Sample records for flaws current work

  1. Analysis of Eddy Current Capabilities for the Detection of Outer Diameter Stress Corrosion Cracking in Small Bore Metallic Structures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Williams, Phillip; Simpson, John

    2007-01-01

    The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in Space Shuttle Primary Reaction Control System (PRCS) Thrusters. In this case, the detection of deeply buried stress corrosion cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite and boundary element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of stress corrosion cracking in Space Shuttle Primary Reaction Control System (PRCS) Thrusters.

  2. Probabilistic Fracture Mechanics of Reactor Pressure Vessels with Populations of Flaws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Backman, Marie; Williams, Paul

    This report documents recent progress in developing a tool that uses the Grizzly and RAVEN codes to perform probabilistic fracture mechanics analyses of reactor pressure vessels in light water reactor nuclear power plants. The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. Because of the central role of the reactor pressure vessel (RPV) in a nuclear power plant, particular emphasis is being placed on developing capabilities to model fracture in embrittled RPVs to aid in the process surrounding decisionmore » making relating to life extension of existing plants. A typical RPV contains a large population of pre-existing flaws introduced during the manufacturing process. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation at one or more of these flaws during a transient event. This report documents development and initial testing of a capability to perform probabilistic fracture mechanics of large populations of flaws in RPVs using reduced order models to compute fracture parameters. The work documented here builds on prior efforts to perform probabilistic analyses of a single flaw with uncertain parameters, as well as earlier work to develop deterministic capabilities to model the thermo-mechanical response of the RPV under transient events, and compute fracture mechanics parameters at locations of pre-defined flaws. The capabilities developed as part of this work provide a foundation for future work, which will develop a platform that provides the flexibility needed to consider scenarios that cannot be addressed with the tools used in current practice.« less

  3. A 3D Model for Eddy Current Inspection in Aeronautics: Application to Riveted Structures

    NASA Astrophysics Data System (ADS)

    Paillard, S.; Pichenot, G.; Lambert, M.; Voillaume, H.; Dominguez, N.

    2007-03-01

    Eddy current technique is currently an operational tool used for fastener inspection which is an important issue for the maintenance of aircraft structures. The industry calls for faster, more sensitive and reliable NDT techniques for the detection and characterization of potential flaws nearby rivet. In order to reduce the development time and to optimize the design and the performances assessment of an inspection procedure, the CEA and EADS have started a collaborative work aiming at extending the modeling features of the CIVA non destructive simulation plat-form in order to handle the configuration of a layered planar structure with a rivet and an embedded flaw nearby. Therefore, an approach based on the Volume Integral Method using the Green dyadic formalism which greatly increases computation efficiency has been developed. The first step, modeling the rivet without flaw as a hole in a multi-stratified structure, has been reached and validated in several configurations with experimental data.

  4. Detection of Fatigue Cracks at Rivets with Self-Nulling Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Namkung, Min

    1994-01-01

    A new eddy current probe developed at NASA Langley Research Center has been used to detect small cracks at rivets in aircraft lap splices [1]. The device has earlier been used to detect isolated fatigue cracks with a minimum detectable flaw size of roughly 1/2 to 1/3 the diameter of the probe [2]. The present work shows that the detectable flaw size for cracks originating at rivets can be greatly improved upon from that of isolated flaws. The use of a rotating probe method combined with spatial filtering has been used to detect 0.18 cm EDM notches, as measured from the rivet shank, with a 1.27 cm diameter probe and to detect flaws buried under the rivet head, down to a length of 0.076 cm, using a 0.32 cm diameter probe. The Self-Nulling Electromagnetic Flaw Detector induces a high density eddy current ring in the sample under test. A ferromagnetic flux focusing lens is incorporated such that in the absence of any inhomogeneities in the material under test only a minimal magnetic field will reach the interior of the probe. A magnetometer (pickup coil) located in the center of the probe therefore registers a null voltage in the absence of material defects. When a fatigue crack or other discontinuity is present in the test article the path of the eddy currents in the material is changed. The magnetic field associated with these eddy currents then enter into the interior of the probe, producing a large output voltage across the pickup coil leads. Further

  5. Seven Pervasive Statistical Flaws in Cognitive Training Interventions

    PubMed Central

    Moreau, David; Kirk, Ian J.; Waldie, Karen E.

    2016-01-01

    The prospect of enhancing cognition is undoubtedly among the most exciting research questions currently bridging psychology, neuroscience, and evidence-based medicine. Yet, convincing claims in this line of work stem from designs that are prone to several shortcomings, thus threatening the credibility of training-induced cognitive enhancement. Here, we present seven pervasive statistical flaws in intervention designs: (i) lack of power; (ii) sampling error; (iii) continuous variable splits; (iv) erroneous interpretations of correlated gain scores; (v) single transfer assessments; (vi) multiple comparisons; and (vii) publication bias. Each flaw is illustrated with a Monte Carlo simulation to present its underlying mechanisms, gauge its magnitude, and discuss potential remedies. Although not restricted to training studies, these flaws are typically exacerbated in such designs, due to ubiquitous practices in data collection or data analysis. The article reviews these practices, so as to avoid common pitfalls when designing or analyzing an intervention. More generally, it is also intended as a reference for anyone interested in evaluating claims of cognitive enhancement. PMID:27148010

  6. Usability Flaws in Medication Alerting Systems: Impact on Usage and Work System.

    PubMed

    Marcilly, R; Ammenwerth, E; Roehrer, E; Pelayo, S; Vasseur, F; Beuscart-Zéphir, M-C

    2015-08-13

    Previous research has shown that medication alerting systems face usability issues. There has been no previous attempt to systematically explore the consequences of usability flaws in such systems on users (i.e. usage problems) and work systems (i.e. negative outcomes). This paper aims at exploring and synthesizing the consequences of usability flaws in terms of usage problems and negative outcomes on the work system. A secondary analysis of 26 papers included in a prior systematic review of the usability flaws in medication alerting was performed. Usage problems and negative outcomes were extracted and sorted. Links between usability flaws, usage problems, and negative outcomes were also analyzed. Poor usability generates a large variety of consequences. It impacts the user from a cognitive, behavioral, emotional, and attitudinal perspective. Ultimately, usability flaws have negative consequences on the workflow, the effectiveness of the technology, the medication management process, and, more importantly, patient safety. Only few complete pathways leading from usability flaws to negative outcomes were identified. Usability flaws in medication alerting systems impede users, and ultimately their work system, and negatively impact patient safety. Therefore, the usability dimension may act as a hidden explanatory variable that could explain, at least partly, the (absence of) intended outcomes of new technology.

  7. Usability Flaws in Medication Alerting Systems: Impact on Usage and Work System

    PubMed Central

    Ammenwerth, E.; Roehrer, E.; Pelayo, S.; Vasseur, F.; Beuscart-Zéphir, M.-C.

    2015-01-01

    Summary Objectives Previous research has shown that medication alerting systems face usability issues. There has been no previous attempt to systematically explore the consequences of usability flaws in such systems on users (i.e. usage problems) and work systems (i.e. negative outcomes). This paper aims at exploring and synthesizing the consequences of usability flaws in terms of usage problems and negative outcomes on the work system. Methods A secondary analysis of 26 papers included in a prior systematic review of the usability flaws in medication alerting was performed. Usage problems and negative outcomes were extracted and sorted. Links between usability flaws, usage problems, and negative outcomes were also analyzed. Results Poor usability generates a large variety of consequences. It impacts the user from a cognitive, behavioral, emotional, and attitudinal perspective. Ultimately, usability flaws have negative consequences on the workflow, the effectiveness of the technology, the medication management process, and, more importantly, patient safety. Only few complete pathways leading from usability flaws to negative outcomes were identified. Conclusion Usability flaws in medication alerting systems impede users, and ultimately their work system, and negatively impact patient safety. Therefore, the usability dimension may act as a hidden explanatory variable that could explain, at least partly, the (absence of) intended outcomes of new technology. PMID:26123906

  8. Research and Development of Automated Eddy Current Testing for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Carver, Kyle L.; Saulsberry, Regor L.; Nichols, Charles T.; Spencer, Paul R.; Lucero, Ralph E.

    2012-01-01

    Eddy current testing (ET) was used to scan bare metallic liners used in the fabrication of composite overwrapped pressure vessels (COPVs) for flaws which could result in premature failure of the vessel. The main goal of the project was to make improvements in the areas of scan signal to noise ratio, sensitivity of flaw detection, and estimation of flaw dimensions. Scan settings were optimized resulting in an increased signal to noise ratio. Previously undiscovered flaw indications were observed and investigated. Threshold criteria were determined for the system software's flaw report and estimation of flaw dimensions were brought to an acceptable level of accuracy. Computer algorithms were written to import data for filtering and a numerical derivative filtering algorithm was evaluated.

  9. Development and Application of Wide Bandwidth Magneto-Resistive Sensor Based Eddy Current Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Simpson, John

    2010-01-01

    The integration of magneto-resistive sensors into eddy current probes can significantly expand the capabilities of conventional eddy current nondestructive evaluation techniques. The room temperature solid-state sensors have typical bandwidths in the megahertz range and resolutions of tens of microgauss. The low frequency sensitivity of magneto-resistive sensors has been capitalized upon in previous research to fabricate very low frequency eddy current sensors for deep flaw detection in multilayer conductors. In this work a modified probe design is presented to expand the capabilities of the device. The new probe design incorporates a dual induction source enabling operation from low frequency deep flaw detection to high frequency high resolution near surface material characterization. Applications of the probe for the detection of localized near surface conductivity anomalies are presented. Finite element modeling of the probe is shown to be in good agreement with experimental measurements.

  10. In-situ thermography of automated fiber placement parts

    NASA Astrophysics Data System (ADS)

    Gregory, Elizabeth D.; Juarez, Peter D.

    2018-04-01

    Automated fiber placement (AFP) provides precision and repeatable manufacturing of both simple and complex geometry composite parts. However, AFP also introduces the possibility for unique flaws such as overlapping tows, gaps between tows, tow twists, lack of layer adhesion and foreign object debris. These types of flaws can all result in a significant loss of performance in the final part. The current inspection method for these flaws is a costly and time intensive visual inspection of each ply layer. This work describes some initial efforts to incorporate thermal inspection on the AFP head and analysis of the data to identify the previously mentioned flaws. Previous bench-top laboratory experiments demonstrated that laps, gaps, and twists were identified from a thermal image. The AFP head uses an on- board lamp to preheat the surface of the part during layup to increase ply consolidation. The preheated surface is used as a thermal source to observe the state of the new material after compaction. We will present data collected with the Integrated Structural Assembly of Advanced Composites (ISAAC) AFP machine at Langley Research Center showing that changes to the temperature profile is sufficient for identifying all types of flaws.

  11. Initial Probabilistic Evaluation of Reactor Pressure Vessel Fracture with Grizzly and Raven

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Hoffman, William; Sen, Sonat

    2015-10-01

    The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled reactor pressure vessels (RPVs). Grizzly can be used to model the thermal/mechanical response of an RPV under transient conditions that would be observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtainmore » stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. These capabilities have been demonstrated previously. A typical RPV is likely to contain a large population of pre-existing flaws introduced during the manufacturing process. This flaw population is characterized stastistically through probability density functions of the flaw distributions. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation during a transient event. This report documents initial work to perform probabilistic analysis of RPV fracture during a PTS event using a combination of the RAVEN risk analysis code and Grizzly. This work is limited in scope, considering only a single flaw with deterministic geometry, but with uncertainty introduced in the parameters that influence fracture toughness. These results are benchmarked against equivalent models run in the FAVOR code. When fully developed, the RAVEN/Grizzly methodology for modeling probabilistic fracture in RPVs will provide a general capability that can be used to consider a wider variety of vessel and flaw conditions that are difficult to consider with current tools. In addition, this will provide access to advanced probabilistic techniques provided by RAVEN, including adaptive sampling and parallelism, which can dramatically decrease run times.« less

  12. Automated eddy current analysis of materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    This research effort focused on the use of eddy current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures. A major emphasis was on incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an eddy current scanning system using a commercial robot for inspecting graphite structures (and others) has been a goal in the overall concept and is essential for the final implementation for expert system interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible eddy current signatures to be easily built into a real time expert system. The expert systems approach to eddy current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of the flaw can be performed. In eddy current or any other expert systems used to analyze signals in real time in a production environment, it is important to simplify computational procedures as much as possible. For that reason, we have chosen to use the measured resistance and reactance values for the preliminary aspects of this work. A simple computation, such as phase angle of the signal, is certainly within the real time processing capability of the computer system. In the work described here, there is a balance between physical measurements and finite element calculations of those measurements. The goal is to evolve into the most cost effective procedures for maintaining the correctness of the knowledge base.

  13. Enhanced Eddy-Current Detection Of Weld Flaws

    NASA Technical Reports Server (NTRS)

    Van Wyk, Lisa M.; Willenberg, James D.

    1992-01-01

    Mixing of impedances measured at different frequencies reduces noise and helps reveal flaws. In new method, one excites eddy-current probe simultaneously at two different frequencies; usually, one of which integral multiple of other. Resistive and reactive components of impedance of eddy-current probe measured at two frequencies, mixed in computer, and displayed in real time on video terminal of computer. Mixing of measurements obtained at two different frequencies often "cleans up" displayed signal in situations in which band-pass filtering alone cannot: mixing removes most noise, and displayed signal resolves flaws well.

  14. Acoustic emission testing of 12-nickel maraging steel pressure vessels

    NASA Technical Reports Server (NTRS)

    Dunegan, H. L.

    1973-01-01

    Acoustic emission data were obtained from three point bend fracture toughness specimens of 12-nickel maraging steel, and two pressure vessels of the same material. One of the pressure vessels contained a prefabricated flaw which was extended and sharpened by fatigue cycling. It is shown that the flawed vessel had similar characteristics to the fracture specimens, thereby allowing estimates to be made of its nearness to failure during a proof test. Both the flawed and unflawed pressure vessel survived the proof pressure and 5 cycles to the working pressure, but it was apparent from the acoustic emission response during the proof cycle and the 5 cycles to the working pressure that the flawed vessel was very near failure. The flawed vessel did not survive a second cycle to the proof pressure before failure due to flaw extension through the wall (causing a leak).

  15. Reliably detectable flaw size for NDE methods that use calibration

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2017-04-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh18232 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  16. Reliably Detectable Flaw Size for NDE Methods that Use Calibration

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2017-01-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh1823 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  17. Eddy current probe response to open and closed surface flaws

    NASA Technical Reports Server (NTRS)

    Auld, B. A.; Muennemann, F.; Winslow, D. K.

    1981-01-01

    A general analysis of eddy current response to certain types of open and closed surface flaws is presented for both standard low-frequency and ferromagnetic-resonance (FMR) probes. It is shown analytically that for two-dimensional and three-dimensional surface flaws interrogated by a uniform probe field, the crack opening sensitivity increases with the operating frequency of the probe, this behavior being due to the Faraday induction effect. Experiments with low-frequency probes operating at or below 1 MHz and with the FMR probe operating at approximately 1000 MHz confirm this increase of the crack mouth opening displacement for practical situations where the probe field is not uniform in the vicinity of the flaw.

  18. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  19. (High temperature flaw assessment procedure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles, M.B.

    1990-06-01

    The Electric Power Research Institute (EPRI), the Japanese Central Research Institute of Electric Power Industry (CRIEPI), and the British Nuclear Electric (NE) are conducting joint studies in the field of liquid metal reactor development. The traveler is currently responsible for the EPRI/CRIEPI/NE High-Temperature Flaw Assessment Procedure activities at the Oak Ridge National Laboratory (ORNL). The traveler participated, on behalf of EPRI, in the EPRI/CRIEPI/NE specialist working session, the purpose of which was to produce the interim High-Temperature Flaw Assessment guide. The traveler also led discussions on the High-Temperature Flaw Assessment Procedure Phase 2 program plan, and on the plan formore » a new joint EPRI/CRIEPI/NE study in Inelastic Behavior and Failure Criteria for Modified 9Cr--1Mo Steel. The traveler visited Profs. K. Ikegami, Y. Asada, N. Ohno, T. Inoue, and K. Kaneko at the Tokyo Institute of Technology, the University of Tokyo, Nagoya University, Kyoto University, and Science University of Tokyo, respectively to hold discussions on research advances in the areas of high-temperature fracture mechanics, inelastic material behavior, and constitutive modeling. In addition, the traveler visited Kajima Corp. and Ohbayashi Corp. Technical Research Institute to collect information on research in the area of fiber reinforced concrete.« less

  20. Fundamentally Flawed: Extension Administrative Practice (Part 1).

    ERIC Educational Resources Information Center

    Patterson, Thomas F., Jr.

    1997-01-01

    Extension's current administrative techniques are based on the assumptions of classical management from the early 20th century. They are fundamentally flawed and inappropriate for the contemporary workplace. (SK)

  1. Eddy-Current-Based Nondestructive Inspection System Using Superconducting Quantum Interference Device for Thin Copper Tubes

    NASA Astrophysics Data System (ADS)

    Hatsukade, Yoshimi; Kosugi, Akifumi; Mori, Kazuaki; Tanaka, Saburo

    2004-11-01

    An eddy-current-based nondestructive inspection (NDI) system using superconducting quantum interference device (SQUID) cooled using a coaxial pulse tube cryocooler was constructed for the inspection of microflaws on copper tubes employing a high-Tc SQUID gradiometer and a Helmholtz-like coil inducer. The detection of artificial flaws several tens of μm in depth on copper tubes 6.35 mm in outer diameter and 0.825 mm in thickness was demonstrated using the SQUID-NDI system. With an excitation field of 1.6 μT at 5 kHz, a 30-μm-depth flaw was successfully detected by the system at an SN ratio of at least 20. The magnetic signal amplitude due to the flaw was proportional to both excitation frequency and the square of flaw depth. With consideration of the system’s sensitivity, the results indicate that sub-10-μm-depth flaws are detectable by the SQUID-NDI system.

  2. Detection of fatigue cracks by nondestructive testing methods

    NASA Technical Reports Server (NTRS)

    Anderson, R. T.; Delacy, T. J.; Stewart, R. C.

    1973-01-01

    The effectiveness was assessed of various NDT methods to detect small tight cracks by randomly introducing fatigue cracks into aluminum sheets. The study included optimizing NDT methods calibrating NDT equipment with fatigue cracked standards, and evaluating a number of cracked specimens by the optimized NDT methods. The evaluations were conducted by highly trained personnel, provided with detailed procedures, in order to minimize the effects of human variability. These personnel performed the NDT on the test specimens without knowledge of the flaw locations and reported on the flaws detected. The performance of these tests was measured by comparing the flaws detected against the flaws present. The principal NDT methods utilized were radiographic, ultrasonic, penetrant, and eddy current. Holographic interferometry, acoustic emission monitoring, and replication methods were also applied on a reduced number of specimens. Generally, the best performance was shown by eddy current, ultrasonic, penetrant and holographic tests. Etching provided no measurable improvement, while proof loading improved flaw detectability. Data are shown that quantify the performances of the NDT methods applied.

  3. Imaging flaws in thin metal plates using a magneto-optic device

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Prabhu, D. R.; Namkung, M.; Birt, E. A.

    1992-01-01

    An account is given of the capabilities of the magnetooptic/eddy-current imager (MEI) apparatus in the case of aging aircraft structure-type flaws in 2024-T3 Al alloy plates. Attention is given to images of cyclically grown fatigue cracks from rivetted joints in fabricated lap-joint structures, electrical discharge machining notches, and corrosion spots. Although conventional eddy-current methods could have been used, the speed and ease of MEI's use in these tests is unmatched by such means. Results are displayed in real time as a test piece is scanned, furnishing easily interpreted flaw images.

  4. Automated eddy current analysis of materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    The use of eddy current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures is described. A major emphasis was also placed upon incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an eddy current scanning system using a commercial robot for inspecting graphite structures (and others) was a goal in the overall concept and is essential for the final implementation for the expert systems interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible eddy current signatures to be easily built into a real time expert system. The expert systems approach to eddy current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of a flaw can be performed. A robotic workcell using eddy current transducers for the inspection of carbon filament materials with improved sensitivity was developed. Improved coupling efficiencies achieved with the E-probes and horseshoe probes are exceptional for graphite fibers. The eddy current supervisory system and expert system was partially developed on a MacIvory system. Continued utilization of finite element models for predetermining eddy current signals was shown to be useful in this work, both for understanding how electromagnetic fields interact with graphite fibers, and also for use in determining how to develop the knowledge base. Sufficient data was taken to indicate that the E-probe and the horseshoe probe can be useful eddy current transducers for inspecting graphite fiber components. The lacking component at this time is a large enough probe to have sensitivity in both the far and near field of a thick graphite epoxy component.

  5. NDE detectability of fatigue-type cracks in high-strength alloys: NDI reliability assessments

    NASA Technical Reports Server (NTRS)

    Christner, Brent K.; Long, Donald L.; Rummel, Ward D.

    1988-01-01

    This program was conducted to generate quantitative flaw detection capability data for the nondestructive evaluation (NDE) techniques typically practiced by aerospace contractors. Inconel 718 and Haynes 188 alloy test specimens containing fatigue flaws with a wide distribution of sizes were used to assess the flaw detection capabilities at a number of contractor and government facilities. During this program 85 inspection sequences were completed presenting a total of 20,994 fatigue cracks to 53 different inspectors. The inspection sequences completed included 78 liquid penetrant, 4 eddy current, and 3 ultrasonic evaluations. The results of the assessment inspections are presented and discussed. In generating the flaw detection capability data base, procedures for data collection, data analysis, and specimen care and maintenance were developed, demonstrated, and validated. The data collection procedures and methods that evolved during this program for the measurement of flaw detection capabilities and the effects of inspection variables on performance are discussed. The Inconel 718 and Haynes 188 test specimens that were used in conducting this program and the NDE assessment procedures that were demonstrated, provide NASA with the capability to accurately assess the flaw detection capabilities of specific inspection procedures being applied or proposed for use on current and future fracture control hardware program.

  6. Fracture mechanics. [review of fatigue crack propagation and technology of constructing safe structures

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.

    1974-01-01

    Fracture mechanics is a rapidly emerging discipline for assessing the residual strength of structures containing flaws due to fatigue, corrosion or accidental damage and for anticipating the rate of which such flaws will propagate if not repaired. The discipline is also applicable in the design of structures with improved resistance to such flaws. The present state of the design art is reviewed using this technology to choose materials, to configure safe and efficient structures, to specify inspection procedures, to predict lives of flawed structures and to develop reliability of current and future airframes.

  7. Self-Nulling Eddy Current Probe for Surface and Subsurface Flaw Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Fulton, J. P.; Nath, S.; Namkung, M.; Simpson, J. W.

    1994-01-01

    An eddy current probe which provides a null-signal in the presence of unflawed material without the need for any balancing circuitry has been developed at NASA Langley Research Center. Such a unique capability of the probe reduces set-up time, eliminates tester configuration errors, and decreases instrumentation requirements. The probe is highly sensitive to surface breaking fatigue cracks, and shows excellent resolution for the measurement of material thickness, including material loss due to corrosion damage. The presence of flaws in the material under test causes an increase in the extremely stable and reproducible output voltage of the probe. The design of the probe and some examples illustrating its flaw detection capabilities are presented.

  8. Radially Focused Eddy Current Sensor for Detection of Longitudinal Flaws in Metallic Tubes

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor); Fulton, James P. (Inventor); Nath, Shridhar C. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor)

    1999-01-01

    A radially focused eddy current sensor detects longitudinal flaws in a metal tube. A drive coil induces eddy currents within the wall of the metal tube. A pick-up cod is spaced apart from the drive coil along the length of the metal tube. The pick@up coil is positioned with one end thereof lying adjacent the wall of the metal tube such that the pick-up coil's longitudinal axis is perpendicular to the wall of the metal tube. To isolate the pick-up coil from the magnetic flux of the drive coil and the flux from the induced eddy currents. except the eddy currents diverted by a longitudinal flaw. an electrically conducting material high in magnetic permeability surrounds all of the pick-up coil except its one end that is adjacent the walls of the metal tube. The electrically conducting material can extend into and through the drive coil in a coaxial relationship therewith.

  9. Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam

    2015-03-01

    Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode Imore » loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.« less

  10. Quantification technology study on flaws in steam-filled pipelines based on image processing

    NASA Astrophysics Data System (ADS)

    Yuan, Pei-xin; Cong, Jia-hui; Chen, Bo

    2008-03-01

    Starting from exploiting the applied detection system of gas transmission pipeline, a set of X-ray image processing methods and pipeline flaw quantificational evaluation methods are proposed. Defective and non-defective strings and rows in gray image were extracted and oscillogram was obtained. We can distinguish defects in contrast with two gray images division. According to the gray value of defects with different thicknesses, the gray level depth curve is founded. Through exponential and polynomial fitting way to obtain the attenuation mathematical model which the beam penetrates pipeline, thus attain flaw deep dimension. This paper tests on the PPR pipe in the production of simulated holes flaw and cracks flaw. The X-ray source tube voltage was selected as 130kv and valve current was 1.5mA.Test results show that X-ray image processing methods, which meet the needs of high efficient flaw detection and provide quality safeguard for thick oil recovery, can be used successfully in detecting corrosion of insulated pipe.

  11. Characterization of flaws in a tube bundle mock-up for reliability studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupperman, D.S.; Bakhtiari, S.

    1997-02-01

    As part of an assessment of in-service inspection of steam generator tubes, the authors will assemble a steam generator mock-up for round robin studies and use as a test bed in evaluating emerging technologies. Progress is reported on the characterization of flaws that will be part of the mock-up. Eddy current and ultrasonic techniques are being evaluated as a means to characterize the flaws in the mock-up tubes before final assembly. Twenty Inconel 600 tubes with laboratory-grown cracks, typical of those to be used in the mock-up, were provided by Pacific Northwest National Laboratory for laboratory testing. After the tubesmore » were inspected with eddy current and ultrasonic techniques, they were destructively analyzed to establish the actual depths, lengths, and profiles of the cracks. The analysis of the results will allow the best techniques to be used for characterizing the flaws in the mock-up tubes.« less

  12. Strengths of balloon films with flaws and repairs

    NASA Technical Reports Server (NTRS)

    Portanova, M. A.

    1989-01-01

    The effects of manufacture flaws and repairs in high altitude scientific balloons was examined. A right circular cylinder was used to induce a biaxial tension-tension stress field in the polyethlene film used to manufacture these balloons. A preliminary investigation of the effect that cylinder geometry has on stress rate as a function of inflation rate was conducted. The ultimate goal was to rank, by order of degrading effects, the flaws and repairs commonly found in current high altitude balloons.

  13. Novel Repair Technique for Life-Extension of Hydraulic Turbine Components in Hydroelectric Power Stations

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Yoichi; Ishii, Jun; Funato, Kazuhiro

    A significant number of hydraulic turbines operated in Japan were installed in the first half of the 20th century. Today, aging degradation and flaws are observed in these turbine equipments. So far, Japanese engineers have applied NDI technology of Ultrasonic Testing (UT) to detect the flaws, and after empirical evaluation of the remaining life they decided an adequate moment to replace the equipments. Since the replacement requires a large-scale field site works and high-cost, one of the solutions for life-extension of the equipments is introduction of repair services. We have been working in order to enhance the accuracy of results during the detection of flaws and flaws dimensioning, in particular focusing on the techniques of Tip-echo, TOFD and Phased-Array UT, accompanied by the conventional UT. These NDI methods made possible to recognize the entire image of surface and embedded flaws with complicated geometry. Then, we have developed an evaluation system of these flaws based on the theory of crack propagation, of the logic of crack growth driven by the stress-intensity factor of the crack tip front. The sophisticated evaluation system is constituted by a hand-made software and database of stress-intensity factor. Based on these elemental technologies, we propose a technique of repair welding to provide a life-extension of hydraulic turbine components.

  14. Magnetoresistive flux focusing eddy current flaw detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor); Namkung, Min (Inventor)

    2005-01-01

    A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil's longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multilayer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.

  15. Magnetoresistive Flux Focusing Eddy Current Flaw Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor)

    2005-01-01

    A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil s longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multi-layer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.

  16. Detection of Real Flaw using Uniform Eddy Current Multi-probe

    NASA Astrophysics Data System (ADS)

    Fukuoka, Katsuhiro; Hashimoto, Mitsuo

    The establishment of the nondestructive inspection technology with plant structures has been stimulated by the recent occurrence of cracks in the nuclear power plant structures. In this research, a uniform eddy current multi-probe to apply to the complex structure and inspect the cracks at high-speed data acquisition was developed. Pick-up coils of the developed probe were arranged on a flexible printed circuit board. This probe was able to obtain clear signal for an EDM (electro-discharge machining) slit with 0.5 mm depth and distinguish EDM slits arranged at 2 mm intervals. It was confirmed that the SCC (stress corrosion cracking) of real flaw was able to be detected with developed uniform eddy current multi-probe by using the ferrite core for the exciting coil and considering the impedance matching of the exciting coil and the flaw detection device.

  17. Application of elastic and elastic-plastic fracture mechanics methods to surface flaws

    NASA Astrophysics Data System (ADS)

    McCabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.

    Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.

  18. Application of elastic and elastic-plastic fracture mechanics methods to surface flaws

    NASA Technical Reports Server (NTRS)

    Mccabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.

    1992-01-01

    Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.

  19. Eddy current inspection of graphite fiber components

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Bryson, C. C.

    1990-01-01

    The recognition of defects in materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques. The unique capabilities of E-probes and horseshoe probes for inspecting probes for inspecting graphite fiber materials were evaluated and appear to hold great promise once the technology development matures. The initial results are described of modeling eddy current interactions with certain flaws in graphite fiber samples.

  20. New techniques for modeling the reliability of reactor pressure vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.I.; Simonen, F.A.; Liebetrau, A.M.

    1985-12-01

    In recent years several probabilistic fracture mechanics codes, including the VISA code, have been developed to predict the reliability of reactor pressure vessels. This paper describes new modeling techniques used in a second generation of the VISA code entitled VISA-II. Results are presented that show the sensitivity of vessel reliability predictions to such factors as inservice inspection to detect flaws, random positioning of flaws within the vessel walls thickness, and fluence distributions that vary through-out the vessel. The algorithms used to implement these modeling techniques are also described. Other new options in VISA-II are also described in this paper. Themore » effect of vessel cladding has been included in the heat transfer, stress, and fracture mechanics solutions in VISA-II. The algorithm for simulating flaws has been changed to consider an entire vessel rather than a single flaw in a single weld. The flaw distribution was changed to include the distribution of both flaw depth and length. A menu of several alternate equations has been included to predict the shift in RTNDT. For flaws that arrest and later re-initiate, an option was also included to allow correlating the current arrest thoughness with subsequent initiation toughnesses. 21 refs.« less

  1. Electromagnetic Detection of Fatigue Cracks under Protruding Head Ferromagnetic Fasteners

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Namkung, Min

    2004-01-01

    The detection of fatigue cracks under installed fasteners has been a major goal of the aging aircraft NDE community. The Sliding Probe, Magneto-Optic Imager, Rotating Self-Nulling Probe, Low Frequency Eddy Current Array, and Eddyscan systems are among the instruments developed for this inspection. It has been verified that the detection of fatigue cracks under flush head aluminum and titanium fasteners can be accomplished with a high resolution by the above techniques. The detection of fatigue cracks under ferromagnetic and protruding head fasteners, however, has been found to be much more difficult. For the present work, the inspection for fatigue cracks under SAE 4340 Steel Hi-Lok fasteners is explored. Modifications to the Rotating Self-Nulling Eddy Current Probe System are presented which enable the detection of fatigue cracks hidden under the protruding head of the ferromagnetic fastener. Inspection results for samples with varying length EDM notches are shown, as well as a comparison between the signature from an EDM notch and an actual fatigue crack. Finite Element Modeling is used to investigate the effect of the ferromagnetic fastener on the induced eddy current distribution in order to help explain the detection characteristics of the system. This paper will also introduce a modification to the Rotating Probe System designed specifically for the detection of deeply buried flaws in multilayer conductors. The design change incorporates a giant magnetoresistive (GMR) sensor as the pickup device to improve the low frequency performance of the probe. The flaw detection capabilities of the GMR based Self- Nulling Probe are presented along with the status of the GMR based Rotating Probe System for detection of deeply buried flaws under installed fasteners.

  2. The Controversy of Consequences

    ERIC Educational Resources Information Center

    Twing, Jon S.

    2016-01-01

    This special issue of "Assessment in Education" contains the type of debate needed about what Cizek (2015) calls a "… lingering flaw in the concept of validity…." Some practitioners might not agree that the current theory of validation is flawed. Specifically, the debate Jon Twing is referencing concerns the role of the…

  3. Terahertz NDE Application for Corrosion Detection and Evaluation under Shuttle Tiles

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Smith, Stephen W.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-01-01

    Pulsed Terahertz NDE is being examined as a method to inspect for possible corrosion under Space Shuttle Tiles. Other methods such as ultrasonics, infrared, eddy current and microwave technologies have demonstrable shortcomings for tile NDE. This work applies Terahertz NDE, in the frequency range between 50 GHz and 1 THz, for the inspection of manufactured corrosion samples. The samples consist of induced corrosion spots that range in diameter (2.54 to 15.2 mm) and depth (0.036 to 0.787 mm) in an aluminum substrate material covered with tiles. Results of these measurements are presented for known corrosion flaws both covered and uncovered and for blind tests with unknown corrosion flaws covered with attached tiles. The Terahertz NDE system is shown to detect all artificially manufactured corrosion regions under a Shuttle tile with a depth greater than 0.13 mm.

  4. Terahertz NDE application for corrosion detection and evaluation under Shuttle tiles

    NASA Astrophysics Data System (ADS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Smith, Stephen W.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-04-01

    Pulsed Terahertz NDE is being examined as a method to inspect for possible corrosion under Space Shuttle Tiles. Other methods such as ultrasonics, infrared, eddy current and microwave technologies have demonstrable shortcomings for tile NDE. This work applies Terahertz NDE, in the frequency range between 50 GHz and 1 THz, for the inspection of manufactured corrosion samples. The samples consist of induced corrosion spots that range in diameter (2.54 to 15.2 mm) and depth (0.036 to 0.787 mm) in an aluminum substrate material covered with tiles. Results of these measurements are presented for known corrosion flaws both covered and uncovered and for blind tests with unknown corrosion flaws covered with attached tiles. The Terahertz NDE system is shown to detect all artificially manufactured corrosion regions under a Shuttle tile with a depth greater than 0.13 mm.

  5. Detection of Cracks at Welds in Steel Tubing Using Flux Focusing Electromagnetic Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Simpson, John; Namkung, Min

    1994-01-01

    The inspection of weldments in critical pressure vessel joints is a major concern in the nuclear power industry. Corrosive environments can speed the fatigue process and access to the critical area is often limited. Eddy current techniques have begun to be used to help overcome these obstacles [1]. As direct contact and couplants are not required, remote areas can be inspected by simply snaking an eddy current coil into the intake tube of the vessel. The drawback of the eddy current method has been the high sensitivity to small changes in the conductivity and permeability of the test piece which are known to vary at weldments [1]. The flaw detection mechanism of the flux focusing electromagnetic probe can help alleviate these difficulties and provide a unique capability for detecting longitudinal fatigue cracks in critical tube structures. The Flux Focusing Electromagnetic Flaw Detector, originally invented for the detection of fatigue and corrosion damage in aluminum plates [2-3], has been adapted for use in testing steel tubing for longitudinal fatigue cracks. The modified design allows for the probe to be placed axisymmetrically into the tubing, inducing eddy currents in the tube wall. The pickup coil of the probe is fixed slightly below the primary windings and is rotated 90 so that its axis is normal to the tube wall. The magnetic flux of the primary coil is focused through the use of ferromagnetic material so that in the absence of fatigue damage there will be no flux linkage with the pickup coil. The presence of a longitudinal fatigue crack will cause the eddy currents induced in the tube wall to flow around the flaw and directly under the pickup coil. The magnetic field associated with these currents will then link the pickup coil and an unambiguous increase in the output voltage of the probe will be measured. The use of the flux focusing electromagnetic probe is especially suited for the detection of flaws originating at or near tube welds. The probe is shown to discriminate against signals due solely to the weld joint so that flaw signals are not hidden in the background in these locations. Experimental and finite element modeling results are presented for the flaw detection capabilities of the probe in stainless steel tubes.

  6. The Case of the Similar Trees.

    ERIC Educational Resources Information Center

    Meyer, Rochelle Wilson

    1982-01-01

    A possible logical flaw based on similar triangles is discussed with the Sherlock Holmes mystery, "The Muskgrave Ritual." The possible flaw has to do with the need for two trees to have equal growth rates over a 250-year period in order for the solution presented to work. (MP)

  7. Flawed Mathematical Conceptualizations: Marlon's Dilemma

    ERIC Educational Resources Information Center

    Garrett, Lauretta

    2013-01-01

    Adult developmental mathematics students often work under great pressure to complete the mathematics sequences designed to help them achieve success (Bryk & Treisman, 2010). Results of a teaching experiment demonstrate how the ability to reason can be impeded by flaws in students' mental representations of mathematics. The earnestness of the…

  8. Development of an Inverse Algorithm for Resonance Inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Canhai; Xu, Wei; Sun, Xin

    2012-10-01

    Resonance inspection (RI), which employs the natural frequency spectra shift between the good and the anomalous part populations to detect defects, is a non-destructive evaluation (NDE) technique with many advantages such as low inspection cost, high testing speed, and broad applicability to structures with complex geometry compared to other contemporary NDE methods. It has already been widely used in the automobile industry for quality inspections of safety critical parts. Unlike some conventionally used NDE methods, the current RI technology is unable to provide details, i.e. location, dimension, or types, of the flaws for the discrepant parts. Such limitation severely hindersmore » its wide spread applications and further development. In this study, an inverse RI algorithm based on maximum correlation function is proposed to quantify the location and size of flaws for a discrepant part. A dog-bone shaped stainless steel sample with and without controlled flaws are used for algorithm development and validation. The results show that multiple flaws can be accurately pinpointed back using the algorithms developed, and the prediction accuracy decreases with increasing flaw numbers and decreasing distance between flaws.« less

  9. Improved multi-directional eddy current inspection test apparatus for detecting flaws in metal articles

    DOEpatents

    Nance, Roy A.; Hartley, William H.; Caffarel, Alfred J.

    1984-01-01

    Apparatus is described for detecting flaws in a tubular workpiece in a single scan. The coils of a dual coil bobbin eddy current inspection probe are wound at a 45.degree. angle to the transverse axis of the probe, one coil having an angular position about the axis about 90.degree. relative to the angular position of the other coil, and the angle of intersection of the planes containing the coils being about 60.degree..

  10. A Theoretical Model for Predicting Fracture Strength and Critical Flaw Size of the ZrB2-ZrC Composites at High Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Xiaobo; Wang, Jing; Jia, Bi; Li, Weiguo

    2018-06-01

    This work shows a new rational theoretical model for quantitatively predicting fracture strength and critical flaw size of the ZrB2-ZrC composites at different temperatures, which is based on a new proposed temperature dependent fracture surface energy model and the Griffith criterion. The fracture model takes into account the combined effects of temperature and damage terms (surface flaws and internal flaws) with no any fitting parameters. The predictions of fracture strength and critical flaw size of the ZrB2-ZrC composites at high temperatures agree well with experimental data. Then using the theoretical method, the improvement and design of materials are proposed. The proposed model can be used to predict the fracture strength, find the critical flaw and study the effects of microstructures on the fracture mechanism of the ZrB2-ZrC composites at high temperatures, which thus could become a potential convenient, practical and economical technical means for predicting fracture properties and material design.

  11. New techniques for modeling the reliability of reactor pressure vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.I.; Simonen, F.A.; Liebetrau, A.M.

    1986-01-01

    In recent years several probabilistic fracture mechanics codes, including the VISA code, have been developed to predict the reliability of reactor pressure vessels. This paper describes several new modeling techniques used in a second generation of the VISA code entitled VISA-II. Results are presented that show the sensitivity of vessel reliability predictions to such factors as inservice inspection to detect flaws, random positioning of flaws within the vessel wall thickness, and fluence distributions that vary throughout the vessel. The algorithms used to implement these modeling techniques are also described. Other new options in VISA-II are also described in this paper.more » The effect of vessel cladding has been included in the heat transfer, stress, and fracture mechanics solutions in VISA-II. The algorithms for simulating flaws has been changed to consider an entire vessel rather than a single flaw in a single weld. The flaw distribution was changed to include the distribution of both flaw depth and length. A menu of several alternate equations has been included to predict the shift in RT/sub NDT/. For flaws that arrest and later re-initiate, an option was also included to allow correlating the current arrest toughness with subsequent initiation toughnesses.« less

  12. On an image reconstruction method for ECT

    NASA Astrophysics Data System (ADS)

    Sasamoto, Akira; Suzuki, Takayuki; Nishimura, Yoshihiro

    2007-04-01

    An image by Eddy Current Testing(ECT) is a blurred image to original flaw shape. In order to reconstruct fine flaw image, a new image reconstruction method has been proposed. This method is based on an assumption that a very simple relationship between measured data and source were described by a convolution of response function and flaw shape. This assumption leads to a simple inverse analysis method with deconvolution.In this method, Point Spread Function (PSF) and Line Spread Function(LSF) play a key role in deconvolution processing. This study proposes a simple data processing to determine PSF and LSF from ECT data of machined hole and line flaw. In order to verify its validity, ECT data for SUS316 plate(200x200x10mm) with artificial machined hole and notch flaw had been acquired by differential coil type sensors(produced by ZETEC Inc). Those data were analyzed by the proposed method. The proposed method restored sharp discrete multiple hole image from interfered data by multiple holes. Also the estimated width of line flaw has been much improved compared with original experimental data. Although proposed inverse analysis strategy is simple and easy to implement, its validity to holes and line flaw have been shown by many results that much finer image than original image have been reconstructed.

  13. Rotating flux-focusing eddy current probe for flaw detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Fulton, James P. (Inventor); Nath, Shridhar C. (Inventor); Simpson, John W. (Inventor); Namkung, Min (Inventor)

    1997-01-01

    A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks about circular fasteners and other circular inhomogeneities in high conductivity material. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil, The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. By rotating the probe in a path around a circular fastener such as a rivet while maintaining a constant distance between the probe and the center of a rivet, the signal due to current flow about the rivet can be held constant. Any further changes in the current distribution, such as due to a fatigue crack at the rivet joint, can be detected as an increase in the output voltage above that due to the flow about the rivet head.

  14. Eddy Current for Sizing Cracks in Canisters for Dry Storage of Used Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Ryan M.; Jones, Anthony M.; Pardini, Allan F.

    2014-01-01

    The storage of used nuclear fuel (UNF) in dry canister storage systems (DCSSs) at Independent Spent Fuel Storage Installations (ISFSI) sites is a temporary measure to accommodate UNF inventory until it can be reprocessed or transferred to a repository for permanent disposal. Policy uncertainty surrounding the long-term management of UNF indicates that DCSSs will need to store UNF for much longer periods than originally envisioned. Meanwhile, the structural and leak-tight integrity of DCSSs must not be compromised. The eddy current technique is presented as a potential tool for inspecting the outer surfaces of DCSS canisters for degradation, particularly atmospheric stressmore » corrosion cracking (SCC). Results are presented that demonstrate that eddy current can detect flaws that cannot be detected reliably using standard visual techniques. In addition, simulations are performed to explore the best parameters of a pancake coil probe for sizing of SCC flaws in DCSS canisters and to identify features in frequency sweep curves that may potentially be useful for facilitating accurate depth sizing of atmospheric SCC flaws from eddy current measurements.« less

  15. 3D J-Integral Capability in Grizzly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam

    2014-09-01

    This report summarizes work done to develop a capability to evaluate fracture contour J-Integrals in 3D in the Grizzly code. In the current fiscal year, a previously-developed 2D implementation of a J-Integral evaluation capability has been extended to work in 3D, and to include terms due both to mechanically-induced strains and due to gradients in thermal strains. This capability has been verified against a benchmark solution on a model of a curved crack front in 3D. The thermal term in this integral has been verified against a benchmark problem with a thermal gradient. These developments are part of a largermore » effort to develop Grizzly as a tool that can be used to predict the evolution of aging processes in nuclear power plant systems, structures, and components, and assess their capacity after being subjected to those aging processes. The capabilities described here have been developed to enable evaluations of Mode- stress intensity factors on axis-aligned flaws in reactor pressure vessels. These can be compared with the fracture toughness of the material to determine whether a pre-existing flaw would begin to propagate during a pos- tulated pressurized thermal shock accident. This report includes a demonstration calculation to show how Grizzly is used to perform a deterministic assessment of such a flaw propagation in a degraded reactor pressure vessel under pressurized thermal shock conditions. The stress intensity is calculated from J, and the toughness is computed using the fracture master curve and the degraded ductile to brittle transition temperature.« less

  16. Research and development of ultrasonic tomography technology for three-dimensional imaging of internal rail flaws : modeling and simulation.

    DOT National Transportation Integrated Search

    2013-04-01

    This report covers the work performed under the FRA High-Speed BAA 20102011 program to demonstrate the technology of ultrasonic tomography for 3-D imaging of internal rail flaws. There is a need to develop new technologies that are able to quantif...

  17. Eddy-current inspection of shuttle heat exchanger tube welds

    NASA Technical Reports Server (NTRS)

    Dodd, Casius V.; Scott, G. W.; Chitwood, L. D.

    1990-01-01

    The goal of this project was to develop the system necessary to demonstrate in the laboratory that an eddy current system can inspect the tubes and welds described, screening for the existence of flaws equal in size to, or larger than, the target flaw. The laboratory system was to include the probe necessary to traverse the tubing, the electronics to drive (i.e., electrically excite) the probe and receive and process signals from it, a data display, data recording, and playback devices, and microprocessor software or firmware necessary to operate the system.

  18. Simulating the x-ray image contrast to setup techniques with desired flaw detectability

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing the detector resolution. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.

  19. A Critique of Books for College Libraries, 2d ed.

    ERIC Educational Resources Information Center

    Pownall, David E.

    The second edition of "Books for College Libraries," a six-volume work listing 38,651 titles is flawed, although it shows merit, and should be useful. Quality of selections and coverage range from good through excellent to superb. The primary flaws relate to the quality and extent of selections, particularly for such disciplines as history and…

  20. Flaw growth behavior in thick welded plates of 2219-T87 aluminum at room and cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Glorioso, S. V.; Medlock, J. D.

    1973-01-01

    Axial load fatigue and fracture tests were conducted on thick welded plates of 2219-T87 aluminum alloy to determine the tensile strength properties and the flaw growth behavior in electron beam, gas metal arc, and pulse current gas tungsten arc welds for plates 6.35 centimeters (2.5 in.) thick. The tests were conducted in room temperature air and in liquid nitrogen environments. Specimens were tested in both the as-welded and the aged after welding conditions. The experimental crack growth rate were correlated with theoretical crack growth rate predictions for semielliptical surface flaws.

  1. Flux-focusing eddy current probe and rotating probe method for flaw detection

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz A.; Fulton, James P.; Nath, Shridhar C.; Simpson, John W.; Namkung, Min

    1994-11-01

    A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks about circular fasteners and other circular inhomogeneities in high conductivity material. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil. The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. By rotating the probe in a path around a circular fastener such as a rivet while maintaining a constant distance between the probe and the center of a rivet, the signal due to current flow about the rivet can be held constant. Any further changes in the current distribution, such as due to a fatigue crack at the rivet joint, can be detected as an increase in the output voltage above that due to the flow about the rivet head.

  2. Flux-focusing eddy current probe and rotating probe method for flaw detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A. (Inventor); Fulton, James P. (Inventor); Nath, Shridhar C. (Inventor); Simpson, John W. (Inventor); Namkung, Min (Inventor)

    1994-01-01

    A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks about circular fasteners and other circular inhomogeneities in high conductivity material. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil. The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. By rotating the probe in a path around a circular fastener such as a rivet while maintaining a constant distance between the probe and the center of a rivet, the signal due to current flow about the rivet can be held constant. Any further changes in the current distribution, such as due to a fatigue crack at the rivet joint, can be detected as an increase in the output voltage above that due to the flow about the rivet head.

  3. Statistical flaws in design and analysis of fertility treatment studies on cryopreservation raise doubts on the conclusions

    PubMed Central

    van Gelder, P.H.A.J.M.; Nijs, M.

    2011-01-01

    Decisions about pharmacotherapy are being taken by medical doctors and authorities based on comparative studies on the use of medications. In studies on fertility treatments in particular, the methodological quality is of utmost importance in the application of evidence-based medicine and systematic reviews. Nevertheless, flaws and omissions appear quite regularly in these types of studies. Current study aims to present an overview of some of the typical statistical flaws, illustrated by a number of example studies which have been published in peer reviewed journals. Based on an investigation of eleven studies at random selected on fertility treatments with cryopreservation, it appeared that the methodological quality of these studies often did not fulfil the required statistical criteria. The following statistical flaws were identified: flaws in study design, patient selection, and units of analysis or in the definition of the primary endpoints. Other errors could be found in p-value and power calculations or in critical p-value definitions. Proper interpretation of the results and/or use of these study results in a meta analysis should therefore be conducted with care. PMID:24753877

  4. Statistical flaws in design and analysis of fertility treatment -studies on cryopreservation raise doubts on the conclusions.

    PubMed

    van Gelder, P H A J M; Nijs, M

    2011-01-01

    Decisions about pharmacotherapy are being taken by medical doctors and authorities based on comparative studies on the use of medications. In studies on fertility treatments in particular, the methodological quality is of utmost -importance in the application of evidence-based medicine and systematic reviews. Nevertheless, flaws and omissions appear quite regularly in these types of studies. Current study aims to present an overview of some of the typical statistical flaws, illustrated by a number of example studies which have been published in peer reviewed journals. Based on an investigation of eleven studies at random selected on fertility treatments with cryopreservation, it appeared that the methodological quality of these studies often did not fulfil the -required statistical criteria. The following statistical flaws were identified: flaws in study design, patient selection, and units of analysis or in the definition of the primary endpoints. Other errors could be found in p-value and power calculations or in critical p-value definitions. Proper -interpretation of the results and/or use of these study results in a meta analysis should therefore be conducted with care.

  5. On self-propagating methodological flaws in performance normalization for strength and power sports.

    PubMed

    Arandjelović, Ognjen

    2013-06-01

    Performance in strength and power sports is greatly affected by a variety of anthropometric factors. The goal of performance normalization is to factor out the effects of confounding factors and compute a canonical (normalized) performance measure from the observed absolute performance. Performance normalization is applied in the ranking of elite athletes, as well as in the early stages of youth talent selection. Consequently, it is crucial that the process is principled and fair. The corpus of previous work on this topic, which is significant, is uniform in the methodology adopted. Performance normalization is universally reduced to a regression task: the collected performance data are used to fit a regression function that is then used to scale future performances. The present article demonstrates that this approach is fundamentally flawed. It inherently creates a bias that unfairly penalizes athletes with certain allometric characteristics, and, by virtue of its adoption in the ranking and selection of elite athletes, propagates and strengthens this bias over time. The main flaws are shown to originate in the criteria for selecting the data used for regression, as well as in the manner in which the regression model is applied in normalization. This analysis brings into light the aforesaid methodological flaws and motivates further work on the development of principled methods, the foundations of which are also laid out in this work.

