and selection of elite athletes, propagates and strengthens this bias over time. The main flaws are shown to originate in the criteria for selecting the data used for regression, as well as in the manner in which the regression model is applied in normalization. This analysis brings into light the aforesaid methodological flaws and motivates further work on the development of principled methods, the foundations of which are also laid out in this work.

  12. Mediatizing Higher Education Policies: Discourses about Quality Education in the Media

    ERIC Educational Resources Information Center

    Cabalin, Cristian

    2015-01-01

    This article presents a critical-political discourse analysis of the media debate over quality assurance in higher education, which occurred in Chile after the 2011 student movement. Students criticized the privatization of higher education and the multiple flaws of this sector, which included corruption scandals during the process of quality…

  13. Ellipsometry-like analysis of polarization state for micro cracks using stress-induced light scattering method

    NASA Astrophysics Data System (ADS)

    Sakata, Yoshitaro; Terasaki, Nao; Sakai, Kazufumi; Nonaka, Kazuhiro

    2016-03-01

    Fine polishing techniques, such as chemical mechanical polishing (CMP), are important to glass substrate manufacturing. When these techniques involve mechanical interaction in the form of friction between the abrasive and the substrate surface during polishing, latent flaws may form on the product. Fine polishing induced latent flaws in glass substrates may become obvious during a subsequent cleaning process if the glass surface is eroded away by chemical interaction with a cleaning liquid. Thus, latent flaws reduce product yield. A novel technique (the stress-induced light scattering method; SILSM) which was combined with light scattering method and stress effects was proposed for inspecting surface to detect polishing induced latent flaws. This method is able to distinguish between latent flaws and tiny particles on the surface. In this method, an actuator deforms a sample inducing stress effects around the tip of a latent flaw caused by the deformation, which in turn changes the refractive index of the material around the tip of the latent flaw because of the photoelastic effect. A CCD camera detects this changed refractive index as variations in light-scattering intensity. In this study, the changes in reflection coefficients and polarization states after application of stress to a glass substrate were calculated and evaluated qualitatively using Jones matrix-like ellipsometry. As the results, it was shown that change in the polarization states around the tip of latent flaw were evaluated between before and after applied stress, qualitatively.

  14. Analysis of unclad and sub-clad semi-elliptical flaws in pressure vessel steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irizarry-Quinones, H.; Macdonald, B.D.; McAfee, W.J.

    This study was conducted to support warm prestressing experiments on unclad and sub-clad flawed beams loaded in pure bending. Two cladding yield strengths were investigated: 0.6 Sy and 0.8 Sy, where Sy is the yield strength of the base metal. Cladding and base metal were assumed to be stress free at the stress relief temperature for the 3D elastic-plastic finite element analysis used to model the experiments. The model results indicated that when cooled from the stress relief temperature, the cladding was put in tension due to its greater coefficient of thermal expansion. When cooled, the cladding exhibited various amountsmore » of tensile yielding. The degree of yielding depended on the amount of cooling and the strength of the cladding relative to that of the base metal. When subjected to tensile bending stress, the sub-clad flaw elastic-plastic stress intensity factor, K{sub I}(J), was at first dominated by crack closing force due to tensile yielding in the cladding. Thus, imposed loads initially caused no increase in K{sub I}(J) near the clad-base interface. However, K{sub I}(J) at the flaw depth was little affected. When the cladding residual stress was overcome, K{sub I}(J) gradually increased until the cladding began to flow. Thereafter, the rate at which K{sub I}(J) increased with load was the same as that of an unclad beam. A plastic zone corrected K{sub I} approximation for the unclad flaw was found by the superposition of standard Newman and Raju solutions with those due to a cladding crack closure force approximated by the Kaya and Erdogan solution. These elastic estimates of the effect of cladding in reducing the crack driving force were quite in keeping with the 3D elastic-plastic finite element solution for the sub-clad flaw. The results were also compared with the analysis of clad beam experiments by Keeney and the conclusions by Miyazaki, et al. A number of sub-clad flaw specimens not subjected to warm prestressing were thought to have suffered degraded toughness caused by locally intensified strain aging embrittlement (LISAE) due to welding over the preexisting flaw.« less

  15. New techniques for modeling the reliability of reactor pressure vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.I.; Simonen, F.A.; Liebetrau, A.M.

    1986-01-01

    In recent years several probabilistic fracture mechanics codes, including the VISA code, have been developed to predict the reliability of reactor pressure vessels. This paper describes several new modeling techniques used in a second generation of the VISA code entitled VISA-II. Results are presented that show the sensitivity of vessel reliability predictions to such factors as inservice inspection to detect flaws, random positioning of flaws within the vessel wall thickness, and fluence distributions that vary throughout the vessel. The algorithms used to implement these modeling techniques are also described. Other new options in VISA-II are also described in this paper.more » The effect of vessel cladding has been included in the heat transfer, stress, and fracture mechanics solutions in VISA-II. The algorithms for simulating flaws has been changed to consider an entire vessel rather than a single flaw in a single weld. The flaw distribution was changed to include the distribution of both flaw depth and length. A menu of several alternate equations has been included to predict the shift in RT/sub NDT/. For flaws that arrest and later re-initiate, an option was also included to allow correlating the current arrest toughness with subsequent initiation toughnesses.« less

  16. Computed Tomography Inspection and Analysis for Additive Manufacturing Components

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2016-01-01

    Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws were inspected using a 2MeV linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed using standard image analysis techniques to determine the impact of additive manufacturing on inspectability of objects with complex geometries.

  17. Surface-crack growth: Models, experiments, and structures; Proceedings of the Symposium, Sparks, NV, Apr. 25, 1988

    NASA Technical Reports Server (NTRS)

    Reuter, Walter G. (Editor); Underwood, John H. (Editor); Newman, James C., Jr. (Editor)

    1990-01-01

    The present volume on surface-crack growth modeling, experimental methods, and structures, discusses elastoplastic behavior, the fracture analysis of three-dimensional bodies with surface cracks, optical measurements of free-surface effects on natural surfaces and through cracks, an optical and finite-element investigation of a plastically deformed surface flaw under tension, fracture behavior prediction for rapidly loaded surface-cracked specimens, and surface cracks in thick laminated fiber composite plates. Also discussed are a novel study procedure for crack initiation and growth in thermal fatigue testing, the growth of surface cracks under fatigue and monotonically increasing load, the subcritical growth of a surface flaw, surface crack propagation in notched and unnotched rods, and theoretical and experimental analyses of surface cracks in weldments.

  18. Participatory Action Research with "Minority Communities" and the Complexities of Emancipatory Tensions: Intersectionality and Cultural Affinity

    ERIC Educational Resources Information Center

    Sallah, Momodou

    2014-01-01

    Conducting research with communities constructed as the "other" from a purely positivist paradigm can often be replete with colossal flaws with enormous potential to oppress the researched--especially minority communities in this case. This article presents an analysis of the cultural and experiential affinity experiences of the author…

  19. The Case of the Similar Trees.

    ERIC Educational Resources Information Center

    Meyer, Rochelle Wilson

    1982-01-01

    A possible logical flaw based on similar triangles is discussed with the Sherlock Holmes mystery, "The Muskgrave Ritual." The possible flaw has to do with the need for two trees to have equal growth rates over a 250-year period in order for the solution presented to work. (MP)

  20. Detection of fatigue cracks by nondestructive testing methods

    NASA Technical Reports Server (NTRS)

    Anderson, R. T.; Delacy, T. J.; Stewart, R. C.

    1973-01-01

    The effectiveness was assessed of various NDT methods to detect small tight cracks by randomly introducing fatigue cracks into aluminum sheets. The study included optimizing NDT methods calibrating NDT equipment with fatigue cracked standards, and evaluating a number of cracked specimens by the optimized NDT methods. The evaluations were conducted by highly trained personnel, provided with detailed procedures, in order to minimize the effects of human variability. These personnel performed the NDT on the test specimens without knowledge of the flaw locations and reported on the flaws detected. The performance of these tests was measured by comparing the flaws detected against the flaws present. The principal NDT methods utilized were radiographic, ultrasonic, penetrant, and eddy current. Holographic interferometry, acoustic emission monitoring, and replication methods were also applied on a reduced number of specimens. Generally, the best performance was shown by eddy current, ultrasonic, penetrant and holographic tests. Etching provided no measurable improvement, while proof loading improved flaw detectability. Data are shown that quantify the performances of the NDT methods applied.

  1. The detection of flaws in austenitic welds using the decomposition of the time-reversal operator

    NASA Astrophysics Data System (ADS)

    Cunningham, Laura J.; Mulholland, Anthony J.; Tant, Katherine M. M.; Gachagan, Anthony; Harvey, Gerry; Bird, Colin

    2016-04-01

    The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity of safety critical structures. The internal microstructure of these welds is highly scattering and can lead to the obscuration of defects when investigated by traditional imaging algorithms. This paper proposes an alternative objective method for the detection of flaws embedded in austenitic welds based on the singular value decomposition of the time-frequency domain response matrices. The distribution of the singular values is examined in the cases where a flaw exists and where there is no flaw present. A lower threshold on the singular values, specific to austenitic welds, is derived which, when exceeded, indicates the presence of a flaw. The detection criterion is successfully implemented on both synthetic and experimental data. The datasets arising from welds containing a flaw are further interrogated using the decomposition of the time-reversal operator (DORT) method and the total focusing method (TFM), and it is shown that images constructed via the DORT algorithm typically exhibit a higher signal-to-noise ratio than those constructed by the TFM algorithm.

  2. The detection of flaws in austenitic welds using the decomposition of the time-reversal operator

    PubMed Central

    Cunningham, Laura J.; Mulholland, Anthony J.; Gachagan, Anthony; Harvey, Gerry; Bird, Colin

    2016-01-01

    The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity of safety critical structures. The internal microstructure of these welds is highly scattering and can lead to the obscuration of defects when investigated by traditional imaging algorithms. This paper proposes an alternative objective method for the detection of flaws embedded in austenitic welds based on the singular value decomposition of the time-frequency domain response matrices. The distribution of the singular values is examined in the cases where a flaw exists and where there is no flaw present. A lower threshold on the singular values, specific to austenitic welds, is derived which, when exceeded, indicates the presence of a flaw. The detection criterion is successfully implemented on both synthetic and experimental data. The datasets arising from welds containing a flaw are further interrogated using the decomposition of the time-reversal operator (DORT) method and the total focusing method (TFM), and it is shown that images constructed via the DORT algorithm typically exhibit a higher signal-to-noise ratio than those constructed by the TFM algorithm. PMID:27274683

  3. Initial Probabilistic Evaluation of Reactor Pressure Vessel Fracture with Grizzly and Raven

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Hoffman, William; Sen, Sonat

    2015-10-01

    The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled reactor pressure vessels (RPVs). Grizzly can be used to model the thermal/mechanical response of an RPV under transient conditions that would be observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtainmore » stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. These capabilities have been demonstrated previously. A typical RPV is likely to contain a large population of pre-existing flaws introduced during the manufacturing process. This flaw population is characterized stastistically through probability density functions of the flaw distributions. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation during a transient event. This report documents initial work to perform probabilistic analysis of RPV fracture during a PTS event using a combination of the RAVEN risk analysis code and Grizzly. This work is limited in scope, considering only a single flaw with deterministic geometry, but with uncertainty introduced in the parameters that influence fracture toughness. These results are benchmarked against equivalent models run in the FAVOR code. When fully developed, the RAVEN/Grizzly methodology for modeling probabilistic fracture in RPVs will provide a general capability that can be used to consider a wider variety of vessel and flaw conditions that are difficult to consider with current tools. In addition, this will provide access to advanced probabilistic techniques provided by RAVEN, including adaptive sampling and parallelism, which can dramatically decrease run times.« less

  4. Characterizing the effects of cladding on semi-elliptical longitudinal surface flaws in cylindrical vessels subjected to internal pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killian, D.E.; Yoon, K.K.

    1996-12-01

    Flaws on the inside surface of cladded reactor vessels are often analyzed by modelling the carbon steel base metal without consideration of a layer of stainless steel cladding material, thus ignoring the effects of this bimetallic discontinuity. Adding cladding material to the inside surface of a finite element model of a vessel raises concerns regarding adequate mesh refinement in the vicinity of the base metal/cladding interface. This paper presents results of three-dimensional linear stress analysis that has been performed to obtain stress intensity factors for clad and unclad reactor vessels subjected to internal pressure loading. The study concentrates on semi-ellipticalmore » longitudinal surface flaws with a 6 to 1 length-to-depth ratio and flaw depths of 1/8 and 1/4 of the base metal thickness. Various meshing schemes are evaluated for modelling the crack front profile, with particular emphasis on the region near the inside surface and at the base metal/cladding interface. The shape of the crack front profile through the cladding layer and the number of finite elements used to discretize the cladding thickness are found to have a significant influence on typical fracture mechanic measures of the crack tip stress fields. Results suggest that the stress intensity factor at the inner surface of a cladded vessel may be affected as much by the finite element mesh near the surface as by the material discontinuity between the two parts of the structure.« less

  5. Apparatus and method for detecting and/or measuring flaws in conductive material

    DOEpatents

    Hockey, Ronald L.; Riechers, Douglas M.

    2000-01-01

    The present invention uses a magnet and sensor coil unilaterial and in relative motion to a conductive material, to measure perturbation or variation in the magnetic field in the presence of a flaw. A liftoff compensator measures a distance between the conductive material and the magnet.

  6. Note of the methodological flaws in the paper entitled "GSTT1 and GSTM1 polymorphisms predict treatment outcome for breast cancer: a systematic review and meta-analysis".

    PubMed

    Qiu, Mali; Wu, Xu; Qu, Xiaobing

    2016-09-01

    With great interest, we read the paper "GSTT1 and GSTM1 polymorphisms predict treatment outcome for breast cancer: a systematic review and meta-analysis" (by Hu XY et al.), which has reached important conclusions that GSTM1 null and GSTT1/GSTM1 double null polymorphisms might be significantly associated with an increased tumor response in breast cancer. The result is encouraging. Nevertheless, several methodological flaws in this meta-analysis are worth noticing.

  7. Ares I-X Upper Stage Simulator Structural Analyses Supporting the NESC Critical Initial Flaw Size Assessment

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2008-01-01

    The structural analyses described in the present report were performed in support of the NASA Engineering and Safety Center (NESC) Critical Initial Flaw Size (CIFS) assessment for the ARES I-X Upper Stage Simulator (USS) common shell segment. The structural analysis effort for the NESC assessment had three thrusts: shell buckling analyses, detailed stress analyses of the single-bolt joint test; and stress analyses of two-segment 10 degree-wedge models for the peak axial tensile running load. Elasto-plastic, large-deformation simulations were performed. Stress analysis results indicated that the stress levels were well below the material yield stress for the bounding axial tensile design load. This report also summarizes the analyses and results from parametric studies on modeling the shell-to-gusset weld, flange-surface mismatch, bolt preload, and washer-bearing-surface modeling. These analyses models were used to generate the stress levels specified for the fatigue crack growth assessment using the design load with a factor of safety.

  8. Binomial Test Method for Determining Probability of Detection Capability for Fracture Critical Applications

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2011-01-01

    The capability of an inspection system is established by applications of various methodologies to determine the probability of detection (POD). One accepted metric of an adequate inspection system is that for a minimum flaw size and all greater flaw sizes, there is 0.90 probability of detection with 95% confidence (90/95 POD). Directed design of experiments for probability of detection (DOEPOD) has been developed to provide an efficient and accurate methodology that yields estimates of POD and confidence bounds for both Hit-Miss or signal amplitude testing, where signal amplitudes are reduced to Hit-Miss by using a signal threshold Directed DOEPOD uses a nonparametric approach for the analysis or inspection data that does require any assumptions about the particular functional form of a POD function. The DOEPOD procedure identifies, for a given sample set whether or not the minimum requirement of 0.90 probability of detection with 95% confidence is demonstrated for a minimum flaw size and for all greater flaw sizes (90/95 POD). The DOEPOD procedures are sequentially executed in order to minimize the number of samples needed to demonstrate that there is a 90/95 POD lower confidence bound at a given flaw size and that the POD is monotonic for flaw sizes exceeding that 90/95 POD flaw size. The conservativeness of the DOEPOD methodology results is discussed. Validated guidelines for binomial estimation of POD for fracture critical inspection are established.

  9. Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam

    2015-03-01

    Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode Imore » loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.« less

  10. Probabilistic Estimation of Critical Flaw Sizes in the Primary Structure Welds of the Ares I-X Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Hoge, Peter A.; Patel, B. M.; Nagpal, Vinod K.

    2009-01-01

    The primary structure of the Ares I-X Upper Stage Simulator (USS) launch vehicle is constructed of welded mild steel plates. There is some concern over the possibility of structural failure due to welding flaws. It was considered critical to quantify the impact of uncertainties in residual stress, material porosity, applied loads, and material and crack growth properties on the reliability of the welds during its pre-flight and flight. A criterion--an existing maximum size crack at the weld toe must be smaller than the maximum allowable flaw size--was established to estimate the reliability of the welds. A spectrum of maximum allowable flaw sizes was developed for different possible combinations of all of the above listed variables by performing probabilistic crack growth analyses using the ANSYS finite element analysis code in conjunction with the NASGRO crack growth code. Two alternative methods were used to account for residual stresses: (1) The mean residual stress was assumed to be 41 ksi and a limit was set on the net section flow stress during crack propagation. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if this limit was exceeded during four complete flight cycles, and (2) The mean residual stress was assumed to be 49.6 ksi (the parent material s yield strength) and the net section flow stress limit was ignored. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if catastrophic crack growth occurred during four complete flight cycles. Both surface-crack models and through-crack models were utilized to characterize cracks in the weld toe.

  11. A Critical Meta-Analysis of All Evaluations of State-Funded Preschool from 1977 to 1998: Implications for Policy, Service Delivery and Program Evaluation.

    ERIC Educational Resources Information Center

    Gilliam, Walter S.; Zigler, Edward F.

    2000-01-01

    Presents a meta-analytic review of evaluations of state-funded preschool programs over 20 years. Identifies several methodological flaws but also suggests that pattern of findings offers modest support for positive impact in improving children's developmental competence, improving later school attendance and performance, and reducing subsequent…

  12. Logical Fallacies and the Abuse of Climate Science: Fire, Water, and Ice

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2012-12-01

    Good policy without good science and analysis is unlikely. Good policy with bad science is even more unlikely. Unfortunately, there is a long history of abuse or misuse of science in fields with ideological, religious, or economically controversial policy implications, such as planetary physics during the time of Galileo, the evolution debate, or climate change. Common to these controversies are what are known as "logical fallacies" -- patterns of reasoning that are always -- or at least commonly -- wrong due to a flaw in the structure of the argument that renders the argument invalid. All scientists should understand the nature of logical fallacies in order to (1) avoid making mistakes and reaching unsupported conclusion, (2) help them understand and refute the flaws in arguments made by others, and (3) aid in communicating science to the public. This talk will present a series of logical fallacies often made in the climate science debate, including "arguments from ignorance," "arguments from error," "arguments from misinterpretation," and "cherry picking." Specific examples will be presented in the area of temperature analysis, water resources, and ice dynamics, with a focus on selective use or misuse of data.; "Argument from Error" - an amusing example of a logical fallacy.

  13. The Level of Willingness to Evacuate among Older Adults

    ERIC Educational Resources Information Center

    Gray-Graves, Amy; Turner, Keith W.; Swan, James H.

    2011-01-01

    The issues of rising numbers of disasters, overwhelming increases in number of older adults, and historically flawed evacuations present real challenges. During the next two decades, the number of American baby boomers, who turn 65, will increase by 40%. As evidenced by recent disasters, the imperfections and vulnerabilities of flawed evacuations…

  14. Compendium of fracture mechanics problems

    NASA Technical Reports Server (NTRS)

    Stallworth, R.; Wilson, C.; Meyers, C.

    1990-01-01

    Fracture mechanics analysis results are presented from the following structures/components analyzed at Marshall Space Flight Center (MSFC) between 1982 and 1989: space shuttle main engine (SSME), Hubble Space Telescope (HST), external tank attach ring, B-1 stand LOX inner tank, and solid rocket booster (SRB). Results from the SSME high pressure fuel turbopump (HPFTP) second stage blade parametric analysis determine a critical flaw size for a wide variety of stress intensity values. The engine 0212 failure analysis was a time dependent fracture life assessment. Results indicated that the disk ruptured due to an overspeed condition. Results also indicated that very small flaws in the curvic coupling area could propagate and lead to failure under normal operating conditions. It was strongly recommended that a nondestructive evaluation inspection schedule be implemented. The main ring of the HST, scheduled to launch in 1990, was analyzed by safe-life and fail-safe analyses. First safe-life inspection criteria curves for the ring inner and outer skins and the fore and aft channels were derived. Afterwards the skins and channels were determined to be fail-safe by analysis. A conservative safe-life analysis was done on the 270 redesign external tank attach ring. Results from the analysis were used to determine the nondestructive evaluation technique required.

  15. Reliability of steam generator tubing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadokami, E.

    1997-02-01

    The author presents results on studies made of the reliability of steam generator (SG) tubing. The basis for this work is that in Japan the issue of defects in SG tubing is addressed by the approach that any detected defect should be repaired, either by plugging the tube or sleeving it. However, this leaves open the issue that there is a detection limit in practice, and what is the effect of nondetectable cracks on the performance of tubing. These studies were commissioned to look at the safety issues involved in degraded SG tubing. The program has looked at a numbermore » of different issues. First was an assessment of the penetration and opening behavior of tube flaws due to internal pressure in the tubing. They have studied: penetration behavior of the tube flaws; primary water leakage from through-wall flaws; opening behavior of through-wall flaws. In addition they have looked at the question of the reliability of tubing with flaws during normal plant operation. Also there have been studies done on the consequences of tube rupture accidents on the integrity of neighboring tubes.« less

  16. On flaw tolerance of nacre: a theoretical study

    PubMed Central

    Shao, Yue; Zhao, Hong-Ping; Feng, Xi-Qiao

    2014-01-01

    As a natural composite, nacre has an elegant staggered ‘brick-and-mortar’ microstructure consisting of mineral platelets glued by organic macromolecules, which endows the material with superior mechanical properties to achieve its biological functions. In this paper, a microstructure-based crack-bridging model is employed to investigate how the strength of nacre is affected by pre-existing structural defects. Our analysis demonstrates that owing to its special microstructure and the toughening effect of platelets, nacre has a superior flaw-tolerance feature. The maximal crack size that does not evidently reduce the tensile strength of nacre is up to tens of micrometres, about three orders higher than that of pure aragonite. Through dimensional analysis, a non-dimensional parameter is proposed to quantify the flaw-tolerance ability of nacreous materials in a wide range of structural parameters. This study provides us some inspirations for optimal design of advanced biomimetic composites. PMID:24402917

  17. Stress analysis and damage evaluation of flawed composite laminates by hybrid-numerical methods

    NASA Technical Reports Server (NTRS)

    Yang, Yii-Ching

    1992-01-01

    Structural components in flight vehicles is often inherited flaws, such as microcracks, voids, holes, and delamination. These defects will degrade structures the same as that due to damages in service, such as impact, corrosion, and erosion. It is very important to know how a structural component can be useful and survive after these flaws and damages. To understand the behavior and limitation of these structural components researchers usually do experimental tests or theoretical analyses on structures with simulated flaws. However, neither approach has been completely successful. As Durelli states that 'Seldom does one method give a complete solution, with the most efficiency'. Examples of this principle is seen in photomechanics which additional strain-gage testing can only average stresses at locations of high concentration. On the other hand, theoretical analyses including numerical analyses are implemented with simplified assumptions which may not reflect actual boundary conditions. Hybrid-Numerical methods which combine photomechanics and numerical analysis have been used to correct this inefficiency since 1950's. But its application is limited until 1970's when modern computer codes became available. In recent years, researchers have enhanced the data obtained from photoelasticity, laser speckle, holography and moire' interferometry for input of finite element analysis on metals. Nevertheless, there is only few of literature being done on composite laminates. Therefore, this research is dedicated to this highly anisotropic material.

  18. Sublaminate- or ply-level analysis of composites and strain energy release rates of end-notch and mixed-mode fracture specimens

    NASA Technical Reports Server (NTRS)

    Valisetty, Rao R.; Chamis, Christos C.

    1988-01-01

    The sublaminate or ply-level analysis of composite structures is presently undertaken by a computational procedure yielding the stresses in regions affected by delaminations, transverse cracks, and discontinuities that are related to material properties, geometries, and loads. Attention is given to layers or groups of layers that are immediately affected by flaws; these are analyzed as if they were homogeneous bodies in equilibrium, in isolation from the rest of the laminate. Computed stresses agree with those from a three-dimensional FEM analysis.

  19. Using the Mount Pinatubo Volcanic Eruption to Determine Climate Sensitivity: Comments on "Climate Forcing by the Volcanic Eruption of Mount Pinatubo" by David H. Douglass and Robert S. Knox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigley, T L; Ammann, C M; Santer, B D

    2005-04-22

    [1] Douglass and Knox [2005], hereafter referred to as DK, present an analysis of the observed cooling following the 1991 Mt. Pinatubo eruption and claim that these data imply a very low value for the climate sensitivity (equivalent to 0.6 C equilibrium warming for a CO{sub 2} doubling). We show here that their analysis is flawed and their results are incorrect.

  20. Signal processing for non-destructive testing of railway tracks

    NASA Astrophysics Data System (ADS)

    Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard

    2018-04-01

    Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.

  1. Fracture mechanics data for 2024-T861 and 2124-T851 aluminum

    NASA Technical Reports Server (NTRS)

    Pionke, L. J.; Linback, R. K.

    1974-01-01

    The fracture toughness and fatigue flaw growth characteristics of 2024-T861 and 2124-T851 aluminum were evaluated under plane stress conditions. Center cracked tension specimens were employed to evaluate these properties under a number of different test conditions which included variations in specimen thickness, specimen orientation, test environment, and initial flaw size. The effect of buckling was also investigated for all tests of thin gage specimens, and the effect of frequency and stress ratio was evaluated for the cyclic tests. Fracture toughness test results were analyzed and presented in terms of fracture resistance curves; fatigue flaw growth data was analyzed using empirical rate models. The results of the study indicate that both fracture toughness and resistance to fatigue crack growth improve with increasing temperature and decreasing thickness. The presence of buckling during testing of thin gage panels was found to degrade the resistance to fatigue flaw growth only at elevated temperatures.

  2. Fracture analysis of radial scientific instrument module registration fittings of the space telescope

    NASA Technical Reports Server (NTRS)

    Springfield, C. W., Jr.

    1986-01-01

    Various pieces of the registration fittings for the Radial Scientific instrument (SI) module of the Space Telescope were examined from a fracture mechanics point of view and deemed to be fail-safe or else have had maximum allowable flaw sizes specified for them. The results of these analyses are summarized in tabular form. In many instances the applied stress levels were so low that the threshold stress intensity factor range was never reached. In most of the others the allowable flaw sizes were large enough to be detected by visual inspection. However, for some parts, such as the flexures connecting the aluminum cover to the ball retainer in the fitting at point A, the flaw sizes were rather small. Eddy current tests are capable of detecting flaws of this size (0.022 inches x 0.1 inches), so for those which have been so tested these small flaws should represent no danger of going undetected. In every instance approximations were made to err on the conservative side. These were pointed out in the discussions of the analyses for each fitting. One conservative approximation that was not mentioned, however, is the fact that retardation was not included in the crack propagation computations.

  3. Multilayer material characterization using thermographic signal reconstruction

    NASA Astrophysics Data System (ADS)

    Shepard, Steven M.; Beemer, Maria Frendberg

    2016-02-01

    Active-thermography has become a well-established Nondestructive Testing (NDT) method for detection of subsurface flaws. In its simplest form, flaw detection is based on visual identification of contrast between a flaw and local intact regions in an IR image sequence of the surface temperature as the sample responds to thermal stimulation. However, additional information and insight can be obtained from the sequence, even in the absence of a flaw, through analysis of the logarithmic derivatives of individual pixel time histories using the Thermographic Signal Reconstruction (TSR) method. For example, the response of a flaw-free multilayer sample to thermal stimulation can be viewed as a simple transition between the responses of infinitely thick samples of the individual constituent layers over the lifetime of the thermal diffusion process. The transition is represented compactly and uniquely by the logarithmic derivatives, based on the ratio of thermal effusivities of the layers. A spectrum of derivative responses relative to thermal effusivity ratios allows prediction of the time scale and detectability of the interface, and measurement of the thermophysical properties of one layer if the properties of the other are known. A similar transition between steady diffusion states occurs for flat bottom holes, based on the hole aspect ratio.

  4. Anisotropic determination and correction for ultrasonic flaw detection by spectral analysis

    DOEpatents

    Adler, Laszlo; Von Cook, K.; Simpson, Jr., William A.; Lewis, D. Kent

    1978-01-01

    The anisotropic nature of a material is determined by measuring the velocity of an ultrasonic longitudinal wave and a pair of perpendicular ultrasonic shear waves through a sample of the material each at a plurality of different angles in three planes orthogonal to each other. The determined anisotropic nature is used as a correction factor in a spectral analyzing system of flaw determination.

  5. Theory and application of high temperature superconducting eddy current probes for nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Claycomb, James Ronald

    1998-10-01

    Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic FEM calculations are then used to model the electromagnetic response of eight probe designs, consisting of an eddy current drive coil coupled to a SQUID surrounded by superconducting and/or high permeability magnetic shielding. Simulations are carried out with the eddy current probes located a finite distance above a conducting surface. Results are quantified in terms of shielding and focus factors for each probe design.

  6. A new security solution to JPEG using hyper-chaotic system and modified zigzag scan coding

    NASA Astrophysics Data System (ADS)

    Ji, Xiao-yong; Bai, Sen; Guo, Yu; Guo, Hui

    2015-05-01

    Though JPEG is an excellent compression standard of images, it does not provide any security performance. Thus, a security solution to JPEG was proposed in Zhang et al. (2014). But there are some flaws in Zhang's scheme and in this paper we propose a new scheme based on discrete hyper-chaotic system and modified zigzag scan coding. By shuffling the identifiers of zigzag scan encoded sequence with hyper-chaotic sequence and accurately encrypting the certain coefficients which have little relationship with the correlation of the plain image in zigzag scan encoded domain, we achieve high compression performance and robust security simultaneously. Meanwhile we present and analyze the flaws in Zhang's scheme through theoretical analysis and experimental verification, and give the comparisons between our scheme and Zhang's. Simulation results verify that our method has better performance in security and efficiency.

  7. Window flaw detection by backscatter lighting

    NASA Technical Reports Server (NTRS)

    Crockett, L. K.; Minton, F. R.

    1978-01-01

    Portable fiber-optic probe detects tiny flaws in transparent materials. Probe transmits light through surface to illuminate interior of material by backscattering off its edges. Light-sensitive contact paper records scratch pattern. Technique can be used for rapid visual checks. Flexible fiber optics are safely used in explosive or flammable areas; they present no hazard of breakage or contamination in controlled environments.

  8. Optimizing probability of detection point estimate demonstration

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2017-04-01

    The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using point estimate method. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. Traditionally largest flaw size in the set is considered to be a conservative estimate of the flaw size with minimum 90% probability and 95% confidence. The flaw size is denoted as α90/95PE. The paper investigates relationship between range of flaw sizes in relation to α90, i.e. 90% probability flaw size, to provide a desired PPD. The range of flaw sizes is expressed as a proportion of the standard deviation of the probability density distribution. Difference between median or average of the 29 flaws and α90 is also expressed as a proportion of standard deviation of the probability density distribution. In general, it is concluded that, if probability of detection increases with flaw size, average of 29 flaw sizes would always be larger than or equal to α90 and is an acceptable measure of α90/95PE. If NDE technique has sufficient sensitivity and signal-to-noise ratio, then the 29 flaw-set can be optimized to meet requirements of minimum required PPD, maximum allowable POF, requirements on flaw size tolerance about mean flaw size and flaw size detectability requirements. The paper provides procedure for optimizing flaw sizes in the point estimate demonstration flaw-set.

  9. Solution to certain problems in the failure of composite structures

    NASA Astrophysics Data System (ADS)

    Goodsell, Johnathan

    The present work contains the solution of two problems in composite structures. In the first, an approximate elasticity solution for prediction of the displacement, stress and strain fields within the m-layer, symmetric and balanced angle-ply composite laminate of finite-width subjected anticlastic bending deformation is developed. The solution is shown to recover classical laminated plate theory predictions at interior regions of the laminate and thereby illustrates the boundary layer character of this interlaminar phenomenon. The results exhibit the anticipated response in congruence with the solutions for uniform axial extension and uniform temperature change, where divergence of the interlaminar shearing stress is seen to occur at the intersection of the free-edge and planes between lamina of +theta and -theta orientation. The analytical results show excellent agreement with the finite-element predictions for the same boundary-value problem and thereby provide an efficient and compact solution available for parametric studies of the influence of geometry and material properties. The solution is combined with previously developed solutions for uniform axial extension and uniform temperature change of the identical laminate and the combined solution is exercised to compare the relative magnitudes of free-edge phenomenon arising from the different loading conditions, to study very thick laminates and laminates where the laminate width is less than the laminate thickness. Significantly, it was demonstrated that the solution is valid for arbitrary stacking sequence and the solution was exercised to examine antisymmetric and non-symmetric laminates. Finally, the solution was exercised to determine the dimensions of the boundary layer for very large numbers of layers. It was found that the dimension of the boundary layer width in bending is approximately twice that in uniform axial extension and uniform temperature change. In the second, the intrinsic flaw concept is extended to the determination of the intrinsic flaw length and the prediction of performance variability in the 10-degree off-axis specimen. The intrinsic flaw is defined as a fracture mechanics-type, through-thickness planar crack extending in the fiber direction from the failure initiation site of length, a. The distribution of intrinsic flaw lengths is postulated from multiple tests of 10-degree off-axis specimens by calculating the length of flaw that would cause fracture at each measured failure site and failure load given the fracture toughness of the material. The intrinsic flaw lengths on the homogeneous and micromechanical scales for unnotched (no hole) and specimens containing a centrally-located, through-thickness circular hole are compared. 8 hole-diameters ranging from 1.00--12.7 mm are considered. On the micromechanical scale, the intrinsic flaw ranges between approximately 10 and 100 microns in length, on the order of the relevant microstructural dimensions. The intrinsic flaw lengths on the homogeneous scale are determined to be an order of magnitude greater than that on the micromechanical scale. The effect of variation in the fiber volume fraction on the intrinsic flaw length is also considered. In the strength predictions for the specimens, the intrinsic flaw crack geometry and probability density function of intrinsic flaw lengths calculated from the unnotched specimens allow fracture mechanics predictions of strength variability. The strength prediction is dependent on the flaw density, the number of flaws per unit length along the free-edge. The flaw density is established by matching the predicted strength with the experimental strength. The distribution of intrinsic flaw lengths is used with the strength variability of the unnotched and of open-hole specimens to determine the flaw density at each hole-size. The flaw density is shown to be related to the fabrication machining speed suggesting machining damage as a mechanism for the hole-size dependence of the flaw density. (Abstract shortened by UMI.)

  10. Characterization of flaws in a tube bundle mock-up for reliability studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupperman, D.S.; Bakhtiari, S.

    1997-02-01

    As part of an assessment of in-service inspection of steam generator tubes, the authors will assemble a steam generator mock-up for round robin studies and use as a test bed in evaluating emerging technologies. Progress is reported on the characterization of flaws that will be part of the mock-up. Eddy current and ultrasonic techniques are being evaluated as a means to characterize the flaws in the mock-up tubes before final assembly. Twenty Inconel 600 tubes with laboratory-grown cracks, typical of those to be used in the mock-up, were provided by Pacific Northwest National Laboratory for laboratory testing. After the tubesmore » were inspected with eddy current and ultrasonic techniques, they were destructively analyzed to establish the actual depths, lengths, and profiles of the cracks. The analysis of the results will allow the best techniques to be used for characterizing the flaws in the mock-up tubes.« less

  11. Monolithic ceramic analysis using the SCARE program

    NASA Technical Reports Server (NTRS)

    Manderscheid, Jane M.

    1988-01-01

    The Structural Ceramics Analysis and Reliability Evaluation (SCARE) computer program calculates the fast fracture reliability of monolithic ceramic components. The code is a post-processor to the MSC/NASTRAN general purpose finite element program. The SCARE program automatically accepts the MSC/NASTRAN output necessary to compute reliability. This includes element stresses, temperatures, volumes, and areas. The SCARE program computes two-parameter Weibull strength distributions from input fracture data for both volume and surface flaws. The distributions can then be used to calculate the reliability of geometrically complex components subjected to multiaxial stress states. Several fracture criteria and flaw types are available for selection by the user, including out-of-plane crack extension theories. The theoretical basis for the reliability calculations was proposed by Batdorf. These models combine linear elastic fracture mechanics (LEFM) with Weibull statistics to provide a mechanistic failure criterion. Other fracture theories included in SCARE are the normal stress averaging technique and the principle of independent action. The objective of this presentation is to summarize these theories, including their limitations and advantages, and to provide a general description of the SCARE program, along with example problems.

  12. Computed Tomography Inspection and Analysis for Additive Manufacturing Components

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2017-01-01

    Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws and geometric features were inspected using a 2-megavolt linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed to determine the impact of additive manufacturing on inspectability of objects with complex geometries.

  13. Processing ultrasonic inspection data from multiple scan patterns for turbine rotor weld build-up evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Xuefei; Zhou, S. Kevin; Rasselkorde, El Mahjoub

    The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location.more » The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.« less

  14. Processing ultrasonic inspection data from multiple scan patterns for turbine rotor weld build-up evaluations

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Rasselkorde, El Mahjoub; Abbasi, Waheed; Zhou, S. Kevin

    2015-03-01

    The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location. The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.

  15. Stability and failure analysis of steering tie-rod

    NASA Astrophysics Data System (ADS)

    Jiang, GongFeng; Zhang, YiLiang; Xu, XueDong; Ding, DaWei

    2008-11-01

    A new car in operation of only 8,000 km, because of malfunction, resulting in lost control and rammed into the edge of the road, and then the basic vehicle scrapped. According to the investigation of the site, it was found that the tie-rod of the car had been broken. For the subjective analysis of the accident and identifying the true causes of rupture of the tierod, a series of studies, from the angle of theory to experiment on the bended broken tie-rod, were conducted. The mechanical model was established; the stability of the defective tie-rod was simulated based on ANSYS software. Meanwhile, the process of the accident was simulated considering the effect of destabilization of different vehicle speed and direction of the impact. Simultaneously, macro graphic test, chemical composition analysis, microstructure analysis and SEM analysis of the fracture were implemented. The results showed that: 1) the toughness of the tie-rod is at a normal level, but there is some previous flaws. One quarter of the fracture surface has been cracked before the accident. However, there is no relationship between the flaw and this incident. The direct cause is the dynamic instability leading to the large deformation of impact loading. 2) The declining safety factor of the tie-rod greatly due to the previous flaws; the result of numerical simulation shows that previous flaw is the vital factor of structure instability, on the basis of the comparison of critical loads of the accident tie-rod and normal. The critical load can decrease by 51.3% when the initial defect increases 19.54% on the cross-sectional area, which meets the Theory of Koiter.

  16. SURROGATE MODEL DEVELOPMENT AND VALIDATION FOR RELIABILITY ANALYSIS OF REACTOR PRESSURE VESSELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, William M.; Riley, Matthew E.; Spencer, Benjamin W.

    In nuclear light water reactors (LWRs), the reactor coolant, core and shroud are contained within a massive, thick walled steel vessel known as a reactor pressure vessel (RPV). Given the tremendous size of these structures, RPVs typically contain a large population of pre-existing flaws introduced in the manufacturing process. After many years of operation, irradiation-induced embrittlement makes these vessels increasingly susceptible to fracture initiation at the locations of the pre-existing flaws. Because of the uncertainty in the loading conditions, flaw characteristics and material properties, probabilistic methods are widely accepted and used in assessing RPV integrity. The Fracture Analysis of Vesselsmore » – Oak Ridge (FAVOR) computer program developed by researchers at Oak Ridge National Laboratory is widely used for this purpose. This program can be used in order to perform deterministic and probabilistic risk-informed analyses of the structural integrity of an RPV subjected to a range of thermal-hydraulic events. FAVOR uses a one-dimensional representation of the global response of the RPV, which is appropriate for the beltline region, which experiences the most embrittlement, and employs an influence coefficient technique to rapidly compute stress intensity factors for axis-aligned surface-breaking flaws. The Grizzly code is currently under development at Idaho National Laboratory (INL) to be used as a general multiphysics simulation tool to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled RPVs. Grizzly can be used to model the thermo-mechanical response of an RPV under transient conditions observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local 3D models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtain stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. To use Grizzly for probabilistic analysis, it is necessary to have a way to rapidly evaluate stress intensity factors. To accomplish this goal, a reduced order model (ROM) has been developed to efficiently represent the behavior of a detailed 3D Grizzly model used to calculate fracture parameters. This approach uses the stress intensity factor influence coefficient method that has been used with great success in FAVOR. Instead of interpolating between tabulated solutions, as FAVOR does, the ROM approach uses a response surface methodology to compute fracture solutions based on a sampled set of results used to train the ROM. The main advantages of this approach are that the process of generating the training data can be fully automated, and the procedure can be readily used to consider more general flaw configurations. This paper demonstrates the procedure used to generate a ROM to rapidly compute stress intensity factors for axis-aligned flaws. The results from this procedure are in good agreement with those produced using the traditional influence coefficient interpolation procedure, which gives confidence in this method. This paves the way for applying this procedure for more general flaw configurations.« less

  17. Measurement of Flaw Size From Thermographic Data

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.

    2015-01-01

    Simple methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size of the delamination, since the heat diffuses in the plane parallel to the surface. The result is a temperature profile over the delamination which is larger than the delamination size. A variational approach is presented for reducing the thermographic data to produce an estimated size for a flaw that is much closer to the true size of the delamination. The method is based on an estimate for the thermal response that is a convolution of a Gaussian kernel with the shape of the flaw. The size is determined from both the temporal and spatial thermal response of the exterior surface above the delamination and constraints on the length of the contour surrounding the delamination. Examples of the application of the technique to simulation and experimental data are presented to investigate the limitations of the technique.

  18. NON-DESTRUCTIVE METHOD AND MEANS FOR FLAW DETECTION

    DOEpatents

    Hochschild, R.

    1959-03-10

    BS>An improved method is presented for the nondestructive detection of flaws in olectrictilly conductivc articles using magnetic field. According to thc method a homogoneous mignetic field is established in the test article;it right angle" to the artyicle. A probe is aligned with its axis transverse to the translates so hat th4 probe scans the surface of the test article while the axis of the robe is transverse to the direction of translation of the article. In this manner any output current obtained in thc probe is an indication of the size and location of a flaw in the article under test, with a miiiimum of signal pick- up in the probe from the established magnetic field.

  19. NASA DOEPOD NDE Capabilities Data Book

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2015-01-01

    This data book contains the Directed Design of Experiments for Validating Probability of Detection (POD) Capability of NDE Systems (DOEPOD) analyses of the nondestructive inspection data presented in the NTIAC, Nondestructive Evaluation (NDE) Capabilities Data Book. DOEPOD is designed as a decision support system to validate inspection system, personnel, and protocol demonstrating 0.90 POD with 95% confidence at critical flaw sizes, a90/95. Although 0.90 POD with 95% confidence at critical flaw sizes is often stated as an inspection requirement in inspection documents, including NASA Standards, NASA critical aerospace applications have historically only accepted 0.978 POD or better with a 95% one-sided lower confidence bound exceeding 0.90 at critical flaw sizes, a90/95.

  20. Self-Nulling Eddy Current Probe for Surface and Subsurface Flaw Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Fulton, J. P.; Nath, S.; Namkung, M.; Simpson, J. W.

    1994-01-01

    An eddy current probe which provides a null-signal in the presence of unflawed material without the need for any balancing circuitry has been developed at NASA Langley Research Center. Such a unique capability of the probe reduces set-up time, eliminates tester configuration errors, and decreases instrumentation requirements. The probe is highly sensitive to surface breaking fatigue cracks, and shows excellent resolution for the measurement of material thickness, including material loss due to corrosion damage. The presence of flaws in the material under test causes an increase in the extremely stable and reproducible output voltage of the probe. The design of the probe and some examples illustrating its flaw detection capabilities are presented.

  1. Finite Element Modeling of the Thermographic Inspection for Composite Materials

    NASA Technical Reports Server (NTRS)

    Bucinell, Ronald B.

    1996-01-01

    The performance of composite materials is dependent on the constituent materials selected, material structural geometry, and the fabrication process. Flaws can form in composite materials as a result of the fabrication process, handling in the manufacturing environment, and exposure in the service environment to anomalous activity. Often these flaws show no indication on the surface of the material while having the potential of substantially degrading the integrity of the composite structure. For this reason it is important to have available inspection techniques that can reliably detect sub-surface defects such as inter-ply disbonds, inter-ply cracks, porosity, and density changes caused by variations in fiber volume content. Many non-destructive evaluation techniques (NDE) are capable of detecting sub-surface flaws in composite materials. These include shearography, video image correlation, ultrasonic, acoustic emissions, and X-ray. The difficulty with most of these techniques is that they are time consuming and often difficult to apply to full scale structures. An NDE technique that appears to have the capability to quickly and easily detect flaws in composite structure is thermography. This technique uses heat to detect flaws. Heat is applied to the surface of a structure with the use of a heat lamp or heat gun. A thermographic camera is then pointed at the surface and records the surface temperature as the composite structure cools. Flaws in the material will cause the thermal-mechanical material response to change. Thus, the surface over an area where a flaw is present will cool differently than regions where flaws do not exist. This paper discusses the effort made to thermo-mechanically model the thermography process. First the material properties and physical parameters used in the model will be explained. This will be followed by a detailed discussion of the finite element model used. Finally, the result of the model will be summarized along with recommendations for future work.