  6. Research of aluminum alloys with using eddy-current transducers on the basis of cores of various form

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. F.; Ishkov, A. V.; Katasonov, A. O.; Malikov, V. N.; Sagalakov, A. M.

    2018-01-01

    The research aims to develop a microminiature eddy current transducer for aluminum alloys. The research topic is considered relevant due to the need for evaluation and forecasting of safe operating life of aluminum. A microminiature transformer-type transducer was designed, which enables to perform local investigations of unferromagnetic materials using eddy-current method based on local studies conductivity. Having the designed transducer as a basis, a hardware-software complex was built to perform experimental studies of aluminium. Cores with different shapes were used in this work. Test results are reported for a flaws in the form of hidden slits and apertures inside the slabs is derived for excitation coil frequencies of 300-700 Hz.

  7. Theory and application of high temperature superconducting eddy current probes for nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Claycomb, James Ronald

    1998-10-01

    Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic FEM calculations are then used to model the electromagnetic response of eight probe designs, consisting of an eddy current drive coil coupled to a SQUID surrounded by superconducting and/or high permeability magnetic shielding. Simulations are carried out with the eddy current probes located a finite distance above a conducting surface. Results are quantified in terms of shielding and focus factors for each probe design.

  8. Reliability of steam generator tubing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadokami, E.

    1997-02-01

    The author presents results on studies made of the reliability of steam generator (SG) tubing. The basis for this work is that in Japan the issue of defects in SG tubing is addressed by the approach that any detected defect should be repaired, either by plugging the tube or sleeving it. However, this leaves open the issue that there is a detection limit in practice, and what is the effect of nondetectable cracks on the performance of tubing. These studies were commissioned to look at the safety issues involved in degraded SG tubing. The program has looked at a numbermore » of different issues. First was an assessment of the penetration and opening behavior of tube flaws due to internal pressure in the tubing. They have studied: penetration behavior of the tube flaws; primary water leakage from through-wall flaws; opening behavior of through-wall flaws. In addition they have looked at the question of the reliability of tubing with flaws during normal plant operation. Also there have been studies done on the consequences of tube rupture accidents on the integrity of neighboring tubes.« less

  9. Simulating the X-Ray Image Contrast to Set-Up Techniques with Desired Flaw Detectability

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2015-01-01

    The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is being developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing X-ray detector resolution for crack detection. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.

  10. Evaluation of ultrasonics and optimized radiography for 2219-T87 aluminum weldments

    NASA Technical Reports Server (NTRS)

    Clotfelter, W. N.; Hoop, J. M.; Duren, P. C.

    1975-01-01

    Ultrasonic studies are described which are specifically directed toward the quantitative measurement of randomly located defects previously found in aluminum welds with radiography or with dye penetrants. Experimental radiographic studies were also made to optimize techniques for welds of the thickness range to be used in fabricating the External Tank of the Space Shuttle. Conventional and innovative ultrasonic techniques were applied to the flaw size measurement problem. Advantages and disadvantages of each method are discussed. Flaw size data obtained ultrasonically were compared to radiographic data and to real flaw sizes determined by destructive measurements. Considerable success was achieved with pulse echo techniques and with 'pitch and catch' techniques. The radiographic work described demonstrates that careful selection of film exposure parameters for a particular application must be made to obtain optimized flaw detectability. Thus, film exposure techniques can be improved even though radiography is an old weld inspection method.

  11. NON-DESTRUCTIVE METHOD AND MEANS FOR FLAW DETECTION

    DOEpatents

    Hochschild, R.

    1959-03-10

    BS>An improved method is presented for the nondestructive detection of flaws in olectrictilly conductivc articles using magnetic field. According to thc method a homogoneous mignetic field is established in the test article;it right angle" to the artyicle. A probe is aligned with its axis transverse to the translates so hat th4 probe scans the surface of the test article while the axis of the robe is transverse to the direction of translation of the article. In this manner any output current obtained in thc probe is an indication of the size and location of a flaw in the article under test, with a miiiimum of signal pick- up in the probe from the established magnetic field.

  12. In-service Inspection Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density and Size Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Edmund J.; Anderson, Michael T.; Norris, Wallace

    2012-09-17

    Pressurized thermal shock (PTS) events are system transients in a pressurized water reactor (PWR) in which there is a rapid operating temperature cool-down that results in cold vessel temperatures with or without repressurization of the vessel. The rapid cooling of the inside surface of the reactor pressure vessel (RPV) causes thermal stresses that can combine with stresses caused by high pressure. The aggregate effect of these stresses is an increase in the potential for fracture if a pre-existing flaw is present in a material susceptible to brittle failure. The ferritic, low alloy steel of the reactor vessel beltline adjacent tomore » the core, where neutron radiation gradually embrittles the material over the lifetime of the plant, can be susceptible to brittle fracture. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), “Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events,” adopted on July 23, 1985, establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. The U.S. Nuclear Regulatory Commission (NRC) completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed a rule, §50.61a, published on January 4, 2010, entitled “Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events” (75 FR 13). Use of the new rule by licensees is optional. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants. These analyses are intended to determine if the actual flaw density and size distribution in the licensee’s reactor vessel beltline welds are bounded by the flaw density and size distribution values used in the PTS technical basis. Under a contract with the NRC, Pacific Northwest National Laboratory (PNNL) has been working on a program to assess the ability of current inservice inspection (ISI)-ultrasonic testing (UT) techniques, as qualified through ASME Code, Appendix VIII, Supplements 4 and 6, to detect small fabrication or inservice-induced flaws located in RPV welds and adjacent base materials. As part of this effort, the investigators have pursued an evaluation, based on the available information, of the capability of UT to provide flaw density/distribution inputs for making RPV weld assessments in accordance with §50.61a. This paper presents the results of an evaluation of data from the 1993 Browns Ferry Nuclear Plant, Unit 3, Spirit of Appendix VIII reactor vessel examination, a comparison of the flaw density/distribution from this data with the distribution in §50.61a, possible reasons for differences, and plans and recommendations for further work in this area.« less

  13. Characteristics of Ferromagnetic Flux Focusing Lens in the Development of Surface/Subsurface Flaw Detector

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Namkung, Min; Simpson, John

    1993-01-01

    Electromagnetic NDE techniques have in the past steered away from the use of ferromagnetic materials. Although their high permeabilities lead to increased field levels, the properties of ferrous elements in the presence of alternating magnetic fields are difficult to determine. In addition, their use leads to losses which can be minimized through the use of low conductivity ferrites. In fact, the eddy current probes which do incorporate ferromagnetic materials have focused on these losses and the shielding which can be obtained by surrounding a probe with a high permeability, conducting material. Eddy current probes enclosed in conducting and magnetic shields have been used to prevent the generated fields from interacting with materials in the vicinity of the probe, such as when testing near material boundaries. A recent invention has used ferromagnetic shielding to magnetically separate individual concentric eddy current probes in order to eliminate cross-talk between the probes so that simultaneous detection of different types of flaws at different depths can be achieved. In contrast to the previous uses of ferromagnetic materials purely as magnetic shields, an electromagnetic flaw detector recently developed at NASA Langley Research Center takes advantage of the flux focusing properties of a ferromagnetic mild steel in order to produce a simple, effective device for the non-destructive evaluation of conducting materials. The Flux Focusing Eddy Current Probe has been shown to accurately measure material thickness and fatigue damage. The straight forward flaw response of the probe makes the device ideal for rapid inspection of large structures, and has lead to its incorporation in a computer controlled search routine to locate fatigue crack tips and monitor experimental fatigue crack growth experiments.

  14. Multiplexed HTS rf SQUID magnetometer array for eddy current testing of aircraft rivet joints

    NASA Astrophysics Data System (ADS)

    Gärtner, S.; Krause, H.-J.; Wolters, N.; Lomparski, D.; Wolf, W.; Schubert, J.; Kreutzbruck, M. v.; Allweins, K.

    2002-05-01

    Using three rf SQUID magnetometers, a multiplexed SQUID array was implemented. The SQUIDs are positioned in line with 7 mm spacing and operated using one feedback electronics with sequential read out demodulation at different radio frequencies (rf). The cross-talk between SQUID channels was determined to be negligible. To show the performance of the SQUID array, eddy current (EC) measurements of aluminum aircraft samples in conjunction with a differential (double-D) EC excitation and lock-in readout were carried out. With computer-controlled continuous switching of the SQUIDs during the scan, three EC signal traces of the sample are obtained simultaneously. We performed measurements with an EC excitation frequency of 135 Hz to localize an artificial crack (sawcut flaw) of 20 mm length in an aluminum sheet with 0.6 mm thickness. The flaw was still detected when covered with aluminum of up to 10 mm thickness. In addition, measurements with varying angles between scanning direction and flaw orientation are presented.

  15. Issues Regarding the Assimilation of Cloud and Precipitation Data

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.; Bauer, Peter; Mahfouf, Jean-Francois

    2008-01-01

    This is the authors' response to a set of criticisms regarding a previously published work. It briefly addresses the main criticisms. In particular, it explains why some papers identified as having some fundamental flaws were referenced in the original work without detailed exposition of those flaws. It also explains why parts of the conclusion criticized as being contradictory are, in fact, not. It further highlights the need for more publishing of scientific criticisms. In the December 2007, special issue of the Journal of Atmospheric Sciences devoted to the Workshop on Assimilation of Satellite Cloud and Precipitation Observations, the authors published an article summarizing the many critical issues that render observations of cloud and precipitation difficult to analyze. Essentially, these include the inaccuracies of both current instruments and the relationships between what is actually observed (infrared or microwave energy detected at the altitude of the satellite) to what is desired (e.g., estimates of cloud drop sizes or rain rates) and the chaotic nature of atmospheric behavior and the complex mathematics describing it. The paper also included recommendations for future research and brief descriptions of many previous works concerning the subject. One reader is now attempting to publish a criticism of that paper. Her three complaints are that there was insufficient explanation of the identification of some cited works as being fundamentally flawed, that as a review the paper should have referenced some works additional to those it did, and that two recommendations were contradictory. Each of these complaints is addressed briefly in this response. First we explain why a brief list of works cited in our paper were identified as "flawed" with only a brief explanation. The design and conduct of the experiments reported in those papers violate well-established fundamentals such that, once the errors are recognized, their interpretations are no longer supported. Unfortunately, over the years, no researchers have bothered to publish criticisms of those papers, such that there are now too many to address in any single paper not devoted to that purpose. Yet, those papers are so often cited that we could not simply ignore them. Furthermore, if we had cited them without warning our readers regarding their flaws, we would have perpetrated a great disservice. In our response, however, we do offer further explanation of why some details, neglected in these papers, are critical to proper scientific evaluation. Neither did we offer insufficient references. Although we intentionally did not claim to be a "review' paper, we did cite 100 papers. That number is approximately 5 times the usual amount cited in journal articles. Although we only referenced few papers published after 2005, that was because our manuscript was submitted in January 2006, with its final, editorially-reviewed form in June 2006. We therefore could not reference papers published after this date. The problem here is that our paper was "in press" for 18 months. Finally, we explain that a careful reading of our paper reveals that our recommendations are not contradictory. Essentially, although we recommend 2 very distinct research approaches, these are complimentary and either alone is insufficient to accelerate progress. In conclusion, we recommend that the scientific community expends greater effort in publishing careful scientific criticisms so that others do not face the same dilemma we did. Likely this requires some reward system for doing so.

  16. Remotely Telling Humans and Computers Apart: An Unsolved Problem

    NASA Astrophysics Data System (ADS)

    Hernandez-Castro, Carlos Javier; Ribagorda, Arturo

    The ability to tell humans and computers apart is imperative to protect many services from misuse and abuse. For this purpose, tests called CAPTCHAs or HIPs have been designed and put into production. Recent history shows that most (if not all) can be broken given enough time and commercial interest: CAPTCHA design seems to be a much more difficult problem than previously thought. The assumption that difficult-AI problems can be easily converted into valid CAPTCHAs is misleading. There are also some extrinsic problems that do not help, especially the big number of in-house designs that are put into production without any prior public critique. In this paper we present a state-of-the-art survey of current HIPs, including proposals that are now into production. We classify them regarding their basic design ideas. We discuss current attacks as well as future attack paths, and we also present common errors in design, and how many implementation flaws can transform a not necessarily bad idea into a weak CAPTCHA. We present examples of these flaws, using specific well-known CAPTCHAs. In a more theoretical way, we discuss the threat model: confronted risks and countermeasures. Finally, we introduce and discuss some desirable properties that new HIPs should have, concluding with some proposals for future work, including methodologies for design, implementation and security assessment.

  17. Advanced eddy current test signal analysis for steam generator tube defect classification and characterization

    NASA Astrophysics Data System (ADS)

    McClanahan, James Patrick

    Eddy Current Testing (ECT) is a Non-Destructive Examination (NDE) technique that is widely used in power generating plants (both nuclear and fossil) to test the integrity of heat exchanger (HX) and steam generator (SG) tubing. Specifically for this research, laboratory-generated, flawed tubing data were examined. The purpose of this dissertation is to develop and implement an automated method for the classification and an advanced characterization of defects in HX and SG tubing. These two improvements enhanced the robustness of characterization as compared to traditional bobbin-coil ECT data analysis methods. A more robust classification and characterization of the tube flaw in-situ (while the SG is on-line but not when the plant is operating), should provide valuable information to the power industry. The following are the conclusions reached from this research. A feature extraction program acquiring relevant information from both the mixed, absolute and differential data was successfully implemented. The CWT was utilized to extract more information from the mixed, complex differential data. Image Processing techniques used to extract the information contained in the generated CWT, classified the data with a high success rate. The data were accurately classified, utilizing the compressed feature vector and using a Bayes classification system. An estimation of the upper bound for the probability of error, using the Bhattacharyya distance, was successfully applied to the Bayesian classification. The classified data were separated according to flaw-type (classification) to enhance characterization. The characterization routine used dedicated, flaw-type specific ANNs that made the characterization of the tube flaw more robust. The inclusion of outliers may help complete the feature space so that classification accuracy is increased. Given that the eddy current test signals appear very similar, there may not be sufficient information to make an extremely accurate (>95%) classification or an advanced characterization using this system. It is necessary to have a larger database fore more accurate system learning.

  18. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  19. Fracture analysis of radial scientific instrument module registration fittings of the space telescope

    NASA Technical Reports Server (NTRS)

    Springfield, C. W., Jr.

    1986-01-01

    Various pieces of the registration fittings for the Radial Scientific instrument (SI) module of the Space Telescope were examined from a fracture mechanics point of view and deemed to be fail-safe or else have had maximum allowable flaw sizes specified for them. The results of these analyses are summarized in tabular form. In many instances the applied stress levels were so low that the threshold stress intensity factor range was never reached. In most of the others the allowable flaw sizes were large enough to be detected by visual inspection. However, for some parts, such as the flexures connecting the aluminum cover to the ball retainer in the fitting at point A, the flaw sizes were rather small. Eddy current tests are capable of detecting flaws of this size (0.022 inches x 0.1 inches), so for those which have been so tested these small flaws should represent no danger of going undetected. In every instance approximations were made to err on the conservative side. These were pointed out in the discussions of the analyses for each fitting. One conservative approximation that was not mentioned, however, is the fact that retardation was not included in the crack propagation computations.

  20. Eddy-Current Probes For Inspecting Graphite-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Wang, Morgan

    1992-01-01

    Eddy-current probes with E-shaped and U-shaped magnetic cores developed to detect flaws in graphite-fiber/epoxy and other composites. Magnetic fields more concentrated, yielding better coupling with specimens.

  1. Study of acoustic emission during mechanical tests of large flight weight tank structure

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Mccauley, B. O.; Veach, C. L.

    1972-01-01

    A polyphenylane oxide insulated, flight weight, subscale, aluminum tank was monitored for acoustic emissions during a proof test and during 100 cycles of environmental test simulating space flights. The use of a combination of frequency filtering and appropriate spatial filtering to reduce background noise was found to be sufficient to detect acoustic emission signals of relatively small intensity expected from subcritical crack growth in the structure. Several emission source locations were identified, including the one where a flaw was detected by post-test X-ray inspections. For most source locations, however, post-test inspections did not detect flaws; this was partially attributed to the higher sensitivity of the acoustic emission technique than any other currently available NDT method for detecting flaws.

  2. Scoping Planning Agents With Shared Models

    NASA Technical Reports Server (NTRS)

    Bedrax-Weiss, Tania; Frank, Jeremy D.; Jonsson, Ari K.; McGann, Conor

    2003-01-01

    In this paper we provide a formal framework to define the scope of planning agents based on a single declarative model. Having multiple agents sharing a single model provides numerous advantages that lead to reduced development costs and increase reliability of the system. We formally define planning in terms of extensions of an initial partial plan, and a set of flaws that make the plan unacceptable. A Flaw Filter (FF) allows us to identify those flaws relevant to an agent. Flaw filters motivate the Plan Identification Function (PIF), which specifies when an agent is is ready hand control to another agent for further work. PIFs define a set of plan extensions that can be generated from a model and a plan request. FFs and PIFs can be used to define the scope of agents without changing the model. We describe an implementation of PIFsand FFswithin the context of EUROPA, a constraint-based planning architecture, and show how it can be used to easily design many different agents.

  3. Effect of Combined Loading Due to Bending and Internal Pressure on Pipe Flaw Evaluation Criteria

    NASA Astrophysics Data System (ADS)

    Miura, Naoki; Sakai, Shinsuke

    Considering a rule for the rationalization of maintenance of Light Water Reactor piping, reliable flaw evaluation criteria are essential for determining how a detected flaw will be detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes that must be considered for carbon steel piping and can be analyzed by elastic-plastic fracture mechanics. Some analytical efforts have provided various flaw evaluation criteria using load correction factors, such as the Z-factors in the JSME codes on fitness-for-service for nuclear power plants and the section XI of the ASME boiler and pressure vessel code. The present Z-factors were conventionally determined, taking conservativity and simplicity into account; however, the effect of internal pressure, which is an important factor under actual plant conditions, was not adequately considered. Recently, a J-estimation scheme, LBB.ENGC for the ductile fracture analysis of circumferentially through-wall-cracked pipes subjected to combined loading was developed for more accurate prediction under more realistic conditions. This method explicitly incorporates the contributions of both bending and tension due to internal pressure by means of a scheme that is compatible with an arbitrary combined-loading history. In this study, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. The Z-factor obtained in this study was compared with the presently used Z-factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of the internal pressure.

  4. The disorder-specific psychological impairment in complex PTSD: A flawed working model for restoration of trust.

    PubMed

    Laddis, Andreas

    2018-03-22

    This article methodically gathers concepts and findings from related disciplines to propose that there is a fundamental, disorder-specific psychological impairment, which defines Complex Posttraumatic Stress Disorder (PTSD) as etiologically different from simple PTSD. This impairment is a flawed working model for restoration of trust when one partner fears betrayal. This working model is legacy of childhood relationships with manipulative caretakers who kept the child powerless to test the trustworthiness of their reasons to break promises and to fail the child's expectations. Manipulative caretakers invert the respective roles and responsibilities for restoration of trust, which constitutes perversion of intimacy. This article describes how that fundamental flaw becomes the cause of patients' disorder, by episodically rendering them powerless to ascertain a perception of grave betrayal as true or false in later relationships. Repeated failure with experiments for certainty about others' love explains the characteristic personality traits and beliefs of persons with Complex PTSD, i.e., cynicism about the world's benevolence, self-derogation and sense of a foreshortened future. This article closes with reference to a study that investigated the efficacy of a crisis intervention designed to remediate this fundamental impairment.

  5. Bell's "Theorem": loopholes vs. conceptual flaws

    NASA Astrophysics Data System (ADS)

    Kracklauer, A. F.

    2017-12-01

    An historical overview and detailed explication of a critical analysis of what has become known as Bell's Theorem to the effect that, it should be impossible to extend Quantum Theory with the addition of local, real variables so as to obtain a version free of the ambiguous and preternatural features of the currently accepted interpretations is presented. The central point on which this critical analysis, due originally to Edwin Jaynes, is that Bell incorrectly applied probabilistic formulas involving conditional probabilities. In addition, mathematical technicalities that have complicated the understanding of the logical or mathematical setting in which current theory and experimentation are embedded, are discussed. Finally, some historical speculations on the sociological environment, in particular misleading aspects, in which recent generations of physicists lived and worked are mentioned.

  6. Evaluation of NDE Round-Robin Exercises Using the NRC Steam Generator Mockup at Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muscara, Joseph; Kupperman, David S.; Bakhtiari, Sasab

    2002-07-01

    This paper discusses round-robin exercises using the NRC steam generator (SG) mock-up at Argonne National Laboratory to assess inspection reliability. The purpose of the round robins was to assess the current reliability of SG tubing inservice inspection, determine the probability of detection (POD) as function of flaw size or severity, and assess the capability for sizing of flaws. For the round robin and subsequent evaluation completed in 2001, eleven teams participated. Bobbin and rotating coil mock-up data collected by qualified industry personnel were evaluated. The mock-up contains hundreds of cracks and simulations of artifacts such as corrosion deposits and tubemore » support plates that make detection and characterization of cracks more difficult in operating steam generators than in most laboratory situations. An expert Task Group from industry, Argonne National Laboratory, and the NRC have reviewed the signals from the laboratory-grown cracks used in the mock-up to ensure that they provide reasonable simulations of those obtained in the field. The mock-up contains 400 tube openings. Each tube contains nine 22.2-mm (7/8-in.) diameter, 30.5-cm (1-ft) long, Alloy 600 test sections. The flaws are located in the tube sheet near the roll transition zone (RTZ), in the tube support plate (TSP), and in the free-span. The flaws are primarily intergranular stress corrosion cracks (axial and circumferential, ID and OD) though intergranular attack (IGA) wear and fatigue cracks are also present, as well as cracks in dents. In addition to the simulated tube sheet and TSP the mock-up has simulated sludge and magnetite deposits. A multiparameter eddy current algorithm, validated for mock-up flaws, provided a detailed isometric plot for every flaw and was used to establish the reference state of defects in the mock-up. The detection results for the 11 teams were used to develop POD curves as a function of maximum depth, voltage and the parameter m p, for the various types of flaws. The POD curves were represented as linear logistic curves, and the curve parameters were determined by the method of Maximum Likelihood. The effect of both statistical uncertainties inherent in sampling from distributions and the uncertainties due to errors in the estimates of maximum depth and m p was investigated. The 95% one-sided confidence limits (OSL), which include errors in maximum depth estimates, are presented along with the POD curves. For the second round robin a reconfigured mock-up is being used to evaluate the effectiveness of eddy current array probes. The primary emphasis is on the X-Probe. Progress with the X-Probe round robin is discussed in this paper. (authors)« less

  7. The Safety Course Design and Operations of Composite Overwrapped Pressure Vessels (COPV)

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor; Prosser, William

    2015-01-01

    Following a Commercial Launch Vehicle On-Pad COPV (Composite Overwrapped Pressure Vessels) failure, a request was received by the NESC (NASA Engineering and Safety Center) June 14, 2014. An assessment was approved July 10, 2014, to develop and assess the capability of scanning eddy current (EC) nondestructive evaluation (NDE) methods for mapping thickness and inspection for flaws. Current methods could not identify thickness reduction from necking and critical flaw detection was not possible with conventional dye penetrant (PT) methods, so sensitive EC scanning techniques were needed. Developmental methods existed, but had not been fully developed, nor had the requisite capability assessment (i.e., a POD (Probability of Detection) study) been performed.

  8. Real time flaw detection and characterization in tube through partial least squares and SVR: Application to eddy current testing

    NASA Astrophysics Data System (ADS)

    Ahmed, Shamim; Miorelli, Roberto; Calmon, Pierre; Anselmi, Nicola; Salucci, Marco

    2018-04-01

    This paper describes Learning-By-Examples (LBE) technique for performing quasi real time flaw localization and characterization within a conductive tube based on Eddy Current Testing (ECT) signals. Within the framework of LBE, the combination of full-factorial (i.e., GRID) sampling and Partial Least Squares (PLS) feature extraction (i.e., GRID-PLS) techniques are applied for generating a suitable training set in offine phase. Support Vector Regression (SVR) is utilized for model development and inversion during offine and online phases, respectively. The performance and robustness of the proposed GIRD-PLS/SVR strategy on noisy test set is evaluated and compared with standard GRID/SVR approach.

  9. Improvement in Magnetic Techniques for Rail Inspection

    DOT National Transportation Integrated Search

    1981-06-01

    Current inspection of rail for internal defects is carried out by ultrasonic and/or magnetic technique for inspecting rail for internal flaws. The major emphasis was placed on improving the speed and detectability of current techniques. Experimental ...

  10. Automated Eddy Current Inspection on Space Shuttle Hardware

    NASA Technical Reports Server (NTRS)

    Hartmann, John; Felker, Jeremy

    2007-01-01

    Over the life time of the Space Shuttle program, metal parts used for the Reusable Solid Rocket Motors (RSRMs) have been nondestructively inspected for cracks and surface breaking discontinuities using magnetic particle (steel) and penetrant methods. Although these inspections adequately screened for critical sized cracks in most regions of the hardware, it became apparent after detection of several sub-critical flaws that the processes were very dependent on operator attentiveness and training. Throughout the 1990's, eddy current inspections were added to areas that had either limited visual access or were more fracture critical. In the late 1990's. a project was initiated to upgrade NDE inspections with the overall objective of improving inspection reliability and control. An automated eddy current inspection system was installed in 2001. A figure shows one of the inspection bays with the robotic axis of the system highlighted. The system was programmed to inspect the various case, nozzle, and igniter metal components that make up an RSRM. both steel and aluminum. For the past few years, the automated inspection system has been a part of the baseline inspection process for steel components. Although the majority of the RSRM metal part inventory ts free of detectable surface flaws, a few small, sub-critical manufacturing defects have been detected with the automated system. This paper will summarize the benefits that have been realized with the current automated eddy current system, as well as the flaws that have been detected.

  11. Primary Water Stress Corrosion Cracks in Nickel Alloy Dissimilar Metal Welds: Detection and Sizing Using Established and Emerging Nondestructive Examination Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braatz, Brett G.; Cumblidge, Stephen E.; Doctor, Steven R.

    2012-12-31

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (≈400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional andmore » phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (≈900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for PARENT round-robin tests.« less

  12. Phased Array Ultrasonic Examination of Reactor Coolant System (Carbon Steel-to-CASS) Dissimilar Metal Weld Mockup Specimen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, S. L.; Cinson, A. D.; Diaz, A. A.

    2015-11-23

    In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objectivemore » of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.« less

  13. Finite Element Modeling of the Thermographic Inspection for Composite Materials

    NASA Technical Reports Server (NTRS)

    Bucinell, Ronald B.

    1996-01-01

    The performance of composite materials is dependent on the constituent materials selected, material structural geometry, and the fabrication process. Flaws can form in composite materials as a result of the fabrication process, handling in the manufacturing environment, and exposure in the service environment to anomalous activity. Often these flaws show no indication on the surface of the material while having the potential of substantially degrading the integrity of the composite structure. For this reason it is important to have available inspection techniques that can reliably detect sub-surface defects such as inter-ply disbonds, inter-ply cracks, porosity, and density changes caused by variations in fiber volume content. Many non-destructive evaluation techniques (NDE) are capable of detecting sub-surface flaws in composite materials. These include shearography, video image correlation, ultrasonic, acoustic emissions, and X-ray. The difficulty with most of these techniques is that they are time consuming and often difficult to apply to full scale structures. An NDE technique that appears to have the capability to quickly and easily detect flaws in composite structure is thermography. This technique uses heat to detect flaws. Heat is applied to the surface of a structure with the use of a heat lamp or heat gun. A thermographic camera is then pointed at the surface and records the surface temperature as the composite structure cools. Flaws in the material will cause the thermal-mechanical material response to change. Thus, the surface over an area where a flaw is present will cool differently than regions where flaws do not exist. This paper discusses the effort made to thermo-mechanically model the thermography process. First the material properties and physical parameters used in the model will be explained. This will be followed by a detailed discussion of the finite element model used. Finally, the result of the model will be summarized along with recommendations for future work.

  14. Progress in Developing Transfer Functions for Surface Scanning Eddy Current Inspections

    NASA Astrophysics Data System (ADS)

    Shearer, J.; Heebl, J.; Brausch, J.; Lindgren, E.

    2009-03-01

    As US Air Force (USAF) aircraft continue to age, additional inspections are required for structural components. The validation of new inspections typically requires a capability demonstration of the method using representative structure with representative damage. To minimize the time and cost required to prepare such samples, Electric Discharge machined (EDM) notches are commonly used to represent fatigue cracks in validation studies. However, the sensitivity to damage typically changes as a function of damage type. This requires a mathematical relationship to be developed between the responses from the two different flaw types to enable the use of EDM notched samples to validate new inspections. This paper reviews progress to develop transfer functions for surface scanning eddy current inspections of aluminum and titanium alloys found in structural aircraft components. Multiple samples with well characterized grown fatigue cracks and master gages with EDM notches, both with a range of flaw sizes, were used to collect flaw signals with USAF field inspection equipment. Analysis of this empirical data was used to develop a transfer function between the response from the EDM notches and grown fatigue cracks.

  15. Automatic non-destructive system for quality assurance of welded elements in the aircraft industry

    NASA Astrophysics Data System (ADS)

    Chady, Tomasz; Waszczuk, Paweł; Szydłowski, Michał; Szwagiel, Mariusz

    2018-04-01

    Flaws that might be a result of the welding process have to be detected, in order to assure high quality thus reliability of elements exploited in aircraft industry. Currently the inspection stage is conducted manually by a qualified workforce. There are no commercially available systems that could support or replace humans in the flaw detection process. In this paper authors present a novel non-destructive system developed for quality assurance purposes of welded elements utilized in the aircraft industry.

  16. Study of eddy current probes

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Wang, Morgan

    1992-01-01

    The recognition of materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques.

  17. Solution to certain problems in the failure of composite structures

    NASA Astrophysics Data System (ADS)

    Goodsell, Johnathan

    The present work contains the solution of two problems in composite structures. In the first, an approximate elasticity solution for prediction of the displacement, stress and strain fields within the m-layer, symmetric and balanced angle-ply composite laminate of finite-width subjected anticlastic bending deformation is developed. The solution is shown to recover classical laminated plate theory predictions at interior regions of the laminate and thereby illustrates the boundary layer character of this interlaminar phenomenon. The results exhibit the anticipated response in congruence with the solutions for uniform axial extension and uniform temperature change, where divergence of the interlaminar shearing stress is seen to occur at the intersection of the free-edge and planes between lamina of +theta and -theta orientation. The analytical results show excellent agreement with the finite-element predictions for the same boundary-value problem and thereby provide an efficient and compact solution available for parametric studies of the influence of geometry and material properties. The solution is combined with previously developed solutions for uniform axial extension and uniform temperature change of the identical laminate and the combined solution is exercised to compare the relative magnitudes of free-edge phenomenon arising from the different loading conditions, to study very thick laminates and laminates where the laminate width is less than the laminate thickness. Significantly, it was demonstrated that the solution is valid for arbitrary stacking sequence and the solution was exercised to examine antisymmetric and non-symmetric laminates. Finally, the solution was exercised to determine the dimensions of the boundary layer for very large numbers of layers. It was found that the dimension of the boundary layer width in bending is approximately twice that in uniform axial extension and uniform temperature change. In the second, the intrinsic flaw concept is extended to the determination of the intrinsic flaw length and the prediction of performance variability in the 10-degree off-axis specimen. The intrinsic flaw is defined as a fracture mechanics-type, through-thickness planar crack extending in the fiber direction from the failure initiation site of length, a. The distribution of intrinsic flaw lengths is postulated from multiple tests of 10-degree off-axis specimens by calculating the length of flaw that would cause fracture at each measured failure site and failure load given the fracture toughness of the material. The intrinsic flaw lengths on the homogeneous and micromechanical scales for unnotched (no hole) and specimens containing a centrally-located, through-thickness circular hole are compared. 8 hole-diameters ranging from 1.00--12.7 mm are considered. On the micromechanical scale, the intrinsic flaw ranges between approximately 10 and 100 microns in length, on the order of the relevant microstructural dimensions. The intrinsic flaw lengths on the homogeneous scale are determined to be an order of magnitude greater than that on the micromechanical scale. The effect of variation in the fiber volume fraction on the intrinsic flaw length is also considered. In the strength predictions for the specimens, the intrinsic flaw crack geometry and probability density function of intrinsic flaw lengths calculated from the unnotched specimens allow fracture mechanics predictions of strength variability. The strength prediction is dependent on the flaw density, the number of flaws per unit length along the free-edge. The flaw density is established by matching the predicted strength with the experimental strength. The distribution of intrinsic flaw lengths is used with the strength variability of the unnotched and of open-hole specimens to determine the flaw density at each hole-size. The flaw density is shown to be related to the fabrication machining speed suggesting machining damage as a mechanism for the hole-size dependence of the flaw density. (Abstract shortened by UMI.)

  18. Study of acoustic emission during mechanical tests of large flight weight tank structure

    NASA Technical Reports Server (NTRS)

    Mccauley, B. O.; Nakamura, Y.; Veach, C. L.

    1973-01-01

    A PPO-insulated, flight-weight, subscale, aluminum tank was monitored for acoustic emissions during a proof test and during 100 cycles of environmental test simulating space flights. The use of a combination of frequency filtering and appropriate spatial filtering to reduce background noise was found to be sufficient to detect acoustic emission signals of relatively small intensity expected from subcritical crack growth in the structure. Several emission source locations were identified, including the one where a flaw was detected by post-test x-ray inspections. For most source locations, however, post-test inspections did not detect flaws; this was partially attributed to the higher sensitivity of the acoustic emission technique than any other currently available NDT method for detecting flaws. For these non-verifiable emission sources, a problem still remains in correctly interpreting observed emission signals.

  19. Managing away bad habits.

    PubMed

    Waldroop, J; Butler, T

    2000-01-01

    We've all worked with highly competent people who are held back by a seemingly fatal personality flaw. One person takes on too much work; another sees the downside in every proposed change; a third pushes people out of the way. At best, people with these "bad habits" create their own glass ceilings, which limit their success and their contributions to the company. At worst, they destroy their own careers. Although the psychological flaws of such individuals run deep, their managers are not helpless. In this article, James Waldroop and Timothy Butler--both psychologists--examine the root causes of these flaws and suggest concrete tactics they have used to help people recognize and correct the following six behavior patterns: The hero, who always pushes himself--and subordinates--too hard to do too much for too long. The meritocrat, who believes that the best ideas can and will be determined objectively and ignores the politics inherent in most situations. The bulldozer, who runs roughshod over others in a quest for power. The pessimist, who always worries about what could go wrong. The rebel, who automatically fights against authority and convention. And the home run hitter, who tries to do too much too soon--he swings for the fences before he's learned to hit singles. Helping people break through their self-created glass ceilings is the ultimate win-win scenario: both the individual and the organization are rewarded. Using the tactics introduced in this article, managers can help their brilliantly flawed performers become spectacular achievers.

  20. [The application of operating room quality backward system in instrument place management].

    PubMed

    Du, Hui; He, Anjie; Zeng, Leilei

    2010-09-01

    Improvement of the surgery instrument's clean quality, the optimized preparation way, reasonable arrangement in groups, raising the working efficiency. We use the quality backward system into the instrument clean, the pack and the preparation way's question, carry on the analysis and the optimization, and appraise the effect after trying out 6 months. After finally the way optimized, instrument clean quality distinct enhancement; The flaws in the instrument clean, the pack way and the total operating time reduce; the contradictory between nurses and the cleans arising from the unclear connection reduces, the satisfaction degree of nurse and doctor to the instrument enhances. Using of operating room quality backward system in the management of the instrument clean, the pack and the preparation way optimized, may reduce flaws in the work and the waste of human resources, raise the working efficiency.

  1. Alzheimer’s Disease Drug Development in 2008 and Beyond: Problems and Opportunities

    PubMed Central

    Becker, Robert E.; Greig, Nigel H.

    2008-01-01

    Recently, a number of Alzheimer’s disease (AD) multi-center clinical trials (CT) have failed to provide statistically significant evidence of drug efficacy. To test for possible design or execution flaws we analyzed in detail CTs for two failed drugs that were strongly supported by preclinical evidence and by proven CT AD efficacy for other drugs in their class. Studies of the failed commercial trials suggest that methodological flaws may contribute to the failures and that these flaws lurk within current drug development practices ready to impact other AD drug development [1]. To identify and counter risks we considered the relevance to AD drug development of the following factors: (1) effective dosing of the drug product, (2) reliable evaluations of research subjects, (3) effective implementation of quality controls over data at research sites, (4) resources for practitioners to effectively use CT results in patient care, (5) effective disease modeling, (6) effective research designs. New drugs currently under development for AD address a variety of specific mechanistic targets. Mechanistic targets provide AD drug development opportunities to escape from many of the factors that currently undermine AD clinical pharmacology, especially the problems of inaccuracy and imprecision associated with using rated outcomes. In this paper we conclude that many of the current problems encountered in AD drug development can be avoided by changing practices. Current problems with human errors in clinical trials make it difficult to differentiate drugs that fail to evidence efficacy from apparent failures due to Type II errors. This uncertainty and the lack of publication of negative data impede researchers’ abilities to improve methodologies in clinical pharmacology and to develop a sound body of knowledge about drug actions. We consider the identification of molecular targets as offering further opportunities for overcoming current failures in drug development. PMID:18690832

  2. Revolving Eddy-Current Probe Detects Cracks Near Rivets

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Wincheski, Buzz; Fulton, James P.; Nath, Shridhar; Simpson, John

    1995-01-01

    Scanning eddy-current probe in circular pattern increases sensitivity with which probe indicates fatigue cracks and other defects in metal surfaces in vicinity of rivets. Technique devised to facilitate inspection of riveted joints in aircraft. Eddy-current probe in question described in "Electro-magnetic Flaw Detector Is Easier To Use" (LAR-15046).

  3. Amplitude-independent flaw length determination using differential eddy current

    NASA Astrophysics Data System (ADS)

    Shell, E.

    2013-01-01

    Military engine component manufacturers typically specify the eddy current (EC) inspection requirements as a crack length or depth with the assumption that the cracks in both the test specimens and inspected component are of a similar fixed aspect ratio. However, differential EC response amplitude is dependent on the area of the crack face, not the length or depth. Additionally, due to complex stresses, in-service cracks do not always grow in the assumed manner. It would be advantageous to use more of the information contained in the EC data to better determine the full profile of cracks independent of the fixed aspect ratio amplitude response curve. A specimen with narrow width notches is used to mimic cracks of varying aspect ratios in a controllable manner. The specimen notches have aspect ratios that vary from 1:1 to 10:1. Analysis routines have been developed using the shape of the EC response signals that can determine the length of a surface flaw of common orientations without use of the amplitude of the signal or any supporting traditional probability of detection basis. Combined with the relationship between signal amplitude and area, the depth of the flaw can also be calculated.

  4. Experimental quantum key distribution with source flaws

    NASA Astrophysics Data System (ADS)

    Xu, Feihu; Wei, Kejin; Sajeed, Shihan; Kaiser, Sarah; Sun, Shihai; Tang, Zhiyuan; Qian, Li; Makarov, Vadim; Lo, Hoi-Kwong

    2015-09-01

    Decoy-state quantum key distribution (QKD) is a standard technique in current quantum cryptographic implementations. Unfortunately, existing experiments have two important drawbacks: the state preparation is assumed to be perfect without errors and the employed security proofs do not fully consider the finite-key effects for general attacks. These two drawbacks mean that existing experiments are not guaranteed to be proven to be secure in practice. Here, we perform an experiment that shows secure QKD with imperfect state preparations over long distances and achieves rigorous finite-key security bounds for decoy-state QKD against coherent attacks in the universally composable framework. We quantify the source flaws experimentally and demonstrate a QKD implementation that is tolerant to channel loss despite the source flaws. Our implementation considers more real-world problems than most previous experiments, and our theory can be applied to general discrete-variable QKD systems. These features constitute a step towards secure QKD with imperfect devices.

  5. Reconstruction de defauts a partir de donnees issues de capteurs a courants de foucault avec modele direct differentiel

    NASA Astrophysics Data System (ADS)

    Trillon, Adrien

    Eddy current tomography can be employed to caracterize flaws in metal plates in steam generators of nuclear power plants. Our goal is to evaluate a map of the relative conductivity that represents the flaw. This nonlinear ill-posed problem is difficult to solve and a forward model is needed. First, we studied existing forward models to chose the one that is the most adapted to our case. Finite difference and finite element methods matched very good to our application. We adapted contrast source inversion (CSI) type methods to the chosen model and a new criterion was proposed. These methods are based on the minimization of the weighted errors of the model equations, coupling and observation. They allow an error on the equations. It appeared that reconstruction quality grows with the decay of the error on the coupling equation. We resorted to augmented Lagrangian techniques to constrain coupling equation and to avoid conditioning problems. In order to overcome the ill-posed character of the problem, prior information was introduced about the shape of the flaw and the values of the relative conductivity. Efficiency of the methods are illustrated with simulated flaws in 2D case.

  6. Nondestructive examination of the Tropical Rainfall Measuring Mission (TRMM) reaction control subsystem (RCS) propellant tanks

    NASA Technical Reports Server (NTRS)

    Free, James M.

    1993-01-01

    This paper assesses the feasibility of using eddy current nondestructive examination to determine flaw sizes in completely assembled hydrazine propellant tanks. The study was performed by the NASA Goddard Space Flight Center for the Tropical Rainfall Measuring Mission (TRMM) project to help determine whether existing propellant tanks could meet the fracture analysis requirements of the current pressure vessel specification, MIL-STD-1522A and, therefore be used on the TRMM spacecraft. After evaluating several nondestructive test methods, eddy current testing was selected as the most promising method for determining flaw sizes on external and internal surfaces of completely assembled tanks. Tests were conducted to confirm the detection capability of the eddy current NDE, procedures were developed to inspect two candidate tanks, and the test support equipment was designed. The non-spherical tank eddy current NDE test program was terminated when the decision was made to procure new tanks for the TRMM propulsion subsystem. The information on the development phase of this test program is presented in this paper as a reference for future investigation on the subject.

  7. Data and methodological problems in establishing state gasoline-conservation targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, D.L.; Walton, G.H.

    The Emergency Energy Conservation Act of 1979 gives the President the authority to set gasoline-conservation targets for states in the event of a supply shortage. This paper examines data and methodological problems associated with setting state gasoline-conservation targets. The target-setting method currently used is examined and found to have some flaws. Ways of correcting these deficiencies through the use of Box-Jenkins time-series analysis are investigated. A successful estimation of Box-Jenkins models for all states included the estimation of the magnitude of the supply shortages of 1979 in each state and a preliminary estimation of state short-run price elasticities, which weremore » found to vary about a median value of -0.16. The time-series models identified were very simple in structure and lent support to the simple consumption growth model assumed by the current target method. The authors conclude that the flaws in the current method can be remedied either by replacing the current procedures with time-series models or by using the models in conjunction with minor modifications of the current method.« less

  8. Optimizing probability of detection point estimate demonstration

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2017-04-01

    The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using point estimate method. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. Traditionally largest flaw size in the set is considered to be a conservative estimate of the flaw size with minimum 90% probability and 95% confidence. The flaw size is denoted as α90/95PE. The paper investigates relationship between range of flaw sizes in relation to α90, i.e. 90% probability flaw size, to provide a desired PPD. The range of flaw sizes is expressed as a proportion of the standard deviation of the probability density distribution. Difference between median or average of the 29 flaws and α90 is also expressed as a proportion of standard deviation of the probability density distribution. In general, it is concluded that, if probability of detection increases with flaw size, average of 29 flaw sizes would always be larger than or equal to α90 and is an acceptable measure of α90/95PE. If NDE technique has sufficient sensitivity and signal-to-noise ratio, then the 29 flaw-set can be optimized to meet requirements of minimum required PPD, maximum allowable POF, requirements on flaw size tolerance about mean flaw size and flaw size detectability requirements. The paper provides procedure for optimizing flaw sizes in the point estimate demonstration flaw-set.

  9. FDAAA legislation is working, but methodological flaws undermine the reliability of clinical trials: a cross-sectional study.

    PubMed

    Marin Dos Santos, Douglas H; Atallah, Álvaro N

    2015-01-01

    The relationship between clinical research and the pharmaceutical industry has placed clinical trials in jeopardy. According to the medical literature, more than 70% of clinical trials are industry-funded. Many of these trials remain unpublished or have methodological flaws that distort their results. In 2007, it was signed into law the Food and Drug Administration Amendments Act (FDAAA), aiming to provide publicly access to a broad range of biomedical information to be made available on the platform ClinicalTrials (available at https://www.clinicaltrials.gov). We accessed ClinicalTrials.gov and evaluated the compliance of researchers and sponsors with the FDAAA. Our sample comprised 243 protocols of clinical trials of biological monoclonal antibodies (mAb) adalimumab, bevacizumab, infliximab, rituximab, and trastuzumab. We demonstrate that the new legislation has positively affected transparency patterns in clinical research, through a significant increase in publication and online reporting rates after the enactment of the law. Poorly designed trials, however, remain a challenge to be overcome, due to a high prevalence of methodological flaws. These flaws affect the quality of clinical information available, breaching ethical duties of sponsors and researchers, as well as the human right to health.

  10. FDAAA legislation is working, but methodological flaws undermine the reliability of clinical trials: a cross-sectional study

    PubMed Central

    Atallah, Álvaro N.

    2015-01-01

    The relationship between clinical research and the pharmaceutical industry has placed clinical trials in jeopardy. According to the medical literature, more than 70% of clinical trials are industry-funded. Many of these trials remain unpublished or have methodological flaws that distort their results. In 2007, it was signed into law the Food and Drug Administration Amendments Act (FDAAA), aiming to provide publicly access to a broad range of biomedical information to be made available on the platform ClinicalTrials (available at https://www.clinicaltrials.gov). We accessed ClinicalTrials.gov and evaluated the compliance of researchers and sponsors with the FDAAA. Our sample comprised 243 protocols of clinical trials of biological monoclonal antibodies (mAb) adalimumab, bevacizumab, infliximab, rituximab, and trastuzumab. We demonstrate that the new legislation has positively affected transparency patterns in clinical research, through a significant increase in publication and online reporting rates after the enactment of the law. Poorly designed trials, however, remain a challenge to be overcome, due to a high prevalence of methodological flaws. These flaws affect the quality of clinical information available, breaching ethical duties of sponsors and researchers, as well as the human right to health. PMID:26131374

  11. Tooth wear and erosion: methodological issues in epidemiological and public health research and the future research agenda.

    PubMed

    Ganss, C; Young, A; Lussi, A

    2011-09-01

    This paper addresses methodological issues in the field of tooth wear and erosion research including the epidemiological indices, and identifies future work that is needed to improve knowledge about tooth wear and erosion. The paper is result of the work done at the meetings of the Special Interest Group "Tooth Surface Loss and Erosion" at the 2008, 2009 and 2010 conferences of the European Association for Dental Public Health, and the Workshop "Current Erosion indices- flawed or valid" which took place in Basel in 2007. Although there is consensus about the definition and the diagnostic criteria of various forms of tooth wear, gaps in research strategies have been identified. A basic problem is that fundamental concepts of wear and erosion as an oral health problem, have not yet been sufficiently defined. To a certain extent, tooth wear is a physiological condition, and there is no consensus as to whether it can be regarded as a disease. Furthermore, the multitude of indices and flaws in existing indices, make published data difficult to interpret. Topics for the research agenda are: the initiation of a consensus process towards an internationally accepted index, and the initiation of data collection on the prevalence of various forms of wear on a population-based level. There should be an emphasis on promoting communication between basic and clinical sciences, and the area of Public Health Dentistry. Furthermore, the question of whether tooth wear is a public health problem remains open for debate.

  12. Why Has the Number of Scientific Retractions Increased?

    PubMed Central

    Steen, R. Grant; Casadevall, Arturo; Fang, Ferric C.

    2013-01-01

    Background The number of retracted scientific publications has risen sharply, but it is unclear whether this reflects an increase in publication of flawed articles or an increase in the rate at which flawed articles are withdrawn. Methods and Findings We examined the interval between publication and retraction for 2,047 retracted articles indexed in PubMed. Time-to-retraction (from publication of article to publication of retraction) averaged 32.91 months. Among 714 retracted articles published in or before 2002, retraction required 49.82 months; among 1,333 retracted articles published after 2002, retraction required 23.82 months (p<0.0001). This suggests that journals are retracting papers more quickly than in the past, although recent articles requiring retraction may not have been recognized yet. To test the hypothesis that time-to-retraction is shorter for articles that receive careful scrutiny, time-to-retraction was correlated with journal impact factor (IF). Time-to-retraction was significantly shorter for high-IF journals, but only ∼1% of the variance in time-to-retraction was explained by increased scrutiny. The first article retracted for plagiarism was published in 1979 and the first for duplicate publication in 1990, showing that articles are now retracted for reasons not cited in the past. The proportional impact of authors with multiple retractions was greater in 1972–1992 than in the current era (p<0.001). From 1972–1992, 46.0% of retracted papers were written by authors with a single retraction; from 1993 to 2012, 63.1% of retracted papers were written by single-retraction authors (p<0.001). Conclusions The increase in retracted articles appears to reflect changes in the behavior of both authors and institutions. Lower barriers to publication of flawed articles are seen in the increase in number and proportion of retractions by authors with a single retraction. Lower barriers to retraction are apparent in an increase in retraction for “new” offenses such as plagiarism and a decrease in the time-to-retraction of flawed work. PMID:23861902

  13. Ultrasonic Sound Field Mapping Through Coarse Grained Cast Austenitic Stainless Steel Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) has been involved with nondestructive examination (NDE) of coarse-grained cast austenitic stainless steel (CASS) components for over 30 years. More recent work has focused on mapping the ultrasonic sound fields generated by low-frequency phased array probes that are typically used for the evaluation of CASS materials for flaw detection and characterization. The casting process results in the formation of large grained material microstructures that are nonhomogeneous and anisotropic. The propagation of ultrasonic energy for examination of these materials results in scattering, partitioning and redirection of these sound fields. The work reported here provides anmore » assessment of sound field formation in these materials and provides recommendations on ultrasonic inspection parameters for flaw detection in CASS components.« less

  14. Gender and Women's Experience at Work: A Critical and Feminist Perspective on Human Resource Development.

    ERIC Educational Resources Information Center

    Howell, Sharon L.; Carter, Vicki K.; Schied, Fred M.

    2002-01-01

    Analysis of data from 8 female manufacturing workers, 13 professionals, and 10 clerical workers, two themes emerged: (1) women and organizational change; and (2) disappearing boundaries of work and family. The assumptions of human resource development about why and how women work and definitions of productive work were found to be flawed and…

  15. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel

    PubMed Central

    Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik

    2017-01-01

    Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance. PMID:28773067

  16. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel.