  2. Steam generator tube inspection in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukui, Shigetaka

    1997-02-01

    Steam generator tube inspection was first carried out in 1971 at Mihama Unit-1 that is first PWR plant in Japan, when the plant was brought into the first annual inspection. At that time, inspection was made on sampling basis, and only bobbin coil probe was used. After experiencing various kinds of tube degradations, inspection method was changed from sampling to all number of tubes, and various kinds of probes were used to get higher detectability of flaw. At present, it is required that all the tubes shall be inspected in their full length at each annual inspection using standard bobbinmore » coil probe, and some special probes for certain plants that have susceptibility of occurrence of flaw. Sleeve repaired portion is included in this inspection. As a result of analyses of eddy current testing data, all indications that have been evaluated to be 20% wall thickness or deeper shall be repaired by either plugging or sleeving, where flaw morphology is to be a wastage or wear. Other types of flaw such as IGA/SCC are not allowed to be left inservice when those indications are detected. These inspections are performed according to inspection procedures that are approved by regulatory authority. Actual inspections are witnessed by the Japan Power engineering and inspection corporation (JAPEIC)`s inspectors during data acquisition and analysis, and they issue inspection report to authority for review and approval. It is achieved high safety performance of steam generator through this method of inspections, however. some tube leakage problems were experienced in the past. To prevent recurrence of such events, government is conducting development and verification test program for new eddy current testing technology.« less

  3. [Preliminary analysis about influence of porcelain thickness on interfacial crack of PFM].

    PubMed

    Zhu, Ziyuan; Zhang, Baowei; Zhang, Xiuyin; Xu, Kan; Fang, Ruhua; Wang, Dongmei

    2002-01-01

    This study was about the influence of porcelain thickness on crack at interface. The effect of porcelain thickness on the flaw at the interface between porcelain and metal was studied in three groups with porcelain thickness of 0.5 mm, 1.5 mm and 2.5 mm (metal thickness of 0.5 mm) by means of moire interferometre and interfacial fracture mechanics. The parameter Jc was compared among the three groups and the growing of the flaw was observed. Jc and the extreme strength of group with porcelain thickness of 0.5 mm (2.813 N/m and 9.979 N) were lower than those of the groups with porcelain thickness of 1.5 mm and 2.5 mm (5.395 N/m, 19.134 N and 5.429 N/m, 19.256 N). Flaws extend along the interface in the groups with porcelain thickness of 1.5 mm and 0.5 mm. (1) Fracture resistance of the interface in the groups with porcelain thickness of 1.5 mm and 2.5 mm is similar and it decreases in the group with 0.5 mm thick porcelain. (2) When porcelain is 1.5 mm or 0.5 mm thick, flaws will extend along the interface. When porcelain is 2.5 mm thick, flaws will extend into the porcelain layer.

  4. Weibull crack density coefficient for polydimensional stress states

    NASA Technical Reports Server (NTRS)

    Gross, Bernard; Gyekenyesi, John P.

    1989-01-01

    A structural ceramic analysis and reliability evaluation code has recently been developed encompassing volume and surface flaw induced fracture, modeled by the two-parameter Weibull probability density function. A segment of the software involves computing the Weibull polydimensional stress state crack density coefficient from uniaxial stress experimental fracture data. The relationship of the polydimensional stress coefficient to the uniaxial stress coefficient is derived for a shear-insensitive material with a random surface flaw population.

  5. Calculation of Weibull strength parameters, Batdorf flaw density constants and related statistical quantities using PC-CARES

    NASA Technical Reports Server (NTRS)

    Szatmary, Steven A.; Gyekenyesi, John P.; Nemeth, Noel N.

    1990-01-01

    This manual describes the operation and theory of the PC-CARES (Personal Computer-Ceramic Analysis and Reliability Evaluation of Structures) computer program for the IBM PC and compatibles running PC-DOS/MS-DOR OR IBM/MS-OS/2 (version 1.1 or higher) operating systems. The primary purpose of this code is to estimate Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities. Included in the manual is the description of the calculation of shape and scale parameters of the two-parameter Weibull distribution using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. The methods for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull line, as well as the techniques for calculating the Batdorf flaw-density constants are also described.

  6. Calculation of Weibull strength parameters and Batdorf flow-density constants for volume- and surface-flaw-induced fracture in ceramics

    NASA Technical Reports Server (NTRS)

    Shantaram, S. Pai; Gyekenyesi, John P.

    1989-01-01

    The calculation of shape and scale parametes of the two-parameter Weibull distribution is described using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. Detailed procedures are given for evaluating 90 percent confidence intervals for maximum likelihood estimates of shape and scale parameters, the unbiased estimates of the shape parameters, and the Weibull mean values and corresponding standard deviations. Furthermore, the necessary steps are described for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull distribution. It also shows how to calculate the Batdorf flaw-density constants by using the Weibull distribution statistical parameters. The techniques described were verified with several example problems, from the open literature, and were coded in the Structural Ceramics Analysis and Reliability Evaluation (SCARE) design program.

  7. Structural Design Methodology Based on Concepts of Uncertainty

    NASA Technical Reports Server (NTRS)

    Lin, K. Y.; Du, Jiaji; Rusk, David

    2000-01-01

    In this report, an approach to damage-tolerant aircraft structural design is proposed based on the concept of an equivalent "Level of Safety" that incorporates past service experience in the design of new structures. The discrete "Level of Safety" for a single inspection event is defined as the compliment of the probability that a single flaw size larger than the critical flaw size for residual strength of the structure exists, and that the flaw will not be detected. The cumulative "Level of Safety" for the entire structure is the product of the discrete "Level of Safety" values for each flaw of each damage type present at each location in the structure. Based on the definition of "Level of Safety", a design procedure was identified and demonstrated on a composite sandwich panel for various damage types, with results showing the sensitivity of the structural sizing parameters to the relative safety of the design. The "Level of Safety" approach has broad potential application to damage-tolerant aircraft structural design with uncertainty.

  8. Detection of Fatigue Cracks at Rivets with Self-Nulling Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Namkung, Min

    1994-01-01

    A new eddy current probe developed at NASA Langley Research Center has been used to detect small cracks at rivets in aircraft lap splices [1]. The device has earlier been used to detect isolated fatigue cracks with a minimum detectable flaw size of roughly 1/2 to 1/3 the diameter of the probe [2]. The present work shows that the detectable flaw size for cracks originating at rivets can be greatly improved upon from that of isolated flaws. The use of a rotating probe method combined with spatial filtering has been used to detect 0.18 cm EDM notches, as measured from the rivet shank, with a 1.27 cm diameter probe and to detect flaws buried under the rivet head, down to a length of 0.076 cm, using a 0.32 cm diameter probe. The Self-Nulling Electromagnetic Flaw Detector induces a high density eddy current ring in the sample under test. A ferromagnetic flux focusing lens is incorporated such that in the absence of any inhomogeneities in the material under test only a minimal magnetic field will reach the interior of the probe. A magnetometer (pickup coil) located in the center of the probe therefore registers a null voltage in the absence of material defects. When a fatigue crack or other discontinuity is present in the test article the path of the eddy currents in the material is changed. The magnetic field associated with these eddy currents then enter into the interior of the probe, producing a large output voltage across the pickup coil leads. Further

  9. Flaw detection and evaluation

    DOEpatents

    Wilks, Robert S.; Sturges, Jr., Robert H.

    1983-01-01

    The invention provides a method of and apparatus for optically inspecting nuclear fuel pellets for surface flaws. The inspection system includes a prism and lens arrangement for scanning the surface of each pellet as the same is rotated. The resulting scan produces data indicative of the extent and shape of each flaw which is employed to generate a flaw quality index for each detected flaw. The flaw quality indexes from all flaws are summed and compared with an acceptable surface quality index. The result of the comparison is utilized to control the acceptance or rejection of the pellet.

  10. Progress in defect quantification in multi-layered structures using ultrasonic inspection

    NASA Astrophysics Data System (ADS)

    Dierken, Josiah; Aldrin, John C.; Holec, Robert; LaCivita, Michael; Shearer, Joshua; Lindgren, Eric

    2013-01-01

    This study investigates the ability to resolve flaws in aluminum panel stackups representative of aircraft structural components. Using immersion ultrasound techniques, the specimens were examined for known fatigue cracks and electric discharge machined (EDM) notches at various fastener sites. Initial assessments suggested a possible trend between measured ultrasound parameters of flaw intensity and size, and known physical defect length. To improve analytical reliability and efficiency, development of automated data analysis (ADA) algorithms has been initiated.

  11. Investigating reliability attributes of silicon photovoltaic cells - An overview

    NASA Technical Reports Server (NTRS)

    Royal, E. L.

    1982-01-01

    Reliability attributes are being developed on a wide variety of advanced single-crystal silicon solar cells. Two separate investigations: cell-contact integrity (metal-to-silicon adherence), and cracked cells identified with fracture-strength-reducing flaws are discussed. In the cell-contact-integrity investigation, analysis of contact pull-strength data shows that cell types made with different metallization technologies, i.e., vacuum, plated, screen-printed and soldered, have appreciably different reliability attributes. In the second investigation, fracture strength was measured using Czochralski wafers and cells taken at various stages of processing and differences were noted. Fracture strength, which is believed to be governed by flaws introduced during wafer sawing, was observed to improve (increase) after chemical polishing and other process steps that tend to remove surface and edge flaws.

  12. Critical flaw size in silicon nitride ball bearings

    NASA Astrophysics Data System (ADS)

    Levesque, George Arthur

    Aircraft engine and bearing manufacturers have been aggressively pursuing advanced materials technology systems solutions to meet main shaft-bearing needs of advanced military aircraft engines. Ceramic silicon nitride hybrid bearings are being developed for such high performance applications. Though silicon nitride exhibits many favorable properties such as high compressive strength, high hardness, a third of the density of steel, low coefficient of thermal expansion, and high corrosion and temperature resistance, they also have low fracture toughness and are susceptible to failure from fatigue spalls emanating from pre-existing surface flaws that can grow under rolling contact fatigue (RCF). Rolling elements and raceways are among the most demanding components in aircraft engines due to a combination of high cyclic contact stresses, long expected component lifetimes, corrosive environment, and the high consequence of fatigue failure. The cost of these rolling elements increases exponentially with the decrease in allowable flaw size for service applications. Hence the range of 3D non-planar surface flaw geometries subject to RCF is simulated to determine the critical flaw size (CFS) or the largest allowable flaw that does not grow under service conditions. This dissertation is a numerical and experimental investigation of surface flaws in ceramic balls subjected to RCF and has resulted in the following analyses: Crack Shape Determination: the nucleation of surface flaws from ball impact that occurs during the manufacturing process is simulated. By examining the subsurface Hertzian stresses between contacting spheres, their applicability to predicting and characterizing crack size and shape is established. It is demonstrated that a wide range of cone and partial cone cracks, observed in practice, can be generated using the proposed approaches. RCF Simulation: the procedure and concerns in modeling nonplanar 3D cracks subject to RCF using FEA for stress intensity factor (SIF) trends observed from parametrically varying different physical effects are plotted and discussed. Included are developments in contact algorithms for 3D nonplanar cracks, meshing of nonplanar cracks for SIFs, parametric studies via MATLAB and other subroutines in python and FORTRAN. Establishing Fracture Parameters: the fracture toughness, K c, is determined by using numerical techniques on experimental tests namely the Brazilian disc test and a novel compression test on an indented ball. The fatigue threshold for mixed-mode loading, Keff, is determined by using a combination of numerical modeling and results from the V-ring single ball RCF test. CFS Determination: the range of 3D non-planar surface flaw geometries subject to RCF are simulated to calculate mixed mode SIFs to determine the critical flaw size, or the largest allowable flaw that does not grow under service conditions. The CFS results are presented as a function of Hertzian contact stress, traction magnitude, and crack size. Empirical Equations: accurate empirical equations (response functions) for the KI, KII, and K III SIFs for semi-elliptical surface cracks subjected to RCF as a function of the contact patch diameter, angle of crack to the surface, max pressure, position along the crack front, and aspect ratio of the crack are developed via parametric 3D FEA. Statistical Probability of Failure: since the variability in mechanical properties for brittle materials is high a probabilistic investigation of variations in flaw size, flaw orientation, fracture toughness, and Hertzian load on failure probability is conducted to statistically determine the probability of ball failure for an existing flaw subjected to the service conditions. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  13. Modeling the X-Ray Process, and X-Ray Flaw Size Parameter for POD Studies

    NASA Technical Reports Server (NTRS)

    Khoshti, Ajay

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  14. Modeling the X-ray Process, and X-ray Flaw Size Parameter for POD Studies

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances, the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters, including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  15. A Numerical Study on the Edgewise Compression Strength of Sandwich Structures with Facesheet-Core Disbonds

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew C.

    2017-01-01

    Damage tolerant design approaches require determination of critical damage modes and flaw sizes in order to establish nondestructive evaluation detection requirements. A finite element model is developed to assess the effect of circular facesheet-core disbonds on the strength of sandwich specimens subjected to edgewise compressive loads for the purpose of predicting the critical flaw size for a variety of design parameters. Postbuckling analyses are conducted in which an initial imperfection is seeded using results from a linear buckling analysis. Both the virtual crack closure technique (VCCT) and cohesive elements are considered for modeling disbond growth. Predictions from analyses using the VCCT and analyses using cohesive elements are in good correlation. A series of parametric analyses are conducted to investigate the effect of core thickness and material, facesheet layup, facesheet-core interface properties, and curvature on the criticality of facesheet-core disbonds of various sizes. The results from these analyses provide a basis for determining the critical flaw size for facesheet-core disbonds subjected to edgewise compression loads and, therefore, nondestructive evaluation flaw detection requirements for this configuration.

  16. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    DOEpatents

    Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.

    1999-01-01

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.

  17. Fractography and estimates of fracture origin size from fracture mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, G.D.; Swab, J.J.

    1996-12-31

    Fracture mechanics should be used routinely in fractographic analyses in order to verify that the correct feature has been identified as the fracture origin. This was highlighted in a recent Versailles Advanced Materials and Standards (VAMAS) fractographic analysis round robin. The practice of using fracture mechanics as an aid to fractographic interpretation is codified in a new ASTM Standard Practice. Conversely, very good estimates for fracture toughness often come from fractographic analysis of strength tested specimens. In many instances however, the calculated flaw size is different from the empirically-measured flaw size. This paper reviews the factors which may cause themore » discrepancies.« less

  18. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters.

    PubMed

    Liu, Xiang; Lee, Duu-Jong

    2014-05-01

    This meta-analysis evaluates adsorption studies that report thermodynamic parameters for heavy metals and dyes from wastewaters. The adsorbents were derived from agricultural waste, industrial wastes, inorganic particulates, or some natural products. The adsorption mechanisms, derivation of thermodynamic relationships, and possible flaws made in such evaluation are discussed. This analysis shows that conclusions from the examined standard enthalpy and entropy changes are highly contestable. The reason for this flaw may be the poor physical structure of adsorbents tested, such that pore transport controlled the solute flux, leaving a surface reaction process near equilibrium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Alpha-Helical Protein Networks Are Self-Protective and Flaw-Tolerant

    PubMed Central

    Ackbarow, Theodor; Sen, Dipanjan; Thaulow, Christian; Buehler, Markus J.

    2009-01-01

    Alpha-helix based protein networks as they appear in intermediate filaments in the cell’s cytoskeleton and the nuclear membrane robustly withstand large deformation of up to several hundred percent strain, despite the presence of structural imperfections or flaws. This performance is not achieved by most synthetic materials, which typically fail at much smaller deformation and show a great sensitivity to the existence of structural flaws. Here we report a series of molecular dynamics simulations with a simple coarse-grained multi-scale model of alpha-helical protein domains, explaining the structural and mechanistic basis for this observed behavior. We find that the characteristic properties of alpha-helix based protein networks are due to the particular nanomechanical properties of their protein constituents, enabling the formation of large dissipative yield regions around structural flaws, effectively protecting the protein network against catastrophic failure. We show that the key for these self protecting properties is a geometric transformation of the crack shape that significantly reduces the stress concentration at corners. Specifically, our analysis demonstrates that the failure strain of alpha-helix based protein networks is insensitive to the presence of structural flaws in the protein network, only marginally affecting their overall strength. Our findings may help to explain the ability of cells to undergo large deformation without catastrophic failure while providing significant mechanical resistance. PMID:19547709

  20. Determination of Flaw Type and Location Using an Expert Module in Ultrasonic Nondestructive Testing for Weld Inspection

    NASA Astrophysics Data System (ADS)

    Shahriari, D.; Zolfaghari, A.; Masoumi, F.

    2011-01-01

    Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.

  1. Fracture mechanics life analytical methods verification testing

    NASA Technical Reports Server (NTRS)

    Favenesi, J. A.; Clemons, T. G.; Riddell, W. T.; Ingraffea, A. R.; Wawrzynek, P. A.

    1994-01-01

    The objective was to evaluate NASCRAC (trademark) version 2.0, a second generation fracture analysis code, for verification and validity. NASCRAC was evaluated using a combination of comparisons to the literature, closed-form solutions, numerical analyses, and tests. Several limitations and minor errors were detected. Additionally, a number of major flaws were discovered. These major flaws were generally due to application of a specific method or theory, not due to programming logic. Results are presented for the following program capabilities: K versus a, J versus a, crack opening area, life calculation due to fatigue crack growth, tolerable crack size, proof test logic, tearing instability, creep crack growth, crack transitioning, crack retardation due to overloads, and elastic-plastic stress redistribution. It is concluded that the code is an acceptable fracture tool for K solutions of simplified geometries, for a limited number of J and crack opening area solutions, and for fatigue crack propagation with the Paris equation and constant amplitude loads when the Paris equation is applicable.

  2. Projective techniques and the detection of child sexual abuse.

    PubMed

    Garb, H N; Wood, J M; Nezworski, M T

    2000-05-01

    Projective techniques (e.g., the Rorschach, Human Figure Drawings) are sometimes used to detect child sexual abuse. West recently conducted a meta-analysis on this topic, but she systematically excluded nonsignificant results. In this article, a reanalysis of her data is presented. The authors conclude that projective techniques should not be used to detect child sexual abuse. Many of the studies purportedly demonstrating validity are flawed, and none of the projective test scores have been well replicated.

  3. Crack propagation and coalescence due to dual non-penetrating surface flaws and their effect on the strength of rock-like material

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zheng, Zheyuan; Xiao, Xiaochun; Li, Zhaoxia

    2018-06-01

    Non-penetrating surface flaws play a key role in the fracture process of rock-like material, and could cause localized collapse and even failure of the materials. Until now, the mechanism and the effect of surface crack propagation have remained unclear. In this paper, compression tests on gypsum (a soft rock material) are conducted to investigate crack propagation and coalescence due to non-penetrating surface flaws and their effect on the material strength. Specimens are tested under dual pre-existing surface flaws with various combinations of depth and spacing. The results show that when the pre-existing flaws are non-penetrating, the d/t ratio (flaw depth ratio, d is the pre-existing flaw cutting depth and t is the specimen thickness) and the spacing (the distance between the two flaw internal tips) have a strong influence on surface crack patterns and specimen strength. Few cracks emanate from the pre-existing flaws when the flaw depth ratio is equal to 1/3, and more cracks occur with the increase of the flaw depth ratio. When the pre-existing flaw penetrates completely through the specimen, the spacing has a small effect on the specimen strength. A larger flaw depth ratio could advance the occurrence of the peak load (PL) and result in a smaller specimen residual strength. The failure process of the specimen is divided into several stages featured by a stepped decline of the load value after PL, which is closely related to the initiation and propagation of secondary cracks. In addition, the spalling (failure of a portion of the surface caused by coalescence of cracks) can be regarded as indicating the failure of the specimen, and two possible types of spalling formation are briefly discussed.

  4. Detector-device-independent quantum secret sharing with source flaws.

    PubMed

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Liu, Hongwei; Yin, Zhenqiang; Cao, Zhu; Wu, Lingan

    2018-04-10

    Measurement-device-independent entanglement witness (MDI-EW) plays an important role for detecting entanglement with untrusted measurement device. We present a double blinding-attack on a quantum secret sharing (QSS) protocol based on GHZ state. Using the MDI-EW method, we propose a QSS protocol against all detector side-channels. We allow source flaws in practical QSS system, so that Charlie can securely distribute a key between the two agents Alice and Bob over long distances. Our protocol provides condition on the extracted key rate for the secret against both external eavesdropper and arbitrary dishonest participants. A tight bound for collective attacks can provide good bounds on the practical QSS with source flaws. Then we show through numerical simulations that using single-photon source a secure QSS over 136 km can be achieved.

  5. Residual Stresses and Critical Initial Flaw Size Analyses of Welds

    NASA Technical Reports Server (NTRS)

    Brust, Frederick W.; Raju, Ivatury, S.; Dawocke, David S.; Cheston, Derrick

    2009-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). A series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on the fatigue life. The purpose of the weld analyses was to model the weld process using a variety of sequences to determine the 'best' sequence in terms of weld residual stresses and distortions. The many factors examined in this study include weld design (single-V, double-V groove), weld sequence, boundary conditions, and material properties, among others. The results of this weld analysis are included with service loads to perform a fatigue and critical initial flaw size evaluation.

  6. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    DOEpatents

    Panitz, J.K.; Reed, S.T.; Ashley, C.S.; Neiser, R.A.; Moffatt, W.C.

    1999-07-20

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties. 6 figs.

  7. Virtual containment system for composite flywheels

    NASA Astrophysics Data System (ADS)

    Shiue, Fuh-Wen

    2001-07-01

    There is much interest in advanced composite flywheel systems for use on satellites mainly because of the potential for considerable weight savings associated with combined energy and momentum management. The additional weight of a containment system needed to protect the satellite in the event of a flywheel failure, however, could negate the potential savings. Therefore, the development of a condition monitoring and virtual containment system is essential to ensure the wide acceptance of flywheel batteries for spacecraft applications. A virtual containment system is a near real-time condition monitoring system, plus additional logic to adjust the operating conditions (maximum rotational speed) accordingly when a flaw or fault is detected. Flaws of primary interest in this study are those unique to composite flywheels, such as delamination and debonding of interfaces. Such flaws change the balance state of a flywheel through small, but detectable, motion of the mass center and principal axes of inertia. A proposed monitoring technique determines the existence and the extent of such flaws by a method similar to the influence-coefficient rotor balancing method. Because of the speed-dependence of the imbalance caused by elastic flaws, a normalized imbalance change, which is a direct measure of the flaw size, was defined. To account for the possibility that flaw growth could actually improve the balance state of a rotor, a new concept of accumulated imbalance change was also introduced. Laboratory tests showed the proposed method was able to detect small simulated flaws that result in as little as 2--3 microns of mass center movement. Fracture mechanics concepts were used to evaluate the severity and growth rate of the detected flaw. An interesting discovery that coincided with some experimental observations reported in the literature was the energy release rate reduction with a large crack. This finding indicates a possible stress relief and crack arrest when a circumferential crack grows over certain size. This phenomenon is largely due to crack curvature unique to filament-wound composite flywheels. Several virtual containment strategies were investigated numerically to demonstrate the feasibility of virtual containment systems. Once a flaw is detected during flywheel operation, the maximum operating speed can be reduced to prevent catastrophic failure, achieve a specific design life, and maximize energy storage capacity over the remaining life. A numerical example showed 4--5 times of improvement in cumulative energy storage through lifetime with a virtual containment. A closed-loop speed controller using condition monitoring sensor feedback was investigated numerically to account for possible imperfection of the fracture mechanics model. Finally, an integrated virtual containment system without any complex fracture mechanics analysis was also developed and successfully demonstrated experimentally.

  8. Calculation of Weibull strength parameters and Batdorf flow-density constants for volume- and surface-flaw-induced fracture in ceramics

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Gyekenyesi, John P.

    1988-01-01

    The calculation of shape and scale parameters of the two-parameter Weibull distribution is described using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. Detailed procedures are given for evaluating 90 percent confidence intervals for maximum likelihood estimates of shape and scale parameters, the unbiased estimates of the shape parameters, and the Weibull mean values and corresponding standard deviations. Furthermore, the necessary steps are described for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull distribution. It also shows how to calculate the Batdorf flaw-density constants by uing the Weibull distribution statistical parameters. The techniques described were verified with several example problems, from the open literature, and were coded. The techniques described were verified with several example problems from the open literature, and were coded in the Structural Ceramics Analysis and Reliability Evaluation (SCARE) design program.

  9. Thermal Characterization of Defects in Aircraft Structures Via Spatially Controlled Heat Application

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    1997-01-01

    Recent advances in thermal imaging technology have spawned a number of new thermal NDE techniques that provide quantitative information about flaws in aircraft structures. Thermography has a number of advantages as an inspection technique. It is a totally noncontacting, nondestructive, imaging technology capable of inspecting a large area in a matter of a few seconds. The development of fast, inexpensive image processors have aided in the attractiveness of thermography as an NDE technique. These image processors have increased the signal to noise ratio of thermography and facilitated significant advances in post-processing. The resulting digital images enable archival records for comparison with later inspections thus providing a means of monitoring the evolution of damage in a particular structure. The National Aeronautics and Space Administration's Langley Research Center has developed a thermal NDE technique designed to image a number of potential flaws in aircraft structures. The technique involves injecting a small, spatially controlled heat flux into the outer surface of an aircraft. Images of fatigue cracking, bond integrity and material loss due to corrosion are generated from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to analyze the resulting thermal images. Spatial tailoring of the heat coupled with the analysis techniques represent a significant improvement in the delectability of flaws over conventional thermal imaging. Results of laboratory experiments on fabricated crack, disbond and material loss samples will be presented to demonstrate the capabilities of the technique. An integral part of the development of this technology is the use of analytic and computational modeling. The experimental results will be compared with these models to demonstrate the utility of such an approach.

  10. Radar analysis of free oscillations of rail for diagnostics defects

    NASA Astrophysics Data System (ADS)

    Shaydurov, G. Y.; Kudinov, D. S.; Kokhonkova, E. A.; Potylitsyn, V. S.

    2018-05-01

    One of the tasks of developing and implementing defectoscopy devices is the minimal influence of the human factor in their exploitation. At present, rail inspection systems do not have sufficient depth of rail research, and ultrasonic diagnostics systems need to contact the sensor with the surface being studied, which leads to low productivity. The article gives a comparative analysis of existing noncontact methods of flaw detection, offers a contactless method of diagnostics by excitation of acoustic waves and extraction of information about defects from the frequency of free rail oscillations using the radar method.

  11. Beyond Box Checking: Toward Sound Environmental Justice Analyses for Informed Decision-Making and Meaningful Tribal Consultation

    NASA Astrophysics Data System (ADS)

    Emanuel, R. E.; Rivers, L., III; Blank, G. B.

    2017-12-01

    Environmental justice analyses are mandatory components of federal environmental reviews in the United States. They are intended to help regulators and developers identify and address disproportionate impacts on poor and/or minority populations. In many cases, however, environmental justice analyses are treated as "box checking" exercises that employ weak or flawed designs unable to detect disparate impacts on vulnerable populations. We use a recent example of an environmental review led by the Federal Energy Regulatory Commission to demonstrate how flawed analyses mask disproportionate impacts on poor and/or minority populations. In this case, regulators conducted a flawed environmental justice analysis for the proposed Atlantic Coast Pipeline concluding no disproportionate impacts on vulnerable populations. We reanalyze data from the project's environmental impact statement and provide a more accurate assessment of impacts on Native Americans in North Carolina. Specifically, we show that Native Americans make up a disproportionately large fraction of residents along the proposed pipeline route (13.2%) compared to their representation in the affected counties (6.2%) or in the state at large (1.2%). We discuss implications of the original, flawed analysis for tribes representing nearly 30,000 Native Americans along the project route, and we discuss efforts by affected tribes to have their unique perspectives incorporated into the decision-making process. We conclude with general recommendations for designing environmental justice analyses that serve as useful tools to guide environmental decision-making and consultation with affected groups.

  12. Characteristics and analysis of scientific articles submitted to the European Annals of Otorhinolaryngology, Head and Neck Diseases.

    PubMed

    Laccourreye, O; Bonfils, P; Denoyelle, F; Garrel, R; Jankowski, R; Karkas, A; Makeieff, M; Righini, C; Vincent, C; Martin, C

    2015-09-01

    To evaluate characteristics, suggested modifications and reasons for rejection in scientific articles submitted for publication in the European Annals of Otorhinolaryngology, Head and Neck Diseases. A prospective study analyzed the flaws noted by reviewers in 52 scientific articles submitted to the European Annals of Otorhinolaryngology, Head and Neck Diseases between August 31, 2014 and February 28, 2015. Fifteen flaws concerning content and 7 concerning form were identified. In more than 25% of submissions, major flaws were noted: purely descriptive paper; lack of contribution to existing state of knowledge; failure to define a clear study objective and/or analyze the impact of major variables; poorly structured Materials and methods section, lacking description of study population, objective and/or variables; lack of or inappropriate statistical analysis; Introduction verbose and/or misrepresenting the literature; excessively heterogeneous and/or poorly described study population; imprecise discussion, straying from the point, overstating the significance of results and/or introducing new results not mentioned in the Results section; description of the study population placed in the Results section instead of under Materials and methods; serious mistakes of syntax, spelling and/or tense; and failure to follow the Instructions to Authors. After review, 21.1% of articles were published, 65.3% rejected and 13.4% non-resubmitted within 3 months of review. On univariate analysis, the only variable increasing the percentage of articles accepted was the topic not being devoted to head and neck surgery (P=0.03). These results document the excessive flaw rate still to be found in manuscripts and demonstrate the continuing need for authors to master and implement the rules of scientific medical writing. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Laser displacement sensor to monitor the layup process of composite laminate production

    NASA Astrophysics Data System (ADS)

    Miesen, Nick; Groves, Roger M.; Sinke, Jos; Benedictus, Rinze

    2013-04-01

    Several types of flaw can occur during the layup process of prepreg composite laminates. Quality control after the production process checks the end product by testing the specimens for flaws which are included during the layup process or curing process, however by then these flaws are already irreversibly embedded in the laminate. This paper demonstrates the use of a laser displacement sensor technique applied during the layup process of prepreg laminates for in-situ flaw detection, for typical flaws that can occur during the composite production process. An incorrect number of layers and fibre wrinkling are dominant flaws during the process of layup. These and other dominant flaws have been modeled to determine the requirements for an in-situ monitoring during the layup process of prepreg laminates.

  14. Development of Natural Flaw Samples for Evaluating Nondestructive Testing Methods for Foam Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Davis, Jason; Farrington, Seth; Walker, James

    2007-01-01

    Low density polyurethane foam has been an important insulation material for space launch vehicles for several decades. The potential for damage from foam breaking away from the NASA External Tank was not realized until the foam impacts on the Columbia Orbiter vehicle caused damage to its Leading Edge thermal protection systems (TPS). Development of improved inspection techniques on the foam TPS is necessary to prevent similar occurrences in the future. Foamed panels with drilled holes for volumetric flaws and Teflon inserts to simulate debonded conditions have been used to evaluate and calibrate nondestructive testing (NDT) methods. Unfortunately the symmetric edges and dissimilar materials used in the preparation of these simulated flaws provide an artificially large signal while very little signal is generated from the actual defects themselves. In other words, the same signal are not generated from the artificial defects in the foam test panels as produced when inspecting natural defect in the ET foam TPS. A project to create more realistic voids similar to what actually occurs during manufacturing operations was began in order to improve detection of critical voids during inspections. This presentation describes approaches taken to create more natural voids in foam TPS in order to provide a more realistic evaluation of what the NDT methods can detect. These flaw creation techniques were developed with both sprayed foam and poured foam used for insulation on the External Tank. Test panels with simulated defects have been used to evaluate NDT methods for the inspection of the External Tank. A comparison of images between natural flaws and machined flaws generated from backscatter x-ray radiography, x-ray laminography, terahertz imaging and millimeter wave imaging show significant differences in identifying defect regions.

  15. Procedure for flaw detection in cast stainless steel

    DOEpatents

    Kupperman, David S.

    1988-01-01

    A method of ultrasonic flaw detection in cast stainless steel components incorporating the steps of determining the nature of the microstructure of the cast stainless steel at the site of the flaw detection measurements by ultrasonic elements independent of the component thickness at the site; choosing from a plurality of flaw detection techniques, one such technique appropriate to the nature of the microstructure as determined and detecting flaws by use of the chosen technique.

  16. C-Sphere Strength-Size Scaling in a Bearing-Grade Silicon Nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, Andrew A; Jadaan, Osama M.; Kirkland, Timothy Philip

    2008-01-01

    A C-sphere specimen geometry was used to determine the failure strength distributions of a commercially available bearing-grade silicon nitride (Si3N4) having ball diameters of 12.7 and 25.4 mm. Strengths for both diameters were determined using the combination of failure load, C sphere geometry, and finite element analysis and fitted using two-parameter Weibull distributions. Effective areas of both diameters were estimated as a function of Weibull modulus and used to explore whether the strength distributions predictably strength-scaled between each size. They did not. That statistical observation suggested that the same flaw type did not limit the strength of both ball diametersmore » indicating a lack of material homogeneity between the two sizes. Optical fractography confirmed that. It showed there were two distinct strength-limiting flaw types in both ball diameters, that one flaw type was always associated with lower strength specimens, and that significantly higher fraction of the 24.5-mm-diameter c-sphere specimens failed from it. Predictable strength-size-scaling would therefore not result as a consequence of this because these flaw types were not homogenously distributed and sampled in both c-sphere geometries.« less

  17. Fracture mechanics concepts in reliability analysis of monolithic ceramics

    NASA Technical Reports Server (NTRS)

    Manderscheid, Jane M.; Gyekenyesi, John P.

    1987-01-01

    Basic design concepts for high-performance, monolithic ceramic structural components are addressed. The design of brittle ceramics differs from that of ductile metals because of the inability of ceramic materials to redistribute high local stresses caused by inherent flaws. Random flaw size and orientation requires that a probabilistic analysis be performed in order to determine component reliability. The current trend in probabilistic analysis is to combine linear elastic fracture mechanics concepts with the two parameter Weibull distribution function to predict component reliability under multiaxial stress states. Nondestructive evaluation supports this analytical effort by supplying data during verification testing. It can also help to determine statistical parameters which describe the material strength variation, in particular the material threshold strength (the third Weibull parameter), which in the past was often taken as zero for simplicity.

  18. Automatic non-destructive system for quality assurance of welded elements in the aircraft industry

    NASA Astrophysics Data System (ADS)

    Chady, Tomasz; Waszczuk, Paweł; Szydłowski, Michał; Szwagiel, Mariusz

    2018-04-01

    Flaws that might be a result of the welding process have to be detected, in order to assure high quality thus reliability of elements exploited in aircraft industry. Currently the inspection stage is conducted manually by a qualified workforce. There are no commercially available systems that could support or replace humans in the flaw detection process. In this paper authors present a novel non-destructive system developed for quality assurance purposes of welded elements utilized in the aircraft industry.

  19. Multi-resolution analysis for region of interest extraction in thermographic nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Ortiz-Jaramillo, B.; Fandiño Toro, H. A.; Benitez-Restrepo, H. D.; Orjuela-Vargas, S. A.; Castellanos-Domínguez, G.; Philips, W.

    2012-03-01

    Infrared Non-Destructive Testing (INDT) is known as an effective and rapid method for nondestructive inspection. It can detect a broad range of near-surface structuring flaws in metallic and composite components. Those flaws are modeled as a smooth contour centered at peaks of stored thermal energy, termed Regions of Interest (ROI). Dedicated methodologies must detect the presence of those ROIs. In this paper, we present a methodology for ROI extraction in INDT tasks. The methodology deals with the difficulties due to the non-uniform heating. The non-uniform heating affects low spatial/frequencies and hinders the detection of relevant points in the image. In this paper, a methodology for ROI extraction in INDT using multi-resolution analysis is proposed, which is robust to ROI low contrast and non-uniform heating. The former methodology includes local correlation, Gaussian scale analysis and local edge detection. In this methodology local correlation between image and Gaussian window provides interest points related to ROIs. We use a Gaussian window because thermal behavior is well modeled by Gaussian smooth contours. Also, the Gaussian scale is used to analyze details in the image using multi-resolution analysis avoiding low contrast, non-uniform heating and selection of the Gaussian window size. Finally, local edge detection is used to provide a good estimation of the boundaries in the ROI. Thus, we provide a methodology for ROI extraction based on multi-resolution analysis that is better or equal compared with the other dedicate algorithms proposed in the state of art.

  20. Advanced eddy current test signal analysis for steam generator tube defect classification and characterization

    NASA Astrophysics Data System (ADS)

    McClanahan, James Patrick

    Eddy Current Testing (ECT) is a Non-Destructive Examination (NDE) technique that is widely used in power generating plants (both nuclear and fossil) to test the integrity of heat exchanger (HX) and steam generator (SG) tubing. Specifically for this research, laboratory-generated, flawed tubing data were examined. The purpose of this dissertation is to develop and implement an automated method for the classification and an advanced characterization of defects in HX and SG tubing. These two improvements enhanced the robustness of characterization as compared to traditional bobbin-coil ECT data analysis methods. A more robust classification and characterization of the tube flaw in-situ (while the SG is on-line but not when the plant is operating), should provide valuable information to the power industry. The following are the conclusions reached from this research. A feature extraction program acquiring relevant information from both the mixed, absolute and differential data was successfully implemented. The CWT was utilized to extract more information from the mixed, complex differential data. Image Processing techniques used to extract the information contained in the generated CWT, classified the data with a high success rate. The data were accurately classified, utilizing the compressed feature vector and using a Bayes classification system. An estimation of the upper bound for the probability of error, using the Bhattacharyya distance, was successfully applied to the Bayesian classification. The classified data were separated according to flaw-type (classification) to enhance characterization. The characterization routine used dedicated, flaw-type specific ANNs that made the characterization of the tube flaw more robust. The inclusion of outliers may help complete the feature space so that classification accuracy is increased. Given that the eddy current test signals appear very similar, there may not be sufficient information to make an extremely accurate (>95%) classification or an advanced characterization using this system. It is necessary to have a larger database fore more accurate system learning.

  1. Lawson's Shoehorn, Reprise

    ERIC Educational Resources Information Center

    Allchin, Douglas

    2006-01-01

    Lawson's (Lawson, A.: 2004, Science & Education, 13, 155-177) analysis of the meteorite hypothesis of dinosaur extinction exhibits flaws similar to his earlier (2002) analysis of Galileo's discovery of Jupiter's moons (Allchin, D.: 2003, Science & Education, 12, 315-329).

  2. Heuristic Enhancement of Magneto-Optical Images for NDE

    NASA Astrophysics Data System (ADS)

    Cacciola, Matteo; Megali, Giuseppe; Pellicanò, Diego; Calcagno, Salvatore; Versaci, Mario; Morabito, FrancescoCarlo

    2010-12-01

    The quality of measurements in nondestructive testing and evaluation plays a key role in assessing the reliability of different inspection techniques. Each different technique, like the magneto-optic imaging here treated, is affected by some special types of noise which are related to the specific device used for their acquisition. Therefore, the design of even more accurate image processing is often required by relevant applications, for instance, in implementing integrated solutions for flaw detection and characterization. The aim of this paper is to propose a preprocessing procedure based on independent component analysis (ICA) to ease the detection of rivets and/or flaws in the specimens under test. A comparison of the proposed approach with some other advanced image processing methodologies used for denoising magneto-optic images (MOIs) is carried out, in order to show advantages and weakness of ICA in improving the accuracy and performance of the rivets/flaw detection.

  3. A Numerical Solution Routine for Investigating Oxidation-Induced Strength Degradation Mechanisms in SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2015-01-01

    The stress rupture strength of silicon carbide fiber-reinforced silicon carbide (SiCSiC) composites with a boron nitride (BN) fiber coating decreases with time within the intermediate temperature range of 700-950 C. Various theories have been proposed to explain the cause of the time dependent stress rupture strength. Some previous authors have suggested that the observed composite strength behavior is due to the inherent time dependent strength of the fibers, which is caused by the slow growth of flaws within the fibers. Flaw growth is supposedly enabled by oxidation of free carbon at the grain boundaries. The objective of this paper is to investigate the relative significance of the various theories for the time-dependent strength of SiCSiC composites. This is achieved through the development of a numerically-based progressive failure analysis routine and through the application of the routine to simulate the composite stress rupture tests. The progressive failure routine is a time marching routine with an iterative loop between a probability of fiber survival equation and a force equilibrium equation within each time step. Failure of the composite is assumed to initiate near a matrix crack and the progression of fiber failures occurs by global load sharing. The probability of survival equation is derived from consideration of the strength of ceramic fibers with randomly occurring and slow growing flaws as well as the mechanical interaction between the fibers and matrix near a matrix crack. The force equilibrium equation follows from the global load sharing presumption. The results of progressive failure analyses of the composite tests suggest that the relationship between time and stress-rupture strength is attributed almost entirely to the slow flaw growth within the fibers. Although other mechanisms may be present, they appear to have only a minor influence on the observed time dependent behavior.

  4. Reliability analysis of structural ceramics subjected to biaxial flexure

    NASA Technical Reports Server (NTRS)

    Chao, Luen-Yuan; Shetty, Dinesh K.

    1991-01-01

    The reliability of alumina disks subjected to biaxial flexure is predicted on the basis of statistical fracture theory using a critical strain energy release rate fracture criterion. Results on a sintered silicon nitride are consistent with reliability predictions based on pore-initiated penny-shaped cracks with preferred orientation normal to the maximum principal stress. Assumptions with regard to flaw types and their orientations in each ceramic can be justified by fractography. It is shown that there are no universal guidelines for selecting fracture criteria or assuming flaw orientations in reliability analyses.

  5. Eddy Current for Sizing Cracks in Canisters for Dry Storage of Used Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Ryan M.; Jones, Anthony M.; Pardini, Allan F.

    2014-01-01

    The storage of used nuclear fuel (UNF) in dry canister storage systems (DCSSs) at Independent Spent Fuel Storage Installations (ISFSI) sites is a temporary measure to accommodate UNF inventory until it can be reprocessed or transferred to a repository for permanent disposal. Policy uncertainty surrounding the long-term management of UNF indicates that DCSSs will need to store UNF for much longer periods than originally envisioned. Meanwhile, the structural and leak-tight integrity of DCSSs must not be compromised. The eddy current technique is presented as a potential tool for inspecting the outer surfaces of DCSS canisters for degradation, particularly atmospheric stressmore » corrosion cracking (SCC). Results are presented that demonstrate that eddy current can detect flaws that cannot be detected reliably using standard visual techniques. In addition, simulations are performed to explore the best parameters of a pancake coil probe for sizing of SCC flaws in DCSS canisters and to identify features in frequency sweep curves that may potentially be useful for facilitating accurate depth sizing of atmospheric SCC flaws from eddy current measurements.« less

  6. Technical flaws in multiple-choice questions in the access exam to medical specialties ("examen MIR") in Spain (2009-2013).

    PubMed

    Rodríguez-Díez, María Cristina; Alegre, Manuel; Díez, Nieves; Arbea, Leire; Ferrer, Marta

    2016-02-03

    The main factor that determines the selection of a medical specialty in Spain after obtaining a medical degree is the MIR ("médico interno residente", internal medical resident) exam. This exam consists of 235 multiple-choice questions with five options, some of which include images provided in a separate booklet. The aim of this study was to analyze the technical quality of the multiple-choice questions included in the MIR exam over the last five years. All the questions included in the exams from 2009 to 2013 were analyzed. We studied the proportion of questions including clinical vignettes, the number of items related to an image and the presence of technical flaws in the questions. For the analysis of technical flaws, we adapted the National Board of Medical Examiners (NBME) guidelines. We looked for 18 different issues included in the manual, grouped into two categories: issues related to testwiseness and issues related to irrelevant difficulties. The final number of questions analyzed was 1,143. The percentage of items based on clinical vignettes increased from 50% in 2009 to 56-58% in the following years (2010-2013). The percentage of items based on an image increased progressively from 10% in 2009 to 15% in 2012 and 2013. The percentage of items with at least one technical flaw varied between 68 and 72%. We observed a decrease in the percentage of items with flaws related to testwiseness, from 30% in 2009 to 20% in 2012 and 2013. While most of these issues decreased dramatically or even disappeared (such as the imbalance in the correct option numbers), the presence of non-plausible options remained frequent. With regard to technical flaws related to irrelevant difficulties, no improvement was observed; this is especially true with respect to negative stem questions and "hinged" questions. The formal quality of the MIR exam items has improved over the last five years with regard to testwiseness. A more detailed revision of the items submitted, checking systematically for the presence of technical flaws, could improve the validity and discriminatory power of the exam, without increasing its difficulty.

  7. Digital ultrasonics signal processing: Flaw data post processing use and description

    NASA Technical Reports Server (NTRS)

    Buel, V. E.