    PubMed

    Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik

    2017-06-27

    Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance.

  17. Steam generator tube inspection in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukui, Shigetaka

    1997-02-01

    Steam generator tube inspection was first carried out in 1971 at Mihama Unit-1 that is first PWR plant in Japan, when the plant was brought into the first annual inspection. At that time, inspection was made on sampling basis, and only bobbin coil probe was used. After experiencing various kinds of tube degradations, inspection method was changed from sampling to all number of tubes, and various kinds of probes were used to get higher detectability of flaw. At present, it is required that all the tubes shall be inspected in their full length at each annual inspection using standard bobbinmore » coil probe, and some special probes for certain plants that have susceptibility of occurrence of flaw. Sleeve repaired portion is included in this inspection. As a result of analyses of eddy current testing data, all indications that have been evaluated to be 20% wall thickness or deeper shall be repaired by either plugging or sleeving, where flaw morphology is to be a wastage or wear. Other types of flaw such as IGA/SCC are not allowed to be left inservice when those indications are detected. These inspections are performed according to inspection procedures that are approved by regulatory authority. Actual inspections are witnessed by the Japan Power engineering and inspection corporation (JAPEIC)`s inspectors during data acquisition and analysis, and they issue inspection report to authority for review and approval. It is achieved high safety performance of steam generator through this method of inspections, however. some tube leakage problems were experienced in the past. To prevent recurrence of such events, government is conducting development and verification test program for new eddy current testing technology.« less

  18. Experiments in ultrasonic flaw detection using a MEMS transducer

    NASA Astrophysics Data System (ADS)

    Jain, Akash; Greve, David W.; Oppenheim, Irving J.

    2003-08-01

    In earlier work we developed a MEMS phased array transducer, fabricated in the MUMPs process, and we reported on initial experimental studies in which the device was affixed into contact with solids. We demonstrated the successful detection of signals from a conventional ultrasonic source, and the successful localization of the source in an off-axis geometry using phased array signal processing. We now describe the predicted transmission and coupling characteristics for such devices in contact with solids, demonstrating reasonable agreement with experimental behavior. We then describe the results of flaw detection experiments, as well as results for fluid-coupled detectors.

  19. Explainable expert systems: A research program in information processing

    NASA Technical Reports Server (NTRS)

    Paris, Cecile L.

    1993-01-01

    Our work in Explainable Expert Systems (EES) had two goals: to extend and enhance the range of explanations that expert systems can offer, and to ease their maintenance and evolution. As suggested in our proposal, these goals are complementary because they place similar demands on the underlying architecture of the expert system: they both require the knowledge contained in a system to be explicitly represented, in a high-level declarative language and in a modular fashion. With these two goals in mind, the Explainable Expert Systems (EES) framework was designed to remedy limitations to explainability and evolvability that stem from related fundamental flaws in the underlying architecture of current expert systems.

  20. Cognitive science and the law.

    PubMed

    Busey, Thomas A; Loftus, Geoffrey R

    2007-03-01

    Numerous innocent people have been sent to jail based directly or indirectly on normal, but flawed, human perception, memory and decision making. Current cognitive-science research addresses the issues that are directly relevant to the connection between normal cognitive functioning and such judicial errors, and suggests means by which the false-conviction rate could be reduced. Here, we illustrate how this can be achieved by reviewing recent work in two related areas: eyewitness testimony and fingerprint analysis. We articulate problems in these areas with reference to specific legal cases and demonstrate how recent findings can be used to address them. We also discuss how researchers can translate their conclusions into language and ideas that can influence and improve the legal system.

  1. Flaw detection and evaluation

    DOEpatents

    Wilks, Robert S.; Sturges, Jr., Robert H.

    1983-01-01

    The invention provides a method of and apparatus for optically inspecting nuclear fuel pellets for surface flaws. The inspection system includes a prism and lens arrangement for scanning the surface of each pellet as the same is rotated. The resulting scan produces data indicative of the extent and shape of each flaw which is employed to generate a flaw quality index for each detected flaw. The flaw quality indexes from all flaws are summed and compared with an acceptable surface quality index. The result of the comparison is utilized to control the acceptance or rejection of the pellet.

  2. Determination of Flaw Size from Thermographic Data

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Conventional methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size of the flaw. Since the heat diffuses in the plane parallel to the surface, the resulting temperature profile over the flaw is larger than the flaw. A variational method is presented for reducing the thermographic data to produce an estimated size for the flaw that is much closer to the true size of the flaw. The size is determined from the spatial thermal response of the exterior surface above the flaw and a constraint on the length of the contour surrounding the flaw. The technique is applied to experimental data acquired on a flat bottom hole composite specimen.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonen, E.P.; Johnson, K.I.; Simonen, F.A.

    The Vessel Integrity Simulation Analysis (VISA-II) code was developed to allow calculations of the failure probability of a reactor pressure vessel subject to defined pressure/temperature transients. A version of the code, revised by Pacific Northwest Laboratory for the US Nuclear Regulatory Commission, was used to evaluate the sensitivities of calculated through-wall flaw probability to material, flaw and calculational assumptions. Probabilities were more sensitive to flaw assumptions than to material or calculational assumptions. Alternative flaw assumptions changed the probabilities by one to two orders of magnitude, whereas alternative material assumptions typically changed the probabilities by a factor of two or less.more » Flaw shape, flaw through-wall position and flaw inspection were sensitivities examined. Material property sensitivities included the assumed distributions in copper content and fracture toughness. Methods of modeling flaw propagation that were evaluated included arrest/reinitiation toughness correlations, multiple toughness values along the length of a flaw, flaw jump distance for each computer simulation and added error in estimating irradiated properties caused by the trend curve correlation error.« less

  4. A prototype tap test imaging system: Initial field test results

    NASA Astrophysics Data System (ADS)

    Peters, J. J.; Barnard, D. J.; Hudelson, N. A.; Simpson, T. S.; Hsu, D. K.

    2000-05-01

    This paper describes a simple, field-worthy tap test imaging system that gives quantitative information about the size, shape, and severity of defects and damages. The system consists of an accelerometer, electronic circuits for conditioning the signal and measuring the impact duration, a laptop PC and data acquisition and processing software. The images are generated manually by tapping on a grid printed on a plastic sheet laid over the part's surface. A mechanized scanner is currently under development. The prototype has produced images for a variety of aircraft composite and metal honeycomb structures containing flaws, damages, and repairs. Images of the local contact stiffness, deduced from the impact duration using a spring model, revealed quantitatively the stiffness reduction due to flaws and damages, as well as the stiffness enhancement due to substructures. The system has been field tested on commercial and military aircraft as well as rotor blades and engine decks on helicopters. Field test results will be shown and the operation of the system will be demonstrated.—This material is based upon work supported by the Federal Aviation Administration under Contract #DTFA03-98-D-00008, Delivery Order No. IA016 and performed at Iowa State University's Center for NDE as part of the Center for Aviation Systems Reliability program.

  5. Combining usability evaluations to highlight the chain that leads from usability flaws to usage problems and then negative outcomes.

    PubMed

    Watbled, Ludivine; Marcilly, Romaric; Guerlinger, Sandra; Bastien, J-M Christian; Beuscart-Zéphir, Marie-Catherine; Beuscart, Régis

    2018-02-01

    Poor usability of health technology is thought to diminish work system performance, increase error rates and, potentially, harm patients. The present study (i) used a combination of usability evaluation methods to highlight the chain that leads from usability flaws to usage problems experienced by users and, ultimately, to negative patient outcomes, and (ii) validated this approach by studying two different discharge summary production systems. To comply with quality guidelines, the process of drafting and sending discharge summaries is increasingly being automated. However, the usability of these systems may modify their impact (or the absence thereof) in terms of production times and quality, and must therefore be evaluated. Here, we applied three successive techniques for usability evaluation (heuristic evaluation, user testing and field observation) to two discharge summary production systems (underpinned by different technologies). The systems' main usability flaws led respectively to an increase in the time need to produce a discharge summary and the risk of patient misidentification. Our results are discussed with regard to the possibility of linking the usability flaws, usage problems and the negative outcomes by successively applying three methods for evaluating usability (heuristic evaluation, user testing and in situ observations) throughout the system development life cycle. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Evaluation of flaws in carbon steel piping. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahoor, A.; Gamble, R.M.; Mehta, H.S.

    1986-10-01

    The objective of this program was to develop flaw evaluation procedures and allowable flaw sizes for ferritic piping used in light water reactor (LWR) power generation facilities. The program results provide relevant ASME Code groups with the information necessary to define flaw evaluation procedures, allowable flaw sizes, and their associated bases for Section XI of the code. Because there are several possible flaw-related failure modes for ferritic piping over the LWR operating temperature range, three analysis methods were employed to develop the evaluation procedures. These include limit load analysis for plastic collapse, elastic plastic fracture mechanics (EPFM) analysis for ductilemore » tearing, and linear elastic fracture mechanics (LEFM) analysis for non ductile crack extension. To ensure the appropriate analysis method is used in an evaluation, a step by step procedure also is provided to identify the relevant acceptance standard or procedure on a case by case basis. The tensile strength and toughness properties required to complete the flaw evaluation for any of the three analysis methods are included in the evaluation procedure. The flaw evaluation standards are provided in tabular form for the plastic collapse and ductile tearing modes, where the allowable part through flaw depth is defined as a function of load and flaw length. For non ductile crack extension, linear elastic fracture mechanics analysis methods, similar to those in Appendix A of Section XI, are defined. Evaluation flaw sizes and procedures are developed for both longitudinal and circumferential flaw orientations and normal/upset and emergency/faulted operating conditions. The tables are based on margins on load of 2.77 and 1.39 for circumferential flaws and 3.0 and 1.5 for longitudinal flaws for normal/upset and emergency/faulted conditions, respectively.« less

  7. Modeling the X-Ray Process, and X-Ray Flaw Size Parameter for POD Studies

    NASA Technical Reports Server (NTRS)

    Khoshti, Ajay

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  8. Modeling the X-ray Process, and X-ray Flaw Size Parameter for POD Studies

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances, the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters, including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  9. Working session 2: Tubing inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerra, J.; Tapping, R.L.

    1997-02-01

    This session was attended by delegates from 10 countries, and four papers were presented. A wide range of issues was tabled for discussion. Realizing that there was limited time available for more detailed discussion, three topics were chosen for the more detailed discussion: circumferential cracking, performance demonstration (to focus on POD and sizing), and limits of methods. Two other subsessions were organized: one dealt with some challenges related to the robustness of current inspection methods, especially with respect to leaving cracked tubes in service, and the other with developing a chart of current NDE technology with recommendations for future development.more » These three areas are summarized in turn, along with conclusions and/or recommendations. During the discussions there were four presentations. There were two (Canada, Japan) on eddy current probe developments, both of which addressed multiarray probes that would detect a range of flaws, one (Spain) on circumferential crack detection, and one (JRC, Petten) on the recent PISC III results.« less

  10. Ultrasonographic Detection of Tooth Flaws

    NASA Astrophysics Data System (ADS)

    Bertoncini, C. A.; Hinders, M. K.; Ghorayeb, S. R.

    2010-02-01

    The goal of our work is to adapt pulse-echo ultrasound into a high resolution imaging modality for early detection of oral diseases and for monitoring treatment outcome. In this talk we discuss our preliminary results in the detection of: demineralization of the enamel and dentin, demineralization or caries under and around existing restorations, caries on occlusal and interproximal surfaces, cracks of enamel and dentin, calculus, and periapical lesions. In vitro immersion tank experiments are compared to results from a handpiece which uses a compliant delay line to couple the ultrasound to the tooth surface. Because the waveform echoes are complex, and in order to make clinical interpretation of ultrasonic waveform data in real time, it is necessary to automatically interpret the signals. We apply the dynamic wavelet fingerprint algorithms to identify and delineate echographic features that correspond to the flaws of interest in teeth. The resulting features show a clear distinction between flawed and unflawed waveforms collected with an ultrasonic handpiece on both phantom and human cadaver teeth.

  11. Automated flaw detection scheme for cast austenitic stainless steel weld specimens using Hilbert-Huang transform of ultrasonic phased array data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita

    2012-05-17

    The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major stepsmore » of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI.« less

  12. Moving beyond hunger and nutrition: a systematic review of the evidence linking food insecurity and mental health in developing countries.

    PubMed

    Weaver, Lesley Jo; Hadley, Craig

    2009-01-01

    Food insecurity is a significant problem in the developing world, and one that is likely to increase given the current global food crisis spurred by rising oil prices, conversion of food to biofuels, and reduced harvests in the wake of natural disasters. The impacts of food insecurity on nutrition status, growth, and development are well substantiated; less is known about the non-nutritional impacts of food insecurity, such as its effects on mental health. This systematic review assesses current findings regarding the impacts of food insecurity on mental health in developing countries. Both qualitative and quantitative studies are considered. The results of the search reveal that little work has examined these issues directly, and serious methodological flaws are present in many of the existing studies. Gaps in the literature, implications, and research priorities are discussed.

  13. Apparatus For Eddy-Current Inspection Of Bolts

    NASA Technical Reports Server (NTRS)

    Amos, Jay M.

    1994-01-01

    Eddy-current apparatus for inspection of bolts, studs, and other threaded fasteners detects flaws in threads, shanks, and head fillets. With help of apparatus, technician quickly inspects fasteners of various dimensions. Accommodates fasteners with diameters from 0.190 in. to 1 in. and with lengths up to 5 in. Basic design modified to accommodate fasteners of other sizes.

  14. The changing assessments of John Snow's and William Farr's cholera studies.

    PubMed

    Eyler, J M

    2001-01-01

    This article describes the epidemiological studies of cholera by two major British investigators of the mid-nineteenth century, John Snow and William Farr, and it asks why the assessments of their results by contemporaries was the reverse of our assessment today. In the 1840s and 1850s Farr's work was considered definitive, while Snow's was regarded as ingenious but flawed. Although Snow's conclusions ran contrary to the exceptations of his contemporaries, the major reservations about his cholera studies concerned his bold use of analogy, his thoroughgoing reductionism, and his willingness to ignore what seemed to be contrary evidence. Farr's electric use of current theories, his reliance multiple causation, and his discovery of a mathematical law to describe the outbreak in London in 1849 was much more convincing to his contemporaries. A major change in thinking about disease causation was needed before Snow's work could be widely accepted. William Farr's later studies contributed to that acceptance.

  15. Technical Letter Report Development of Flaw Size Distribution Tables Including Effects of Flaw Depth Sizing Errors for Draft 10CFR 50.61a (Alternate PTS Rule) JCN-N6398, Task 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonen, Fredric A.; Gosselin, Stephen R.; Doctor, Steven R.

    2013-04-22

    This document describes a new method to determine whether the flaws in a particular reactor pressure vessel are consistent with the assumptions regarding the number and sizes of flaws used in the analyses that formed the technical justification basis for the new voluntary alternative Pressurized Thermal Shock (PTS) rule (Draft 10 CFR 50.61a). The new methodology addresses concerns regarding prior methodology because ASME Code Section XI examinations do not detect all fabrication flaws, they have higher detection performance for some flaw types, and there are flaw sizing errors always present (e.g., significant oversizing of small flaws and systematic under sizingmore » of larger flaws). The new methodology allows direct comparison of ASME Code Section XI examination results with values in the PTS draft rule Tables 2 and 3 in order to determine if the number and sizes of flaws detected by an ASME Code Section XI examination are consistent with those assumed in the probabilistic fracture mechanics calculations performed in support of the development of 10 CFR 50.61a.« less

  16. Flaw depth sizing using guided waves

    NASA Astrophysics Data System (ADS)

    Cobb, Adam C.; Fisher, Jay L.

    2016-02-01

    Guided wave inspection technology is most often applied as a survey tool for pipeline inspection, where relatively low frequency ultrasonic waves, compared to those used in conventional ultrasonic nondestructive evaluation (NDE) methods, propagate along the structure; discontinuities cause a reflection of the sound back to the sensor for flaw detection. Although the technology can be used to accurately locate a flaw over long distances, the flaw sizing performance, especially for flaw depth estimation, is much poorer than other, local NDE approaches. Estimating flaw depth, as opposed to other parameters, is of particular interest for failure analysis of many structures. At present, most guided wave technologies estimate the size of the flaw based on the reflected signal amplitude from the flaw compared to a known geometry reflection, such as a circumferential weld in a pipeline. This process, however, requires many assumptions to be made, such as weld geometry and flaw shape. Furthermore, it is highly dependent on the amplitude of the flaw reflection, which can vary based on many factors, such as attenuation and sensor installation. To improve sizing performance, especially depth estimation, and do so in a way that is not strictly amplitude dependent, this paper describes an approach to estimate the depth of a flaw based on a multimodal analysis. This approach eliminates the need of using geometric reflections for calibration and can be used for both pipeline and plate inspection applications. To verify the approach, a test set was manufactured on plate specimens with flaws of different widths and depths ranging from 5% to 100% of total wall thickness; 90% of these flaws were sized to within 15% of their true value. A description of the initial multimodal sizing strategy and results will be discussed.

  17. Crack propagation and coalescence due to dual non-penetrating surface flaws and their effect on the strength of rock-like material

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zheng, Zheyuan; Xiao, Xiaochun; Li, Zhaoxia

    2018-06-01

    Non-penetrating surface flaws play a key role in the fracture process of rock-like material, and could cause localized collapse and even failure of the materials. Until now, the mechanism and the effect of surface crack propagation have remained unclear. In this paper, compression tests on gypsum (a soft rock material) are conducted to investigate crack propagation and coalescence due to non-penetrating surface flaws and their effect on the material strength. Specimens are tested under dual pre-existing surface flaws with various combinations of depth and spacing. The results show that when the pre-existing flaws are non-penetrating, the d/t ratio (flaw depth ratio, d is the pre-existing flaw cutting depth and t is the specimen thickness) and the spacing (the distance between the two flaw internal tips) have a strong influence on surface crack patterns and specimen strength. Few cracks emanate from the pre-existing flaws when the flaw depth ratio is equal to 1/3, and more cracks occur with the increase of the flaw depth ratio. When the pre-existing flaw penetrates completely through the specimen, the spacing has a small effect on the specimen strength. A larger flaw depth ratio could advance the occurrence of the peak load (PL) and result in a smaller specimen residual strength. The failure process of the specimen is divided into several stages featured by a stepped decline of the load value after PL, which is closely related to the initiation and propagation of secondary cracks. In addition, the spalling (failure of a portion of the surface caused by coalescence of cracks) can be regarded as indicating the failure of the specimen, and two possible types of spalling formation are briefly discussed.

  18. Eddy current crack detection capability assessment approach using crack specimens with differing electrical conductivity

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2018-03-01

    Like other NDE methods, eddy current surface crack detectability is determined using probability of detection (POD) demonstration. The POD demonstration involves eddy current testing of surface crack specimens with known crack sizes. Reliably detectable flaw size, denoted by, a90/95 is determined by statistical analysis of POD test data. The surface crack specimens shall be made from a similar material with electrical conductivity close to the part conductivity. A calibration standard with electro-discharged machined (EDM) notches is typically used in eddy current testing for surface crack detection. The calibration standard conductivity shall be within +/- 15% of the part conductivity. This condition is also applicable to the POD demonstration crack set. Here, a case is considered, where conductivity of the crack specimens available for POD testing differs by more than 15% from that of the part to be inspected. Therefore, a direct POD demonstration of reliably detectable flaw size is not applicable. Additional testing is necessary to use the demonstrated POD test data. An approach to estimate the reliably detectable flaw size in eddy current testing for part made from material A using POD crack specimens made from material B with different conductivity is provided. The approach uses additional test data obtained on EDM notch specimens made from materials A and B. EDM notch test data from the two materials is used to create a transfer function between the demonstrated a90/95 size on crack specimens made of material B and the estimated a90/95 size for part made of material A. Two methods are given. For method A, a90/95 crack size for material B is given and POD data is available. Objective of method A is to determine a90/95 crack size for material A using the same relative decision threshold that was used for material B. For method B, target crack size a90/95 for material A is known. Objective is to determine decision threshold for inspecting material A.

  19. TRISO-Coated Fuel Durability Under Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimanis, Ivar; Gorman, Brian; Butt, Darryl

    2014-03-30

    The PIs propose to examine TRISO-coated particles (SiC and ZrC coatings) in an integrated two-part study. In the first part, experiments will be performed to assess the reaction kinetics of the carbides under CO-CO2 environments at temperatures up to 1800 degree C. Kinetic model will be applied to describe the degradation. Scanning and transmission electron microscopy will be employed to establish the chemical and microstructure evolution under the imposed environmental conditions. The second part of the proposed work focuses on establishing the role of the high temperature, environmental exposure described above on the mechanical behavior of TRISO-coated particles. Electron microscopymore » and other advanced techniques will be subsequently performed to evaluate failure mechanisms. The work is expected to reveal relationships between corrosion reactions, starting material characteristics (polytype of SiC, impurity concentration, flaw distribution), flaw healing behavior, and crack growth.« less

  20. National Assessment of Writing: Useless and Uninteresting?

    ERIC Educational Resources Information Center

    Maxwell, John C.

    1973-01-01

    Points out flaws in the current National Assessment of Writing model and its results, but concludes that the National Assessment is a step in the right direction. (RB) Aspect of National Assessment (NAEP) dealt with in this document: Procedures (Exercise Development).

  1. Development of Eddy Current Techniques for the Detection of Cracking in Space Shuttle Primary Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A.; Simpson, John W.; Koshti, Ajay

    2007-01-01

    A recent identification of cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.

  2. Development of Eddy Current Technique for the Detection of Stress Corrosion Cracking in Space Shuttle Primary Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John; Koshti, Ajay

    2006-01-01

    A recent identification of stress corrosion cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.

  3. Effect of Assumed Damage and Location on the Delamination Onset Predictions for Skin-Stiffener Debonding

    NASA Technical Reports Server (NTRS)

    Paris, Isabelle L.; Krueger, Ronald; OBrien, T. Kevin

    2004-01-01

    The difference in delamination onset predictions based on the type and location of the assumed initial damage are compared in a specimen consisting of a tapered flange laminate bonded to a skin laminate. From previous experimental work, the damage was identified to consist of a matrix crack in the top skin layer followed by a delamination between the top and second skin layer (+45 deg./-45 deg. interface). Two-dimensional finite elements analyses were performed for three different assumed flaws and the results show a considerable reduction in critical load if an initial delamination is assumed to be present, both under tension and bending loads. For a crack length corresponding to the peak in the strain energy release rate, the delamination onset load for an assumed initial flaw in the bondline is slightly higher than the critical load for delamination onset from an assumed skin matrix crack, both under tension and bending loads. As a result, assuming an initial flaw in the bondline is simpler while providing a critical load relatively close to the real case. For the configuration studied, a small delamination might form at a lower tension load than the critical load calculated for a 12.7 mm (0.5") delamination, but it would grow in a stable manner. For the bending case, assuming an initial flaw of 12.7 mm (0.5") is conservative, the crack would grow unstably.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.; Burnett, M.; Goodman, C.

    A survey of currency flaw severity was carried out using 300 banknotes and 37 judges. Each judge assigned each note to one of five flaw severity categories. These categories correspond to severity grades of 1 to 5 with 1 equivalent to ''always accepted'' and 5 ''never accepted.'' An average flaw severity grade for each note was obtained by taking the mean of the severity grades assigned to that note by the 37 judges. Thus, each note has a single numerical real-number flaw grade between 1 and 5. Mathematical modeling of the currency flaw survey results is continuing with some verymore » promising initial results. Our present model handles common excess ink and missing ink flaw types quite well. We plan to extend the model to ink level, mash, setoff and blanket impression flaw types.« less

  5. Laser displacement sensor to monitor the layup process of composite laminate production

    NASA Astrophysics Data System (ADS)

    Miesen, Nick; Groves, Roger M.; Sinke, Jos; Benedictus, Rinze

    2013-04-01

    Several types of flaw can occur during the layup process of prepreg composite laminates. Quality control after the production process checks the end product by testing the specimens for flaws which are included during the layup process or curing process, however by then these flaws are already irreversibly embedded in the laminate. This paper demonstrates the use of a laser displacement sensor technique applied during the layup process of prepreg laminates for in-situ flaw detection, for typical flaws that can occur during the composite production process. An incorrect number of layers and fibre wrinkling are dominant flaws during the process of layup. These and other dominant flaws have been modeled to determine the requirements for an in-situ monitoring during the layup process of prepreg laminates.

  6. Procedure for flaw detection in cast stainless steel

    DOEpatents

    Kupperman, David S.

    1988-01-01

    A method of ultrasonic flaw detection in cast stainless steel components incorporating the steps of determining the nature of the microstructure of the cast stainless steel at the site of the flaw detection measurements by ultrasonic elements independent of the component thickness at the site; choosing from a plurality of flaw detection techniques, one such technique appropriate to the nature of the microstructure as determined and detecting flaws by use of the chosen technique.

  7. Applicability of a Conservative Margin Approach for Assessing NDE Flaw Detectability

    NASA Technical Reports Server (NTRS)

    Koshti, ajay M.

    2007-01-01

    Nondestructive Evaluation (NDE) procedures are required to detect flaws in structures with a high percentage detectability and high confidence. Conventional Probability of Detection (POD) methods are statistical in nature and require detection data from a relatively large number of flaw specimens. In many circumstances, due to the high cost and long lead time, it is impractical to build the large set of flaw specimens that is required by the conventional POD methodology. Therefore, in such situations it is desirable to have a flaw detectability estimation approach that allows for a reduced number of flaw specimens but provides a high degree of confidence in establishing the flaw detectability size. This paper presents an alternative approach called the conservative margin approach (CMA). To investigate the applicability of the CMA approach, flaw detectability sizes determined by the CMA and POD approaches have been compared on actual datasets. The results of these comparisons are presented and the applicability of the CMA approach is discussed.

  8. Energy balance framework for Net Zero Energy buildings

    EPA Science Inventory

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  9. Scales and erosion

    USDA-ARS?s Scientific Manuscript database

    There is a need to develop scale explicit understanding of erosion to overcome existing conceptual and methodological flaws in our modelling methods currently applied to understand the process of erosion, transport and deposition at the catchment scale. These models need to be based on a sound under...

  10. Rabbit-Ears Hybrids, VSEPR Sterics, and Other Orbital Anachronisms

    ERIC Educational Resources Information Center

    Clauss, Allen D.; Nelsen, Stephen F.; Ayoub, Mohamed; Moore, John W.; Landis, Clark R.; Weinhold, Frank

    2014-01-01

    We describe the logical flaws, experimental contradictions, and unfortunate educational repercussions of common student misconceptions regarding the shapes and properties of lone pairs, inspired by overemphasis on ''valence shell electron pair repulsion'' (VSEPR) rationalizations in current freshmanlevel chemistry textbooks. VSEPR-style…

  11. The True Scholar.

    ERIC Educational Resources Information Center

    Bellah, Robert N.

    2000-01-01

    This essay argues for ethical inquiry as the essence of true scholarship. Individual sections address: pure reason versus ethics, the current "age of money" in the university, rational choice theory, and the fatal flaw in rational choice theory that all human actions cannot be explained by it. (DB)

  12. Apparatus and method for detecting flaws in conductive material

    DOEpatents

    Hockey, Ronald L.; Riechers, Douglas M.

    1999-01-01

    The present invention is an improved sensing unit for detecting flaws in conductive material wherein the sensing coil is positioned away from a datum of either the datum point, the datum orientation, or a combination thereof. Position of the sensing coil away from a datum increases sensitivity for detecting flaws having a characteristic volume less than about 1 mm.sup.3, and further permits detection of subsurface flaws. Use of multiple sensing coils permits quantification of flaw area or volume.

  13. Eddy-Current Detection of Weak Bolt Heads

    NASA Technical Reports Server (NTRS)

    Messina, C. P.

    1987-01-01

    Electronic test identifies flawed units passing hardness tests. Eddy-current test detects weakness in head-to-shank junctions of 1/4-28 cup-washer lock bolts. Developed for alloy A286 steel bolts in Space Shuttle main engine fuel turbo-pump. Test examines full volume of head, including head-to-shank transition and nondestructively screens out potentially defective units. Test adapts to any other alloys.

  14. Medical equipment donations in Haiti: flaws in the donation process.

    PubMed

    Dzwonczyk, Roger; Riha, Chris

    2012-04-01

    The magnitude 7.0 earthquake that struck Haiti on 12 January 2010 devastated the capital city of Port-au-Prince and the surrounding area. The area's hospitals suffered major structural damage and material losses. Project HOPE sought to rebuild the medical equipment and clinical engineering capacity of the country. A team of clinical engineers from the United States of America and Haiti conducted an inventory and assessment of medical equipment at seven public hospitals affected by the earthquake. The team found that only 28% of the equipment was working properly and in use for patient care; another 28% was working, but lay idle for technical reasons; 30% was not working, but repairable; and 14% was beyond repair. The proportion of equipment in each condition category was similar regardless of whether the equipment was present prior to the earthquake or was donated afterwards. This assessment points out the flaws that existed in the medical equipment donation process and reemphasizes the importance of the factors, as delineated by the World Health Organization more than a decade ago, that constitute a complete medical equipment donation.

  15. Digital ultrasonics signal processing: Flaw data post processing use and description

    NASA Technical Reports Server (NTRS)

    Buel, V. E.

    1981-01-01

    A modular system composed of two sets of tasks which interprets the flaw data and allows compensation of the data due to transducer characteristics is described. The hardware configuration consists of two main units. A DEC LSI-11 processor running under the RT-11 sngle job, version 2C-02 operating system, controls the scanner hardware and the ultrasonic unit. A DEC PDP-11/45 processor also running under the RT-11, version 2C-02, operating system, stores, processes and displays the flaw data. The software developed the Ultrasonics Evaluation System, is divided into two catagories; transducer characterization and flaw classification. Each category is divided further into two functional tasks: a data acquisition and a postprocessor ask. The flaw characterization collects data, compresses its, and writes it to a disk file. The data is then processed by the flaw classification postprocessing task. The use and operation of a flaw data postprocessor is described.

  16. Identification of technical item flaws leads to improvement of the quality of single best Multiple Choice Questions.

    PubMed

    Fayyaz Khan, Humaira; Farooq Danish, Khalid; Saeed Awan, Azra; Anwar, Masood

    2013-05-01

    The purpose of the study was to identify technical item flaws in the multiple choice questions submitted for the final exams for the years 2009, 2010 and 2011. This descriptive analytical study was carried out in Islamic International Medical College (IIMC). The Data was collected from the MCQ's submitted by the faculty for the final exams for the year 2009, 2010 and 2011. The data was compiled and evaluated by a three member assessment committee. The data was analyzed for frequency and percentages the categorical data was analyzed by chi-square test. Overall percentage of flawed item was 67% for the year 2009 of which 21% were for testwiseness and 40% were for irrelevant difficulty. In year 2010 the total item flaws were 36% and 11% testwiseness and 22% were for irrelevant difficulty. The year 2011 data showed decreased overall flaws of 21%. The flaws of testwisness were 7%, irrelevant difficulty were 11%. Technical item flaws are frequently encountered during MCQ construction, and the identification of flaws leads to improved quality of the single best MCQ's.

  17. Flux-focusing eddy current probe and method for flaw detection

    NASA Technical Reports Server (NTRS)

    Simpson, John W. (Inventor); Clendenin, C. Gerald (Inventor)

    1993-01-01

    A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks and material loss in high conductivity material is presented. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil. The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. The maximum sensor output is obtained when positioned symmetrically above the crack. Hence, by obtaining the position of the maximum sensor output, it is possible to track the fault and locate the area surrounding its tip. The accuracy of tip location is enhanced by two unique features of the sensor; a very high signal-to-noise ratio of the probe's output which results in an extremely smooth signal peak across the fault, and a rapidly decaying sensor output outside a small area surrounding the crack tip which enables the region for searching to be clearly defined. Under low frequency operation, material thinning due to corrosion damage causes an incomplete shielding of the pick-up coil. The low frequency output voltage of the probe is therefore a direct indicator of the thickness of the test sample.

  18. Preclinical animal anxiety research - flaws and prejudices.

    PubMed

    Ennaceur, Abdelkader; Chazot, Paul L

    2016-04-01

    The current tests of anxiety in mice and rats used in preclinical research include the elevated plus-maze (EPM) or zero-maze (EZM), the light/dark box (LDB), and the open-field (OF). They are currently very popular, and despite their poor achievements, they continue to exert considerable constraints on the development of novel approaches. Hence, a novel anxiety test needs to be compared with these traditional tests, and assessed against various factors that were identified as a source of their inconsistent and contradictory results. These constraints are very costly, and they are in most cases useless as they originate from flawed methodologies. In the present report, we argue that the EPM or EZM, LDB, and OF do not provide unequivocal measures of anxiety; that there is no evidence of motivation conflict involved in these tests. They can be considered at best, tests of natural preference for unlit and/or enclosed spaces. We also argued that pharmacological validation of a behavioral test is an inappropriate approach; it stems from the confusion of animal models of human behavior with animal models of pathophysiology. A behavioral test is developed to detect not to produce symptoms, and a drug is used to validate an identified physiological target. In order to overcome the major methodological flaws in animal anxiety studies, we proposed an open space anxiety test, a 3D maze, which is described here with highlights of its various advantages over to the traditional tests.

  19. System for evaluating weld quality using eddy currents

    DOEpatents

    Todorov, Evgueni I.; Hay, Jacob

    2017-12-12

    Electromagnetic and eddy current techniques for fast automated real-time and near real-time inspection and monitoring systems for high production rate joining processes. An eddy current system, array and method for the fast examination of welds to detect anomalies such as missed seam (MS) and lack of penetration (LOP) the system, array and methods capable of detecting and sizing surface and slightly subsurface flaws at various orientations in connection with at least the first and second weld pass.

  20. Fatigue loading and R-curve behavior of a dental glass-ceramic with multiple flaw distributions.

    PubMed

    Joshi, Gaurav V; Duan, Yuanyuan; Della Bona, Alvaro; Hill, Thomas J; St John, Kenneth; Griggs, Jason A

    2013-11-01

    To determine the effects of surface finish and mechanical loading on the rising toughness curve (R-curve) behavior of a fluorapatite glass-ceramic (IPS e.max ZirPress) and to determine a statistical model for fitting fatigue lifetime data with multiple flaw distributions. Rectangular beam specimens were fabricated by pressing. Two groups of specimens (n=30) with polished (15 μm) or air abraded surface were tested under rapid monotonic loading in oil. Additional polished specimens were subjected to cyclic loading at 2 Hz (n=44) and 10 Hz (n=36). All fatigue tests were performed using a fully articulated four-point flexure fixture in 37°C water. Fractography was used to determine the critical flaw size and estimate fracture toughness. To prove the presence of R-curve behavior, non-linear regression was used. Forward stepwise regression was performed to determine the effects on fracture toughness of different variables, such as initial flaw type, critical flaw size, critical flaw eccentricity, cycling frequency, peak load, and number of cycles. Fatigue lifetime data were fit to an exclusive flaw model. There was an increase in fracture toughness values with increasing critical flaw size for both loading methods (rapid monotonic loading and fatigue). The values for the fracture toughness ranged from 0.75 to 1.1 MPam(1/2) reaching a plateau at different critical flaw sizes based on loading method. Cyclic loading had a significant effect on the R-curve behavior. The fatigue lifetime distribution was dependent on the flaw distribution, and it fit well to an exclusive flaw model. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Fatigue loading and R-curve behavior of a dental glass-ceramic with multiple flaw distributions

    PubMed Central

    Joshi, Gaurav V.; Duan, Yuanyuan; Bona, Alvaro Della; Hill, Thomas J.; John, Kenneth St.; Griggs, Jason A.

    2013-01-01

    Objectives To determine the effects of surface finish and mechanical loading on the rising toughness curve (R-curve) behavior of a fluorapatite glass-ceramic (IPS e.max ZirPress) and to determine a statistical model for fitting fatigue lifetime data with multiple flaw distributions. Materials and Methods Rectangular beam specimens were fabricated by pressing. Two groups of specimens (n=30) with polished (15 μm) or air abraded surface were tested under rapid monotonic loading in oil. Additional polished specimens were subjected to cyclic loading at 2 Hz (n=44) and 10 Hz (n=36). All fatigue tests were performed using a fully articulated four-point flexure fixture in 37°C water. Fractography was used to determine the critical flaw size and estimate fracture toughness. To prove the presence of R-curve behavior, non-linear regression was used. Forward stepwise regression was performed to determine the effects on fracture toughness of different variables, such as initial flaw type, critical flaw size, critical flaw eccentricity, cycling frequency, peak load, and number of cycles. Fatigue lifetime data were fit to an exclusive flaw model. Results There was an increase in fracture toughness values with increasing critical flaw size for both loading methods (rapid monotonic loading and fatigue). The values for the fracture toughness ranged from 0.75 to 1.1 MPa·m1/2 reaching a plateau at different critical flaw sizes based on loading method. Significance Cyclic loading had a significant effect on the R-curve behavior. The fatigue lifetime distribution was dependent on the flaw distribution, and it fit well to an exclusive flaw model. PMID:24034441

  2. Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design

    PubMed Central

    Lotte, Fabien; Larrue, Florian; Mühl, Christian

    2013-01-01

    While recent research on Brain-Computer Interfaces (BCI) has highlighted their potential for many applications, they remain barely used outside laboratories. The main reason is their lack of robustness. Indeed, with current BCI, mental state recognition is usually slow and often incorrect. Spontaneous BCI (i.e., mental imagery-based BCI) often rely on mutual learning efforts by the user and the machine, with BCI users learning to produce stable ElectroEncephaloGraphy (EEG) patterns (spontaneous BCI control being widely acknowledged as a skill) while the computer learns to automatically recognize these EEG patterns, using signal processing. Most research so far was focused on signal processing, mostly neglecting the human in the loop. However, how well the user masters the BCI skill is also a key element explaining BCI robustness. Indeed, if the user is not able to produce stable and distinct EEG patterns, then no signal processing algorithm would be able to recognize them. Unfortunately, despite the importance of BCI training protocols, they have been scarcely studied so far, and used mostly unchanged for years. In this paper, we advocate that current human training approaches for spontaneous BCI are most likely inappropriate. We notably study instructional design literature in order to identify the key requirements and guidelines for a successful training procedure that promotes a good and efficient skill learning. This literature study highlights that current spontaneous BCI user training procedures satisfy very few of these requirements and hence are likely to be suboptimal. We therefore identify the flaws in BCI training protocols according to instructional design principles, at several levels: in the instructions provided to the user, in the tasks he/she has to perform, and in the feedback provided. For each level, we propose new research directions that are theoretically expected to address some of these flaws and to help users learn the BCI skill more efficiently. PMID:24062669

  3. Diagnosis, Dogmatism, and Rationality.

    ERIC Educational Resources Information Center

    Rabinowitz, Jonathan; Efron, Noah J.

    1997-01-01

    Presents findings suggesting that misdiagnoses frequently stem from flaws in human information processing, particularly in collecting and using information. Claims that improved diagnostic tools will not remedy the problem. Drawing on the work of Karl Popper and Robin Collingwood, proposes operational principles to ensure a rational diagnostic…

  4. The Values of Negative Teaching.

    ERIC Educational Resources Information Center

    Bier, Jesse

    1983-01-01

    Advocates introducing high school literature classes by analyzing the serious flaws in an important work such as Edgar Alan Poe's poem, "The Raven," in order to increase student involvement in evaluating literature, strengthen student trust of the teacher's judgment, and motivate students for positive criticism. (MM)

  5. University education and nuclear criticality safety professionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, R.E.; Stachowiak, R.V.; Knief, R.A.

    1996-12-31

    The problem of developing a productive criticality safety specialist at a nuclear fuel facility has long been with us. The normal practice is to hire a recent undergraduate or graduate degree recipient and invest at least a decade in on-the-job training. In the early 1980s, the U.S. Department of Energy (DOE) developed a model intern program in an attempt to speed up the process. The program involved working at assigned projects for extended periods at a working critical mass laboratory, a methods development group, and a fuel cycle facility. This never gained support as it involved extended time away frommore » the job. At the Rocky Flats Environmental Technology Site, the training method is currently the traditional one involving extensive experience. The flaw is that the criticality safety staff turnover has been such that few individuals continue for the decade some consider necessary for maturity in the discipline. To maintain quality evaluations and controls as well as interpretation decisions, extensive group review is used. This has proved costly to the site and professionally unsatisfying to the current staff. The site contractor has proposed a training program to remedy the basic problem.« less

  6. Plant imports, Phytophthoras, and forest degradation

    Treesearch

    Clive Brasier

    2013-01-01

    Numerous 'exotic' tree pathogens are arriving in Europe, North America, and elsewhere due to flaws in current international plant health sanitary and phytosanitary (SPS) protocols. These include lack of protection against the many organisms unknown to science, an emphasis on promoting trade rather than promoting environmental biosecurity, a steadily...

  7. Memory, Cognitive Processing, and the Process of "Listening": A Reply to Thomas and Levine.

    ERIC Educational Resources Information Center

    Bostrom, Robert N.

    1996-01-01

    Describes several "inaccurate" statements made in L. Thomas' and T. Levine's article in this journal (volume 21, page 103) regarding the current author's research and positions on the listening construct. Suggests that Thomas' and Levine's model has serious methodological flaws. (RS)

  8. Usability flaws of medication-related alerting functions: A systematic qualitative review.

    PubMed

    Marcilly, Romaric; Ammenwerth, Elske; Vasseur, Francis; Roehrer, Erin; Beuscart-Zéphir, Marie-Catherine

    2015-06-01

    Medication-related alerting functions may include usability flaws that limit their optimal use. A first step on the way to preventing usability flaws is to understand the characteristics of these usability flaws. This systematic qualitative review aims to analyze the type of usability flaws found in medication-related alerting functions. Papers were searched via PubMed, Scopus and Ergonomics Abstracts databases, along with references lists. Paper selection, data extraction and data analysis was performed by two to three Human Factors experts. Meaningful semantic units representing instances of usability flaws were the main data extracted. They were analyzed through qualitative methods: categorization following general usability heuristics and through an inductive process for the flaws specific to medication-related alerting functions. From the 6380 papers initially identified, 26 met all eligibility criteria. The analysis of the papers identified a total of 168 instances of usability flaws that could be classified into 13 categories of usability flaws representing either violations of general usability principles (i.e. they could be found in any system, e.g. guidance and workload issues) or infractions specific to medication-related alerting functions. The latter refer to issues of low signal-to-noise ratio, incomplete content of alerts, transparency, presentation mode and timing, missing alert features, tasks and control distribution. The list of 168 instances of usability flaws of medication-related alerting functions provides a source of knowledge for checking the usability of medication-related alerting functions during their design and evaluation process and ultimately constructs evidence-based usability design principles for these functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. SURROGATE MODEL DEVELOPMENT AND VALIDATION FOR RELIABILITY ANALYSIS OF REACTOR PRESSURE VESSELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, William M.; Riley, Matthew E.; Spencer, Benjamin W.

    In nuclear light water reactors (LWRs), the reactor coolant, core and shroud are contained within a massive, thick walled steel vessel known as a reactor pressure vessel (RPV). Given the tremendous size of these structures, RPVs typically contain a large population of pre-existing flaws introduced in the manufacturing process. After many years of operation, irradiation-induced embrittlement makes these vessels increasingly susceptible to fracture initiation at the locations of the pre-existing flaws. Because of the uncertainty in the loading conditions, flaw characteristics and material properties, probabilistic methods are widely accepted and used in assessing RPV integrity. The Fracture Analysis of Vesselsmore » – Oak Ridge (FAVOR) computer program developed by researchers at Oak Ridge National Laboratory is widely used for this purpose. This program can be used in order to perform deterministic and probabilistic risk-informed analyses of the structural integrity of an RPV subjected to a range of thermal-hydraulic events. FAVOR uses a one-dimensional representation of the global response of the RPV, which is appropriate for the beltline region, which experiences the most embrittlement, and employs an influence coefficient technique to rapidly compute stress intensity factors for axis-aligned surface-breaking flaws. The Grizzly code is currently under development at Idaho National Laboratory (INL) to be used as a general multiphysics simulation tool to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled RPVs. Grizzly can be used to model the thermo-mechanical response of an RPV under transient conditions observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local 3D models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtain stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. To use Grizzly for probabilistic analysis, it is necessary to have a way to rapidly evaluate stress intensity factors. To accomplish this goal, a reduced order model (ROM) has been developed to efficiently represent the behavior of a detailed 3D Grizzly model used to calculate fracture parameters. This approach uses the stress intensity factor influence coefficient method that has been used with great success in FAVOR. Instead of interpolating between tabulated solutions, as FAVOR does, the ROM approach uses a response surface methodology to compute fracture solutions based on a sampled set of results used to train the ROM. The main advantages of this approach are that the process of generating the training data can be fully automated, and the procedure can be readily used to consider more general flaw configurations. This paper demonstrates the procedure used to generate a ROM to rapidly compute stress intensity factors for axis-aligned flaws. The results from this procedure are in good agreement with those produced using the traditional influence coefficient interpolation procedure, which gives confidence in this method. This paves the way for applying this procedure for more general flaw configurations.« less

  10. Flawed Execution: A Case Study on Operational Contract Support

    DTIC Science & Technology

    2016-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA JOINT APPLIED PROJECT FLAWED EXECUTION: A CASE STUDY ON OPERATIONAL CONTRACT SUPPORT June 2016...applied project 4. TITLE AND SUBTITLE FLAWED EXECUTION: A CASE STUDY ON OPERATIONAL CONTRACT SUPPORT 5. FUNDING NUMBERS 6. AUTHOR(S) Scott F...unlimited FLAWED EXECUTION: A CASE STUDY ON OPERATIONAL CONTRACT SUPPORT Scott F. Taggart, Captain, United States Marine Corps Jacob Ledford

  11. Detection and Characterization of Flaws in Sprayed on Foam Insulation with Pulsed Terahertz Frequency Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Madaras, Eric I.

    2005-01-01

    The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.

  12. Mathematical modeling of damage in unidirectional composites

    NASA Technical Reports Server (NTRS)

    Goree, J. G.; Dharani, L. R.; Jones, W. F.

    1983-01-01

    Extending the work of Goree and Gross (1979), solutions are given for a two-dimensional region of unidirectional fibers embedded in an elastic matrix whose initial flaw may take the form of a transverse notch, a rectangular cutout, or a circular hole. Subsequent flaw-induced damage is generated by remote stresses acting parallel to the fibers. For the case of such ductile matrix composites as boron/aluminum, present results indicate that both longitudinal matrix yielding and transverse notch extension must be included in order for the model to agree with experimental results. Little difference is found for the three types of initial damage considered. In all cases, the presence of additional damage changes the nature of stress distribution through the unbroken fibers.

  13. Model based Inverse Methods for Sizing Cracks of Varying Shape and Location in Bolt hole Eddy Current (BHEC) Inspections (Postprint)

    DTIC Science & Technology

    2016-02-10

    using bolt hole eddy current (BHEC) techniques. Data was acquired for a wide range of crack sizes and shapes, including mid- bore , corner and through...to select the most appropriate VIC-3D surrogate model for subsequent crack sizing inversion step. Inversion results for select mid- bore , through and...the flaw. 15. SUBJECT TERMS Bolt hole eddy current (BHEC); mid- bore , corner and through-thickness crack types; VIC-3D generated surrogate models

  14. Comments on "A Closed-Form Solution to Tensor Voting: Theory and Applications".

    PubMed

    Maggiori, Emmanuel; Lotito, Pablo; Manterola, Hugo Luis; del Fresno, Mariana

    2014-12-01

    We comment on a paper that describes a closed-form formulation to Tensor Voting, a technique to perceptually group clouds of points, usually applied to infer features in images. The authors proved an analytic solution to the technique, a highly relevant contribution considering that the original formulation required numerical integration, a time-consuming task. Their work constitutes the first closed-form expression for the Tensor Voting framework. In this work we first observe that the proposed formulation leads to unexpected results which do not satisfy the constraints for a Tensor Voting output, hence they cannot be interpreted. Given that the closed-form expression is said to be an analytic equivalent solution, unexpected outputs should not be encountered unless there are flaws in the proof. We analyzed the underlying math to find which were the causes of these unexpected results. In this commentary we show that their proposal does not in fact provide a proper analytic solution to Tensor Voting and we indicate the flaws in the proof.

  15. Measuring and Estimating Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2013-01-01

    Infrared flash thermography (IRFT) is used to detect void-like flaws in a test object. The IRFT technique involves heating up the part surface using a flash of flash lamps. The post-flash evolution of the part surface temperature is sensed by an IR camera in terms of pixel intensity of image pixels. The IR technique involves recording of the IR video image data and analysis of the data using the normalized pixel intensity and temperature contrast analysis method for characterization of void-like flaws for depth and width. This work introduces a new definition of the normalized IR pixel intensity contrast and normalized surface temperature contrast. A procedure is provided to compute the pixel intensity contrast from the camera pixel intensity evolution data. The pixel intensity contrast and the corresponding surface temperature contrast differ but are related. This work provides a method to estimate the temperature evolution and the normalized temperature contrast from the measured pixel intensity evolution data and some additional measurements during data acquisition.

  16. Integrated material state awareness system with self-learning symbiotic diagnostic algorithms and models

    NASA Astrophysics Data System (ADS)

    Banerjee, Sourav; Liu, Lie; Liu, S. T.; Yuan, Fuh-Gwo; Beard, Shawn

    2011-04-01

    Materials State Awareness (MSA) goes beyond traditional NDE and SHM in its challenge to characterize the current state of material damage before the onset of macro-damage such as cracks. A highly reliable, minimally invasive system for MSA of Aerospace Structures, Naval structures as well as next generation space systems is critically needed. Development of such a system will require a reliable SHM system that can detect the onset of damage well before the flaw grows to a critical size. Therefore, it is important to develop an integrated SHM system that not only detects macroscale damages in the structures but also provides an early indication of flaw precursors and microdamages. The early warning for flaw precursors and their evolution provided by an SHM system can then be used to define remedial strategies before the structural damage leads to failure, and significantly improve the safety and reliability of the structures. Thus, in this article a preliminary concept of developing the Hybrid Distributed Sensor Network Integrated with Self-learning Symbiotic Diagnostic Algorithms and Models to accurately and reliably detect the precursors to damages that occur to the structure are discussed. Experiments conducted in a laboratory environment shows potential of the proposed technique.

  17. Eddy current probe and method for flaw detection in metals

    DOEpatents

    Watjen, J.P.

    1987-06-23

    A flaw detecting system is shown which includes a probe having a pair of ferrite cores with in-line gaps in close proximity to each other. An insulating, non-magnetic, non-conducting holder fills the gaps and supports the ferrite cores in a manner such that the cores form a generally V-shape. Each core is provided with an excitation winding and a detection winding. The excitation windings are connected in series or parallel with an rf port for connection thereof to a radio frequency source. The detection windings, which are differentially wound, are connected in series circuit to a detector port for connection to a voltage measuring instrument. The ferrite cores at the in-line gaps directly engage the metal surface of a test piece, and the probe is scanned along the test piece. In the presence of a flaw in the metal surface the detection winding voltages are unbalanced, and the unbalance is detected by the voltage measuring instrument. The insulating holder is provided with a profile which conforms to that of a prominent feature of the test piece to facilitate movement of the probe along the feature, typically an edge or a corner. 9 figs.