    1981-01-01

    A modular system composed of two sets of tasks which interprets the flaw data and allows compensation of the data due to transducer characteristics is described. The hardware configuration consists of two main units. A DEC LSI-11 processor running under the RT-11 sngle job, version 2C-02 operating system, controls the scanner hardware and the ultrasonic unit. A DEC PDP-11/45 processor also running under the RT-11, version 2C-02, operating system, stores, processes and displays the flaw data. The software developed the Ultrasonics Evaluation System, is divided into two catagories; transducer characterization and flaw classification. Each category is divided further into two functional tasks: a data acquisition and a postprocessor ask. The flaw characterization collects data, compresses its, and writes it to a disk file. The data is then processed by the flaw classification postprocessing task. The use and operation of a flaw data postprocessor is described.

  8. Identification of technical item flaws leads to improvement of the quality of single best Multiple Choice Questions.

    PubMed

    Fayyaz Khan, Humaira; Farooq Danish, Khalid; Saeed Awan, Azra; Anwar, Masood

    2013-05-01

    The purpose of the study was to identify technical item flaws in the multiple choice questions submitted for the final exams for the years 2009, 2010 and 2011. This descriptive analytical study was carried out in Islamic International Medical College (IIMC). The Data was collected from the MCQ's submitted by the faculty for the final exams for the year 2009, 2010 and 2011. The data was compiled and evaluated by a three member assessment committee. The data was analyzed for frequency and percentages the categorical data was analyzed by chi-square test. Overall percentage of flawed item was 67% for the year 2009 of which 21% were for testwiseness and 40% were for irrelevant difficulty. In year 2010 the total item flaws were 36% and 11% testwiseness and 22% were for irrelevant difficulty. The year 2011 data showed decreased overall flaws of 21%. The flaws of testwisness were 7%, irrelevant difficulty were 11%. Technical item flaws are frequently encountered during MCQ construction, and the identification of flaws leads to improved quality of the single best MCQ's.

  9. Fatigue loading and R-curve behavior of a dental glass-ceramic with multiple flaw distributions.

    PubMed

    Joshi, Gaurav V; Duan, Yuanyuan; Della Bona, Alvaro; Hill, Thomas J; St John, Kenneth; Griggs, Jason A

    2013-11-01

    To determine the effects of surface finish and mechanical loading on the rising toughness curve (R-curve) behavior of a fluorapatite glass-ceramic (IPS e.max ZirPress) and to determine a statistical model for fitting fatigue lifetime data with multiple flaw distributions. Rectangular beam specimens were fabricated by pressing. Two groups of specimens (n=30) with polished (15 μm) or air abraded surface were tested under rapid monotonic loading in oil. Additional polished specimens were subjected to cyclic loading at 2 Hz (n=44) and 10 Hz (n=36). All fatigue tests were performed using a fully articulated four-point flexure fixture in 37°C water. Fractography was used to determine the critical flaw size and estimate fracture toughness. To prove the presence of R-curve behavior, non-linear regression was used. Forward stepwise regression was performed to determine the effects on fracture toughness of different variables, such as initial flaw type, critical flaw size, critical flaw eccentricity, cycling frequency, peak load, and number of cycles. Fatigue lifetime data were fit to an exclusive flaw model. There was an increase in fracture toughness values with increasing critical flaw size for both loading methods (rapid monotonic loading and fatigue). The values for the fracture toughness ranged from 0.75 to 1.1 MPam(1/2) reaching a plateau at different critical flaw sizes based on loading method. Cyclic loading had a significant effect on the R-curve behavior. The fatigue lifetime distribution was dependent on the flaw distribution, and it fit well to an exclusive flaw model. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Fatigue loading and R-curve behavior of a dental glass-ceramic with multiple flaw distributions

    PubMed Central

    Joshi, Gaurav V.; Duan, Yuanyuan; Bona, Alvaro Della; Hill, Thomas J.; John, Kenneth St.; Griggs, Jason A.

    2013-01-01

    Objectives To determine the effects of surface finish and mechanical loading on the rising toughness curve (R-curve) behavior of a fluorapatite glass-ceramic (IPS e.max ZirPress) and to determine a statistical model for fitting fatigue lifetime data with multiple flaw distributions. Materials and Methods Rectangular beam specimens were fabricated by pressing. Two groups of specimens (n=30) with polished (15 μm) or air abraded surface were tested under rapid monotonic loading in oil. Additional polished specimens were subjected to cyclic loading at 2 Hz (n=44) and 10 Hz (n=36). All fatigue tests were performed using a fully articulated four-point flexure fixture in 37°C water. Fractography was used to determine the critical flaw size and estimate fracture toughness. To prove the presence of R-curve behavior, non-linear regression was used. Forward stepwise regression was performed to determine the effects on fracture toughness of different variables, such as initial flaw type, critical flaw size, critical flaw eccentricity, cycling frequency, peak load, and number of cycles. Fatigue lifetime data were fit to an exclusive flaw model. Results There was an increase in fracture toughness values with increasing critical flaw size for both loading methods (rapid monotonic loading and fatigue). The values for the fracture toughness ranged from 0.75 to 1.1 MPa·m1/2 reaching a plateau at different critical flaw sizes based on loading method. Significance Cyclic loading had a significant effect on the R-curve behavior. The fatigue lifetime distribution was dependent on the flaw distribution, and it fit well to an exclusive flaw model. PMID:24034441

  11. Research and Development of Automated Eddy Current Testing for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Carver, Kyle L.; Saulsberry, Regor L.; Nichols, Charles T.; Spencer, Paul R.; Lucero, Ralph E.

    2012-01-01

    Eddy current testing (ET) was used to scan bare metallic liners used in the fabrication of composite overwrapped pressure vessels (COPVs) for flaws which could result in premature failure of the vessel. The main goal of the project was to make improvements in the areas of scan signal to noise ratio, sensitivity of flaw detection, and estimation of flaw dimensions. Scan settings were optimized resulting in an increased signal to noise ratio. Previously undiscovered flaw indications were observed and investigated. Threshold criteria were determined for the system software's flaw report and estimation of flaw dimensions were brought to an acceptable level of accuracy. Computer algorithms were written to import data for filtering and a numerical derivative filtering algorithm was evaluated.

  12. Computational Reduction of Specimen Noise to Enable Improved Thermography Characterization of Flaws in Graphite Polymer Composites

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  13. Computational reduction of specimen noise to enable improved thermography characterization of flaws in graphite polymer composites

    NASA Astrophysics Data System (ADS)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-05-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  14. Hybrid-finite-element analysis of some nonlinear and 3-dimensional problems of engineering fracture mechanics

    NASA Technical Reports Server (NTRS)

    Atluri, S. N.; Nakagaki, M.; Kathiresan, K.

    1980-01-01

    In this paper, efficient numerical methods for the analysis of crack-closure effects on fatigue-crack-growth-rates, in plane stress situations, and for the solution of stress-intensity factors for arbitrary shaped surface flaws in pressure vessels, are presented. For the former problem, an elastic-plastic finite element procedure valid for the case of finite deformation gradients is developed and crack growth is simulated by the translation of near-crack-tip elements with embedded plastic singularities. For the latter problem, an embedded-elastic-singularity hybrid finite element method, which leads to a direct evaluation of K-factors, is employed.

  15. Ares I-X Upper Stage Simulator Residual Stress Analysis

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Brust, Frederick W.; Phillips, Dawn R.; Cheston, Derrick

    2008-01-01

    The structural analyses described in the present report were performed in support of the NASA Engineering and Safety Center (NESC) Critical Initial Flaw Size (CIFS) assessment for the Ares I-X Upper Stage Simulator (USS) common shell segment. An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The Ares system of space launch vehicles is the US National Aeronautics and Space Administration s plan for replacement of the aging space shuttle. The new Ares space launch system is somewhat of a combination of the space shuttle system and the Saturn launch vehicles used prior to the shuttle. Here, a series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on fatigue and fracture life. The results of this effort served as one of the critical load inputs required to perform a CIFS assessment of the same segment.

  16. Nondestructive examination of the Tropical Rainfall Measuring Mission (TRMM) reaction control subsystem (RCS) propellant tanks

    NASA Technical Reports Server (NTRS)

    Free, James M.

    1993-01-01

    This paper assesses the feasibility of using eddy current nondestructive examination to determine flaw sizes in completely assembled hydrazine propellant tanks. The study was performed by the NASA Goddard Space Flight Center for the Tropical Rainfall Measuring Mission (TRMM) project to help determine whether existing propellant tanks could meet the fracture analysis requirements of the current pressure vessel specification, MIL-STD-1522A and, therefore be used on the TRMM spacecraft. After evaluating several nondestructive test methods, eddy current testing was selected as the most promising method for determining flaw sizes on external and internal surfaces of completely assembled tanks. Tests were conducted to confirm the detection capability of the eddy current NDE, procedures were developed to inspect two candidate tanks, and the test support equipment was designed. The non-spherical tank eddy current NDE test program was terminated when the decision was made to procure new tanks for the TRMM propulsion subsystem. The information on the development phase of this test program is presented in this paper as a reference for future investigation on the subject.

  17. Flawed Execution: A Case Study on Operational Contract Support

    DTIC Science & Technology

    2016-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA JOINT APPLIED PROJECT FLAWED EXECUTION: A CASE STUDY ON OPERATIONAL CONTRACT SUPPORT June 2016...applied project 4. TITLE AND SUBTITLE FLAWED EXECUTION: A CASE STUDY ON OPERATIONAL CONTRACT SUPPORT 5. FUNDING NUMBERS 6. AUTHOR(S) Scott F...unlimited FLAWED EXECUTION: A CASE STUDY ON OPERATIONAL CONTRACT SUPPORT Scott F. Taggart, Captain, United States Marine Corps Jacob Ledford

  18. Detection and Characterization of Flaws in Sprayed on Foam Insulation with Pulsed Terahertz Frequency Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Madaras, Eric I.

    2005-01-01

    The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.

  19. Methodological issues of genetic association studies.

    PubMed

    Simundic, Ana-Maria

    2010-12-01

    Genetic association studies explore the association between genetic polymorphisms and a certain trait, disease or predisposition to disease. It has long been acknowledged that many genetic association studies fail to replicate their initial positive findings. This raises concern about the methodological quality of these reports. Case-control genetic association studies often suffer from various methodological flaws in study design and data analysis, and are often reported poorly. Flawed methodology and poor reporting leads to distorted results and incorrect conclusions. Many journals have adopted guidelines for reporting genetic association studies. In this review, some major methodological determinants of genetic association studies will be discussed.

  20. Effect of the Parameters of Gas-Powder Laser Surfacing on the Structural Characteristics of Reconditioned Surface Layer of Corrosion-Resistant Steels

    NASA Astrophysics Data System (ADS)

    Krylova, S. E.; Oplesnin, S. P.; Manakov, N. A.; Yasakov, A. S.; Strizhov, A. O.

    2018-01-01

    Results of the developed commercial process for reconditioning the surface of corrosion-resistant steels by the method of laser surfacing are presented. A comparative analysis of the microstructures of the deposited wear-resistant layer, of the zone of fusion with the matrix material and of the diffusion zone after different variants of surfacing is performed. The hardness of the deposited layer is measured and a nondestructive inspection of the latter for the presence of flaws is performed.

  1. Quantitative flaw characterization with scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.; Roth, D. J.

    1986-01-01

    Surface roughness and diffraction are two factors that have been observed to affect the accuracy of flaw characterization with scanning laser acoustic microscopy. In accuracies can arise when the surface of the test sample is acoustically rough. It is shown that, in this case, Snell's law is no longer valid for determining the direction of sound propagation within the sample. The relationship between the direction of sound propagation within the sample, the apparent flaw depth, and the sample's surface roughness is investigated. Diffraction effects can mask the acoustic images of minute flaws and make it difficult to establish their size, depth, and other characteristics. It is shown that for Fraunhofer diffraction conditions the acoustic image of a subsurface defect corresponds to a two-dimensional Fourier transform. Transforms based on simulated flaws are used to infer the size and shape of the actual flaw.

  2. Evaluation of NDE Round-Robin Exercises Using the NRC Steam Generator Mockup at Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muscara, Joseph; Kupperman, David S.; Bakhtiari, Sasab

    2002-07-01

    This paper discusses round-robin exercises using the NRC steam generator (SG) mock-up at Argonne National Laboratory to assess inspection reliability. The purpose of the round robins was to assess the current reliability of SG tubing inservice inspection, determine the probability of detection (POD) as function of flaw size or severity, and assess the capability for sizing of flaws. For the round robin and subsequent evaluation completed in 2001, eleven teams participated. Bobbin and rotating coil mock-up data collected by qualified industry personnel were evaluated. The mock-up contains hundreds of cracks and simulations of artifacts such as corrosion deposits and tubemore » support plates that make detection and characterization of cracks more difficult in operating steam generators than in most laboratory situations. An expert Task Group from industry, Argonne National Laboratory, and the NRC have reviewed the signals from the laboratory-grown cracks used in the mock-up to ensure that they provide reasonable simulations of those obtained in the field. The mock-up contains 400 tube openings. Each tube contains nine 22.2-mm (7/8-in.) diameter, 30.5-cm (1-ft) long, Alloy 600 test sections. The flaws are located in the tube sheet near the roll transition zone (RTZ), in the tube support plate (TSP), and in the free-span. The flaws are primarily intergranular stress corrosion cracks (axial and circumferential, ID and OD) though intergranular attack (IGA) wear and fatigue cracks are also present, as well as cracks in dents. In addition to the simulated tube sheet and TSP the mock-up has simulated sludge and magnetite deposits. A multiparameter eddy current algorithm, validated for mock-up flaws, provided a detailed isometric plot for every flaw and was used to establish the reference state of defects in the mock-up. The detection results for the 11 teams were used to develop POD curves as a function of maximum depth, voltage and the parameter m p, for the various types of flaws. The POD curves were represented as linear logistic curves, and the curve parameters were determined by the method of Maximum Likelihood. The effect of both statistical uncertainties inherent in sampling from distributions and the uncertainties due to errors in the estimates of maximum depth and m p was investigated. The 95% one-sided confidence limits (OSL), which include errors in maximum depth estimates, are presented along with the POD curves. For the second round robin a reconfigured mock-up is being used to evaluate the effectiveness of eddy current array probes. The primary emphasis is on the X-Probe. Progress with the X-Probe round robin is discussed in this paper. (authors)« less

  3. Raising quality of maintenance and control of metallic structures in large-load technological machines

    NASA Astrophysics Data System (ADS)

    Drygin, M. Yu; Kuryshkin, N. P.

    2018-01-01

    Active growth of coal extraction and underinvestment of coal mining in Russia lead to the fact that technical state of more than 86% of technological machines at opencast coal mines is unacceptable. One of the most significant problems is unacceptable state of supporting metallic structures of excavators and mine dump trucks. The analysis has shown that defects in these metallic structures had been accumulated for a long time. Their removal by the existing method of repair welding was not effective - the flaws reappeared in 2-6 months of technological machines’ service. The authors detected the prime causes that did not allow to make a good repair welding joint. A new technology of repair welding had been tested and endorsed, and this allowed to reduce the number of welded joints’ flaws by 85% without additional raising welders’ qualification. As a result the number of flaws in metallic structures of the equipment had been reduced by 35 % as early as in the first year of using the new technology.

  4. Assessment of item-writing flaws in multiple-choice questions.

    PubMed

    Nedeau-Cayo, Rosemarie; Laughlin, Deborah; Rus, Linda; Hall, John

    2013-01-01

    This study evaluated the quality of multiple-choice questions used in a hospital's e-learning system. Constructing well-written questions is fraught with difficulty, and item-writing flaws are common. Study results revealed that most items contained flaws and were written at the knowledge/comprehension level. Few items had linked objectives, and no association was found between the presence of objectives and flaws. Recommendations include education for writing test questions.

  5. Combining usability evaluations to highlight the chain that leads from usability flaws to usage problems and then negative outcomes.

    PubMed

    Watbled, Ludivine; Marcilly, Romaric; Guerlinger, Sandra; Bastien, J-M Christian; Beuscart-Zéphir, Marie-Catherine; Beuscart, Régis

    2018-02-01

    Poor usability of health technology is thought to diminish work system performance, increase error rates and, potentially, harm patients. The present study (i) used a combination of usability evaluation methods to highlight the chain that leads from usability flaws to usage problems experienced by users and, ultimately, to negative patient outcomes, and (ii) validated this approach by studying two different discharge summary production systems. To comply with quality guidelines, the process of drafting and sending discharge summaries is increasingly being automated. However, the usability of these systems may modify their impact (or the absence thereof) in terms of production times and quality, and must therefore be evaluated. Here, we applied three successive techniques for usability evaluation (heuristic evaluation, user testing and field observation) to two discharge summary production systems (underpinned by different technologies). The systems' main usability flaws led respectively to an increase in the time need to produce a discharge summary and the risk of patient misidentification. Our results are discussed with regard to the possibility of linking the usability flaws, usage problems and the negative outcomes by successively applying three methods for evaluating usability (heuristic evaluation, user testing and in situ observations) throughout the system development life cycle. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Fracture toughness improvements of dental ceramic through use of yttria-stabilized zirconia (YSZ) thin-film coatings.

    PubMed

    Chan, Ryan N; Stoner, Brian R; Thompson, Jeffrey Y; Scattergood, Ronald O; Piascik, Jeffrey R

    2013-08-01

    The aim of this study was to evaluate strengthening mechanisms of yttria-stabilized zirconia (YSZ) thin film coatings as a viable method for improving fracture toughness of all-ceramic dental restorations. Bars (2mm×2mm×15mm, n=12) were cut from porcelain (ProCAD, Ivoclar-Vivadent) blocks and wet-polished through 1200-grit using SiC abrasive. A Vickers indenter was used to induce flaws with controlled size and geometry. Depositions were performed via radio frequency magnetron sputtering (5mT, 25°C, 30:1 Ar/O2 gas ratio) with varying powers of substrate bias. Film and flaw properties were characterized by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Flexural strength was determined by three-point bending. Fracture toughness values were calculated from flaw size and fracture strength. Data show improvements in fracture strength of up to 57% over unmodified specimens. XRD analysis shows that films deposited with higher substrate bias displayed a high %monoclinic volume fraction (19%) compared to non-biased deposited films (87%), and resulted in increased film stresses and modified YSZ microstructures. SEM analysis shows critical flaw sizes of 67±1μm leading to fracture toughness improvements of 55% over unmodified specimens. Data support surface modification of dental ceramics with YSZ thin film coatings to improve fracture toughness. Increase in construct strength was attributed to increase in compressive film stresses and modified YSZ thin film microstructures. It is believed that this surface modification may lead to significant improvements and overall reliability of all-ceramic dental restorations. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Deep flaws in weldments of aluminum and titanium

    NASA Technical Reports Server (NTRS)

    Masters, J. N.; Engstrom, W. L.; Bixler, W. D.

    1974-01-01

    Surface flawed specimens of 2219-T87 and 6Al-4V STA titanium weldments were tested to determine static failure modes, failure strength, and fatigue flaw growth characteristics. Thicknesses selected for this study were purposely set at values where, for most test conditions, abrupt instability of the flaw at fracture would not be expected. Static tests for the aluminum weldments were performed at room, LN2 and LH2 temperatures. Titanium static tests for tests were performed at room and LH2 temperatures. Results of the static tests were used to plot curves relating initial flaw size to leakage- or failure-stresses (i.e. "failure" locus curves). Cyclic tests, for both materials, were then performed at room temperature, using initial flaws only slightly below the previously established failure locus for typical proof stress levels. Cyclic testing was performed on pairs of specimens, one with and one without a simulated proof test cycle. Comparisons were made then to determine the value and effect of proof testing as affected by the various variables of proof and operating stress, flaw shape, material thickness, and alloy.

  8. Uniaxial Tensile Strength and Flaw Characterization of SiC-N

    DTIC Science & Technology

    2014-01-01

    study has been largely limited to tiles less than 40 mm thick, especially versus small caliber threats (1, 3, 4). Research and production of ceramic... production of very large ceramic components. One issue that may occur in the production of large ceramic components is uneven powder packing during the...flaw is important because flaws originate from different stages during the production process. Flaws associated with the processing of the material

  9. The HMDS Coating Flaw Removal Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monticelli, M V; Nostrand, M C; Mehta, N

    2008-10-24

    In many high energy laser systems, optics with HMDS sol gel antireflective coatings are placed in close proximity to each other making them particularly susceptible to certain types of strong optical interactions. During the coating process, halo shaped coating flaws develop around surface digs and particles. Depending on the shape and size of the flaw, the extent of laser light intensity modulation and consequent probability of damaging downstream optics may increase significantly. To prevent these defects from causing damage, a coating flaw removal tool was developed that deploys a spot of decane with a syringe and dissolves away the coatingmore » flaw. The residual liquid is evacuated leaving an uncoated circular spot approximately 1mm in diameter. The resulting uncoated region causes little light intensity modulation and thus has a low probability of causing damage in optics downstream from the mitigated flaw site.« less

  10. Acoustic emission testing of 12-nickel maraging steel pressure vessels

    NASA Technical Reports Server (NTRS)

    Dunegan, H. L.

    1973-01-01

    Acoustic emission data were obtained from three point bend fracture toughness specimens of 12-nickel maraging steel, and two pressure vessels of the same material. One of the pressure vessels contained a prefabricated flaw which was extended and sharpened by fatigue cycling. It is shown that the flawed vessel had similar characteristics to the fracture specimens, thereby allowing estimates to be made of its nearness to failure during a proof test. Both the flawed and unflawed pressure vessel survived the proof pressure and 5 cycles to the working pressure, but it was apparent from the acoustic emission response during the proof cycle and the 5 cycles to the working pressure that the flawed vessel was very near failure. The flawed vessel did not survive a second cycle to the proof pressure before failure due to flaw extension through the wall (causing a leak).

  11. Stress intensity factors for long, deep surface flaws in plates under extensional fields

    NASA Technical Reports Server (NTRS)

    Harms, A. E.; Smith, C. W.

    1973-01-01

    Using a singular solution for a part circular crack, a Taylor Series Correction Method (TSCM) was verified for extracting stress intensity factors from photoelastic data. Photoelastic experiments were then conducted on plates with part circular and flat bottomed cracks for flaw depth to thickness ratios of 0.25, 0.50 and 0.75 and for equivalent flaw depth to equivalent ellipse length values ranging from 0.066 to 0.319. Experimental results agreed well with the Smith theory but indicated that the use of the ''equivalent'' semi-elliptical flaw results was not valid for a/2c less than 0.20. Best overall agreement for the moderate (a/t approximately 0.5) to deep flaws (a/t approximatelly 0.75) and a/2c greater than 0.15 was found with a semi-empirical theory, when compared on the basis of equivalent flaw depth and area.

  12. Ceramic femoral component fracture in total knee arthroplasty: an analysis using fractography, fourier-transform infrared microscopy, contact radiography and histology.

    PubMed

    Krueger, Alexander P; Singh, Gurpal; Beil, Frank Timo; Feuerstein, Bernd; Ruether, Wolfgang; Lohmann, Christoph H

    2014-05-01

    Ceramic components in total knee arthroplasty (TKA) are evolving. We analyze the first case of BIOLOX delta ceramic femoral component fracture. A longitudinal midline fracture in the patellar groove was present, with an intact cement mantle and no bony defects. Fractographic analysis with laser scanning microscopy and white light interferometry showed no evidence of arrest lines, hackles, wake hackles, material flaws, fatigue or crack propagation. Analysis of periprosthetic tissues with Fourier-transform infrared (FT-IR) microscopy, contact radiography, histology, and subsequent digestion and high-speed centrifugation did not show ceramic debris. A macrophage-dominated response was present around polyethylene debris. We conclude that ceramic femoral component failure in this case was related to a traumatic event. Further research is needed to determine the suitability of ceramic components in TKA. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Environmental crack-growth behavior of high strength pressure vessel alloys

    NASA Technical Reports Server (NTRS)

    Forman, R. G.

    1975-01-01

    Results of sustained-load environmental crack growth threshold tests performed on six spacecraft pressure vessel alloys are presented. The alloys were Inconel 718, 6Al-4V titanium, A-286 steel, AM-350 stainless steel, cryoformed AISI 301 stainless steel; and cryoformed AISI 304L steel. The test environments for the program were air, pressurized gases of hydrogen, oxygen, nitrogen, and carbon dioxide, and liquid environments of distilled water, sea water, nitrogen tetroxide, hydrazine, aerozine 50, monomethyl hydrazine, and hydrogen peroxide. Surface flaw type specimens were used with flaws located in both base metal and weld metal.

  14. On the Lienard-Wiechert potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, C.K.

    1988-09-01

    Very recently, questions have started to surface concerning the well-known Lienard-Wiechert potentials describing relativistically moving point sources in classical electrodynamics. The existence of questions prompts a review of the original derivations by Lienard and Wiechert. These were done at the turn of the present century, and so predate the development of relevant modern techniques from special relativity theory and generalized function theory. Only purely geometric reasoning was used. That reasoning is reviewed here, and a previously unrecognized flaw is noted. When this flaw is remedied, the potentials are slightly altered and become consistent with other new results reported elsewhere.

  15. Effect of thermal profile on cyclic flaw growth in aluminum

    NASA Technical Reports Server (NTRS)

    Engstrom, W. L.

    1975-01-01

    Surface flawed and single edge notch tension specimens of 2219-T851 and -T87 aluminum were tested to determine static fracture characteristics and base line (constant amplitude, constant temperature) cyclic flaw growth behavior. Subsequent testing was then conducted in which flawed specimens were subjected to a thermal profile in which the applied stress was varied simultaneously with the temperature. The profile used represents a simplified space shuttle orbiter load/temperature flight cycle. Test temperatures included the range from 144K (-200 F) up to 450K (350 F). The measured flaw growth rates obtained from the thermal profile tests were then compared with rates predicted by assuming linear cumulative damage of base line rates.

  16. Improved consolidation of silicon carbide

    NASA Technical Reports Server (NTRS)

    Freedman, M. R.; Millard, M. L.

    1986-01-01

    Alpha silicon carbide powder was consolidated by both dry and wet methods. Dry pressing in a double acting steel die yielded sintered test bars with an average flexural strength of 235.6 MPa with a critical flaw size of approximately 100 micro m. An aqueous slurry pressing technique produced sintered test bars with an average flexural strength of 440.8 MPa with a critical flaw size of approximately 25 micro m. Image analysis revealed a reduction in both pore area and pore size distribution in the slurry pressed sintered test bars. The improvements in the slurry pressed material properties are discussed in terms of reduced agglomeration and improved particle packing during consolidation.

  17. Slow crack growth in spinel in water

    NASA Technical Reports Server (NTRS)

    Schwantes, S.; Elber, W.

    1983-01-01

    Magnesium aluminate spinel was tested in a water environment at room temperature to establish its slow crack-growth behavior. Ring specimens with artificial flaws on the outside surface were loaded hydraulically on the inside surface. The time to failure was measured. Various precracking techniques were evaluated and multiple precracks were used to minimize the scatter in the static fatigue tests. Statistical analysis techniques were developed to determine the strength and crack velocities for a single flaw. Slow crack-growth rupture was observed at stress intensities as low as 70 percent of K sub c. A strengthening effect was observed in specimens that had survived long-time static fatigue tests.

  18. A CAD Approach to Integrating NDE With Finite Element

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Downey, James; Ghosn, Louis J.; Baaklini, George Y.

    2004-01-01

    Nondestructive evaluation (NDE) is one of several technologies applied at NASA Glenn Research Center to determine atypical deformities, cracks, and other anomalies experienced by structural components. NDE consists of applying high-quality imaging techniques (such as x-ray imaging and computed tomography (CT)) to discover hidden manufactured flaws in a structure. Efforts are in progress to integrate NDE with the finite element (FE) computational method to perform detailed structural analysis of a given component. This report presents the core outlines for an in-house technical procedure that incorporates this combined NDE-FE interrelation. An example is presented to demonstrate the applicability of this analytical procedure. FE analysis of a test specimen is performed, and the resulting von Mises stresses and the stress concentrations near the anomalies are observed, which indicates the fidelity of the procedure. Additional information elaborating on the steps needed to perform such an analysis is clearly presented in the form of mini step-by-step guidelines.

  19. Multiplexed HTS rf SQUID magnetometer array for eddy current testing of aircraft rivet joints

    NASA Astrophysics Data System (ADS)

    Gärtner, S.; Krause, H.-J.; Wolters, N.; Lomparski, D.; Wolf, W.; Schubert, J.; Kreutzbruck, M. v.; Allweins, K.

    2002-05-01

    Using three rf SQUID magnetometers, a multiplexed SQUID array was implemented. The SQUIDs are positioned in line with 7 mm spacing and operated using one feedback electronics with sequential read out demodulation at different radio frequencies (rf). The cross-talk between SQUID channels was determined to be negligible. To show the performance of the SQUID array, eddy current (EC) measurements of aluminum aircraft samples in conjunction with a differential (double-D) EC excitation and lock-in readout were carried out. With computer-controlled continuous switching of the SQUIDs during the scan, three EC signal traces of the sample are obtained simultaneously. We performed measurements with an EC excitation frequency of 135 Hz to localize an artificial crack (sawcut flaw) of 20 mm length in an aluminum sheet with 0.6 mm thickness. The flaw was still detected when covered with aluminum of up to 10 mm thickness. In addition, measurements with varying angles between scanning direction and flaw orientation are presented.

  20. Automated flaw detection scheme for cast austenitic stainless steel weld specimens using Hilbert-Huang transform of ultrasonic phased array data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita

    2012-05-17

    The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major stepsmore » of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI.« less

  1. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crutzen, S.; Koble, T.D.; Lemaitre, P.

    Applications of the Leak Before Break (LBB) concept involve the knowledge of flaw presence and characteristics. In Service Inspection is given the responsibility of detecting flaws of a determined importance to locate them precisely and to classify them in broad families. Often LBB concepts application imply the knowledge of flaw characteristics such as through wall depth; length at the inner diameter (ID) or outer diameter (OD) surface; orientation or tilt and skew angles; branching; surface roughness; opening or width; crack tip aspect. Besides detection and characterization, LBB evaluations consider important the fact that a crack could be in the weldmore » material or in the base material or in the heat affected zone. Cracks in tee junctions, in homogenous simple welds and in elbows are not considered in the same way. Essential variables of a flaw or defect are illustrated, and examples of flaws found in primary piping as reported by plant operators or service vendors are given. If such flaw variables are important in the applications of LBB concepts, essential is then the knowledge of the performance achievable by NDE techniques, during an ISI, in detecting such flaws, in locating them and in correctly evaluating their characteristics.« less

  3. Full waveform inversion for ultrasonic flaw identification

    NASA Astrophysics Data System (ADS)

    Seidl, Robert; Rank, Ernst

    2017-02-01

    Ultrasonic Nondestructive Testing is concerned with detecting flaws inside components without causing physical damage. It is possible to detect flaws using ultrasound measurements but usually no additional details about the flaw like position, dimension or orientation are available. The information about these details is hidden in the recorded experimental signals. The idea of full waveform inversion is to adapt the parameters of an initial simulation model of the undamaged specimen by minimizing the discrepancy between these simulated signals and experimentally measured signals of the flawed specimen. Flaws in the structure are characterized by a change or deterioration in the material properties. Commonly, full waveform inversion is mostly applied in seismology on a larger scale to infer mechanical properties of the earth. We propose to use acoustic full waveform inversion for structural parameters to visualize the interior of the component. The method is adapted to US NDT by combining multiple similar experiments on the test component as the typical small amount of sensors is not sufficient for a successful imaging. It is shown that the combination of simulations and multiple experiments can be used to detect flaws and their position, dimension and orientation in emulated simulation cases.

  4. Integrated Design and Analysis Tools for Reduced Weight, Affordable Fiber Steered Composites

    DTIC Science & Technology

    2004-09-15

    110 3.3.5 FEA Package: MSC/PATRAN and MSC/ NASTRAN ...3.10 APPENDIX D: FIBER STEERING CONCEPTUAL DESIGN OF PRELIMINARY STUDIES USING MSC/ NASTRAN SOL 200...and Boundary Conditions ......................................................... 366 Figure 5.3.10 Nastran Analysis Results for Off-Axis Flaws

  5. An Analysis of Methods Used to Examine Gender Differences in Computer-Related Behavior.

    ERIC Educational Resources Information Center

    Kay, Robin

    1992-01-01

    Review of research investigating gender differences in computer-related behavior examines statistical and methodological flaws. Issues addressed include sample selection, sample size, scale development, scale quality, the use of univariate and multivariate analyses, regressional analysis, construct definition, construct testing, and the…

  6. The Secret of Future Defeat: The Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations

    DTIC Science & Technology

    2007-05-24

    The Secret of Future Defeat: the Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations A...4. TITLE AND SUBTITLE The Secret of Future Defeat: the Evolution of US Joint and 5a. CONTRACT NUMBER Army Doctrine 1993-2006 and the Flawed... The Secret of Future Defeat: the Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations Approved by

  7. Flaw Growth of 6Al-4V Titanium in a Freon TF Environment

    NASA Technical Reports Server (NTRS)

    Tiffany, C. F.; Masters, J. N.; Bixler, W. D.

    1969-01-01

    The plane strain threshold stress intensity and sustained stress flaw growth rates were experimentally determined for 6AI-4V S.T.A. titanium forging and weldments in environments of Freon TF at room temperature. Sustained load tests of surface flawed specimens were conducted with the experimental approach based on linear elastic fracture mechanics. It was concluded that sustained stress flaw growth rates, in conjunction with threshold stress intensities, can be used in assessing the service life of pressure vessels.

  8. Fatigue flaw growth behavior in stiffened and unstiffened panels loaded in biaxial tension

    NASA Technical Reports Server (NTRS)

    Beck, E. J.

    1973-01-01

    The effect was investigated of biaxial loading on the flaw growth rate of 2219-T87 aluminum alloy that would be typical of Space Shuttle cryogenic tankage design. The stress distribution and stress concentration factors for several integrally stiffened panels under various loading conditions were obtained. The flaw growth behavior of both stiffened and unstiffened panels under biaxial loading conditions was determined. The effect of a complex stress state was studied by introducing flaws in fillet areas of biaxially loaded stiffened panels.

  9. Stress Intensity Factor Plasticity Correction for Flaws in Stress Concentration Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, E.; Wilson, W.K.

    2000-02-01

    Plasticity corrections to elastically computed stress intensity factors are often included in brittle fracture evaluation procedures. These corrections are based on the existence of a plastic zone in the vicinity of the crack tip. Such a plastic zone correction is included in the flaw evaluation procedure of Appendix A to Section XI of the ASME Boiler and Pressure Vessel Code. Plasticity effects from the results of elastic and elastic-plastic explicit flaw finite element analyses are examined for various size cracks emanating from the root of a notch in a panel and for cracks located at fillet fadii. The results ofmore » these caluclations provide conditions under which the crack-tip plastic zone correction based on the Irwin plastic zone size overestimates the plasticity effect for crack-like flaws embedded in stress concentration regions in which the elastically computed stress exceeds the yield strength of the material. A failure assessment diagram (FAD) curve is employed to graphically c haracterize the effect of plasticity on the crack driving force. The Option 1 FAD curve of the Level 3 advanced fracture assessment procedure of British Standard PD 6493:1991, adjusted for stress concentration effects by a term that is a function of the applied load and the ratio of the local radius of curvature at the flaw location to the flaw depth, provides a satisfactory bound to all the FAD curves derived from the explicit flaw finite element calculations. The adjusted FAD curve is a less restrictive plasticity correction than the plastic zone correction of Section XI for flaws embedded in plastic zones at geometric stress concentrators. This enables unnecessary conservatism to be removed from flaw evaluation procedures that utilize plasticity corrections.« less

  10. Intelligent feature selection techniques for pattern classification of Lamb wave signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinders, Mark K.; Miller, Corey A.

    2014-02-18

    Lamb wave interaction with flaws is a complex, three-dimensional phenomenon, which often frustrates signal interpretation schemes based on mode arrival time shifts predicted by dispersion curves. As the flaw severity increases, scattering and mode conversion effects will often dominate the time-domain signals, obscuring available information about flaws because multiple modes may arrive on top of each other. Even for idealized flaw geometries the scattering and mode conversion behavior of Lamb waves is very complex. Here, multi-mode Lamb waves in a metal plate are propagated across a rectangular flat-bottom hole in a sequence of pitch-catch measurements corresponding to the double crossholemore » tomography geometry. The flaw is sequentially deepened, with the Lamb wave measurements repeated at each flaw depth. Lamb wave tomography reconstructions are used to identify which waveforms have interacted with the flaw and thereby carry information about its depth. Multiple features are extracted from each of the Lamb wave signals using wavelets, which are then fed to statistical pattern classification algorithms that identify flaw severity. In order to achieve the highest classification accuracy, an optimal feature space is required but it’s never known a priori which features are going to be best. For structural health monitoring we make use of the fact that physical flaws, such as corrosion, will only increase over time. This allows us to identify feature vectors which are topologically well-behaved by requiring that sequential classes “line up” in feature vector space. An intelligent feature selection routine is illustrated that identifies favorable class distributions in multi-dimensional feature spaces using computational homology theory. Betti numbers and formal classification accuracies are calculated for each feature space subset to establish a correlation between the topology of the class distribution and the corresponding classification accuracy.« less

  11. Combining FMEA with DEMATEL models to solve production process problems

    PubMed Central

    Tsai, Sang-Bing; Zhou, Jie; Gao, Yang; Wang, Jiangtao; Li, Guodong; Zheng, Yuxiang; Ren, Peng; Xu, Wei

    2017-01-01

    Failure mode and effects analysis (FMEA) is an analysis tool for identifying and preventing flaws or defects in products during the design and process planning stage, preventing the repeated occurrence of problems, reducing the effects of these problems, enhancing product quality and reliability, saving costs, and improving competitiveness. However, FMEA can only analyze one influence factor according to its priority, rendering this method ineffective for systems containing multiple FMs whose effects are simultaneous or interact with one another. Accordingly, when FMEA fails to identify the influence factors and the factors being influenced, the most crucial problems may be placed in lower priority or remain unresolved. Decision-Making Trial and Evaluation Laboratory (DEMATEL) facilitates the determination of cause and effect factors; by identifying the causal factors that should be prioritized, prompt and effective solutions to core problems can be derived, thereby enhancing performance. Using the photovoltaic cell manufacturing industry in China as the research target, the present study combined FMEA with DEMATEL to amend the flaws of FMEA and enhance its effectiveness. First, FMEA was used to identify items requiring improvement. Then, DEMATEL was employed to examine the interactive effects and causal relationships of these items. Finally, the solutions to the problems were prioritized. The proposed method effectively combined the advantages of FMEA and DEMATEL to facilitate the identification of core problems and prioritization of solutions in the Chinese photovoltaic cell industry. PMID:28837663

  12. Combining FMEA with DEMATEL models to solve production process problems.

    PubMed

    Tsai, Sang-Bing; Zhou, Jie; Gao, Yang; Wang, Jiangtao; Li, Guodong; Zheng, Yuxiang; Ren, Peng; Xu, Wei

    2017-01-01

    Failure mode and effects analysis (FMEA) is an analysis tool for identifying and preventing flaws or defects in products during the design and process planning stage, preventing the repeated occurrence of problems, reducing the effects of these problems, enhancing product quality and reliability, saving costs, and improving competitiveness. However, FMEA can only analyze one influence factor according to its priority, rendering this method ineffective for systems containing multiple FMs whose effects are simultaneous or interact with one another. Accordingly, when FMEA fails to identify the influence factors and the factors being influenced, the most crucial problems may be placed in lower priority or remain unresolved. Decision-Making Trial and Evaluation Laboratory (DEMATEL) facilitates the determination of cause and effect factors; by identifying the causal factors that should be prioritized, prompt and effective solutions to core problems can be derived, thereby enhancing performance. Using the photovoltaic cell manufacturing industry in China as the research target, the present study combined FMEA with DEMATEL to amend the flaws of FMEA and enhance its effectiveness. First, FMEA was used to identify items requiring improvement. Then, DEMATEL was employed to examine the interactive effects and causal relationships of these items. Finally, the solutions to the problems were prioritized. The proposed method effectively combined the advantages of FMEA and DEMATEL to facilitate the identification of core problems and prioritization of solutions in the Chinese photovoltaic cell industry.

  13. Fracture characteristics of structural aerospace alloys containing deep surface flaws. [aluminum-titanium alloys

    NASA Technical Reports Server (NTRS)

    Masters, J. N.; Bixler, W. D.; Finger, R. W.

    1973-01-01

    Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions.

  14. Quantification technology study on flaws in steam-filled pipelines based on image processing

    NASA Astrophysics Data System (ADS)

    Sun, Lina; Yuan, Peixin

    2009-07-01

    Starting from exploiting the applied detection system of gas transmission pipeline, a set of X-ray image processing methods and pipeline flaw quantificational evaluation methods are proposed. Defective and non-defective strings and rows in gray image were extracted and oscillogram was obtained. We can distinguish defects in contrast with two gray images division. According to the gray value of defects with different thicknesses, the gray level depth curve is founded. Through exponential and polynomial fitting way to obtain the attenuation mathematical model which the beam penetrates pipeline, thus attain flaw deep dimension. This paper tests on the PPR pipe in the production of simulated holes flaw and cracks flaw, 135KV used the X-ray source on the testing. Test results show that X-ray image processing method, which meet the needs of high efficient flaw detection and provide quality safeguard for thick oil recovery, can be used successfully in detecting corrosion of insulated pipe.

  15. Quantification technology study on flaws in steam-filled pipelines based on image processing

    NASA Astrophysics Data System (ADS)

    Yuan, Pei-xin; Cong, Jia-hui; Chen, Bo

    2008-03-01

    Starting from exploiting the applied detection system of gas transmission pipeline, a set of X-ray image processing methods and pipeline flaw quantificational evaluation methods are proposed. Defective and non-defective strings and rows in gray image were extracted and oscillogram was obtained. We can distinguish defects in contrast with two gray images division. According to the gray value of defects with different thicknesses, the gray level depth curve is founded. Through exponential and polynomial fitting way to obtain the attenuation mathematical model which the beam penetrates pipeline, thus attain flaw deep dimension. This paper tests on the PPR pipe in the production of simulated holes flaw and cracks flaw. The X-ray source tube voltage was selected as 130kv and valve current was 1.5mA.Test results show that X-ray image processing methods, which meet the needs of high efficient flaw detection and provide quality safeguard for thick oil recovery, can be used successfully in detecting corrosion of insulated pipe.

  16. Effects of proof loads and combined mode loadings on fracture and flaw growth characteristics of aerospace alloys

    NASA Technical Reports Server (NTRS)

    Shah, R. C.

    1974-01-01

    This experimental program was undertaken to determine the effects of (1) combined tensile and bending loadings, (2) combined tensile and shear loadings, and (3) proof overloads on fracture and flaw growth characteristics of aerospace alloys. Tests were performed on four alloys: 2219-T87 aluminum, 5Al-2.5Sn (ELl) titanium, 6Al-4V beta STA titanium and high strength 4340 steel. Tests were conducted in room air, gaseous nitrogen at -200F (144K), liquid nitrogen and liquid hydrogen. Flat center cracked and surface flawed specimens, cracked tube specimens, circumferentially notched round bar and surface flawed cylindrical specimens were tested. The three-dimensional photoelastic technique of stress freezing and slicing was used to determine stress intensity factors for surface flawed cylindrical specimens subjected to tension or torsion. Results showed that proof load/temperature histories used in the tests have a small beneficial effect or no effect on subsequent fracture strength and flaw growth rates.

  17. Effects of a finite aperture on the Inverse Born Approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogan, V.G.; Rose, J.H.

    1983-01-01

    One of the most important effects of complex part geometry is that the available entrance and exit angles for ultrasound are limited. We will present a study of the Inverse Born approximation in which we have data for incident (and exit) directions confined to a conical aperture. Modeling the direct problem by the Born Approximation, we obtained analytical results for (1) a weak spherical inclusion, and (2) a penny shaped crack (modeled by an oblate spheroid). General results are: (a) the value of the characteristic function ..gamma.. is constant in the interior of the flaw, but reduced in value; (b)more » the discontinuity at the boundary of the flaw occurs over the lighted portion of the flaw; (c) this discontinuity is contrasted by a region where ..gamma.. is negative; and (d) new non-physical discontinuities and non-analyticities appear in the reconstructed characteristic function. These general features also appear in numerical calculations which use as input strong scattering data from a spherical void and a flat penny shaped crack in Titanium. The numerical results can be straightforwardly interpreted in terms of the analytical calculation mentioned above, indicating that they will be useful in the study of realistic flaws. We conclude by discussing the stabilization of the aperture limited inversion problem and the removal of non-physical features in the reconstruction.« less

  18. Effect of Assumed Damage and Location on the Delamination Onset Predictions for Skin-Stiffener Debonding

    NASA Technical Reports Server (NTRS)

    Paris, Isabelle L.; Krueger, Ronald; OBrien, T. Kevin

    2004-01-01

    The difference in delamination onset predictions based on the type and location of the assumed initial damage are compared in a specimen consisting of a tapered flange laminate bonded to a skin laminate. From previous experimental work, the damage was identified to consist of a matrix crack in the top skin layer followed by a delamination between the top and second skin layer (+45 deg./-45 deg. interface). Two-dimensional finite elements analyses were performed for three different assumed flaws and the results show a considerable reduction in critical load if an initial delamination is assumed to be present, both under tension and bending loads. For a crack length corresponding to the peak in the strain energy release rate, the delamination onset load for an assumed initial flaw in the bondline is slightly higher than the critical load for delamination onset from an assumed skin matrix crack, both under tension and bending loads. As a result, assuming an initial flaw in the bondline is simpler while providing a critical load relatively close to the real case. For the configuration studied, a small delamination might form at a lower tension load than the critical load calculated for a 12.7 mm (0.5") delamination, but it would grow in a stable manner. For the bending case, assuming an initial flaw of 12.7 mm (0.5") is conservative, the crack would grow unstably.