  18. Eddy current probe and method for flaw detection in metals

    DOEpatents

    Watjen, John P.

    1987-06-23

    A flaw detecting system is shown which includes a probe having a pair of ferrite cores with in-line gaps in close proximity to each other. An insulating, non-magnetic, non-conducting holder fills the gaps and supports the ferrite cores in a manner such that the cores form a generally V-shape. Each core is provided with an excitation winding and a detection winding. The excitation windings are connected in series or parallel with an rf port for connection thereof to a radio frequency source. The detection windings, which are differentially wound, are connected in series circuit to a detector port for connection to a voltage measuring instrument. The ferrite cores at the in-line gaps directly engage the metal surface of a test piece, and the probe is scanned along the test piece. In the presence of a flaw in the metal surface the detection winding voltages are unbalanced, and the unbalance is detected by the voltage measuring instrument. The insulating holder is provided with a profile which conforms to that of a prominent feature of the test piece to facilitate movement of the probe along the feature, typically an edge or a corner.

  19. Quantum Mechanics for Beginning Physics Students

    ERIC Educational Resources Information Center

    Schneider, Mark B.

    2010-01-01

    The past two decades of attention to introductory physics education has emphasized enhanced development of conceptual understanding to accompany calculational ability. Given this, it is surprising that current texts continue to rely on the Bohr model to develop a flawed intuition, and introduce correct atomic physics on an ad hoc basis. For…

  20. Issues in Television-Centered Instruction.

    ERIC Educational Resources Information Center

    Richardson, Penelope L.

    Current research on the adult learner and on instruction through media has grave flaws, and reviews of research in five areas are needed to assist instructional developers and adopters in making wise decisions. These include a critical analysis of existing telecourse packages, as well as reviews of research on the motivation of various subgroups…

  1. Education, Knowledge, and Symbolic Form

    ERIC Educational Resources Information Center

    Belas, Oli

    2018-01-01

    This article aims to introduce Ernst Cassirer, and his philosophy of symbolic form, to education studies, and, in doing so, to challenge the widespread but deeply flawed views of knowledge and so-called knowledge-based education that have shaped recent education policy in England. After sketching the current educational landscape, and then some of…

  2. Grizzly Staus Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Zhang, Yongfeng; Chakraborty, Pritam

    2014-09-01

    This report summarizes work during FY 2014 to develop capabilities to predict embrittlement of reactor pressure vessel steel, and to assess the response of embrittled reactor pressure vessels to postulated accident conditions. This work has been conducted a three length scales. At the engineering scale, 3D fracture mechanics capabilities have been developed to calculate stress intensities and fracture toughnesses, to perform a deterministic assessment of whether a crack would propagate at the location of an existing flaw. This capability has been demonstrated on several types of flaws in a generic reactor pressure vessel model. Models have been developed at themore » scale of fracture specimens to develop a capability to determine how irradiation affects the fracture toughness of material. Verification work has been performed on a previously-developed model to determine the sensitivity of the model to specimen geometry and size effects. The effects of irradiation on the parameters of this model has been investigated. At lower length scales, work has continued in an ongoing to understand how irradiation and thermal aging affect the microstructure and mechanical properties of reactor pressure vessel steel. Previously-developed atomistic kinetic monte carlo models have been further developed and benchmarked against experimental data. Initial work has been performed to develop models of nucleation in a phase field model. Additional modeling work has also been performed to improve the fundamental understanding of the formation mechanisms and stability of matrix defects caused.« less

  3. Quantitative flaw characterization with scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.; Roth, D. J.

    1986-01-01

    Surface roughness and diffraction are two factors that have been observed to affect the accuracy of flaw characterization with scanning laser acoustic microscopy. In accuracies can arise when the surface of the test sample is acoustically rough. It is shown that, in this case, Snell's law is no longer valid for determining the direction of sound propagation within the sample. The relationship between the direction of sound propagation within the sample, the apparent flaw depth, and the sample's surface roughness is investigated. Diffraction effects can mask the acoustic images of minute flaws and make it difficult to establish their size, depth, and other characteristics. It is shown that for Fraunhofer diffraction conditions the acoustic image of a subsurface defect corresponds to a two-dimensional Fourier transform. Transforms based on simulated flaws are used to infer the size and shape of the actual flaw.

  4. Unintended Pregnancy, Induced Abortion, and Mental Health.

    PubMed

    Horvath, Sarah; Schreiber, Courtney A

    2017-09-14

    The early medical literature on mental health outcomes following abortion is fraught with methodological flaws that can improperly influence clinical practice. Our goal is to review the current medical literature on depression and other mental health outcomes for women obtaining abortions. The Turnaway Study prospectively enrolled 956 women seeking abortion in the USA and followed their mental health outcomes for 5 years. The control group was comprised of women denied abortions based on gestational age limits, thereby circumventing the major methodological flaw that had plagued earlier studies on the topic. Rates of depression are not significantly different between women obtaining abortion and those denied abortion. Rates of anxiety are initially higher in women denied abortion care. Counseling on decision-making for women with unintended pregnancies should reflect these findings.

  5. Fracture mechanics concepts in reliability analysis of monolithic ceramics

    NASA Technical Reports Server (NTRS)

    Manderscheid, Jane M.; Gyekenyesi, John P.

    1987-01-01

    Basic design concepts for high-performance, monolithic ceramic structural components are addressed. The design of brittle ceramics differs from that of ductile metals because of the inability of ceramic materials to redistribute high local stresses caused by inherent flaws. Random flaw size and orientation requires that a probabilistic analysis be performed in order to determine component reliability. The current trend in probabilistic analysis is to combine linear elastic fracture mechanics concepts with the two parameter Weibull distribution function to predict component reliability under multiaxial stress states. Nondestructive evaluation supports this analytical effort by supplying data during verification testing. It can also help to determine statistical parameters which describe the material strength variation, in particular the material threshold strength (the third Weibull parameter), which in the past was often taken as zero for simplicity.

  6. Ageing airplane repair assessment program for Airbus A300

    NASA Technical Reports Server (NTRS)

    Gaillardon, J. M.; Schmidt, HANS-J.; Brandecker, B.

    1992-01-01

    This paper describes the current status of the repair categorization activities and includes all details about the methodologies developed for determination of the inspection program for the skin on pressurized fuselages. For inspection threshold determination two methods are defined based on fatigue life approach, a simplified and detailed method. The detailed method considers 15 different parameters to assess the influences of material, geometry, size location, aircraft usage, and workmanship on the fatigue life of the repair and the original structure. For definition of the inspection intervals a general method is developed which applies to all concerned repairs. For this the initial flaw concept is used by considering 6 parameters and the detectable flaw sizes depending on proposed nondestructive inspection methods. An alternative method is provided for small repairs allowing visual inspection with shorter intervals.

  7. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1993-01-01

    In this Progress Report, we describe our current research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the characterization of stitched composite materials and bonded aluminum plate specimens. One purpose of this investigation is to identify and characterize specific features of polar backscatter interrogation which enhance the ability of ultrasound to detect flaws in a stitched composite laminate. Another focus is to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize bonded aluminum lap joints. As an approach to implementing quantitative ultrasonic inspection methods to both of these materials, we focus on the physics that underlies the detection of flaws in such materials.

  8. ORNL Evaluation of Electrabel Safety Cases for Doel 3 / Tihange 2: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bass, Bennett Richard; Dickson, Terry L.; Gorti, Sarma B.

    Oak Ridge National Laboratory (ORNL) performed a detailed technical review of the 2015 Electrabel (EBL) Safety Cases prepared for the Belgium reactor pressure vessels (RPVs) at Doel 3 and Tihange 2 (D3/T2). The Federal Agency for Nuclear Control (FANC) in Belgium commissioned ORNL to provide a thorough assessment of the existing safety margins against cracking of the RPVs due to the presence of almost laminar flaws found in each RPV. Initial efforts focused on surveying relevant literature that provided necessary background knowledge on the issues related to the quasilaminar flaws observed in D3/T2 reactors. Next, ORNL proceeded to develop anmore » independent quantitative assessment of the entire flaw population in the two Belgian reactors according to the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, Appendix G, Fracture Toughness Criteria for Protection Against Failure, New York (1992 and 2004). That screening assessment of all EBL-characterized flaws in D3/T2 used ORNL tools, methodologies, and the ASME Code Case N-848, Alternative Characterization Rules for QuasiLaminar Flaws . Results and conclusions from the ORNL flaw acceptance assessments of D3/T2 were compared with those from the 2015 EBL Safety Cases. Specific findings of the ORNL evaluation of that part of the EBL structural integrity assessment focusing on stability of the flaw population subjected to primary design transients include the following: ORNL s analysis results were similar to those of EBL in that very few characterized flaws were found not compliant with the ASME (1992) acceptance criterion. ORNL s application of the more recent ASME Section XI (2004) produced only four noncompliant flaws, all due to LOCAs. The finding of a greater number of non-compliant flaws in the EBL screening assessment is due principally to a significantly more restrictive (conservative) criterion for flaw size acceptance used by EBL. ORNL s screening assessment results (obtained using an analysis methodology different from that of EBL) are interpreted herein as confirming the EBL screening results for D3/T2. ORNL s independent refined analysis demonstrated the EBL-characterized flaw 1660, which is non-compliant in the ORNL and EBL screening assessment, is rendered compliant when modeled as a more realistic individual quasi-laminar flaw using a 3-D XFEM analysis approach. ORNL s and EBL s refined analyses are in good agreement for the flaw 1660 close to the clad/base metal interface; ORNL is not persuaded that repeating this exercise for more than one non-compliant flaw is necessary to accept the EBL conclusions derived from the aggregate of EBL refined analysis results. ORNL General Conclusions Regarding the Structural Integrity Assessment (SIA) Conducted by EBL for D3/T2 Based on comparative evaluations of ORNL and EBL SIA analyses and on consideration of other results, ORNL is in agreement with the general conclusions reported by Electrabel in their RPV D3/T2 Technical Summary Note of April 14, 2015: More than 99 percent of flaws in D3/T2 meet the defined screening criterion, rendering them benign with respect to initiation in the event of a design transient. Refined analyses of non-compliant flaws from the screening assessment indicate that only 11 of the 16196 detected flaws have a critical reference-temperature material index (designated RTNDT) that implies the possibility of the initiation of cleavage fracture at some future time. For those 11 2 flaws, the calculated margin in RTNDT (a measure of acceptable embrittlement relative to end-ofservice-life conditions) is significant, being greater than 80 C. Fatigue crack growth is not a concern in the flaw-acceptability analyses. Primary stress re-evaluation confirms that the collapse pressure is more than 1.5 times the design pressure in the presence of defects detected in D3/T2. Sufficient conservatisms are built into the input data and into the different steps of the SIA; in some cases, those conservatisms are quantified and imply that additional margins exist in the SIA. Taken as a whole, the foregoing results and conclusions confirm the structural integrity of Doel 3 and Tihange 2 under all design transients with ample margin in the presence of the 16196 detected flaws.« less

  9. Eddy Current System for Material Inspection and Flaw Visualization

    NASA Technical Reports Server (NTRS)

    Bachnak, R.; King, S.; Maeger, W.; Nguyen, T.

    2007-01-01

    Eddy current methods have been successfully used in a variety of non-destructive evaluation applications including detection of cracks, measurements of material thickness, determining metal thinning due to corrosion, measurements of coating thickness, determining electrical conductivity, identification of materials, and detection of corrosion in heat exchanger tubes. This paper describes the development of an eddy current prototype that combines positional and eddy-current data to produce a C-scan of tested material. The preliminary system consists of an eddy current probe, a position tracking mechanism, and basic data visualization capability. Initial test results of the prototype are presented in this paper.

  10. Assessment of item-writing flaws in multiple-choice questions.

    PubMed

    Nedeau-Cayo, Rosemarie; Laughlin, Deborah; Rus, Linda; Hall, John

    2013-01-01

    This study evaluated the quality of multiple-choice questions used in a hospital's e-learning system. Constructing well-written questions is fraught with difficulty, and item-writing flaws are common. Study results revealed that most items contained flaws and were written at the knowledge/comprehension level. Few items had linked objectives, and no association was found between the presence of objectives and flaws. Recommendations include education for writing test questions.

  11. Letter in reference to: "Short-term effects of night shift work on breast cancer risk: a cohort study of payroll data".

    PubMed

    Stevens, Richard G

    2017-01-01

    There are major flaws with the analyses in the Vistisen et al (1) cohort study examining if night shift work is a short-term risk factor for breast cancer. The crucial problem is the potential for exposure misclassification, which is very high. The authors' definition of day shift is "≥3 hours of work between 06:00-20:00 hours". This means that a worker on an 8-hour shift that begins at 03:00 hours would be classified as a day rather than night shift worker because he/she worked only two hours between 24:00-05:00 hours. Similarly, a second shifter might start work at 17:00 but not get off until 01:00 and yet still be classified as a "day shift" worker. This does not make sense as a baseline comparison group "unexposed" to work during the night hours. A sensible classification system would be to define "day shift" as any shift that begins after 07:00 and ends before 18:00 hours. This is straightforward and avoids all of the ambiguities inherent in the definition used by the authors. In addition, the authors claim that the "inception population" is less likely to have had past prior non-day work hours. However, this group has an average age of >35 years. It is inconceivable that all of these women were new graduates who started a public health sector job for the first time. Rather, the majority must surely have worked elsewhere for many years but then started in the regions covered only after 2006. This topic is too important, and this cohort too valuable, not to carefully define the baseline comparison group of "day workers" in a sensible manner. All the inferences rely crucially on this definition. The authors have the data to define the day-working baseline group in a way that avoids these obvious biases. That is why it is so frustrating that the authors chose to conduct the analyses as they did, with a highly flawed definition of "day work", when they could have done so much better. A highly flawed epidemiological report is worse than no report at all because it misleads the scientific community and the public. Reference 1. Vistisen HT, Garde AH, Frydenberg M, Christiansen P, Hansen ÅM, Hansen J, Bonde JPE, Kolstad HA. Short-term effects of night shift work on breast cancer risk: a cohort study of payroll data. Scand J Work Environ Health - online first. http://dx.doi.org/10.5271/sjweh.3603.

  12. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  13. Deep flaws in weldments of aluminum and titanium

    NASA Technical Reports Server (NTRS)

    Masters, J. N.; Engstrom, W. L.; Bixler, W. D.

    1974-01-01

    Surface flawed specimens of 2219-T87 and 6Al-4V STA titanium weldments were tested to determine static failure modes, failure strength, and fatigue flaw growth characteristics. Thicknesses selected for this study were purposely set at values where, for most test conditions, abrupt instability of the flaw at fracture would not be expected. Static tests for the aluminum weldments were performed at room, LN2 and LH2 temperatures. Titanium static tests for tests were performed at room and LH2 temperatures. Results of the static tests were used to plot curves relating initial flaw size to leakage- or failure-stresses (i.e. "failure" locus curves). Cyclic tests, for both materials, were then performed at room temperature, using initial flaws only slightly below the previously established failure locus for typical proof stress levels. Cyclic testing was performed on pairs of specimens, one with and one without a simulated proof test cycle. Comparisons were made then to determine the value and effect of proof testing as affected by the various variables of proof and operating stress, flaw shape, material thickness, and alloy.

  14. Will current probabilistic climate change information, as such, improve adaptation?

    NASA Astrophysics Data System (ADS)

    Lopez, A.; Smith, L. A.

    2012-04-01

    Probabilistic climate scenarios are currently being provided to end users, to employ as probabilities in adaptation decision making, with the explicit suggestion that they quantify the impacts of climate change relevant to a variety of sectors. These "probabilities" are, however, rather sensitive to the assumptions in, and the structure of the modelling approaches used to generate them. It is often argued that stakeholders require probabilistic climate change information to adequately evaluate and plan adaptation pathways. On the other hand, some circumstantial evidence suggests that on the ground decision making rarely uses well defined probability distributions of climate change as inputs. Nevertheless it is within this context of probability distributions of climate change that we discuss possible drawbacks of supplying information that, while presented as robust and decision relevant, , is in fact unlikely to be so due to known flaws both in the underlying models and in the methodology used to "account for" those known flaws. How might one use a probability forecast that is expected to change in the future, not due to a refinement in our information but due to fundamental flaws in its construction? What then are the alternatives? While the answer will depend on the context of the problem at hand, a good approach will be strongly informed by the timescale of the given planning decision, and the consideration of all the non-climatic factors that have to be taken into account in the corresponding risk assessment. Using a water resources system as an example, we illustrate an alternative approach to deal with these challenges and make robust adaptation decisions today.

  15. A comparison of 1D and 1.5D arrays for imaging volumetric flaws in small bore pipework

    NASA Astrophysics Data System (ADS)

    Barber, T. S.; Wilcox, P. D.; Nixon, A. D.

    2015-03-01

    1.5D arrays can be seen as a potentially ideal compromise between 1D arrays and 2D matrix arrays in terms of focusing capability, element density, weld coverage and data processing time. This paper presents an initial study of 1D and 1.5D arrays for high frequency (15MHz) imaging of volumetric flaws in small-bore (30-60mm outer diameter) thin-walled (3-8mm) pipework. A combination of 3D modelling and experimental work is used to determine Signal to Noise Ratio (SNR) improvement with a strong relationship between SNR and the longer dimension of element size observed. Similar behavior is demonstrated experimentally rendering a 1mm diameter Flat Bottom Hole (FBH) in Copper-Nickel alloy undetectable using a larger array element. A 3-5dB SNR increase is predicted when using a 1.5D array assuming a spherical reflector and a 2dB increase was observed on experimental trials with a FBH. It is argued that this improvement is likely to be a lower bound estimate due to the specular behavior of a FBH with future trials planned on welded samples with realistic flaws.

  16. A fracture mechanics study of the phase separating planar electrodes: Phase field modeling and analytical results

    NASA Astrophysics Data System (ADS)

    Haftbaradaran, H.; Maddahian, A.; Mossaiby, F.

    2017-05-01

    It is well known that phase separation could severely intensify mechanical degradation and expedite capacity fading in lithium-ion battery electrodes during electrochemical cycling. Experiments have frequently revealed that such degradation effects could be substantially mitigated via reducing the electrode feature size to the nanoscale. The purpose of this work is to present a fracture mechanics study of the phase separating planar electrodes. To this end, a phase field model is utilized to predict how phase separation affects evolution of the solute distribution and stress profile in a planar electrode. Behavior of the preexisting flaws in the electrode in response to the diffusion induced stresses is then examined via computing the time dependent stress intensity factor arising at the tip of flaws during both the insertion and extraction half-cycles. Further, adopting a sharp-interphase approximation of the system, a critical electrode thickness is derived below which the phase separating electrode becomes flaw tolerant. Numerical results of the phase field model are also compared against analytical predictions of the sharp-interphase model. The results are further discussed with reference to the available experiments in the literature. Finally, some of the limitations of the model are cautioned.

  17. Engineering Task Plan for the Ultrasonic Inspection of Hanford Double Shell Tanks (DST) FY2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, C.E.

    2000-01-10

    This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities (individual responsibilities), plan for performance demonstration testing, and a plan for field activities (tank inspection). Also included are a Statement of Work for contractor performance of the work and a protocol to be followed should tank flaws that exceed the acceptance criteria be discovered.

  18. Uniaxial Tensile Strength and Flaw Characterization of SiC-N

    DTIC Science & Technology

    2014-01-01

    study has been largely limited to tiles less than 40 mm thick, especially versus small caliber threats (1, 3, 4). Research and production of ceramic... production of very large ceramic components. One issue that may occur in the production of large ceramic components is uneven powder packing during the...flaw is important because flaws originate from different stages during the production process. Flaws associated with the processing of the material

  19. The HMDS Coating Flaw Removal Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monticelli, M V; Nostrand, M C; Mehta, N

    2008-10-24

    In many high energy laser systems, optics with HMDS sol gel antireflective coatings are placed in close proximity to each other making them particularly susceptible to certain types of strong optical interactions. During the coating process, halo shaped coating flaws develop around surface digs and particles. Depending on the shape and size of the flaw, the extent of laser light intensity modulation and consequent probability of damaging downstream optics may increase significantly. To prevent these defects from causing damage, a coating flaw removal tool was developed that deploys a spot of decane with a syringe and dissolves away the coatingmore » flaw. The residual liquid is evacuated leaving an uncoated circular spot approximately 1mm in diameter. The resulting uncoated region causes little light intensity modulation and thus has a low probability of causing damage in optics downstream from the mitigated flaw site.« less

  20. Stress intensity factors for long, deep surface flaws in plates under extensional fields

    NASA Technical Reports Server (NTRS)

    Harms, A. E.; Smith, C. W.

    1973-01-01

    Using a singular solution for a part circular crack, a Taylor Series Correction Method (TSCM) was verified for extracting stress intensity factors from photoelastic data. Photoelastic experiments were then conducted on plates with part circular and flat bottomed cracks for flaw depth to thickness ratios of 0.25, 0.50 and 0.75 and for equivalent flaw depth to equivalent ellipse length values ranging from 0.066 to 0.319. Experimental results agreed well with the Smith theory but indicated that the use of the ''equivalent'' semi-elliptical flaw results was not valid for a/2c less than 0.20. Best overall agreement for the moderate (a/t approximately 0.5) to deep flaws (a/t approximatelly 0.75) and a/2c greater than 0.15 was found with a semi-empirical theory, when compared on the basis of equivalent flaw depth and area.

  1. High Noon for High Stakes: Alfie Kohn at Middlebury College.

    ERIC Educational Resources Information Center

    Barna, Ed

    2002-01-01

    The tougher standards movement has five fatal flaws. An emphasis on scores limits student willingness to experiment and be challenged. The "basic skills" approach to teaching--pouring knowledge down student throats--has never worked well. Standardized testing necessarily creates winners and losers. Accountability is coercive and…

  2. Theories and Modes

    ERIC Educational Resources Information Center

    Apsche, Jack A.

    2005-01-01

    In his work on the Theory of Modes, Beck (1996) suggested that there were flaws with his cognitive theory. He suggested that though there are shortcomings to his cognitive theory, there were not similar shortcomings to the practice of Cognitive Therapy. The author suggests that if there are shortcomings to cognitive theory the same shortcomings…

  3. Detection and monitoring of shear crack growth using S-P conversion of seismic waves

    NASA Astrophysics Data System (ADS)

    Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress, which causes energy partitioning into P, S, and P-to-S or S-to-P waves. This finding provides a diagnostic method for detecting shear crack initiation and growth using seismic wave conversions. Acknowledgments: This material is based upon work supported by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).

  4. Effect of Layering on Cracking Initiation and Propagation under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Modiriasari, A.; Jiang, L.; Yoon, H.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    Rock anisotropy can arise from textural and structural causes both of which contribute to anisotropic strength and moduli. Rock variability makes it difficult to determine which properties dominate failure. Here, laboratory experiments were performed on 3D printed samples to examine the effect of layering on crack formation. Samples with two pre-existing coplanar flaws were fabricated using an additive 3D printing process (Projet CJP 360). Layers of gypsum (0.2 mm thick) were printed in either a horizontal (H) or a vertical (V) orientation to create prismatic samples (152.4 mm x 76.2 mm x 25.1 mm) with two 12.7 mm long coplanar flaws (19.05 mm apart) oriented at 450 with the load. Cracks were induced under uniaxial loading conditions. Digital image correlation (DIC) and acoustic emission (AE) (18 AE sensors with a frequency range of 100-450 kHz) were used to monitor crack evolution. DIC imaging of the V specimen during uniaxial compression showed that smooth cracks were initiated and propagated from the tips of the flaws parallel to the layering. Unlike the strongly bonded samples, no cracks were formed between the pre-existing flaws. The failure mechanism between the flaws was controlled by the weak bonding between the layers, and not by the coalescence of the new cracks. However, for the H specimen, failure was caused by crack coalescence between the two flaws. The new cracks exhibited a step-like roughness that was influenced by the layering in the sample. AE events were only detected when a synchronized mode was used. 3D printed samples can be effectively used to study the effect of anisotropic layering on crack initiation and propagation in a repeatable and controlled manner. Acknowledgements: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This material is also based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022) and by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).

  5. Flaw tolerance promoted by dissipative deformation mechanisms between material building blocks

    NASA Astrophysics Data System (ADS)

    Verho, Tuukka; Buehler, Markus J.

    2014-09-01

    Novel high-performance composite materials often draw inspiration from natural materials such as bone or mollusc shells. A prime feature of such composites is that they are, like their natural counterparts, quasibrittle. They are tolerant to material flaws up to a certain characteristic flaw-tolerant size scale, exhibiting high strength and toughness, but start to behave in a brittle manner when sufficiently large flaws are present. Here, we establish that better flaw tolerance can be achieved by maximizing fracture toughness relative to the maximum elastic energy available in the material, and we demonstrate this concept with simple two-dimensional coarse-grained simulations where the transition from brittle to quasibrittle behaviour is examined.

  6. Effect of thermal profile on cyclic flaw growth in aluminum

    NASA Technical Reports Server (NTRS)

    Engstrom, W. L.

    1975-01-01

    Surface flawed and single edge notch tension specimens of 2219-T851 and -T87 aluminum were tested to determine static fracture characteristics and base line (constant amplitude, constant temperature) cyclic flaw growth behavior. Subsequent testing was then conducted in which flawed specimens were subjected to a thermal profile in which the applied stress was varied simultaneously with the temperature. The profile used represents a simplified space shuttle orbiter load/temperature flight cycle. Test temperatures included the range from 144K (-200 F) up to 450K (350 F). The measured flaw growth rates obtained from the thermal profile tests were then compared with rates predicted by assuming linear cumulative damage of base line rates.

  7. Iraq Provincial Reconstruction Teams: Flawed from the Start, How Perverse Incentives and Unintended Outcomes Impacted Success

    DTIC Science & Technology

    2013-06-17

    developmental aid system, as currently constructed, was not successful. An excellent example of this type of study focused on Sida , the Swedish...counterpart to USAID. In their systematic exploration of Sida , Clark C. Gibson and his associates discovered that much of the failure of Sida’s...

  8. NDE: A key to engine rotor life prediction

    NASA Technical Reports Server (NTRS)

    Doherty, J. E.

    1977-01-01

    A key ingredient in the establishment of safe life times for critical components is the means of reliably detecting flaws which may potentially exist. Currently used nondestructive evaluation procedures are successful in detecting life limiting defects; however, the development of automated and computer aided NDE technology permits even greater assurance of flight safety.

  9. Nonequilibrium Theory: Implications for Educational Systems Undergoing Radical Change in Eastern Europe.

    ERIC Educational Resources Information Center

    Rust, Val D.

    The change processes involving schools that are currently experiencing turbulent social reconstruction in eastern Europe are examined in this paper, which calls for the development of a new paradigm for social change. The first section describes recent educational reform activities and their flaws in three eastern European countries--Russia,…

  10. Drug Court Effectiveness: A Matched Cohort Study in the Dane County Drug Treatment Court

    ERIC Educational Resources Information Center

    Brown, Randall

    2011-01-01

    Drug treatment courts (DTCs) are widely viewed as effective diversion programs for drug-involved offenders; however, previous studies frequently used flawed comparison groups. In the current study, the author compared rates of recidivism for drug court participants to rates for a traditionally adjudicated comparison group matched on potentially…

  11. Darwin's Final Message: We Have No Honour.

    ERIC Educational Resources Information Center

    Miles, James

    2000-01-01

    Examines current views in Great Britain on the genetic basis of violence and crime. Argues that evolutionary heretics have a flawed understanding of genetics and defend an anti-scientific concept of free will. Maintains that arguments within Darwinism have allowed evolutionary heretics to promote their own agenda and to continue to abuse the most…

  12. NASA-Langley Research Center's participation in a round-robin comparison between some current crack-propagation prediction methods

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.; Lewis, P. E.

    1979-01-01

    A round-robin study was conducted which evaluated and compared different methods currently in practice for predicting crack growth in surface-cracked specimens. This report describes the prediction methods used by the Fracture Mechanics Engineering Section, at NASA-Langley Research Center, and presents a comparison between predicted crack growth and crack growth observed in laboratory experiments. For tests at higher stress levels, the correlation between predicted and experimentally determined crack growth was generally quite good. For tests at lower stress levels, the predicted number of cycles to reach a given crack length was consistently higher than the experimentally determined number of cycles. This consistent overestimation of the number of cycles could have resulted from a lack of definition of crack-growth data at low values of the stress intensity range. Generally, the predicted critical flaw sizes were smaller than the experimentally determined critical flaw sizes. This underestimation probably resulted from using plane-strain fracture toughness values to predict failure rather than the more appropriate values based on maximum load.

  13. Critical appraisal of published literature

    PubMed Central

    Umesh, Goneppanavar; Karippacheril, John George; Magazine, Rahul

    2016-01-01

    With a large output of medical literature coming out every year, it is impossible for readers to read every article. Critical appraisal of scientific literature is an important skill to be mastered not only by academic medical professionals but also by those involved in clinical practice. Before incorporating changes into the management of their patients, a thorough evaluation of the current or published literature is an important step in clinical practice. It is necessary for assessing the published literature for its scientific validity and generalizability to the specific patient community and reader's work environment. Simple steps have been provided by Consolidated Standard for Reporting Trial statements, Scottish Intercollegiate Guidelines Network and several other resources which if implemented may help the reader to avoid reading flawed literature and prevent the incorporation of biased or untrustworthy information into our practice. PMID:27729695

  14. Inspection of defects of composite materials in inner cylindrical surfaces using endoscopic shearography

    NASA Astrophysics Data System (ADS)

    Macedo, Fabiano Jorge; Benedet, Mauro Eduardo; Fantin, Analucia Vieira; Willemann, Daniel Pedro; da Silva, Fábio Aparecido Alves; Albertazzi, Armando

    2018-05-01

    This work presents the development of a special shearography system with radial sensitivity and explores its applicability for detecting adhesion flaws on internal surfaces of flanged joints of composite material pipes. The inspection is performed from the inner surface of the tube where the flange is adhered. The system uses two conical mirrors to achieve radial sensitivity. A primary 45° conical mirror is responsible for promoting the inspection of the internal tubular surface on its 360° A special Michelson interferometer is formed replacing one of the plane mirrors by a conical mirror. The image reflected by this conical mirror is shifted away from the image center in a radial way and a radial shear is produced on the images. The concept was developed and a prototype built and tested. First, two tubular steel specimens internally coated with composite material and having known artificial defects were analyzed to test the ability of the system to detect the flaws. After the principle validation, two flanged joints were then analyzed: (a) a reference one, without any artificial defects and (b) a test one with known artificial defects, simulating adhesion failures with different dimensions and locations. In all cases, thermal loading was applied through a hot air blower on the outer surface of the joint. The system presented very good results on all inspected specimens, being able to detect adhesion flaws present in the flanged joints. The experimental results obtained in this work are promising and open a new front for inspections of inner surfaces of pipes with shearography.

  15. Nanomanipulation and Lithography: The Building (and Modeling) of Carbon Nanotube Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Louie, Richard Nam

    2002-12-01

    Aircraft fuselages suffer alternating stress during takeoffs and landings, and fatigue cracks begin to grow, usually at rivet holes. The detection of these fatigue cracks under installed fasteners in aging aircraft is a major goal of the nondestructive evaluation (NDE) community. The use of giant magnetoresistance (GMR) sensors in electromagnetic (EM) NDE has been increasing rapidly. For example, here at Langley Research Center, a Rotating Probe System (RPS) containing a GMR element has been incorporated into a product to detect deeply buried flaws in aerospace structures. In order to advance this eddy current probe application and many similar ones, research to create smaller, more sensitive and energy-efficient EM sensors has been aggressively pursued. Recent theoretical and experimental work on spin coherent transport supports the feasibility of carbon nanotube (CNT) based magnetic tunnel junctions. In this study, a spatial filtering scheme is presented that improves the signal to noise ratio of the RPS and does not significantly impact the number of false alarms. Signals due to buried flaws occur at higher frequencies than do signals due to rivet tilt or probe misalignment, and the strategy purposefully targets this fact. Furthermore, the spatial filtering scheme exploits decreases in the probe output that are observed immediately preceding and following the peak in output due to a fatigue crack. Using the new filters, an enhanced probability of flaw detection is expected. In the future, even tinier, more sensitive, low-power sensors are envisioned for the rotating probe and other nondestructive inspection systems. These may be comprised of single-walled carbon nanotubes (SWCNTs) that connect two ferromagnetic (FM) electrodes. Theoretical work has been done at Langley to model the electrical and magnetoconductance behavior of such junctions, for systems containing short "armchair" nanotubes. The present work facilitates the modeling of more realistic system sizes, through the re-writing of a critical code segment that gives a hundredfold improvement in speed. Furthermore, the tight-binding model calculations are now generalized to include all types of nanotubes, not merely armchair tubes. On the experimental side, innovative junction fabrication procedures are investigated, including diamond-tip scanning probe lithography and e-beam lithography. Programs are written for the Nanometer Pattern Generation System to effect the creation of many junctions at once, to increase the chances of a CNT connecting two FM electrodes. As it is not prudent to rely solely on luck, the capability for tube nanomanipulation with an unprecedented level of control is also shown, and a procedure for controlled deposition upon chemically functionalized lithographic patterns is discussed. All of the techniques demonstrated can be used to create a magnetic tunnel junction to be refrigerated for extensive magnetoconductance studies.

  16. Fabrication, Characterization, And Deformation of 3D Structural Meta-Materials

    NASA Astrophysics Data System (ADS)

    Montemayor, Lauren C.

    Current technological advances in fabrication methods have provided pathways to creating architected structural meta-materials similar to those found in natural organisms that are structurally robust and lightweight, such as diatoms. Structural meta-materials are materials with mechanical properties that are determined by material properties at various length scales, which range from the material microstructure (nm) to the macro-scale architecture (mum -- mm). It is now possible to exploit material size effect, which emerge at the nanometer length scale, as well as structural effects to tune the material properties and failure mechanisms of small-scale cellular solids, such as nanolattices. This work demonstrates the fabrication and mechanical properties of 3-dimensional hollow nanolattices in both tension and compression. Hollow gold nanolattices loaded in uniaxial compression demonstrate that strength and stiffness vary as a function of geometry and tube wall thickness. Structural effects were explored by increasing the unit cell angle from 30° to 60° while keeping all other parameters constant; material size effects were probed by varying the tube wall thickness, t, from 200nm to 635nm, at a constant relative density and grain size. In-situ uniaxial compression experiments reveal an order-of-magnitude increase in yield stress and modulus in nanolattices with greater lattice angles, and a 150% increase in the yield strength without a concomitant change in modulus in thicker-walled nanolattices for fixed lattice angles. These results imply that independent control of structural and material size effects enables tunability of mechanical properties of 3-dimensional architected meta-materials and highlight the importance of material, geometric, and microstructural effects in small-scale mechanics. This work also explores the flaw tolerance of 3D hollow-tube alumina kagome nanolattices with and without pre-fabricated notches, both in experiment and simulation. Experiments demonstrate that the hollow kagome nanolattices in uniaxial tension always fail at the same load when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. For notches with (a/w) > 1/3, the samples fail at lower peak loads and this is attributed to the increased compliance as fewer unit cells span the un-notched region. Finite element simulations of the kagome tension samples show that the failure is governed by tensile loading for (a/w) < 1/3 but as ( a/w) increases, bending begins to play a significant role in the failure. This work explores the flaw sensitivity of hollow alumina kagome nanolattices in tension, using experiments and simulations, and demonstrates that the discrete-continuum duality of architected structural meta-materials gives rise to their flaw insensitivity even when made entirely of intrinsically brittle materials.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crutzen, S.; Koble, T.D.; Lemaitre, P.

    Applications of the Leak Before Break (LBB) concept involve the knowledge of flaw presence and characteristics. In Service Inspection is given the responsibility of detecting flaws of a determined importance to locate them precisely and to classify them in broad families. Often LBB concepts application imply the knowledge of flaw characteristics such as through wall depth; length at the inner diameter (ID) or outer diameter (OD) surface; orientation or tilt and skew angles; branching; surface roughness; opening or width; crack tip aspect. Besides detection and characterization, LBB evaluations consider important the fact that a crack could be in the weldmore » material or in the base material or in the heat affected zone. Cracks in tee junctions, in homogenous simple welds and in elbows are not considered in the same way. Essential variables of a flaw or defect are illustrated, and examples of flaws found in primary piping as reported by plant operators or service vendors are given. If such flaw variables are important in the applications of LBB concepts, essential is then the knowledge of the performance achievable by NDE techniques, during an ISI, in detecting such flaws, in locating them and in correctly evaluating their characteristics.« less

  18. Full waveform inversion for ultrasonic flaw identification

    NASA Astrophysics Data System (ADS)

    Seidl, Robert; Rank, Ernst

    2017-02-01

    Ultrasonic Nondestructive Testing is concerned with detecting flaws inside components without causing physical damage. It is possible to detect flaws using ultrasound measurements but usually no additional details about the flaw like position, dimension or orientation are available. The information about these details is hidden in the recorded experimental signals. The idea of full waveform inversion is to adapt the parameters of an initial simulation model of the undamaged specimen by minimizing the discrepancy between these simulated signals and experimentally measured signals of the flawed specimen. Flaws in the structure are characterized by a change or deterioration in the material properties. Commonly, full waveform inversion is mostly applied in seismology on a larger scale to infer mechanical properties of the earth. We propose to use acoustic full waveform inversion for structural parameters to visualize the interior of the component. The method is adapted to US NDT by combining multiple similar experiments on the test component as the typical small amount of sensors is not sufficient for a successful imaging. It is shown that the combination of simulations and multiple experiments can be used to detect flaws and their position, dimension and orientation in emulated simulation cases.

  19. The Secret of Future Defeat: The Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations

    DTIC Science & Technology

    2007-05-24

    The Secret of Future Defeat: the Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations A...4. TITLE AND SUBTITLE The Secret of Future Defeat: the Evolution of US Joint and 5a. CONTRACT NUMBER Army Doctrine 1993-2006 and the Flawed... The Secret of Future Defeat: the Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations Approved by

  20. Flaw Growth of 6Al-4V Titanium in a Freon TF Environment

    NASA Technical Reports Server (NTRS)

    Tiffany, C. F.; Masters, J. N.; Bixler, W. D.

    1969-01-01

    The plane strain threshold stress intensity and sustained stress flaw growth rates were experimentally determined for 6AI-4V S.T.A. titanium forging and weldments in environments of Freon TF at room temperature. Sustained load tests of surface flawed specimens were conducted with the experimental approach based on linear elastic fracture mechanics. It was concluded that sustained stress flaw growth rates, in conjunction with threshold stress intensities, can be used in assessing the service life of pressure vessels.

  1. Fatigue flaw growth behavior in stiffened and unstiffened panels loaded in biaxial tension

    NASA Technical Reports Server (NTRS)

    Beck, E. J.

    1973-01-01

    The effect was investigated of biaxial loading on the flaw growth rate of 2219-T87 aluminum alloy that would be typical of Space Shuttle cryogenic tankage design. The stress distribution and stress concentration factors for several integrally stiffened panels under various loading conditions were obtained. The flaw growth behavior of both stiffened and unstiffened panels under biaxial loading conditions was determined. The effect of a complex stress state was studied by introducing flaws in fillet areas of biaxially loaded stiffened panels.

  2. Development of Standards for Nondestructive Evaluation of COPVs Used in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Saulsberry, Regor L.

    2012-01-01

    Composite OverWrapped Pressure Vessels (COPVs) are currently accepted by NASA based on design and qualification requirements and generally not verified by NDE for the following reasons: (1) Manufactures and end users generally do not have experience and validated quantitative methods of detecting flaws and defects of concern (1-a) If detected, the flaws are not adequately quantified and it is unclear how they may contribute to degradation in mechanical response (1-b) Carbon-epoxy COPVs also extremely sensitive to impact damage and impacts may be below the visible detection threshold (2) If damage is detected, this generally results in rejection since the effect on mechanical response is generally not known (3) NDE response has not generally been fully characterized, probability of detection (POD) established, and processes validated for evaluation of vessel condition as manufactured and delivered.

  3. Stress Intensity Factor Plasticity Correction for Flaws in Stress Concentration Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, E.; Wilson, W.K.

    2000-02-01

    Plasticity corrections to elastically computed stress intensity factors are often included in brittle fracture evaluation procedures. These corrections are based on the existence of a plastic zone in the vicinity of the crack tip. Such a plastic zone correction is included in the flaw evaluation procedure of Appendix A to Section XI of the ASME Boiler and Pressure Vessel Code. Plasticity effects from the results of elastic and elastic-plastic explicit flaw finite element analyses are examined for various size cracks emanating from the root of a notch in a panel and for cracks located at fillet fadii. The results ofmore » these caluclations provide conditions under which the crack-tip plastic zone correction based on the Irwin plastic zone size overestimates the plasticity effect for crack-like flaws embedded in stress concentration regions in which the elastically computed stress exceeds the yield strength of the material. A failure assessment diagram (FAD) curve is employed to graphically c haracterize the effect of plasticity on the crack driving force. The Option 1 FAD curve of the Level 3 advanced fracture assessment procedure of British Standard PD 6493:1991, adjusted for stress concentration effects by a term that is a function of the applied load and the ratio of the local radius of curvature at the flaw location to the flaw depth, provides a satisfactory bound to all the FAD curves derived from the explicit flaw finite element calculations. The adjusted FAD curve is a less restrictive plasticity correction than the plastic zone correction of Section XI for flaws embedded in plastic zones at geometric stress concentrators. This enables unnecessary conservatism to be removed from flaw evaluation procedures that utilize plasticity corrections.« less

  4. Intelligent feature selection techniques for pattern classification of Lamb wave signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinders, Mark K.; Miller, Corey A.

    2014-02-18

    Lamb wave interaction with flaws is a complex, three-dimensional phenomenon, which often frustrates signal interpretation schemes based on mode arrival time shifts predicted by dispersion curves. As the flaw severity increases, scattering and mode conversion effects will often dominate the time-domain signals, obscuring available information about flaws because multiple modes may arrive on top of each other. Even for idealized flaw geometries the scattering and mode conversion behavior of Lamb waves is very complex. Here, multi-mode Lamb waves in a metal plate are propagated across a rectangular flat-bottom hole in a sequence of pitch-catch measurements corresponding to the double crossholemore » tomography geometry. The flaw is sequentially deepened, with the Lamb wave measurements repeated at each flaw depth. Lamb wave tomography reconstructions are used to identify which waveforms have interacted with the flaw and thereby carry information about its depth. Multiple features are extracted from each of the Lamb wave signals using wavelets, which are then fed to statistical pattern classification algorithms that identify flaw severity. In order to achieve the highest classification accuracy, an optimal feature space is required but it’s never known a priori which features are going to be best. For structural health monitoring we make use of the fact that physical flaws, such as corrosion, will only increase over time. This allows us to identify feature vectors which are topologically well-behaved by requiring that sequential classes “line up” in feature vector space. An intelligent feature selection routine is illustrated that identifies favorable class distributions in multi-dimensional feature spaces using computational homology theory. Betti numbers and formal classification accuracies are calculated for each feature space subset to establish a correlation between the topology of the class distribution and the corresponding classification accuracy.« less

  5. Fracture characteristics of structural aerospace alloys containing deep surface flaws. [aluminum-titanium alloys

    NASA Technical Reports Server (NTRS)

    Masters, J. N.; Bixler, W. D.; Finger, R. W.

    1973-01-01

    Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions.

  6. Quantification technology study on flaws in steam-filled pipelines based on image processing

    NASA Astrophysics Data System (ADS)

    Sun, Lina; Yuan, Peixin

    2009-07-01

    Starting from exploiting the applied detection system of gas transmission pipeline, a set of X-ray image processing methods and pipeline flaw quantificational evaluation methods are proposed. Defective and non-defective strings and rows in gray image were extracted and oscillogram was obtained. We can distinguish defects in contrast with two gray images division. According to the gray value of defects with different thicknesses, the gray level depth curve is founded. Through exponential and polynomial fitting way to obtain the attenuation mathematical model which the beam penetrates pipeline, thus attain flaw deep dimension. This paper tests on the PPR pipe in the production of simulated holes flaw and cracks flaw, 135KV used the X-ray source on the testing. Test results show that X-ray image processing method, which meet the needs of high efficient flaw detection and provide quality safeguard for thick oil recovery, can be used successfully in detecting corrosion of insulated pipe.

  7. Effects of proof loads and combined mode loadings on fracture and flaw growth characteristics of aerospace alloys

    NASA Technical Reports Server (NTRS)

    Shah, R. C.

    1974-01-01

    This experimental program was undertaken to determine the effects of (1) combined tensile and bending loadings, (2) combined tensile and shear loadings, and (3) proof overloads on fracture and flaw growth characteristics of aerospace alloys. Tests were performed on four alloys: 2219-T87 aluminum, 5Al-2.5Sn (ELl) titanium, 6Al-4V beta STA titanium and high strength 4340 steel. Tests were conducted in room air, gaseous nitrogen at -200F (144K), liquid nitrogen and liquid hydrogen. Flat center cracked and surface flawed specimens, cracked tube specimens, circumferentially notched round bar and surface flawed cylindrical specimens were tested. The three-dimensional photoelastic technique of stress freezing and slicing was used to determine stress intensity factors for surface flawed cylindrical specimens subjected to tension or torsion. Results showed that proof load/temperature histories used in the tests have a small beneficial effect or no effect on subsequent fracture strength and flaw growth rates.

  8. Parents' experiences and expectations of care in pregnancy after stillbirth or neonatal death: a metasynthesis.

    PubMed

    Mills, T A; Ricklesford, C; Cooke, A; Heazell, A E P; Whitworth, M; Lavender, T

    2014-07-01

    Pregnancy after perinatal death is characterised by elevated stress and anxiety, increasing the risk of adverse short-term and long-term outcomes. This metasynthesis aimed to improve understanding of parents' experiences of maternity care in pregnancy after stillbirth or neonatal death. Six electronic databases were searched using predefined search terms. English language studies using qualitative methods to explore the experiences of parents in pregnancy after perinatal loss, were included subject to quality appraisal framework. Searches were initiated in December 2011 and finalised in March 2013. Studies were synthesised using an interpretive approach derived from meta-ethnography. Fourteen studies were included in the synthesis, graded A (no or few flaws, high trustworthiness; n = 5), B (some flaws, unlikely to affect trustworthiness; n = 5) and C (some flaws, possible impact on trustworthiness; n = 4). Three main themes were identified; co-existence of emotions, helpful and unhelpful coping activities and seeking reasssurance through interactions. Parents' experiences of pregnancy are profoundly altered by previous perinatal death; conflicted emotions, extreme anxiety, isolation and a lack of trust in a good outcome are commonly reported. Emotional and psychological support improves parents' experiences of subsequent pregnancy, but the absence of an evidence base may limit consistent delivery of optimal care within current services. © 2014 Royal College of Obstetricians and Gynaecologists.

  9. Carcinogenicity of glyphosate: why is New Zealand's EPA lost in the weeds?

    PubMed

    Douwes, Jeroen; 't Mannetje, Andrea; McLean, Dave; Pearce, Neil; Woodward, Alistair; Potter, John D

    2018-03-23

    In 2015, the International Agency for Research on Cancer (IARC) concluded that glyphosate is "probably carcinogenic to humans". The New Zealand Environmental Protection Authority (NZEPA) rejected this and commissioned a new report, concluding that glyphosate was unlikely to be genotoxic or carcinogenic to humans. The NZEPA has argued that the difference arose because IARC is a "hazard-identification authority", whereas NZEPA is a "regulatory body that needs to cast the net more widely". We conclude that the NZEPA process for evaluating the carcinogenicity of glyphosate was flawed and the post hoc justification invalid: there is no mention of risk assessment or "net-benefit approach" in the NZEPA report; and there is no discussion of current New Zealand glyphosate exposures. Further, the NZEPA report quotes heavily from the European Food Safety Authority (EFSA) report, which is itself markedly flawed, and like the NZEPA report, relies heavily on industry-funded and industry-manipulated reviews. Given the scientific flaws in both reports we urge that: the NZEPA report be withdrawn; the NZEPA respond to the concerns raised and for a reassessment to be conducted; and clearer process and better understanding of science be used to inform any future review of hazardous substances in New Zealand.

  10. Ellipsometry-like analysis of polarization state for micro cracks using stress-induced light scattering method

    NASA Astrophysics Data System (ADS)

    Sakata, Yoshitaro; Terasaki, Nao; Sakai, Kazufumi; Nonaka, Kazuhiro

    2016-03-01

    Fine polishing techniques, such as chemical mechanical polishing (CMP), are important to glass substrate manufacturing. When these techniques involve mechanical interaction in the form of friction between the abrasive and the substrate surface during polishing, latent flaws may form on the product. Fine polishing induced latent flaws in glass substrates may become obvious during a subsequent cleaning process if the glass surface is eroded away by chemical interaction with a cleaning liquid. Thus, latent flaws reduce product yield. A novel technique (the stress-induced light scattering method; SILSM) which was combined with light scattering method and stress effects was proposed for inspecting surface to detect polishing induced latent flaws. This method is able to distinguish between latent flaws and tiny particles on the surface. In this method, an actuator deforms a sample inducing stress effects around the tip of a latent flaw caused by the deformation, which in turn changes the refractive index of the material around the tip of the latent flaw because of the photoelastic effect. A CCD camera detects this changed refractive index as variations in light-scattering intensity. In this study, the changes in reflection coefficients and polarization states after application of stress to a glass substrate were calculated and evaluated qualitatively using Jones matrix-like ellipsometry. As the results, it was shown that change in the polarization states around the tip of latent flaw were evaluated between before and after applied stress, qualitatively.

  11. Acoustic Emission Weld Monitoring in the 2195 Aluminum-Lithium Alloy

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2005-01-01

    Due to its low density, the 2195 aluminum-lithium alloy was developed as a replacement for alloy 2219 in the Space Shuttle External Tank (ET). The external tank is the single largest component of the space shuttle system. It is 154 feet long and 27.6 feet in diameter, and serves as the structural backbone for the shuttle during launch, absorbing most of the 7 million plus pounds of thrust produced. The almost 4% decrease in density between the two materials provides an extra 7500 pounds of payload capacity necessary to put the International Space Station components into orbit. The ET is an all-welded structure; hence, the requirement is for up to five rewelds without hot cracking. Unfortunately, hot cracking during re-welding or repair operations was occurring and had to be dealt with before the new super lightweight tank could be used. Weld metal porosity formation was also of concern because it leads to hot cracking during weld repairs. Accordingly, acoustic emission (AE) nondestructive testing was employed to monitor the formation of porosity and hot cracks in order to select the best filler metal and optimize the weld schedule. The purpose of this work is to determine the feasibility of detecting hot cracking in welded aluminum-lithium (Al-Li) structures through the analysis of acoustic emission data. By acoustically characterizing the effects of reheating during a repair operation, the potential for hidden flaws coalescing and becoming "unstable" as the panel is repaired could be reduced. Identification of regions where microcrack growth is likely to occur and the location of active flaw growth in the repair weld will provide the welder with direct feedback as to the current weld quality enabling adjustments to the repair process be made in the field. An acoustic emission analysis of the source mechanisms present during welding has been conducted with the goals of locating regions in the weld line that are susceptible to damage from a repair operation, identifying the formation of critically sized flaws and providing accept/reject criteria for the quality of a weld as it is performed.

  12. English Compositionism as Fraud and Failure

    ERIC Educational Resources Information Center

    Zorn, Jeffrey

    2013-01-01

    In this article, the author reflects on the flawed writing and composition teaching he received in his early Dartmouth University days. He reports that it took extraordinary classics professors like Don Rosenthal and Jack Zarker to turn around his work, and that these professors contributed to his eventual successful career as a college-level…

  13. Supporting Community in Schools: The Relationship of Resilience and Vulnerability.

    ERIC Educational Resources Information Center

    Calderwood, Patricia E.

    This paper examines the role of community in education. It focuses on the relation between vulnerability and resilience and how this dialectic is fundamental to the workings of community. Community without vulnerability is impoverished since it offers no chance to build resilience. However, vulnerabilities may be perceived as flaws that could be…

  14. Is Acculturation in Hispanic Health Research a Flawed Concept? JSRI Working Paper.

    ERIC Educational Resources Information Center

    Ponce, Carlos; Comer, Brendon

    Some health researchers have used the concept of acculturation to explain health behaviors or illnesses prevalent among Hispanic people. This paper reviews studies in health, educational, and social science research among Hispanics and argues that acculturation studies are seriously limited by several basic conceptual and methodological problems.…

  15. The Self-Concept. Volume 1, A Review of Methodological Considerations and Measuring Instruments. Revised Edition.

    ERIC Educational Resources Information Center

    Wylie, Ruth C.

    This volume of the revised edition describes and evaluates measurement methods, research designs, and procedures which have been or might appropriately be used in self-concept research. Working from the perspective that self-concept or phenomenal personality theories can be scientifically investigated, methodological flaws and questionable…

  16. What Price Free Schools? The Continued Insidious Privatisation of UK State Education

    ERIC Educational Resources Information Center

    Kitchener, David

    2013-01-01

    A review of American charter schools and Swedish free-school research is outlined, providing strong evidence that both free-market models are flawed in their claims of enhancing young people's educational experience. A substantial body of work is included that strongly indicates charter and free schools increase social segregation and lower…

  17. Non destructive technique for cracks detection by an eddy current in differential mode for steel frames

    NASA Astrophysics Data System (ADS)

    Harzalla, S.; Belgacem, F. Bin Muhammad; Chabaat, M.

    2014-12-01

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing results for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented.

  18. What Should Drive Educational Equity and Student Diversity in Australian Higher Education? Social Responsibility Versus Reporting Obligation. AIR 1997 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Clarke, John R.

    The current approach to promoting educational equity in universities in Australia is substantially flawed. Through the "equity framework," the Australian university community sector has been compelled to involvement with educational equity through government pressure that has included financial incentives and legislation. Six groups have…

  19. Investigating and Stimulating Primary Teachers' Attitudes Towards Science: Summary of a Large-Scale Research Project

    ERIC Educational Resources Information Center

    Walma van der Molen, Juliette; van Aalderen-Smeets, Sandra

    2013-01-01

    Attention to the attitudes of primary teachers towards science is of fundamental importance to research on primary science education. The current article describes a large-scale research project that aims to overcome three main shortcomings in attitude research, i.e. lack of a strong theoretical concept of attitude, methodological flaws in…

  20. Adoption by Policy Makers of Knowledge from Educational Research: An Alternative Perspective

    ERIC Educational Resources Information Center

    Brown, Chris

    2012-01-01

    The phrase knowledge adoption refers to the ways in which policymakers take up and use evidence. Whilst frameworks and models have been put forward to explain knowledge adoption activity, this paper argues that current approaches are flawed and do not address the complexities affecting the successful realisation of knowledge-adoption efforts.…

  1. 78 FR 4949 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Order Instituting Proceedings To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ... system) and orders utilizing the INAV Pegged Order functionality for that ETF already in the system would... on a flawed INAV (e.g., whether such orders would be cancellable). The commenter questions the... represents that it currently utilizes a number of systems and processes aimed at detecting dissemination or...

  2. Addiction as a Systems Failure: Focus on Adolescence and Smoking

    ERIC Educational Resources Information Center

    Baler, Ruben D.; Volkow, Nora D.

    2011-01-01

    Objective: Scientific advances in the field of addiction have forever debunked the notion that addiction reflects a character flaw under voluntary control, demonstrating instead that it is a bona fide disease of the brain. The aim of this review is to go beyond this consensus understanding and explore the most current evidence regarding the vast…

  3. "Comparison, Understanding and Teacher Education in International Perspective" by Shen-Keng Yang. Book Review.

    ERIC Educational Resources Information Center

    Clarkson, J. D.

    2000-01-01

    Notes that Yang's book provides a combination of Eastern and Western philosophy in defining values, aims, and methods of education, research, and teacher preparation programs. Maintains that the book presents important insights into current educational issues. Asserts that problems such as printing errors and significant flaws in arguments add to…

  4. Poverty Measurement in the U.S., Europe, and Developing Countries

    ERIC Educational Resources Information Center

    Couch, Kenneth A.; Pirog, Maureen A.

    2010-01-01

    In December of 2009, many within the American community of analysts, policymakers, and program managers are looking expectantly at the possibility of change in the basic measure used to gauge poverty in the United States. A broad consensus has emerged that the current official measure of poverty in the United States is deeply flawed, in the income…

  5. Flaws in Commercial Reading Materials.

    ERIC Educational Resources Information Center

    Axelrod, Jerome

    Three flaws found in commercial reading materials, such as workbooks and kits, are discussed in this paper, and examples of the flaws are taken from specific materials. The first problem noted is that illustrations frequently provide the information that the learner is supposed to supply through phonetic or structural analysis; the illustrations…

  6. Ductile fracture of cylindrical vessels containing a large flaw

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Irwin, G. R.; Ratwani, M.

    1976-01-01

    The fracture process in pressurized cylindrical vessels containing a relatively large flaw is considered. The flaw is assumed to be a part-through or through meridional crack. The flaw geometry, the yield behavior of the material, and the internal pressure are assumed to be such that in the neighborhood of the flaw the cylinder wall undergoes large-scale plastic deformations. Thus, the problem falls outside the range of applicability of conventional brittle fracture theories. To study the problem, plasticity considerations are introduced into the shell theory through the assumptions of fully-yielded net ligaments using a plastic strip model. Then a ductile fracture criterion is developed which is based on the concept of net ligament plastic instability. A limited verification is attempted by comparing the theoretical predictions with some existing experimental results.

  7. ULTRASONIC FLAW DETECTION METHOD AND MEANS

    DOEpatents

    Worlton, D.C.

    1961-08-15

    A method of detecting subsurface flaws in an object using ultrasonic waves is described. An ultnasonic wave of predetermined velocity and frequency is transmitted to engage the surface of the object at a predetermined angle of inci dence thereto. The incident angle of the wave to the surface is determined with respect to phase velocity, incident wave velocity, incident wave frequency, and the estimated depth of the flaw so that Lamb waves of a particular type and mode are induced only in the portion of the object between the flaw and the surface. These Lamb waves are then detected as they leave the object at an angle of exit equal to the angle of incidence. No waves wlll be generated in the object and hence received if no flaw exists beneath the surface. (AEC)

  8. Identify Structural Flaw Location and Type with an Inverse Algorithm of Resonance Inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wei; Lai, Canhai; Sun, Xin

    To evaluate the fitness-for-service of a structural component and to quantify its remaining useful life, aging and service-induced structural flaws must be quantitatively determined in service or during scheduled maintenance shutdowns. Resonance inspection (RI), a non-destructive evaluation (NDE) technique, distinguishes the anomalous parts from the good parts based on changes in the natural frequency spectra. Known for its numerous advantages, i.e., low inspection cost, high testing speed, and broad applicability to complex structures, RI has been widely used in the automobile industry for quality inspection. However, compared to other contemporary direct visualization-based NDE methods, a more widespread application of RImore » faces a fundamental challenge because such technology is unable to quantify the flaw details, e.g. location, dimensions, and types. In this study, the applicability of a maximum correlation-based inverse RI algorithm developed by the authors is further studied for various flaw cases. It is demonstrated that a variety of common structural flaws, i.e. stiffness degradation, voids, and cracks, can be accurately retrieved by this algorithm even when multiple different types of flaws coexist. The quantitative relations between the damage identification results and the flaw characteristics are also developed to assist the evaluation of the actual state of health of the engineering structures.« less

  9. Unified Ultrasonic/Eddy-Current Data Acquisition

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.

  10. Processing and mechanical characterization of alumina laminates

    NASA Astrophysics Data System (ADS)

    Montgomery, John K.

    2002-08-01

    Single-phase ceramics that combine property gradients or steps in monolithic bodies are sought as alternatives to ceramic composites made of dissimilar materials. This work describes novel processing methods to produce stepped-density (or laminated) alumina single-phase bodies that maintain their mechanical integrity. One arrangement consists of a stiff, dense bulk material with a thin, flaw tolerant, porous exterior layer. Another configuration consists of a lightweight, low-density bulk material with a thin, hard, wear resistant exterior layer. Alumina laminates with strong interfaces have been successfully produced in this work using two different direct-casting processes. Gelcasting is a useful near-net shape processing technique that has been combined with several techniques, such as reaction bonding of aluminum oxide and the use of starch as a fugative filler, to successfully produced stepped-density alumina laminates. The other direct casting process that has been developed in this work is thermoreversible gelcasting (TRG). This is a reversible gelation process that has been used to produce near-net shape dense ceramic bodies. Also, individual layers can be stacked together and heated to produce laminates. Bilayer laminate samples were produced with varied thickness of porous and dense layers. It was shown that due to the difference in modulus and hardness, transverse cracking is found upon Hertzian contact when the dense layer is on the exterior. In the opposite arrangement, compacted damage zones formed in the porous material and no damage occurred in the underlying dense layer. Flaw tolerant behavior of the porous exterior/dense underlayer was examined by measuring biaxial strength as a function of Vickers indentation load. It was found that the thinnest layer of porous material results in the greatest flaw tolerance. Also, higher strength was exhibited at large indentation loads when compared to dense monoliths. The calculated stresses on the surfaces and interface afforded an explanation of the behavior that failure initiates at the interface between the layers for the thinnest configuration, rather than the sample surface.

  11. Insensitivity to Flaws Leads to Damage Tolerance in Brittle Architected Meta-Materials

    NASA Astrophysics Data System (ADS)

    Montemayor, L. C.; Wong, W. H.; Zhang, Y.-W.; Greer, J. R.

    2016-02-01

    Cellular solids are instrumental in creating lightweight, strong, and damage-tolerant engineering materials. By extending feature size down to the nanoscale, we simultaneously exploit the architecture and material size effects to substantially enhance structural integrity of architected meta-materials. We discovered that hollow-tube alumina nanolattices with 3D kagome geometry that contained pre-fabricated flaws always failed at the same load as the pristine specimens when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. Samples with (a/w) > 0.3, and notch length-to-unit cell size ratios of (a/l) > 5.2, failed at a lower peak loads because of the higher sample compliance when fewer unit cells span the intact region. Finite element simulations show that the failure is governed by purely tensile loading for (a/w) < 0.3 for the same (a/l); bending begins to play a significant role in failure as (a/w) increases. This experimental and computational work demonstrates that the discrete-continuum duality of architected structural meta-materials may give rise to their damage tolerance and insensitivity of failure to the presence of flaws even when made entirely of intrinsically brittle materials.

  12. Eddy-Current Detection Of Cracks In Reinforced Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Christensen, Scott V.; Koshti, Ajay M.

    1995-01-01

    Investigations of failures of components made of reinforced carbon/carbon show eddy-current flaw-detection techniques applicable to these components. Investigation focused on space shuttle parts, but applicable to other parts made of carbon/carbon materials. Techniques reveal cracks, too small to be detected visually, in carbon/carbon matrix substrates and in silicon carbide coates on substrates. Also reveals delaminations in carbon/carbon matrices. Used to characterize extents and locations of discontinuities in substrates in situations in which ultrasonic techniques and destructive techniques not practical.

  13. Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Special Session C06 on: “Physical, biological and biogeochemical processes associated with young thin ice types”

    NASA Astrophysics Data System (ADS)

    Prinsenberg, S. J.

    2009-12-01

    Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Simon Prinsenberg1 and Yves Graton2 1Bedford Inst. of Oceanography, Fisheries and Oceans Canada P.O. Box1006, Dartmouth, Nova Scotia, B2Y 4A2, Canada prinsenbergs@mar.dfo-mpo.gc.ca 2Inst. National de la Recherche Scientifique-Eau, INRS-ETE University of Quebec at Quebec City, Quebec yvesgratton@eteinrs.ca During the winter of 2008, the flaw lead south of Banks Island repeatedly opened and closed representing an elongated region where periodically the large ice growth stimulates the densification of the surface layer due to salt rejection and instigates a local circulation pattern that will affect the biological processes of the region. Helicopter-borne sensors were available to monitor the aftermath of one of the rapid closing of the flaw lead into extensive elongated rubble field using a Canadian Ice breaker, CCGS Amundsen, as a logistic base. After the wind reversed a new open flaw lead 20km wide restarting a new flaw lead formation cycle. Ice thickness and surface roughness data were collected from the rubble field and adjacent open flaw lead with an Electromagnetic-Laser system. The strong wind event of April 4-5 2009 generated a large linear 1.5km wide ice rubble field up to 8-10m thick when the 60cm thick, 18km wide flaw lead was crunched into land-fast by the 1.5m thick offshore pack ice. It is expected that during rapid ice growth in a flaw lead, salt rejection increase the density of the surface water layer producing a surface depression (Low) and cyclonic circulation. In contrast at depth, the extra surface dense water produces a high in the horizontal pressure field and anti-cyclonic circulation which remains after the rapid ice growth within the flaw lead stops. One of such remnants may have been observed during the CFL-IPY winter survey.

  14. Is food allergen analysis flawed? Health and supply chain risks and a proposed framework to address urgent analytical needs.

    PubMed

    Walker, M J; Burns, D T; Elliott, C T; Gowland, M H; Mills, E N Clare

    2016-01-07

    Food allergy is an increasing problem for those affected, their families or carers, the food industry and for regulators. The food supply chain is highly vulnerable to fraud involving food allergens, risking fatalities and severe reputational damage to the food industry. Many facets are being pursued to ameliorate the difficulties including better food labelling and the concept of thresholds of elicitation of allergy symptoms as risk management tools. These efforts depend to a high degree on the ability reliably to detect and quantify food allergens; yet all current analytical approaches exhibit severe deficiencies that jeopardise accurate results being produced particularly in terms of the risks of false positive and false negative reporting. If we fail to realise the promise of current risk assessment and risk management of food allergens through lack of the ability to measure food allergens reproducibly and with traceability to an international unit of measurement, the analytical community will have failed a significant societal challenge. Three distinct but interrelated areas of analytical work are urgently needed to address the substantial gaps identified: (a) a coordinated international programme for the production of properly characterised clinically relevant reference materials and calibrants for food allergen analysis; (b) an international programme to widen the scope of proteomics and genomics bioinformatics for the genera containing the major allergens to address problems in ELISA, MS and DNA methods; (c) the initiation of a coordinated international programme leading to reference methods for allergen proteins that provide results traceable to the SI. This article describes in more detail food allergy, the risks of inapplicable or flawed allergen analyses with examples and a proposed framework, including clinically relevant incurred allergen concentrations, to address the currently unmet and urgently required analytical requirements. Support for the above recommendations from food authorities, business organisations and National Measurement Institutes is important; however transparent international coordination is essential. Thus our recommendations are primarily addressed to the European Commission, the Health and Food Safety Directorate, DG Santé. A global multidisciplinary consortium is required to provide a curated suite of data including genomic and proteomic data on key allergenic food sources, made publically available on line.

  15. PROBLEMS OF RADIOLOGICAL PROTECTION IN FLAW DETECTION (in Polish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domanus, J.; Wolski, M.

    1962-01-01

    All industrial flaw detection laboratories are covered, with respect to their radiological protection, by the supervision of the Inst. of Electrotechnics. A discussion is given of the results of this action, especially the cases of exceeding the admissible doses. The analysis of endangerment by radiation of employees of flaw detection laboratories is given. (auth)

  16. Does the Detection of Misunderstanding Lead to Its Revision?

    ERIC Educational Resources Information Center

    García-Rodicio, Héctor; Sánchez, Emilio

    2014-01-01

    When dealing with complex conceptual systems, low-prior- knowledge learners develop fragmentary and incorrect understanding. To learn complex topics deeply, these learners have to (a) monitor understanding to detect flaws and (b) generate explanations to revise and repair the flaws. In this research we explored if the detection of a flaw in…

  17. A review of the coroner system in England and Wales: a commentary.

    PubMed

    Berry, Colin; Heaton-Armstrong, Anthony

    2005-01-01

    The certification of deaths and their investigation is flawed and has not been subject to comprehensive revision for many decades; the current system is fragmented. Despite its historical 'stability', it is poorly understood by many who have to use it and the lack of supervisory structures within the system means that there is no leadership, accountability or quality assurance. No formal linkage to or communication with other public health services and systems exists, minimising its epidemiological value. There is a lack of clear participation rights in these processes for bereaved families. The standards for the treatment and support of the bereaved are woefully inadequate and have contributed in a major way to certain causes celebres. A report in 2003 suggested that death investigation should be a service that is consistent and professional, able to deal effectively with legal and health issues, work across the full range of concerns about public health and public safety and support, and audit the death certification process. The role of those supporting the current system must be properly established in a framework of accountability.

  18. The probability of flaw detection and the probability of false calls in nondestructive evaluation equipment

    NASA Technical Reports Server (NTRS)

    Temple, Enoch C.

    1994-01-01

    The space industry has developed many composite materials that have high durability in proportion to their weights. Many of these materials have a likelihood for flaws that is higher than in traditional metals. There are also coverings (such as paint) that develop flaws that may adversely affect the performance of the system in which they are used. Therefore there is a need to monitor the soundness of composite structures. To meet this monitoring need, many nondestructive evaluation (NDE) systems have been developed. An NDE system is designed to detect material flaws and make flaw measurements without destroying the inspected item. Also, the detection operation is expected to be performed in a rapid manner in a field or production environment. Some of the most recent video-based NDE methodologies are shearography, holography, thermography, and video image correlation.

  19. On the Predictability of Future Impact in Science

    PubMed Central

    Penner, Orion; Pan, Raj K.; Petersen, Alexander M.; Kaski, Kimmo; Fortunato, Santo

    2013-01-01

    Correctly assessing a scientist's past research impact and potential for future impact is key in recruitment decisions and other evaluation processes. While a candidate's future impact is the main concern for these decisions, most measures only quantify the impact of previous work. Recently, it has been argued that linear regression models are capable of predicting a scientist's future impact. By applying that future impact model to 762 careers drawn from three disciplines: physics, biology, and mathematics, we identify a number of subtle, but critical, flaws in current models. Specifically, cumulative non-decreasing measures like the h-index contain intrinsic autocorrelation, resulting in significant overestimation of their “predictive power”. Moreover, the predictive power of these models depend heavily upon scientists' career age, producing least accurate estimates for young researchers. Our results place in doubt the suitability of such models, and indicate further investigation is required before they can be used in recruiting decisions. PMID:24165898

  20. Assessing performance of flaw characterization methods through uncertainty propagation

    NASA Astrophysics Data System (ADS)

    Miorelli, R.; Le Bourdais, F.; Artusi, X.

    2018-04-01

    In this work, we assess the inversion performance in terms of crack characterization and localization based on synthetic signals associated to ultrasonic and eddy current physics. More precisely, two different standard iterative inversion algorithms are used to minimize the discrepancy between measurements (i.e., the tested data) and simulations. Furthermore, in order to speed up the computational time and get rid of the computational burden often associated to iterative inversion algorithms, we replace the standard forward solver by a suitable metamodel fit on a database built offline. In a second step, we assess the inversion performance by adding uncertainties on a subset of the database parameters and then, through the metamodel, we propagate these uncertainties within the inversion procedure. The fast propagation of uncertainties enables efficiently evaluating the impact due to the lack of knowledge on some parameters employed to describe the inspection scenarios, which is a situation commonly encountered in the industrial NDE context.

  1. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  2. Improved candidate generation and coverage analysis methods for design optimization of symmetric multi-satellite constellations

    NASA Astrophysics Data System (ADS)

    Matossian, Mark G.

    1997-01-01

    Much attention in recent years has focused on commercial telecommunications ventures involving constellations of spacecraft in low and medium Earth orbit. These projects often require investments on the order of billions of dollars (US$) for development and operations, but surprisingly little work has been published on constellation design optimization for coverage analysis, traffic simulation and launch sequencing for constellation build-up strategies. This paper addresses the two most critical aspects of constellation orbital design — efficient constellation candidate generation and coverage analysis. Inefficiencies and flaws in the current standard algorithm for constellation modeling are identified, and a corrected and improved algorithm is presented. In the 1970's, John Walker and G. V. Mozhaev developed innovative strategies for continuous global coverage using symmetric non-geosynchronous constellations. (These are sometimes referred to as rosette, or Walker constellations. An example is pictured above.) In 1980, the late Arthur Ballard extended and generalized the work of Walker into a detailed algorithm for the NAVSTAR/GPS program, which deployed a 24 satellite symmetric constellation. Ballard's important contribution was published in his "Rosette Constellations of Earth Satellites."

  3. A robust indicator based on singular value decomposition for flaw feature detection from noisy ultrasonic signals

    NASA Astrophysics Data System (ADS)

    Cui, Ximing; Wang, Zhe; Kang, Yihua; Pu, Haiming; Deng, Zhiyang

    2018-05-01

    Singular value decomposition (SVD) has been proven to be an effective de-noising tool for flaw echo signal feature detection in ultrasonic non-destructive evaluation (NDE). However, the uncertainty in the arbitrary manner of the selection of an effective singular value weakens the robustness of this technique. Improper selection of effective singular values will lead to bad performance of SVD de-noising. What is more, the computational complexity of SVD is too large for it to be applied in real-time applications. In this paper, to eliminate the uncertainty in SVD de-noising, a novel flaw indicator, named the maximum singular value indicator (MSI), based on short-time SVD (STSVD), is proposed for flaw feature detection from a measured signal in ultrasonic NDE. In this technique, the measured signal is first truncated into overlapping short-time data segments to put feature information of a transient flaw echo signal in local field, and then the MSI can be obtained from the SVD of each short-time data segment. Research shows that this indicator can clearly indicate the location of ultrasonic flaw signals, and the computational complexity of this STSVD-based indicator is significantly reduced with the algorithm proposed in this paper. Both simulation and experiments show that this technique is very efficient for real-time application in flaw detection from noisy data.

  4. Vitamin D and depression: a systematic review and meta-analysis comparing studies with and without biological flaws.

    PubMed

    Spedding, Simon

    2014-04-11

    Efficacy of Vitamin D supplements in depression is controversial, awaiting further literature analysis. Biological flaws in primary studies is a possible reason meta-analyses of Vitamin D have failed to demonstrate efficacy. This systematic review and meta-analysis of Vitamin D and depression compared studies with and without biological flaws. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search was undertaken through four databases for randomized controlled trials (RCTs). Studies were critically appraised for methodological quality and biological flaws, in relation to the hypothesis and study design. Meta-analyses were performed for studies according to the presence of biological flaws. The 15 RCTs identified provide a more comprehensive evidence-base than previous systematic reviews; methodological quality of studies was generally good and methodology was diverse. A meta-analysis of all studies without flaws demonstrated a statistically significant improvement in depression with Vitamin D supplements (+0.78 CI +0.24, +1.27). Studies with biological flaws were mainly inconclusive, with the meta-analysis demonstrating a statistically significant worsening in depression by taking Vitamin D supplements (-1.1 CI -0.7, -1.5). Vitamin D supplementation (≥800 I.U. daily) was somewhat favorable in the management of depression in studies that demonstrate a change in vitamin levels, and the effect size was comparable to that of anti-depressant medication.

  5. Demand Economics: What Happens Before the Swap.

    ERIC Educational Resources Information Center

    Smith, H. Doyle

    Although this book is about how things work, it is also about flaws in the U.S. economic system. It is difficult to realize that every economic activity gravitates toward monopoly or rebellion against monopoly. This is the subject of the book, which is the result of 50 years of actual experience, informed observations, and trained readings. The…

  6. Using Google Earth to Teach the Magnitude of Deep Time

    ERIC Educational Resources Information Center

    Parker, Joel D.

    2011-01-01

    Most timeline analogies of geologic and evolutionary time are fundamentally flawed. They trade off the problem of grasping very long times for the problem of grasping very short distances. The result is an understanding of relative time with little comprehension of absolute time. Earlier work has shown that the distances most easily understood by…

  7. What Works: Building Natural Science Communities. A Plan for Strengthening Undergraduate Science and Mathematics. Volume One.

    ERIC Educational Resources Information Center

    Narum, Jeanne L., Ed.

    In an era when the U.S. educational enterprise, particularly in mathematics, physical sciences, and engineering, has been found to be seriously flawed and has come under criticism from many different sectors, it is essential for science and mathematics educators from the nation's predominantly undergraduate institutions to take the lead in…

  8. Nondestructive testing of advanced materials using sensors with metamaterials

    NASA Astrophysics Data System (ADS)

    Rozina, Steigmann; Narcis Andrei, Danila; Nicoleta, Iftimie; Catalin-Andrei, Tugui; Frantisek, Novy; Stanislava, Fintova; Petrica, Vizureanu; Adriana, Savin

    2016-11-01

    This work presents a method for nondestructive evaluation (NDE) of advanced materials that makes use of the images in near field and the concentration of flux using the phenomenon of spatial resolution. The method allows the detection of flaws as crack, nonadhesion of coating, degradation or presence delamination stresses correlated with the response of electromagnetic sensor.

  9. Fractographic Investigation of Micromechanisms of Fracture in Alumina Ceramics

    DTIC Science & Technology

    1981-11-30

    mechanisms flaw linking work of fracture electron channeling crack branching environmental effects 20. A07 ACT (Continue an reverse side Of necessary and...CLASSIFICATION OF THIS PAGE(I hm Date "ftn.,a environments using multiple techniques such as SEM, TEM, selected area electron channeling , and...94 Selected area electron channeling (SAEC) .. .... ........ 99 V. CONCLUSIONS. .. ............................ 100 VI. REFERENCES

  10. Critical flaw size in silicon nitride ball bearings

    NASA Astrophysics Data System (ADS)

    Levesque, George Arthur

    Aircraft engine and bearing manufacturers have been aggressively pursuing advanced materials technology systems solutions to meet main shaft-bearing needs of advanced military aircraft engines. Ceramic silicon nitride hybrid bearings are being developed for such high performance applications. Though silicon nitride exhibits many favorable properties such as high compressive strength, high hardness, a third of the density of steel, low coefficient of thermal expansion, and high corrosion and temperature resistance, they also have low fracture toughness and are susceptible to failure from fatigue spalls emanating from pre-existing surface flaws that can grow under rolling contact fatigue (RCF). Rolling elements and raceways are among the most demanding components in aircraft engines due to a combination of high cyclic contact stresses, long expected component lifetimes, corrosive environment, and the high consequence of fatigue failure. The cost of these rolling elements increases exponentially with the decrease in allowable flaw size for service applications. Hence the range of 3D non-planar surface flaw geometries subject to RCF is simulated to determine the critical flaw size (CFS) or the largest allowable flaw that does not grow under service conditions. This dissertation is a numerical and experimental investigation of surface flaws in ceramic balls subjected to RCF and has resulted in the following analyses: Crack Shape Determination: the nucleation of surface flaws from ball impact that occurs during the manufacturing process is simulated. By examining the subsurface Hertzian stresses between contacting spheres, their applicability to predicting and characterizing crack size and shape is established. It is demonstrated that a wide range of cone and partial cone cracks, observed in practice, can be generated using the proposed approaches. RCF Simulation: the procedure and concerns in modeling nonplanar 3D cracks subject to RCF using FEA for stress intensity factor (SIF) trends observed from parametrically varying different physical effects are plotted and discussed. Included are developments in contact algorithms for 3D nonplanar cracks, meshing of nonplanar cracks for SIFs, parametric studies via MATLAB and other subroutines in python and FORTRAN. Establishing Fracture Parameters: the fracture toughness, K c, is determined by using numerical techniques on experimental tests namely the Brazilian disc test and a novel compression test on an indented ball. The fatigue threshold for mixed-mode loading, Keff, is determined by using a combination of numerical modeling and results from the V-ring single ball RCF test. CFS Determination: the range of 3D non-planar surface flaw geometries subject to RCF are simulated to calculate mixed mode SIFs to determine the critical flaw size, or the largest allowable flaw that does not grow under service conditions. The CFS results are presented as a function of Hertzian contact stress, traction magnitude, and crack size. Empirical Equations: accurate empirical equations (response functions) for the KI, KII, and K III SIFs for semi-elliptical surface cracks subjected to RCF as a function of the contact patch diameter, angle of crack to the surface, max pressure, position along the crack front, and aspect ratio of the crack are developed via parametric 3D FEA. Statistical Probability of Failure: since the variability in mechanical properties for brittle materials is high a probabilistic investigation of variations in flaw size, flaw orientation, fracture toughness, and Hertzian load on failure probability is conducted to statistically determine the probability of ball failure for an existing flaw subjected to the service conditions. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  11. The Eye of the Beholder: A Response to "Sociomoral Atmosphere...A Study of Teachers' Enacted Interpersonal Understanding."

    ERIC Educational Resources Information Center

    Gersten, Russell

    1991-01-01

    The observational study of effective instructional processes in kindergarten by DeVries and others is critiqued. It is maintained that (1) the study takes a narrow approach to constructivism that does not reflect current thinking; (2) there are flaws in the coding system used; and (3) the understanding of instructional issues involving minority…

  12. What Do We Know About Teaching and Learning in Urban Schools? Volume 3: Assessment that Respects Complexity in Individuals and Programs.

    ERIC Educational Resources Information Center

    Schwartz, Judah L.

    Educational assessment tools are used for accountability; selection and licensure, and to measure the effects of instruction for student diagnosis and treatment. Psychometric instruments currently in use are flawed in two ways: they attempt to rank people on fundamentally multidimensional traits, and the problem of the validity of these…

  13. Race to the Top Leaves Children and Future Citizens behind: The Devastating Effects of Centralization, Standardization, and High Stakes Accountability

    ERIC Educational Resources Information Center

    Onosko, Joe

    2011-01-01

    President Barack Obama's Race to the Top (RTT) is a profoundly flawed educational reform plan that increases standardization, centralization, and test-based accountability in our nation's schools. Following a brief summary of the interest groups supporting the plan, who is currently participating in this race, why so many states voluntarily…

  14. 77 FR 21663 - Air Quality Implementation Plans; Kentucky; Attainment Plan for the Kentucky Portion of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... available, but not yet certified, in the Air Quality System (AQS) database for 2011 show that this Area.... Moreover, there is no support for the Commenter's contention, based on the flawed premise that allowance... strong legal basis. To the extent that the current status of CAIR and the Transport Rule affect any of...

  15. Electromagnetic stimulation of the ultrasonic signal for nondestructive detection of the ferromagnetic inclusions and flaws

    NASA Astrophysics Data System (ADS)

    Finkel, Peter

    2007-03-01

    It was recently shown that thermal or optical stimulation can be used to increase sensitivity of the conventional nondestructive ultrasonic detection of the small crack, flaws and inclusions in a ferromagnetic thin-walled parts. We proposed another method based on electromagnetic modulation of the ultrasonic scattered signal from the inclusions or defects. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small cracks near small holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.

  16. Probabilistic Estimation of Critical Flaw Sizes in the Primary Structure Welds of the Ares I-X Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Hoge, Peter A.; Patel, B. M.; Nagpal, Vinod K.

    2009-01-01

    The primary structure of the Ares I-X Upper Stage Simulator (USS) launch vehicle is constructed of welded mild steel plates. There is some concern over the possibility of structural failure due to welding flaws. It was considered critical to quantify the impact of uncertainties in residual stress, material porosity, applied loads, and material and crack growth properties on the reliability of the welds during its pre-flight and flight. A criterion--an existing maximum size crack at the weld toe must be smaller than the maximum allowable flaw size--was established to estimate the reliability of the welds. A spectrum of maximum allowable flaw sizes was developed for different possible combinations of all of the above listed variables by performing probabilistic crack growth analyses using the ANSYS finite element analysis code in conjunction with the NASGRO crack growth code. Two alternative methods were used to account for residual stresses: (1) The mean residual stress was assumed to be 41 ksi and a limit was set on the net section flow stress during crack propagation. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if this limit was exceeded during four complete flight cycles, and (2) The mean residual stress was assumed to be 49.6 ksi (the parent material s yield strength) and the net section flow stress limit was ignored. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if catastrophic crack growth occurred during four complete flight cycles. Both surface-crack models and through-crack models were utilized to characterize cracks in the weld toe.

  17. Techniques for increasing boron fiber fracture strain

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1977-01-01

    Improvement in the strain-to-failure of CVD boron fibers is shown possible by contracting the tungsten boride core region and its inherent flaws. The results of three methods are presented in which etching and thermal processing techniques were employed to achieve core flaw contraction by internal stresses available in the boron sheath. After commercially and treatment induced surface flaws were removed from 203 micrometers (8 mil) fibers, the core flaw was observed to be essentially the only source of fiber fracture. Thus, fiber strain-to-failure was found to improve by an amount equal to the treatment induced contraction on the core flaw. Commercial feasibility considerations suggest as the most cost effective technique that method in which as-produced fibers are given a rapid heat treatment above 700 C. Preliminary results concerning the contraction kinetics and fracture behavior observed are presented and discussed both for high vacuum and argon gas heat treatment environments.

  18. NON-DESTRUCTIVE FLAW DETECTION APPARATUS

    DOEpatents

    Stateman, M.J.; Holloway, H.R.

    1957-12-17

    An apparatus is described for the non-destructive detection of flaws in electrical conducting articles. The particular feature of the detection apparatus is that a flaw in the front or back of the test article will not be masked by signals caused by the passage of the end and front of the article through the detection apparatus. The present invention alleviates the above problem by mounting detection coils on directly opposite sides of the test passageway so that the axes of the pickup coils are perpendicular to the axis of an energizing coil through which the article is passed. A flaw in the article will cause a change in the voltage induced in one pickup coil, but passage of the end or front of the article will not produce unequal signals. The signals are compared in appropriate electrical circuitry to actuate a recorder only when unequal signals are present, indicating the presence of a flaw.

  19. Optimizing Probability of Detection Point Estimate Demonstration

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2017-01-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.

  20. Formal verification of a fault tolerant clock synchronization algorithm

    NASA Technical Reports Server (NTRS)

    Rushby, John; Vonhenke, Frieder

    1989-01-01

    A formal specification and mechanically assisted verification of the interactive convergence clock synchronization algorithm of Lamport and Melliar-Smith is described. Several technical flaws in the analysis given by Lamport and Melliar-Smith were discovered, even though their presentation is unusally precise and detailed. It seems that these flaws were not detected by informal peer scrutiny. The flaws are discussed and a revised presentation of the analysis is given that not only corrects the flaws but is also more precise and easier to follow. Some of the corrections to the flaws require slight modifications to the original assumptions underlying the algorithm and to the constraints on its parameters, and thus change the external specifications of the algorithm. The formal analysis of the interactive convergence clock synchronization algorithm was performed using the Enhanced Hierarchical Development Methodology (EHDM) formal specification and verification environment. This application of EHDM provides a demonstration of some of the capabilities of the system.

  1. Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.

    2014-02-01

    The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebetrau, A.M.

    Work is underway at Pacific Northwest Laboratory (PNL) to improve the probabilistic analysis used to model pressurized thermal shock (PTS) incidents in reactor pressure vessels, and, further, to incorporate these improvements into the existing Vessel Integrity Simulation Analysis (VISA) code. Two topics related to work on input distributions in VISA are discussed in this paper. The first involves the treatment of flaw size distributions and the second concerns errors in the parameters in the (Guthrie) equation which is used to compute ..delta..RT/sub NDT/, the shift in reference temperature for nil ductility transition.

  3. Cognitive work analysis to evaluate the problem of patient falls in an inpatient setting

    PubMed Central

    Lopez, Karen Dunn; Cary, Michael P; Kanak, Mary F

    2010-01-01

    Objective To identify factors in the nursing work domain that contribute to the problem of inpatient falls, aside from patient risk, using cognitive work analysis. Design A mix of qualitative and quantitative methods were used to identify work constraints imposed on nurses, which may underlie patient falls. Measurements Data collection was done on a neurology unit staffed by 27 registered nurses and utilized field observations, focus groups, time–motion studies and written surveys (AHRQ Hospital Survey on Patient Culture, NASA-TLX, and custom Nursing Knowledge of Fall Prevention Subscale). Results Four major constraints were identified that inhibit nurses' ability to prevent patient falls. All constraints relate to work processes and the physical work environment, opposed to safety culture or nursing knowledge, as currently emphasized. The constraints were: cognitive ‘head data’, temporal workload, inconsistencies in written and verbal transfer of patient data, and limitations in the physical environment. To deal with these constraints, the nurses tend to employ four workarounds: written and mental chunking schemas, bed alarms, informal querying of the previous care nurse, and informal video and audio surveillance. These workarounds reflect systemic design flaws and may only be minimally effective in decreasing risk to patients. Conclusion Cognitive engineering techniques helped identify seemingly hidden constraints in the work domain that impact the problem of patient falls. System redesign strategies aimed at improving work processes and environmental limitations hold promise for decreasing the incidence of falls in inpatient nursing units. PMID:20442150

  4. Cognitive work analysis to evaluate the problem of patient falls in an inpatient setting.

    PubMed

    Lopez, Karen Dunn; Gerling, Gregory J; Cary, Michael P; Kanak, Mary F

    2010-01-01

    To identify factors in the nursing work domain that contribute to the problem of inpatient falls, aside from patient risk, using cognitive work analysis. A mix of qualitative and quantitative methods were used to identify work constraints imposed on nurses, which may underlie patient falls. Data collection was done on a neurology unit staffed by 27 registered nurses and utilized field observations, focus groups, time-motion studies and written surveys (AHRQ Hospital Survey on Patient Culture, NASA-TLX, and custom Nursing Knowledge of Fall Prevention Subscale). Four major constraints were identified that inhibit nurses' ability to prevent patient falls. All constraints relate to work processes and the physical work environment, opposed to safety culture or nursing knowledge, as currently emphasized. The constraints were: cognitive 'head data', temporal workload, inconsistencies in written and verbal transfer of patient data, and limitations in the physical environment. To deal with these constraints, the nurses tend to employ four workarounds: written and mental chunking schemas, bed alarms, informal querying of the previous care nurse, and informal video and audio surveillance. These workarounds reflect systemic design flaws and may only be minimally effective in decreasing risk to patients. Cognitive engineering techniques helped identify seemingly hidden constraints in the work domain that impact the problem of patient falls. System redesign strategies aimed at improving work processes and environmental limitations hold promise for decreasing the incidence of falls in inpatient nursing units.

  5. Gun Shows and Gun Violence: Fatally Flawed Study Yields Misleading Results

    PubMed Central

    Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A.

    2010-01-01

    A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled “The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas” outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors’ prior research. The study should not be used as evidence in formulating gun policy. PMID:20724672

  6. Gun shows and gun violence: fatally flawed study yields misleading results.

    PubMed

    Wintemute, Garen J; Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A

    2010-10-01

    A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled "The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas" outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors' prior research. The study should not be used as evidence in formulating gun policy.

  7. Definition of Mutually Optimum NDI and Proof Test Criteria for 2219 Aluminum Pressure Vessels. Volume 2: Optimization and Fracture Studies

    NASA Technical Reports Server (NTRS)

    Schwartzberg, F. R.; Toth, C., Jr.; King, R. G.; Todd, P. H., Jr.

    1979-01-01

    Certain behavioral aspects associated with fracture and crack extension that cannot be studied using other techniques were evaluated with the ultrasonic method. Characterization of collimated beam techniques showed that significant beam width reduction could be accomplished. Techniques for collimation are given. The crack-opening displacement-gage correction-factor study showed that displacement resulting from crack opening and that from plasticity could be readily differentiated. Crack closure studies using both ultrasonic and crack-opening displacement measurements showed an opening and closing behavior associated with load-unload curves. The results of this work were in general agreement with the closure concepts of Elber. Ultrasonic measurements used to study the nature of flaw extension characteristics associated with failure of the ligament between the flaw front and back surface showed that penetration could occur by an abrupt fracturing after subcritical growth or by continuous growth.

  8. Definition of mutually optimum NDI and proof test criteria for 2219 aluminum pressure vessels. Volume 3: Applications to rail defect evaluation

    NASA Technical Reports Server (NTRS)

    Schwartzberg, F. R.; Toth, C., Jr.; King, R. G.; Todd, P. H., Jr.

    1979-01-01

    The technique for inspection of railroad rails containing transverse fissure defects was discussed. Both pulse-echo and pitch-catch inspection techniques were used. The pulse-echo technique results suggest that a multiple-scan approach using varying angles of inclination, three-surface scanning, and dual-direction traversing may offer promise of characterization of transverse defects. Because each scan is likely to produce a reflection indicating only a portion of the defect, summing of the individual reflections must be used to obtain a reasonably complete characterization of the defect. The ability of the collimated pitch-catch technique to detect relatively small amounts of flaw growth was shown. The method has a problem in characterizing the portions of the defect near the top surface or web intersection. The work performed was a preliminary evaluation of the prospects for automated mapping of rail flaws.

  9. Profitable failure: antidepressant drugs and the triumph of flawed experiments.

    PubMed

    McGoey, Linsey

    2010-01-01

    Drawing on an analysis of Irving Kirsch and colleagues' controversial 2008 article in "PLoS [Public Library of Science] Magazine" on the efficacy of SSRI antidepressant drugs such as Prozac, I examine flaws within the methodologies of randomized controlled trials (RCTs) that have made it difficult for regulators, clinicians and patients to determine the therapeutic value of this class of drug. I then argue, drawing analogies to work by Pierre Bourdieu and Michael Power, that it is the very limitations of RCTs -- their inadequacies in producing reliable evidence of clinical effects -- that help to strengthen assumptions of their superiority as methodological tools. Finally, I suggest that the case of RCTs helps to explore the question of why failure is often useful in consolidating the authority of those who have presided over that failure, and why systems widely recognized to be ineffective tend to assume greater authority at the very moment when people speak of their malfunction.

  10. Psychosocial development in racially and ethnically diverse youth: conceptual and methodological challenges in the 21st century.

    PubMed

    Swanson, Dena Phillips; Spencer, Margaret Beale; Harpalani, Vinay; Dupree, Davido; Noll, Elizabeth; Ginzburg, Sofia; Seaton, Gregory

    2003-01-01

    As the US population becomes more diverse in the 21st century, researchers face many conceptual and methodological challenges in working with diverse populations. We discuss these issues for racially and ethnically diverse youth, using Spencer's phenomenological variant of ecological systems theory (PVEST) as a guiding framework. We present a brief historical background and discuss recurring conceptual flaws in research on diverse youth, presenting PVEST as a corrective to these flaws. We highlight the interaction of race, culture, socioeconomic status, and various contexts of development with identity formation and other salient developmental processes. Challenges in research design and interpretation of data are also covered with regard to both assessment of contexts and developmental processes. We draw upon examples from neighborhood assessments, ethnic identity development, and attachment research to illustrate conceptual and methodological challenges, and we discuss strategies to address these challenges. The policy implications of our analysis are also considered.

  11. Vision-based in-line fabric defect detection using yarn-specific shape features

    NASA Astrophysics Data System (ADS)

    Schneider, Dorian; Aach, Til

    2012-01-01

    We develop a methodology for automatic in-line flaw detection in industrial woven fabrics. Where state of the art detection algorithms apply texture analysis methods to operate on low-resolved ({200 ppi) image data, we describe here a process flow to segment single yarns in high-resolved ({1000 ppi) textile images. Four yarn shape features are extracted, allowing a precise detection and measurement of defects. The degree of precision reached allows a classification of detected defects according to their nature, providing an innovation in the field of automatic fabric flaw detection. The design has been carried out to meet real time requirements and face adverse conditions caused by loom vibrations and dirt. The entire process flow is discussed followed by an evaluation using a database with real-life industrial fabric images. This work pertains to the construction of an on-loom defect detection system to be used in manufacturing practice.

  12. Silica Glass Fibers : Modes Of Degradation And Thoughts On Protection

    NASA Astrophysics Data System (ADS)

    Kruger, Albert A.; Mularie, William M.

    1984-03-01

    The widely held explanation for mechanical failure of silicate glasses rests upon the existence of Griffith-flaw and the associated free-ion diffusion concept used to model crack growth. However, this theory has consistently failed to provide complete agreement with the experimental results known to those "schooled" in the poignant literature. This dilemma coupled with the reports of single-valued strengths in fibers cannot be rationalized by the modification of the intrinsic Griffith-flaw distribution to essentially a delta function (this violates entropy). It is for these reasons that the field-enhanced ion diffusion model has been introduced. The inclusion of a term for electrostatic potential in the solution of Fick's second law is shown to be consistent with the experimental results in the existing literature. The results of the work presented herein provide further support of the proposed model, and the implied consequences of chemical corrosion in glass which results in its subsequent failure.

  13. Even dying must be edited: further thoughts on Joan Robinson.

    PubMed Central

    Curry, S; Zucker, A; Trautmann, J

    1981-01-01

    "Joan Robinson: One Woman's Story' is a cinéma vérité style record of a woman's losing struggle against ovarian cancer. The film has been shown now twice on the American Public Television Network. It has received good notices primarily from the lay press. Yet the film depicts much that is out-of-date and much that is debatable. In general, we feel that it presents a depressing picture of the cancer patient. This was not Joan Robinson's intention and her bravery only serves to highlight this picture of suffering with cancer. We point to specific flaws in the film. We then go on to account for why many reviewers seem to have been blind to these flaws. It is suggested that criteria for good works of art, for good public health information, and for admirable personal traits were confused. PMID:7205894

  14. Example of a Human Factors Engineering approach to a medication administration work system: potential impact on patient safety.

    PubMed

    Beuscart-Zéphir, Marie-Catherine; Pelayo, Sylvia; Bernonville, Stéphanie

    2010-04-01

    The objectives of this paper are: In this approach, the implementation of such a complex IT solution is considered a major redesign of the work system. The paper describes the Human Factor (HF) tasks embedded in the project lifecycle: (1) analysis and modelling of the current work system and usability assessment of the medication CPOE solution; (2) HF recommendations for work re-design and usability recommendations for IT system re-engineering both aiming at a safer and more efficient work situation. Standard ethnographic methods were used to support the analysis of the current work system and work situations, coupled with cognitive task analysis methods and documents review. Usability inspection (heuristic evaluation) and both in-lab (simulated tasks) and on-site (real tasks) usability tests were performed for the evaluation of the CPOE candidate. Adapted software engineering models were used in combination with usual textual descriptions, tasks models and mock-ups to support the recommendations for work and product re-design. The analysis of the work situations identified different work organisations and procedures across the hospital's departments. The most important differences concerned the doctor-nurse communications and cooperation modes and the procedures for preparing and administering the medications. The assessment of the medication CPOE functions uncovered a number of usability problems including severe ones leading to impossible to detect or to catch errors. Models of the actual and possible distribution of tasks and roles were used to support decision making in the work design process. The results of the usability assessment were translated into requirements to support the necessary re-engineering of the IT application. The HFE approach to medication CPOE efficiently identifies and distinguishes currently unsafe or uncomfortable work situations that could obviously benefit from an IT solution from other work situations incorporating efficient work procedures that might be impaired by the implementation of the CPOE. In this context, a careful redesign of the work situation and of the entire work system is necessary to actually benefit from the installation of the product in terms of patient safety and human performances. In parallel, a usability assessment of the product to be implemented is mandatory to identify potentially dangerous usability flaws and to fix them before the installation. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  15. Glass breaking strength: The role of surface flaws and treatments

    NASA Technical Reports Server (NTRS)

    Moore, D.

    1985-01-01

    Although the intrinsic strength of silicon dioxide glass is of the order of 10 to the 6th power lb/sq in, the practical strength is roughly two orders of magnitude below this theoretical limit, and depends almost entirely on the surface condition of the glass, that is, the number and size of flaws and the residual surface compression (temper) in the glass. Glass parts always fail in tension when these flaws grow under sustained loading to some critical size. Research associated with glass encapsulated crystalline-Si photovoltaic (PV) modules has greatly expanded our knowledge of glass breaking strength and developed sizeable data base for commercially available glass types. A detailed design algorithm is developed for thickness sizing of rectangular glass plates subject to pressure loads. Additional studies examine the strength of glass under impact loading conditions such as that caused by hail. Although the fundamentals of glass breakage are directly applicable to thin film modules, the fracture strength of typical numerical glass must be replaced with data that reflect the high temperature tin oxide processing, laser scribing, and edge processing peculiar to thin film modules. The fundamentals of glass breakage applicable to thin film modules and preliminary fracture strength data for a variety of 1 ft square glass specimens representing preprocessed and post processed sheets from current amorphous-Si module manufacturers are presented.

  16. Overview of the program to assess the reliability of emerging nondestructive techniques open testing and study of flaw type effect on NDE response

    NASA Astrophysics Data System (ADS)

    Meyer, Ryan M.; Komura, Ichiro; Kim, Kyung-cho; Zetterwall, Tommy; Cumblidge, Stephen E.; Prokofiev, Iouri

    2016-02-01

    In February 2012, the U.S. Nuclear Regulatory Commission (NRC) executed agreements with VTT Technical Research Centre of Finland, Nuclear Regulatory Authority of Japan (NRA, former JNES), Korea Institute of Nuclear Safety (KINS), Swedish Radiation Safety Authority (SSM), and Swiss Federal Nuclear Safety Inspectorate (ENSI) to establish the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT). The goal of PARENT is to investigate the effectiveness of current emerging and perspective novel nondestructive examination procedures and techniques to find flaws in nickel-alloy welds and base materials. This is done by conducting a series of open and blind international round-robin tests on a set of large-bore dissimilar metal welds (LBDMW), small-bore dissimilar metal welds (SBDMW), and bottom-mounted instrumentation (BMI) penetration weld test blocks. The purpose of blind testing is to study the reliability of more established techniques and included only qualified teams and procedures. The purpose of open testing is aimed at a more basic capability assessment of emerging and novel technologies. The range of techniques applied in open testing varied with respect to maturity and performance uncertainty and were applied to a variety of simulated flaws. This paper will include a brief overview of the PARENT blind and open testing techniques and test blocks and present some of the blind testing results.