  19. Troubleshooting 101: An Instrumental Analysis Experiment

    ERIC Educational Resources Information Center

    Vitt, Joseph E.

    2008-01-01

    An experiment is described where students troubleshoot a published procedure for the analysis of ethanol. UV-vis spectroscopy is used to measure the change in absorbance upon reaction of dichromate with ethanol. The experiment requires the students to critically evaluate their experimental results to correct a fundamental flaw in the original…

  20. Respondent Techniques for Reduction of Emotions Limiting School Adjustment: A Quantitative Review and Methodological Critique.

    ERIC Educational Resources Information Center

    Misra, Anjali; Schloss, Patrick J.

    1989-01-01

    The critical analysis of 23 studies using respondent techniques for the reduction of excessive emotional reactions in school children focuses on research design, dependent variables, independent variables, component analysis, and demonstrations of generalization and maintenance. Results indicate widespread methodological flaws that limit the…

  1. Eddy current inspection of graphite fiber components

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Bryson, C. C.

    1990-01-01

    The recognition of defects in materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques. The unique capabilities of E-probes and horseshoe probes for inspecting probes for inspecting graphite fiber materials were evaluated and appear to hold great promise once the technology development matures. The initial results are described of modeling eddy current interactions with certain flaws in graphite fiber samples.

  2. Crack-growth behavior in thick welded plates of Inconel 718 at room and cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Forman, R. G.

    1974-01-01

    Results of mechanical-properties and axial-load fatigue and fracture tests performed on thick welded plates of Inconel 718 superalloy are presented. The test objectives were to determine the tensile strength properties and the crack-growth behavior in electron-beam, plasma-arc, and gas tungsten are welds for plates 1.90 cm (0.75 in) thick. Base-metal specimens were also tested to determine the flaw-growth behavior. The tests were performed in room-temperature-air and liquid nitrogen environments. The experimental crack-growth-rate data are correlated with theoretical crack-growth-rate predictions for semielliptical surface flaws.

  3. Ductile fracture of cylindrical vessels containing a large flaw

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Irwin, G. R.; Ratwani, M.

    1976-01-01

    The fracture process in pressurized cylindrical vessels containing a relatively large flaw is considered. The flaw is assumed to be a part-through or through meridional crack. The flaw geometry, the yield behavior of the material, and the internal pressure are assumed to be such that in the neighborhood of the flaw the cylinder wall undergoes large-scale plastic deformations. Thus, the problem falls outside the range of applicability of conventional brittle fracture theories. To study the problem, plasticity considerations are introduced into the shell theory through the assumptions of fully-yielded net ligaments using a plastic strip model. Then a ductile fracture criterion is developed which is based on the concept of net ligament plastic instability. A limited verification is attempted by comparing the theoretical predictions with some existing experimental results.

  4. ULTRASONIC FLAW DETECTION METHOD AND MEANS

    DOEpatents

    Worlton, D.C.

    1961-08-15

    A method of detecting subsurface flaws in an object using ultrasonic waves is described. An ultnasonic wave of predetermined velocity and frequency is transmitted to engage the surface of the object at a predetermined angle of inci dence thereto. The incident angle of the wave to the surface is determined with respect to phase velocity, incident wave velocity, incident wave frequency, and the estimated depth of the flaw so that Lamb waves of a particular type and mode are induced only in the portion of the object between the flaw and the surface. These Lamb waves are then detected as they leave the object at an angle of exit equal to the angle of incidence. No waves wlll be generated in the object and hence received if no flaw exists beneath the surface. (AEC)

  5. Identify Structural Flaw Location and Type with an Inverse Algorithm of Resonance Inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wei; Lai, Canhai; Sun, Xin

    To evaluate the fitness-for-service of a structural component and to quantify its remaining useful life, aging and service-induced structural flaws must be quantitatively determined in service or during scheduled maintenance shutdowns. Resonance inspection (RI), a non-destructive evaluation (NDE) technique, distinguishes the anomalous parts from the good parts based on changes in the natural frequency spectra. Known for its numerous advantages, i.e., low inspection cost, high testing speed, and broad applicability to complex structures, RI has been widely used in the automobile industry for quality inspection. However, compared to other contemporary direct visualization-based NDE methods, a more widespread application of RImore » faces a fundamental challenge because such technology is unable to quantify the flaw details, e.g. location, dimensions, and types. In this study, the applicability of a maximum correlation-based inverse RI algorithm developed by the authors is further studied for various flaw cases. It is demonstrated that a variety of common structural flaws, i.e. stiffness degradation, voids, and cracks, can be accurately retrieved by this algorithm even when multiple different types of flaws coexist. The quantitative relations between the damage identification results and the flaw characteristics are also developed to assist the evaluation of the actual state of health of the engineering structures.« less

  6. Progress in Developing Transfer Functions for Surface Scanning Eddy Current Inspections

    NASA Astrophysics Data System (ADS)

    Shearer, J.; Heebl, J.; Brausch, J.; Lindgren, E.

    2009-03-01

    As US Air Force (USAF) aircraft continue to age, additional inspections are required for structural components. The validation of new inspections typically requires a capability demonstration of the method using representative structure with representative damage. To minimize the time and cost required to prepare such samples, Electric Discharge machined (EDM) notches are commonly used to represent fatigue cracks in validation studies. However, the sensitivity to damage typically changes as a function of damage type. This requires a mathematical relationship to be developed between the responses from the two different flaw types to enable the use of EDM notched samples to validate new inspections. This paper reviews progress to develop transfer functions for surface scanning eddy current inspections of aluminum and titanium alloys found in structural aircraft components. Multiple samples with well characterized grown fatigue cracks and master gages with EDM notches, both with a range of flaw sizes, were used to collect flaw signals with USAF field inspection equipment. Analysis of this empirical data was used to develop a transfer function between the response from the EDM notches and grown fatigue cracks.

  7. An improved and effective secure password-based authentication and key agreement scheme using smart cards for the telecare medicine information system.

    PubMed

    Das, Ashok Kumar; Bruhadeshwar, Bezawada

    2013-10-01

    Recently Lee and Liu proposed an efficient password based authentication and key agreement scheme using smart card for the telecare medicine information system [J. Med. Syst. (2013) 37:9933]. In this paper, we show that though their scheme is efficient, their scheme still has two security weaknesses such as (1) it has design flaws in authentication phase and (2) it has design flaws in password change phase. In order to withstand these flaws found in Lee-Liu's scheme, we propose an improvement of their scheme. Our improved scheme keeps also the original merits of Lee-Liu's scheme. We show that our scheme is efficient as compared to Lee-Liu's scheme. Further, through the security analysis, we show that our scheme is secure against possible known attacks. In addition, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to show that our scheme is secure against passive and active attacks.

  8. Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Special Session C06 on: “Physical, biological and biogeochemical processes associated with young thin ice types”

    NASA Astrophysics Data System (ADS)

    Prinsenberg, S. J.

    2009-12-01

    Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Simon Prinsenberg1 and Yves Graton2 1Bedford Inst. of Oceanography, Fisheries and Oceans Canada P.O. Box1006, Dartmouth, Nova Scotia, B2Y 4A2, Canada prinsenbergs@mar.dfo-mpo.gc.ca 2Inst. National de la Recherche Scientifique-Eau, INRS-ETE University of Quebec at Quebec City, Quebec yvesgratton@eteinrs.ca During the winter of 2008, the flaw lead south of Banks Island repeatedly opened and closed representing an elongated region where periodically the large ice growth stimulates the densification of the surface layer due to salt rejection and instigates a local circulation pattern that will affect the biological processes of the region. Helicopter-borne sensors were available to monitor the aftermath of one of the rapid closing of the flaw lead into extensive elongated rubble field using a Canadian Ice breaker, CCGS Amundsen, as a logistic base. After the wind reversed a new open flaw lead 20km wide restarting a new flaw lead formation cycle. Ice thickness and surface roughness data were collected from the rubble field and adjacent open flaw lead with an Electromagnetic-Laser system. The strong wind event of April 4-5 2009 generated a large linear 1.5km wide ice rubble field up to 8-10m thick when the 60cm thick, 18km wide flaw lead was crunched into land-fast by the 1.5m thick offshore pack ice. It is expected that during rapid ice growth in a flaw lead, salt rejection increase the density of the surface water layer producing a surface depression (Low) and cyclonic circulation. In contrast at depth, the extra surface dense water produces a high in the horizontal pressure field and anti-cyclonic circulation which remains after the rapid ice growth within the flaw lead stops. One of such remnants may have been observed during the CFL-IPY winter survey.

  9. Responsibility and punishment: whose mind? A response.

    PubMed Central

    Goodenough, Oliver R

    2004-01-01

    Cognitive neuroscience is challenging the Anglo-American approach to criminal responsibility. Critiques, in this issue and elsewhere, are pointing out the deeply flawed psychological assumptions underlying the legal tests for mental incapacity. The critiques themselves, however, may be flawed in looking, as the tests do, at the psychology of the offender. Introducing the strategic structure of punishment into the analysis leads us to consider the psychology of the punisher as the critical locus of cognition informing the responsibility rules. Such an approach both helps to make sense of the counterfactual assumptions about offender psychology embodied in the law and provides a possible explanation for the human conviction of the existence of free will, at least in others. PMID:15590621

  10. ADM guidance-Ceramics: guidance to the use of fractography in failure analysis of brittle materials.

    PubMed

    Scherrer, Susanne S; Lohbauer, Ulrich; Della Bona, Alvaro; Vichi, Alessandro; Tholey, Michael J; Kelly, J Robert; van Noort, Richard; Cesar, Paulo Francisco

    2017-06-01

    To provide background information and guidance as to how to use fractography accurately, a powerful tool for failure analysis of dental ceramic structures. An extended palette of qualitative and quantitative fractography is provided, both for in vivo and in vitro fracture surface analyses. As visual support, this guidance document will provide micrographs of typical critical ceramic processing flaws, differentiating between pre- versus post sintering cracks, grinding damage related failures and occlusal contact wear origins and of failures due to surface degradation. The documentation emphasizes good labeling of crack features, precise indication of the direction of crack propagation (dcp), identification of the fracture origin, the use of fractographic photomontage of critical flaws or flaw labeling on strength data graphics. A compilation of recommendations for specific applications of fractography in Dentistry is also provided. This guidance document will contribute to a more accurate use of fractography and help researchers to better identify, describe and understand the causes of failure, for both clinical and laboratory-scale situations. If adequately performed at a large scale, fractography will assist in optimizing the methods of processing and designing of restorative materials and components. Clinical failures may be better understood and consequently reduced by sending out the correct message regarding the fracture origin in clinical trials. Copyright © 2017 The Academy of Dental Materials. All rights reserved.

  11. New ORNL Method Could Unleash Solar Power Potential

    ScienceCinema

    Simpson, Mary Jane

    2018-01-16

    Measurement and data analysis techniques developed at the Department of Energy’s Oak Ridge National Laboratory could provide new insight into performance-robbing flaws in crystalline structures, ultimately improving the performance of solar cells.

  12. Fundamental analysis of the failure of polymer-based fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Kanninen, M. F.; Rybicki, E. F.; Griffith, W. I.; Broek, D.

    1975-01-01

    A mathematical model predicting the strength of unidirectional fiber reinforced composites containing known flaws and with linear elastic-brittle material behavior was developed. The approach was to imbed a local heterogeneous region surrounding the crack tip into an anisotropic elastic continuum. This (1) permits an explicit analysis of the micromechanical processes involved in the fracture, and (2) remains simple enough to be useful in practical computations. Computations for arbitrary flaw size and orientation under arbitrary applied loads were performed. The mechanical properties were those of graphite epoxy. With the rupture properties arbitrarily varied to test the capabilities of the model to reflect real fracture modes, it was shown that fiber breakage, matrix crazing, crack bridging, matrix-fiber debonding, and axial splitting can all occur during a period of (gradually) increasing load prior to catastrophic failure. The calculations also reveal the sequential nature of the stable crack growth process proceding fracture.

  13. Does the Detection of Misunderstanding Lead to Its Revision?

    ERIC Educational Resources Information Center

    García-Rodicio, Héctor; Sánchez, Emilio

    2014-01-01

    When dealing with complex conceptual systems, low-prior- knowledge learners develop fragmentary and incorrect understanding. To learn complex topics deeply, these learners have to (a) monitor understanding to detect flaws and (b) generate explanations to revise and repair the flaws. In this research we explored if the detection of a flaw in…

  14. Development of an Inverse Algorithm for Resonance Inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Canhai; Xu, Wei; Sun, Xin

    2012-10-01

    Resonance inspection (RI), which employs the natural frequency spectra shift between the good and the anomalous part populations to detect defects, is a non-destructive evaluation (NDE) technique with many advantages such as low inspection cost, high testing speed, and broad applicability to structures with complex geometry compared to other contemporary NDE methods. It has already been widely used in the automobile industry for quality inspections of safety critical parts. Unlike some conventionally used NDE methods, the current RI technology is unable to provide details, i.e. location, dimension, or types, of the flaws for the discrepant parts. Such limitation severely hindersmore » its wide spread applications and further development. In this study, an inverse RI algorithm based on maximum correlation function is proposed to quantify the location and size of flaws for a discrepant part. A dog-bone shaped stainless steel sample with and without controlled flaws are used for algorithm development and validation. The results show that multiple flaws can be accurately pinpointed back using the algorithms developed, and the prediction accuracy decreases with increasing flaw numbers and decreasing distance between flaws.« less

  15. A Theoretical Model for Predicting Fracture Strength and Critical Flaw Size of the ZrB2-ZrC Composites at High Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Xiaobo; Wang, Jing; Jia, Bi; Li, Weiguo

    2018-06-01

    This work shows a new rational theoretical model for quantitatively predicting fracture strength and critical flaw size of the ZrB2-ZrC composites at different temperatures, which is based on a new proposed temperature dependent fracture surface energy model and the Griffith criterion. The fracture model takes into account the combined effects of temperature and damage terms (surface flaws and internal flaws) with no any fitting parameters. The predictions of fracture strength and critical flaw size of the ZrB2-ZrC composites at high temperatures agree well with experimental data. Then using the theoretical method, the improvement and design of materials are proposed. The proposed model can be used to predict the fracture strength, find the critical flaw and study the effects of microstructures on the fracture mechanism of the ZrB2-ZrC composites at high temperatures, which thus could become a potential convenient, practical and economical technical means for predicting fracture properties and material design.

  16. Analysis of Subcritical Crack Growth in Dental Ceramics Using Fracture Mechanics and Fractography

    PubMed Central

    Taskonak, Burak; Griggs, Jason A.; Mecholsky, John J.; Yan, Jia-Hau

    2008-01-01

    Objectives The aim of this study was to test the hypothesis that the flexural strengths and critical flaw sizes of dental ceramic specimens will be affected by the testing environment and stressing rate even though their fracture toughness values will remain the same. Methods Ceramic specimens were prepared from an aluminous porcelain (Vitadur Alpha; VITA Zahnfabrik, Bad Säckingen, Germany) and an alumina-zirconia-glass composite (In-Ceram® Zirconia; VITA Zahnfabrik). Three hundred uniaxial flexure specimens (150 of each material) were fabricated to dimensions of 25 mm × 4 mm × 1.2 mm according to the ISO 6872 standard. Each group of 30 specimens was fractured in water using one of four different target stressing rates ranging on a logarithmic scale from 0.1 to 100 MPa/s for Vitadur Alpha and from 0.01 to 10 MPa/s for In-Ceram® Zirconia. The fifth group was tested in inert environment (oil) with a target stressing rate of 100 MPa/s for Vitadur Alpha and 1000 MPa/s for In-Ceram® Zirconia. The effects of stressing rate and environment on flexural strength, critical flaw size, and fracture toughness were analyzed statistically by Kruskal-Wallis one-way ANOVA on ranks followed by post-hoc comparisons using Dunn’s test (α=0.05). In addition, 20 Vitadur Alpha specimens were fabricated with controlled flaws to simplify fractography. Half of these specimens were fracture tested in water and half in oil at a target stressing rate of 100 MPa/s, and the results were compared using Mann-Whitney rank sum tests (α=0.05). A logarithmic regression model was used to determine the fatigue parameters for each material. Results For each ceramic composition, specimens tested in oil had significantly higher strength (P≤0.05) and smaller critical flaw size (significant for Vitadur Alpha, P≤0.05) than those tested in water but did not have significantly different fracture toughness (P>0.05). Specimens tested at faster stressing rates had significantly higher strength (P≤0.05) but did not have significantly different fracture toughness (P>0.05). Regarding critical flaw size, stressing rate had a significant effect for In-Ceram® Zirconia specimens (P≤0.05) but not for Vitadur Alpha specimens (P>0.05). Fatigue parameters, n and ln B, were 38.4 and −12.7 for Vitadur Alpha and were 13.1 and 10.4 for In-Ceram® Zirconia. Significance Moisture assisted subcritical crack growth had a more deleterious effect on In-Ceram® Zirconia core ceramic than on Vitadur Alpha porcelain. Fracture surface analysis identified fracture surface features that can potentially mislead investigators into misidentifying the critical flaw. PMID:17845817

  17. Analysis of subcritical crack growth in dental ceramics using fracture mechanics and fractography.

    PubMed

    Taskonak, Burak; Griggs, Jason A; Mecholsky, John J; Yan, Jia-Hau

    2008-05-01

    The aim of this study was to test the hypothesis that the flexural strengths and critical flaw sizes of dental ceramic specimens will be affected by the testing environment and stressing rate even though their fracture toughness values will remain the same. Ceramic specimens were prepared from an aluminous porcelain (Vitadur Alpha; VITA Zahnfabrik, Bad Säckingen, Germany) and an alumina-zirconia-glass composite (In-Ceram Zirconia; VITA Zahnfabrik). Three hundred uniaxial flexure specimens (150 of each material) were fabricated to dimensions of 25 mmx4 mmx1.2 mm according to the ISO 6872 standard. Each group of 30 specimens was fractured in water using one of four different target stressing rates ranging on a logarithmic scale from 0.1 to 100 MPa/s for Vitadur Alpha and from 0.01 to 10 MPa/s for In-Ceram Zirconia. The fifth group was tested in inert environment (oil) with a target stressing rate of 100 MPa/s for Vitadur Alpha and 1000 MPa/s for In-Ceram Zirconia. The effects of stressing rate and environment on flexural strength, critical flaw size, and fracture toughness were analyzed statistically by Kruskal-Wallis one-way ANOVA on ranks followed by post hoc comparisons using Dunn's test (alpha=0.05). In addition, 20 Vitadur Alpha specimens were fabricated with controlled flaws to simplify fractography. Half of these specimens were fracture tested in water and half in oil at a target stressing rate of 100 MPa/s, and the results were compared using Mann-Whitney rank sum tests (alpha=0.05). A logarithmic regression model was used to determine the fatigue parameters for each material. For each ceramic composition, specimens tested in oil had significantly higher strength (P0.05). Specimens tested at faster stressing rates had significantly higher strength (P0.05). Regarding critical flaw size, stressing rate had a significant effect for In-Ceram Zirconia specimens (P0.05). Fatigue parameters, n and lnB, were 38.4 and -12.7 for Vitadur Alpha and were 13.1 and 10.4 for In-Ceram Zirconia. Moisture assisted subcritical crack growth had a more deleterious effect on In-Ceram Zirconia core ceramic than on Vitadur Alpha porcelain. Fracture surface analysis identified fracture surface features that can potentially mislead investigators into misidentifying the critical flaw.

  18. The probability of flaw detection and the probability of false calls in nondestructive evaluation equipment

    NASA Technical Reports Server (NTRS)

    Temple, Enoch C.

    1994-01-01

    The space industry has developed many composite materials that have high durability in proportion to their weights. Many of these materials have a likelihood for flaws that is higher than in traditional metals. There are also coverings (such as paint) that develop flaws that may adversely affect the performance of the system in which they are used. Therefore there is a need to monitor the soundness of composite structures. To meet this monitoring need, many nondestructive evaluation (NDE) systems have been developed. An NDE system is designed to detect material flaws and make flaw measurements without destroying the inspected item. Also, the detection operation is expected to be performed in a rapid manner in a field or production environment. Some of the most recent video-based NDE methodologies are shearography, holography, thermography, and video image correlation.

  19. Bell's "Theorem": loopholes vs. conceptual flaws

    NASA Astrophysics Data System (ADS)

    Kracklauer, A. F.

    2017-12-01

    An historical overview and detailed explication of a critical analysis of what has become known as Bell's Theorem to the effect that, it should be impossible to extend Quantum Theory with the addition of local, real variables so as to obtain a version free of the ambiguous and preternatural features of the currently accepted interpretations is presented. The central point on which this critical analysis, due originally to Edwin Jaynes, is that Bell incorrectly applied probabilistic formulas involving conditional probabilities. In addition, mathematical technicalities that have complicated the understanding of the logical or mathematical setting in which current theory and experimentation are embedded, are discussed. Finally, some historical speculations on the sociological environment, in particular misleading aspects, in which recent generations of physicists lived and worked are mentioned.

  20. The (Nutrition Education) Gospel According to NDC.

    ERIC Educational Resources Information Center

    Kilburn, Eric

    1978-01-01

    Discusses the flaws in nutrition education as presented by the National Dairy Council (NDC). Those discussed include the presentation of diets that contain high amounts of sugar and cholesterol and the failure to connect diet to heart disease. Suggests ways of monitoring these materials in the schools. (MA)

  1. Organizational Economics: Notes on the Use of Transaction-Cost Theory in the Study of Organizations.

    ERIC Educational Resources Information Center

    Robins, James A.

    1987-01-01

    Reviews transaction-cost approaches to organizational analysis, examines their use in microeconomic theory, and identifies some important flaws in the study. Advocates transaction-cost theory as a powerful tool for organizational and strategic analysis when set within the famework of more general organizational theory. Includes 61 references. (MLH)

  2. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  3. Four Bad Habits of Modern Psychologists

    PubMed Central

    Grice, James; Cota, Lisa; Taylor, Zachery; Garner, Samantha; Medellin, Eliwid; Vest, Adam

    2017-01-01

    Four data sets from studies included in the Reproducibility Project were re-analyzed to demonstrate a number of flawed research practices (i.e., “bad habits”) of modern psychology. Three of the four studies were successfully replicated, but re-analysis showed that in one study most of the participants responded in a manner inconsistent with the researchers’ theoretical model. In the second study, the replicated effect was shown to be an experimental confound, and in the third study the replicated statistical effect was shown to be entirely trivial. The fourth study was an unsuccessful replication, yet re-analysis of the data showed that questioning the common assumptions of modern psychological measurement can lead to novel techniques of data analysis and potentially interesting findings missed by traditional methods of analysis. Considered together, these new analyses show that while it is true replication is a key feature of science, causal inference, modeling, and measurement are equally important and perhaps more fundamental to obtaining truly scientific knowledge of the natural world. It would therefore be prudent for psychologists to confront the limitations and flaws in their current analytical methods and research practices. PMID:28805739

  4. Four Bad Habits of Modern Psychologists.

    PubMed

    Grice, James; Barrett, Paul; Cota, Lisa; Felix, Crystal; Taylor, Zachery; Garner, Samantha; Medellin, Eliwid; Vest, Adam

    2017-08-14

    Four data sets from studies included in the Reproducibility Project were re-analyzed to demonstrate a number of flawed research practices (i.e., "bad habits") of modern psychology. Three of the four studies were successfully replicated, but re-analysis showed that in one study most of the participants responded in a manner inconsistent with the researchers' theoretical model. In the second study, the replicated effect was shown to be an experimental confound, and in the third study the replicated statistical effect was shown to be entirely trivial. The fourth study was an unsuccessful replication, yet re-analysis of the data showed that questioning the common assumptions of modern psychological measurement can lead to novel techniques of data analysis and potentially interesting findings missed by traditional methods of analysis. Considered together, these new analyses show that while it is true replication is a key feature of science, causal inference, modeling, and measurement are equally important and perhaps more fundamental to obtaining truly scientific knowledge of the natural world. It would therefore be prudent for psychologists to confront the limitations and flaws in their current analytical methods and research practices.

  5. A robust indicator based on singular value decomposition for flaw feature detection from noisy ultrasonic signals

    NASA Astrophysics Data System (ADS)

    Cui, Ximing; Wang, Zhe; Kang, Yihua; Pu, Haiming; Deng, Zhiyang

    2018-05-01

    Singular value decomposition (SVD) has been proven to be an effective de-noising tool for flaw echo signal feature detection in ultrasonic non-destructive evaluation (NDE). However, the uncertainty in the arbitrary manner of the selection of an effective singular value weakens the robustness of this technique. Improper selection of effective singular values will lead to bad performance of SVD de-noising. What is more, the computational complexity of SVD is too large for it to be applied in real-time applications. In this paper, to eliminate the uncertainty in SVD de-noising, a novel flaw indicator, named the maximum singular value indicator (MSI), based on short-time SVD (STSVD), is proposed for flaw feature detection from a measured signal in ultrasonic NDE. In this technique, the measured signal is first truncated into overlapping short-time data segments to put feature information of a transient flaw echo signal in local field, and then the MSI can be obtained from the SVD of each short-time data segment. Research shows that this indicator can clearly indicate the location of ultrasonic flaw signals, and the computational complexity of this STSVD-based indicator is significantly reduced with the algorithm proposed in this paper. Both simulation and experiments show that this technique is very efficient for real-time application in flaw detection from noisy data.

  6. Ultrasonic, microwave, and millimeter wave inspection techniques for adhesively bonded stacked open honeycomb core composites

    NASA Astrophysics Data System (ADS)

    Thomson, Clint D.; Cox, Ian; Ghasr, Mohammad Tayeb Ahmed; Ying, Kuang P.; Zoughi, Reza

    2015-03-01

    Honeycomb sandwich composites are used extensively in the aerospace industry to provide stiffness and thickness to lightweight structures. A common fabrication method for thick, curved sandwich structures is to stack and bond multiple honeycomb layers prior to machining core curvatures. Once bonded, each adhesive layer must be inspected for delaminations and the presence of unwanted foreign materials. From a manufacturing and cost standpoint, it can be advantageous to inspect the open core prior to face sheet closeout in order to reduce end-article scrap rates. However, by nature, these honeycomb sandwich composite structures are primarily manufactured from low permittivity and low loss materials making detection of delamination and some of the foreign materials (which also are low permittivity and low loss) quite challenging in the microwave and millimeter wave regime. Likewise, foreign materials such as release film in adhesive layers can be sufficiently thin as to not cause significant attenuation in through-transmission ultrasonic signals, making them difficult to detect. This paper presents a collaborative effort intended to explore the efficacy of different non-contact NDI techniques for detecting flaws in a stacked open fiberglass honeycomb core panel. These techniques primarily included air-coupled through-transmission ultrasonics, single-sided wideband synthetic aperture microwave and millimeter-wave imaging, and lens-focused technique. The goal of this investigation has been to not only evaluate the efficacy of these techniques, but also to determine their unique advantages and limitations for evaluating parameters such as flaw type, flaw size, and flaw depth.

  7. Measurement-device-independent entanglement-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Liu, Hongwei; Yin, Zhenqiang; Li, Zuohan; Lian, Shibin; Du, Yungang; Wu, Lingan

    2016-05-01

    We present a quantum key distribution protocol in a model in which the legitimate users gather statistics as in the measurement-device-independent entanglement witness to certify the sources and the measurement devices. We show that the task of measurement-device-independent quantum communication can be accomplished based on monogamy of entanglement, and it is fairly loss tolerate including source and detector flaws. We derive a tight bound for collective attacks on the Holevo information between the authorized parties and the eavesdropper. Then with this bound, the final secret key rate with the source flaws can be obtained. The results show that long-distance quantum cryptography over 144 km can be made secure using only standard threshold detectors.

  8. In-service Inspection Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density and Size Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Edmund J.; Anderson, Michael T.; Norris, Wallace

    2012-09-17

    Pressurized thermal shock (PTS) events are system transients in a pressurized water reactor (PWR) in which there is a rapid operating temperature cool-down that results in cold vessel temperatures with or without repressurization of the vessel. The rapid cooling of the inside surface of the reactor pressure vessel (RPV) causes thermal stresses that can combine with stresses caused by high pressure. The aggregate effect of these stresses is an increase in the potential for fracture if a pre-existing flaw is present in a material susceptible to brittle failure. The ferritic, low alloy steel of the reactor vessel beltline adjacent tomore » the core, where neutron radiation gradually embrittles the material over the lifetime of the plant, can be susceptible to brittle fracture. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), “Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events,” adopted on July 23, 1985, establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. The U.S. Nuclear Regulatory Commission (NRC) completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed a rule, §50.61a, published on January 4, 2010, entitled “Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events” (75 FR 13). Use of the new rule by licensees is optional. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants. These analyses are intended to determine if the actual flaw density and size distribution in the licensee’s reactor vessel beltline welds are bounded by the flaw density and size distribution values used in the PTS technical basis. Under a contract with the NRC, Pacific Northwest National Laboratory (PNNL) has been working on a program to assess the ability of current inservice inspection (ISI)-ultrasonic testing (UT) techniques, as qualified through ASME Code, Appendix VIII, Supplements 4 and 6, to detect small fabrication or inservice-induced flaws located in RPV welds and adjacent base materials. As part of this effort, the investigators have pursued an evaluation, based on the available information, of the capability of UT to provide flaw density/distribution inputs for making RPV weld assessments in accordance with §50.61a. This paper presents the results of an evaluation of data from the 1993 Browns Ferry Nuclear Plant, Unit 3, Spirit of Appendix VIII reactor vessel examination, a comparison of the flaw density/distribution from this data with the distribution in §50.61a, possible reasons for differences, and plans and recommendations for further work in this area.« less

  9. Characterization of Acoustic Emission Parameters During Testing of Metal Liner Reinforced with Fully Resin Impregnated CNG Cylinder

    NASA Astrophysics Data System (ADS)

    Kenok, R.; Jomdecha, C.; Jirarungsatian, C.

    The aim of this paper is to study the acoustic emission (AE) parameters obtained from CNG cylinders during pressurization. AE from flaw propagation, material integrity, and pressuring of cylinder was the main objective for characterization. CNG cylinders of ISO 11439, resin fully wrapped type and metal liner type, were employed to test by hydrostatic stressing. The pressure was step increased until 1.1 time of operating pressure. Two AE sensors, resonance frequency of 150 kHz, were mounted on the cylinder wall to detect the AE throughout the testing. From the experiment results, AE can be detected from pressuring rate, material integrity, and flaw propagation from the cylinder wall. AE parameters including Amplitude, Count, Energy (MARSE), Duration and Rise time were analyzed to distinguish the AE data. The results show that the AE of flaw propagation was different in character from that of pressurization. Especially, AE detected from flaws of resin wrapped and metal liner was significantly different. To locate the flaw position, both the AE sensors can be accurately used to locate the flaw propagation in a linear pattern. The error was less than ±5 cm.

  10. Simulating the x-ray image contrast to setup techniques with desired flaw detectability

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing the detector resolution. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.

  11. Acoustic Emission Weld Monitoring in the 2195 Aluminum-Lithium Alloy

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2005-01-01

    Due to its low density, the 2195 aluminum-lithium alloy was developed as a replacement for alloy 2219 in the Space Shuttle External Tank (ET). The external tank is the single largest component of the space shuttle system. It is 154 feet long and 27.6 feet in diameter, and serves as the structural backbone for the shuttle during launch, absorbing most of the 7 million plus pounds of thrust produced. The almost 4% decrease in density between the two materials provides an extra 7500 pounds of payload capacity necessary to put the International Space Station components into orbit. The ET is an all-welded structure; hence, the requirement is for up to five rewelds without hot cracking. Unfortunately, hot cracking during re-welding or repair operations was occurring and had to be dealt with before the new super lightweight tank could be used. Weld metal porosity formation was also of concern because it leads to hot cracking during weld repairs. Accordingly, acoustic emission (AE) nondestructive testing was employed to monitor the formation of porosity and hot cracks in order to select the best filler metal and optimize the weld schedule. The purpose of this work is to determine the feasibility of detecting hot cracking in welded aluminum-lithium (Al-Li) structures through the analysis of acoustic emission data. By acoustically characterizing the effects of reheating during a repair operation, the potential for hidden flaws coalescing and becoming "unstable" as the panel is repaired could be reduced. Identification of regions where microcrack growth is likely to occur and the location of active flaw growth in the repair weld will provide the welder with direct feedback as to the current weld quality enabling adjustments to the repair process be made in the field. An acoustic emission analysis of the source mechanisms present during welding has been conducted with the goals of locating regions in the weld line that are susceptible to damage from a repair operation, identifying the formation of critically sized flaws and providing accept/reject criteria for the quality of a weld as it is performed.

  12. The ability of winter grazing to reduce wildfire size, intensity ...

    EPA Pesticide Factsheets

    A recent study by Davies et al. sought to test whether winter grazing could reduce wildfire size, fire behavior metrics, and fire-induced plant mortality in shrub-grasslands. The authors concluded that ungrazed rangelands may experience more fire-induced mortality of native perennial bunchgrasses. The authors also presented several statements regarding the benefits of winter grazing on post-fire plant community responses. However, this commentary will show that the study by Davies et al. has underlying methodological flaws, lacks data necessary to support their conclusions, and does not provide an accurate discussion on the effect of grazing on rangeland ecosystems. Importantly, Davies et al. presented no data on the post-fire mortality of the perennial bunchgrasses or on the changes in plant community composition following their experimental fires. Rather, Davies et al. inferred these conclusions based off their observed fire behavior metrics of maximum temperature and a term described as the “heat load”. However, neither metric is appropriate for elucidating the heat flux impacts on plants. This lack of post-fire data, several methodological flaws, and the use of inadequate metrics describing heat cast doubts on the authors’ ability to support their stated conclusions. This article is a commentary highlights the scientific shortcomings in a forthcoming paper by Davies et al. in the International Journal of Wildland Fire. The study has methodological flaw

  13. Proof test criteria for thin-walled 2219 aluminum pressure vessels. Volume 1: Program summary and data analysis

    NASA Technical Reports Server (NTRS)

    Finger, R. W.

    1976-01-01

    This experimental program was undertaken to investigate the crack growth behavior of deep surface flaws in 2219 aluminum. The program included tests of uniaxially loaded surface flaw and center crack panels at temperatures ranging from 20K (-423 F) to ambient. The tests were conducted on both the base metal and as-welded weld metal material. The program was designed to provide data on the mechanisms of failure by ligament penetration, and the residual cyclic life, after proof-testing, of a vessel which has been subjected to incipient penetration by the proof test. The results were compared and analyzed with previously developed data to develop guidelines for the proof testing of thin walled 2219 pressure vessels.

  14. Ultrasonic flaw detection in a monorail box beam

    NASA Astrophysics Data System (ADS)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.

    2009-03-01

    A steel box beam in a monorail application is constructed with an epoxy grout wearing surface, precluding visual inspection of its top flange. This paper describes a sequence of experimental research tasks to develop an ultrasonic system to detect flaws (such as fatigue cracks) in that flange, and the results of a field test to demonstrate system performance. The problem is constrained by the fact that the flange is exposed only along its longitudinal edges, and by the fact that permanent installation of transducers at close spacing was deemed to be impractical. The system chosen for development, after experimental comparison of alternate technologies, features angle-beam ultrasonic transducers with fluid coupling to the flange edge; the emitting transducers create transverse waves that travel diagonally across the width of the flange, where an array of receiving transducers detect flaw reflections and flaw shadows. The system rolls along the box beam, surveying (screening) the top flange for the presence of flaws. In a first research task, conducted on a full-size beam specimen, we compared waves generated from different transducer locations, either the flange edge or the web face, and at different frequency ranges. At relatively low frequencies, such as 100 kHz, we observed Lamb wave modes, and at higher frequency, in the MHz range, we observed nearlylongitudinal waves with trailing pulses. In all cases we observed little attenuation by the wearing surface and little influence of reflection at the web-flange joints. At the conclusion of this task we made the design decision to use edgemounted transducers at relatively high frequency, with correspondingly short wavelength, for best scattering from flaws. In a second research task we conducted experiments at 55% scale on a steel plate, with machined flaws of different size, and detected flaws of target size for the intended application. We then compared the performance of bonded transducers, fluid-coupled transducers, and angle-beam (wedge) transducers; from that comparison we made the design decision to use wedges, which beam the wave to increase the scattering from flaws. We also compared the performance of wired transducers using fluid coupling to that of wireless (inductively coupled) transducers mounted permanently. Although the wireless transducers achieved flaw detection, the necessary spacing (determined experimentally) would have required an impractical number of transducers. Therefore, we made the design decision to use wedge transducers with fluid coupling. In a third research task we developed and tested a rolling system with a water channel for acoustic coupling, including a study of its sensitivity to misalignment, and in a fourth task we devised a data display to create a pattern of reflections or shadows that could be easily interpreted as evidence of a flaw. Finally, we conducted a field test on the full-size system in a region containing bolt holes, which act as a physical simulation of a flaw, and show successful detection of reflections and shadows from those holes.

  15. Real Cost-Benefit Analysis Is Needed in American Public Education

    ERIC Educational Resources Information Center

    Stoneberg, Bert D.

    2015-01-01

    Public school critics often point to rising expenditures and relatively flat test scores to justify their school reform agendas. The claims are flawed because their analyses fail to account for the difference in data types between dollars (ratio) and test scores (interval). A cost-benefit analysis using dollars as a common metric for both costs…

  16. Development and Application of Wide Bandwidth Magneto-Resistive Sensor Based Eddy Current Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Simpson, John

    2010-01-01

    The integration of magneto-resistive sensors into eddy current probes can significantly expand the capabilities of conventional eddy current nondestructive evaluation techniques. The room temperature solid-state sensors have typical bandwidths in the megahertz range and resolutions of tens of microgauss. The low frequency sensitivity of magneto-resistive sensors has been capitalized upon in previous research to fabricate very low frequency eddy current sensors for deep flaw detection in multilayer conductors. In this work a modified probe design is presented to expand the capabilities of the device. The new probe design incorporates a dual induction source enabling operation from low frequency deep flaw detection to high frequency high resolution near surface material characterization. Applications of the probe for the detection of localized near surface conductivity anomalies are presented. Finite element modeling of the probe is shown to be in good agreement with experimental measurements.

  17. An Improved Biometrics-Based Remote User Authentication Scheme with User Anonymity

    PubMed Central

    Kumari, Saru

    2013-01-01

    The authors review the biometrics-based user authentication scheme proposed by An in 2012. The authors show that there exist loopholes in the scheme which are detrimental for its security. Therefore the authors propose an improved scheme eradicating the flaws of An's scheme. Then a detailed security analysis of the proposed scheme is presented followed by its efficiency comparison. The proposed scheme not only withstands security problems found in An's scheme but also provides some extra features with mere addition of only two hash operations. The proposed scheme allows user to freely change his password and also provides user anonymity with untraceability. PMID:24350272

  18. An improved biometrics-based remote user authentication scheme with user anonymity.

    PubMed

    Khan, Muhammad Khurram; Kumari, Saru

    2013-01-01

    The authors review the biometrics-based user authentication scheme proposed by An in 2012. The authors show that there exist loopholes in the scheme which are detrimental for its security. Therefore the authors propose an improved scheme eradicating the flaws of An's scheme. Then a detailed security analysis of the proposed scheme is presented followed by its efficiency comparison. The proposed scheme not only withstands security problems found in An's scheme but also provides some extra features with mere addition of only two hash operations. The proposed scheme allows user to freely change his password and also provides user anonymity with untraceability.

  19. A FRAMEWORK TO DEVELOP FLAW ACCEPTANCE CRITERIA FOR STRUCTURAL INTEGRITY ASSESSMENT OF MULTIPURPOSE CANISTERS FOR EXTENDED STORAGE OF USED NUCLEAR FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, P.; Sindelar, R.; Duncan, A.

    2014-04-07

    A multipurpose canister (MPC) made of austenitic stainless steel is loaded with used nuclear fuel assemblies and is part of the transfer cask system to move the fuel from the spent fuel pool to prepare for storage, and is part of the storage cask system for on-site dry storage. This weld-sealed canister is also expected to be part of the transportation package following storage. The canister may be subject to service-induced degradation especially if exposed to aggressive environments during possible very long-term storage period if the permanent repository is yet to be identified and readied. Stress corrosion cracking may bemore » initiated on the canister surface in the welds or in the heat affected zone because the construction of MPC does not require heat treatment for stress relief. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defects be detected by periodic Inservice Inspection. The external loading cases include thermal accident scenarios and cask drop conditions with the contribution from the welding residual stresses. The determination of acceptable flaw size is based on the procedure to evaluate flaw stability provided by American Petroleum Institute (API) 579 Fitness-for-Service (Second Edition). The material mechanical and fracture properties for base and weld metals and the stress analysis results are obtained from the open literature such as NUREG-1864. Subcritical crack growth from stress corrosion cracking (SCC), and its impact on inspection intervals and acceptance criteria, is not addressed.« less

  20. The fundamental flaw of the HSAB principle is revealed by a complete speciation analysis of the [PtCl(6-n)Br(n)](2-) (n = 0-6) system.

    PubMed

    Gerber, W J; van Wyk, P-H; van Niekerk, D M E; Koch, K R

    2015-02-28

    Bjerrum's model of step-wise ligand exchange is extended to compute a complete speciation diagram for the [PtCl6-nBrn](2-) (n = 0-6) system including all 17 equilibrium constants concerning the Pt(IV) chlorido-bromido exchange reaction network (HERN). In contrast to what the hard soft acid base (HSAB) principle "predicts", the thermodynamic driving force for the replacement of chloride by bromide in an aqueous matrix, for each individual ligand exchange reaction present in the Pt(IV) HERN, is due to the difference in halide hydration energy and not bonding interactions present in the acid-base complex. A generalized thermodynamic test calculation was developed to illustrate that the HSAB classified class (b) metal cations Ag(+), Au(+), Au(3+), Rh(3+), Cd(2+), Pt(2+), Pt(4+), Fe(3+), Cd(2+), Sn(2+) and Zn(2+) all form thermodynamically stable halido complexes in the order F(-) ≫ Cl(-) > Br(-) > I(-) irrespective of the sample matrix. The bonding interactions in the acid-base complex, e.g. ionic-covalent σ-bonding, Π-bonding and electron correlation effects, play no actual role in the classification of these metal cations using the HSAB principle. Instead, it turns out that the hydration/solvation energy of halides is the reason why metal cations are categorized into two classes using the HSAB principle which highlights the fundamental flaw of the HSAB principle.

  1. A fractional Fourier transform analysis of the scattering of ultrasonic waves.

    PubMed

    Tant, Katherine M M; Mulholland, Anthony J; Langer, Matthias; Gachagan, Anthony

    2015-03-08

    Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time-frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time-frequency domain framework to assist in flaw identification and classification.

  2. Amplitude-independent flaw length determination using differential eddy current

    NASA Astrophysics Data System (ADS)

    Shell, E.

    2013-01-01

    Military engine component manufacturers typically specify the eddy current (EC) inspection requirements as a crack length or depth with the assumption that the cracks in both the test specimens and inspected component are of a similar fixed aspect ratio. However, differential EC response amplitude is dependent on the area of the crack face, not the length or depth. Additionally, due to complex stresses, in-service cracks do not always grow in the assumed manner. It would be advantageous to use more of the information contained in the EC data to better determine the full profile of cracks independent of the fixed aspect ratio amplitude response curve. A specimen with narrow width notches is used to mimic cracks of varying aspect ratios in a controllable manner. The specimen notches have aspect ratios that vary from 1:1 to 10:1. Analysis routines have been developed using the shape of the EC response signals that can determine the length of a surface flaw of common orientations without use of the amplitude of the signal or any supporting traditional probability of detection basis. Combined with the relationship between signal amplitude and area, the depth of the flaw can also be calculated.

  3. Detection of Cracks at Welds in Steel Tubing Using Flux Focusing Electromagnetic Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Simpson, John; Namkung, Min

    1994-01-01

    The inspection of weldments in critical pressure vessel joints is a major concern in the nuclear power industry. Corrosive environments can speed the fatigue process and access to the critical area is often limited. Eddy current techniques have begun to be used to help overcome these obstacles [1]. As direct contact and couplants are not required, remote areas can be inspected by simply snaking an eddy current coil into the intake tube of the vessel. The drawback of the eddy current method has been the high sensitivity to small changes in the conductivity and permeability of the test piece which are known to vary at weldments [1]. The flaw detection mechanism of the flux focusing electromagnetic probe can help alleviate these difficulties and provide a unique capability for detecting longitudinal fatigue cracks in critical tube structures. The Flux Focusing Electromagnetic Flaw Detector, originally invented for the detection of fatigue and corrosion damage in aluminum plates [2-3], has been adapted for use in testing steel tubing for longitudinal fatigue cracks. The modified design allows for the probe to be placed axisymmetrically into the tubing, inducing eddy currents in the tube wall. The pickup coil of the probe is fixed slightly below the primary windings and is rotated 90 so that its axis is normal to the tube wall. The magnetic flux of the primary coil is focused through the use of ferromagnetic material so that in the absence of fatigue damage there will be no flux linkage with the pickup coil. The presence of a longitudinal fatigue crack will cause the eddy currents induced in the tube wall to flow around the flaw and directly under the pickup coil. The magnetic field associated with these currents will then link the pickup coil and an unambiguous increase in the output voltage of the probe will be measured. The use of the flux focusing electromagnetic probe is especially suited for the detection of flaws originating at or near tube welds. The probe is shown to discriminate against signals due solely to the weld joint so that flaw signals are not hidden in the background in these locations. Experimental and finite element modeling results are presented for the flaw detection capabilities of the probe in stainless steel tubes.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S.