  17. A New Merit Function for Evaluating the Flaw Tolerance of Composite Laminates. Pt. 2; Arbitrary Size Holes and Center Cracks

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Sumpter, Rod

    1999-01-01

    In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or a center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.

  18. A New Merit Function for Evaluating the Flaw Tolerance of Composite Laminates. Part 2; Arbitrary Size Holes and Center Cracks

    NASA Technical Reports Server (NTRS)

    Martin, Mikulas M., Jr.; Sumpter, Rod

    2000-01-01

    In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.

  19. A New Merit Function for Evaluating the Flaw Tolerance of Composite Laminates. Part 2; Arbitrary Size Holes and Center Cracks

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Sumpter, Rod

    1997-01-01

    In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or a center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.

  20. The detection of flaws in austenitic welds using the decomposition of the time-reversal operator

    NASA Astrophysics Data System (ADS)

    Cunningham, Laura J.; Mulholland, Anthony J.; Tant, Katherine M. M.; Gachagan, Anthony; Harvey, Gerry; Bird, Colin

    2016-04-01

    The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity of safety critical structures. The internal microstructure of these welds is highly scattering and can lead to the obscuration of defects when investigated by traditional imaging algorithms. This paper proposes an alternative objective method for the detection of flaws embedded in austenitic welds based on the singular value decomposition of the time-frequency domain response matrices. The distribution of the singular values is examined in the cases where a flaw exists and where there is no flaw present. A lower threshold on the singular values, specific to austenitic welds, is derived which, when exceeded, indicates the presence of a flaw. The detection criterion is successfully implemented on both synthetic and experimental data. The datasets arising from welds containing a flaw are further interrogated using the decomposition of the time-reversal operator (DORT) method and the total focusing method (TFM), and it is shown that images constructed via the DORT algorithm typically exhibit a higher signal-to-noise ratio than those constructed by the TFM algorithm.

  1. The detection of flaws in austenitic welds using the decomposition of the time-reversal operator

    PubMed Central

    Cunningham, Laura J.; Mulholland, Anthony J.; Gachagan, Anthony; Harvey, Gerry; Bird, Colin

    2016-01-01

    The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity of safety critical structures. The internal microstructure of these welds is highly scattering and can lead to the obscuration of defects when investigated by traditional imaging algorithms. This paper proposes an alternative objective method for the detection of flaws embedded in austenitic welds based on the singular value decomposition of the time-frequency domain response matrices. The distribution of the singular values is examined in the cases where a flaw exists and where there is no flaw present. A lower threshold on the singular values, specific to austenitic welds, is derived which, when exceeded, indicates the presence of a flaw. The detection criterion is successfully implemented on both synthetic and experimental data. The datasets arising from welds containing a flaw are further interrogated using the decomposition of the time-reversal operator (DORT) method and the total focusing method (TFM), and it is shown that images constructed via the DORT algorithm typically exhibit a higher signal-to-noise ratio than those constructed by the TFM algorithm. PMID:27274683

  2. Characterization of Acoustic Emission Parameters During Testing of Metal Liner Reinforced with Fully Resin Impregnated CNG Cylinder

    NASA Astrophysics Data System (ADS)

    Kenok, R.; Jomdecha, C.; Jirarungsatian, C.

    The aim of this paper is to study the acoustic emission (AE) parameters obtained from CNG cylinders during pressurization. AE from flaw propagation, material integrity, and pressuring of cylinder was the main objective for characterization. CNG cylinders of ISO 11439, resin fully wrapped type and metal liner type, were employed to test by hydrostatic stressing. The pressure was step increased until 1.1 time of operating pressure. Two AE sensors, resonance frequency of 150 kHz, were mounted on the cylinder wall to detect the AE throughout the testing. From the experiment results, AE can be detected from pressuring rate, material integrity, and flaw propagation from the cylinder wall. AE parameters including Amplitude, Count, Energy (MARSE), Duration and Rise time were analyzed to distinguish the AE data. The results show that the AE of flaw propagation was different in character from that of pressurization. Especially, AE detected from flaws of resin wrapped and metal liner was significantly different. To locate the flaw position, both the AE sensors can be accurately used to locate the flaw propagation in a linear pattern. The error was less than ±5 cm.

  3. Binomial Test Method for Determining Probability of Detection Capability for Fracture Critical Applications

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2011-01-01

    The capability of an inspection system is established by applications of various methodologies to determine the probability of detection (POD). One accepted metric of an adequate inspection system is that for a minimum flaw size and all greater flaw sizes, there is 0.90 probability of detection with 95% confidence (90/95 POD). Directed design of experiments for probability of detection (DOEPOD) has been developed to provide an efficient and accurate methodology that yields estimates of POD and confidence bounds for both Hit-Miss or signal amplitude testing, where signal amplitudes are reduced to Hit-Miss by using a signal threshold Directed DOEPOD uses a nonparametric approach for the analysis or inspection data that does require any assumptions about the particular functional form of a POD function. The DOEPOD procedure identifies, for a given sample set whether or not the minimum requirement of 0.90 probability of detection with 95% confidence is demonstrated for a minimum flaw size and for all greater flaw sizes (90/95 POD). The DOEPOD procedures are sequentially executed in order to minimize the number of samples needed to demonstrate that there is a 90/95 POD lower confidence bound at a given flaw size and that the POD is monotonic for flaw sizes exceeding that 90/95 POD flaw size. The conservativeness of the DOEPOD methodology results is discussed. Validated guidelines for binomial estimation of POD for fracture critical inspection are established.

  4. Vitamin D and Depression: A Systematic Review and Meta-Analysis Comparing Studies with and without Biological Flaws

    PubMed Central

    Spedding, Simon

    2014-01-01

    Efficacy of Vitamin D supplements in depression is controversial, awaiting further literature analysis. Biological flaws in primary studies is a possible reason meta-analyses of Vitamin D have failed to demonstrate efficacy. This systematic review and meta-analysis of Vitamin D and depression compared studies with and without biological flaws. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search was undertaken through four databases for randomized controlled trials (RCTs). Studies were critically appraised for methodological quality and biological flaws, in relation to the hypothesis and study design. Meta-analyses were performed for studies according to the presence of biological flaws. The 15 RCTs identified provide a more comprehensive evidence-base than previous systematic reviews; methodological quality of studies was generally good and methodology was diverse. A meta-analysis of all studies without flaws demonstrated a statistically significant improvement in depression with Vitamin D supplements (+0.78 CI +0.24, +1.27). Studies with biological flaws were mainly inconclusive, with the meta-analysis demonstrating a statistically significant worsening in depression by taking Vitamin D supplements (−1.1 CI −0.7, −1.5). Vitamin D supplementation (≥800 I.U. daily) was somewhat favorable in the management of depression in studies that demonstrate a change in vitamin levels, and the effect size was comparable to that of anti-depressant medication. PMID:24732019

  5. Ultrasonic flaw detection in a monorail box beam

    NASA Astrophysics Data System (ADS)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.

    2009-03-01

    A steel box beam in a monorail application is constructed with an epoxy grout wearing surface, precluding visual inspection of its top flange. This paper describes a sequence of experimental research tasks to develop an ultrasonic system to detect flaws (such as fatigue cracks) in that flange, and the results of a field test to demonstrate system performance. The problem is constrained by the fact that the flange is exposed only along its longitudinal edges, and by the fact that permanent installation of transducers at close spacing was deemed to be impractical. The system chosen for development, after experimental comparison of alternate technologies, features angle-beam ultrasonic transducers with fluid coupling to the flange edge; the emitting transducers create transverse waves that travel diagonally across the width of the flange, where an array of receiving transducers detect flaw reflections and flaw shadows. The system rolls along the box beam, surveying (screening) the top flange for the presence of flaws. In a first research task, conducted on a full-size beam specimen, we compared waves generated from different transducer locations, either the flange edge or the web face, and at different frequency ranges. At relatively low frequencies, such as 100 kHz, we observed Lamb wave modes, and at higher frequency, in the MHz range, we observed nearlylongitudinal waves with trailing pulses. In all cases we observed little attenuation by the wearing surface and little influence of reflection at the web-flange joints. At the conclusion of this task we made the design decision to use edgemounted transducers at relatively high frequency, with correspondingly short wavelength, for best scattering from flaws. In a second research task we conducted experiments at 55% scale on a steel plate, with machined flaws of different size, and detected flaws of target size for the intended application. We then compared the performance of bonded transducers, fluid-coupled transducers, and angle-beam (wedge) transducers; from that comparison we made the design decision to use wedges, which beam the wave to increase the scattering from flaws. We also compared the performance of wired transducers using fluid coupling to that of wireless (inductively coupled) transducers mounted permanently. Although the wireless transducers achieved flaw detection, the necessary spacing (determined experimentally) would have required an impractical number of transducers. Therefore, we made the design decision to use wedge transducers with fluid coupling. In a third research task we developed and tested a rolling system with a water channel for acoustic coupling, including a study of its sensitivity to misalignment, and in a fourth task we devised a data display to create a pattern of reflections or shadows that could be easily interpreted as evidence of a flaw. Finally, we conducted a field test on the full-size system in a region containing bolt holes, which act as a physical simulation of a flaw, and show successful detection of reflections and shadows from those holes.

  6. A Practical and Secure Coercion-Resistant Scheme for Internet Voting

    NASA Astrophysics Data System (ADS)

    Araújo, Roberto; Foulle, Sébastien; Traoré, Jacques

    Juels, Catalano, and Jakobsson (JCJ) proposed at WPES 2005 the first voting scheme that considers real-world threats and that is more realistic for Internet elections. Their scheme, though, has a quadratic work factor and thereby is not efficient for large scale elections. Based on the work of JCJ, Smith proposed an efficient scheme that has a linear work factor. In this paper we first show that Smith's scheme is insecure. Then we present a new coercion-resistant election scheme with a linear work factor that overcomes the flaw of Smith's proposal. Our solution is based on the group signature scheme of Camenisch and Lysyanskaya (Crypto 2004).

  7. "You Are a Flaw in the Pattern": Difference, Autonomy and Bullying in YA Fiction

    ERIC Educational Resources Information Center

    Lopez-Ropero, Lourdes

    2012-01-01

    Though portrayals of bullying in children's books stretch back to Victorian public school stories, this article sees a new subgenre about bullying in young adult novels emerging in the post-Columbine years. Selected works by Jerry Spinelli, Walter Dean Myers, Jaime Adoff, Carol Plum-Ucci and Rita Williams-Garcia are examined, although the article…

  8. Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz; Simpson, John; Hall, George

    2009-03-01

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  9. Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John; Hall, George

    2008-01-01

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  10. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    NASA Astrophysics Data System (ADS)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  11. Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion.

    PubMed Central

    Hui, C-Y; Glassmaker, N. J.; Tang, T.; Jagota, A.

    2004-01-01

    This study addresses the strength and toughness of generic fibrillar structures. We show that the stress sigmac required to pull a fibril out of adhesive contact with a substrate has the form sigma(c) = sigma(0)Phi(chi). In this equation, sigma(0) is the interfacial strength, Phi(chi) is a dimensionless function satisfying 0 > 1, but is flaw insensitive for chi < 1. The important parameter chi also controls the stability of a homogeneously deformed non-fibrillar (flat) interface. Using these results, we show that the work to fail a unit area of fibrillar surface can be much higher than the intrinsic work of adhesion for a flat interface of the same material. In addition, we show that cross-sectional fibril dimensions control the pull-off force, which increases with decreasing fibril radius. Finally, an increase in fibril length is shown to increase the work necessary to separate a fibrillar interface. Besides our calculations involving a single fibril, we study the concept of equal load sharing (ELS) for a perfect interface containing many fibrils. We obtain the practical work of adhesion for an idealized fibrillated interface under equal load sharing. We then analyse the peeling of a fibrillar surface from a rigid substrate and establish a criterion for ELS. PMID:16849151

  12. Determination of Flaw Size and Depth From Temporal Evolution of Thermal Response

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Cramer, Elliott; Howell, Patricia A.

    2015-01-01

    Simple methods for reducing the pulsed thermographic responses of flaws have tended to be based on either the spatial or temporal response. This independent assessment limits the accuracy of characterization. A variational approach is presented for reducing the thermographic data to produce an estimated size for a flaw that incorporates both the temporal and spatial response to improve the characterization. The size and depth are determined from both the temporal and spatial thermal response of the exterior surface above a flaw and constraints on the length of the contour surrounding the delamination. Examples of the application of the technique to simulation and experimental data acquired are presented to investigate the limitations of the technique.

  13. Estimating probable flaw distributions in PWR steam generator tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorman, J.A.; Turner, A.P.L.

    1997-02-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regardingmore » uncertainties and assumptions in the data and analyses.« less

  14. Steam generator tube integrity flaw acceptance criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochet, B.

    1997-02-01

    The author discusses the establishment of a flaw acceptance criteria with respect to flaws in steam generator tubing. The problem is complicated because different countries take different approaches to the problem. The objectives in general are grouped in three broad areas: to avoid the unscheduled shutdown of the reactor during normal operation; to avoid tube bursts; to avoid excessive leak rates in the event of an accidental overpressure event. For each degradation mechanism in the tubes it is necessary to know answers to an array of questions, including: how well does NDT testing perform against this problem; how rapidly doesmore » such degradation develop; how well is this degradation mechanism understood. Based on the above information it is then possible to come up with a policy to look at flaw acceptance. Part of this criteria is a schedule for the frequency of in-service inspection and also a policy for when to plug flawed tubes. The author goes into a broad discussion of each of these points in his paper.« less

  15. Structural considerations in design of lightweight glass-fiber composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1973-01-01

    The development of structurally efficient, metal-lined, glass-fiber composite pressure vessels. Both the current state-of-the-art and current problems are discussed along with fracture mechanics considerations for the metal liner. The design concepts used for metal-lined, glass-fiber, composite pressure vessels are described and the structural characteristics of the composite designs are compared with each other and with homogeneous metal pressure vessels. Specific design techniques and available design data are identified. Results of a current program to evaluate flaw growth and fracture characteristics of the metal liners are reviewed and the impact of these results on composite pressure vessel designs is discussed.

  16. Design Manual for Impact Damage Tolerant Aircraft Structure. Addendum

    DTIC Science & Technology

    1988-03-01

    Effective Flaw Size 20 22 Effective Flaws for Cubical Fragments Impacting Graphite/Epoxy Laminates 21 23 Effective Flaws for Aligned and Tumbled Armour ... armour -piercing projectiles impact, penetrate, and traverse a fuel tank and generate intensive pressure waves that act on the fuel tank. Since...eg. aerodynamic smoothnessflutter, etc.) and the repai concept (eag boiled repar external bonded pateh. flush scar bonded patch, etc., and (3) dhe

  17. Multipurpose Pressure Vessel Scanner and Photon Doppler Velocimetry

    NASA Technical Reports Server (NTRS)

    Ellis, Tayera

    2015-01-01

    Critical flight hardware typically undergoes a series of nondestructive evaluation methods to screen for defects before it is integrated into the flight system. Conventionally, pressure vessels have been inspected for flaws using a technique known as fluorescent dye penetrant, which is biased to inspector interpretation. An alternate method known as eddy current is automated and can detect small cracks better than dye penetrant. A new multipurpose pressure vessel scanner has been developed to perform internal and external eddy current scanning, laser profilometry, and thickness mapping on pressure vessels. Before this system can be implemented throughout industry, a probability of detection (POD) study needs to be performed to validate the system's eddy current crack/flaw capabilities. The POD sample set will consist of 6 flight-like metal pressure vessel liners with defects of known size. Preparation for the POD includes sample set fabrication, system operation, procedure development, and eddy current settings optimization. For this, collaborating with subject matter experts was required. This technical paper details the preparation activities leading up to the POD study currently scheduled for winter 2015/2016. Once validated, this system will be a proven innovation for increasing the safety and reliability of necessary flight hardware. Additionally, testing of frangible joint requires Photon Doppler Velocimetry (PDV) and Digital Image Correlation instrumentation. There is often noise associated with PDV data, which necessitates a frequency modulation (FM) signal-to-noise pre-test. Generally, FM radio works by varying the carrier frequency and mixing it with a fixed frequency source, creating a beat frequency which is represented by audio frequency that can be heard between about 20 to 20,000 Hz. Similarly, PDV reflects a shifted frequency (a phenomenon known as the Doppler Effect) from a moving source and mixes it with a fixed source frequency, which results in a beat frequency. However, for PDV, discerning the signal from the noise is difficult without a moving source to induce the modulation. A rotating wheel is currently being used as the moving source but its configuration is impractical and has cumbersome placement inside the current frangible joint test cell. As a way to combat this problem and verify a satisfactory signal-to-noise ratio, a reflective moving crystal piezo will be used to modulate a beat frequency, and an absorptive target will be used to block the signal in order to determine any back reflection coming from the probe and discern the true signal-to-noise ratio. The piezo will be mounted and inserted onto the test table on an extendable telescopic antenna grounded by a magnetic base in the test zone. This piezo configuration will be more compatible within the test zone and allow for easy removal of the disk following acceptable signal verification and prior to frangible joint tests.

  18. Simulation of the Thermographic Response of Near Surface Flaws in Reinforced Carbon-Carbon Panels

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Howell, Patricia A.; Burke, Eric R.

    2009-01-01

    Thermographic inspection is a viable technique for detecting in-service damage in reinforced carbon-carbon (RCC) composites that are used for thermal protection in the leading edge of the shuttle orbiter. A thermographic technique for detection of near surface flaws in RCC composite structures is presented. A finite element model of the heat diffusion in structures with expected flaw configurations is in good agreement with the experimental measurements.

  19. JPRS Report, Science & Technology, USSR: Electronics & Electrical Engineering.

    DTIC Science & Technology

    1988-02-05

    Sirena -1 Self-propelled Flaw Detector [PRIBORYI SISTEMY UPRAVLENIYA, Jan 87] 14 Crane Strain-measurement Scales With Data Processing by a Microprocessor...was 3-5 m. 06415/06662 UDC 620.179.1:620.165.29 Algorithimization of Control of Electric Motor Drive of Sirena -1 Self-propelled Flaw Detector...The article describes one of the most optimum algorithms of control of the electric motor drive of the Sirena -1 self-propelled flaw detector

  20. Analysis and Test of Deep Flaws in Thin Sheets of Aluminum and Titanium. Volume 2: Crack Opening Displacement and Stress-Strain Data

    NASA Technical Reports Server (NTRS)

    Finger, R. W.

    1978-01-01

    Static fracture tests were performed on surface flawed specimens of aluminum and titanium alloys. A simulated proof overload cycle was applied prior to all of the cyclic tests. Variables included in each test series were flaw shapes and thickness. Additionally, test temperature was a variable for the aluminum test series. The crack opening displacement and stress-strain data obtained are presented.

  1. Automatic Inspection Of Heat Seals Between Plastic Sheets

    NASA Technical Reports Server (NTRS)

    Rai, Kula R.; Lew, Thomas M.; Sinclair, Robert B.

    1995-01-01

    Automatic inspection apparatus detects flaws in heat seals between films of polyethylene or other thermoplastic material. Heat-sealed strip in multilayer plastic sheet continuously moved lengthwise over illuminators. Variations in light transmitted through sheet interpreted to find flaws in heat seal. Site of flaw marked to facilitate subsequent manual inspection. Heat sealing used to join plastic films in manufacturing of variety of products, including inflatable toys and balloons carrying scientific instruments to high altitudes.

  2. Development of an optical fiber interferometer for detection of surface flaws in aluminum

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.

    1991-01-01

    The main objective was to demonstrate the potential of using an optical fiber interferometer (OFI) to detect surface flaws in aluminum samples. Standard ultrasonic excitation was used to generate Rayleigh surface waves. After the waves interacted with a defect, the modified responses were detected using the OFI and the results were analyzed for time-of-flight and frequency content to predict the size and location of the flaws.

  3. Deep Flaw Detection with Giant Magnetoresistive (GMR) Based Self-Nulling Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Namkung, Min

    2004-01-01

    In this paper a design modification to the Very-Low Frequency GMR Based Self-Nulling Probe has been presented to enable improved signal to noise ratio for deeply buried flaws. The design change consists of incorporating a feedback coil in the center of the flux focusing lens. The use of the feedback coil enables cancellation of the leakage fields in the center of the probe and biasing of the GMR sensor to a location of high magnetic field sensitivity. The effect of the feedback on the probe output was examined, and experimental results for deep flaw detection were presented. The experimental results show that the modified probe is capable of clearly identifying flaws up to 1 cm deep in aluminum alloy structures.

  4. "They just know": the epistemological politics of "evidence-based" non-formal education.

    PubMed

    Archibald, Thomas

    2015-02-01

    Community education and outreach programs should be evidence-based. This dictum seems at once warranted, welcome, and slightly platitudinous. However, the "evidence-based" movement's more narrow definition of evidence--privileging randomized controlled trials as the "gold standard"--has fomented much debate. Such debate, though insightful, often lacks grounding in actual practice. To address that lack, the purpose of the study presented in this paper was to examine what actually happens, in practice, when people support the implementation of evidence-based programs (EBPs) or engage in related efforts to make non-formal education more "evidence-based." Focusing on three cases--two adolescent sexual health projects (one in the United States and one in Kenya) and one more general youth development organization--I used qualitative methods to address the questions: (1) How is evidence-based program and evidence-based practice work actually practiced? (2) What perspectives and assumptions about what non-formal education is are manifested through that work? and (3) What conflicts and tensions emerge through that work related to those perspectives and assumptions? Informed by theoretical perspectives on the intersection of science, expertise, and democracy, I conclude that the current dominant approach to making non-formal education more evidence-based by way of EBPs is seriously flawed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Developing Conceptions of Authorship: A Study of Textual Practices among Students in a First-Year Writing Program

    ERIC Educational Resources Information Center

    Lamon Burney, Christie

    2010-01-01

    Much of the scholarship in composition studies focuses on plagiarism as an epidemic, students' dwindling ethics and lack of dedication to their academic careers. A few scholars, however, look beyond the personal or moral "flaws" of the individual learner and explore how students perceive and respond to the work of the writing classroom, the very…

  6. Graduate Views on Access to Higher Education: Is It Really a Case of Pulling up the Ladder?

    ERIC Educational Resources Information Center

    Webb, Rob; Watson, Duncan; Cook, Steve; Arico, Fabio

    2017-01-01

    Using as a starting point in the recent work of Mountford-Zimdars et al., the authors analyse attitudes towards expanding higher education (HE) opportunities in the UK. The authors propose that the approach of Mountford-Zimdars et al. is flawed not only in its adoption of a multivariate logistic regression but also in its interpretation of…

  7. Feasibility study in the application of optical signal analysis to non-destructive testing of complex structures

    NASA Technical Reports Server (NTRS)

    Baker, B.; Brown, H.

    1974-01-01

    Advantages of the large time bandwidth product of optical processing are presented. Experiments were performed to study the feasibility of the use of optical spectral analysis for detection of flaws in structural elements excited by random noise. Photographic and electronic methods of comparison of complex spectra were developed. Limitations were explored, and suggestions for further work are offered.

  8. Balancing Punishment and Compassion for Seriously Ill Prisoners

    PubMed Central

    Williams, Brie A.; Sudore, Rebecca L.; Greifinger, Robert; Morrison, R. Sean

    2011-01-01

    Compassionate release is a mechanism to allow some eligible, seriously ill prisoners to die outside of prison before sentence completion. It became a matter of federal statute in 1984 and currently has been adopted by the majority of U.S. prison jurisdictions. Incarceration is justified on 4 principles: retribution, rehabilitation, deterrence, and incapacitation. Compassionate release derives from the theory that changes in health status may affect these principles and thus alter justification for incarceration and sentence completion. The medical profession is intricately involved in this process because eligibility for consideration for compassionate release is generally based on medical evidence. Due to an aging prison population, overcrowding, rising deaths in custody, and soaring criminal justice medical costs, many policy experts are calling for broader use of compassionate release. Yet, the medical eligibility criteria of many compassionate release guidelines – which often assume a definitive prognosis – are clinically flawed and procedural barriers may further limit their rational application. We propose changes to address these flaws. PMID:21628351

  9. A major advance in powder metallurgy

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Stiglich, Jacob J., Jr.; Kaplan, Richard B.; Tuffias, Robert H.

    1991-01-01

    Ultramet has developed a process which promises to significantly increase the mechanical properties of powder metallurgy (PM) parts. Current PM technology uses mixed powders of various constituents prior to compaction. The homogeneity and flaw distribution in PM parts depends on the uniformity of mixing and the maintenance of uniformity during compaction. Conventional PM fabrication processes typically result in non-uniform distribution of the matrix, flaw generation due to particle-particle contact when one of the constituents is a brittle material, and grain growth caused by high temperature, long duration compaction processes. Additionally, a significant amount of matrix material is usually necessary to fill voids and create 100 percent dense parts. In Ultramet's process, each individual particle is coated with the matrix material, and compaction is performed by solid state processing. In this program, Ultramet coated 12-micron tungsten particles with approximately 5 wt percent nickel/iron. After compaction, flexure strengths were measured 50 percent higher than those achieved in conventional liquid phase sintered parts (10 wt percent Ni/Fe). Further results and other material combinations are discussed.

  10. Unaccompanied, Unidentified and Uncounted: Developing Strategies to Meet the Needs of America's Homeless Youth. Issue Brief on the Education of Unaccompanied Homeless Youth

    ERIC Educational Resources Information Center

    Appleseed, 2012

    2012-01-01

    Unaccompanied homeless youth appear to be one of the fastest growing and most vulnerable segments of the larger homeless population, but flawed information-gathering by government entities makes it impossible to be sure. This issue brief examines reasons why the plight of unaccompanied homeless youth is not fully captured through current models of…

  11. Laminar Flow in the Ocean Ekman Layer

    NASA Astrophysics Data System (ADS)

    Woods, J. T. H.

    INTRODUCTION THE EFFECT OF A STABLE DENSITY GRADIENT THE FATAL FLAW FLOW VISUALIZATION THE DISCOVERY OF LAMINAR FLOW FINE STRUCTURE WAVE-INDUCED SHEAR INSTABILITY BILLOW TURBULENCE REVERSE TRANSITION REVISED PARADIGM ONE-DIMENSIONAL MODELLING OF THE UPPER OCEAN DIURNAL VARIATION BUOYANT CONVECTION BILLOW TURBULENCE IN THE DIURNAL THERMOCLINE CONSEQUENCES FOR THE EKMAN CURRENT PROFILE SOLAR RADIATION APPLICATIONS Slippery Seas of Acapulco Pollution Afternoon Effect in Sonar Patchiness Fisheries Climate DISCUSSION CONCLUSION REFERENCES

  12. Virtual Environments for Visualizing Structural Health Monitoring Sensor Networks, Data, and Metadata.

    PubMed

    Napolitano, Rebecca; Blyth, Anna; Glisic, Branko

    2018-01-16

    Visualization of sensor networks, data, and metadata is becoming one of the most pivotal aspects of the structural health monitoring (SHM) process. Without the ability to communicate efficiently and effectively between disparate groups working on a project, an SHM system can be underused, misunderstood, or even abandoned. For this reason, this work seeks to evaluate visualization techniques in the field, identify flaws in current practices, and devise a new method for visualizing and accessing SHM data and metadata in 3D. More precisely, the work presented here reflects a method and digital workflow for integrating SHM sensor networks, data, and metadata into a virtual reality environment by combining spherical imaging and informational modeling. Both intuitive and interactive, this method fosters communication on a project enabling diverse practitioners of SHM to efficiently consult and use the sensor networks, data, and metadata. The method is presented through its implementation on a case study, Streicker Bridge at Princeton University campus. To illustrate the efficiency of the new method, the time and data file size were compared to other potential methods used for visualizing and accessing SHM sensor networks, data, and metadata in 3D. Additionally, feedback from civil engineering students familiar with SHM is used for validation. Recommendations on how different groups working together on an SHM project can create SHM virtual environment and convey data to proper audiences, are also included.

  13. Virtual Environments for Visualizing Structural Health Monitoring Sensor Networks, Data, and Metadata

    PubMed Central

    Napolitano, Rebecca; Blyth, Anna; Glisic, Branko

    2018-01-01

    Visualization of sensor networks, data, and metadata is becoming one of the most pivotal aspects of the structural health monitoring (SHM) process. Without the ability to communicate efficiently and effectively between disparate groups working on a project, an SHM system can be underused, misunderstood, or even abandoned. For this reason, this work seeks to evaluate visualization techniques in the field, identify flaws in current practices, and devise a new method for visualizing and accessing SHM data and metadata in 3D. More precisely, the work presented here reflects a method and digital workflow for integrating SHM sensor networks, data, and metadata into a virtual reality environment by combining spherical imaging and informational modeling. Both intuitive and interactive, this method fosters communication on a project enabling diverse practitioners of SHM to efficiently consult and use the sensor networks, data, and metadata. The method is presented through its implementation on a case study, Streicker Bridge at Princeton University campus. To illustrate the efficiency of the new method, the time and data file size were compared to other potential methods used for visualizing and accessing SHM sensor networks, data, and metadata in 3D. Additionally, feedback from civil engineering students familiar with SHM is used for validation. Recommendations on how different groups working together on an SHM project can create SHM virtual environment and convey data to proper audiences, are also included. PMID:29337877

  14. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy

    2010-01-27

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules formore » possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection methods often need to be addressed as plants age. Shutdown inspection intervals can only be designed using creep and creep-fatigue crack growth techniques. (5) The use of crack growth procedures can aid in examining the seriousness of creep damage in structural components. How cracks grow can be used to assess margins on components and lead to further safe operation. After examining the pros and cons of all these methods, the R5 code was chosen as the most up-to-date and validated high temperature creep and creep fatigue code currently used in the world at present. R5 is considered the leader because the code: (1) has well established and validated rules, (2) has a team of experts continually improving and updating it, (3) has software that can be used by designers, (4) extensive validation in many parts with available data from BE resources as well as input from Imperial college's database, and (5) was specifically developed for use in nuclear plants. R5 was specifically developed for use in gas cooled nuclear reactors which operate in the UK and much of the experience is based on materials and temperatures which are experienced in these reactors. If the next generation advanced reactors to be built in the US used these same materials within the same temperature ranges as these reactors, then R5 may be appropriate for consideration of direct implementation within ASME code NH or Section XI. However, until more verification and validation of these creep/fatigue crack growth rules for the specific materials and temperatures to be used in the GEN IV reactors is complete, ASME should consider delaying this implementation. With this in mind, it is this authors opinion that R5 methods are the best available for code use today. The focus of this work was to examine the literature for creep and creep-fatigue crack growth procedures that are well established in codes in other countries and choose a procedure to consider implementation into ASME NH. It is very important to recognize that all creep and creep fatigue crack growth procedures that are part of high temperature design codes are related and very similar. This effort made no attempt to develop a new creep-fatigue crack growth predictive methodology. Rather examination of current procedures was the only goal. The uncertainties in the R5 crack growth methods and recommendations for more work are summarized here also.« less

  15. Crack Coalescence in Molded Gypsum and Carrara Marble

    NASA Astrophysics Data System (ADS)

    Wong, N.; Einstein, H. H.

    2007-12-01

    This research investigates the fracturing and coalescence behavior in prismatic laboratory-molded gypsum and Carrara marble specimens, which consist of either one or two pre-existing open flaws, under uniaxial compression. The tests are monitored by a high speed video system with a frame rate up to 24,000 frames/second. It allows one to precisely observe the cracking mechanisms, in particular if shear or tensile fracturing takes place. Seven crack types and nine crack coalescence categories are identified. The flaw inclination angle, the ligament length and the bridging angle between two flaws have different extents of influence on the coalescence patterns. For coplanar flaws, as the flaw inclination angle increases, there is a general trend of variation from shear coalescence to tensile coalescence. For stepped flaws, as the bridging angle changes from negative to small positive, and further up to large positive values, the coalescence generally progresses from categories of no coalescence, indirect coalescence to direct coalescence. For direct coalescence, it generally progresses from shear, mixed shear-tensile to tensile as the bridging angle increases. Some differences in fracturing and coalescence processes are observed in gypsum and marble, particularly the crack initiation in marble is preceded by the development of macroscopic white patches, but not in gypsum. Scanning Electron Microprobe (SEM) study reveals that the white patches consist of zones of microcracks (process zones).

  16. Detection and assessment of flaws in friction stir welded metallic plates

    NASA Astrophysics Data System (ADS)

    Fakih, Mohammad Ali; Mustapha, Samir; Tarraf, Jaafar; Ayoub, Georges; Hamade, Ramsey

    2017-04-01

    Investigated is the ability of ultrasonic guided waves to detect flaws and assess the quality of friction stir welds (FSW). AZ31B magnesium plates were friction stir welded. While process parameters of spindle speed and tool feed were fixed, shoulder penetration depth was varied resulting in welds of varying quality. Ultrasonic waves were excited at different frequencies using piezoelectric wafers and the fundamental symmetric (S0) mode was selected to detect the flaws resulting from the welding process. The front of the first transmitted wave signal was used to capture the S0 mode. A damage index (DI) measure was defined based on the amplitude attenuation after wave interaction with the welded zone. Computed Tomography (CT) scanning was employed as a nondestructive testing (NDT) technique to assess the actual weld quality. Derived DI values were plotted against CT-derived flaw volume resulting in a perfectly linear fit. The proposed approach showed high sensitivity of the S0 mode to internal flaws within the weld. As such, this methodology bears great potential as a future predictive method for the evaluation of FSW weld quality.

  17. Unit-Sphere Anisotropic Multiaxial Stochastic-Strength Model Probability Density Distribution for the Orientation of Critical Flaws

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel

    2013-01-01

    Models that predict the failure probability of monolithic glass and ceramic components under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" failure models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This report develops a formulation to describe the probability density distribution of the orientation of critical strength-controlling flaws that results from an applied load. This distribution is a function of the multiaxial stress state, the shear sensitivity of the flaws, the Weibull modulus, and the strength anisotropy. Examples are provided showing the predicted response on the unit sphere for various stress states for isotropic and transversely isotropic (anisotropic) materials--including the most probable orientation of critical flaws for offset uniaxial loads with strength anisotropy. The author anticipates that this information could be used to determine anisotropic stiffness degradation or anisotropic damage evolution for individual brittle (or quasi-brittle) composite material constituents within finite element or micromechanics-based software

  18. Progress on ultrasonic flaw sizing in turbine-engine rotor components: bore and web geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, J.H.; Gray, T.A.; Thompson, R.B.

    1983-01-01

    The application of generic flaw-sizing techniques to specific components generally involves difficulties associated with geometrical complexity and simplifications arising from a knowledge of the expected flaw distribution. This paper is concerned with the case of ultrasonic flaw sizing in turbine-engine rotor components. The sizing of flat penny-shaped cracks in the web geometry discussed and new crack-sizing algorithms based on the Born and Kirchhoff approximations are introduced. Additionally, we propose a simple method for finding the size of a flat, penny-shaped crack given only the magnitude of the scattering amplitude. The bore geometry is discussed with primary emphasis on the cylindricalmore » focusing of the incident beam. Important questions which are addressed include the effects of diffraction and the position of the flaw with respect to the focal line. The appropriate deconvolution procedures to account for these effects are introduced. Generic features of the theory are compared with experiment. Finally, the effects of focused transducers on the Born inversion algorithm are discussed.« less

  19. Health Equity and the Fallacy of Treating Causes of Population Health as if They Sum to 100.

    PubMed

    Krieger, Nancy

    2017-04-01

    Numerous examples exist in population health of work that erroneously forces the causes of health to sum to 100%. This is surprising. Clear refutations of this error extend back 80 years. Because public health analysis, action, and allocation of resources are ill served by faulty methods, I consider why this error persists. I first review several high-profile examples, including Doll and Peto's 1981 opus on the causes of cancer and its current interpretations; a 2015 high-publicity article in Science claiming that two thirds of cancer is attributable to chance; and the influential Web site "County Health Rankings & Roadmaps: Building a Culture of Health, County by County," whose model sums causes of health to equal 100%: physical environment (10%), social and economic factors (40%), clinical care (20%), and health behaviors (30%). Critical analysis of these works and earlier historical debates reveals that underlying the error of forcing causes of health to sum to 100% is the still dominant but deeply flawed view that causation can be parsed as nature versus nurture. Better approaches exist for tallying risk and monitoring efforts to reach health equity.

  20. Health Equity and the Fallacy of Treating Causes of Population Health as if They Sum to 100%

    PubMed Central

    2017-01-01

    Numerous examples exist in population health of work that erroneously forces the causes of health to sum to 100%. This is surprising. Clear refutations of this error extend back 80 years. Because public health analysis, action, and allocation of resources are ill served by faulty methods, I consider why this error persists. I first review several high-profile examples, including Doll and Peto’s 1981 opus on the causes of cancer and its current interpretations; a 2015 high-publicity article in Science claiming that two thirds of cancer is attributable to chance; and the influential Web site “County Health Rankings & Roadmaps: Building a Culture of Health, County by County,” whose model sums causes of health to equal 100%: physical environment (10%), social and economic factors (40%), clinical care (20%), and health behaviors (30%). Critical analysis of these works and earlier historical debates reveals that underlying the error of forcing causes of health to sum to 100% is the still dominant but deeply flawed view that causation can be parsed as nature versus nurture. Better approaches exist for tallying risk and monitoring efforts to reach health equity. PMID:28272952

  1. Simplified Numerical Analysis of ECT Probe - Eddy Current Benchmark Problem 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikora, R.; Chady, T.; Gratkowski, S.

    2005-04-09

    In this paper a third eddy current benchmark problem is considered. The objective of the benchmark is to determine optimal operating frequency and size of the pancake coil designated for testing tubes made of Inconel. It can be achieved by maximization of the change in impedance of the coil due to a flaw. Approximation functions of the probe (coil) characteristic were developed and used in order to reduce number of required calculations. It results in significant speed up of the optimization process. An optimal testing frequency and size of the probe were achieved as a final result of the calculation.

  2. Flowpath evaluation and reconnaissance by remote field Eddy current testing (FERRET)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smoak, A.E.; Zollinger, W.T.

    1993-12-31

    This document describes the design and development of FERRET (Flowpath Evaluation and Reconnaisance by Remote-field Eddy current Testing). FERRET is a system for inspecting the steel pipes which carry cooling water to underground nuclear waste storage tanks. The FERRET system has been tested in a small scale cooling pipe mock-up, an improved full scale mock-up, and in flaw detection experiments. Early prototype designs of FERRET and the FERRET launcher (a device which inserts, moves, and retrieves probes from a piping system) as well as the field-ready design are discussed.

  3. Virtual containment system for composite flywheels

    NASA Astrophysics Data System (ADS)

    Shiue, Fuh-Wen

    2001-07-01

    There is much interest in advanced composite flywheel systems for use on satellites mainly because of the potential for considerable weight savings associated with combined energy and momentum management. The additional weight of a containment system needed to protect the satellite in the event of a flywheel failure, however, could negate the potential savings. Therefore, the development of a condition monitoring and virtual containment system is essential to ensure the wide acceptance of flywheel batteries for spacecraft applications. A virtual containment system is a near real-time condition monitoring system, plus additional logic to adjust the operating conditions (maximum rotational speed) accordingly when a flaw or fault is detected. Flaws of primary interest in this study are those unique to composite flywheels, such as delamination and debonding of interfaces. Such flaws change the balance state of a flywheel through small, but detectable, motion of the mass center and principal axes of inertia. A proposed monitoring technique determines the existence and the extent of such flaws by a method similar to the influence-coefficient rotor balancing method. Because of the speed-dependence of the imbalance caused by elastic flaws, a normalized imbalance change, which is a direct measure of the flaw size, was defined. To account for the possibility that flaw growth could actually improve the balance state of a rotor, a new concept of accumulated imbalance change was also introduced. Laboratory tests showed the proposed method was able to detect small simulated flaws that result in as little as 2--3 microns of mass center movement. Fracture mechanics concepts were used to evaluate the severity and growth rate of the detected flaw. An interesting discovery that coincided with some experimental observations reported in the literature was the energy release rate reduction with a large crack. This finding indicates a possible stress relief and crack arrest when a circumferential crack grows over certain size. This phenomenon is largely due to crack curvature unique to filament-wound composite flywheels. Several virtual containment strategies were investigated numerically to demonstrate the feasibility of virtual containment systems. Once a flaw is detected during flywheel operation, the maximum operating speed can be reduced to prevent catastrophic failure, achieve a specific design life, and maximize energy storage capacity over the remaining life. A numerical example showed 4--5 times of improvement in cumulative energy storage through lifetime with a virtual containment. A closed-loop speed controller using condition monitoring sensor feedback was investigated numerically to account for possible imperfection of the fracture mechanics model. Finally, an integrated virtual containment system without any complex fracture mechanics analysis was also developed and successfully demonstrated experimentally.

  4. Insights Gained from Ultrasonic Testing of Piping Welds Subjected to the Mechanical Stress Improvement Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.

    2010-12-01

    Pacific Northwest National Laboratory (PNNL) is assisting the United States Nuclear Regulatory Commission (NRC) in developing a position on the management of primary water stress corrosion cracking (PWSCC) in leak-before-break piping systems. Part of this involves determining whether inspections alone, or inspections plus mitigation, are needed. This work addresses the reliability of ultrasonic testing (UT) of cracks that have been mitigated by the mechanical stress improvement process (MSIP). The MSIP has been approved by the NRC (NUREG-0313) since 1986 and modifies residual stresses remaining after welding with compressive, or neutral, stresses near the inner diameter surface of the pipe. Thismore » compressive stress is thought to arrest existing cracks and inhibit new crack formation. To evaluate the effectiveness of the MSIP and the reliability of ultrasonic inspections, flaws were evaluated both before and after MSIP application. An initial investigation was based on data acquired from cracked areas in 325-mm-diameter piping at the Ignalina Nuclear Power Plant (INPP) in Lithuania. In a follow-on exercise, PNNL acquired and evaluated similar UT data from a dissimilar metal weld (DMW) specimen containing implanted thermal fatigue cracks. The DMW specimen is a carbon steel nozzle-to-safe end-to-stainless steel pipe section that simulates a pressurizer surge nozzle. The flaws were implanted in the nozzle-to-safe end Alloy 82/182 butter region. Results are presented on the effects of MSIP on specimen surfaces, and on UT flaw responses.« less

  5. Nondestructive characterization of UHMWPE armor materials

    NASA Astrophysics Data System (ADS)

    Chiou, Chien-Ping; Margetan, Frank J.; Barnard, Daniel J.; Hsu, David K.; Jensen, Terrence; Eisenmann, David

    2012-05-01

    Ultra-high molecular weight polyethylene (UHMWPE) is a material increasingly used for fabricating helmet and body armor. In this work, plate specimens consolidated from thin fiber sheets in series 3124 and 3130 were examined with ultrasound, X-ray and terahertz radiation. Ultrasonic through-transmission scans using both air-coupled and immersion modes revealed that the 3130 series material generally had much lower attenuation than the 3124 series, and that certain 3124 plates had extremely high attenuation. Due to the relatively low inspection frequencies used, pulse-echo immersion ultrasonic testing could not detect distinct flaw echoes from the interior. To characterize the nature of the defective condition that was responsible for the high ultrasonic attenuation, terahertz radiation in the time-domain spectroscopy mode were used to image the flaws. Terahertz scan images obtained on the high attenuation samples clearly showed a distribution of a large number of defects, possibly small planar delaminations, throughout the volume of the interior. Their precise nature and morphology are to be verified by optical microscopy of the sectioned surface.

  6. Least Squares Best Fit Method for the Three Parameter Weibull Distribution: Analysis of Tensile and Bend Specimens with Volume or Surface Flaw Failure

    NASA Technical Reports Server (NTRS)

    Gross, Bernard

    1996-01-01

    Material characterization parameters obtained from naturally flawed specimens are necessary for reliability evaluation of non-deterministic advanced ceramic structural components. The least squares best fit method is applied to the three parameter uniaxial Weibull model to obtain the material parameters from experimental tests on volume or surface flawed specimens subjected to pure tension, pure bending, four point or three point loading. Several illustrative example problems are provided.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S.

    Leak-Before-Break (LBB) is being used to design the primary heat transport piping system of 500 MWe Indian Pressurized Heavy Water Reactors (IPHWR). The work is categorized in three directions to demonstrate three levels of safety against sudden catastrophic break. Level 1 is inherent in the design procedure of piping system as per ASME Sec.III with a well defined factor of safety. Level 2 consists of fatigue crack growth study of a postulated part-through flaw at the inside surface of pipes. Level 3 is stability analysis of a postulated leakage size flaw under the maximum credible loading condition. Developmental work relatedmore » to demonstration of level 2 and level 3 confidence is described in this paper. In a case study on fatigue crack growth on PHT straight pipes for level 2, negligible crack growth is predicted for the life of the reactor. For level 3 analysis, the R6 method has been adopted. A database to evaluate SIF of elbows with throughwall flaws under combined internal pressure and bending moment has been generated to provide one of the inputs for R6 method. The methodology of safety assessment of elbow using R6 method has been demonstrated for a typical pump discharge elbow. In this analysis, limit load of the cracked elbow has been determined by carrying out elasto-plastic finite element analysis. The limit load results compared well with those given by Miller. However, it requires further study to give a general form of limit load solution. On the experimental front, a set of small diameter pipe fracture experiments have been carried out at room temperature and 300{degrees}C. Two important observations of the experiments are - appreciable drop in maximum load at 300{degrees}C in case of SS pipes and out-of-plane crack growth in case of CS pipes. Experimental load deflection curves are finally compared with five J-estimation schemes predictions. A material database of PHT piping materials is also being generated for use in LBB analysis.« less

  8. Workarounds Are Routinely Used by Nurses-But Are They Ethical?

    PubMed

    Berlinger, Nancy

    2017-10-01

    : Nurses regularly circumvent work systems they perceive to be flawed to provide more efficient or better care. If kept secret, however, such workarounds become ethically questionable, even when the nurse is trying to do the right thing. In this article, the author discusses how nurses can be creative problem solvers without resorting to practices that may be ethical in intent yet potentially harmful in their consequences.

  9. The economics of well-being.

    PubMed

    Fox, Justin

    2012-01-01

    Gross domestic product has long been the chief measure of national success. But there's been a lot of talk lately about changing that, from economists and world leaders alike. GDP is under siege for three main reasons. First, it is flawed even on its own terms: It misses lots of economic activity (unpaid household work, for example) and, as a single-number representation of vast, complex systems, is inevitably skewed. Second, it fails to account for economic and environmental sustainability. And third, readily available alternative measures may reflect well-being far better, by taking into account factors such as educational achievement, health, and life expectancy. HBR's Justin Fox surveys historical and current views on how to assess national progress, from Jeremy Bentham to Robert Kennedy to Nicolas Sarkozy. He also looks at where we may be headed. The biggest success so far in the campaign to supplant or at least supplement GDP, he finds, is the UN's Human Development Index-on which the United States has never claimed the top spot.

  10. Methods for calculating the electrode position Jacobian for impedance imaging.

    PubMed

    Boyle, A; Crabb, M G; Jehl, M; Lionheart, W R B; Adler, A

    2017-03-01

    Electrical impedance tomography (EIT) or electrical resistivity tomography (ERT) current and measure voltages at the boundary of a domain through electrodes. The movement or incorrect placement of electrodes may lead to modelling errors that result in significant reconstructed image artifacts. These errors may be accounted for by allowing for electrode position estimates in the model. Movement may be reconstructed through a first-order approximation, the electrode position Jacobian. A reconstruction that incorporates electrode position estimates and conductivity can significantly reduce image artifacts. Conversely, if electrode position is ignored it can be difficult to distinguish true conductivity changes from reconstruction artifacts which may increase the risk of a flawed interpretation. In this work, we aim to determine the fastest, most accurate approach for estimating the electrode position Jacobian. Four methods of calculating the electrode position Jacobian were evaluated on a homogeneous halfspace. Results show that Fréchet derivative and rank-one update methods are competitive in computational efficiency but achieve different solutions for certain values of contact impedance and mesh density.

  11. The robust nature of the biopsychosocial model challenge and threat: a reply to Wright and Kirby.

    PubMed

    Blascovich, Jim; Mendes, Wendy Berry; Tomaka, Joe; Salomon, Kristen; Seery, Mark

    2003-01-01

    This article responds to Wright and Kirby's (this issue) critique of our biopsychosocial (BPS) analysis of challenge and threat motivation. We counter their arguments by reviewing the current state of our theory as well as supporting data, then turn to their specific criticisms. We believe that Wright and Kirby failed to accurately represent the corpus of our work, including both our theoretical model and its supporting data. They critiqued our model from a contextual, rational-economic perspective that ignores the complexity and subjectivity of person-person and person-environmental interactions as well as nonconscious influences. Finally, they provided criticisms regarding possible underspecificity of antecedent components of our model that do not so much indicate theoretical flaws as provide important and interesting questions for future research. We conclude by affirming that our BPS model of challenge and threat is an evolving, generative theory directed toward understanding the complexity of personality and social psychological factors underlying challenge and threat states.

  12. A novel methodology for in-process monitoring of flow forming

    NASA Astrophysics Data System (ADS)

    Appleby, Andrew; Conway, Alastair; Ion, William

    2017-10-01

    Flow forming (FF) is an incremental cold working process with near-net-shape forming capability. Failures by fracture due to high deformation can be unexpected and sometimes catastrophic, causing tool damage. If process failures can be identified in real time, an automatic cut-out could prevent costly tool damage. Sound and vibration monitoring is well established and commercially viable in the machining sector to detect current and incipient process failures, but not for FF. A broad-frequency microphone was used to record the sound signature of the manufacturing cycle for a series of FF parts. Parts were flow formed using single and multiple passes, and flaws were introduced into some of the parts to simulate the presence of spontaneously initiated cracks. The results show that this methodology is capable of identifying both introduced defects and spontaneous failures during flow forming. Further investigation is needed to categorise and identify different modes of failure and identify further potential applications in rotary forming.

  13. Recent and Future Enhancements in NDI for Aircraft Structures (Postprint)

    DTIC Science & Technology

    2015-11-01

    driven life management to a damage tolerance approach similar to the current USAF method to ensure the integrity of metallic structure . Much of this...Service Inspection Flaw Assumptions for Metallic Structures , Air Force Structures Bulletin, 23 May 2013. [9] Forsyth, D.S., et.al., “The Air Force...AFRL-RX-WP-JA-2016-0028 RECENT AND FUTURE ENHANCEMENTS IN NDI FOR AIRCRAFT STRUCTURES (POSTPRINT) Eric A. Lindgren, John Brausch, and

  14. Shades of Gray: Releasing the Cognitive Binds that Blind Us

    DTIC Science & Technology

    2016-09-01

    The availability heuristic is the cognitive process of problem solving based on learning and experience. This intuitive thinking process requires...describe a person’s systematic but flawed patterns of response to both judgment and decision problems .2 Research on the effects of cognitive bias on the...errors made. The ICArUS sensemaking model currently being developed could provide the IC with software that has the ability to mirror human cognitive

  15. Flawed gun policy research could endanger public safety.

    PubMed Central

    Webster, D W; Vernick, J S; Ludwig, J; Lester, K J

    1997-01-01

    A highly publicized recent study by Lott and Mustard concludes that laws easing restrictions on licenses for carrying concealed firearms in public substantially reduce violent crime. Several serious flaws in the study render the authors' conclusions insupportable. These flaws include misclassification of gun-carrying laws, endogeneity of predictor variables, omission of confounding variables, and failure to control for the cyclical nature of crime trends. Most of these problems should bias results toward overestimating the crime-reducing effects of laws making it easier to carry concealed firearms in public. Lott and Mustard's statistical models produce findings inconsistent with criminological theories and well-established facts about crime, and subsequent reanalysis of their data challenges their conclusions. Public health professionals should understand the methodological issues raised in this commentary, particularly when flawed research could influence the introduction of policies with potentially deleterious consequences. PMID:9224169

  16. Improved flaw detection and characterization with difference thermography

    NASA Astrophysics Data System (ADS)

    Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.

    2011-05-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites is often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, variations in fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These variations result in a noise floor that increases the difficulty of detecting and characterizing deeper flaws. The paper investigates comparing thermographic responses taken before and after a change in state in a composite to improve the detection of subsurface flaws. A method is presented for registration of the responses before finding the difference. A significant improvement in the detectability is achieved by comparing the differences in response. Examples of changes in state due to application of a load and impact are presented.

  17. Improved Flaw Detection and Characterization with Difference Thermography

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.

    2011-01-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites is often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, variations in fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These variations result in a noise floor that increases the difficulty of detecting and characterizing deeper flaws. The paper investigates comparing thermographic responses taken before and after a change in state in a composite to improve the detection of subsurface flaws. A method is presented for registration of the responses before finding the difference. A significant improvement in the detectability is achieved by comparing the differences in response. Examples of changes in state due to application of a load and impact are presented.

  18. Development of flaw acceptance criteria for aging management of spent nuclear fuel multiple-purpose canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, P.; Sindelar, R.

    2015-03-09

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. The canister may be subject to service-induced degradation when it is exposed to aggressive atmospheric environments during a possibly long-term storage period if the permanent repository is yet to be identified and readied. Because heat treatment for stress relief is not required for the construction of an MPC, stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defectsmore » be detected by periodic In-service Inspection. The first-order instability flaw sizes has been determined with bounding flaw configurations, that is, through-wall axial or circumferential cracks, and part-through-wall long axial flaw or 360° circumferential crack. The procedure recommended by the American Petroleum Institute (API) 579 Fitness-for-Service code (Second Edition) is used to estimate the instability crack length or depth by implementing the failure assessment diagram (FAD) methodology. The welding residual stresses are mostly unknown and are therefore estimated with the API 579 procedure. It is demonstrated in this paper that the residual stress has significant impact on the instability length or depth of the crack. The findings will limit the applicability of the flaw tolerance obtained from limit load approach where residual stress is ignored and only ligament yielding is considered.« less

  19. Development of flaw acceptance criteria for aging management of spent nuclear fuel multi-purpose canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Poh -Sang; Sindelar, Robert L.

    2015-03-09

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. The canister may be subject to service-induced degradation when it is exposed to aggressive atmospheric environments during a possibly long-term storage period if the permanent repository is yet to be identified and readied. Because heat treatment for stress relief is not required for the construction of an MPC, stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defectsmore » be detected by periodic in-service Inspection. The first-order instability flaw sizes has been determined with bounding flaw configurations, that is, through-wall axial or circumferential cracks, and part-through-wall long axial flaw or 360° circumferential crack. The procedure recommended by the American Petroleum Institute (API) 579 Fitness-for-Service code (Second Edition) is used to estimate the instability crack length or depth by implementing the failure assessment diagram (FAD) methodology. The welding residual stresses are mostly unknown and are therefore estimated with the API 579 procedure. It is demonstrated in this paper that the residual stress has significant impact on the instability length or depth of the crack. The findings will limit the applicability of the flaw tolerance obtained from limit load approach where residual stress is ignored and only ligament yielding is considered.« less

  20. Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties.

    PubMed

    Dimas, Leon S; Buehler, Markus J

    2014-07-07

    Flaws, imperfections and cracks are ubiquitous in material systems and are commonly the catalysts of catastrophic material failure. As stresses and strains tend to concentrate around cracks and imperfections, structures tend to fail far before large regions of material have ever been subjected to significant loading. Therefore, a major challenge in material design is to engineer systems that perform on par with pristine structures despite the presence of imperfections. In this work we integrate knowledge of biological systems with computational modeling and state of the art additive manufacturing to synthesize advanced composites with tunable fracture mechanical properties. Supported by extensive mesoscale computer simulations, we demonstrate the design and manufacturing of composites that exhibit deformation mechanisms characteristic of pristine systems, featuring flaw-tolerant properties. We analyze the results by directly comparing strain fields for the synthesized composites, obtained through digital image correlation (DIC), and the computationally tested composites. Moreover, we plot Ashby diagrams for the range of simulated and experimental composites. Our findings show good agreement between simulation and experiment, confirming that the proposed mechanisms have a significant potential for vastly improving the fracture response of composite materials. We elucidate the role of stiffness ratio variations of composite constituents as an important feature in determining the composite properties. Moreover, our work validates the predictive ability of our models, presenting them as useful tools for guiding further material design. This work enables the tailored design and manufacturing of composites assembled from inferior building blocks, that obtain optimal combinations of stiffness and toughness.

  1. Stress intensity factors for deep cracks emanating from the corner formed by a hole intersecting a plate surface

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. J.; Smith, C. W.

    1974-01-01

    A technique consisting of a marriage between stress freezing photoelasticity and a numerical method was used to obtain stress intensity factors for natural cracks emanating from the corner at which a hole intersects a plate surface. Geometrics studied were: crack depth to thickness ratios of approximately 0.2, 0.5, and 0.75; crack depth to crack length ratios of approximately 1.0 to 2.0. All final crack geometries were grown under monotonic loading and growth was not self similar with most of the growth occurring through the thickness under remote extension. Stress intensity plate surface K sub s factors were determined at the intersection of the flaw border with the plate surface K sub s and with the edge of the hole K sub h. Results showed that for the relatively shallow flaws K sub h approximately equal to 1.5 K sub s, for the moderately deep flaws K sub h approximately equal to K sub s, and for the deep flaws K sub h approximately equal to 0.5 K sub s, revealing a severe sensitivity of K to flaw geometry.

  2. Stress intensity factors for deep cracks emanating from the corner formed by a hole intersecting a plate surface

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. J.; Smith, C. W.

    1976-01-01

    The stress intensity factors (SIFs) at the end points of flaws emanating from the corner formed by the intersection of a plate with a hole were determined using stress freezing photoelasticity and a numerical technique known as the Taylor series correction method to extract the SIF values from the photoelastic data. The geometries studied were crack depth to thickness ratios of about 0.2, 0.5, and 0.75; crack depth to crack length ratios of about 1.0 to 2.0; and crack length to hole radius ratios of about 0.5 to 2.0. The SIFs were determined at the intersection of the flaw border with the plate surface (KS) and with the edge of the hole (KH). It is shown that extension of a crack emanating from a corner of intersection of a hole with a plate under monotonically increasing load is not self-similar and that as the flaw depth increases, KH decreases and KS increases. Existing theories and design criteria significantly overestimate the SIF at both the hole and the surface except for shallow flaws at the hole and deep flaws at the surface.

  3. Crack propagation from a filled flaw in rocks considering the infill influences

    NASA Astrophysics Data System (ADS)

    Chang, Xu; Deng, Yan; Li, Zhenhua; Wang, Shuren; Tang, C. A.

    2018-05-01

    This study presents a numerical and experimental study of the cracking behaviour of rock specimen containing a single filled flaw under compression. The primary aim is to investigate the influences of infill on crack patterns, load-displacement response and specimen strength. The numerical code RFPA2D (Rock Failure Process Analysis) featured by the capability of modeling heterogeneous materials is employed to develop the numerical model, which is further calibrated by physical tests. The results indicate that there exists a critical infill strength which controls crack patterns for a given flaw inclination angle. For case of infill strength lower than the critical value, the secondary or anti-cracks are disappeared by increasing the infill strength. If the infill strength is greater than the critical value, the filled flaw has little influence on the cracking path and the specimen fails by an inclined crack, as if there is no flaw. The load-displacement responses show specimen stiffness increases by increasing infill strength until the infill strength reaches its critical value. The specimen strength increases by increasing the infill strength and almost keeps constant as the infill strength exceeds its critical value.

  4. Processing ultrasonic inspection data from multiple scan patterns for turbine rotor weld build-up evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Xuefei; Zhou, S. Kevin; Rasselkorde, El Mahjoub

    The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location.more » The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.« less

  5. Multilayer material characterization using thermographic signal reconstruction

    NASA Astrophysics Data System (ADS)

    Shepard, Steven M.; Beemer, Maria Frendberg

    2016-02-01

    Active-thermography has become a well-established Nondestructive Testing (NDT) method for detection of subsurface flaws. In its simplest form, flaw detection is based on visual identification of contrast between a flaw and local intact regions in an IR image sequence of the surface temperature as the sample responds to thermal stimulation. However, additional information and insight can be obtained from the sequence, even in the absence of a flaw, through analysis of the logarithmic derivatives of individual pixel time histories using the Thermographic Signal Reconstruction (TSR) method. For example, the response of a flaw-free multilayer sample to thermal stimulation can be viewed as a simple transition between the responses of infinitely thick samples of the individual constituent layers over the lifetime of the thermal diffusion process. The transition is represented compactly and uniquely by the logarithmic derivatives, based on the ratio of thermal effusivities of the layers. A spectrum of derivative responses relative to thermal effusivity ratios allows prediction of the time scale and detectability of the interface, and measurement of the thermophysical properties of one layer if the properties of the other are known. A similar transition between steady diffusion states occurs for flat bottom holes, based on the hole aspect ratio.

  6. Processing ultrasonic inspection data from multiple scan patterns for turbine rotor weld build-up evaluations

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Rasselkorde, El Mahjoub; Abbasi, Waheed; Zhou, S. Kevin

    2015-03-01

    The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location. The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.

  7. Automatically Inspecting Thin Ceramics For Pinholes

    NASA Technical Reports Server (NTRS)

    Honaker, James R.

    1988-01-01

    Proposed apparatus for inspecting prefired ceramic materials detects minute flaws that might escape ordinary visual inspections. Method detects flaws and marks locations. Intended for such thin ceramic parts as insulation in capacitors and some radio-frequency filters.

  8. Optically and non-optically excited thermography for composites: A review

    NASA Astrophysics Data System (ADS)

    Yang, Ruizhen; He, Yunze

    2016-03-01

    Composites, such as glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP), and adhesive bonding are being increasingly used in fields of aerospace, renewable energy, civil and architecture, and other industries. Flaws and damages are inevitable during either fabrication or lifetime of composites structures or components. Thus, nondestructive testing (NDT) are extremely required to prevent failures and to increase reliability of composite structures or components in both manufacture and in-service inspection. Infrared thermography techniques including pulsed thermography, pulsed phase thermography, and lock-in thermography have shown the great potential and advantages. Besides conventional optical thermography, other sources such as laser, eddy current, microwave, and ultrasound excited thermography are drawing increasingly attentions for composites. In this work, a fully, in-depth and comprehensive review of thermography NDT techniques for composites inspection was conducted based on an orderly and concise literature survey and detailed analysis. Firstly, basic concepts for thermography NDT were defined and introduced, such as volume heating thermography. Next, the developments of conventional optic, laser, eddy current, microwave, and ultrasound thermography for composite inspection were reviewed. Then, some case studies for scanning thermography were also reviewed. After that, the strengths and limitations of thermography techniques were concluded through comparison studies. At last, some research trends were predicted. This work containing critical overview, detailed comparison and extensive list of references will disseminates knowledge between users, manufacturers, designers and researchers involved in composite structures or components inspection by means of thermography NDT techniques.

  9. Flaw imaging and ultrasonic techniques for characterizing sintered silicon carbide

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Abel, Phillip B.

    1987-01-01

    The capabilities were investigated of projection microfocus x-radiography, ultrasonic velocity and attenuation, and reflection scanning acoustic microscopy for characterizing silicon carbide specimens. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room temperature, four point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography and acoustic microscopy for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined.

  10. Damage Assessment of Creep Tested and Thermally Aged Metallic Alloys Using Acousto-Ultrasonics

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Kautz, Harold E.; Baaklini, George Y.

    2001-01-01

    In recent years emphasis has been placed on the early detection of material changes experienced in turbine powerplant components. During the scheduled overhaul of a turbine, the current techniques of examination of various hot section components aim to find flaws such as cracks, wear, and erosion, as well as excessive deformations. Thus far, these localized damage modes have been detected with satisfactory results. However, the techniques used to find these flaws provide no information on life until the flaws are actually detected. Major improvements in damage assessment, safety, as well as more accurate life prediction could be achieved if nondestructive evaluation (NDE) techniques could be utilized to sense material changes that occur prior to the localized defects mentioned. Because of elevated temperatures and excessive stresses, turbine components may experience creep behavior. As a result, it is desirable to monitor and access the current condition of such components. Research at the NASA Glenn Research Center involves developing and utilizing an NDE technique that discloses distributed material changes that occur prior to the localized damage detected by the current methods of inspection. In a recent study, creep processes in a nickel-base alloy were the life-limiting condition of interest, and the NDE technique was acousto-ultrasonics (AU). AU is an NDE technique that utilizes two ultrasonic transducers to interrogate the condition of a test specimen. The sending transducer introduces an ultrasonic pulse at a point on the surface of the specimen while a receiving transducer detects the signal after it has passed through the material. The goal of the method is to correlate certain parameters of the detected waveform to characteristics of the material between the two transducers. Here, the waveform parameter of interest is the attenuation due to internal damping for which information is being garnered from the frequency domain. The parameters utilized to indirectly quantify the attenuation are the ultrasonic decay rate as well as various moments of the frequency power spectrum. A new, user-friendly, graphical interface AU system was developed at NASA Glenn. This system is an all-inclusive, multifunction system that controls the sending and receiving ultrasonic transducers as well as all posttest signal analysis. The system's postprocessing software calculates the multiple parameters used to study the material of interest.

  11. VHL Alliance

    MedlinePlus

    ... by a flaw in one gene, the VHL gene, which regulates cell growth causing patients to battle a series of tumors ... by a flaw in one gene, the VHL gene, which regulates cell growth causing patients to battle a series of tumors ...

  12. Fixing Flawed Body Parts: Engineering New Tissues and Organs

    MedlinePlus

    ... 2015 Print this issue Fixing Flawed Body Parts Engineering New Tissues and Organs En español Send us ... ones. This type of research is called tissue engineering. Exciting advances continue to emerge in this fast- ...

  13. The problem of the second wind turbine - a note on a common but flawed wind power estimation method

    NASA Astrophysics Data System (ADS)

    Gans, F.; Miller, L. M.; Kleidon, A.

    2010-06-01

    Several recent wind power estimates suggest how this renewable resource can meet all of the current and future global energy demand with little impact on the atmosphere. These estimates are calculated using observed wind speeds in combination with specifications of wind turbine size and density to quantify the extractable wind power. Here we show that this common methodology is flawed because it does not account for energy removal by the turbines that is necessary to ensure the conservation of energy. We will first illustrate the common but flawed methodology using parameters from a recent global quantification of wind power in a simple experimental setup. For a small number of turbines at small scales, the conservation of energy hardly results in a difference when compared to the common method. However, when applied at large to global scales, the ability of radiative gradients to generate a finite amount of kinetic energy needs to be taken into account. Using the same experimental setup, we use the simplest method to ensure the conservation of energy to show a non-negligble decrease in wind velocity after the first turbine that will successively result in lower extraction of the downwind turbines. We then show how the conservation of energy inevitably results in substantially lower estimates of wind power at the global scale. Because conservation of energy is fundamental, we conclude that ultimately environmental constraints set the upper limit for wind power availability at the larger scale rather than detailed engineering specifications of the wind turbine design and placement.

  14. Fracture control method for composite tanks with load sharing liners

    NASA Technical Reports Server (NTRS)

    Bixler, W. D.

    1975-01-01

    The experimental program was based on the premise that the plastic sizing cycle, which each pressure vessel is subjected to prior to operation, acts as an effective proof test of the liner, screening out all flaws or cracks larger than a critical size. In doing so, flaw growth potential is available for cyclic operation at pressures less than the sizing pressure. Static fracture and cyclic life tests, involving laboratory type specimens and filament overwrapped tanks, were conducted on three liner materials: (1) 2219-T62 aluminum, (2) Inconel X750 STA, and (3) cryoformed 301 stainless steel. Variables included material condition, thickness, flaw size, flaw shape, temperature, sizing stress level, operating stress level and minimum-to-maximum operating stress ratio. From the empirical data base obtained, a procedure was established by which the service life of composite tanks with load sharing liners could be guaranteed with a high degree of confidence.

  15. Steam generator tubes integrity: In-service-inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comby, R.J.

    1997-02-01

    The author`s approach to tube integrity is in terms of looking for flaws in tubes. The basis for this approach is that no simple rules can be fixed to adopt a universal inspection methodology because of various concepts related to experience, leak acceptance, leak before break approach, etc. Flaw specific management is probably the most reliable approach as a compromise between safety, availability and economic issues. In that case, NDE capabilities have to be in accordance with information required by structural integrity demonstration. The author discusses the types of probes which can be used to search for flaws in additionmore » to the types of flaws which are being sought, with examples of specific analysis experiences. The author also discusses the issue of a reporting level as it relates to avoiding false calls, classifying faults, and allowing for automation in analysis.« less

  16. Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Yee, Andrew; Stewart, Dylan; Rogers, James; Henley, Stanley; Bugg, Chris; Cline, John; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz

    2018-04-01

    Ultrasonic measurements have become increasingly important non-destructive techniques to characterize flaws found within various in-service industrial components. The prediction of remaining useful life based on fracture analysis depends on the accurate estimation of flaw size and orientation. However, amplitude-based ultrasonic measurements are not able to estimate the plastic zones that exist ahead of crack tips. Estimating the size of the plastic zone is an advantage since some flaws may propagate faster than others. This paper presents a wavelet cross-correlation (WCC) algorithm that was applied to nonlinear analysis of ultrasonically guided waves (GW). By using this algorithm, harmonics present in the waveforms were extracted and nonlinearity parameters were used to indicate both the tip of the cracks and size of the plastic zone. B-scans performed with the quadratic nonlinearities were sensitive to micro-damage specific to plastic zones.

  17. Signal processing for non-destructive testing of railway tracks

    NASA Astrophysics Data System (ADS)

    Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard

    2018-04-01

    Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.

  18. Fracture mechanics data for 2024-T861 and 2124-T851 aluminum

    NASA Technical Reports Server (NTRS)

    Pionke, L. J.; Linback, R. K.

    1974-01-01

    The fracture toughness and fatigue flaw growth characteristics of 2024-T861 and 2124-T851 aluminum were evaluated under plane stress conditions. Center cracked tension specimens were employed to evaluate these properties under a number of different test conditions which included variations in specimen thickness, specimen orientation, test environment, and initial flaw size. The effect of buckling was also investigated for all tests of thin gage specimens, and the effect of frequency and stress ratio was evaluated for the cyclic tests. Fracture toughness test results were analyzed and presented in terms of fracture resistance curves; fatigue flaw growth data was analyzed using empirical rate models. The results of the study indicate that both fracture toughness and resistance to fatigue crack growth improve with increasing temperature and decreasing thickness. The presence of buckling during testing of thin gage panels was found to degrade the resistance to fatigue flaw growth only at elevated temperatures.

  19. Characterizing the performance of eddy current probes using photoinductive field-mapping

    NASA Astrophysics Data System (ADS)

    Moulder, John C.; Nakagawa, Norio

    1992-12-01

    We present a new method for characterizing the performance of eddy current probes by mapping their electromagnetic fields. The technique is based on the photoinductive effect, the change in the impedance of an eddy current probe induced by laser heating of the material under the probe. The instrument we developed maps a probe's electric field distribution by scanning an infrared laser beam over a thin film of gold lying underneath the probe. Measurements of both photoinductive signals and flaw signals for a series of similar probes demonstrates that the impedance change caused by an electrical-discharge-machined notch or a fatigue crack is proportional to the strength of the photoinductive signal. Thus, photoinductive measurements can supplant the use of artifact standards to calibrate eddy current probes.

  20. Terrorism drill shows ED response plan flaws.

    PubMed

    2005-07-01

    Valuable lessons can be learned by paying attention to your processes and communication equipment during a disaster drill. Did your radios and pagers work adequately? If not, it may be time for a new vendor. Going through the drill helps remind the entire ED staff to funnel all communications and key decisions through the disaster response leader. Make sure to update your disaster response handbook to reflect important lessons learned during the drill.

  1. The frequency of item writing flaws in multiple-choice questions used in high stakes nursing assessments.

    PubMed

    Tarrant, Marie; Knierim, Aimee; Hayes, Sasha K; Ware, James

    2006-12-01

    Multiple-choice questions are a common assessment method in nursing examinations. Few nurse educators, however, have formal preparation in constructing multiple-choice questions. Consequently, questions used in baccalaureate nursing assessments often contain item-writing flaws, or violations to accepted item-writing guidelines. In one nursing department, 2770 MCQs were collected from tests and examinations administered over a five-year period from 2001 to 2005. Questions were evaluated for 19 frequently occurring item-writing flaws, for cognitive level, for question source, and for the distribution of correct answers. Results show that almost half (46.2%) of the questions contained violations of item-writing guidelines and over 90% were written at low cognitive levels. Only a small proportion of questions were teacher generated (14.1%), while 36.2% were taken from testbanks and almost half (49.4%) had no source identified. MCQs written at a lower cognitive level were significantly more likely to contain item-writing flaws. While there was no relationship between the source of the question and item-writing flaws, teacher-generated questions were more likely to be written at higher cognitive levels (p<0.001). Correct answers were evenly distributed across all four options and no bias was noted in the placement of correct options. Further training in item-writing is recommended for all faculty members who are responsible for developing tests. Pre-test review and quality assessment is also recommended to reduce the occurrence of item-writing flaws and to improve the quality of test questions.

  2. Methodological Flaws, Conflicts of Interest, and Scientific Fallacies: Implications for the Evaluation of Antidepressants' Efficacy and Harm.

    PubMed

    Hengartner, Michael P

    2017-01-01

    In current psychiatric practice, antidepressants are widely and with ever-increasing frequency prescribed to patients. However, several scientific biases obfuscate estimates of antidepressants' efficacy and harm, and these are barely recognized in treatment guidelines. The aim of this mini-review is to critically evaluate the efficacy and harm of antidepressants for acute and maintenance treatment with respect to systematic biases related to industry funding and trial methodology. Narrative review based on a comprehensive search of the literature. It is shown that the pooled efficacy of antidepressants is weak and below the threshold of a minimally clinically important change once publication and reporting biases are considered. Moreover, the small mean difference in symptom reductions relative to placebo is possibly attributable to observer effects in unblinded assessors and patient expectancies. With respect to trial dropout rates, a hard outcome not subjected to observer bias, no difference was observed between antidepressants and placebo. The discontinuation trials on the efficacy of antidepressants in maintenance therapy are systematically flawed, because in these studies, spontaneous remitters are excluded, whereas half of all patients who remitted on antidepressants are abruptly switched to placebo. This can cause a severe withdrawal syndrome that is easily misdiagnosed as a relapse when assessed on subjective symptom rating scales. In accordance, the findings of naturalistic long-term studies suggest that maintenance therapy has no clear benefit, and non-drug users do not show increased recurrence rates. Moreover, a growing body of evidence from hundreds of randomized controlled trials suggests that antidepressants cause suicidality, but this risk is underestimated because data from industry-funded trials are systematically flawed. Unselected, population-wide observational studies indicate that depressive patients who use antidepressants are at an increased risk of suicide and that they have a higher rate of all-cause mortality than matched controls. The strong reliance on industry-funded research results in an uncritical approval of antidepressants. Due to several flaws such as publication and reporting bias, unblinding of outcome assessors, concealment and recoding of serious adverse events, the efficacy of antidepressants is systematically overestimated, and harm is systematically underestimated. Therefore, I conclude that antidepressants are largely ineffective and potentially harmful.

  3. The Analysis of Crack Growth Initiation, Propagation, and Arrest in Flawed Ship Structures Subjected to Dynamic Loading

    DTIC Science & Technology

    1984-08-10

    most current efforts in EPFM are focused on the application of the J-resistance curve to predict crack initiation and fracture instability. However...element code FRACDYN, which has since been used to solve a variety of problems related to the Navy, NRC, and several industrial applications . Of...that this parameter remains constant during elastic-plastic stable crack growth--see Reference (9). This fact, together with its ease of application

  4. The battalion medical platoon: a flawed scalpel.

    PubMed

    Cannon, M W; Stoute, J A

    1992-08-01

    This article discusses the current organization and doctrine for a medical platoon in an armour-heavy task force in light of experience gained in Operations Desert Shield and Desert Storm. The organization of and doctrine for the use of the platoon is covered first. This is followed by a discussion of how doctrine was modified based on field exercises, and projected, and actual, combat operations. It concludes with a presentation of lessons learned and recommendations for changes.

  5. Flux focusing eddy current probe

    NASA Technical Reports Server (NTRS)

    Simpson, John W. (Inventor); Clendenin, C. Gerald (Inventor); Fulton, James P. (Inventor); Wincheski, Russell A. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor); Nath, Shridhar C. (Inventor)

    1997-01-01

    A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks and material loss in high conductivity material. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil. The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. The maximum sensor output is obtained when positioned symmetrically above the crack. Hence, by obtaining the position of the maximum sensor output, it is possible to track the fault and locate the area surrounding its tip. The accuracy of tip location is enhanced by two unique features of the sensor; a very high signal-to-noise ratio of the probe's output which results in an extremely smooth signal peak across the fault, and a rapidly decaying sensor output outside a small area surrounding the crack tip which enables the region for searching to be clearly defined. Under low frequency operation, material thinning due to corrosion damage causes an incomplete shielding of the pick-up coil. The low frequency output voltage of the probe is therefore a direct indicator of the thickness of the test sample.

  6. Eddy Current Method for Fatigue Testing

    NASA Technical Reports Server (NTRS)

    Simpson, John W. (Inventor); Fulton, James P. (Inventor); Wincheski, Russell A. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor); Nath, Shridhar C. (Inventor)

    1997-01-01

    Flux-focusing electromagnetic sensor using a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks and material loss in high conductivity material. A ferrous shield isolates a high-turn pick-up coil from an excitation coil. Use of the magnetic shield produces a null voltage output across the receiving coil in presence of an unflawed sample. Redistribution of the current flow in the sample caused by the presence of flaws. eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. Maximum sensor output is obtained when positioned symmetrically above the crack. By obtaining position of maximum sensor output, it is possible to track the fault and locate the area surrounding its tip. Accuracy of tip location is enhanced by two unique features of the sensor; a very high signal-to-noise ratio of the probe's output resulting in an extremely smooth signal peak across the fault, and a rapidly decaying sensor output outside a small area surrounding the crack tip enabling the search region to be clearly defined. Under low frequency operation, material thinning due to corrosion causes incomplete shielding of the pick-up coil. Low frequency output voltage of the probe is therefore a direct indicator of thickness of the test sample. Fatigue testing a conductive material is accomplished by applying load to the material, applying current to the sensor, scanning the material with the sensor, monitoring the sensor output signal, adjusting material load based on the sensor output signal of the sensor, and adjusting position of the sensor based on its output signal.

  7. Analysis of unclad and sub-clad semi-elliptical flaws in pressure vessel steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irizarry-Quinones, H.; Macdonald, B.D.; McAfee, W.J.

    This study was conducted to support warm prestressing experiments on unclad and sub-clad flawed beams loaded in pure bending. Two cladding yield strengths were investigated: 0.6 Sy and 0.8 Sy, where Sy is the yield strength of the base metal. Cladding and base metal were assumed to be stress free at the stress relief temperature for the 3D elastic-plastic finite element analysis used to model the experiments. The model results indicated that when cooled from the stress relief temperature, the cladding was put in tension due to its greater coefficient of thermal expansion. When cooled, the cladding exhibited various amountsmore » of tensile yielding. The degree of yielding depended on the amount of cooling and the strength of the cladding relative to that of the base metal. When subjected to tensile bending stress, the sub-clad flaw elastic-plastic stress intensity factor, K{sub I}(J), was at first dominated by crack closing force due to tensile yielding in the cladding. Thus, imposed loads initially caused no increase in K{sub I}(J) near the clad-base interface. However, K{sub I}(J) at the flaw depth was little affected. When the cladding residual stress was overcome, K{sub I}(J) gradually increased until the cladding began to flow. Thereafter, the rate at which K{sub I}(J) increased with load was the same as that of an unclad beam. A plastic zone corrected K{sub I} approximation for the unclad flaw was found by the superposition of standard Newman and Raju solutions with those due to a cladding crack closure force approximated by the Kaya and Erdogan solution. These elastic estimates of the effect of cladding in reducing the crack driving force were quite in keeping with the 3D elastic-plastic finite element solution for the sub-clad flaw. The results were also compared with the analysis of clad beam experiments by Keeney and the conclusions by Miyazaki, et al. A number of sub-clad flaw specimens not subjected to warm prestressing were thought to have suffered degraded toughness caused by locally intensified strain aging embrittlement (LISAE) due to welding over the preexisting flaw.« less

  8. A Novel Approach to Rotorcraft Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Everett, Richard A.; Newman, John A.

    2002-01-01

    Damage-tolerance methodology is positioned to replace safe-life methodologies for designing rotorcraft structures. The argument for implementing a damage-tolerance method comes from the fundamental fact that rotorcraft structures typically fail by fatigue cracking. Therefore, if technology permits prediction of fatigue-crack growth in structures, a damage-tolerance method should deliver the most accurate prediction of component life. Implementing damage-tolerance (DT) into high-cycle-fatigue (HCF) components will require a shift from traditional DT methods that rely on detecting an initial flaw with nondestructive inspection (NDI) methods. The rapid accumulation of cycles in a HCF component will result in a design based on a traditional DT method that is either impractical because of frequent inspections, or because the design will be too heavy to operate efficiently. Furthermore, once a HCF component develops a detectable propagating crack, the remaining fatigue life is short, sometimes less than one flight hour, which does not leave sufficient time for inspection. Therefore, designing a HCF component will require basing the life analysis on an initial flaw that is undetectable with current NDI technology.

  9. Four Bad Habits of Modern Psychologists

    PubMed Central

    Grice, James; Cota, Lisa; Taylor, Zachery; Garner, Samantha; Medellin, Eliwid; Vest, Adam

    2017-01-01

    Four data sets from studies included in the Reproducibility Project were re-analyzed to demonstrate a number of flawed research practices (i.e., “bad habits”) of modern psychology. Three of the four studies were successfully replicated, but re-analysis showed that in one study most of the participants responded in a manner inconsistent with the researchers’ theoretical model. In the second study, the replicated effect was shown to be an experimental confound, and in the third study the replicated statistical effect was shown to be entirely trivial. The fourth study was an unsuccessful replication, yet re-analysis of the data showed that questioning the common assumptions of modern psychological measurement can lead to novel techniques of data analysis and potentially interesting findings missed by traditional methods of analysis. Considered together, these new analyses show that while it is true replication is a key feature of science, causal inference, modeling, and measurement are equally important and perhaps more fundamental to obtaining truly scientific knowledge of the natural world. It would therefore be prudent for psychologists to confront the limitations and flaws in their current analytical methods and research practices. PMID:28805739

  10. Toward practical 3D radiography of pipeline girth welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wassink, Casper, E-mail: casper.wassink@applusrtd.com; Hol, Martijn, E-mail: martijn.hol@applusrtd.com; Flikweert, Arjan, E-mail: martijn.hol@applusrtd.com

    2015-03-31

    Digital radiography has made its way into in-the-field girth weld testing. With recent generations of detectors and x-ray tubes it is possible to reach the image quality desired in standards as well as the speed of inspection desired to be competitive with film radiography and automated ultrasonic testing. This paper will show the application of these technologies in the RTD Rayscan system. The method for achieving an image quality that complies with or even exceeds prevailing industrial standards will be presented, as well as the application on pipeline girth welds with CRA layers. A next step in development will bemore » to also achieve a measurement of weld flaw height to allow for performing an Engineering Critical Assessment on the weld. This will allow for similar acceptance limits as currently used with Automated Ultrasonic Testing of pipeline girth welds. Although a sufficient sizing accuracy was already demonstrated and qualified in the TomoCAR system, testing in some applications is restricted to time limits. The paper will present some experiments that were performed to achieve flaw height approximation within these time limits.« less

  11. Nondestructive inspection of bonded composite doublers for aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, D.; Moore, D.; Walkington, P.

    1996-12-31

    One major thrust in FAA`s National Aging Aircraft Research Program is to foster new technologies in civil aircraft maintenance. Recent DOD and other government developments in using bonded composite doublers on metal structures support the need for validation of such doubler applications on US certificated airplanes. In this study, a specific composite application was chosen on an L-1011 aircraft. Primary inspection requirements for these doublers include identifying disbonds between composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the double is also a concern. No singlemore » NDI method can inspect for every flaw type, therefore we need to know NDI capabilities and limitations. This paper reports on a series of NDI tests conducted on laboratory test structures and on a fuselage section from a retired L-1011. Application of ultrasonics, x-ray, and eddy current to composite doublers and results from test specimens loaded to provide a changing flaw profile, are presented in this paper. Development of appropriate inspection calibration standards are also discussed.« less

  12. THE CHOICE OF OPTIMAL STRUCTURE OF ARTIFICIAL NEURAL NETWORK CLASSIFIER INTENDED FOR CLASSIFICATION OF WELDING FLAWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikora, R.; Chady, T.; Baniukiewicz, P.

    2010-02-22

    Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Twomore » weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.« less

  13. The Choice of Optimal Structure of Artificial Neural Network Classifier Intended for Classification of Welding Flaws

    NASA Astrophysics Data System (ADS)

    Sikora, R.; Chady, T.; Baniukiewicz, P.; Caryk, M.; Piekarczyk, B.

    2010-02-01

    Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Two weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.

  14. Four Bad Habits of Modern Psychologists.

    PubMed

    Grice, James; Barrett, Paul; Cota, Lisa; Felix, Crystal; Taylor, Zachery; Garner, Samantha; Medellin, Eliwid; Vest, Adam

    2017-08-14

    Four data sets from studies included in the Reproducibility Project were re-analyzed to demonstrate a number of flawed research practices (i.e., "bad habits") of modern psychology. Three of the four studies were successfully replicated, but re-analysis showed that in one study most of the participants responded in a manner inconsistent with the researchers' theoretical model. In the second study, the replicated effect was shown to be an experimental confound, and in the third study the replicated statistical effect was shown to be entirely trivial. The fourth study was an unsuccessful replication, yet re-analysis of the data showed that questioning the common assumptions of modern psychological measurement can lead to novel techniques of data analysis and potentially interesting findings missed by traditional methods of analysis. Considered together, these new analyses show that while it is true replication is a key feature of science, causal inference, modeling, and measurement are equally important and perhaps more fundamental to obtaining truly scientific knowledge of the natural world. It would therefore be prudent for psychologists to confront the limitations and flaws in their current analytical methods and research practices.

  15. Physics-based method to validate and repair flaws in protein structures

    PubMed Central

    Martin, Osvaldo A.; Arnautova, Yelena A.; Icazatti, Alejandro A.; Scheraga, Harold A.; Vila, Jorge A.

    2013-01-01

    A method that makes use of information provided by the combination of 13Cα and 13Cβ chemical shifts, computed at the density functional level of theory, enables one to (i) validate, at the residue level, conformations of proteins and detect backbone or side-chain flaws by taking into account an ensemble average of chemical shifts over all of the conformations used to represent a protein, with a sensitivity of ∼90%; and (ii) provide a set of (χ1/χ2) torsional angles that leads to optimal agreement between the observed and computed 13Cα and 13Cβ chemical shifts. The method has been incorporated into the CheShift-2 protein validation Web server. To test the reliability of the provided set of (χ1/χ2) torsional angles, the side chains of all reported conformations of five NMR-determined protein models were refined by a simple routine, without using NOE-based distance restraints. The refinement of each of these five proteins leads to optimal agreement between the observed and computed 13Cα and 13Cβ chemical shifts for ∼94% of the flaws, on average, without introducing a significantly large number of violations of the NOE-based distance restraints for a distance range ≤ 0.5 Ǻ, in which the largest number of distance violations occurs. The results of this work suggest that use of the provided set of (χ1/χ2) torsional angles together with other observables, such as NOEs, should lead to a fast and accurate refinement of the side-chain conformations of protein models. PMID:24082119

  16. Physics-based method to validate and repair flaws in protein structures.

    PubMed

    Martin, Osvaldo A; Arnautova, Yelena A; Icazatti, Alejandro A; Scheraga, Harold A; Vila, Jorge A

    2013-10-15

    A method that makes use of information provided by the combination of (13)C(α) and (13)C(β) chemical shifts, computed at the density functional level of theory, enables one to (i) validate, at the residue level, conformations of proteins and detect backbone or side-chain flaws by taking into account an ensemble average of chemical shifts over all of the conformations used to represent a protein, with a sensitivity of ∼90%; and (ii) provide a set of (χ1/χ2) torsional angles that leads to optimal agreement between the observed and computed (13)C(α) and (13)C(β) chemical shifts. The method has been incorporated into the CheShift-2 protein validation Web server. To test the reliability of the provided set of (χ1/χ2) torsional angles, the side chains of all reported conformations of five NMR-determined protein models were refined by a simple routine, without using NOE-based distance restraints. The refinement of each of these five proteins leads to optimal agreement between the observed and computed (13)C(α) and (13)C(β) chemical shifts for ∼94% of the flaws, on average, without introducing a significantly large number of violations of the NOE-based distance restraints for a distance range ≤ 0.5 , in which the largest number of distance violations occurs. The results of this work suggest that use of the provided set of (χ1/χ2) torsional angles together with other observables, such as NOEs, should lead to a fast and accurate refinement of the side-chain conformations of protein models.

  17. Wavelet analysis applied to thermographic data for the detection of sub-superficial flaws in mosaics

    NASA Astrophysics Data System (ADS)

    Sfarra, Stefano; Regi, Mauro

    2016-06-01

    Up to now, the sun-pulse recorded during the heating (day) and cooling (night) phases has not yet been analyzed by using the infrared thermography (IRT) method through the complex wavelet transform (CWT) technique. CWT can be used with the sun-pulse data in a similar way as the discrete Fourier transform (DFT). In addition, CWT preserves the time information of the signal both in the phasegrams and in the amplitudegrams. In this work, a mosaic sample containing artificial flaws positioned at different depths was inspected into the long wave IR spectrum. It is possible to observe that by comparing defective and defect-free areas, a difference in phase during the thermal diffusion appears. The signal reference, measured on the defect-free area, was subtracted from the other measurement points. The resulting signal thermal contrast, representing the difference of the temporal evolutions of the surface temperature above the defective and defect-free positions, was also plotted. Subsequently, the wavelet phase contrast was computed. The solar radiation influencing the sample was estimated bearing in mind the sun path in the sky, the mosaic orientation and the inclination with respect to its local geographical coordinates. Finally, the ambient parameters have been recorded by a control unit. Although the CWT technique did not provided a sound visualization of the shape of the flaws, it permitted to reflect on the heat release coming from the bituminous material behind the statumen layer. Indeed, it is not atypical to find inclined mosaics to be restored.

  18. Holographic analysis as an inspection method for welded thin-wall tubing

    NASA Technical Reports Server (NTRS)

    Brooks, Lawrence; Mulholland, John; Genin, Joseph; Matthews, Larryl

    1990-01-01

    The feasibility of using holographic interferometry for locating flaws in welded tubing is explored. Two holographic techniques are considered: traditional holographic interferometry and electronic speckle pattern interferometry. Several flaws including cold laps, discontinuities, and tube misalignments are detected.

  19. Electromagnetic radiation screening of microcircuits for long life applications

    NASA Technical Reports Server (NTRS)

    Brammer, W. G.; Erickson, J. J.; Levy, M. E.

    1974-01-01

    The utility of X-rays as a stimulus for screening high reliability semiconductor microcircuits was studied. The theory of the interaction of X-rays with semiconductor materials and devices was considered. Experimental measurements of photovoltages, photocurrents, and effects on specified parameters were made on discrete devices and on microcircuits. The test specimens included discrete devices with certain types of identified flaws and symptoms of flaws, and microcircuits exhibiting deviant electrical behavior. With a necessarily limited sample of test specimens, no useful correlation could be found between the X-ray-induced electrical response and the known or suspected presence of flaws.

  20. Internal Rot Detection with the Use of Low-Frequency Flaw Detector

    NASA Astrophysics Data System (ADS)

    Proskórnicki, Marek; Ligus, Grzegorz

    2014-12-01

    The issue of rot detection in standing timber or stocked wood is very important in forest management. Rot flaw detection used for that purpose is represented by invasive and non-invasive devices. Non-invasive devices are very accurate, but due to the cost and complicated operation they have not been applied on a large scale in forest management. Taking into account the practical needs of foresters a prototype of low-frequency flaw was developed. The principle of its operation is based on the difference in acoustic wave propagation in sound wood and wood with rot.

  1. Computer Tomography Analysis of Fastrac Composite Thrust Chamber Assemblies

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2000-01-01

    Computed tomography (CT) inspection has been integrated into the production process for NASA's Fastrac composite thrust chamber assemblies (TCAs). CT has been proven to be uniquely qualified to detect the known critical flaw for these nozzles, liner cracks that are adjacent to debonds between the liner and overwrap. CT is also being used as a process monitoring tool through analysis of low density indications in the nozzle overwraps. 3d reconstruction of CT images to produce models of flawed areas is being used to give program engineers better insight into the location and nature of nozzle flaws.

  2. Ultrasonic imaging of material flaws exploiting multipath information

    NASA Astrophysics Data System (ADS)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  3. [Preliminary analysis about influence of porcelain thickness on interfacial crack of PFM].

    PubMed

    Zhu, Ziyuan; Zhang, Baowei; Zhang, Xiuyin; Xu, Kan; Fang, Ruhua; Wang, Dongmei

    2002-01-01

    This study was about the influence of porcelain thickness on crack at interface. The effect of porcelain thickness on the flaw at the interface between porcelain and metal was studied in three groups with porcelain thickness of 0.5 mm, 1.5 mm and 2.5 mm (metal thickness of 0.5 mm) by means of moire interferometre and interfacial fracture mechanics. The parameter Jc was compared among the three groups and the growing of the flaw was observed. Jc and the extreme strength of group with porcelain thickness of 0.5 mm (2.813 N/m and 9.979 N) were lower than those of the groups with porcelain thickness of 1.5 mm and 2.5 mm (5.395 N/m, 19.134 N and 5.429 N/m, 19.256 N). Flaws extend along the interface in the groups with porcelain thickness of 1.5 mm and 0.5 mm. (1) Fracture resistance of the interface in the groups with porcelain thickness of 1.5 mm and 2.5 mm is similar and it decreases in the group with 0.5 mm thick porcelain. (2) When porcelain is 1.5 mm or 0.5 mm thick, flaws will extend along the interface. When porcelain is 2.5 mm thick, flaws will extend into the porcelain layer.

  4. Do item-writing flaws reduce examinations psychometric quality?

    PubMed

    Pais, João; Silva, Artur; Guimarães, Bruno; Povo, Ana; Coelho, Elisabete; Silva-Pereira, Fernanda; Lourinho, Isabel; Ferreira, Maria Amélia; Severo, Milton

    2016-08-11

    The psychometric characteristics of multiple-choice questions (MCQ) changed when taking into account their anatomical sites and the presence of item-writing flaws (IWF). The aim is to understand the impact of the anatomical sites and the presence of IWF in the psychometric qualities of the MCQ. 800 Clinical Anatomy MCQ from eight examinations were classified as standard or flawed items and according to one of the eight anatomical sites. An item was classified as flawed if it violated at least one of the principles of item writing. The difficulty and discrimination indices of each item were obtained. 55.8 % of the MCQ were flawed items. The anatomical site of the items explained 6.2 and 3.2 % of the difficulty and discrimination parameters and the IWF explained 2.8 and 0.8 %, respectively. The impact of the IWF was heterogeneous, the Writing the Stem and Writing the Choices categories had a negative impact (higher difficulty and lower discrimination) while the other categories did not have any impact. The anatomical site effect was higher than IWF effect in the psychometric characteristics of the examination. When constructing MCQ, the focus should be in the topic/area of the items and only after in the presence of IWF.

  5. Feasibility of Flaw Detection in Railroad Wheels Using Acoustic Signatures

    DOT National Transportation Integrated Search

    1976-10-01

    The feasibility study on the use of acoustic signatures for detection of flaws in railway wheels was conducted with the ultimate objective of development of an intrack device for moving cars. Determinations of the natural modes of vibrating wheels un...

  6. Prevention of design flaws in multicomputer systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Multicomputer configurations and redundancy management techniques used in various airborne systems were investigated to determine methods to prevent and/or treat generic design flaws. The findings are intended for use in the design of a computer system for use in the space shuttle orbiter.

  7. The Dibb Report: Three Years After

    DTIC Science & Technology

    1989-08-01

    the Chief of Defence Force/s Conference In Canberra. Ross Babbage and Desmond Ball presented their r e vi e ws of Dibb/s work. Australia did not have...strategic plan. Both Babbage and Ball were generally complimentary of the reveiw, remarking it was long overdue and wei 1 done. However, they also felt...that the review contained fatal flaws for which they had recommended solutions. Babbage theorized that Dibb’s "strategy of denial", as a strictly

  8. Improving patient safety: patient-focused, high-reliability team training.

    PubMed

    McKeon, Leslie M; Cunningham, Patricia D; Oswaks, Jill S Detty

    2009-01-01

    Healthcare systems are recognizing "human factor" flaws that result in adverse outcomes. Nurses work around system failures, although increasing healthcare complexity makes this harder to do without risk of error. Aviation and military organizations achieve ultrasafe outcomes through high-reliability practice. We describe how reliability principles were used to teach nurses to improve patient safety at the front line of care. Outcomes include safety-oriented, teamwork communication competency; reflections on safety culture and clinical leadership are discussed.

  9. Does Educator Training or Experience Affect the Quality of Multiple-Choice Questions?

    PubMed

    Webb, Emily M; Phuong, Jonathan S; Naeger, David M

    2015-10-01

    Physicians receive little training on proper multiple-choice question (MCQ) writing methods. Well-constructed MCQs follow rules, which ensure that a question tests what it is intended to test. Questions that break these are described as "flawed." We examined whether the prevalence of flawed questions differed significantly between those with or without prior training in question writing and between those with different levels of educator experience. We assessed 200 unedited MCQs from a question bank for our senior medical student radiology elective: an equal number of questions (50) were written by faculty with previous training in MCQ writing, other faculty, residents, and medical students. Questions were scored independently by two readers for the presence of 11 distinct flaws described in the literature. Questions written by faculty with MCQ writing training had significantly fewer errors: mean 0.4 errors per question compared to a mean of 1.5-1.7 errors per question for the other groups (P < .001). There were no significant differences in the total number of errors between the untrained faculty, residents, and students (P values .35-.91). Among trained faculty 17/50 questions (34%) were flawed, whereas other faculty wrote 38/50 (76%) flawed questions, residents 37/50 (74%), and students 44/50 (88%). Trained question writers' higher performance was mainly manifest in the reduced frequency of five specific errors. Faculty with training in effective MCQ writing made fewer errors in MCQ construction. Educator experience alone had no effect on the frequency of flaws; faculty without dedicated training, residents, and students performed similarly. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  10. Development of Natural Flaw Samples for Evaluating Nondestructive Testing Methods for Foam Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Davis, Jason; Farrington, Seth; Walker, James

    2007-01-01

    Low density polyurethane foam has been an important insulation material for space launch vehicles for several decades. The potential for damage from foam breaking away from the NASA External Tank was not realized until the foam impacts on the Columbia Orbiter vehicle caused damage to its Leading Edge thermal protection systems (TPS). Development of improved inspection techniques on the foam TPS is necessary to prevent similar occurrences in the future. Foamed panels with drilled holes for volumetric flaws and Teflon inserts to simulate debonded conditions have been used to evaluate and calibrate nondestructive testing (NDT) methods. Unfortunately the symmetric edges and dissimilar materials used in the preparation of these simulated flaws provide an artificially large signal while very little signal is generated from the actual defects themselves. In other words, the same signal are not generated from the artificial defects in the foam test panels as produced when inspecting natural defect in the ET foam TPS. A project to create more realistic voids similar to what actually occurs during manufacturing operations was began in order to improve detection of critical voids during inspections. This presentation describes approaches taken to create more natural voids in foam TPS in order to provide a more realistic evaluation of what the NDT methods can detect. These flaw creation techniques were developed with both sprayed foam and poured foam used for insulation on the External Tank. Test panels with simulated defects have been used to evaluate NDT methods for the inspection of the External Tank. A comparison of images between natural flaws and machined flaws generated from backscatter x-ray radiography, x-ray laminography, terahertz imaging and millimeter wave imaging show significant differences in identifying defect regions.

  11. Cognitive dissonance resolution is related to episodic memory.

    PubMed

    Salti, Moti; El Karoui, Imen; Maillet, Mathurin; Naccache, Lionel

    2014-01-01

    The notion that our past choices affect our future behavior is certainly one of the most influential concepts of social psychology since its first experimental report in the 50 s, and its initial theorization by Festinger within the "cognitive dissonance" framework. Using the free choice paradigm (FCP), it was shown that choosing between two similarly rated items made subjects reevaluate the chosen items as more attractive and the rejected items as less attractive. However, in 2010 a major work by Chen and Risen revealed a severe statistical flaw casting doubt on most previous studies. Izuma and colleagues (2010) supplemented the traditional FCP with original control conditions and concluded that the effect observed could not be solely attributed to this methodological flaw. In the present work we aimed at establishing the existence of genuine choice-induced preference change and characterizing this effect. To do so, we replicated Izuma et al.' study and added a new important control condition which was absent from the original study. Moreover, we added a memory test in order to measure the possible relation between episodic memory of choices and observed behavioral effects. In two experiments we provide experimental evidence supporting genuine choice-induced preference change obtained with FCP. We also contribute to the understanding of the phenomenon by showing that choice-induced preference change effects are strongly correlated with episodic memory.