    Leak-Before-Break (LBB) is being used to design the primary heat transport piping system of 500 MWe Indian Pressurized Heavy Water Reactors (IPHWR). The work is categorized in three directions to demonstrate three levels of safety against sudden catastrophic break. Level 1 is inherent in the design procedure of piping system as per ASME Sec.III with a well defined factor of safety. Level 2 consists of fatigue crack growth study of a postulated part-through flaw at the inside surface of pipes. Level 3 is stability analysis of a postulated leakage size flaw under the maximum credible loading condition. Developmental work relatedmore » to demonstration of level 2 and level 3 confidence is described in this paper. In a case study on fatigue crack growth on PHT straight pipes for level 2, negligible crack growth is predicted for the life of the reactor. For level 3 analysis, the R6 method has been adopted. A database to evaluate SIF of elbows with throughwall flaws under combined internal pressure and bending moment has been generated to provide one of the inputs for R6 method. The methodology of safety assessment of elbow using R6 method has been demonstrated for a typical pump discharge elbow. In this analysis, limit load of the cracked elbow has been determined by carrying out elasto-plastic finite element analysis. The limit load results compared well with those given by Miller. However, it requires further study to give a general form of limit load solution. On the experimental front, a set of small diameter pipe fracture experiments have been carried out at room temperature and 300{degrees}C. Two important observations of the experiments are - appreciable drop in maximum load at 300{degrees}C in case of SS pipes and out-of-plane crack growth in case of CS pipes. Experimental load deflection curves are finally compared with five J-estimation schemes predictions. A material database of PHT piping materials is also being generated for use in LBB analysis.« less

  5. Flaws in design, analysis and interpretation of Pfizer's antifungal trials of voriconazole and uncritical subsequent quotations.

    PubMed

    Jørgensen, Karsten J; Johansen, Helle Krogh; Gøtzsche, Peter C

    2006-01-19

    We have previously described how a series of trials sponsored by Pfizer of its antifungal drug, fluconazole, in cancer patients with neutropenia handicapped the control drug, amphotericin B, by flaws in design and analysis. We describe similar problems in two pivotal trials of Pfizer's new antifungal agent, voriconazole, published in a prestigious journal. In a non-inferiority trial, voriconazole was significantly inferior to liposomal amphothericin B, but the authors concluded that voriconazole was a suitable alternative. The second trial used amphothericin B deoxycholate as comparator, but handicapped the drug by not requiring pre-medication to reduce infusion-related toxicity or substitution with electrolytes and fluid to reduce nephrotoxicity, although the planned duration of treatment was 84 days. Voriconazole was given for 77 days on average, but the comparator for only 10 days, which precludes a meaningful comparison. In a random sample of 50 references to these trials, we found that the unwarranted conclusions were mostly uncritically propagated. It was particularly surprising that relevant criticism raised by the FDA related to the first trial was only quoted once, and that none of the articles noted the obvious flaws in the design of the second trial. We suggest that editors ensure that the abstract reflects fairly on the remainder of the paper, and that journals do not impose any time limit for accepting letters that point out serious weaknesses in a study that have not been noted before.

  6. Fatigue Analysis of the Piston Rod in a Kaplan Turbine Based on Crack Propagation under Unsteady Hydraulic Loads

    NASA Astrophysics Data System (ADS)

    Liu, X.; Y Luo, Y.; Wang, Z. W.

    2014-03-01

    As an important component of the blade-control system in Kaplan turbines, piston rods are subjected to fluctuating forces transferred by the turbines blades from hydraulic pressure oscillations. Damage due to unsteady hydraulic loads might generate unexpected down time and high repair cost. In one running hydropower plant, the fracture failure of the piston rod was found twice at the same location. With the transient dynamic analysis, the retainer ring structure of the piston rod existed a relative high stress concentration. This predicted position of the stress concentration agreed well with the actual fracture position in the plant. However, the local strain approach was not able to explain why this position broke frequently. Since traditional structural fatigue analyses use a local stress strain approach to assess structural integrity, do not consider the effect of flaws which can significantly degrade structural life. Using linear elastic fracture mechanism (LEFM) approaches that include the effect of flaws is becoming common practice in many industries. In this research, a case involving a small semi-ellipse crack was taken into account at the stress concentration area, crack growth progress was calculated by FEM. The relationship between crack length and remaining life was obtained. The crack propagation path approximately agreed with the actual fracture section. The results showed that presence of the crack had significantly changed the local stress and strain distributions of the piston rod compared with non-flaw assumption.

  7. Inspection of defects of composite materials in inner cylindrical surfaces using endoscopic shearography

    NASA Astrophysics Data System (ADS)

    Macedo, Fabiano Jorge; Benedet, Mauro Eduardo; Fantin, Analucia Vieira; Willemann, Daniel Pedro; da Silva, Fábio Aparecido Alves; Albertazzi, Armando

    2018-05-01

    This work presents the development of a special shearography system with radial sensitivity and explores its applicability for detecting adhesion flaws on internal surfaces of flanged joints of composite material pipes. The inspection is performed from the inner surface of the tube where the flange is adhered. The system uses two conical mirrors to achieve radial sensitivity. A primary 45° conical mirror is responsible for promoting the inspection of the internal tubular surface on its 360° A special Michelson interferometer is formed replacing one of the plane mirrors by a conical mirror. The image reflected by this conical mirror is shifted away from the image center in a radial way and a radial shear is produced on the images. The concept was developed and a prototype built and tested. First, two tubular steel specimens internally coated with composite material and having known artificial defects were analyzed to test the ability of the system to detect the flaws. After the principle validation, two flanged joints were then analyzed: (a) a reference one, without any artificial defects and (b) a test one with known artificial defects, simulating adhesion failures with different dimensions and locations. In all cases, thermal loading was applied through a hot air blower on the outer surface of the joint. The system presented very good results on all inspected specimens, being able to detect adhesion flaws present in the flanged joints. The experimental results obtained in this work are promising and open a new front for inspections of inner surfaces of pipes with shearography.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooley, James J.

    Shaffer’s (2010) article reports on the long term impact of less than perfect retention of anthropogenic CO2 stored in deep geologic reservoirs and in the ocean. The central thesis of this article is predicated on two deeply flawed assumptions. The first and most glaring is the implicit assumption that society has only one means of reducing greenhouse gas emissions, carbon dioxide capture and storage (CCS). Secondly, there is absolutely no geophysical nor geomechanical basis for assuming an exponential decay of CO2 stored in deep geologic formations as done by Schaffer. Shaffer’s analysis of the impact of leakage from anthropogenic CO2more » stored in deep geologic reservoirs are based upon two fundamentally flawed assumptions and therefore the reported results as well as the public policy conclusions presented in the paper need to be read with this understanding in mind as far less CO2 stored below ground because society drew upon a broad portfolio of advanced energy technologies over the coming century coupled with a more technically accurate conceptualization of CO2 storage in the deep subsurface and the important role of secondary and tertiary trapping mechanisms would have yield a far less pessimistic view of the potential role that CCS can play in a broader portfolio of societal responses to the very serious threat posed by climate change.« less

  9. Team B Intelligence Coups

    ERIC Educational Resources Information Center

    Mitchell, Gordon R.

    2006-01-01

    The 2003 Iraq prewar intelligence failure was not simply a case of the U.S. intelligence community providing flawed data to policy-makers. It also involved subversion of the competitive intelligence analysis process, where unofficial intelligence boutiques "stovepiped" misleading intelligence assessments directly to policy-makers and…

  10. Estimating probable flaw distributions in PWR steam generator tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorman, J.A.; Turner, A.P.L.

    1997-02-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regardingmore » uncertainties and assumptions in the data and analyses.« less

  11. Eddy-Current-Based Nondestructive Inspection System Using Superconducting Quantum Interference Device for Thin Copper Tubes

    NASA Astrophysics Data System (ADS)

    Hatsukade, Yoshimi; Kosugi, Akifumi; Mori, Kazuaki; Tanaka, Saburo

    2004-11-01

    An eddy-current-based nondestructive inspection (NDI) system using superconducting quantum interference device (SQUID) cooled using a coaxial pulse tube cryocooler was constructed for the inspection of microflaws on copper tubes employing a high-Tc SQUID gradiometer and a Helmholtz-like coil inducer. The detection of artificial flaws several tens of μm in depth on copper tubes 6.35 mm in outer diameter and 0.825 mm in thickness was demonstrated using the SQUID-NDI system. With an excitation field of 1.6 μT at 5 kHz, a 30-μm-depth flaw was successfully detected by the system at an SN ratio of at least 20. The magnetic signal amplitude due to the flaw was proportional to both excitation frequency and the square of flaw depth. With consideration of the system’s sensitivity, the results indicate that sub-10-μm-depth flaws are detectable by the SQUID-NDI system.

  12. Steam generator tube integrity flaw acceptance criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochet, B.

    1997-02-01

    The author discusses the establishment of a flaw acceptance criteria with respect to flaws in steam generator tubing. The problem is complicated because different countries take different approaches to the problem. The objectives in general are grouped in three broad areas: to avoid the unscheduled shutdown of the reactor during normal operation; to avoid tube bursts; to avoid excessive leak rates in the event of an accidental overpressure event. For each degradation mechanism in the tubes it is necessary to know answers to an array of questions, including: how well does NDT testing perform against this problem; how rapidly doesmore » such degradation develop; how well is this degradation mechanism understood. Based on the above information it is then possible to come up with a policy to look at flaw acceptance. Part of this criteria is a schedule for the frequency of in-service inspection and also a policy for when to plug flawed tubes. The author goes into a broad discussion of each of these points in his paper.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samohyl, P.

    The application of the LBB requires also fatigue flaw growth assessment. This analysis was performed for PWR nuclear power plants types VVER 440/230, VVER 440/213c, VVER 1000/320. Respecting that these NPP`s were designed according to Russian codes that differ from US codes it was needed to compare these approaches. Comparison with our experimental data was accomplished, too. Margins of applicability of the US methods and their modifications for the materials used for construction of Czech and Slovak NPP`s are shown. Computer code accomplishing the analysis according to described method is presented. Some measurement and calculations show that thermal stratifications inmore » horizontal pipelines can lead to additive loads that are not negligible and can be dangerous. An attempt to include these loads induced by steady-state stratification was made.« less

  14. Design Manual for Impact Damage Tolerant Aircraft Structure. Addendum

    DTIC Science & Technology

    1988-03-01

    Effective Flaw Size 20 22 Effective Flaws for Cubical Fragments Impacting Graphite/Epoxy Laminates 21 23 Effective Flaws for Aligned and Tumbled Armour ... armour -piercing projectiles impact, penetrate, and traverse a fuel tank and generate intensive pressure waves that act on the fuel tank. Since...eg. aerodynamic smoothnessflutter, etc.) and the repai concept (eag boiled repar external bonded pateh. flush scar bonded patch, etc., and (3) dhe

  15. Simulating the X-Ray Image Contrast to Set-Up Techniques with Desired Flaw Detectability

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2015-01-01

    The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is being developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing X-ray detector resolution for crack detection. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.

  16. A novel approach to measuring response and remission in schizophrenia in clinical trials.

    PubMed

    Aboraya, Ahmed; Leucht, Stefan; Nasrallah, Henry A; Samara, Myrto; Haro, Josep Maria; Elshazly, Ahmed; Zangeneh, Masood

    2017-12-01

    Pharmaceutical companies conduct clinical trials to show the efficacy and safety of new medications for the treatment of schizophrenia. After the new medications are marketed, clinicians treating patients with schizophrenia discover that a considerable number of patients do not respond to these new medications. The goals of the review are to examine the methodology and design of recent antipsychotic clinical trials, identify common flaws, and propose guidelines to fix the flaws and improve the quality of future clinical trials of antipsychotic medications. A review of recent antipsychotic clinical trials was conducted using a PubMed search. Ten recent trials published in the past four years were reviewed and their methods analyzed and critiqued. The authors identified six major methodological flaws that may explain the suboptimal response in many patients after a drug is approved. Most of the flaws are related to eligibility criteria, the misuse of the Positive and Negative Syndromes Scale (PANSS) and the lack of consensus on how to define remission, response and exacerbation in schizophrenia. Proposed guidelines for a more rigorous use of the PANSS are presented and recommendations are proposed for using uniform criteria for remission, response and exacerbation in schizophrenia. The authors recommend using standardized diagnostic interviews to screen patients for eligibility criteria and using the PANSS according to the author's recommendations and the proposed guidelines. Uniform criteria to define remission, response and exacerbation are recommended for clinical trials examining the efficacy and safety of antipsychotic drugs in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Mathematical modeling of damage in unidirectional composites

    NASA Technical Reports Server (NTRS)

    Goree, J. G.; Dharani, L. R.; Jones, W. F.

    1983-01-01

    Extending the work of Goree and Gross (1979), solutions are given for a two-dimensional region of unidirectional fibers embedded in an elastic matrix whose initial flaw may take the form of a transverse notch, a rectangular cutout, or a circular hole. Subsequent flaw-induced damage is generated by remote stresses acting parallel to the fibers. For the case of such ductile matrix composites as boron/aluminum, present results indicate that both longitudinal matrix yielding and transverse notch extension must be included in order for the model to agree with experimental results. Little difference is found for the three types of initial damage considered. In all cases, the presence of additional damage changes the nature of stress distribution through the unbroken fibers.

  18. When Paradigms Clash: Comments on Cameron and Pierce's Claim That Rewards Do Not Undermine Intrinsic Motivation.

    ERIC Educational Resources Information Center

    Ryan, Richard M.; Deci, Edward L.

    1996-01-01

    The conclusion of J. Cameron and W. D. Pierce that rewards do not pose a threat to intrinsic motivation (1994) is a misrepresentation of the literature based on a flawed meta-analysis. Their analysis is more an attempt to defend behaviorist turf rather than meaningful consideration of relevant data and issues. (Author/SLD)

  19. CARES/LIFE Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.

    2003-01-01

    This manual describes the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction (CARES/LIFE) computer program. The program calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. CARES/LIFE is an extension of the CARES (Ceramic Analysis and Reliability Evaluation of Structures) computer program. The program uses results from MSC/NASTRAN, ABAQUS, and ANSYS finite element analysis programs to evaluate component reliability due to inherent surface and/or volume type flaws. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the power law, Paris law, or Walker law. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled by using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. The probabilistic time-dependent theories used in CARES/LIFE, along with the input and output for CARES/LIFE, are described. Example problems to demonstrate various features of the program are also included.

  20. Acupuncture in the treatment of tinnitus: a systematic review and meta-analysis.

    PubMed

    Liu, Fenye; Han, Xiuli; Li, Yunfeng; Yu, Shudong

    2016-02-01

    This study aimed at a systematic review and meta-analysis of all available randomized controlled trials (RCTs) using acupuncture to treat tinnitus. Five electronic databases, in both English and Chinese, were searched. All studies in our review and meta-analysis included parallel RCTs of tinnitus patients which compared subjects receiving acupuncture (or its other forms, such as electroacupuncture) to subjects receiving no treatment, sham treatment, drugs or basic medical therapy. Data from the articles were validated and extracted using a predefined data extraction form. Nearly all of Chinese studies reported positive results, while most of English studies reported negative results. Analysis of the combined data found that the acupuncture treatments seemed to provide some advantages over conventional therapies for tinnitus. It had difference in acupuncture points and sessions between Chinese studies and English studies. Methodological flaws were also found in many of the RCTs, especially in Chinese studies. The results of this review suggest that acupuncture therapy may offer subjective benefit to some tinnitus patients. Acupuncture points and sessions used in Chinese studies may be more appropriate, whereas these studies have many methodological flaws and risk bias, which prevents us making a definitive conclusion.

  1. Encryption Characteristics of Two USB-based Personal Health Record Devices

    PubMed Central

    Wright, Adam; Sittig, Dean F.

    2007-01-01

    Personal health records (PHRs) hold great promise for empowering patients and increasing the accuracy and completeness of health information. We reviewed two small USB-based PHR devices that allow a patient to easily store and transport their personal health information. Both devices offer password protection and encryption features. Analysis of the devices shows that they store their data in a Microsoft Access database. Due to a flaw in the encryption of this database, recovering the user’s password can be accomplished with minimal effort. Our analysis also showed that, rather than encrypting health information with the password chosen by the user, the devices stored the user’s password as a string in the database and then encrypted that database with a common password set by the manufacturer. This is another serious vulnerability. This article describes the weaknesses we discovered, outlines three critical flaws with the security model used by the devices, and recommends four guidelines for improving the security of similar devices. PMID:17460132

  2. Fractal dimension analysis for robust ultrasonic non-destructive evaluation (NDE) of coarse grained materials

    NASA Astrophysics Data System (ADS)

    Li, Minghui; Hayward, Gordon

    2018-04-01

    Over the recent decades, there has been a growing demand on reliable and robust non-destructive evaluation (NDE) of structures and components made from coarse grained materials such as alloys, stainless steels, carbon-reinforced composites and concrete; however, when inspected using ultrasound, the flaw echoes are usually contaminated by high-level, time-invariant, and correlated grain noise originating from the microstructure and grain boundaries, leading to pretty low signal-to-noise ratio (SNR) and the flaw information being obscured or completely hidden by the grain noise. In this paper, the fractal dimension analysis of the A-scan echoes is investigated as a measure of complexity of the time series to distinguish the echoes originating from the real defects and the grain noise, and then the normalized fractal dimension coefficients are applied to the amplitudes as the weighting factor to enhance the SNR and defect detection. Experiments on industrial samples of the mild steel and the stainless steel are conducted and the results confirm the great benefits of the method.

  3. Measuring and Estimating Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2013-01-01

    Infrared flash thermography (IRFT) is used to detect void-like flaws in a test object. The IRFT technique involves heating up the part surface using a flash of flash lamps. The post-flash evolution of the part surface temperature is sensed by an IR camera in terms of pixel intensity of image pixels. The IR technique involves recording of the IR video image data and analysis of the data using the normalized pixel intensity and temperature contrast analysis method for characterization of void-like flaws for depth and width. This work introduces a new definition of the normalized IR pixel intensity contrast and normalized surface temperature contrast. A procedure is provided to compute the pixel intensity contrast from the camera pixel intensity evolution data. The pixel intensity contrast and the corresponding surface temperature contrast differ but are related. This work provides a method to estimate the temperature evolution and the normalized temperature contrast from the measured pixel intensity evolution data and some additional measurements during data acquisition.

  4. A comparison of 1D and 1.5D arrays for imaging volumetric flaws in small bore pipework

    NASA Astrophysics Data System (ADS)

    Barber, T. S.; Wilcox, P. D.; Nixon, A. D.

    2015-03-01

    1.5D arrays can be seen as a potentially ideal compromise between 1D arrays and 2D matrix arrays in terms of focusing capability, element density, weld coverage and data processing time. This paper presents an initial study of 1D and 1.5D arrays for high frequency (15MHz) imaging of volumetric flaws in small-bore (30-60mm outer diameter) thin-walled (3-8mm) pipework. A combination of 3D modelling and experimental work is used to determine Signal to Noise Ratio (SNR) improvement with a strong relationship between SNR and the longer dimension of element size observed. Similar behavior is demonstrated experimentally rendering a 1mm diameter Flat Bottom Hole (FBH) in Copper-Nickel alloy undetectable using a larger array element. A 3-5dB SNR increase is predicted when using a 1.5D array assuming a spherical reflector and a 2dB increase was observed on experimental trials with a FBH. It is argued that this improvement is likely to be a lower bound estimate due to the specular behavior of a FBH with future trials planned on welded samples with realistic flaws.

  5. A fracture mechanics study of the phase separating planar electrodes: Phase field modeling and analytical results

    NASA Astrophysics Data System (ADS)

    Haftbaradaran, H.; Maddahian, A.; Mossaiby, F.

    2017-05-01

    It is well known that phase separation could severely intensify mechanical degradation and expedite capacity fading in lithium-ion battery electrodes during electrochemical cycling. Experiments have frequently revealed that such degradation effects could be substantially mitigated via reducing the electrode feature size to the nanoscale. The purpose of this work is to present a fracture mechanics study of the phase separating planar electrodes. To this end, a phase field model is utilized to predict how phase separation affects evolution of the solute distribution and stress profile in a planar electrode. Behavior of the preexisting flaws in the electrode in response to the diffusion induced stresses is then examined via computing the time dependent stress intensity factor arising at the tip of flaws during both the insertion and extraction half-cycles. Further, adopting a sharp-interphase approximation of the system, a critical electrode thickness is derived below which the phase separating electrode becomes flaw tolerant. Numerical results of the phase field model are also compared against analytical predictions of the sharp-interphase model. The results are further discussed with reference to the available experiments in the literature. Finally, some of the limitations of the model are cautioned.

  6. Global Warming?

    ERIC Educational Resources Information Center

    Eichman, Julia Christensen; Brown, Jeff A.

    1994-01-01

    Presents information and data on an experiment designed to test whether different atmosphere compositions are affected by light and temperature during both cooling and heating. Although flawed, the experiment should help students appreciate the difficulties that researchers face when trying to find evidence of global warming. (PR)

  7. JPRS Report, Science & Technology, USSR: Electronics & Electrical Engineering.

    DTIC Science & Technology

    1988-02-05

    Sirena -1 Self-propelled Flaw Detector [PRIBORYI SISTEMY UPRAVLENIYA, Jan 87] 14 Crane Strain-measurement Scales With Data Processing by a Microprocessor...was 3-5 m. 06415/06662 UDC 620.179.1:620.165.29 Algorithimization of Control of Electric Motor Drive of Sirena -1 Self-propelled Flaw Detector...The article describes one of the most optimum algorithms of control of the electric motor drive of the Sirena -1 self-propelled flaw detector

  8. Automatic Inspection Of Heat Seals Between Plastic Sheets

    NASA Technical Reports Server (NTRS)

    Rai, Kula R.; Lew, Thomas M.; Sinclair, Robert B.

    1995-01-01

    Automatic inspection apparatus detects flaws in heat seals between films of polyethylene or other thermoplastic material. Heat-sealed strip in multilayer plastic sheet continuously moved lengthwise over illuminators. Variations in light transmitted through sheet interpreted to find flaws in heat seal. Site of flaw marked to facilitate subsequent manual inspection. Heat sealing used to join plastic films in manufacturing of variety of products, including inflatable toys and balloons carrying scientific instruments to high altitudes.

  9. Development of an optical fiber interferometer for detection of surface flaws in aluminum

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.

    1991-01-01

    The main objective was to demonstrate the potential of using an optical fiber interferometer (OFI) to detect surface flaws in aluminum samples. Standard ultrasonic excitation was used to generate Rayleigh surface waves. After the waves interacted with a defect, the modified responses were detected using the OFI and the results were analyzed for time-of-flight and frequency content to predict the size and location of the flaws.

  10. Tensile cracking of a brittle conformal coating on a rough substrate

    DOE PAGES

    Reedy, Jr., E. D.

    2016-04-07

    This note examines the effect of interfacial roughness on the initiation and growth of channel cracks in a brittle film. A conformal film with cusp-like surface flaws that replicate the substrate roughness is investigated. This type of surface flaw is relatively severe in the sense that stress diverges as the cusp-tip is approached (i.e., there is a power-law stress singularity). For the geometry and range of film properties considered, the analysis suggests that smoothing the substrate could substantially increase the film’s resistance to the formation of the through-the-thickness cracks that precede channel cracking. Furthermore, smoothing the substrate’s surface has amore » relatively modest effect on the film stress needed to propagate a channel crack.« less

  11. Reliability Analysis of Uniaxially Ground Brittle Materials

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Nemeth, Noel N.; Powers, Lynn M.; Choi, Sung R.

    1995-01-01

    The fast fracture strength distribution of uniaxially ground, alpha silicon carbide was investigated as a function of grinding angle relative to the principal stress direction in flexure. Both as-ground and ground/annealed surfaces were investigated. The resulting flexural strength distributions were used to verify reliability models and predict the strength distribution of larger plate specimens tested in biaxial flexure. Complete fractography was done on the specimens. Failures occurred from agglomerates, machining cracks, or hybrid flaws that consisted of a machining crack located at a processing agglomerate. Annealing eliminated failures due to machining damage. Reliability analyses were performed using two and three parameter Weibull and Batdorf methodologies. The Weibull size effect was demonstrated for machining flaws. Mixed mode reliability models reasonably predicted the strength distributions of uniaxial flexure and biaxial plate specimens.

  12. PARENT Quick Blind Round-Robin Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braatz, Brett G.; Heasler, Patrick G.; Meyer, Ryan M.

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) whose goal is to investigate the effectiveness of current and novel nondestructive examination procedures and techniques to find flaws in nickel-alloy welds and base materials. This is to be done by conducting a series of open and blind international round-robin tests on a set of piping components that include large-bore dissimilar metal welds, small-bore dissimilar metal welds, and bottom-mounted instrumentation penetration welds. The blind testing is being conducted in two segments, one is called Quick-Blind and the other is called Blind. Themore » Quick-Blind testing and destructive analysis of the test blocks has been completed. This report describes the four Quick-Blind test blocks used, summarizes their destructive analysis, gives an overview of the nondestructive evaluation (NDE) techniques applied, provides an analysis inspection data, and presents the conclusions drawn.« less

  13. Fracture morphologies of carbon-black-loaded SBR (styrene-butadiene rubber) subjected to low-cycle, high-stress fatigue. [Styrene-butadiene rubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, A.; Lesuer, D.R.; Patt, J.

    Experimental results, together with an analytical model, related to the loss in tensile strength of styrene-butadiene rubber (SBR) loaded with carbon black (CB) that had been subjected to low-cycle, high-stress fatigue tests were presented in a prior paper. The drop in tensile strength relative to that of a virgin sample was considered to be a measure of damage induced during the fatigue test. The present paper is a continuation of this study dealing with the morphological interpretations of the fractured surfaces, whereby the cyclic-tearing behavior, resulting in the damage, is related to the test and material parameters. It was foundmore » that failure is almost always initiated in the bulk of a sample at a material flaw. The size and definition of a flaw increase with an increase in carbon-black loading. Initiation flaw sites are enveloped by fan-shaped or penny-shaped regions which develop during cycling. The size and morphology of a fatigue-tear region appears to be independent of the fatigue load or the extent of the damage (strength loss). By contrast, either an increase in cycling load or an increase in damage at constant load increases the definition of the fatigue-region morphology for all formulations of carbon-black. On the finest scale, the morphology can be described in terms of tearing of individual groups of rubber strands, collapsing to form a cell-like structure. 18 refs., 13 figs.« less

  14. Flaw Tolerance in Lap Shear Brazed Joints. Part 1

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Li-Qin

    2003-01-01

    Furnace brazing is a joining process used in the aerospace and other industries to produce strong permanent and hermetic structural joints. As in any joining process, brazed joints have various imperfections and defects. At the present time, our understanding of the influence of the internal defects on the strength of the brazed joints is not adequate. The goal of this 3-part investigation is to better understand the properties and failure mechanisms of the brazed joints containing defects. This study focuses on the behavior of the brazed lap shear joints because of their importance in manufacturing aerospace structures. In Part 1, an average shear strength capability and failure modes of the single lap joints are explored. Stainless steel specimens brazed with pure silver are tested in accordance with the AWS C3.2 standard. Comparison of the failure loads and the ultimate shear strength with the Finite Element Analysis (FEA) of the same specimens as a function of the overlap widths shows excellent correlation between the experimental and calculated values for the defect-free lap joints. A damage zone criterion is shown to work quite well in understanding the failure of the braze joints. In Part 2, the findings of the Part 1 will be verified on the larger test specimens. Also, various flaws will be introduced in the test specimens to simulate lack of braze coverage in the lap joints. Mechanical testing and FEA will be performed on these joints to verify that behavior of the flawed ductile lap joints is similar to joints with a reduced braze area. Finally, in Part 3, the results obtained in Parts 1 and 2 will be applied to the actual brazed structure to evaluate the load-carrying capability of a structural lap joint containing discontinuities. In addition, a simplified engineering procedure will be offered for the laboratory testing of the lap shear specimens.

  15. Health Promotion in an Age of Normative Equity and Rampant Inequality

    PubMed Central

    Labonté, Ronald

    2016-01-01

    The world was different when the Ottawa Charter for Health Promotion was released 30 years ago. Concerns over the environment and what we now call the ‘social determinants of health’ were prominent in 1986. But the acceleration of ecological crises and economic inequalities since then, in a more complex and multi-polar world, pose dramatically new challenges for those committed to the original vision of the Charter. Can the 2015 Sustainable Development Goals (SDGs), agreed to by all the world’s governments, offer a new advocacy and programmatic platform for a renewal of health promotion’s founding ethos? Critiqued from both the right and the left for, respectively, their aspirational idealism and lack of political analysis, the SDGs are an imperfect but still compelling normative statement of how much of the world thinks the world should look like. Many of the goals and targets provide signals for what we need to achieve, even if there remains a critical lacuna in articulating how this is to be done. The fundamental flaw in the SDGs is the implicit assumption that the same economic system, and its still-present neoliberal governing rules, that have created or accelerated our present era of rampaging inequality and environmental peril can somehow be harnessed to engineer the reverse. This flaw is not irrevocable, however, if health promoters – practitioners, researchers, advocates – focus their efforts on a few key SDGs that, with some additional critique, form a basic blueprint for a system of national and global regulation of capitalism (or even its transformation) that is desperately needed for social and ecological survival into the 22nd century. Whether or not these efforts succeed is a future unknown; but that the efforts are made is a present urgency. PMID:28005546

  16. Phased Array Ultrasonic Examination of Reactor Coolant System (Carbon Steel-to-CASS) Dissimilar Metal Weld Mockup Specimen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, S. L.; Cinson, A. D.; Diaz, A. A.

    2015-11-23

    In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objectivemore » of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.« less

  17. ARES I-X USS Fracture Analysis Loads Spectra Development

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis; Mackey, Alden

    2008-01-01

    This report describes the development of a set of bounding load spectra for the ARES I-X launch vehicle. These load spectra are used in the determination of the critical initial flaw size (CIFS) of the welds in the ARES I-X upper stage simulator (USS).

  18. Flaws in Fellowships: Institutional Support Essential to Boosting Number of African American Doctoral Students.

    ERIC Educational Resources Information Center

    Manzo, Kathleen Kennedy

    1994-01-01

    An analysis of student financial aid for African American doctoral students combines discussion of problems in student recruitment and persistence, particularly for financial reasons, with data on patterns of minority group graduate student enrollment, financial aid, debt, and degree awards. (MSE)

  19. Isolation of Flaws by Use of Thermal Differentials on a Tire Under Mild Loading Conditions

    DOT National Transportation Integrated Search

    1972-02-01

    Twenty-six used and rebuilt solid rubber road wheels were examined by an infrared temperature profiling technique during drum test exercise. The IR method was evaluated as a nondestructive means of predicting road wheel integrity by analysis of the c...

  20. Crack Coalescence in Molded Gypsum and Carrara Marble

    NASA Astrophysics Data System (ADS)

    Wong, N.; Einstein, H. H.

    2007-12-01

    This research investigates the fracturing and coalescence behavior in prismatic laboratory-molded gypsum and Carrara marble specimens, which consist of either one or two pre-existing open flaws, under uniaxial compression. The tests are monitored by a high speed video system with a frame rate up to 24,000 frames/second. It allows one to precisely observe the cracking mechanisms, in particular if shear or tensile fracturing takes place. Seven crack types and nine crack coalescence categories are identified. The flaw inclination angle, the ligament length and the bridging angle between two flaws have different extents of influence on the coalescence patterns. For coplanar flaws, as the flaw inclination angle increases, there is a general trend of variation from shear coalescence to tensile coalescence. For stepped flaws, as the bridging angle changes from negative to small positive, and further up to large positive values, the coalescence generally progresses from categories of no coalescence, indirect coalescence to direct coalescence. For direct coalescence, it generally progresses from shear, mixed shear-tensile to tensile as the bridging angle increases. Some differences in fracturing and coalescence processes are observed in gypsum and marble, particularly the crack initiation in marble is preceded by the development of macroscopic white patches, but not in gypsum. Scanning Electron Microprobe (SEM) study reveals that the white patches consist of zones of microcracks (process zones).

  1. Novel Repair Technique for Life-Extension of Hydraulic Turbine Components in Hydroelectric Power Stations

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Yoichi; Ishii, Jun; Funato, Kazuhiro

    A significant number of hydraulic turbines operated in Japan were installed in the first half of the 20th century. Today, aging degradation and flaws are observed in these turbine equipments. So far, Japanese engineers have applied NDI technology of Ultrasonic Testing (UT) to detect the flaws, and after empirical evaluation of the remaining life they decided an adequate moment to replace the equipments. Since the replacement requires a large-scale field site works and high-cost, one of the solutions for life-extension of the equipments is introduction of repair services. We have been working in order to enhance the accuracy of results during the detection of flaws and flaws dimensioning, in particular focusing on the techniques of Tip-echo, TOFD and Phased-Array UT, accompanied by the conventional UT. These NDI methods made possible to recognize the entire image of surface and embedded flaws with complicated geometry. Then, we have developed an evaluation system of these flaws based on the theory of crack propagation, of the logic of crack growth driven by the stress-intensity factor of the crack tip front. The sophisticated evaluation system is constituted by a hand-made software and database of stress-intensity factor. Based on these elemental technologies, we propose a technique of repair welding to provide a life-extension of hydraulic turbine components.

  2. Quality of reporting of systematic reviews published in “evidence-based” Chinese journals

    PubMed Central

    2014-01-01

    Background The number of systematic reviews (SRs)/meta-analyses (MAs) has increased dramatically in China over the past decades. However, evaluation of quality of reporting of systematic reviews published has not been undertaken. The objective of this study is to evaluate the quality of reporting of SRs/MAs assessing efficacy and/or harms of clinical interventions published in “evidence-based” Chinese journals. Methods Web-based database searches were conducted for the Chinese Journal of Evidence-based Medicine, the Journal of Evidence-Based Medicine, the Chinese Journal of Evidence Based Pediatrics, and the Chinese Journal of Evidence-Based Cardiovascular Medicine. SRs/MAs assessing efficacy and/or harms of clinical interventions were included. The cut-off was December 31st 2011. The PRISMA statement was applied to assess the quality of reporting. Each item was assessed as follows: ‘Yes’ for total compliance, scored ‘1’; ‘partial’ for partial compliance, scored ‘0.5’; and ‘No’ for non-compliance, scored ‘0’. The review was considered to have major flaws if it received a total score of ≤15.0, minor flaws if it received a total score of 15.5 to 21.0, and minimal flaws if it received a total score 21.5 to 27.0. Odds ratios were used for binary variables, and the mean difference was used for continuous variables. Analyses were performed using RevMan 5.0 software. Results Overall, 487 SRs/MAs were identified and assessed. The included reviews had medium quality with minor flaws based on PRISMA total scores (range: 8.5–26.0; mean: 19.6 ± 3.3). The stratified analysis showed that SRs/MAs with more than 3 authors, from a university, hospital + university cooperation, multiple affiliations (≥2), and funding have significantly higher quality of reporting of SRs/MAs; 58% of the included reviews were considered to have minor flaws (total score of 15.6 to 21.0). Only 9.6% of reviews were considered to have major flaws. Specific areas needing improvement in reporting include the abstract, protocol and registration, and characteristics of the search. Conclusions The reporting of SRs published in “evidence-based” Chinese journals is poor and needs to be improved in order for reviews to be useful. SR authors should use the PRISMA checklist to ensure complete and accurate accounts of their SRs. PMID:24906805

  3. Software Method for Computed Tomography Cylinder Data Unwrapping, Re-slicing, and Analysis

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    2013-01-01

    A software method has been developed that is applicable for analyzing cylindrical and partially cylindrical objects inspected using computed tomography (CT). This method involves unwrapping and re-slicing data so that the CT data from the cylindrical object can be viewed as a series of 2D sheets (or flattened onion skins ) in addition to a series of top view slices and 3D volume rendering. The advantages of viewing the data in this fashion are as follows: (1) the use of standard and specialized image processing and analysis methods is facilitated having 2D array data versus a volume rendering; (2) accurate lateral dimensional analysis of flaws is possible in the unwrapped sheets versus volume rendering; (3) flaws in the part jump out at the inspector with the proper contrast expansion settings in the unwrapped sheets; and (4) it is much easier for the inspector to locate flaws in the unwrapped sheets versus top view slices for very thin cylinders. The method is fully automated and requires no input from the user except proper voxel dimension from the CT experiment and wall thickness of the part. The software is available in 32-bit and 64-bit versions, and can be used with binary data (8- and 16-bit) and BMP type CT image sets. The software has memory (RAM) and hard-drive based modes. The advantage of the (64-bit) RAM-based mode is speed (and is very practical for users of 64-bit Windows operating systems and computers having 16 GB or more RAM). The advantage of the hard-drive based analysis is one can work with essentially unlimited-sized data sets. Separate windows are spawned for the unwrapped/re-sliced data view and any image processing interactive capability. Individual unwrapped images and un -wrapped image series can be saved in common image formats. More information is available at http://www.grc.nasa.gov/WWW/OptInstr/ NDE_CT_CylinderUnwrapper.html.

  4. Diagnosis, Dogmatism, and Rationality.

    ERIC Educational Resources Information Center

    Rabinowitz, Jonathan; Efron, Noah J.

    1997-01-01

    Presents findings suggesting that misdiagnoses frequently stem from flaws in human information processing, particularly in collecting and using information. Claims that improved diagnostic tools will not remedy the problem. Drawing on the work of Karl Popper and Robin Collingwood, proposes operational principles to ensure a rational diagnostic…

  5. Detection and assessment of flaws in friction stir welded metallic plates

    NASA Astrophysics Data System (ADS)

    Fakih, Mohammad Ali; Mustapha, Samir; Tarraf, Jaafar; Ayoub, Georges; Hamade, Ramsey

    2017-04-01

    Investigated is the ability of ultrasonic guided waves to detect flaws and assess the quality of friction stir welds (FSW). AZ31B magnesium plates were friction stir welded. While process parameters of spindle speed and tool feed were fixed, shoulder penetration depth was varied resulting in welds of varying quality. Ultrasonic waves were excited at different frequencies using piezoelectric wafers and the fundamental symmetric (S0) mode was selected to detect the flaws resulting from the welding process. The front of the first transmitted wave signal was used to capture the S0 mode. A damage index (DI) measure was defined based on the amplitude attenuation after wave interaction with the welded zone. Computed Tomography (CT) scanning was employed as a nondestructive testing (NDT) technique to assess the actual weld quality. Derived DI values were plotted against CT-derived flaw volume resulting in a perfectly linear fit. The proposed approach showed high sensitivity of the S0 mode to internal flaws within the weld. As such, this methodology bears great potential as a future predictive method for the evaluation of FSW weld quality.

  6. Unit-Sphere Anisotropic Multiaxial Stochastic-Strength Model Probability Density Distribution for the Orientation of Critical Flaws

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel

    2013-01-01

    Models that predict the failure probability of monolithic glass and ceramic components under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" failure models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This report develops a formulation to describe the probability density distribution of the orientation of critical strength-controlling flaws that results from an applied load. This distribution is a function of the multiaxial stress state, the shear sensitivity of the flaws, the Weibull modulus, and the strength anisotropy. Examples are provided showing the predicted response on the unit sphere for various stress states for isotropic and transversely isotropic (anisotropic) materials--including the most probable orientation of critical flaws for offset uniaxial loads with strength anisotropy. The author anticipates that this information could be used to determine anisotropic stiffness degradation or anisotropic damage evolution for individual brittle (or quasi-brittle) composite material constituents within finite element or micromechanics-based software

  7. Progress on ultrasonic flaw sizing in turbine-engine rotor components: bore and web geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, J.H.; Gray, T.A.; Thompson, R.B.

    1983-01-01

    The application of generic flaw-sizing techniques to specific components generally involves difficulties associated with geometrical complexity and simplifications arising from a knowledge of the expected flaw distribution. This paper is concerned with the case of ultrasonic flaw sizing in turbine-engine rotor components. The sizing of flat penny-shaped cracks in the web geometry discussed and new crack-sizing algorithms based on the Born and Kirchhoff approximations are introduced. Additionally, we propose a simple method for finding the size of a flat, penny-shaped crack given only the magnitude of the scattering amplitude. The bore geometry is discussed with primary emphasis on the cylindricalmore » focusing of the incident beam. Important questions which are addressed include the effects of diffraction and the position of the flaw with respect to the focal line. The appropriate deconvolution procedures to account for these effects are introduced. Generic features of the theory are compared with experiment. Finally, the effects of focused transducers on the Born inversion algorithm are discussed.« less

  8. Fundamentally Flawed: Extension Administrative Practice (Part 1).

    ERIC Educational Resources Information Center

    Patterson, Thomas F., Jr.

    1997-01-01

    Extension's current administrative techniques are based on the assumptions of classical management from the early 20th century. They are fundamentally flawed and inappropriate for the contemporary workplace. (SK)

  9. DEVELOPMENT AND APPLICATION OF MATERIALS PROPERTIES FOR FLAW STABILITY ANALYSIS IN EXTREME ENVIRONMENT SERVICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sindelar, R; Ps Lam, P; Andrew Duncan, A

    Discovery of aging phenomena in the materials of a structure may arise after its design and construction that impact its structural integrity. This condition can be addressed through a demonstration of integrity with the material-specific degraded conditions. Two case studies of development of fracture and crack growth property data, and their application in development of in-service inspection programs for nuclear structures in the defense complex are presented. The first case study covers the development of fracture toughness properties in the form of J-R curves for rolled plate Type 304 stainless steel with Type 308 stainless steel filler in the applicationmore » to demonstrate the integrity of the reactor tanks of the heavy water production reactors at the Savannah River Site. The fracture properties for the base, weld, and heat-affected zone of the weldments irradiated at low temperatures (110-150 C) up to 6.4 dpa{sub NRT} and 275 appm helium were developed. An expert group provided consensus for application of the irradiated properties for material input to acceptance criteria for ultrasonic examination of the reactor tanks. Dr. Spencer H. Bush played a lead advisory role in this work. The second case study covers the development of fracture toughness for A285 carbon steel in high level radioactive waste tanks. The approach in this case study incorporated a statistical experimental design for material testing to address metallurgical factors important to fracture toughness. Tolerance intervals were constructed to identify the lower bound fracture toughness for material input to flaw disposition through acceptance by analysis.« less

  10. Electromagnetic Detection of Fatigue Cracks under Protruding Head Ferromagnetic Fasteners

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Namkung, Min

    2004-01-01

    The detection of fatigue cracks under installed fasteners has been a major goal of the aging aircraft NDE community. The Sliding Probe, Magneto-Optic Imager, Rotating Self-Nulling Probe, Low Frequency Eddy Current Array, and Eddyscan systems are among the instruments developed for this inspection. It has been verified that the detection of fatigue cracks under flush head aluminum and titanium fasteners can be accomplished with a high resolution by the above techniques. The detection of fatigue cracks under ferromagnetic and protruding head fasteners, however, has been found to be much more difficult. For the present work, the inspection for fatigue cracks under SAE 4340 Steel Hi-Lok fasteners is explored. Modifications to the Rotating Self-Nulling Eddy Current Probe System are presented which enable the detection of fatigue cracks hidden under the protruding head of the ferromagnetic fastener. Inspection results for samples with varying length EDM notches are shown, as well as a comparison between the signature from an EDM notch and an actual fatigue crack. Finite Element Modeling is used to investigate the effect of the ferromagnetic fastener on the induced eddy current distribution in order to help explain the detection characteristics of the system. This paper will also introduce a modification to the Rotating Probe System designed specifically for the detection of deeply buried flaws in multilayer conductors. The design change incorporates a giant magnetoresistive (GMR) sensor as the pickup device to improve the low frequency performance of the probe. The flaw detection capabilities of the GMR based Self- Nulling Probe are presented along with the status of the GMR based Rotating Probe System for detection of deeply buried flaws under installed fasteners.

  11. Study of Graphite/Epoxy Composites for Material Flaw Criticality.

    DTIC Science & Technology

    1980-11-01

    criticality of disbonds with two-dimensional planforms located in laminated graphite/epoxy composites has been examined. Linear elastic fracture...mechanics approach, semi-empirical growth laws and methods of stress analysis based on a modified laminated plate theory have been studied for assessing...growth rates of disbonds in a transverse shear environ- ment. Elastic stability analysis has been utilized for laminates with disbonds subjected to in

  12. Ion Exchange Strengthening of a Leucite-Reinforced Dental Ceramic

    DTIC Science & Technology

    1997-07-11

    internal surface, due to internal surface flaws (Kelly et, al., 1989; Kelly et al., 1990). Finite - element -stress analysis reveals that the occlusal...associated with the use of metal substructures exist. Numerous all-ceramic systems have been introduced, however strengths equivalent to metal-ceramic...yielded significantly higher flexural strength values than potassium exchange at similar treatment conditions (Student Newman-Keuls analysis , p < 0.05

  13. Utility competition, DSM, and piano bars: The fatal flaw

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studness, C.M.

    1993-08-01

    This article is an economic analysis of demand side management (DSM). The author contends that utilities and regulators have lost sight of their primary mission of providing electric power as efficiently as possible; DSM conflicts with this mission. DSM measures have not be submitted to a market test, so utilities are not necessarily providing the customers with what they want. This situation is compared to the airline industry before deregulation, when airlines provided expensive services that customers did not want. Also, with present technology, DSM measures consume more in total resources than it what it costs to produce electricity, therebymore » depleting the nation's resources at a greater rate.« less

  14. Three-factor anonymous authentication and key agreement scheme for Telecare Medicine Information Systems.

    PubMed

    Arshad, Hamed; Nikooghadam, Morteza

    2014-12-01

    Nowadays, with comprehensive employment of the internet, healthcare delivery services is provided remotely by telecare medicine information systems (TMISs). A secure mechanism for authentication and key agreement is one of the most important security requirements for TMISs. Recently, Tan proposed a user anonymity preserving three-factor authentication scheme for TMIS. The present paper shows that Tan's scheme is vulnerable to replay attacks and Denial-of-Service attacks. In order to overcome these security flaws, a new and efficient three-factor anonymous authentication and key agreement scheme for TMIS is proposed. Security and performance analysis shows superiority of the proposed scheme in comparison with previously proposed schemes that are related to security of TMISs.

  15. Simulation of Stagnation Region Heating in Hypersonic Flow on Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2007-01-01

    Hypersonic flow simulations using the node based, unstructured grid code FUN3D are presented. Applications include simple (cylinder) and complex (towed ballute) configurations. Emphasis throughout is on computation of stagnation region heating in hypersonic flow on tetrahedral grids. Hypersonic flow over a cylinder provides a simple test problem for exposing any flaws in a simulation algorithm with regard to its ability to compute accurate heating on such grids. Such flaws predominantly derive from the quality of the captured shock. The importance of pure tetrahedral formulations are discussed. Algorithm adjustments for the baseline Roe / Symmetric, Total-Variation-Diminishing (STVD) formulation to deal with simulation accuracy are presented. Formulations of surface normal gradients to compute heating and diffusion to the surface as needed for a radiative equilibrium wall boundary condition and finite catalytic wall boundary in the node-based unstructured environment are developed. A satisfactory resolution of the heating problem on tetrahedral grids is not realized here; however, a definition of a test problem, and discussion of observed algorithm behaviors to date are presented in order to promote further research on this important problem.

  16. A fractional Fourier transform analysis of the scattering of ultrasonic waves

    PubMed Central

    Tant, Katherine M.M.; Mulholland, Anthony J.; Langer, Matthias; Gachagan, Anthony

    2015-01-01

    Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time–frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time–frequency domain framework to assist in flaw identification and classification. PMID:25792967

  17. Strengths of balloon films with flaws and repairs

    NASA Technical Reports Server (NTRS)

    Portanova, M. A.

    1989-01-01

    The effects of manufacture flaws and repairs in high altitude scientific balloons was examined. A right circular cylinder was used to induce a biaxial tension-tension stress field in the polyethlene film used to manufacture these balloons. A preliminary investigation of the effect that cylinder geometry has on stress rate as a function of inflation rate was conducted. The ultimate goal was to rank, by order of degrading effects, the flaws and repairs commonly found in current high altitude balloons.

  18. Problematizing Multiculturalism and the "Common Culture."

    ERIC Educational Resources Information Center

    San Juan, E., Jr.

    1994-01-01

    Uses Marxist analysis to criticize the concept of multiculturalism that suggests culturalism's flaw lies in its disjunction of the institutional practices of intellectuals from the operations of the centralized state and the power of corporate business. An agenda is proposed for ethnic culture workers that utilizes economic and cultural analysis…

  19. Fracture and Fatigue Strength Evaluation of Multiple Site Damaged Aircraft Fuselages - Curved Panel Testing and Analysis.

    DOT National Transportation Integrated Search

    1994-01-01

    As the fleet of commercial passenger aircraft is utilized beyond their design lives, flaws have developed at the rivet holes of fuselage lap joints on some aircraft, which can grow and link up into cracks of significant length. Understanding, predict...

  20. Analysis of Adhesively Bonded Ceramics Using an Asymmetric Wedge Test

    DTIC Science & Technology

    2008-12-01

    4 Figure 2. Average crack ...flexure specimen. The flaw, indicated by the white arrow, is a subsurface semi-elliptical crack induced by surface machining damage...strength-limiting orthogonal surface machining crack in an alumina flexure specimen coated with a single layer of film adhesive. The white arrow

  1. Issues in Television-Centered Instruction.

    ERIC Educational Resources Information Center

    Richardson, Penelope L.

    Current research on the adult learner and on instruction through media has grave flaws, and reviews of research in five areas are needed to assist instructional developers and adopters in making wise decisions. These include a critical analysis of existing telecourse packages, as well as reviews of research on the motivation of various subgroups…

  2. (The Androgyny Dimension: A Comment on Stokes, Childs, and Fuehrer: And a Response.)

    ERIC Educational Resources Information Center

    Lubinski, David; Stokes, Joseph

    1983-01-01

    Suggests a critical methodological flaw in a study done about the relationship between the Bem Sex-Role Inventory and certain indices of self-disclosure (Stokes, et al.). Notes that multiple regression analysis was not performed in appropriate hierarchical fashion. Includes Stokes reply to the critique. (PAS)

  3. Interventions for Behaviorally Disordered Students: A Quantitative Review and Methodological Critique.

    ERIC Educational Resources Information Center

    Skiba, Russell; Casey, Ann

    1985-01-01

    Results of three forms of meta-analysis on 41 studies involving behavior disorders revealed powerful effects of treatment: both interventions targeting classroom behavior and those attributable to a behavioral orientation were somewhat more powerful and robust. Methodological flaws, however, are cited. Recommendations for solidifying the research…

  4. Characterization of Reaction Sintered Silicon Nitride Radomes

    DTIC Science & Technology

    1977-10-01

    A. Ossin , "A Three Dtraenslonal Stress Analysis on the Effects of a Laser Induced Local Hot Spot on a Silicon Nitride Shell, " Martin Marietta...not stated by Ossin , et al, these boundary conditions are extremes and bracket the realistic case. ** In cases where only a few large flaws limit

  5. Determining Kinetic Parameters for Isothermal Crystallization of Glasses

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Zhang, T.; Reis, S. T.; Brow, R. K.

    2006-01-01

    Non-isothermal crystallization techniques are frequently used to determine the kinetic parameters for crystallization in glasses. These techniques are experimentally simple and quick compared to the isothermal techniques. However, the analytical models used for non-isothermal data analysis, originally developed for describing isothermal transformation kinetics, are fundamentally flawed. The present paper describes a technique for determining the kinetic parameters for isothermal crystallization in glasses, which eliminates most of the common problems that generally make the studies of isothermal crystallization laborious and time consuming. In this technique, the volume fraction of glass that is crystallized as a function of time during an isothermal hold was determined using differential thermal analysis (DTA). The crystallization parameters for the lithium-disilicate (Li2O.2SiO2) model glass were first determined and compared to the same parameters determined by other techniques to establish the accuracy and usefulness of the present technique. This technique was then used to describe the crystallization kinetics of a complex Ca-Sr-Zn-silicate glass developed for sealing solid oxide fuel cells.

  6. Thick section aluminum weldments for SRB structures

    NASA Technical Reports Server (NTRS)

    Bayless, E.; Sexton, J.

    1978-01-01

    The Space Shuttle Solid Rocket Booster (SRB) forward and aft skirts were designed with fracture control considerations used in the design data. Fracture control is based on reliance upon nondestructive evaluation (NDE) techniques to detect potentially critical flaws. In the aerospace industry, welds on aluminum in the thicknesses (0.500 to 1.375 in.) such as those encountered on the SRB skirts are normally welded from both sides to minimize distortion. This presents a problem with the potential presence of undefined areas of incomplete fusion and the inability to detect these potential flaws by NDE techniques. To eliminate the possibility of an undetectable defect, weld joint design was revised to eliminate blind root penetrations. Weld parameters and mechanical property data were developed to verify the adequacy of the new joint design.

  7. The Hubble Space Telescope: Problems and Solutions.

    ERIC Educational Resources Information Center

    Villard, Ray

    1990-01-01

    Presented is the best understanding of the flaw discovered in the optics of the Hubble Space Telescope and the possible solutions to the problems. The spherical aberration in the telescope's mirror and its effect on the quality of the telescope's imaging ability is discussed. (CW)

  8. Sustainability and the Learning Virtues

    ERIC Educational Resources Information Center

    Foster, John

    2011-01-01

    Learning is important to sustainability--but how? On the dominant sustainable development picture, various kinds of learning are seen as instrumental to one's behaving responsibly towards future generations, within a framework of present actions and ecological consequences. This whole picture of future-oriented responsibility is radically flawed,…

  9. Principal Component Analysis of Thermographic Data

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Cramer, K. Elliott; Zalameda, Joseph N.; Howell, Patricia A.; Burke, Eric R.

    2015-01-01

    Principal Component Analysis (PCA) has been shown effective for reducing thermographic NDE data. While a reliable technique for enhancing the visibility of defects in thermal data, PCA can be computationally intense and time consuming when applied to the large data sets typical in thermography. Additionally, PCA can experience problems when very large defects are present (defects that dominate the field-of-view), since the calculation of the eigenvectors is now governed by the presence of the defect, not the "good" material. To increase the processing speed and to minimize the negative effects of large defects, an alternative method of PCA is being pursued where a fixed set of eigenvectors, generated from an analytic model of the thermal response of the material under examination, is used to process the thermal data from composite materials. This method has been applied for characterization of flaws.

  10. Recent modelling advances for ultrasonic TOFD inspections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darmon, Michel; Ferrand, Adrien; Dorval, Vincent

    The ultrasonic TOFD (Time of Flight Diffraction) Technique is commonly used to detect and characterize disoriented cracks using their edge diffraction echoes. An overview of the models integrated in the CIVA software platform and devoted to TOFD simulation is presented. CIVA allows to predict diffraction echoes from complex 3D flaws using a PTD (Physical Theory of Diffraction) based model. Other dedicated developments have been added to simulate lateral waves in 3D on planar entry surfaces and in 2D on irregular surfaces by a ray approach. Calibration echoes from Side Drilled Holes (SDHs), specimen echoes and shadowing effects from flaws canmore » also been modelled. Some examples of theoretical validation of the models are presented. In addition, experimental validations have been performed both on planar blocks containing calibration holes and various notches and also on a specimen with an irregular entry surface and allow to draw conclusions on the validity of all the developed models.« less

  11. Invariance algorithms for processing NDE signals

    NASA Astrophysics Data System (ADS)

    Mandayam, Shreekanth; Udpa, Lalita; Udpa, Satish S.; Lord, William

    1996-11-01

    Signals that are obtained in a variety of nondestructive evaluation (NDE) processes capture information not only about the characteristics of the flaw, but also reflect variations in the specimen's material properties. Such signal changes may be viewed as anomalies that could obscure defect related information. An example of this situation occurs during in-line inspection of gas transmission pipelines. The magnetic flux leakage (MFL) method is used to conduct noninvasive measurements of the integrity of the pipe-wall. The MFL signals contain information both about the permeability of the pipe-wall and the dimensions of the flaw. Similar operational effects can be found in other NDE processes. This paper presents algorithms to render NDE signals invariant to selected test parameters, while retaining defect related information. Wavelet transform based neural network techniques are employed to develop the invariance algorithms. The invariance transformation is shown to be a necessary pre-processing step for subsequent defect characterization and visualization schemes. Results demonstrating the successful application of the method are presented.

  12. NDE detectability of fatigue type cracks in high strength alloys

    NASA Technical Reports Server (NTRS)

    Christner, B. K.; Rummel, W. D.

    1983-01-01

    Specimens suitable for investigating the reliability of production nondestructive evaluation (NDE) to detect tightly closed fatigue cracks in high strength alloys representative of those materials used in spacecraft engine/booster construction were produced. Inconel 718 was selected as representative of nickel base alloys and Haynes 188 was selected as representative of cobalt base alloys used in this application. Cleaning procedures were developed to insure the reusability of the test specimens and a flaw detection reliability assessment of the fluorescent penetrant inspection method was performed using the test specimens produced to characterize their use for future reliability assessments and to provide additional NDE flaw detection reliability data for high strength alloys. The statistical analysis of the fluorescent penetrant inspection data was performed to determine the detection reliabilities for each inspection at a 90% probability/95% confidence level.

  13. [The application of operating room quality backward system in instrument place management].

    PubMed

    Du, Hui; He, Anjie; Zeng, Leilei

    2010-09-01

    Improvement of the surgery instrument's clean quality, the optimized preparation way, reasonable arrangement in groups, raising the working efficiency. We use the quality backward system into the instrument clean, the pack and the preparation way's question, carry on the analysis and the optimization, and appraise the effect after trying out 6 months. After finally the way optimized, instrument clean quality distinct enhancement; The flaws in the instrument clean, the pack way and the total operating time reduce; the contradictory between nurses and the cleans arising from the unclear connection reduces, the satisfaction degree of nurse and doctor to the instrument enhances. Using of operating room quality backward system in the management of the instrument clean, the pack and the preparation way optimized, may reduce flaws in the work and the waste of human resources, raise the working efficiency.

  14. Flawed gun policy research could endanger public safety.

    PubMed Central

    Webster, D W; Vernick, J S; Ludwig, J; Lester, K J

    1997-01-01

    A highly publicized recent study by Lott and Mustard concludes that laws easing restrictions on licenses for carrying concealed firearms in public substantially reduce violent crime. Several serious flaws in the study render the authors' conclusions insupportable. These flaws include misclassification of gun-carrying laws, endogeneity of predictor variables, omission of confounding variables, and failure to control for the cyclical nature of crime trends. Most of these problems should bias results toward overestimating the crime-reducing effects of laws making it easier to carry concealed firearms in public. Lott and Mustard's statistical models produce findings inconsistent with criminological theories and well-established facts about crime, and subsequent reanalysis of their data challenges their conclusions. Public health professionals should understand the methodological issues raised in this commentary, particularly when flawed research could influence the introduction of policies with potentially deleterious consequences. PMID:9224169

  15. Development of flaw acceptance criteria for aging management of spent nuclear fuel multiple-purpose canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, P.; Sindelar, R.

    2015-03-09

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. The canister may be subject to service-induced degradation when it is exposed to aggressive atmospheric environments during a possibly long-term storage period if the permanent repository is yet to be identified and readied. Because heat treatment for stress relief is not required for the construction of an MPC, stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defectsmore » be detected by periodic In-service Inspection. The first-order instability flaw sizes has been determined with bounding flaw configurations, that is, through-wall axial or circumferential cracks, and part-through-wall long axial flaw or 360° circumferential crack. The procedure recommended by the American Petroleum Institute (API) 579 Fitness-for-Service code (Second Edition) is used to estimate the instability crack length or depth by implementing the failure assessment diagram (FAD) methodology. The welding residual stresses are mostly unknown and are therefore estimated with the API 579 procedure. It is demonstrated in this paper that the residual stress has significant impact on the instability length or depth of the crack. The findings will limit the applicability of the flaw tolerance obtained from limit load approach where residual stress is ignored and only ligament yielding is considered.« less

  16. Development of flaw acceptance criteria for aging management of spent nuclear fuel multi-purpose canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Poh -Sang; Sindelar, Robert L.

    2015-03-09

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. The canister may be subject to service-induced degradation when it is exposed to aggressive atmospheric environments during a possibly long-term storage period if the permanent repository is yet to be identified and readied. Because heat treatment for stress relief is not required for the construction of an MPC, stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defectsmore » be detected by periodic in-service Inspection. The first-order instability flaw sizes has been determined with bounding flaw configurations, that is, through-wall axial or circumferential cracks, and part-through-wall long axial flaw or 360° circumferential crack. The procedure recommended by the American Petroleum Institute (API) 579 Fitness-for-Service code (Second Edition) is used to estimate the instability crack length or depth by implementing the failure assessment diagram (FAD) methodology. The welding residual stresses are mostly unknown and are therefore estimated with the API 579 procedure. It is demonstrated in this paper that the residual stress has significant impact on the instability length or depth of the crack. The findings will limit the applicability of the flaw tolerance obtained from limit load approach where residual stress is ignored and only ligament yielding is considered.« less

  17. Updated Fatigue-Crack-Growth And Fracture-Mechanics Software

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Shivakumar, Venkataraman; Newman, James C., Jr.

    1995-01-01

    NASA/FLAGRO 2.0 developed as analytical aid in predicting growth and stability of preexisting flaws and cracks in structural components of aerospace systems. Used for fracture-control analysis of space hardware. Organized into three modules to maximize efficiency in operation. Useful in: (1) crack-instability/crack-growth analysis, (2) processing raw crack-growth data from laboratory tests, and (3) boundary-element analysis to determine stresses and stress-intensity factors. Written in FORTRAN 77 and ANSI C.

  18. Further damage induced by water in micro-indentations in phosphate laser glass

    NASA Astrophysics Data System (ADS)

    Yu, Jiaxin; Jian, Qingyun; Yuan, Weifeng; Gu, Bin; Ji, Fang; Huang, Wen

    2014-02-01

    Using a microhardness tester, artificial flaws were made by micro-indentation in N31 Nd-doped phosphate laser glass. Indentation fracture toughness, KIC, was estimated as 0.45-0.53 MPa m1/2 from these indentations. The glasses with indentations were then immersed in ultrapure water to investigate further water-induced damage of these indentations. Stress-enhanced hydrolysis leads to the propagations of radial crack, lateral cracks and microcracks in the subsurface. These crack propagations therefore cause deformation in subsurface to form annular reflections regions around the indentations and further material collapse within imprints. After the residual stresses are exhausted, the leaching plays a more dominated role in glass corrosion in the further immersion. After immersion, the material structure slackens around micro-indentation, which decreases the contact stiffness and results in a lower nano-hardness. For the surface far away from flaws, water immersion presents a weak effect on the near-surface mechanical since the matrix leaching in phosphate glass restricts the formation of hydration layer. During first 20 min immersion, due to higher chemical activity and lower fracture toughness, the radial cracks show a faster propagation in phosphate glass compared with that in K9 silicate glass. For further immersion, crack healing occurs in silicate glass but not in phosphate glass. Analysis shows that the formation of hydration layer on crack walls plays an important role in crack healing in glasses.

  19. Child Maltreatment Seriousness and Juvenile Delinquency.

    ERIC Educational Resources Information Center

    Doerner, William G.

    1987-01-01

    Methodological flaws have spoiled the literature that attempts to link maltreatment to juvenile delinquency. This article presents improved definitions and measuring procedures for maltreatment and delinquency. The empirical findings show that certain types of child abuse and neglect are related to delinquency but that other types of maltreatment…

  20. Stress intensity factors for deep cracks emanating from the corner formed by a hole intersecting a plate surface

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. J.; Smith, C. W.

    1974-01-01

    A technique consisting of a marriage between stress freezing photoelasticity and a numerical method was used to obtain stress intensity factors for natural cracks emanating from the corner at which a hole intersects a plate surface. Geometrics studied were: crack depth to thickness ratios of approximately 0.2, 0.5, and 0.75; crack depth to crack length ratios of approximately 1.0 to 2.0. All final crack geometries were grown under monotonic loading and growth was not self similar with most of the growth occurring through the thickness under remote extension. Stress intensity plate surface K sub s factors were determined at the intersection of the flaw border with the plate surface K sub s and with the edge of the hole K sub h. Results showed that for the relatively shallow flaws K sub h approximately equal to 1.5 K sub s, for the moderately deep flaws K sub h approximately equal to K sub s, and for the deep flaws K sub h approximately equal to 0.5 K sub s, revealing a severe sensitivity of K to flaw geometry.

  1. Stress intensity factors for deep cracks emanating from the corner formed by a hole intersecting a plate surface

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. J.; Smith, C. W.

    1976-01-01

    The stress intensity factors (SIFs) at the end points of flaws emanating from the corner formed by the intersection of a plate with a hole were determined using stress freezing photoelasticity and a numerical technique known as the Taylor series correction method to extract the SIF values from the photoelastic data. The geometries studied were crack depth to thickness ratios of about 0.2, 0.5, and 0.75; crack depth to crack length ratios of about 1.0 to 2.0; and crack length to hole radius ratios of about 0.5 to 2.0. The SIFs were determined at the intersection of the flaw border with the plate surface (KS) and with the edge of the hole (KH). It is shown that extension of a crack emanating from a corner of intersection of a hole with a plate under monotonically increasing load is not self-similar and that as the flaw depth increases, KH decreases and KS increases. Existing theories and design criteria significantly overestimate the SIF at both the hole and the surface except for shallow flaws at the hole and deep flaws at the surface.

  2. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  3. Heat-affected zone and phase composition of 0.09 C-2 Mn-1 Si-Fe steel depending on welding technique

    NASA Astrophysics Data System (ADS)

    Popova, Natalya; Ozhiganov, Eugeniy; Nikonenko, Elena; Ababkov, Nikolay; Smirnov, Aleksander; Koneva, Nina

    2017-11-01

    The paper presents the transmission electron microscopy (TEM) investigations of the structure and phase composition of the heat-affected zone (HAZ) in welded joint modified by four types of welding, namely: electrode welding and electropercussive welding both with and without the introduction of artificial flaws. Artificial flows are aluminum pieces. TEM investigations are carried out within HAZ between the deposited and base metal at 1 mm distance to the latter. The type 0.09C-2Mn-1Si-Fe steel is used as weld material. It is shown that the welding process has an effect on the material morphology, phase composition, faulted structure and its parameters. Long-range stresses are divided into plastic and elastic components. It is demonstrated that the type of welding does not change the structural quality of welded joint represented by perlite and ferrite as contrasted with their volume fraction. According to observations, any type of welding with the introduction of artificial flaws results in the destruction of perlite. Polarization of the dislocation structure occurs. The amplitude of mean internal stresses does not practically depend on the welding type. It is shown that the introduction of artificial flaws both during electrode and electropercussive welding reduce the quantitative parameters of the faulted structure.

  4. Space Station Freedom seal leakage rate analysis and testing summary: Air leaks in ambient versus vacuum exit conditions

    NASA Technical Reports Server (NTRS)

    Rodriguez, P. I.; Markovitch, R.

    1992-01-01

    This report is intended to reveal the apparent relationship of air seal leakage rates between 2 atmospheres (atm) to 1 atm and 1 atm to vacuum conditions. Gas dynamics analysis is provided as well as data summarizing the MSFC test report, 'Space Station Freedom (S.S. Freedom) Seal Flaw Study With Delta Pressure Leak Rate Comparison Test Report'.

  5. Automatically Inspecting Thin Ceramics For Pinholes

    NASA Technical Reports Server (NTRS)

    Honaker, James R.

    1988-01-01

    Proposed apparatus for inspecting prefired ceramic materials detects minute flaws that might escape ordinary visual inspections. Method detects flaws and marks locations. Intended for such thin ceramic parts as insulation in capacitors and some radio-frequency filters.

  6. Multi-Scale Effects in the Strength of Ceramics

    PubMed Central

    Cook, Robert F.

    2016-01-01

    Multiple length-scale effects are demonstrated in indentation-strength measurements of a range of ceramic materials under inert and reactive conditions. Meso-scale effects associated with flaw disruption by lateral cracking at large indentation loads are shown to increase strengths above the ideal indentation response. Micro-scale effects associated with toughening by microstructural restraints at small indentation loads are shown to decrease strengths below the ideal response. A combined meso-micro-scale analysis is developed that describes ceramic inert strength behaviors over the complete indentation flaw size range. Nano-scale effects associated with chemical equilibria and crack velocity thresholds are shown to lead to invariant minimum strengths at slow applied stressing rates under reactive conditions. A combined meso-micro-nano-scale analysis is developed that describes the full range of reactive and inert strength behaviors as a function of indentation load and applied stressing rate. Applications of the multi-scale analysis are demonstrated for materials design, materials selection, toughness determination, crack velocity determination, bond-rupture parameter determination, and prediction of reactive strengths. The measurements and analysis provide strong support for the existence of sharp crack tips in ceramics such that the nano-scale mechanisms of discrete bond rupture are separate from the larger scale crack driving force mechanics characterized by continuum-based stress-intensity factors. PMID:27563150

  7. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface waves in typical materials tested with a non-destructive technique (e.g., marble, unweathered and weathered concrete and natural stone).

  8. Flaw imaging and ultrasonic techniques for characterizing sintered silicon carbide

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Abel, Phillip B.

    1987-01-01

    The capabilities were investigated of projection microfocus x-radiography, ultrasonic velocity and attenuation, and reflection scanning acoustic microscopy for characterizing silicon carbide specimens. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room temperature, four point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography and acoustic microscopy for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined.

  9. Enhanced Eddy-Current Detection Of Weld Flaws

    NASA Technical Reports Server (NTRS)

    Van Wyk, Lisa M.; Willenberg, James D.

    1992-01-01

    Mixing of impedances measured at different frequencies reduces noise and helps reveal flaws. In new method, one excites eddy-current probe simultaneously at two different frequencies; usually, one of which integral multiple of other. Resistive and reactive components of impedance of eddy-current probe measured at two frequencies, mixed in computer, and displayed in real time on video terminal of computer. Mixing of measurements obtained at two different frequencies often "cleans up" displayed signal in situations in which band-pass filtering alone cannot: mixing removes most noise, and displayed signal resolves flaws well.

  10. The SACE Review Panel's Final Report: Significant Flaws in the Analysis of Statistical Data

    ERIC Educational Resources Information Center

    Gregory, Kelvin

    2006-01-01

    The South Australian Certificate of Education (SACE) is a credential and formal qualification within the Australian Qualifications Framework. A recent review of the SACE outlined a number of recommendations for significant changes to this certificate. These recommendations were the result of a process that began with the review panel…

  11. Book Review

    NASA Astrophysics Data System (ADS)

    Landsman, N. P.

    Decoherence is like capitalism. Its proponents regard it as obvious, given human nature, and its success seems overwhelming. Competitors largely belong to the past, or get the impression they do. Consequently, although serious analysis finds deep flaws in it, the promise of huge benefits continues to attract new adherents with the naivety of those who enroll in a pyramid scheme.

  12. Fracture control methods for space vehicles. Volume 2: Assessment of fracture mechanics technology for space shuttle applications

    NASA Technical Reports Server (NTRS)

    Ehret, R. M.

    1974-01-01

    The concepts explored in a state of the art review of those engineering fracture mechanics considered most applicable to the space shuttle vehicle include fracture toughness, precritical flaw growth, failure mechanisms, inspection methods (including proof test logic), and crack growth predictive analysis techniques.

  13. Fundamental analysis of the failure of polymer-based fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Kanninen, M. F.; Rybicki, E. F.; Griffith, W. I.; Broek, D.

    1976-01-01

    A mathematical model is described which will permit predictions of the strength of fiber reinforced composites containing known flaws to be made from the basic properties of their constituents. The approach was to embed a local heterogeneous region (LHR) surrounding the crack tip into an anisotropic elastic continuum. The model should (1) permit an explicit analysis of the micromechanical processes involved in the fracture process, and (2) remain simple enough to be useful in practical computations. Computations for arbitrary flaw size and orientation under arbitrary applied load combinations were performed from unidirectional composites with linear elastic-brittle constituent behavior. The mechanical properties were nominally those of graphite epoxy. With the rupture properties arbitrarily varied to test the capability of the model to reflect real fracture modes in fiber composites, it was shown that fiber breakage, matrix crazing, crack bridging, matrix-fiber debonding, and axial splitting can all occur during a period of (gradually) increasing load prior to catastrophic fracture. The computations reveal qualitatively the sequential nature of the stable crack process that precedes fracture.

  14. VHL Alliance

    MedlinePlus

    ... by a flaw in one gene, the VHL gene, which regulates cell growth causing patients to battle a series of tumors ... by a flaw in one gene, the VHL gene, which regulates cell growth causing patients to battle a series of tumors ...

  15. Fixing Flawed Body Parts: Engineering New Tissues and Organs

    MedlinePlus

    ... 2015 Print this issue Fixing Flawed Body Parts Engineering New Tissues and Organs En español Send us ... ones. This type of research is called tissue engineering. Exciting advances continue to emerge in this fast- ...

  16. Fracture control method for composite tanks with load sharing liners

    NASA Technical Reports Server (NTRS)

    Bixler, W. D.

    1975-01-01

    The experimental program was based on the premise that the plastic sizing cycle, which each pressure vessel is subjected to prior to operation, acts as an effective proof test of the liner, screening out all flaws or cracks larger than a critical size. In doing so, flaw growth potential is available for cyclic operation at pressures less than the sizing pressure. Static fracture and cyclic life tests, involving laboratory type specimens and filament overwrapped tanks, were conducted on three liner materials: (1) 2219-T62 aluminum, (2) Inconel X750 STA, and (3) cryoformed 301 stainless steel. Variables included material condition, thickness, flaw size, flaw shape, temperature, sizing stress level, operating stress level and minimum-to-maximum operating stress ratio. From the empirical data base obtained, a procedure was established by which the service life of composite tanks with load sharing liners could be guaranteed with a high degree of confidence.

  17. Evaluation of ultrasonics and optimized radiography for 2219-T87 aluminum weldments

    NASA Technical Reports Server (NTRS)

    Clotfelter, W. N.; Hoop, J. M.; Duren, P. C.

    1975-01-01

    Ultrasonic studies are described which are specifically directed toward the quantitative measurement of randomly located defects previously found in aluminum welds with radiography or with dye penetrants. Experimental radiographic studies were also made to optimize techniques for welds of the thickness range to be used in fabricating the External Tank of the Space Shuttle. Conventional and innovative ultrasonic techniques were applied to the flaw size measurement problem. Advantages and disadvantages of each method are discussed. Flaw size data obtained ultrasonically were compared to radiographic data and to real flaw sizes determined by destructive measurements. Considerable success was achieved with pulse echo techniques and with 'pitch and catch' techniques. The radiographic work described demonstrates that careful selection of film exposure parameters for a particular application must be made to obtain optimized flaw detectability. Thus, film exposure techniques can be improved even though radiography is an old weld inspection method.

  18. Transformative Learning Approaches for Public Relations Pedagogy

    ERIC Educational Resources Information Center

    Motion, Judy; Burgess, Lois

    2014-01-01

    Public relations educators are frequently challenged by students' flawed perceptions of public relations. Two contrasting case studies are presented in this paper to illustrate how socially-oriented paradigms may be applied to a real-client project to deliver a transformative learning experience. A discourse-analytic approach is applied within the…

  19. Organizing to Manage Base-Level Service Contracts in the 1990s.

    DTIC Science & Technology

    1986-04-01

    management of service contracts is the present day organizational structure. The structure is flawed and violates basic principles of management . Until the...are classic principles of management . To state the principle I will quote Ernest Dale: "Authority should be commensurate with responsibility. That is

  20. Flaw criticality of circular disbond defects in compressive laminates. M.S. Thesis. Interim Report, 1980 - 1981; [graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Webster, J. D.

    1981-01-01

    The compressive behavior of T300/5208 graphite-epoxy laminates containing circular delaminations was studied to determine the flaw criticality of two types of implanted defect, Kapton bag and Teflon film, on several laminate configurations. Defect size was varied. Results, presented in the form of residual strength curves, indicate that the Teflon film defect reduced strength more than the Kapton bad defect in 12-ply samples, but that two laminates (+ or - 45) sub 2s and (90/+ or - 45) sub s were insensitive to any implanted defect. A clear thickness effect was shown to exist for the (o/+ pr 45) sub ns laminate and was attributed to failure mode transition. The analytically predicted buckling loads show excellent agreement with experimental results and are useful in predicting failure mode transition.

  1. Use Of Infrared Thermography For The Identification Of Design And Construction Faults In Buildings

    NASA Astrophysics Data System (ADS)

    Seeber, Stephen A.

    1984-03-01

    Many design and construction details can affect building energy consumption in unex-pected ways. Further, design and construction errors can increase building energy consumption, result in discomfort to building occupants and cause structural damage to the building. Infrared inspections can easily evaluate the energy efficiency of various aspects of a building's design and identify flaws that might otherwise be detected as a result of occupants' complaints or damage to the building's mechanical or structural systems. Infrared thermography can be used by the architect to evaluate his designs and by the contractor to control the quality of construction. This paper discusses a number of issues that can help determine the effectiveness of infrared building surveys. Following this, three case stud-ies will be presented to illustrate design flaws that were detected through infrared build-ing surveys.

  2. The frequency of item writing flaws in multiple-choice questions used in high stakes nursing assessments.

    PubMed

    Tarrant, Marie; Knierim, Aimee; Hayes, Sasha K; Ware, James

    2006-12-01

    Multiple-choice questions are a common assessment method in nursing examinations. Few nurse educators, however, have formal preparation in constructing multiple-choice questions. Consequently, questions used in baccalaureate nursing assessments often contain item-writing flaws, or violations to accepted item-writing guidelines. In one nursing department, 2770 MCQs were collected from tests and examinations administered over a five-year period from 2001 to 2005. Questions were evaluated for 19 frequently occurring item-writing flaws, for cognitive level, for question source, and for the distribution of correct answers. Results show that almost half (46.2%) of the questions contained violations of item-writing guidelines and over 90% were written at low cognitive levels. Only a small proportion of questions were teacher generated (14.1%), while 36.2% were taken from testbanks and almost half (49.4%) had no source identified. MCQs written at a lower cognitive level were significantly more likely to contain item-writing flaws. While there was no relationship between the source of the question and item-writing flaws, teacher-generated questions were more likely to be written at higher cognitive levels (p<0.001). Correct answers were evenly distributed across all four options and no bias was noted in the placement of correct options. Further training in item-writing is recommended for all faculty members who are responsible for developing tests. Pre-test review and quality assessment is also recommended to reduce the occurrence of item-writing flaws and to improve the quality of test questions.

  3. Fracture Prediction in Plane Elasto-Plastic Problems by the Finite Element Method.

    DTIC Science & Technology

    1978-01-01

    analysis and testing became an integral part of aircraft design . Fatigue 2 analysis frequently took the form of a damage accumulation theory such as...dictated that any cracking was to be considered a failure. The loss of a U.S. Air Force F-Ill in 1969 initiated a rethinking of airframe design and...analysis concepts. 1 Failure in this aircraft was traced to a small manufactur- ing flaw in a wing pivot fitting, not to a design induced fatigue. In a

  4. An evaluation of the quality of statistical design and analysis of published medical research: results from a systematic survey of general orthopaedic journals.

    PubMed

    Parsons, Nick R; Price, Charlotte L; Hiskens, Richard; Achten, Juul; Costa, Matthew L

    2012-04-25

    The application of statistics in reported research in trauma and orthopaedic surgery has become ever more important and complex. Despite the extensive use of statistical analysis, it is still a subject which is often not conceptually well understood, resulting in clear methodological flaws and inadequate reporting in many papers. A detailed statistical survey sampled 100 representative orthopaedic papers using a validated questionnaire that assessed the quality of the trial design and statistical analysis methods. The survey found evidence of failings in study design, statistical methodology and presentation of the results. Overall, in 17% (95% confidence interval; 10-26%) of the studies investigated the conclusions were not clearly justified by the results, in 39% (30-49%) of studies a different analysis should have been undertaken and in 17% (10-26%) a different analysis could have made a difference to the overall conclusions. It is only by an improved dialogue between statistician, clinician, reviewer and journal editor that the failings in design methodology and analysis highlighted by this survey can be addressed.

  5. Profitable failure: antidepressant drugs and the triumph of flawed experiments.

    PubMed

    McGoey, Linsey

    2010-01-01

    Drawing on an analysis of Irving Kirsch and colleagues' controversial 2008 article in "PLoS [Public Library of Science] Magazine" on the efficacy of SSRI antidepressant drugs such as Prozac, I examine flaws within the methodologies of randomized controlled trials (RCTs) that have made it difficult for regulators, clinicians and patients to determine the therapeutic value of this class of drug. I then argue, drawing analogies to work by Pierre Bourdieu and Michael Power, that it is the very limitations of RCTs -- their inadequacies in producing reliable evidence of clinical effects -- that help to strengthen assumptions of their superiority as methodological tools. Finally, I suggest that the case of RCTs helps to explore the question of why failure is often useful in consolidating the authority of those who have presided over that failure, and why systems widely recognized to be ineffective tend to assume greater authority at the very moment when people speak of their malfunction.

  6. Vision-based in-line fabric defect detection using yarn-specific shape features

    NASA Astrophysics Data System (ADS)

    Schneider, Dorian; Aach, Til

    2012-01-01

    We develop a methodology for automatic in-line flaw detection in industrial woven fabrics. Where state of the art detection algorithms apply texture analysis methods to operate on low-resolved ({200 ppi) image data, we describe here a process flow to segment single yarns in high-resolved ({1000 ppi) textile images. Four yarn shape features are extracted, allowing a precise detection and measurement of defects. The degree of precision reached allows a classification of detected defects according to their nature, providing an innovation in the field of automatic fabric flaw detection. The design has been carried out to meet real time requirements and face adverse conditions caused by loom vibrations and dirt. The entire process flow is discussed followed by an evaluation using a database with real-life industrial fabric images. This work pertains to the construction of an on-loom defect detection system to be used in manufacturing practice.

  7. Assessment of NDE reliability data

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Couchman, J. C.; Chang, F. H.; Packman, D. F.

    1975-01-01

    Twenty sets of relevant nondestructive test (NDT) reliability data were identified, collected, compiled, and categorized. A criterion for the selection of data for statistical analysis considerations was formulated, and a model to grade the quality and validity of the data sets was developed. Data input formats, which record the pertinent parameters of the defect/specimen and inspection procedures, were formulated for each NDE method. A comprehensive computer program was written and debugged to calculate the probability of flaw detection at several confidence limits by the binomial distribution. This program also selects the desired data sets for pooling and tests the statistical pooling criteria before calculating the composite detection reliability. An example of the calculated reliability of crack detection in bolt holes by an automatic eddy current method is presented.

  8. Statistical Analysis of Hit/Miss Data (Preprint)

    DTIC Science & Technology

    2012-07-01

    HDBK-1823A, 2009). Other agencies and industries have also made use of this guidance (Gandossi et al., 2010) and ( Drury et al., 2006). It should...better accounting of false call rates such that the POD curve doesn’t converge to 0 for small flaw sizes. The difficulty with conventional methods...2002. Drury , Ghylin, and Holness, Error Analysis and Threat Magnitude for Carry-on Bag Inspection, Proceedings of the Human Factors and Ergonomic

  9. [Fractographic analysis of clinically failed anterior all ceramic crowns].

    PubMed

    DU, Qian; Zhou, Min-bo; Zhang, Xin-ping; Zhao, Ke

    2012-04-01

    To identify the site of crack initiation and propagation path of clinically failed all ceramic crowns by fractographic analysis. Three clinically failed anterior IPS Empress II crowns and two anterior In-Ceram alumina crowns were retrieved. Fracture surfaces were examined using both optical stereo and scanning electron microscopy. Fractographic theory and fracture mechanics principles were applied to disclose the damage characteristics and fracture mode. All the crowns failed by cohesive failure within the veneer on the labial surface. Critical crack originated at the incisal contact area and propagated gingivally. Porosity was found within the veneer because of slurry preparation and the sintering of veneer powder. Cohesive failure within the veneer is the main failure mode of all ceramic crown. Veneer becomes vulnerable when flaws are present. To reduce the chances of chipping, multi-point occlusal contacts are recommended, and layering and sintering technique of veneering layer should also be improved.

  10. Pressure sores following elective total hip arthroplasty: pitfalls of misinterpretation.

    PubMed Central

    Keong, Nicole; Ricketts, David; Alakeson, Nuki; Rust, Philippa

    2004-01-01

    OBJECTIVE: To assess the reliability of reporting protocols regarding pressure sores. METHODS: Retrospective data were collected regarding pressure sore rates following total hip arthroplasty operations carried out during 2001 at two orthopaedic units in an NHS hospital (Princess Royal Hospital) and in a local private hospital. RESULTS: Preliminary results presented in audit and interim reports indicated an alarmingly high pressure sore rate across the two sites (17/172 [9.9%] NHS, 23/71 [32.4%] private hospital). On analysis, the data collection system was revealed to be flawed. Grade 1 areas (erythema with no ulceration) were included, leading to a dramatic discrepancy between reported and confirmed pressure sores. Re-analysis showed the confirmed pressure sore rates to be much lower (2.3% NHS, 1.0% private hospital). CONCLUSIONS: This audit suggests that both poor data collection and education lead to inaccurate audit. This may lead to subsequent inappropriate management and inappropriate NHS star ratings. PMID:15140301

  11. A robust anonymous biometric-based authenticated key agreement scheme for multi-server environments

    PubMed Central

    Huang, Yuanfei; Ma, Fangchao

    2017-01-01

    In order to improve the security in remote authentication systems, numerous biometric-based authentication schemes using smart cards have been proposed. Recently, Moon et al. presented an authentication scheme to remedy the flaws of Lu et al.’s scheme, and claimed that their improved protocol supports the required security properties. Unfortunately, we found that Moon et al.’s scheme still has weaknesses. In this paper, we show that Moon et al.’s scheme is vulnerable to insider attack, server spoofing attack, user impersonation attack and guessing attack. Furthermore, we propose a robust anonymous multi-server authentication scheme using public key encryption to remove the aforementioned problems. From the subsequent formal and informal security analysis, we demonstrate that our proposed scheme provides strong mutual authentication and satisfies the desirable security requirements. The functional and performance analysis shows that the improved scheme has the best secure functionality and is computational efficient. PMID:29121050

  12. A robust anonymous biometric-based authenticated key agreement scheme for multi-server environments.

    PubMed

    Guo, Hua; Wang, Pei; Zhang, Xiyong; Huang, Yuanfei; Ma, Fangchao

    2017-01-01

    In order to improve the security in remote authentication systems, numerous biometric-based authentication schemes using smart cards have been proposed. Recently, Moon et al. presented an authentication scheme to remedy the flaws of Lu et al.'s scheme, and claimed that their improved protocol supports the required security properties. Unfortunately, we found that Moon et al.'s scheme still has weaknesses. In this paper, we show that Moon et al.'s scheme is vulnerable to insider attack, server spoofing attack, user impersonation attack and guessing attack. Furthermore, we propose a robust anonymous multi-server authentication scheme using public key encryption to remove the aforementioned problems. From the subsequent formal and informal security analysis, we demonstrate that our proposed scheme provides strong mutual authentication and satisfies the desirable security requirements. The functional and performance analysis shows that the improved scheme has the best secure functionality and is computational efficient.

  13. SimSup's Loop: A Control Theory Approach to Spacecraft Operator Training

    NASA Technical Reports Server (NTRS)

    Owens, Brandon Dewain; Crocker, Alan R.

    2015-01-01

    Immersive simulation is a staple of training for many complex system operators, including astronauts and ground operators of spacecraft. However, while much has been written about simulators, simulation facilities, and operator certification programs, the topic of how one develops simulation scenarios to train a spacecraft operator is relatively understated in the literature. In this paper, an approach is presented for using control theory as the basis for developing the immersive simulation scenarios for a spacecraft operator training program. The operator is effectively modeled as a high level controller of lower level hardware and software control loops that affect a select set of system state variables. Simulation scenarios are derived from a STAMP-based hazard analysis of the operator's high and low level control loops. The immersive simulation aspect of the overall training program is characterized by selecting a set of scenarios that expose the operator to the various inadequate control actions that stem from control flaws and inadequate control executions in the different sections of the typical control loop. Results from the application of this approach to the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are provided through an analysis of the simulation scenarios used for operator training and the actual anomalies that occurred during the mission. The simulation scenarios and inflight anomalies are mapped to specific control flaws and inadequate control executions in the different sections of the typical control loop to illustrate the characteristics of anomalies arising from the different sections of the typical control loop (and why it is important for operators to have exposure to these characteristics). Additionally, similarities between the simulation scenarios and inflight anomalies are highlighted to make the case that the simulation scenarios prepared the operators for the mission.

  14. Imaging flaws in thin metal plates using a magneto-optic device

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Prabhu, D. R.; Namkung, M.; Birt, E. A.

    1992-01-01

    An account is given of the capabilities of the magnetooptic/eddy-current imager (MEI) apparatus in the case of aging aircraft structure-type flaws in 2024-T3 Al alloy plates. Attention is given to images of cyclically grown fatigue cracks from rivetted joints in fabricated lap-joint structures, electrical discharge machining notches, and corrosion spots. Although conventional eddy-current methods could have been used, the speed and ease of MEI's use in these tests is unmatched by such means. Results are displayed in real time as a test piece is scanned, furnishing easily interpreted flaw images.

  15. Electromagnetic radiation screening of microcircuits for long life applications

    NASA Technical Reports Server (NTRS)

    Brammer, W. G.; Erickson, J. J.; Levy, M. E.

    1974-01-01

    The utility of X-rays as a stimulus for screening high reliability semiconductor microcircuits was studied. The theory of the interaction of X-rays with semiconductor materials and devices was considered. Experimental measurements of photovoltages, photocurrents, and effects on specified parameters were made on discrete devices and on microcircuits. The test specimens included discrete devices with certain types of identified flaws and symptoms of flaws, and microcircuits exhibiting deviant electrical behavior. With a necessarily limited sample of test specimens, no useful correlation could be found between the X-ray-induced electrical response and the known or suspected presence of flaws.

  16. Internal Rot Detection with the Use of Low-Frequency Flaw Detector

    NASA Astrophysics Data System (ADS)

    Proskórnicki, Marek; Ligus, Grzegorz

    2014-12-01

    The issue of rot detection in standing timber or stocked wood is very important in forest management. Rot flaw detection used for that purpose is represented by invasive and non-invasive devices. Non-invasive devices are very accurate, but due to the cost and complicated operation they have not been applied on a large scale in forest management. Taking into account the practical needs of foresters a prototype of low-frequency flaw was developed. The principle of its operation is based on the difference in acoustic wave propagation in sound wood and wood with rot.

  17. Ultrasonic imaging of material flaws exploiting multipath information

    NASA Astrophysics Data System (ADS)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  18. Do item-writing flaws reduce examinations psychometric quality?

    PubMed

    Pais, João; Silva, Artur; Guimarães, Bruno; Povo, Ana; Coelho, Elisabete; Silva-Pereira, Fernanda; Lourinho, Isabel; Ferreira, Maria Amélia; Severo, Milton

    2016-08-11

    The psychometric characteristics of multiple-choice questions (MCQ) changed when taking into account their anatomical sites and the presence of item-writing flaws (IWF). The aim is to understand the impact of the anatomical sites and the presence of IWF in the psychometric qualities of the MCQ. 800 Clinical Anatomy MCQ from eight examinations were classified as standard or flawed items and according to one of the eight anatomical sites. An item was classified as flawed if it violated at least one of the principles of item writing. The difficulty and discrimination indices of each item were obtained. 55.8 % of the MCQ were flawed items. The anatomical site of the items explained 6.2 and 3.2 % of the difficulty and discrimination parameters and the IWF explained 2.8 and 0.8 %, respectively. The impact of the IWF was heterogeneous, the Writing the Stem and Writing the Choices categories had a negative impact (higher difficulty and lower discrimination) while the other categories did not have any impact. The anatomical site effect was higher than IWF effect in the psychometric characteristics of the examination. When constructing MCQ, the focus should be in the topic/area of the items and only after in the presence of IWF.

  19. Feasibility of Flaw Detection in Railroad Wheels Using Acoustic Signatures

    DOT National Transportation Integrated Search

    1976-10-01

    The feasibility study on the use of acoustic signatures for detection of flaws in railway wheels was conducted with the ultimate objective of development of an intrack device for moving cars. Determinations of the natural modes of vibrating wheels un...

  20. Prevention of design flaws in multicomputer systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Multicomputer configurations and redundancy management techniques used in various airborne systems were investigated to determine methods to prevent and/or treat generic design flaws. The findings are intended for use in the design of a computer system for use in the space shuttle orbiter.

  1. The Rose Report [Continued]: "The Invisible Worm"

    ERIC Educational Resources Information Center

    Drummond, Mary Jane

    2009-01-01

    While Colin Richards' article is a trenchant analysis of the big themes and missed opportunities of the Rose Report, this response examines some of the small print. It concludes that the document is disfigured by many minor blemishes, and is also fatally flawed by a crude misapprehension of the nature of progress and the purpose of education.

  2. The Role of Falsification in the Development of Cognitive Architectures: Insights from a Lakatosian Analysis

    ERIC Educational Resources Information Center

    Cooper, Richard P.

    2007-01-01

    It has been suggested that the enterprise of developing mechanistic theories of the human cognitive architecture is flawed because the theories produced are not directly falsifiable. Newell attempted to sidestep this criticism by arguing for a Lakatosian model of scientific progress in which cognitive architectures should be understood as theories…

  3. The Quality vs. the Quantity of Schooling: What Drives Economic Growth?

    ERIC Educational Resources Information Center

    Breton, Theodore R.

    2011-01-01

    This paper challenges Hanushek and Woessmann's (2008) contention that the quality and not the quantity of schooling determines a nation's rate of economic growth. I first show that their statistical analysis is flawed. I then show that when a nation's average test scores and average schooling attainment are included in a national income model,…

  4. Identification of Average Treatment Effects in Social Experiments under Alternative Forms of Attrition

    ERIC Educational Resources Information Center

    Huber, Martin

    2012-01-01

    As any empirical method used for causal analysis, social experiments are prone to attrition which may flaw the validity of the results. This article considers the problem of partially missing outcomes in experiments. First, it systematically reveals under which forms of attrition--in terms of its relation to observable and/or unobservable…

  5. Guidelines for Proof Test Analysis

    NASA Technical Reports Server (NTRS)

    Chell, G. G.; McClung, R. C.; Kuhlman, C. J.; Russell, D. A.; Garr, K.; Donnelly, B.

    1999-01-01

    These guidelines integrate state-of-the-art elastic-plastic fracture mechanics (EPFM) and proof test implementation issues into a comprehensive proof test analysis procedure in the form of a road map which identifies the types of data, fracture mechanics based parameters, and calculations needed to perform flaw screening and minimum proof load analyses of fracture critical components. Worked examples are presented to illustrate the application of the road map to proof test analysis. The state-of-the art fracture technology employed in these guidelines is based on the EPFM parameter, J, and a pictorial representation of a J fracture analysis, called the failure assessment diagram (FAD) approach. The recommended fracture technology is validated using finite element J results, and laboratory and hardware fracture test results on the nickel-based superalloy Inconel 718, the aluminum alloy 2024-T3511, and ferritic pressure vessel steels. In all cases the laboratory specimens and hardware failed by ductile mechanisms. Advanced proof test analyses involving probability analysis and multiple-cycle proof testing (MCPT) are addressed. Finally, recommendations are provided on how to account for the effects of the proof test overload on subsequent service fatigue and fracture behaviors.

  6. New Insights into Signed Path Coefficient Granger Causality Analysis.

    PubMed

    Zhang, Jian; Li, Chong; Jiang, Tianzi

    2016-01-01

    Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of "signed path coefficient Granger causality," a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an "excitatory" or "inhibitory" influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation.

  7. On the Psychology of Truth-Gaps

    NASA Astrophysics Data System (ADS)

    Alxatib, Sam; Pelletier, Jeff

    Bonini et al. [2] present psychological data that they take to support an 'epistemic' account of how vague predicates are used in natural language. We argue that their data more strongly supports a 'gap' theory of vagueness, and that their arguments against gap theories are flawed. Additionally, we present more experimental evidence that supports gap theories, and argue for a semantic/pragmatic alternative that unifies super- and subvaluationary approaches to vagueness.

  8. Probabilistic Fracture Mechanics of Reactor Pressure Vessels with Populations of Flaws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Backman, Marie; Williams, Paul

    This report documents recent progress in developing a tool that uses the Grizzly and RAVEN codes to perform probabilistic fracture mechanics analyses of reactor pressure vessels in light water reactor nuclear power plants. The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. Because of the central role of the reactor pressure vessel (RPV) in a nuclear power plant, particular emphasis is being placed on developing capabilities to model fracture in embrittled RPVs to aid in the process surrounding decisionmore » making relating to life extension of existing plants. A typical RPV contains a large population of pre-existing flaws introduced during the manufacturing process. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation at one or more of these flaws during a transient event. This report documents development and initial testing of a capability to perform probabilistic fracture mechanics of large populations of flaws in RPVs using reduced order models to compute fracture parameters. The work documented here builds on prior efforts to perform probabilistic analyses of a single flaw with uncertain parameters, as well as earlier work to develop deterministic capabilities to model the thermo-mechanical response of the RPV under transient events, and compute fracture mechanics parameters at locations of pre-defined flaws. The capabilities developed as part of this work provide a foundation for future work, which will develop a platform that provides the flexibility needed to consider scenarios that cannot be addressed with the tools used in current practice.« less

  9. Does Educator Training or Experience Affect the Quality of Multiple-Choice Questions?

    PubMed

    Webb, Emily M; Phuong, Jonathan S; Naeger, David M

    2015-10-01

    Physicians receive little training on proper multiple-choice question (MCQ) writing methods. Well-constructed MCQs follow rules, which ensure that a question tests what it is intended to test. Questions that break these are described as "flawed." We examined whether the prevalence of flawed questions differed significantly between those with or without prior training in question writing and between those with different levels of educator experience. We assessed 200 unedited MCQs from a question bank for our senior medical student radiology elective: an equal number of questions (50) were written by faculty with previous training in MCQ writing, other faculty, residents, and medical students. Questions were scored independently by two readers for the presence of 11 distinct flaws described in the literature. Questions written by faculty with MCQ writing training had significantly fewer errors: mean 0.4 errors per question compared to a mean of 1.5-1.7 errors per question for the other groups (P < .001). There were no significant differences in the total number of errors between the untrained faculty, residents, and students (P values .35-.91). Among trained faculty 17/50 questions (34%) were flawed, whereas other faculty wrote 38/50 (76%) flawed questions, residents 37/50 (74%), and students 44/50 (88%). Trained question writers' higher performance was mainly manifest in the reduced frequency of five specific errors. Faculty with training in effective MCQ writing made fewer errors in MCQ construction. Educator experience alone had no effect on the frequency of flaws; faculty without dedicated training, residents, and students performed similarly. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  10. Fracture toughness of hot-pressed beryllium

    NASA Technical Reports Server (NTRS)

    Lemon, D. D.; Brown, W. F., Jr.

    1985-01-01

    This paper presents the results of an investigation into the fracture toughness, sustained-load flaw growth, and fatigue-crack propagation resistance of S200E hot-pressed beryllium at room temperature. It also reviews the literature pertaining to the influence of various factors on the fracture toughness of hot-pressed beryllium determined using fatigue-cracked specimens.

  11. Race and Rape: The Black Woman as Legitimate Victim.

    ERIC Educational Resources Information Center

    Williams, Linda Meyer

    Scientific investigations of the relationship between race and rape have been flawed by the acceptance of official statistics and have been influenced by prevailing myths about rape and race. This paper proposes a theoretical framework for understanding rape and race. The thesis is presented that only the black victim of sexual assault is viewed…

  12. The Supply and Demand of Teachers and Teaching.

    ERIC Educational Resources Information Center

    Zerfoss, Evelyn; Shapiro, Leo J.

    There is a general oversupply of teachers. Attempts to regulate teacher supply and demand are flawed by assumptions that teachers are a limited consumer item and that the school system will persist in its present form. The financial crises of schools, the demand of accountability, and the challenge to the principle of compulsory education indicate…

  13. Method and apparatus for detecting flaws in conductive material

    DOEpatents

    Hockey, Ronald L.; Riechers, Douglas M.

    1998-01-01

    The present invention uses a magnet in relative motion to a conductive material, and a coil that is stationary with respect to the magnet to measure perturbation or variation in the magnetic field in the presence of an inclusion. The magnet and coil sensor may be on the same side of the conductive material.

  14. Who Speaks for Wolf? Not Project WILD.

    ERIC Educational Resources Information Center

    Horwood, Bert

    Project WILD, a Canadian elementary school curriculum supplement about wildlife and the environment, is seriously flawed in that it presents a human-centered view of the world while purporting to be unbiased. This anthropocentric perspective, in which humans are alienated from the environment and in control of nature by technological means, is in…

  15. Charter Schools: Another Flawed Educational Reform? The Series on School Reform.

    ERIC Educational Resources Information Center

    Sarason, Seymour B.

    This book examines why most charter schools will fail. It opens with a historical overview, describing the fate and significance of the precursor to charter schools: President Nixon's Experimental Schools Program. It then turns to the author's personal experiences in educational theory and practice, presenting and discussing the essential features…

  16. Preliminary Report Regarding State Allocation Board Funding of the Los Angeles Unified School District's Belmont Learning Complex.

    ERIC Educational Resources Information Center

    Armoudian, Maria; Carman, Georgann; Havan, Artineh; Heron, Frank

    A preliminary report of the California Legislature's Joint Legislative Audit Committee presents findings on the construction team selection process for the Los Angeles Unified School District's (LAUSD's) Belmont Learning Complex. Evidence reveals a seriously flawed process that directly conflicted with existing law and practice. The report…

  17. Major Life Events and Daily Hassles in Predicting Health Status: Methodological Inquiry.

    ERIC Educational Resources Information Center

    Flannery, Raymond B., Jr.

    1986-01-01

    Hypothesized that both major life events and daily hassles would be associated with anxiety and depression symptomatology. While the results partially support the hypothesis, the inconsistent findings suggest methodological flaws in each life stress measure. Reviews these limitations and presents the use of the semi-structured interview as one…

  18. Study of eddy current probes

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Wang, Morgan

    1992-01-01

    The recognition of materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques.

  19. Martin Gardner's Mistake

    ERIC Educational Resources Information Center

    Khovanova, Tanya

    2012-01-01

    When Martin Gardner first presented the Two-Children problem, he made a mistake in its solution. Later he corrected the error, but unfortunately the incorrect solution is more widely known than his correction. In fact, a Tuesday-Child variation of this problem went viral in 2010, and the same flaw keeps reappearing in proposed solutions of that…

  20. Nuclear-encoded mitochondrial complex I gene expression is restored to normal levels by inhibition of unedited ATP9 transgene expression in Arabidopsis thaliana.

    PubMed

    Busi, María V; Gómez-Casati, Diego F; Perales, Mariano; Araya, Alejandro; Zabaleta, Eduardo

    2006-01-01

    Mitochondria play an important role during sporogenesis in plants. The steady state levels of the nuclear-encoded mitochondrial complex I (nCI), PSST, TYKY and NADHBP transcripts increase in flowers of male-sterile plants with impairment of mitochondrial function generated by the expression of the unedited version of ATP9 (u-ATP9). This suggests a nuclear control of nCI genes in response to the mitochondrial flaw. To evaluate this hypothesis, transgenic plants carrying the GUS reporter gene, under the control of the PSST, TYKY and NADHBP promoters, were constructed. We present evidence that suppression by antisense strategy of the expression of u-ATP9 restores the normal levels of three nCI transcripts, indicating that the increase in PSST, TYKY and NADHBP in plants with a mitochondrial flaw occurs at the transcriptional level. The data presented here support the hypothesis that a mitochondrial dysfunction triggers a retrograde signaling which induce some nuclear-encoded mitochondrial genes. Moreover, these results demonstrate that this is a valuable experimental model for studying nucleus-mitochondria cross-talk events.

  1. Toward practical 3D radiography of pipeline girth welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wassink, Casper, E-mail: casper.wassink@applusrtd.com; Hol, Martijn, E-mail: martijn.hol@applusrtd.com; Flikweert, Arjan, E-mail: martijn.hol@applusrtd.com

    2015-03-31

    Digital radiography has made its way into in-the-field girth weld testing. With recent generations of detectors and x-ray tubes it is possible to reach the image quality desired in standards as well as the speed of inspection desired to be competitive with film radiography and automated ultrasonic testing. This paper will show the application of these technologies in the RTD Rayscan system. The method for achieving an image quality that complies with or even exceeds prevailing industrial standards will be presented, as well as the application on pipeline girth welds with CRA layers. A next step in development will bemore » to also achieve a measurement of weld flaw height to allow for performing an Engineering Critical Assessment on the weld. This will allow for similar acceptance limits as currently used with Automated Ultrasonic Testing of pipeline girth welds. Although a sufficient sizing accuracy was already demonstrated and qualified in the TomoCAR system, testing in some applications is restricted to time limits. The paper will present some experiments that were performed to achieve flaw height approximation within these time limits.« less

  2. Glass breaking strength: The role of surface flaws and treatments

    NASA Technical Reports Server (NTRS)

    Moore, D.

    1985-01-01

    Although the intrinsic strength of silicon dioxide glass is of the order of 10 to the 6th power lb/sq in, the practical strength is roughly two orders of magnitude below this theoretical limit, and depends almost entirely on the surface condition of the glass, that is, the number and size of flaws and the residual surface compression (temper) in the glass. Glass parts always fail in tension when these flaws grow under sustained loading to some critical size. Research associated with glass encapsulated crystalline-Si photovoltaic (PV) modules has greatly expanded our knowledge of glass breaking strength and developed sizeable data base for commercially available glass types. A detailed design algorithm is developed for thickness sizing of rectangular glass plates subject to pressure loads. Additional studies examine the strength of glass under impact loading conditions such as that caused by hail. Although the fundamentals of glass breakage are directly applicable to thin film modules, the fracture strength of typical numerical glass must be replaced with data that reflect the high temperature tin oxide processing, laser scribing, and edge processing peculiar to thin film modules. The fundamentals of glass breakage applicable to thin film modules and preliminary fracture strength data for a variety of 1 ft square glass specimens representing preprocessed and post processed sheets from current amorphous-Si module manufacturers are presented.

  3. Overview of the program to assess the reliability of emerging nondestructive techniques open testing and study of flaw type effect on NDE response

    NASA Astrophysics Data System (ADS)

    Meyer, Ryan M.; Komura, Ichiro; Kim, Kyung-cho; Zetterwall, Tommy; Cumblidge, Stephen E.; Prokofiev, Iouri

    2016-02-01

    In February 2012, the U.S. Nuclear Regulatory Commission (NRC) executed agreements with VTT Technical Research Centre of Finland, Nuclear Regulatory Authority of Japan (NRA, former JNES), Korea Institute of Nuclear Safety (KINS), Swedish Radiation Safety Authority (SSM), and Swiss Federal Nuclear Safety Inspectorate (ENSI) to establish the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT). The goal of PARENT is to investigate the effectiveness of current emerging and perspective novel nondestructive examination procedures and techniques to find flaws in nickel-alloy welds and base materials. This is done by conducting a series of open and blind international round-robin tests on a set of large-bore dissimilar metal welds (LBDMW), small-bore dissimilar metal welds (SBDMW), and bottom-mounted instrumentation (BMI) penetration weld test blocks. The purpose of blind testing is to study the reliability of more established techniques and included only qualified teams and procedures. The purpose of open testing is aimed at a more basic capability assessment of emerging and novel technologies. The range of techniques applied in open testing varied with respect to maturity and performance uncertainty and were applied to a variety of simulated flaws. This paper will include a brief overview of the PARENT blind and open testing techniques and test blocks and present some of the blind testing results.

  4. Quantitative evaluation of hidden defects in cast iron components using ultrasound activated lock-in vibrothermography.

    PubMed

    Montanini, R; Freni, F; Rossi, G L

    2012-09-01

    This paper reports one of the first experimental results on the application of ultrasound activated lock-in vibrothermography for quantitative assessment of buried flaws in complex cast parts. The use of amplitude modulated ultrasonic heat generation allowed selective response of defective areas within the part, as the defect itself is turned into a local thermal wave emitter. Quantitative evaluation of hidden damages was accomplished by estimating independently both the area and the depth extension of the buried flaws, while x-ray 3D computed tomography was used as reference for sizing accuracy assessment. To retrieve flaw's area, a simple yet effective histogram-based phase image segmentation algorithm with automatic pixels classification has been developed. A clear correlation was found between the thermal (phase) signature measured by the infrared camera on the target surface and the actual mean cross-section area of the flaw. Due to the very fast cycle time (<30 s/part), the method could potentially be applied for 100% quality control of casting components.

  5. Self-esteem and communal responsiveness toward a flawed partner: the fair-weather care of low-self-esteem individuals.

    PubMed

    Lemay, Edward P; Clark, Margaret S

    2009-06-01

    Three studies provide evidence that people with low self-esteem, but not those with high self-esteem, distance themselves from a flawed partner in situations in which the flaws seem likely to reflect negatively on them. Participants with low (but not high) self-esteem reduced their motivation to care for the partner's needs when they felt they might share a partner's salient flaws (Study 1), when they were primed to focus on similarities between themselves and a socially devalued partner (Study 2), and when they learned that their partner was socially incompetent (Study 3). In Study 3, individuals with low (but not high) self-esteem provided less emotional support and experienced more public image threat when they learned that partners were socially incompetent. In addition, all three studies provided evidence that participants' distancing reduced their confidence in the partner's motivation to care for them, suggesting that distancing involves a cost to the self.

  6. An undignified bioethics: there is no method in this madness.

    PubMed

    De Melo-Martín, Inmaculada

    2012-05-01

    In a recent article, Alasdair Cochrane argues for the need to have an undignified bioethics. His is not, of course, a call to transform bioethics into an inelegant, pathetic discipline, or one failing to meet appropriate disciplinary standards. His is a call to simply eliminate the concept of human dignity from bioethical discourse. Here I argue that he fails to make his case. I first show that several of the flaws that Cochrane identifies are not flaws of the conceptions of dignity he discusses but rather flaws of his, often problematic, understanding of such conceptions. Second, I argue that Cochrane's case against the concept of human dignity goes too far. I thus show that were one to agree that these are indeed flaws that require that we discard our ethical concepts, then following Cochrane's recommendations would commit us not only to an undignified bioethics, i.e. a bioethics without dignity, but to a bioethics without much ethics at all. © 2010 Blackwell Publishing Ltd.

  7. 3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds

    NASA Technical Reports Server (NTRS)

    Leckey, C.; Hinders, M.

    2011-01-01

    Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.

  8. Scoping Planning Agents With Shared Models

    NASA Technical Reports Server (NTRS)

    Bedrax-Weiss, Tania; Frank, Jeremy D.; Jonsson, Ari K.; McGann, Conor

    2003-01-01

    In this paper we provide a formal framework to define the scope of planning agents based on a single declarative model. Having multiple agents sharing a single model provides numerous advantages that lead to reduced development costs and increase reliability of the system. We formally define planning in terms of extensions of an initial partial plan, and a set of flaws that make the plan unacceptable. A Flaw Filter (FF) allows us to identify those flaws relevant to an agent. Flaw filters motivate the Plan Identification Function (PIF), which specifies when an agent is is ready hand control to another agent for further work. PIFs define a set of plan extensions that can be generated from a model and a plan request. FFs and PIFs can be used to define the scope of agents without changing the model. We describe an implementation of PIFsand FFswithin the context of EUROPA, a constraint-based planning architecture, and show how it can be used to easily design many different agents.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanini, R.; Freni, F.; Rossi, G. L.

    This paper reports one of the first experimental results on the application of ultrasound activated lock-in vibrothermography for quantitative assessment of buried flaws in complex cast parts. The use of amplitude modulated ultrasonic heat generation allowed selective response of defective areas within the part, as the defect itself is turned into a local thermal wave emitter. Quantitative evaluation of hidden damages was accomplished by estimating independently both the area and the depth extension of the buried flaws, while x-ray 3D computed tomography was used as reference for sizing accuracy assessment. To retrieve flaw's area, a simple yet effective histogram-based phasemore » image segmentation algorithm with automatic pixels classification has been developed. A clear correlation was found between the thermal (phase) signature measured by the infrared camera on the target surface and the actual mean cross-section area of the flaw. Due to the very fast cycle time (<30 s/part), the method could potentially be applied for 100% quality control of casting components.« less

  10. [Again review of research design and statistical methods of Chinese Journal of Cardiology].

    PubMed

    Kong, Qun-yu; Yu, Jin-ming; Jia, Gong-xian; Lin, Fan-li

    2012-11-01

    To re-evaluate and compare the research design and the use of statistical methods in Chinese Journal of Cardiology. Summary the research design and statistical methods in all of the original papers in Chinese Journal of Cardiology all over the year of 2011, and compared the result with the evaluation of 2008. (1) There is no difference in the distribution of the design of researches of between the two volumes. Compared with the early volume, the use of survival regression and non-parameter test are increased, while decreased in the proportion of articles with no statistical analysis. (2) The proportions of articles in the later volume are significant lower than the former, such as 6(4%) with flaws in designs, 5(3%) with flaws in the expressions, 9(5%) with the incomplete of analysis. (3) The rate of correction of variance analysis has been increased, so as the multi-group comparisons and the test of normality. The error rate of usage has been decreased form 17% to 25% without significance in statistics due to the ignorance of the test of homogeneity of variance. Many improvements showed in Chinese Journal of Cardiology such as the regulation of the design and statistics. The homogeneity of variance should be paid more attention in the further application.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harzalla, S., E-mail: harzallahozil@yahoo.fr; Chabaat, M., E-mail: mchabaat@yahoo.com; Belgacem, F. Bin Muhammad, E-mail: fbmbelgacem@gmail.com

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing resultsmore » for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented.« less

  12. Non destructive technique for cracks detection by an eddy current in differential mode for steel frames

    NASA Astrophysics Data System (ADS)

    Harzalla, S.; Belgacem, F. Bin Muhammad; Chabaat, M.

    2014-12-01

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing results for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented.

  13. Is tube feeding futile in advanced dementia?

    PubMed Central

    Lynch, Matthew C.

    2016-01-01

    It is controversial whether tube feeding in people with dementia improves nutritional status or prolongs survival. Guidelines published by several professional societies cite observational studies that have shown no benefit and conclude that tube feeding in patients with advanced dementia should be avoided. However, all studies on tube feeding in dementia have major methodological flaws that invalidate their findings. The present evidence is not sufficient to justify general guidelines. Patients with advanced dementia represent a very heterogeneous group, and evidence demonstrates that some patients with dementia benefit from tube feeding. However, presently available guidelines make a single recommendation against tube feeding for all patients. Clinicians, patients, and surrogates should be aware that the guidelines and prior commentary on this topic tend both to overestimate the strength of evidence for futility and to exaggerate the burdens of tube feeding. Shared decision making requires accurate information tailored to the individual patient's particular situation, not blanket guidelines based on flawed data. Lay Summary: Many doctors believe that tube feeding does not help people with advanced dementia. Scientific studies suggest that people with dementia who have feeding tubes do not live longer or gain weight compared with those who are carefully hand fed. However, these studies are not very helpful because of flaws in design, which are discussed in this article. Guidelines from professional societies make a blanket recommendation against feeding tubes for anyone with dementia, but an individual approach that takes each person's situation into account seems more appropriate. Patients and surrogates should be aware that the guidelines on this topic tend both to underestimate the benefit and exaggerate the burdens of tube feeding. PMID:27833208

  14. Plate Wave Resonance with Air-Coupled Ultrasonics

    NASA Astrophysics Data System (ADS)

    Bar, H. N.; Dayal, V.; Barnard, D.; Hsu, D. K.

    2010-02-01

    Air-coupled ultrasonic transducers can excite plate waves in metals and composites. The coincidence effect, i.e., the wave vector of plate wave coincides with projection of exciting airborne sound vector, leads to a resonance which strongly amplifies the sound transmission through the plate. The resonance depends on the angle of incidence and the frequency. In the present study, the incidence angle for maximum transmission (θmax) is measured in plates of steel, aluminum, carbon fiber reinforced composites and honeycomb sandwich panels. The variations of (θmax) with plate thickness are compared with theoretical values in steel, aluminum and quasi-isotropic carbon fiber composites. The enhanced transmission of air-coupled ultrasound at oblique incidence can substantially improve the probability of flaw detection in plates and especially in honeycomb structures. Experimental air-coupled ultrasonic scan of subtle flaws in CFRP laminates showed definite improvement of signal-to-noise ratio with oblique incidence at θmax.

  15. Silica Glass Fibers : Modes Of Degradation And Thoughts On Protection

    NASA Astrophysics Data System (ADS)

    Kruger, Albert A.; Mularie, William M.

    1984-03-01

    The widely held explanation for mechanical failure of silicate glasses rests upon the existence of Griffith-flaw and the associated free-ion diffusion concept used to model crack growth. However, this theory has consistently failed to provide complete agreement with the experimental results known to those "schooled" in the poignant literature. This dilemma coupled with the reports of single-valued strengths in fibers cannot be rationalized by the modification of the intrinsic Griffith-flaw distribution to essentially a delta function (this violates entropy). It is for these reasons that the field-enhanced ion diffusion model has been introduced. The inclusion of a term for electrostatic potential in the solution of Fick's second law is shown to be consistent with the experimental results in the existing literature. The results of the work presented herein provide further support of the proposed model, and the implied consequences of chemical corrosion in glass which results in its subsequent failure.

  16. Terahertz NDE Application for Corrosion Detection and Evaluation under Shuttle Tiles

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Smith, Stephen W.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-01-01

    Pulsed Terahertz NDE is being examined as a method to inspect for possible corrosion under Space Shuttle Tiles. Other methods such as ultrasonics, infrared, eddy current and microwave technologies have demonstrable shortcomings for tile NDE. This work applies Terahertz NDE, in the frequency range between 50 GHz and 1 THz, for the inspection of manufactured corrosion samples. The samples consist of induced corrosion spots that range in diameter (2.54 to 15.2 mm) and depth (0.036 to 0.787 mm) in an aluminum substrate material covered with tiles. Results of these measurements are presented for known corrosion flaws both covered and uncovered and for blind tests with unknown corrosion flaws covered with attached tiles. The Terahertz NDE system is shown to detect all artificially manufactured corrosion regions under a Shuttle tile with a depth greater than 0.13 mm.

  17. Even dying must be edited: further thoughts on Joan Robinson.

    PubMed Central

    Curry, S; Zucker, A; Trautmann, J

    1981-01-01

    "Joan Robinson: One Woman's Story' is a cinéma vérité style record of a woman's losing struggle against ovarian cancer. The film has been shown now twice on the American Public Television Network. It has received good notices primarily from the lay press. Yet the film depicts much that is out-of-date and much that is debatable. In general, we feel that it presents a depressing picture of the cancer patient. This was not Joan Robinson's intention and her bravery only serves to highlight this picture of suffering with cancer. We point to specific flaws in the film. We then go on to account for why many reviewers seem to have been blind to these flaws. It is suggested that criteria for good works of art, for good public health information, and for admirable personal traits were confused. PMID:7205894

  18. Terahertz NDE application for corrosion detection and evaluation under Shuttle tiles

    NASA Astrophysics Data System (ADS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Smith, Stephen W.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-04-01

    Pulsed Terahertz NDE is being examined as a method to inspect for possible corrosion under Space Shuttle Tiles. Other methods such as ultrasonics, infrared, eddy current and microwave technologies have demonstrable shortcomings for tile NDE. This work applies Terahertz NDE, in the frequency range between 50 GHz and 1 THz, for the inspection of manufactured corrosion samples. The samples consist of induced corrosion spots that range in diameter (2.54 to 15.2 mm) and depth (0.036 to 0.787 mm) in an aluminum substrate material covered with tiles. Results of these measurements are presented for known corrosion flaws both covered and uncovered and for blind tests with unknown corrosion flaws covered with attached tiles. The Terahertz NDE system is shown to detect all artificially manufactured corrosion regions under a Shuttle tile with a depth greater than 0.13 mm.

  19. Data Mining: The Art of Automated Knowledge Extraction

    NASA Astrophysics Data System (ADS)

    Karimabadi, H.; Sipes, T.

    2012-12-01

    Data mining algorithms are used routinely in a wide variety of fields and they are gaining adoption in sciences. The realities of real world data analysis are that (a) data has flaws, and (b) the models and assumptions that we bring to the data are inevitably flawed, and/or biased and misspecified in some way. Data mining can improve data analysis by detecting anomalies in the data, check for consistency of the user model assumptions, and decipher complex patterns and relationships that would not be possible otherwise. The common form of data collected from in situ spacecraft measurements is multi-variate time series which represents one of the most challenging problems in data mining. We have successfully developed algorithms to deal with such data and have extended the algorithms to handle streaming data. In this talk, we illustrate the utility of our algorithms through several examples including automated detection of reconnection exhausts in the solar wind and flux ropes in the magnetotail. We also show examples from successful applications of our technique to analysis of 3D kinetic simulations. With an eye to the future, we provide an overview of our upcoming plans that include collaborative data mining, expert outsourcing data mining, computer vision for image analysis, among others. Finally, we discuss the integration of data mining algorithms with web-based services such as VxOs and other Heliophysics data centers and the resulting capabilities that it would enable.

  20. Flaw growth behavior in thick welded plates of 2219-T87 aluminum at room and cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Glorioso, S. V.; Medlock, J. D.

    1973-01-01

    Axial load fatigue and fracture tests were conducted on thick welded plates of 2219-T87 aluminum alloy to determine the tensile strength properties and the flaw growth behavior in electron beam, gas metal arc, and pulse current gas tungsten arc welds for plates 6.35 centimeters (2.5 in.) thick. The tests were conducted in room temperature air and in liquid nitrogen environments. Specimens were tested in both the as-welded and the aged after welding conditions. The experimental crack growth rate were correlated with theoretical crack growth rate predictions for semielliptical surface flaws.

  1. Profiling USGA putting greens using GPR - an as-built surveying method

    USDA-ARS?s Scientific Manuscript database

    Putting greens installed using the United States Golf Association (USGS) specifications have a subsurface infrastructure constructed to exacting standards. It may be difficult to discern those drainage systems that possess installation flaws, as some flaws may not be readily obvious as their being ...

  2. 76 FR 74655 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... and discrete flaws, and impact or other accidental damage (including the discrete source of the... discrete manufacturing defects or accidental damage, is avoided throughout the operational life or... and discrete flaws, and impact or other accidental damage (including the discrete source of the...

  3. Flawed Mathematical Conceptualizations: Marlon's Dilemma

    ERIC Educational Resources Information Center

    Garrett, Lauretta

    2013-01-01

    Adult developmental mathematics students often work under great pressure to complete the mathematics sequences designed to help them achieve success (Bryk & Treisman, 2010). Results of a teaching experiment demonstrate how the ability to reason can be impeded by flaws in students' mental representations of mathematics. The earnestness of the…

  4. Stress Analysis of Bolted, Segmented Cylindrical Shells Exhibiting Flange Mating-Surface Waviness

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2009-01-01

    Bolted, segmented cylindrical shells are a common structural component in many engineering systems especially for aerospace launch vehicles. Segmented shells are often needed due to limitations of manufacturing capabilities or transportation issues related to very long, large-diameter cylindrical shells. These cylindrical shells typically have a flange or ring welded to opposite ends so that shell segments can be mated together and bolted to form a larger structural system. As the diameter of these shells increases, maintaining strict fabrication tolerances for the flanges to be flat and parallel on a welded structure is an extreme challenge. Local fit-up stresses develop in the structure due to flange mating-surface mismatch (flange waviness). These local stresses need to be considered when predicting a critical initial flaw size. Flange waviness is one contributor to the fit-up stress state. The present paper describes the modeling and analysis effort to simulate fit-up stresses due to flange waviness in a typical bolted, segmented cylindrical shell. Results from parametric studies are presented for various flange mating-surface waviness distributions and amplitudes.

  5. Primary Water Stress Corrosion Cracks in Nickel Alloy Dissimilar Metal Welds: Detection and Sizing Using Established and Emerging Nondestructive Examination Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braatz, Brett G.; Cumblidge, Stephen E.; Doctor, Steven R.

    2012-12-31

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (≈400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional andmore » phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (≈900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for PARENT round-robin tests.« less

  6. Two-ion theory of energy coupling in ATP synthesis rectifies a fundamental flaw in the governing equations of the chemiosmotic theory.

    PubMed

    Nath, Sunil

    2017-11-01

    The vital coupled processes of oxidative phosphorylation and photosynthetic phosphorylation synthesize molecules of adenosine-5'-triphosphate (ATP), the universal biological energy currency, and sustain all life on our planet. The chemiosmotic theory of energy coupling in oxidative and photophosphorylation was proposed by Mitchell >50years ago. It has had a contentious history, with part of the accumulated body of experimental evidence supporting it, and part of it in conflict with the theory. Although the theory was strongly criticized by many prominent scientists, the controversy has never been resolved. Here, the mathematical steps of Mitchell's original derivation leading to the principal equation of the chemiosmotic theory are scrutinized, and a fundamental flaw in them has been identified. Surprisingly, this flaw had not been detected earlier. Discovery of such a defect negates, or at least considerably weakens, the theoretical foundations on which the chemiosmotic theory is based. Ad hoc or simplistic ways to remedy this defect are shown to be scientifically unproductive and sterile. A novel two-ion theory of biological energy coupling salvages the situation by rectifying the fundamental flaw in the chemiosmotic theory, and the governing equations of the new theory have been shown to accurately quantify and predict extensive recent experimental data on ATP synthesis by F 1 F O -ATP synthase without using adjustable parameters. Some major biological implications arising from the new thinking are discussed. The principles of energy transduction and coupling proposed in the new paradigm are shown to be of a very general and universal nature. It is concluded that the timely availability after a 25-year research struggle of Nath's torsional mechanism of energy transduction and ATP synthesis is a rational alternative that has the power to solve the problems arising from the past, and also meet present and future challenges in this important interdisciplinary field of research. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Experimental Study on the Growth, Coalescence and Wrapping Behaviors of 3D Cross-Embedded Flaws Under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao-Ping; Zhang, Jian-Zhi; Wong, Louis Ngai Yuen

    2018-05-01

    The crack initiation, growth, wrapping and coalescence of two 3D pre-existing cross-embedded flaws in PMMA specimens under uniaxial compression are investigated. The stress-strain curves of PMMA specimens with 3D cross-embedded flaws are obtained. The tested PMMA specimens exhibit dominant elastic deformation and eventual brittle failure. The experimental results show that four modes of crack initiation and five modes of crack coalescence are observed. The initiations of oblique secondary crack and anti-wing crack in 3D cracking behaviors are first reported as well as the coalescence of anti-wing cracks. Moreover, two types of crack wrapping are found. Substantial wrapping of petal cracks, which includes open and closed modes of wrapping, appears to be the major difference between 2D and 3D cracking behaviors of pre-existing flaws, which are also first reported. Petal crack wraps symmetrically from either the propagated wing cracks or the coalesced wing cracks. Besides, only limited growth of petal cracks is observed, and ultimate failure of specimens is induced by the further growth of the propagated wing crack. The fracture mechanism of the tested PMMA specimens is finally revealed. In addition, the initiation stress and the peak stress versus the geometry of two 3D pre-existing cross-embedded flaws are also investigated in detail.

  8. The Controversy of Consequences

    ERIC Educational Resources Information Center

    Twing, Jon S.

    2016-01-01

    This special issue of "Assessment in Education" contains the type of debate needed about what Cizek (2015) calls a "… lingering flaw in the concept of validity…." Some practitioners might not agree that the current theory of validation is flawed. Specifically, the debate Jon Twing is referencing concerns the role of the…

  9. Mentoring--Is It Failing Women?

    ERIC Educational Resources Information Center

    Ghosh, Rajashi

    2015-01-01

    Mentoring programs are gaining traction as human resource development initiatives that can support women to advance in their careers in organizations. However, some of these programs are falling short of delivering on this promise due to particular inherent flaws. This case study considers the following three potential flaws of formal mentoring…

  10. IT Security: Target: The Web

    ERIC Educational Resources Information Center

    Waters, John K.

    2009-01-01

    In December, Microsoft announced a major security flaw affecting its Internet Explorer web browser. The flaw allowed hackers to use hidden computer code they had already injected into legitimate websites to steal the passwords of visitors to those sites. Reportedly, more than 10,000 websites were infected with the destructive code by the time…

  11. Fenestrated atrial septal defect percutaneously occluded by a single device: procedural and financial considerations.

    PubMed

    Tal, Roie; Dahud, Qarawani; Lorber, Avraham

    2013-06-01

    A 45-year-old patient presented with a cerebrovascular attack and was subsequently found to have a multi-fenestrated atrial septal defect. Various therapeutic options for percutaneous transcatheter closure with their respective benefits and flaws are discussed, as well as procedural and financial considerations. The decision making process leading to a successful result using a single occlusive device is presented, alongside a review of the literature.

  12. Reliable Design Versus Trust

    NASA Technical Reports Server (NTRS)

    Berg, Melanie; LaBel, Kenneth A.

    2016-01-01

    This presentation focuses on reliability and trust for the users portion of the FPGA design flow. It is assumed that the manufacturer prior to hand-off to the user tests FPGA internal components. The objective is to present the challenges of creating reliable and trusted designs. The following will be addressed: What makes a design vulnerable to functional flaws (reliability) or attackers (trust)? What are the challenges for verifying a reliable design versus a trusted design?

  13. Gender and Women's Experience at Work: A Critical and Feminist Perspective on Human Resource Development.

    ERIC Educational Resources Information Center

    Howell, Sharon L.; Carter, Vicki K.; Schied, Fred M.

    2002-01-01

    Analysis of data from 8 female manufacturing workers, 13 professionals, and 10 clerical workers, two themes emerged: (1) women and organizational change; and (2) disappearing boundaries of work and family. The assumptions of human resource development about why and how women work and definitions of productive work were found to be flawed and…

  14. The Regular Education Initiative as Reagan-Bush Education Policy: A Trickle-Down Theory of Education of the Hard-to-Reach.

    ERIC Educational Resources Information Center

    Kauffman, James M.

    1989-01-01

    The paper discusses the Regular Education Initiative as a conceptual revolution, as a political strategy, and as a flawed policy initiative. It argues that the REI focuses on a small number of highly emotional issues, such as integration, nonlabeling, efficiency, and excellence, which distract attention from deeper analysis. (Author/JDD)

  15. Malnutrition and Environmental Enrichment: A Statistical Reappraisal of the Findings of the Adoption Study of Winick et al. (1975).

    ERIC Educational Resources Information Center

    Trueman, Mark

    1985-01-01

    Critically reviews the influential study "Malnutrition and Environmental Enrichment" by Winick et al. (1975) and highlights what are considered to be statistical flaws in its analysis. Data in the classic study of height, weight, and IQ changes in three groups of adopted, malnourished Korean girls are reanalysed and conclusions…

  16. An Analysis of Collaborative Problem-Solving Mechanisms in Sponsored Projects: Applying the 5-Day Sprint Model

    ERIC Educational Resources Information Center

    Raubenolt, Amy

    2016-01-01

    In May 2016, the office of Finance and Sponsored Projects at The Research Institute at Nationwide Children's Hospital conducted a 5-day design sprint session to re-evaluate and redesign a flawed final reporting process within the department. The department sprint was modeled after the design sprint sessions that occur routinely in software…

  17. The Poverty of Preschool Promises: Saving Children and Money with the Early Education Tax Credit. Policy Analysis. No. 641

    ERIC Educational Resources Information Center

    Schaeffer, Adam B.

    2009-01-01

    The political momentum behind state-level preschool programs is tremendous, but existing proposals are often flawed and expensive. Preschool can provide small but statistically significant short-term gains for low-income children; however, these gains usually fade quickly in later grades. There is little evidence to support the belief that…

  18. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size

    PubMed Central

    Wang, Qiang; Zhang, Wei; Jiang, Shan

    2015-01-01

    Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS) concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V) under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given. PMID:28793625

  19. Finite-key security analysis of quantum key distribution with imperfect light sources

    DOE PAGES

    Mizutani, Akihiro; Curty, Marcos; Lim, Charles Ci Wen; ...

    2015-09-09

    In recent years, the gap between theory and practice in quantum key distribution (QKD) has been significantly narrowed, particularly for QKD systems with arbitrarily flawed optical receivers. The status for QKD systems with imperfect light sources is however less satisfactory, in the sense that the resulting secure key rates are often overly dependent on the quality of state preparation. This is especially the case when the channel loss is high. Very recently, to overcome this limitation, Tamaki et al proposed a QKD protocol based on the so-called 'rejected data analysis', and showed that its security in the limit of infinitelymore » long keys is almost independent of any encoding flaw in the qubit space, being this protocol compatible with the decoy state method. Here, as a step towards practical QKD, we show that a similar conclusion is reached in the finite-key regime, even when the intensity of the light source is unstable. More concretely, we derive security bounds for a wide class of realistic light sources and show that the bounds are also efficient in the presence of high channel loss. Our results strongly suggest the feasibility of long distance provably secure communication with imperfect light sources.« less

  20. Critical Initial Flaw Size Analysis

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Raju, Ivatury S.; Cheston, Derrick J.

    2008-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The USS consists of several "tuna can" segments that are approximately 216 inches in diameter, 115 inches tall, and 0.5 inches thick. A 6 inch wide by 1 inch thick flange is welded to the skin and is used to fasten adjacent tuna cans. A schematic of a "tuna can" and the location of the flange-to-skin weld are shown in Figure 1. Gussets (shown in yellow in Figure 1) are welded to the skin and flange every 10 degrees around the circumference of the "tuna can". The flange-to-skin weld is a flux core butt weld with a fillet weld on the inside surface, as illustrated in Figure 2. The welding process may create loss of fusion defects in the weld that could develop into fatigue cracks and jeopardize the structural integrity of the Ares I-X vehicle. The CIFS analysis was conducted to determine the largest crack in the weld region that will not grow to failure within 4 lifetimes, as specified by NASA standard 5001 & 5019 [1].

  1. Lifetime Reliability Prediction of Ceramic Structures Under Transient Thermomechanical Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Jadaan, Osama J.; Gyekenyesi, John P.

    2005-01-01

    An analytical methodology is developed to predict the probability of survival (reliability) of ceramic components subjected to harsh thermomechanical loads that can vary with time (transient reliability analysis). This capability enables more accurate prediction of ceramic component integrity against fracture in situations such as turbine startup and shutdown, operational vibrations, atmospheric reentry, or other rapid heating or cooling situations (thermal shock). The transient reliability analysis methodology developed herein incorporates the following features: fast-fracture transient analysis (reliability analysis without slow crack growth, SCG); transient analysis with SCG (reliability analysis with time-dependent damage due to SCG); a computationally efficient algorithm to compute the reliability for components subjected to repeated transient loading (block loading); cyclic fatigue modeling using a combined SCG and Walker fatigue law; proof testing for transient loads; and Weibull and fatigue parameters that are allowed to vary with temperature or time. Component-to-component variation in strength (stochastic strength response) is accounted for with the Weibull distribution, and either the principle of independent action or the Batdorf theory is used to predict the effect of multiaxial stresses on reliability. The reliability analysis can be performed either as a function of the component surface (for surface-distributed flaws) or component volume (for volume-distributed flaws). The transient reliability analysis capability has been added to the NASA CARES/ Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code. CARES/Life was also updated to interface with commercially available finite element analysis software, such as ANSYS, when used to model the effects of transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  2. Nondestructive testing of advanced materials using sensors with metamaterials

    NASA Astrophysics Data System (ADS)

    Rozina, Steigmann; Narcis Andrei, Danila; Nicoleta, Iftimie; Catalin-Andrei, Tugui; Frantisek, Novy; Stanislava, Fintova; Petrica, Vizureanu; Adriana, Savin

    2016-11-01

    This work presents a method for nondestructive evaluation (NDE) of advanced materials that makes use of the images in near field and the concentration of flux using the phenomenon of spatial resolution. The method allows the detection of flaws as crack, nonadhesion of coating, degradation or presence delamination stresses correlated with the response of electromagnetic sensor.

  3. Method and apparatus for detecting flaws in conductive material

    DOEpatents

    Hockey, R.L.; Riechers, D.M.

    1998-07-07

    The present invention uses a magnet in relative motion to a conductive material, and a coil that is stationary with respect to the magnet to measure perturbation or variation in the magnetic field in the presence of an inclusion. The magnet and coil sensor may be on the same side of the conductive material. 18 figs.

  4. Does the International Substitution Effect Help Explain the Slope of the Aggregate Demand Curve?

    ERIC Educational Resources Information Center

    Fields, T. Windsor; Elwood, S. Kirk

    1998-01-01

    Observes that the textbook explanation of the relationship between the international substitution effect and the downward slope of the aggregate demand curve is generally presented uncritically. Argues that the international substitution effect is sufficiently flawed and that it should be eliminated in teaching as a justification for the slope of…

  5. "Comparison, Understanding and Teacher Education in International Perspective" by Shen-Keng Yang. Book Review.

    ERIC Educational Resources Information Center

    Clarkson, J. D.

    2000-01-01

    Notes that Yang's book provides a combination of Eastern and Western philosophy in defining values, aims, and methods of education, research, and teacher preparation programs. Maintains that the book presents important insights into current educational issues. Asserts that problems such as printing errors and significant flaws in arguments add to…

  6. Apollo experience report environmental acceptance testing

    NASA Technical Reports Server (NTRS)

    Laubach, C. H. M.

    1976-01-01

    Environmental acceptance testing was used extensively to screen selected spacecraft hardware for workmanship defects and manufacturing flaws. The minimum acceptance levels and durations and methods for their establishment are described. Component selection and test monitoring, as well as test implementation requirements, are included. Apollo spacecraft environmental acceptance test results are summarized, and recommendations for future programs are presented.

  7. Beyond the Rhetoric: An Historian's View of the "National" Standards for United States History.

    ERIC Educational Resources Information Center

    Stern, Sheldon M.

    1994-01-01

    Suggests there are flaws in the National Standards for United States History that could be detrimental to students. According to the author, in their pervasive present-mindedness and self-censorship, the standard's framers underestimate and ill-serve the students because the standards help develop a smug, superior, and self-righteous attitude…

  8. Comments on "Failures in detecting volcanic ash from a satellite-based technique"

    USGS Publications Warehouse

    Prata, F.; Bluth, G.; Rose, B.; Schneider, D.; Tupper, A.

    2001-01-01

    The recent paper by Simpson et al. [Remote Sens. Environ. 72 (2000) 191.] on failures to detect volcanic ash using the 'reverse' absorption technique provides a timely reminder of the danger that volcanic ash presents to aviation and the urgent need for some form of effective remote detection. The paper unfortunately suffers from a fundamental flaw in its methodology and numerous errors of fact and interpretation. For the moment, the 'reverse' absorption technique provides the best means for discriminating volcanic ash clouds from meteorological clouds. The purpose of our comment is not to defend any particular algorithm; rather, we point out some problems with Simpson et al.'s analysis and re-state the conditions under which the 'reverse' absorption algorithm is likely to succeed. ?? 2001 Elsevier Science Inc. All rights reserved.

  9. Defect design of insulation systems for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.

    1981-01-01

    A defect-design approach to sizing electrical insulation systems for terrestrial photovoltaic modules is presented. It consists of gathering voltage-breakdown statistics on various thicknesses of candidate insulation films where, for a designated voltage, module failure probabilities for enumerated thickness and number-of-layer film combinations are calculated. Cost analysis then selects the most economical insulation system. A manufacturing yield problem is solved to exemplify the technique. Results for unaged Mylar suggest using fewer layers of thicker films. Defect design incorporates effects of flaws in optimal insulation system selection, and obviates choosing a tolerable failure rate, since the optimization process accomplishes that. Exposure to weathering and voltage stress reduces the voltage-withstanding capability of module insulation films. Defect design, applied to aged polyester films, promises to yield reliable, cost-optimal insulation systems.

  10. Hazard Analysis and Critical Control Points among Chinese Food Business Operators.

    PubMed

    Saccares, Stefano; Amadei, Paolo; Masotti, Gianfranco; Condoleo, Roberto; Guidi, Alessandra

    2014-08-28

    The purpose of the present paper is to highlight some critical situations emerged during the implementation of long-term projects locally managed by Prevention Services, to control some manufacturing companies in Rome and Prato, Central Italy. In particular, some critical issues on the application of self-control in marketing and catering held by Chinese operators are underlined. The study showed serious flaws in preparing and controlling of manuals for good hygiene practice, participating of the consultants among food business operators (FBOs) to the control of the procedures. Only after regular actions by the Prevention Services, there have been satisfying results. This confirms the need to have qualified and expert partners able to promptly act among FBOs and to give adequate support to authorities in charge in order to guarantee food safety.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebetrau, A.M.

    Work is underway at Pacific Northwest Laboratory (PNL) to improve the probabilistic analysis used to model pressurized thermal shock (PTS) incidents in reactor pressure vessels, and, further, to incorporate these improvements into the existing Vessel Integrity Simulation Analysis (VISA) code. Two topics related to work on input distributions in VISA are discussed in this paper. The first involves the treatment of flaw size distributions and the second concerns errors in the parameters in the (Guthrie) equation which is used to compute ..delta..RT/sub NDT/, the shift in reference temperature for nil ductility transition.

  12. SPAR improved structure/fluid dynamic analysis capability

    NASA Technical Reports Server (NTRS)

    Oden, J. T.; Pearson, M. L.

    1983-01-01

    The capability of analyzing a coupled dynamic system of flowing fluid and elastic structure was added to the SPAR computer code. A method, developed and adopted for use in SPAR utilizes the existing assumed stress hybrid plan element in SPAR. An operational mode was incorporated in SPAR which provides the capability for analyzing the flaw of a two dimensional, incompressible, viscous fluid within rigid boundaries. Equations were developed to provide for the eventual analysis of the interaction of such fluids with an elastic solid.

  13. Crack detection using resonant ultrasound spectroscopy

    DOEpatents

    Migliori, A.; Bell, T.M.; Rhodes, G.W.

    1994-10-04

    Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component. 5 figs.

  14. Crack detection using resonant ultrasound spectroscopy

    DOEpatents

    Migliori, Albert; Bell, Thomas M.; Rhodes, George W.

    1994-01-01

    Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component.

  15. Crack Growth of D6 Steel in Air and High Pressure Oxygen

    NASA Technical Reports Server (NTRS)

    Bixler, W. D.; Engstrom, W. L.

    1971-01-01

    Fracture and subcritical flaw growth characteristics were experimentally deter­mined for electroless nickel plated D6 steel in dry air and high pressure oxygen environments as applicable to the Lunar Module/Environmental Control System (LM/ECS) descent gaseous oxygen (GOX) tank. The material tested included forgings, plate, and actual LM/ECS descent GOX tank material. Parent metal and TIG (tungsten inert gas) welds were tested. Tests indicate that proof testing the tanks at 4000 pounds per square inch or higher will insure safe operation at 3060 pounds per square inch. Although significant flaw growth can occur during proofing, subsequent growth of flaws during normal tank operation is negligible.

  16. Preliminary evaluation of several nondestructive-evaluation techniques for silicon nitride gas-turbine rotors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupperman, D. S.; Sciammarella, C.; Lapinski, N. P.

    1978-01-01

    Several nondestructive-evaluation (NDE) techniques have been examined to establish their effectiveness for detecting critically sized flaws in silicon nitride gas-turbine rotors. Preliminary results have been obtained for holographic interferometry, acoustic microscopy, dye-enhanced radiography, acoustic emission, and acoustic-impact testing techniques. This report discusses the relative effectiveness of these techniques in terms of their applicability to the rotor geometry and ability to detect critically sized flaws. Where feasible, flaw indications were verified by alternative NDE techniques or destructive examination. This study has indicated that, since the various techniques have different advantages, ultimately a reliable interrogation of ceramic rotors may require the applicationmore » of several NDE methods.« less

  17. Statistical Tests of Reliability of NDE

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Klima, Stanley J.; Roth, Don J.; Kiser, James D.

    1987-01-01

    Capabilities of advanced material-testing techniques analyzed. Collection of four reports illustrates statistical method for characterizing flaw-detecting capabilities of sophisticated nondestructive evaluation (NDE). Method used to determine reliability of several state-of-the-art NDE techniques for detecting failure-causing flaws in advanced ceramic materials considered for use in automobiles, airplanes, and space vehicles.

  18. Research and development of ultrasonic tomography technology for three-dimensional imaging of internal rail flaws : modeling and simulation.

    DOT National Transportation Integrated Search

    2013-04-01

    This report covers the work performed under the FRA High-Speed BAA 20102011 program to demonstrate the technology of ultrasonic tomography for 3-D imaging of internal rail flaws. There is a need to develop new technologies that are able to quantif...

  19. Flawed Implementation or Inconsistent Logics? Lessons from Higher Education Reform in Ukraine

    ERIC Educational Resources Information Center

    Shaw, Marta A.

    2013-01-01

    This article investigates two competing explanations of why reforms associated with the Bologna process brought disappointing results in Ukraine. The lack of anticipated benefits from the reforms may stem either from a flawed implementation of the Bologna process, or from more fundamental differences between the models of higher education…

  20. Rousseau on Sex-Roles, Education and Happiness

    ERIC Educational Resources Information Center

    Jonas, Mark E.

    2016-01-01

    Over the last decade, philosophers of education have begun taking a renewed interest in Rousseau's educational thought. This is a welcome development as his ideas are rich with educational insights. His philosophy is not without its flaws, however. One significant flaw is his educational project for females, which is sexist in the highest degree.…

  1. Clinical Application of a Behavioral Model for the Treatment of Body Dysmorphic Disorder

    ERIC Educational Resources Information Center

    Rabinowitz, Dena; Neziroglu, Fugen; Roberts, Marty

    2007-01-01

    Body dysmorphic disorder (BDD) is characterized by an obsessive concern over a perceived flaw in bodily appearance. If a minor flaw does exist, the patient displays unwarranted distress. This preoccupation typically leads to compulsive behaviors, such as mirror checking or mirror avoiding, camouflaging, and seeking reassurance from others…

  2. 77 FR 27210 - Publication of the Final National Wetland Plant List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... that the process was fatally flawed. ``Voting'' online was the most efficient way to obtain technical... for this effort was fatally flawed. Input received during the public comment period was used in...-sector personnel on the regional panels would be a legal issue. Under the Federal Advisory Committee Act...

  3. 76 FR 59466 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Order Disapproving a Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... believe that NASDAQ's ``joint products'' theory is fundamentally flawed, and cannot support the conclusion... joint products ``platform competition theory'' is flawed as a matter of economics, because order... functioning of the national market system or result in predatory prices, or threaten to injure competition...

  4. Equality: Constitutional Update. Bar/School Partnership Programs Series.

    ERIC Educational Resources Information Center

    American Bar Association, Chicago, IL. Special Committee on Youth Education for Citizenship.

    The second in a special four-part series of law-school partnership handbooks on constitutional themes, this document focuses on equality. "Equality--the Forgotten Word" (J. A. Hughes) discusses what has been considered the U.S. Constitution's one flaw, its failure to abolish slavery, and the remedy to that flaw, the Fourteenth Amendment.…

  5. 76 FR 58539 - Notice Pursuant to The National Cooperative Research and Production Act of 1993-Cooperative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to The National Cooperative Research and Production Act of 1993--Cooperative Research Group on Development and Validation of FlawPRO for Assessing... Development and Validation of FlawPRO for Assessing Defect Tolerance of Welded Pipes Under Generalized High...

  6. Evaluation of laminated aluminum plate for shuttle applications

    NASA Technical Reports Server (NTRS)

    Martin, M. J.

    1973-01-01

    Flaw growth behavior in roll diffusion bonded and adhesive bonded 2219-T87 aluminum alloy was compared to that in monolothic 2219-T87. Based on tests at 40 KSI cyclic stress, for equivalent cyclic life, a .004 interlayer laminate can tolerate a surface flaw twice as wide as in monolithic material, or provide an 8% weight saving by operating at higher stress for the same initial flaw. Roll diffusion bonded material with three structural plies of 2219-T87 and two interlayers of 1100 aluminum was prepared with interlayer thicknesses of .004, .007 and .010 in. Total laminate thickness was .130 in. The .004 interlayer laminate was most effective and gave better results than monolithic material at 40 and 48 ksi. Adhesive bonded specimens were fabricated of three sheets of 2219-T87 aluminum alloy bonded with METLBOND 329 adhesive. Adhesive bonded specimens gave longer lives to failure than diffusion bonded specimens at 40 ksi the diffusion bonded material was superior. Flaws initiated in one ply of the laminate grew to the edges of the specimen in that ply but did not propagate into adjacent plies.

  7. Computational micromechanics of dynamic compressive loading of a brittle polycrystalline material using a distribution of grain boundary properties

    NASA Astrophysics Data System (ADS)

    Kraft, R. H.; Molinari, J. F.; Ramesh, K. T.; Warner, D. H.

    A two-dimensional finite element model is used to investigate compressive loading of a brittle ceramic. Intergranular cracking in the microstructure is captured explicitly by using a distribution of cohesive interfaces. The addition of confining stress increases the maximum strength and if high enough, can allow the effective material response to reach large strains before failure. Increasing the friction at the grain boundaries also increases the maximum strength until saturation of the strength is approached. Above a transitional strain rate, increasing the rate-of-deformation also increases the strength and as the strain rate increases, fragment sizes of the damaged specimen decrease. The effects of flaws within the specimen were investigated using a random distribution at various initial flaw densities. The model is able to capture an effective modulus change and degradation of strength as the initial flaw density increases. Effects of confinement, friction, and spatial distribution of flaws seem to depend on the crack coalescence and dilatation of the specimen, while strain-rate effects are result of inertial resistance to motion.

  8. FUNCTIONAL HOP TESTS AND TUCK JUMP ASSESSMENT SCORES BETWEEN FEMALE DIVISION I COLLEGIATE ATHLETES PARTICIPATING IN HIGH VERSUS LOW ACL INJURY PRONE SPORTS: A CROSS SECTIONAL ANALYSIS

    PubMed Central

    Hoog, Philipp; Warren, Meghan; Smith, Craig A.

    2016-01-01

    Background Although functional tests including the single leg hop (SLH), triple hop (TH), cross over hop (COH) for distance, and the tuck jump assessment (TJA) are used for return to play (RTP) criteria for post anterior cruciate ligament (ACL) injury, sport-specific baseline measurements are limited. Purpose The purpose of this study was to examine differences in SLH, TH, and COH distance and limb symmetry index (LSI), as well as total scores, number of jumps, and individual flaws of the TJA in 97 injury-free Division I (DI) collegiate female student athletes participating in ACL injury prone vs. non ACL injury prone sports. The hypothesis was that significant mean differences and asymmetries (LSI) would exist between the two groups in SLH, TH, COH and TJA. Study Design Cross sectional. Methods Due to research suggesting inherent ACL injury risk associated with specific sport involvement, participants were grouped into high (HR, n=57) and low (LR, n=40) ACL injury risk based on participating in a sport with high or low ACL injury rates. The HR group was composed of athletes participating in soccer, basketball, and volleyball, while the LR group athletes participated in diving, cross country, and track and field. Participants performed all standard functional tests (SFT) and side-to-side differences for each participant as well as between group differences were assessed for the hop tests. The LSI, a ratio frequently used to gauge athletes’ readiness for RTP post injury, was also assessed for between group differences. The TJA was compared between the groups on individual flaws, overall scores, and number of jumps performed. Results No between group differences for hop distances were found, with medium to large effect sizes for SLH, TH, and COH. The HR group had a higher TJA score, number of jumps, and higher proportion of the flaw of ‘foot placement not shoulder width apart’. Conclusion Although most SFT's showed no significant differences between athlete groups, some differences were seen in the TJA; the HR group showed an increase in ‘foot placement not shoulder width apart’ flaw, higher overall flaw scores, and overall jumped more times compared to the LR group. These results may warrant caution in relying solely on SFT for RTP decisions, due to potential asymmetries seen in an uninjured population with baseline testing. Level of Evidence 4 PMID:27904796

  9. Pre-referral rectal artesunate in severe malaria: flawed trial.

    PubMed

    Hirji, Karim F; Premji, Zulfiqarali G

    2011-08-08

    Immediate injectable treatment is essential for severe malaria. Otherwise, the afflicted risk lifelong impairment or death. In rural areas of Africa and Asia, appropriate care is often miles away. In 2009, Melba Gomes and her colleagues published the findings of a randomized, placebo-controlled trial of rectal artesunate for suspected severe malaria in such remote areas. Enrolling nearly 18,000 cases, the aim was to evaluate whether, as patients were in transit to a health facility, a pre-referral artesunate suppository blocked disease progression sufficiently to reduce these risks. The affirmative findings of this, the only trial on the issue thus far, have led the WHO to endorse rectal artesunate as a pre-referral treatment for severe malaria. In the light of its public health importance and because its scientific quality has not been assessed for a systematic review, our paper provides a detailed evaluation of the design, conduct, analysis, reporting, and practical features of this trial. We performed a checklist-based and an in-depth evaluation of the trial. The evaluation criteria were based on the CONSORT statement for reporting clinical trials, the clinical trial methodology literature, and practice in malaria research. Our main findings are: The inclusion and exclusion criteria and the sample size justification are not stated. Many clearly ineligible subjects were enrolled. The training of the recruiters does not appear to have been satisfactory. There was excessive between center heterogeneity in design and conduct. Outcome evaluation schedule was not defined, and in practice, became too wide. Large gaps in the collection of key data were evident. Primary endpoints were inconsistently utilized and reported; an overall analysis of the outcomes was not done; analyses of time to event data had major flaws; the stated intent-to-treat analysis excluded a third of the randomized subjects; the design-indicated stratified or multi-variate analysis was not done; many improper subgroups were analyzed in a post-hoc fashion; the analysis and reporting metric was deficient. There are concerns relating to patient welfare at some centers. Exclusion of many cases from data analysis compromised external validity. A bias-controlled reanalysis of available data does not lend support to the conclusions drawn by the authors. This trial has numerous serious deficiencies in design, implementation, and methods of data analysis. Interpretation and manner of reporting are wanting, and the applicability of the findings is unclear. The trial conduct could have been improved to better protect patient welfare. The totality of these problems make it a flawed study whose conclusions remain subject to appreciable doubt.

  10. Remotely Telling Humans and Computers Apart: An Unsolved Problem

    NASA Astrophysics Data System (ADS)

    Hernandez-Castro, Carlos Javier; Ribagorda, Arturo

    The ability to tell humans and computers apart is imperative to protect many services from misuse and abuse. For this purpose, tests called CAPTCHAs or HIPs have been designed and put into production. Recent history shows that most (if not all) can be broken given enough time and commercial interest: CAPTCHA design seems to be a much more difficult problem than previously thought. The assumption that difficult-AI problems can be easily converted into valid CAPTCHAs is misleading. There are also some extrinsic problems that do not help, especially the big number of in-house designs that are put into production without any prior public critique. In this paper we present a state-of-the-art survey of current HIPs, including proposals that are now into production. We classify them regarding their basic design ideas. We discuss current attacks as well as future attack paths, and we also present common errors in design, and how many implementation flaws can transform a not necessarily bad idea into a weak CAPTCHA. We present examples of these flaws, using specific well-known CAPTCHAs. In a more theoretical way, we discuss the threat model: confronted risks and countermeasures. Finally, we introduce and discuss some desirable properties that new HIPs should have, concluding with some proposals for future work, including methodologies for design, implementation and security assessment.

  11. Progress of a Cross-correlation Based Optical Strain Measurement Technique for Detecting Radial Growth on a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Woike, Mark; Abdul-Aziz, Ali

    2013-01-01

    The Aeronautical Sciences Project under NASAs Fundamental Aeronautics Program is extremely interested in the development of fault detection technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Centers High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied background consisting of a high-contrast random speckle pattern and imaging the background under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.8-m in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will appear shifted. The resulting background displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential backgrounds, for future use on the rotating disk, are developed and investigated in the controlled experiment. A range of known shifts are induced on the backgrounds; reference and data images are acquired before and after the induced shift, respectively, and the images are processed using the cross- correlation algorithms in order to determine the background displacements. The effectiveness of each background at resolving the known shift is evaluated and discussed in order to choose to the most suitable background to be implemented onto a rotating disk in the Rotordynamics Lab. Although testing on the rotating disk has not yet been performed, the driving principles behind the development of the present optical technique are based upon critical aspects of the future experiment, such as the amount of expected radial growth, disk analysis, and experimental design and are therefore addressed in the paper.

  12. Accounting for response misclassification and covariate measurement error improves power and reduces bias in epidemiologic studies.

    PubMed

    Cheng, Dunlei; Branscum, Adam J; Stamey, James D

    2010-07-01

    To quantify the impact of ignoring misclassification of a response variable and measurement error in a covariate on statistical power, and to develop software for sample size and power analysis that accounts for these flaws in epidemiologic data. A Monte Carlo simulation-based procedure is developed to illustrate the differences in design requirements and inferences between analytic methods that properly account for misclassification and measurement error to those that do not in regression models for cross-sectional and cohort data. We found that failure to account for these flaws in epidemiologic data can lead to a substantial reduction in statistical power, over 25% in some cases. The proposed method substantially reduced bias by up to a ten-fold margin compared to naive estimates obtained by ignoring misclassification and mismeasurement. We recommend as routine practice that researchers account for errors in measurement of both response and covariate data when determining sample size, performing power calculations, or analyzing data from epidemiological studies. 2010 Elsevier Inc. All rights reserved.

  13. Beyond the political model of reporting: nonspecific symptoms in media communication about AIDS.

    PubMed

    Check, W A

    1987-01-01

    Mass media have functioned well in transmitting much of the basic information about the AIDS epidemic; however, media coverage of AIDS has been flawed. In many ways these flaws have resulted from the limitations and conventions of traditional journalism, especially the need to appeal to a large mainstream audience and a reliance on authorities as sources and validators of information. News stories typically rely on a single articulate authority, and articles that involve conspiracy or controversy or have a high entertainment value are favored. Although coverage of politics and social issues is not distorted by these journalistic conventions, coverage of science suffers. Analysis of news coverage of AIDS shows that mass media often respond to sensationalism rather than to important scientific developments. In addition, scientific disagreements are better adjudicated by evidence than by appeals to authority. As a result, media coverage often obscures the process of scientific deliberation. Public health officials need to consider setting up a special channel of communications to clarify information about AIDS.

  14. Laser-induced damage and fracture in fused silica vacuum windows

    NASA Astrophysics Data System (ADS)

    Campbell, John H.; Hurst, Patricia A.; Heggins, Dwight D.; Steele, William A.; Bumpas, Stanley E.

    1997-05-01

    Laser induced damage, that initiates catastrophic fracture, has been observed in large, fused silica lenses that also serve as vacuum barriers in high-fluence positions on the Nova and Beamlet lasers. In nearly all cases damage occurs on the vacuum side of the lens. The damage can lead to catastrophic crack growth if the flaw size exceeds the critical flaw size for SiO2. If the elastic stored energy in the lens in high enough, the lens will fracture into many pieces resulting in an implosion. The consequences of such an implosion can be severe, particularly for large vacuum systems. Three parameters control the degree of fracture in the vacuum barrier window: (1) the elastic stored energy, (2) the ratio of the window thickness to flaw depth and (3) secondary crack propagation. Fracture experiments have ben carried our on 15-cm diameter fused silica windows that contain surface flaws caused by laser damage. The results of these experiments, combined with data from window failures on Beamlet and Nova have been sued to develop design criteria for a 'fail-safe' lens. Specifically the window must be made thick enough such that the peak tensile stress is less than 500 psi and the corresponding ratio of the thickness to critical flaw size is less than 6. Under these conditions a properly mounted window, upon failure, will break into only tow pieces and will not implode. One caveat to these design criteria is that the air leak through the window before secondary crack growth occurs. Finite element stress calculations of a window before and immediately following fracture into two pieces show that the elastic stored energy is redistributed if the fragments 'lock' in place and thereby bridge the opening. In such cases, the peak stresses at the flaw site can increase leading to further crack growth.

  15. A two-stage model of fracture of rocks

    USGS Publications Warehouse

    Kuksenko, V.; Tomilin, N.; Damaskinskaya, E.; Lockner, D.

    1996-01-01

    In this paper we propose a two-stage model of rock fracture. In the first stage, cracks or local regions of failure are uncorrelated occur randomly throughout the rock in response to loading of pre-existing flaws. As damage accumulates in the rock, there is a gradual increase in the probability that large clusters of closely spaced cracks or local failure sites will develop. Based on statistical arguments, a critical density of damage will occur where clusters of flaws become large enough to lead to larger-scale failure of the rock (stage two). While crack interaction and cooperative failure is expected to occur within clusters of closely spaced cracks, the initial development of clusters is predicted based on the random variation in pre-existing Saw populations. Thus the onset of the unstable second stage in the model can be computed from the generation of random, uncorrelated damage. The proposed model incorporates notions of the kinetic (and therefore time-dependent) nature of the strength of solids as well as the discrete hierarchic structure of rocks and the flaw populations that lead to damage accumulation. The advantage offered by this model is that its salient features are valid for fracture processes occurring over a wide range of scales including earthquake processes. A notion of the rank of fracture (fracture size) is introduced, and criteria are presented for both fracture nucleation and the transition of the failure process from one scale to another.

  16. Flux-focusing eddy current probe and method for flaw detection

    NASA Technical Reports Server (NTRS)

    Simpson, John W. (Inventor); Clendenin, C. Gerald (Inventor)

    1993-01-01

    A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks and material loss in high conductivity material is presented. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil. The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. The maximum sensor output is obtained when positioned symmetrically above the crack. Hence, by obtaining the position of the maximum sensor output, it is possible to track the fault and locate the area surrounding its tip. The accuracy of tip location is enhanced by two unique features of the sensor; a very high signal-to-noise ratio of the probe's output which results in an extremely smooth signal peak across the fault, and a rapidly decaying sensor output outside a small area surrounding the crack tip which enables the region for searching to be clearly defined. Under low frequency operation, material thinning due to corrosion damage causes an incomplete shielding of the pick-up coil. The low frequency output voltage of the probe is therefore a direct indicator of the thickness of the test sample.

  17. Insights Gained from Ultrasonic Testing of Piping Welds Subjected to the Mechanical Stress Improvement Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.

    2010-12-01

    Pacific Northwest National Laboratory (PNNL) is assisting the United States Nuclear Regulatory Commission (NRC) in developing a position on the management of primary water stress corrosion cracking (PWSCC) in leak-before-break piping systems. Part of this involves determining whether inspections alone, or inspections plus mitigation, are needed. This work addresses the reliability of ultrasonic testing (UT) of cracks that have been mitigated by the mechanical stress improvement process (MSIP). The MSIP has been approved by the NRC (NUREG-0313) since 1986 and modifies residual stresses remaining after welding with compressive, or neutral, stresses near the inner diameter surface of the pipe. Thismore » compressive stress is thought to arrest existing cracks and inhibit new crack formation. To evaluate the effectiveness of the MSIP and the reliability of ultrasonic inspections, flaws were evaluated both before and after MSIP application. An initial investigation was based on data acquired from cracked areas in 325-mm-diameter piping at the Ignalina Nuclear Power Plant (INPP) in Lithuania. In a follow-on exercise, PNNL acquired and evaluated similar UT data from a dissimilar metal weld (DMW) specimen containing implanted thermal fatigue cracks. The DMW specimen is a carbon steel nozzle-to-safe end-to-stainless steel pipe section that simulates a pressurizer surge nozzle. The flaws were implanted in the nozzle-to-safe end Alloy 82/182 butter region. Results are presented on the effects of MSIP on specimen surfaces, and on UT flaw responses.« less

  18. Preclinical animal anxiety research - flaws and prejudices.

    PubMed

    Ennaceur, Abdelkader; Chazot, Paul L

    2016-04-01

    The current tests of anxiety in mice and rats used in preclinical research include the elevated plus-maze (EPM) or zero-maze (EZM), the light/dark box (LDB), and the open-field (OF). They are currently very popular, and despite their poor achievements, they continue to exert considerable constraints on the development of novel approaches. Hence, a novel anxiety test needs to be compared with these traditional tests, and assessed against various factors that were identified as a source of their inconsistent and contradictory results. These constraints are very costly, and they are in most cases useless as they originate from flawed methodologies. In the present report, we argue that the EPM or EZM, LDB, and OF do not provide unequivocal measures of anxiety; that there is no evidence of motivation conflict involved in these tests. They can be considered at best, tests of natural preference for unlit and/or enclosed spaces. We also argued that pharmacological validation of a behavioral test is an inappropriate approach; it stems from the confusion of animal models of human behavior with animal models of pathophysiology. A behavioral test is developed to detect not to produce symptoms, and a drug is used to validate an identified physiological target. In order to overcome the major methodological flaws in animal anxiety studies, we proposed an open space anxiety test, a 3D maze, which is described here with highlights of its various advantages over to the traditional tests.

  19. Evidence for Neuropsychological Effects of PCBs in Environmental Studies: Getting Better All the Time

    ERIC Educational Resources Information Center

    Rice, Deborah C.

    2004-01-01

    This invited response to the paper by D.V. Cicchetti, A.S. Kaufman, and S.S. Sparrow (CKS), and the responses by the investigative teams of the studies criticized by them, addresses specific errors of logic and interpretation by CKS, and integrates comments made by the study investigators. CKS provide a flawed analysis of the literature on the…

  20. Reforming Mexico’s Energy Sector to Enhance Stability

    DTIC Science & Technology

    2011-10-27

    requirement to reform Mexico’s energy sector. Subsequent analysis demonstrates government ownership of Petroleos Mexico (Pemex) is the fundamental...ownership of Petroleos Mexico (Pemex) is the fundamental destabilizing flaw in regulatory policy, by tracing various problems back to this root cause... Petroleos Mexico (Pemex) is the second largest company in Latin America and the seventh largest producer of oil in the world.1 The government of

  1. Moving Target Techniques: Leveraging Uncertainty for CyberDefense

    DTIC Science & Technology

    2015-12-15

    cyberattacks is a continual struggle for system managers. Attackers often need only find one vulnerability (a flaw or bug that an attacker can exploit...additional parsing code itself could have security-relevant software bugs . Dynamic  Network   Techniques in the dynamic network domain change the...evaluation of MT techniques can benefit from a variety of evaluation approaches, including abstract analysis, modeling and simulation, test bed

  2. All flash, No light: the kabuki dance opposing a national renewable portfolio standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Christopher; Sovacool, Benjamin K.

    2008-11-15

    We don't know what is driving Professor Michaels, but his case against a national RPS is little more than a Kabuki dance of factual distortions and flawed analysis. His persistence cannot substitute for facts, more and more of which, as we have shown, build a strong case for adopting a national RPS and establishing a national market for renewable energy. (author)

  3. Quantum cryptography: Security criteria reexamined

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaszlikowski, Dagomir; Liang, Y.C.; Englert, Berthold-Georg

    2004-09-01

    We find that the generally accepted security criteria are flawed for a whole class of protocols for quantum cryptography. This is so because a standard assumption of the security analysis, namely that the so-called square-root measurement is optimal for eavesdropping purposes, is not true in general. There are rather large parameter regimes in which the optimal measurement extracts substantially more information than the square-root measurement.

  4. Nondestructive ultrasonic characterization of armor grade silicon carbide

    NASA Astrophysics Data System (ADS)

    Portune, Andrew Richard

    Ceramic materials have traditionally been chosen for armor applications for their superior mechanical properties and low densities. At high strain rates seen during ballistic events, the behavior of these materials relies upon the total volumetric flaw concentration more so than any single anomalous flaw. In this context flaws can be defined as any microstructural feature which detriments the performance of the material, potentially including secondary phases, pores, or unreacted sintering additives. Predicting the performance of armor grade ceramic materials depends on knowledge of the absolute and relative concentration and size distribution of bulk heterogeneities. Ultrasound was chosen as a nondestructive technique for characterizing the microstructure of dense silicon carbide ceramics. Acoustic waves interact elastically with grains and inclusions in large sample volumes, and were well suited to determine concentration and size distribution variations for solid inclusions. Methodology was developed for rapid acquisition and analysis of attenuation coefficient spectra. Measurements were conducted at individual points and over large sample areas using a novel technique entitled scanning acoustic spectroscopy. Loss spectra were split into absorption and scattering dominant frequency regimes to simplify analysis. The primary absorption mechanism in polycrystalline silicon carbide was identified as thermoelastic in nature. Correlations between microstructural conditions and parameters within the absorption equation were established through study of commercial and custom engineered SiC materials. Nonlinear least squares regression analysis was used to estimate the size distributions of boron carbide and carbon inclusions within commercial SiC materials. This technique was shown to additionally be capable of approximating grain size distributions in engineered SiC materials which did not contain solid inclusions. Comparisons to results from electron microscopy exhibited favorable agreement between predicted and observed distributions. Developed techniques were applied to large sample areas using scanning acoustic spectroscopy to map variations in the size distribution and concentration of grains and solid inclusions within the bulk microstructure. The experiments performed in this thesis form the foundation of a novel characterization technique capable of mapping variations in sample composition which could be extended to a wide range of dense polycrystalline heterogeneous materials.

  5. Stress and Reliability Analysis of a Metal-Ceramic Dental Crown

    NASA Technical Reports Server (NTRS)

    Anusavice, Kenneth J; Sokolowski, Todd M.; Hojjatie, Barry; Nemeth, Noel N.

    1996-01-01

    Interaction of mechanical and thermal stresses with the flaws and microcracks within the ceramic region of metal-ceramic dental crowns can result in catastrophic or delayed failure of these restorations. The objective of this study was to determine the combined influence of induced functional stresses and pre-existing flaws and microcracks on the time-dependent probability of failure of a metal-ceramic molar crown. A three-dimensional finite element model of a porcelain fused-to-metal (PFM) molar crown was developed using the ANSYS finite element program. The crown consisted of a body porcelain, opaque porcelain, and a metal substrate. The model had a 300 Newton load applied perpendicular to one cusp, a load of 30ON applied at 30 degrees from the perpendicular load case, directed toward the center, and a 600 Newton vertical load. Ceramic specimens were subjected to a biaxial flexure test and the load-to-failure of each specimen was measured. The results of the finite element stress analysis and the flexure tests were incorporated in the NASA developed CARES/LIFE program to determine the Weibull and fatigue parameters and time-dependent fracture reliability of the PFM crown. CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/Or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program.

  6. Primary Science Assessment Item Setters' Misconceptions Concerning the State Changes of Water

    ERIC Educational Resources Information Center

    Boo, Hong Kwen

    2006-01-01

    Assessment is an integral and vital part of teaching and learning, providing feedback on progress through the assessment period to both learners and teachers. However, if test items are flawed because of misconceptions held by the questions setter, then such test items are invalid as assessment tools. Moreover, such flawed items are also likely to…

  7. Five Flaws of Staff Development and the Future Beyond

    ERIC Educational Resources Information Center

    Hargreaves, Andy

    2007-01-01

    Student learning and development do not occur without teacher learning and development. Not any teacher development will do, though. The old flaws of weak and wayward staff development are well-known--no staff development, in which trial and error are assumed to be enough; staff development that is all ideas and no implementation, i.e. the…

  8. Primary Science Assessment Item Setters' Misconceptions Concerning Biological Science Concepts

    ERIC Educational Resources Information Center

    Boo, Hong Kwen

    2007-01-01

    Assessment is an integral and vital part of teaching and learning, providing feedback on progress through the assessment period to both learners and teachers. However, if test items are flawed because of misconceptions held by the question setter, then such test items are invalid as assessment tools. Moreover, such flawed items are also likely to…

  9. A Critique of Books for College Libraries, 2d ed.

    ERIC Educational Resources Information Center

    Pownall, David E.

    The second edition of "Books for College Libraries," a six-volume work listing 38,651 titles is flawed, although it shows merit, and should be useful. Quality of selections and coverage range from good through excellent to superb. The primary flaws relate to the quality and extent of selections, particularly for such disciplines as history and…

  10. The Dangerous Myth of Emerging Adulthood: An Evidence-Based Critique of a Flawed Developmental Theory

    ERIC Educational Resources Information Center

    Côté, James E.

    2014-01-01

    This article examines the theory of emerging adulthood, introduced into the literature by Arnett (2000), in terms of its methodological and evidential basis, and finds it to be unsubstantiated on numerous grounds. Other, more convincing, formulations of variations in the transition to adulthood are examined. Most flawed academic theories are…

  11. Short beam shear tests of polymeric laminates and unidirectional composites

    NASA Technical Reports Server (NTRS)

    Stinchcomb, W. W.; Henneke, E. G.

    1980-01-01

    The application of advanced composite materials in aerospace, ground transportation, and sporting industries are discussed. Failure theories for the design and mechanical behavior of composite materials are emphasized. Methods for detecting specific types of flaws are outlined. The effect of detected flaws on mechanical properties such as stiffness, strength, fatigue lifetime, or residual strength is described.

  12. The Theme of the Sightless Asexual as Seen in the Novels "Santa" by Federico Gamboa and "El tunel" by Ernesto Sabato

    ERIC Educational Resources Information Center

    Hunter, Robert A., Jr.

    2009-01-01

    The most cursory examination of literary depictions of the physically blind reveals a myriad of colorful, diverse and often odd characterizations. Portrayals of the sightless typically present them in roles overwhelmingly unflattering and flawed. In Federico Gamboa's "Santa," the blind piano player and coprotagonist, Hipolito, is cast as pathetic…

  13. Energy, Society, and Education, with Emphasis on Educational Technology Policy for K-12

    ERIC Educational Resources Information Center

    Chedid, Loutfallah Georges

    2005-01-01

    This paper begins by examining the profound impact of energy usage on our lives, and on every major sector of the economy. Then, the anticipated US energy needs by the year 2025 are presented based on the Department of Energy's projections. The paper considers the much-touted National Energy Policy Report, and identifies a major flaw where the…

  14. What's the Difference, Still? A Follow-Up Review of the Quantitative Research Methodology in Distance Learning

    ERIC Educational Resources Information Center

    Randolph, Justus

    2005-01-01

    A high quality review of the distance learning literature from 1992-1999 concluded that most of the research on distance learning had serious methodological flaws. This paper presents the results of a small-scale replication of that review. From three leading distance education journals, a sample of 66 articles was categorized by study type and…

  15. Remarques critiques a propos de l'enquete international sur la litteratie (Critical Remarks Regarding the International Adult Literacy Survey).

    ERIC Educational Resources Information Center

    Manesse, Daniele

    2000-01-01

    States that French authorities refused to make International Adult Literacy Survey results public, citing methodological flaws, the need for better procedural precautions, and a more adequate notion of literacy. Presents a synthesis of the counter investigations demanded by French authorities that justify their doubts on the IALS definitions and…

  16. Study of acoustic emission during mechanical tests of large flight weight tank structure

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Mccauley, B. O.; Veach, C. L.

    1972-01-01

    A polyphenylane oxide insulated, flight weight, subscale, aluminum tank was monitored for acoustic emissions during a proof test and during 100 cycles of environmental test simulating space flights. The use of a combination of frequency filtering and appropriate spatial filtering to reduce background noise was found to be sufficient to detect acoustic emission signals of relatively small intensity expected from subcritical crack growth in the structure. Several emission source locations were identified, including the one where a flaw was detected by post-test X-ray inspections. For most source locations, however, post-test inspections did not detect flaws; this was partially attributed to the higher sensitivity of the acoustic emission technique than any other currently available NDT method for detecting flaws.

  17. Flaw Stability Considering Residual Stress for Aging Management of Spent Nuclear Fuel Multiple-Purpose Canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Poh-Sang; Sindelar, Robert L.

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. Because heat treatment for stress relief is not required for the construction of the MPC, the canister is susceptible to stress corrosion cracking in the weld or heat affected zone regions under long-term storage conditions. Logic for flaw acceptance is developed should crack-like flaws be detected by Inservice Inspection. The procedure recommended by API 579-1/ASME FFS-1, Fitness-for-Service, is used to calculate the instability crack length or depth by failure assessment diagram. It is demonstrated that the welding residual stress has amore » strong influence on the results.« less

  18. Influence of quality control variables on failure of graphite/epoxy under extreme moisture conditions

    NASA Technical Reports Server (NTRS)

    Clements, L. L.; Lee, P. R.

    1980-01-01

    Tension tests on graphite/epoxy composites were performed to determine the influence of various quality control variables on failure strength as a function of moisture and moderate temperatures. The extremely high and low moisture contents investigated were found to have less effect upon properties than did temperature or the quality control variables of specimen flaws and prepreg batch to batch variations. In particular, specimen flaws were found to drastically reduce the predicted strength of the composite, whereas specimens from different batches of prepreg displayed differences in strength as a function of temperature and extreme moisture exposure. The findings illustrate the need for careful specimen preparation, studies of flaw sensitivity, and careful quality control in any study of composite materials.

  19. Flaw Stability Considering Residual Stress for Aging Management of Spent Nuclear Fuel Multiple-Purpose Canisters

    DOE PAGES

    Lam, Poh-Sang; Sindelar, Robert L.

    2016-04-28

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. Because heat treatment for stress relief is not required for the construction of the MPC, the canister is susceptible to stress corrosion cracking in the weld or heat affected zone regions under long-term storage conditions. Logic for flaw acceptance is developed should crack-like flaws be detected by Inservice Inspection. The procedure recommended by API 579-1/ASME FFS-1, Fitness-for-Service, is used to calculate the instability crack length or depth by failure assessment diagram. It is demonstrated that the welding residual stress has amore » strong influence on the results.« less

  20. High-Performance Scanning Acousto-Ultrasonic System

    NASA Technical Reports Server (NTRS)

    Roth, Don; Martin, Richard; Kautz, Harold; Cosgriff, Laura; Gyekenyesi, Andrew

    2006-01-01

    A high-performance scanning acousto-ultrasonic system, now undergoing development, is designed to afford enhanced capabilities for imaging microstructural features, including flaws, inside plate specimens of materials. The system is expected to be especially helpful in analyzing defects that contribute to failures in polymer- and ceramic-matrix composite materials, which are difficult to characterize by conventional scanning ultrasonic techniques and other conventional nondestructive testing techniques. Selected aspects of the acousto-ultrasonic method have been described in several NASA Tech Briefs articles in recent years. Summarizing briefly: The acousto-ultrasonic method involves the use of an apparatus like the one depicted in the figure (or an apparatus of similar functionality). Pulses are excited at one location on a surface of a plate specimen by use of a broadband transmitting ultrasonic transducer. The stress waves associated with these pulses propagate along the specimen to a receiving transducer at a different location on the same surface. Along the way, the stress waves interact with the microstructure and flaws present between the transducers. The received signal is analyzed to evaluate the microstructure and flaws. The specific variant of the acousto-ultrasonic method implemented in the present developmental system goes beyond the basic principle described above to include the following major additional features: Computer-controlled motorized translation stages are used to automatically position the transducers at specified locations. Scanning is performed in the sense that the measurement, data-acquisition, and data-analysis processes are repeated at different specified transducer locations in an array that spans the specimen surface (or a specified portion of the surface). A pneumatic actuator with a load cell is used to apply a controlled contact force. In analyzing the measurement data for each pair of transducer locations in the scan, the total (multimode) acousto-ultrasonic response of the specimen is utilized. The analysis is performed by custom software that extracts parameters of signals in the time and frequency domains. The computer hardware and software provide both real-time and postscan processing and display options. For example, oscilloscope displays of waveforms and power spectral densities are available in real time. Images can be computed while scanning continues. Signals can be digitally preprocessed and/or post-processed by filtering, windowing, time-segmenting, and running-waveform-averaging algorithms. In addition, the software affords options for off-line simulation of the waveform-data-acquisition and scanning processes. In tests, the system has been shown to be capable of characterizing microstructural changes and defects in SiC/SiC and C/SiC ceramic-matrix composites. Delaminations, variations in density, microstructural changes attributable to infiltration by silicon, and crack-space indications (defined in the next sentence) have been revealed in images formed from several time- and frequency-domain parameters of scanning acousto-ultrasonic signals. The crack-space indications were image features that were not revealed by other nondestructive testing methods and are so named because they turned out to mark locations where cracking eventually occurred.

Top