  12. Cognitive Dissonance Resolution Is Related to Episodic Memory

    PubMed Central

    Maillet, Mathurin; Naccache, Lionel

    2014-01-01

    The notion that our past choices affect our future behavior is certainly one of the most influential concepts of social psychology since its first experimental report in the 50 s, and its initial theorization by Festinger within the “cognitive dissonance” framework. Using the free choice paradigm (FCP), it was shown that choosing between two similarly rated items made subjects reevaluate the chosen items as more attractive and the rejected items as less attractive. However, in 2010 a major work by Chen and Risen revealed a severe statistical flaw casting doubt on most previous studies. Izuma and colleagues (2010) supplemented the traditional FCP with original control conditions and concluded that the effect observed could not be solely attributed to this methodological flaw. In the present work we aimed at establishing the existence of genuine choice-induced preference change and characterizing this effect. To do so, we replicated Izuma et al.’ study and added a new important control condition which was absent from the original study. Moreover, we added a memory test in order to measure the possible relation between episodic memory of choices and observed behavioral effects. In two experiments we provide experimental evidence supporting genuine choice-induced preference change obtained with FCP. We also contribute to the understanding of the phenomenon by showing that choice-induced preference change effects are strongly correlated with episodic memory. PMID:25264950

  13. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology

    PubMed Central

    2016-01-01

    An evolutionary perspective can enrich almost any endeavour in biology, providing a deeper understanding of the variation we see in nature. To this end, evolutionary endocrinologists seek to describe the fitness consequences of variation in endocrine traits. Much of the recent work in our field, however, follows a flawed approach to the study of how selection shapes endocrine traits. Briefly, this approach relies on among-individual correlations between endocrine phenotypes (often circulating hormone levels) and fitness metrics to estimate selection on those endocrine traits. Adaptive plasticity in both endocrine and fitness-related traits can drive these correlations, generating patterns that do not accurately reflect natural selection. We illustrate why this approach to studying selection on endocrine traits is problematic, referring to work from evolutionary biologists who, decades ago, described this problem as it relates to a variety of other plastic traits. We extend these arguments to evolutionary endocrinology, where the likelihood that this flaw generates bias in estimates of selection is unusually high due to the exceptional responsiveness of hormones to environmental conditions, and their function to induce adaptive life-history responses to environmental variation. We end with a review of productive approaches for investigating the fitness consequences of variation in endocrine traits that we expect will generate exciting advances in our understanding of endocrine system evolution. PMID:27881753

  14. On the Historical and Conceptual Foundations of a Community Psychology of Social Transformation.

    PubMed

    Gokani, Ravi; Walsh, Richard T G

    2017-06-01

    We examine historical and conceptual literature in community psychology in order to understand the field's potential to be the socially transformative subdiscipline of psychology to which it aspires. By reviewing papers from two prominent journals and other literature, we conclude that the claim that community psychology is well-suited to social transformation, because it is a product of Sixties' radicalism and is theoretically equipped, is untenable. Systematic accounts of the subdiscipline's origins suggest that the transformative aspirations of current community psychologists do not correspond to the subdiscipline's reformist past. Furthermore, in analyzing three related concepts currently employed in the field-social justice, power, and praxis-we show that each suffers from conceptual ambiguity and a restricted political scope. These conceptual flaws, coupled with community psychology's historical inclination toward social reform, inhibit the possibility of contributing to radical social transformation. We conclude that neither questionable historical claims nor ambiguous and politically dubious concepts support a community psychology of social transformation. We offer solutions for the historical and conceptual problems we identify and, as a broader solution to the problem of engaging in socially transformative work, propose that community psychologists should seek direct political engagement in solidarity with other citizens as fellow citizens not as psychologists. © Society for Community Research and Action 2017.

  15. A robust multi-frequency mixing algorithm for suppression of rivet signal in GMR inspection of riveted structures

    NASA Astrophysics Data System (ADS)

    Safdernejad, Morteza S.; Karpenko, Oleksii; Ye, Chaofeng; Udpa, Lalita; Udpa, Satish

    2016-02-01

    The advent of Giant Magneto-Resistive (GMR) technology permits development of novel highly sensitive array probes for Eddy Current (EC) inspection of multi-layer riveted structures. Multi-frequency GMR measurements with different EC pene-tration depths show promise for detection of bottom layer notches at fastener sites. However, the distortion of the induced magnetic field due to flaws is dominated by the strong fastener signal, which makes defect detection and classification a challenging prob-lem. This issue is more pronounced for ferromagnetic fasteners that concentrate most of the magnetic flux. In the present work, a novel multi-frequency mixing algorithm is proposed to suppress rivet signal response and enhance defect detection capability of the GMR array probe. The algorithm is baseline-free and does not require any assumptions about the sample geometry being inspected. Fastener signal suppression is based upon the random sample consensus (RANSAC) method, which iteratively estimates parameters of a mathematical model from a set of observed data with outliers. Bottom layer defects at fastener site are simulated as EDM notches of different length. Performance of the proposed multi-frequency mixing approach is evaluated on finite element data and experimental GMR measurements obtained with unidirectional planar current excitation. Initial results are promising demonstrating the feasibility of the approach.

  16. Treatment of Thrombotic Antiphospholipid Syndrome: The Rationale of Current Management—An Insight into Future Approaches

    PubMed Central

    Ubiali, Tania; Meroni, Pier Luigi

    2015-01-01

    Vascular thrombosis and pregnancy morbidity represent the clinical manifestations of antiphospholipid syndrome (APS), which is serologically characterized by the persistent positivity of antiphospholipid antibodies (aPL). Antiplatelet and anticoagulant agents currently provide the mainstay of APS treatment. However, the debate is still open: controversies involve the intensity and the duration of anticoagulation and the treatment of stroke and refractory cases. Unfortunately, the literature cannot provide definite answers to these controversial issues as it is flawed by many limitations, mainly due to the recruitment of patients not fulfilling laboratory and clinical criteria for APS. The recommended therapeutic management of different aPL-related clinical manifestations is hereby presented, with a critical appraisal of the evidence supporting such approaches. Cutting edge therapeutic strategies are also discussed, presenting the pioneer reports about the efficacy of novel pharmacological agents in APS. Thanks to a better understanding of aPL pathogenic mechanisms, new therapeutic targets will soon be explored. Much work is still to be done to unravel the most controversial issues about APS management: future studies are warranted to define the optimal management according to aPL risk profile and to assess the impact of a strict control of cardiovascular risk factors on disease control. PMID:26075289

  17. An International Round-Robin Test of NDE Reliability for PWSCC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, George J.; Cumblidge, Stephen E.; Doctor, Steven R.

    2007-12-01

    In this paper we describe the round robin tests that have been designed and are being conducted in the international program. Participants in the PINC have offered more than 30 test blocks for use in round-robin tests of NDE effectiveness. The test blocks have more than 130 flaws in nickel-base weld metal that are intended to simulate PWSCC in a variety of component geometries. NDE techniques representative of current in-service inspections are being applied, along with emerging NDE approaches.

  18. United States Air Force Summer Faculty Research Program. Program Technical Report. 1990. Volume 3

    DTIC Science & Technology

    1991-06-05

    flowchart of the progran "NCHIPSIM" is shown o. the following two pages. 95-7 SSTAR ’ ’.Choose-Chip type; Microprocessor or Gate,-Array Choose...oeet ~alulaew ntegrionRsut YEYES FLOW CHART FOR NCHIPSIM" 95-9 IV. THE PROGRAM "NCHIPSIM": Using the flowchart and the steps outlined in the above...would make the technique more versatile in flaw detection in metallic materials. 113-16 REFERENCES 1. RUDLIN, J.R., "A Beginners Guide to-Eddy Current

  19. Perspectives on the neuroscience of cognition and consciousness.

    PubMed

    Werner, Gerhard

    2007-01-01

    The origin and current use of the concepts of computation, representation and information in Neuroscience are examined and conceptual flaws are identified which vitiate their usefulness for addressing the problem of the neural basis of Cognition and Consciousness. In contrast, a convergence of views is presented to support the characterization of the Nervous System as a complex dynamical system operating in a metastable regime, and capable of evolving to configurations and transitions in phase space with potential relevance for Cognition and Consciousness.

  20. Fatigue flaw growth and NDI evaluation for preventing through cracks in spacecraft tankage structures

    NASA Technical Reports Server (NTRS)

    Pettit, D. E.; Hoeppner, D. W.

    1972-01-01

    A program was conducted to determine the fatigue-crack propagation behavior of parent and welded 2219-T87 aluminum alloy sheet under controlled cyclic stress conditions in room temperature air and 300 F air. Specimens possessing an initial surface defect of controlled dimensions were cycled under constant load amplitude until the propagating fatigue crack penetrated the back surface of the specimen. A series of precracked specimens were prepared to determine optimum penetrant, X-ray, ultrasonic, and eddy current nondestructive inspection procedures.

  1. Ultrasonic analysis of Kevlar-epoxy filament wound structures

    NASA Astrophysics Data System (ADS)

    Brosey, W. D.

    1985-07-01

    Composite structures are often desirable for their strength and weight characteristics. Since composites are not as well characterized mechanically as metallic or ceramic structures, much work has been performed at the Oak Ridge Y-12 Plant to obtain that characterization and to develop methods of determining the mechanical properties of a composite nondestructively. Most of the work to date has been performed on nonenclosed structures. One notable exception has been the holographic evaluation of spherical Kevlar-epoxy composite pressure vessels. Several promising nondestructive evaluation techniques have been used to locate flaws and predict the integrity of the composite. Several of these include thermography, Moire interferometry, ultrasonic stress wave factor, ultrasonic C-scan image enhancement, radiography, and nuclear magnetic resonance. As a first step in this transfer and development of NDE techniques, known defects were placed within spherical Kevlar-epoxy, filament-wound test specimens to determine the extent to which they could be detected. These defects included Teflon shim-simulated delaminations, macrosphere-simulated voids, dry-band sets, variable tension, Kevlar 29 fiber instead of the higher strength Kevlar 40 fiber, and an alternate high-void-content winding pattern. Ultrasonic waveform analysis was performed in both the time and frequency domains to determine the detectability and locatability of structural flaws within the composite. Preparation has been made at Virginia Polytechnic Institute and State University and at the University of Delaware, to examine the specimens using various NDE techniques. This work is a compilation of interim project reports in partial fulfillment of the contracts between Virginia Polytechnic Institute and State University, the University of Delaware, and Y-12 Plant.

  2. The effectiveness of the practice of correction and republication in the biomedical literature

    PubMed Central

    Peterson, Gabriel M

    2010-01-01

    Objective: This research measures the effectiveness of the practice of correction and republication of invalidated articles in the biomedical literature by analyzing the rate of citation of the flawed and corrected versions of scholarly articles over time. If the practice of correction and republication is effective, then the incidence of citation of flawed versions should diminish over time and increased incidence of citation of the republication should be observed. Methods: This is a bibliometric study using citation analysis and statistical analysis of pairs of flawed and corrected articles in MEDLINE and Web of Science. Results: The difference between citation levels of flawed originals and corrected republications does not approach statistical significance until eight to twelve years post-republication. Results showed substantial variability among bibliographic sources in their provision of authoritative bibliographic information. Conclusions: Correction and republication is a marginally effective biblioremediative practice. The data suggest that inappropriate citation behavior may be partly attributable to author ignorance. PMID:20428278

  3. Structural Design Methodology Based on Concepts of Uncertainty

    NASA Technical Reports Server (NTRS)

    Lin, K. Y.; Du, Jiaji; Rusk, David

    2000-01-01

    In this report, an approach to damage-tolerant aircraft structural design is proposed based on the concept of an equivalent "Level of Safety" that incorporates past service experience in the design of new structures. The discrete "Level of Safety" for a single inspection event is defined as the compliment of the probability that a single flaw size larger than the critical flaw size for residual strength of the structure exists, and that the flaw will not be detected. The cumulative "Level of Safety" for the entire structure is the product of the discrete "Level of Safety" values for each flaw of each damage type present at each location in the structure. Based on the definition of "Level of Safety", a design procedure was identified and demonstrated on a composite sandwich panel for various damage types, with results showing the sensitivity of the structural sizing parameters to the relative safety of the design. The "Level of Safety" approach has broad potential application to damage-tolerant aircraft structural design with uncertainty.

  4. Quantitative evaluation of hidden defects in cast iron components using ultrasound activated lock-in vibrothermography.

    PubMed

    Montanini, R; Freni, F; Rossi, G L

    2012-09-01

    This paper reports one of the first experimental results on the application of ultrasound activated lock-in vibrothermography for quantitative assessment of buried flaws in complex cast parts. The use of amplitude modulated ultrasonic heat generation allowed selective response of defective areas within the part, as the defect itself is turned into a local thermal wave emitter. Quantitative evaluation of hidden damages was accomplished by estimating independently both the area and the depth extension of the buried flaws, while x-ray 3D computed tomography was used as reference for sizing accuracy assessment. To retrieve flaw's area, a simple yet effective histogram-based phase image segmentation algorithm with automatic pixels classification has been developed. A clear correlation was found between the thermal (phase) signature measured by the infrared camera on the target surface and the actual mean cross-section area of the flaw. Due to the very fast cycle time (<30 s/part), the method could potentially be applied for 100% quality control of casting components.

  5. Self-esteem and communal responsiveness toward a flawed partner: the fair-weather care of low-self-esteem individuals.

    PubMed

    Lemay, Edward P; Clark, Margaret S

    2009-06-01

    Three studies provide evidence that people with low self-esteem, but not those with high self-esteem, distance themselves from a flawed partner in situations in which the flaws seem likely to reflect negatively on them. Participants with low (but not high) self-esteem reduced their motivation to care for the partner's needs when they felt they might share a partner's salient flaws (Study 1), when they were primed to focus on similarities between themselves and a socially devalued partner (Study 2), and when they learned that their partner was socially incompetent (Study 3). In Study 3, individuals with low (but not high) self-esteem provided less emotional support and experienced more public image threat when they learned that partners were socially incompetent. In addition, all three studies provided evidence that participants' distancing reduced their confidence in the partner's motivation to care for them, suggesting that distancing involves a cost to the self.

  6. An undignified bioethics: there is no method in this madness.

    PubMed

    De Melo-Martín, Inmaculada

    2012-05-01

    In a recent article, Alasdair Cochrane argues for the need to have an undignified bioethics. His is not, of course, a call to transform bioethics into an inelegant, pathetic discipline, or one failing to meet appropriate disciplinary standards. His is a call to simply eliminate the concept of human dignity from bioethical discourse. Here I argue that he fails to make his case. I first show that several of the flaws that Cochrane identifies are not flaws of the conceptions of dignity he discusses but rather flaws of his, often problematic, understanding of such conceptions. Second, I argue that Cochrane's case against the concept of human dignity goes too far. I thus show that were one to agree that these are indeed flaws that require that we discard our ethical concepts, then following Cochrane's recommendations would commit us not only to an undignified bioethics, i.e. a bioethics without dignity, but to a bioethics without much ethics at all. © 2010 Blackwell Publishing Ltd.

  7. 3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds

    NASA Technical Reports Server (NTRS)

    Leckey, C.; Hinders, M.

    2011-01-01

    Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.

  8. The acousto-ultrasonic approach

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1987-01-01

    The nature and underlying rationale of the acousto-ultrasonic approach is reviewed, needed advanced signal analysis and evaluation methods suggested, and application potentials discussed. Acousto-ultrasonics is an NDE technique combining aspects of acoustic emission methodology with ultrasonic simulation of stress waves. This approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are underlying factors.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanini, R.; Freni, F.; Rossi, G. L.

    This paper reports one of the first experimental results on the application of ultrasound activated lock-in vibrothermography for quantitative assessment of buried flaws in complex cast parts. The use of amplitude modulated ultrasonic heat generation allowed selective response of defective areas within the part, as the defect itself is turned into a local thermal wave emitter. Quantitative evaluation of hidden damages was accomplished by estimating independently both the area and the depth extension of the buried flaws, while x-ray 3D computed tomography was used as reference for sizing accuracy assessment. To retrieve flaw's area, a simple yet effective histogram-based phasemore » image segmentation algorithm with automatic pixels classification has been developed. A clear correlation was found between the thermal (phase) signature measured by the infrared camera on the target surface and the actual mean cross-section area of the flaw. Due to the very fast cycle time (<30 s/part), the method could potentially be applied for 100% quality control of casting components.« less

  10. Technical flaws in multiple-choice questions in the access exam to medical specialties ("examen MIR") in Spain (2009-2013).

    PubMed

    Rodríguez-Díez, María Cristina; Alegre, Manuel; Díez, Nieves; Arbea, Leire; Ferrer, Marta

    2016-02-03

    The main factor that determines the selection of a medical specialty in Spain after obtaining a medical degree is the MIR ("médico interno residente", internal medical resident) exam. This exam consists of 235 multiple-choice questions with five options, some of which include images provided in a separate booklet. The aim of this study was to analyze the technical quality of the multiple-choice questions included in the MIR exam over the last five years. All the questions included in the exams from 2009 to 2013 were analyzed. We studied the proportion of questions including clinical vignettes, the number of items related to an image and the presence of technical flaws in the questions. For the analysis of technical flaws, we adapted the National Board of Medical Examiners (NBME) guidelines. We looked for 18 different issues included in the manual, grouped into two categories: issues related to testwiseness and issues related to irrelevant difficulties. The final number of questions analyzed was 1,143. The percentage of items based on clinical vignettes increased from 50% in 2009 to 56-58% in the following years (2010-2013). The percentage of items based on an image increased progressively from 10% in 2009 to 15% in 2012 and 2013. The percentage of items with at least one technical flaw varied between 68 and 72%. We observed a decrease in the percentage of items with flaws related to testwiseness, from 30% in 2009 to 20% in 2012 and 2013. While most of these issues decreased dramatically or even disappeared (such as the imbalance in the correct option numbers), the presence of non-plausible options remained frequent. With regard to technical flaws related to irrelevant difficulties, no improvement was observed; this is especially true with respect to negative stem questions and "hinged" questions. The formal quality of the MIR exam items has improved over the last five years with regard to testwiseness. A more detailed revision of the items submitted, checking systematically for the presence of technical flaws, could improve the validity and discriminatory power of the exam, without increasing its difficulty.

  11. Elastic-Plastic Fracture Mechanics Analysis of Critical Flaw Size in ARES I-X Flange-to-Skin Welds

    NASA Technical Reports Server (NTRS)

    Chell, G. Graham; Hudak, Stephen J., Jr.

    2008-01-01

    NASA's Ares 1 Upper Stage Simulator (USS) is being fabricated from welded A516 steel. In order to insure the structural integrity of these welds it is of interest to calculate the critical initial flaw size (CIFS) to establish rational inspection requirements. The CIFS is in turn dependent on the critical final flaw size (CFS), as well as fatigue flaw growth resulting from transportation, handling and service-induced loading. These calculations were made using linear elastic fracture mechanics (LEFM), which are thought to be conservative because they are based on a lower bound, so called elastic, fracture toughness determined from tests that displayed significant plasticity. Nevertheless, there was still concern that the yield magnitude stresses generated in the flange-to-skin weld by the combination of axial stresses due to axial forces, fit-up stresses, and weld residual stresses, could give rise to significant flaw-tip plasticity, which might render the LEFM results to be non-conservative. The objective of the present study was to employ Elastic Plastic Fracture Mechanics (EPFM) to determine CFS values, and then compare these values to CFS values evaluated using LEFM. CFS values were calculated for twelve cases involving surface and embedded flaws, EPFM analyses with and without plastic shakedown of the stresses, LEFM analyses, and various welding residual stress distributions. For the cases examined, the computed CFS values based on elastic analyses were the smallest in all instances where the failures were predicted to be controlled by the fracture toughness. However, in certain cases, the CFS values predicted by the elastic-plastic analyses were smaller than those predicted by the elastic analyses; in these cases the failure criteria were determined by a breakdown in stress intensity factor validity limits for deep flaws (a greater than 0.90t), rather than by the fracture toughness. Plastic relaxation of stresses accompanying shakedown always increases the calculated CFS values compared to the CFS values determined without shakedown. Thus, it is conservative to ignore shakedown effects.

  12. Modeling and Simulation of Used Nuclear Fuel During Transportation with Consideration of Hydride Effects and Cyclic Fatigue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Pritam; Sabharwall, Piyush; Spears, Robert Edward

    2015-09-30

    The objective of this work is to understand the integrity of Used Nuclear Fuel (UNF) during transportation. Previous analysis work has been performed to look at the integrity of UNF during transportation but these analyses have neglected to analyze the effect of hydrides and flaws (fracture mechanics models to capture radial cracking in the cladding). In this study, the clad regions of interest are near the pellet-pellet interfaces. These regions can experience more complex stress-states than the rest of the clad during cooling and have a greater possibility to develop radially reoriented hydrides during vacuum drying.

  13. Diagnostic and Therapeutic Knowledge and Practices in the Management of Congenital Syphilis by Pediatricians in Public Maternity Hospitals in Brazil.

    PubMed

    Dos Santos, Raquel Rodrigues; Niquini, Roberta Pereira; Bastos, Francisco Inácio; Domingues, Rosa Maria Soares Madeira

    2017-01-01

    The study aimed to assess conformity with Brazil's standard protocol for diagnostic and therapeutic practices in the management of congenital syphilis by pediatricians in public maternity hospitals. A cross-sectional study was conducted in 2015 with 41 pediatricians working in all the public maternity hospitals in Teresina, the capital of Piauí State, Northeast Brazil, through self-completed questionnaires. The study assessed the conformity of knowledge and practices according to the Brazilian Ministry of Health protocols. The study has made evident low access to training courses (54%) and insufficient knowledge of the case definition of congenital syphilis (42%) and rapid tests for syphilis (39%). Flaws were observed in the diagnostic workup and treatment of newborns. Requesting VDRL (88%) and correct treatment of neurosyphilis (88%) were the practices that showed the highest conformity with standard protocols. Low conformity with protocols leads to missed opportunities for identifying and adequately treating congenital syphilis. Based on the barriers identified in the study, better access to diagnostic and treatment protocols, improved recording on prenatal cards and hospital patient charts, availability of tests and medicines, and educational work with pregnant women should be urgently implemented, aiming to reverse the currently inadequate management of congenital syphilis and to curb its spread.

  14. Profiling USGA putting greens using GPR - an as-built surveying method

    USDA-ARS?s Scientific Manuscript database

    Putting greens installed using the United States Golf Association (USGS) specifications have a subsurface infrastructure constructed to exacting standards. It may be difficult to discern those drainage systems that possess installation flaws, as some flaws may not be readily obvious as their being ...

  15. 76 FR 74655 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... and discrete flaws, and impact or other accidental damage (including the discrete source of the... discrete manufacturing defects or accidental damage, is avoided throughout the operational life or... and discrete flaws, and impact or other accidental damage (including the discrete source of the...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harzalla, S., E-mail: harzallahozil@yahoo.fr; Chabaat, M., E-mail: mchabaat@yahoo.com; Belgacem, F. Bin Muhammad, E-mail: fbmbelgacem@gmail.com

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing resultsmore » for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented.« less

  17. Alpha-Helical Protein Networks Are Self-Protective and Flaw-Tolerant

    PubMed Central

    Ackbarow, Theodor; Sen, Dipanjan; Thaulow, Christian; Buehler, Markus J.

    2009-01-01

    Alpha-helix based protein networks as they appear in intermediate filaments in the cell’s cytoskeleton and the nuclear membrane robustly withstand large deformation of up to several hundred percent strain, despite the presence of structural imperfections or flaws. This performance is not achieved by most synthetic materials, which typically fail at much smaller deformation and show a great sensitivity to the existence of structural flaws. Here we report a series of molecular dynamics simulations with a simple coarse-grained multi-scale model of alpha-helical protein domains, explaining the structural and mechanistic basis for this observed behavior. We find that the characteristic properties of alpha-helix based protein networks are due to the particular nanomechanical properties of their protein constituents, enabling the formation of large dissipative yield regions around structural flaws, effectively protecting the protein network against catastrophic failure. We show that the key for these self protecting properties is a geometric transformation of the crack shape that significantly reduces the stress concentration at corners. Specifically, our analysis demonstrates that the failure strain of alpha-helix based protein networks is insensitive to the presence of structural flaws in the protein network, only marginally affecting their overall strength. Our findings may help to explain the ability of cells to undergo large deformation without catastrophic failure while providing significant mechanical resistance. PMID:19547709

  18. Experimental Study on the Growth, Coalescence and Wrapping Behaviors of 3D Cross-Embedded Flaws Under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao-Ping; Zhang, Jian-Zhi; Wong, Louis Ngai Yuen

    2018-05-01

    The crack initiation, growth, wrapping and coalescence of two 3D pre-existing cross-embedded flaws in PMMA specimens under uniaxial compression are investigated. The stress-strain curves of PMMA specimens with 3D cross-embedded flaws are obtained. The tested PMMA specimens exhibit dominant elastic deformation and eventual brittle failure. The experimental results show that four modes of crack initiation and five modes of crack coalescence are observed. The initiations of oblique secondary crack and anti-wing crack in 3D cracking behaviors are first reported as well as the coalescence of anti-wing cracks. Moreover, two types of crack wrapping are found. Substantial wrapping of petal cracks, which includes open and closed modes of wrapping, appears to be the major difference between 2D and 3D cracking behaviors of pre-existing flaws, which are also first reported. Petal crack wraps symmetrically from either the propagated wing cracks or the coalesced wing cracks. Besides, only limited growth of petal cracks is observed, and ultimate failure of specimens is induced by the further growth of the propagated wing crack. The fracture mechanism of the tested PMMA specimens is finally revealed. In addition, the initiation stress and the peak stress versus the geometry of two 3D pre-existing cross-embedded flaws are also investigated in detail.

  19. Determination of Flaw Type and Location Using an Expert Module in Ultrasonic Nondestructive Testing for Weld Inspection

    NASA Astrophysics Data System (ADS)

    Shahriari, D.; Zolfaghari, A.; Masoumi, F.

    2011-01-01

    Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.

  20. Surface flaw reliability analysis of ceramic components with the SCARE finite element postprocessor program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.; Nemeth, Noel N.

    1987-01-01

    The SCARE (Structural Ceramics Analysis and Reliability Evaluation) computer program on statistical fast fracture reliability analysis with quadratic elements for volume distributed imperfections is enhanced to include the use of linear finite elements and the capability of designing against concurrent surface flaw induced ceramic component failure. The SCARE code is presently coupled as a postprocessor to the MSC/NASTRAN general purpose, finite element analysis program. The improved version now includes the Weibull and Batdorf statistical failure theories for both surface and volume flaw based reliability analysis. The program uses the two-parameter Weibull fracture strength cumulative failure probability distribution model with the principle of independent action for poly-axial stress states, and Batdorf's shear-sensitive as well as shear-insensitive statistical theories. The shear-sensitive surface crack configurations include the Griffith crack and Griffith notch geometries, using the total critical coplanar strain energy release rate criterion to predict mixed-mode fracture. Weibull material parameters based on both surface and volume flaw induced fracture can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and grouped fracture data. The statistical fast fracture theories for surface flaw induced failure, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.

  1. Processing and mechanical properties of metal-ceramic composites with controlled microstructure formed by reactive metal penetration

    NASA Astrophysics Data System (ADS)

    Ellerby, Donald Thomas

    1999-12-01

    Compared to monolithic ceramics, metal-reinforced ceramic composites offer the potential for improved toughness and reliability in ceramic materials. As such, there is significant scientific and commercial interest in the microstructure and properties of metal-ceramic composites. Considerable work has been conducted on modeling the toughening behavior of metal reinforcements in ceramics; however, there has been limited application and testing of these concepts on real systems. Composites formed by newly developed reactive processes now offer the flexibility to systematically control metal-ceramic composite microstructure, and to test some of the property models that have been proposed for these materials. In this work, the effects of metal-ceramic composite microstructure on resistance curve (R-curve) behavior, strength, and reliability were systematically investigated. Al/Al2O3 composites were formed by reactive metal penetration (RMP) of aluminum metal into aluminosilicate ceramic preforms. Processing techniques were developed to control the metal content, metal composition, and metal ligament size in the resultant composite microstructure. Quantitative stereology and microscopy were used to characterize the composite microstructures, and then the influence of microstructure on strength, toughness, R-curve behavior, and reliability, was investigated. To identify the strength limiting flaws in the composite microstructure, fractography was used to determine the failure origins. Additionally, the crack bridging tractions produced by the metal ligaments in metal-ceramic composites formed by the RMP process were modeled. Due to relatively large flaws and low bridging stresses in RMP composites, no dependence of reliability on R-curve behavior was observed. The inherent flaws formed during reactive processing appear to limit the strength and reliability of composites formed by the RMP process. This investigation has established a clear relationship between processing, microstructure, and properties in metal-ceramic composites formed by the RMP process. RMP composite properties are determined by the metal-ceramic composite microstructure (e.g., metal content and ligament size), which can be systematically varied by processing. Furthermore, relative to the ceramic preforms used to make the composites, metal-ceramic composites formed by RMP generally have improved properties and combinations of properties that make them more desirable for advanced engineering applications.

  2. Apparatus and method for detecting and/or measuring flaws in conductive material

    DOEpatents

    Hockey, Ronald L.; Riechers, Douglas M.

    2000-01-01

    The present invention uses a magnet and sensor coil unilaterial and in relative motion to a conductive material, to measure perturbation or variation in the magnetic field in the presence of a flaw. A liftoff compensator measures a distance between the conductive material and the magnet.

  3. Mentoring--Is It Failing Women?

    ERIC Educational Resources Information Center

    Ghosh, Rajashi

    2015-01-01

    Mentoring programs are gaining traction as human resource development initiatives that can support women to advance in their careers in organizations. However, some of these programs are falling short of delivering on this promise due to particular inherent flaws. This case study considers the following three potential flaws of formal mentoring…

  4. IT Security: Target: The Web

    ERIC Educational Resources Information Center

    Waters, John K.

    2009-01-01

    In December, Microsoft announced a major security flaw affecting its Internet Explorer web browser. The flaw allowed hackers to use hidden computer code they had already injected into legitimate websites to steal the passwords of visitors to those sites. Reportedly, more than 10,000 websites were infected with the destructive code by the time…

  5. Reducing Sweeping Frequencies in Microwave NDT Employing Machine Learning Feature Selection

    PubMed Central

    Moomen, Abdelniser; Ali, Abdulbaset; Ramahi, Omar M.

    2016-01-01

    Nondestructive Testing (NDT) assessment of materials’ health condition is useful for classifying healthy from unhealthy structures or detecting flaws in metallic or dielectric structures. Performing structural health testing for coated/uncoated metallic or dielectric materials with the same testing equipment requires a testing method that can work on metallics and dielectrics such as microwave testing. Reducing complexity and expenses associated with current diagnostic practices of microwave NDT of structural health requires an effective and intelligent approach based on feature selection and classification techniques of machine learning. Current microwave NDT methods in general based on measuring variation in the S-matrix over the entire operating frequency ranges of the sensors. For instance, assessing the health of metallic structures using a microwave sensor depends on the reflection or/and transmission coefficient measurements as a function of the sweeping frequencies of the operating band. The aim of this work is reducing sweeping frequencies using machine learning feature selection techniques. By treating sweeping frequencies as features, the number of top important features can be identified, then only the most influential features (frequencies) are considered when building the microwave NDT equipment. The proposed method of reducing sweeping frequencies was validated experimentally using a waveguide sensor and a metallic plate with different cracks. Among the investigated feature selection techniques are information gain, gain ratio, relief, chi-squared. The effectiveness of the selected features were validated through performance evaluations of various classification models; namely, Nearest Neighbor, Neural Networks, Random Forest, and Support Vector Machine. Results showed good crack classification accuracy rates after employing feature selection algorithms. PMID:27104533

  6. Systematic Model-in-the-Loop Test of Embedded Control Systems

    NASA Astrophysics Data System (ADS)

    Krupp, Alexander; Müller, Wolfgang

    Current model-based development processes offer new opportunities for verification automation, e.g., in automotive development. The duty of functional verification is the detection of design flaws. Current functional verification approaches exhibit a major gap between requirement definition and formal property definition, especially when analog signals are involved. Besides lack of methodical support for natural language formalization, there does not exist a standardized and accepted means for formal property definition as a target for verification planning. This article addresses several shortcomings of embedded system verification. An Enhanced Classification Tree Method is developed based on the established Classification Tree Method for Embeded Systems CTM/ES which applies a hardware verification language to define a verification environment.

  7. Raw material ‘criticality’—sense or nonsense?

    NASA Astrophysics Data System (ADS)

    Frenzel, M.; Kullik, J.; Reuter, M. A.; Gutzmer, J.

    2017-03-01

    The past decade has seen a resurgence of interest in the supply security of mineral raw materials. A key to the current debate is the concept of ‘criticality’. The present article reviews the criticality concept, as well as the methodologies used in its assessment, including a critical evaluation of their validity in view of classical risk theory. Furthermore, it discusses a number of risks present in global raw materials markets that are not captured by most criticality assessments. Proposed measures for the alleviation of these risks are also presented. We find that current assessments of raw material criticality are fundamentally flawed in several ways. This is mostly due to a lack of adherence to risk theory, and highly limits their applicability. Many of the raw materials generally identified as critical are probably not critical. Still, the flaws of current assessments do not mean that the general issue of supply security can simply be ignored. Rather, it implies that new assessments are required. While the basic theoretical framework for such assessments is outlined in this review, detailed method development will require a major collaborative effort between different disciplines along the raw materials value chain. In the opinion of the authors, the greatest longer-term challenge in the raw materials sector is to stop, or counteract the effects of, the escalation of unit energy costs of production. This issue is particularly pressing due to its close link with the renewable energy transition, requiring more metal and mineral raw materials per unit energy produced. The solution to this problem will require coordinated policy action, as well as the collaboration of scientists from many different fields—with physics, as well as the materials and earth sciences in the lead.

  8. A Privacy-Protecting Authentication Scheme for Roaming Services with Smart Cards

    NASA Astrophysics Data System (ADS)

    Son, Kyungho; Han, Dong-Guk; Won, Dongho

    In this work we propose a novel smart card based privacy-protecting authentication scheme for roaming services. Our proposal achieves so-called Class 2 privacy protection, i.e., no information identifying a roaming user and also linking the user's behaviors is not revealed in a visited network. It can be used to overcome the inherent structural flaws of smart card based anonymous authentication schemes issued recently. As shown in our analysis, our scheme is computationally efficient for a mobile user.

  9. Nondestructive equipment study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Identification of existing nondestructive Evaluation (NDE) methods that could be used in a low Earth orbit environment; evaluation of each method with respect to the set of criteria called out in the statement of work; selection of the most promising NDE methods for further evaluation; use of selected NDE methods to test samples of pressure vessel materials in a vacuum; pressure testing of a complex monolythic pressure vessel with known flaws using acoustic emissions in a vacuum; and recommendations for further studies based on analysis and testing are covered.

  10. CRACK GROWTH ANALYSIS OF SOLID OXIDE FUEL CELL ELECTROLYTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Bandopadhyay; N. Nagabhushana

    2003-10-01

    Defects and Flaws control the structural and functional property of ceramics. In determining the reliability and lifetime of ceramics structures it is very important to quantify the crack growth behavior of the ceramics. In addition, because of the high variability of the strength and the relatively low toughness of ceramics, a statistical design approach is necessary. The statistical nature of the strength of ceramics is currently well recognized, and is usually accounted for by utilizing Weibull or similar statistical distributions. Design tools such as CARES using a combination of strength measurements, stress analysis, and statistics are available and reasonably wellmore » developed. These design codes also incorporate material data such as elastic constants as well as flaw distributions and time-dependent properties. The fast fracture reliability for ceramics is often different from their time-dependent reliability. Further confounding the design complexity, the time-dependent reliability varies with the environment/temperature/stress combination. Therefore, it becomes important to be able to accurately determine the behavior of ceramics under simulated application conditions to provide a better prediction of the lifetime and reliability for a given component. In the present study, Yttria stabilized Zirconia (YSZ) of 9.6 mol% Yttria composition was procured in the form of tubes of length 100 mm. The composition is of interest as tubular electrolytes for Solid Oxide Fuel Cells. Rings cut from the tubes were characterized for microstructure, phase stability, mechanical strength (Weibull modulus) and fracture mechanisms. The strength at operating condition of SOFCs (1000 C) decreased to 95 MPa as compared to room temperature strength of 230 MPa. However, the Weibull modulus remains relatively unchanged. Slow crack growth (SCG) parameter, n = 17 evaluated at room temperature in air was representative of well studied brittle materials. Based on the results, further work was planned to evaluate the strength degradation, modulus and failure in more representative environment of the SOFCs.« less

  11. Ethical and Legal Implications of the Methodological Crisis in Neuroimaging.

    PubMed

    Kellmeyer, Philipp

    2017-10-01

    Currently, many scientific fields such as psychology or biomedicine face a methodological crisis concerning the reproducibility, replicability, and validity of their research. In neuroimaging, similar methodological concerns have taken hold of the field, and researchers are working frantically toward finding solutions for the methodological problems specific to neuroimaging. This article examines some ethical and legal implications of this methodological crisis in neuroimaging. With respect to ethical challenges, the article discusses the impact of flawed methods in neuroimaging research in cognitive and clinical neuroscience, particularly with respect to faulty brain-based models of human cognition, behavior, and personality. Specifically examined is whether such faulty models, when they are applied to neurological or psychiatric diseases, could put patients at risk, and whether this places special obligations on researchers using neuroimaging. In the legal domain, the actual use of neuroimaging as evidence in United States courtrooms is surveyed, followed by an examination of ways that the methodological problems may create challenges for the criminal justice system. Finally, the article reviews and promotes some promising ideas and initiatives from within the neuroimaging community for addressing the methodological problems.

  12. Is the 'driving test' a robust quality indicator of colonoscopy performance?

    PubMed

    Kelly, Nicholas M; Moorehead, John; Tham, Tony

    2010-04-16

    Colorectal cancer is a major cause of death in the western world and is currently the second commonest cause of death from malignant disease in the UK. Recently a "driving test" for colonoscopists wishing to take part in the National Health Service Bowel Cancer Screening Program has been introduced, with the aim of improving quality in colonoscopy. We describe the accreditation process and have reviewed the published evidence for its use. We compared this method of assessment to what occurs in other developed countries. To the authors' knowledge no other countries have similar methods of assessment of practicing colonoscopists, and instead use critical evaluation of key quality criteria. The UK appears to have one of the most rigorous accreditation processes, although this still has flaws. The published evidence suggests that the written part of the accreditation is not a good discriminating test and it needs to be improved or abandoned. Further work is needed on the best methods of assessing polypectomy skills. Rigorous systems need to be in place for the colonoscopist who fails the assessment.

  13. New Insights into Signed Path Coefficient Granger Causality Analysis.

    PubMed

    Zhang, Jian; Li, Chong; Jiang, Tianzi

    2016-01-01

    Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of "signed path coefficient Granger causality," a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an "excitatory" or "inhibitory" influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation.

  14. Technology Transfer

    NASA Technical Reports Server (NTRS)

    Bullock, Kimberly R.

    1995-01-01

    The development and application of new technologies in the United States has always been important to the economic well being of the country. The National Aeronautics and Space Administration (NASA) has been an important source of these new technologies for almost four decades. Recently, increasing global competition has emphasized the importance of fully utilizing federally funded technologies. Today NASA must meet its mission goals while at the same time, conduct research and development that contributes to securing US economic growth. NASA technologies must be quickly and effectively transferred into commercial products. In order to accomplish this task, NASA has formulated a new way of doing business with the private sector. Emphasis is placed on forming mutually beneficial partnerships between NASA and US industry. New standards have been set in response to the process that increase effectiveness, efficiency, and timely customer response. This summer I have identified potential markets for two NASA inventions: including the Radially Focused Eddy Current Sensor for Characterization of Flaws in Metallic Tubing and the Radiographic Moire. I have also worked to establish a cooperative program with TAG, private industry, and a university known as the TAG/Industry/Academia Program.

  15. Crack detection using resonant ultrasound spectroscopy

    DOEpatents

    Migliori, A.; Bell, T.M.; Rhodes, G.W.

    1994-10-04

    Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component. 5 figs.

  16. Crack detection using resonant ultrasound spectroscopy

    DOEpatents

    Migliori, Albert; Bell, Thomas M.; Rhodes, George W.

    1994-01-01

    Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component.

  17. Crack Growth of D6 Steel in Air and High Pressure Oxygen

    NASA Technical Reports Server (NTRS)

    Bixler, W. D.; Engstrom, W. L.

    1971-01-01

    Fracture and subcritical flaw growth characteristics were experimentally deter­mined for electroless nickel plated D6 steel in dry air and high pressure oxygen environments as applicable to the Lunar Module/Environmental Control System (LM/ECS) descent gaseous oxygen (GOX) tank. The material tested included forgings, plate, and actual LM/ECS descent GOX tank material. Parent metal and TIG (tungsten inert gas) welds were tested. Tests indicate that proof testing the tanks at 4000 pounds per square inch or higher will insure safe operation at 3060 pounds per square inch. Although significant flaw growth can occur during proofing, subsequent growth of flaws during normal tank operation is negligible.

  18. Preliminary evaluation of several nondestructive-evaluation techniques for silicon nitride gas-turbine rotors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupperman, D. S.; Sciammarella, C.; Lapinski, N. P.

    1978-01-01

    Several nondestructive-evaluation (NDE) techniques have been examined to establish their effectiveness for detecting critically sized flaws in silicon nitride gas-turbine rotors. Preliminary results have been obtained for holographic interferometry, acoustic microscopy, dye-enhanced radiography, acoustic emission, and acoustic-impact testing techniques. This report discusses the relative effectiveness of these techniques in terms of their applicability to the rotor geometry and ability to detect critically sized flaws. Where feasible, flaw indications were verified by alternative NDE techniques or destructive examination. This study has indicated that, since the various techniques have different advantages, ultimately a reliable interrogation of ceramic rotors may require the applicationmore » of several NDE methods.« less

  19. NASA DOEPOD NDE Capabilities Data Book

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2015-01-01

    This data book contains the Directed Design of Experiments for Validating Probability of Detection (POD) Capability of NDE Systems (DOEPOD) analyses of the nondestructive inspection data presented in the NTIAC, Nondestructive Evaluation (NDE) Capabilities Data Book. DOEPOD is designed as a decision support system to validate inspection system, personnel, and protocol demonstrating 0.90 POD with 95% confidence at critical flaw sizes, a90/95. Although 0.90 POD with 95% confidence at critical flaw sizes is often stated as an inspection requirement in inspection documents, including NASA Standards, NASA critical aerospace applications have historically only accepted 0.978 POD or better with a 95% one-sided lower confidence bound exceeding 0.90 at critical flaw sizes, a90/95.

  20. Applicability of risk-based management and the need for risk-based economic decision analysis at hazardous waste contaminated sites.

    PubMed

    Khadam, Ibrahim; Kaluarachchi, Jagath J

    2003-07-01

    Decision analysis in subsurface contamination management is generally carried out through a traditional engineering economic viewpoint. However, new advances in human health risk assessment, namely, the probabilistic risk assessment, and the growing awareness of the importance of soft data in the decision-making process, require decision analysis methodologies that are capable of accommodating non-technical and politically biased qualitative information. In this work, we discuss the major limitations of the currently practiced decision analysis framework, which evolves around the definition of risk and cost of risk, and its poor ability to communicate risk-related information. A demonstration using a numerical example was conducted to provide insight on these limitations of the current decision analysis framework. The results from this simple ground water contamination and remediation scenario were identical to those obtained from studies carried out on existing Superfund sites, which suggests serious flaws in the current risk management framework. In order to provide a perspective on how these limitations may be avoided in future formulation of the management framework, more matured and well-accepted approaches to decision analysis in dam safety and the utility industry, where public health and public investment are of great concern, are presented and their applicability in subsurface remediation management is discussed. Finally, in light of the success of the application of risk-based decision analysis in dam safety and the utility industry, potential options for decision analysis in subsurface contamination management are discussed.

  1. Statistical Tests of Reliability of NDE

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Klima, Stanley J.; Roth, Don J.; Kiser, James D.

    1987-01-01

    Capabilities of advanced material-testing techniques analyzed. Collection of four reports illustrates statistical method for characterizing flaw-detecting capabilities of sophisticated nondestructive evaluation (NDE). Method used to determine reliability of several state-of-the-art NDE techniques for detecting failure-causing flaws in advanced ceramic materials considered for use in automobiles, airplanes, and space vehicles.

  2. Flawed Implementation or Inconsistent Logics? Lessons from Higher Education Reform in Ukraine

    ERIC Educational Resources Information Center

    Shaw, Marta A.

    2013-01-01

    This article investigates two competing explanations of why reforms associated with the Bologna process brought disappointing results in Ukraine. The lack of anticipated benefits from the reforms may stem either from a flawed implementation of the Bologna process, or from more fundamental differences between the models of higher education…

  3. Rousseau on Sex-Roles, Education and Happiness

    ERIC Educational Resources Information Center

    Jonas, Mark E.

    2016-01-01

    Over the last decade, philosophers of education have begun taking a renewed interest in Rousseau's educational thought. This is a welcome development as his ideas are rich with educational insights. His philosophy is not without its flaws, however. One significant flaw is his educational project for females, which is sexist in the highest degree.…

  4. Clinical Application of a Behavioral Model for the Treatment of Body Dysmorphic Disorder

    ERIC Educational Resources Information Center

    Rabinowitz, Dena; Neziroglu, Fugen; Roberts, Marty

    2007-01-01

    Body dysmorphic disorder (BDD) is characterized by an obsessive concern over a perceived flaw in bodily appearance. If a minor flaw does exist, the patient displays unwarranted distress. This preoccupation typically leads to compulsive behaviors, such as mirror checking or mirror avoiding, camouflaging, and seeking reassurance from others…

  5. The Level of Willingness to Evacuate among Older Adults

    ERIC Educational Resources Information Center

    Gray-Graves, Amy; Turner, Keith W.; Swan, James H.

    2011-01-01

    The issues of rising numbers of disasters, overwhelming increases in number of older adults, and historically flawed evacuations present real challenges. During the next two decades, the number of American baby boomers, who turn 65, will increase by 40%. As evidenced by recent disasters, the imperfections and vulnerabilities of flawed evacuations…

  6. 77 FR 27210 - Publication of the Final National Wetland Plant List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... that the process was fatally flawed. ``Voting'' online was the most efficient way to obtain technical... for this effort was fatally flawed. Input received during the public comment period was used in...-sector personnel on the regional panels would be a legal issue. Under the Federal Advisory Committee Act...

  7. 76 FR 59466 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Order Disapproving a Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... believe that NASDAQ's ``joint products'' theory is fundamentally flawed, and cannot support the conclusion... joint products ``platform competition theory'' is flawed as a matter of economics, because order... functioning of the national market system or result in predatory prices, or threaten to injure competition...

  8. Equality: Constitutional Update. Bar/School Partnership Programs Series.

    ERIC Educational Resources Information Center

    American Bar Association, Chicago, IL. Special Committee on Youth Education for Citizenship.

    The second in a special four-part series of law-school partnership handbooks on constitutional themes, this document focuses on equality. "Equality--the Forgotten Word" (J. A. Hughes) discusses what has been considered the U.S. Constitution's one flaw, its failure to abolish slavery, and the remedy to that flaw, the Fourteenth Amendment.…

  9. 76 FR 58539 - Notice Pursuant to The National Cooperative Research and Production Act of 1993-Cooperative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to The National Cooperative Research and Production Act of 1993--Cooperative Research Group on Development and Validation of FlawPRO for Assessing... Development and Validation of FlawPRO for Assessing Defect Tolerance of Welded Pipes Under Generalized High...

  10. Evaluation of laminated aluminum plate for shuttle applications

    NASA Technical Reports Server (NTRS)

    Martin, M. J.

    1973-01-01

    Flaw growth behavior in roll diffusion bonded and adhesive bonded 2219-T87 aluminum alloy was compared to that in monolothic 2219-T87. Based on tests at 40 KSI cyclic stress, for equivalent cyclic life, a .004 interlayer laminate can tolerate a surface flaw twice as wide as in monolithic material, or provide an 8% weight saving by operating at higher stress for the same initial flaw. Roll diffusion bonded material with three structural plies of 2219-T87 and two interlayers of 1100 aluminum was prepared with interlayer thicknesses of .004, .007 and .010 in. Total laminate thickness was .130 in. The .004 interlayer laminate was most effective and gave better results than monolithic material at 40 and 48 ksi. Adhesive bonded specimens were fabricated of three sheets of 2219-T87 aluminum alloy bonded with METLBOND 329 adhesive. Adhesive bonded specimens gave longer lives to failure than diffusion bonded specimens at 40 ksi the diffusion bonded material was superior. Flaws initiated in one ply of the laminate grew to the edges of the specimen in that ply but did not propagate into adjacent plies.

  11. Computational micromechanics of dynamic compressive loading of a brittle polycrystalline material using a distribution of grain boundary properties

    NASA Astrophysics Data System (ADS)

    Kraft, R. H.; Molinari, J. F.; Ramesh, K. T.; Warner, D. H.

    A two-dimensional finite element model is used to investigate compressive loading of a brittle ceramic. Intergranular cracking in the microstructure is captured explicitly by using a distribution of cohesive interfaces. The addition of confining stress increases the maximum strength and if high enough, can allow the effective material response to reach large strains before failure. Increasing the friction at the grain boundaries also increases the maximum strength until saturation of the strength is approached. Above a transitional strain rate, increasing the rate-of-deformation also increases the strength and as the strain rate increases, fragment sizes of the damaged specimen decrease. The effects of flaws within the specimen were investigated using a random distribution at various initial flaw densities. The model is able to capture an effective modulus change and degradation of strength as the initial flaw density increases. Effects of confinement, friction, and spatial distribution of flaws seem to depend on the crack coalescence and dilatation of the specimen, while strain-rate effects are result of inertial resistance to motion.

  12. A Numerical Study on the Edgewise Compression Strength of Sandwich Structures with Facesheet-Core Disbonds

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew C.

    2017-01-01

    Damage tolerant design approaches require determination of critical damage modes and flaw sizes in order to establish nondestructive evaluation detection requirements. A finite element model is developed to assess the effect of circular facesheet-core disbonds on the strength of sandwich specimens subjected to edgewise compressive loads for the purpose of predicting the critical flaw size for a variety of design parameters. Postbuckling analyses are conducted in which an initial imperfection is seeded using results from a linear buckling analysis. Both the virtual crack closure technique (VCCT) and cohesive elements are considered for modeling disbond growth. Predictions from analyses using the VCCT and analyses using cohesive elements are in good correlation. A series of parametric analyses are conducted to investigate the effect of core thickness and material, facesheet layup, facesheet-core interface properties, and curvature on the criticality of facesheet-core disbonds of various sizes. The results from these analyses provide a basis for determining the critical flaw size for facesheet-core disbonds subjected to edgewise compression loads and, therefore, nondestructive evaluation flaw detection requirements for this configuration.

  13. Outcomes and disparities in liver transplantation will be improved by redistricting-cons.

    PubMed

    Goldberg, David Seth; Karp, Seth

    2017-04-01

    Over the last 2 years, the liver transplant community has been debating a proposal to redraw the maps of organ distribution. The basis for these proposed changes is reported disparities in severity of illness at transplantation across the USA - however, this is based on the allocation model for end-stage liver disease score. In this review, we provide a critical overview of the redistribution proposal, its flaws and how it may worsen outcomes and exacerbate disparities in liver transplantation. The main findings we highlight are data questioning the disparity metric used to justify the redistribution. We also review data published in recent articles and presented at public forums questioning whether there truly are disparities in access to transplant care among the broader population with liver disease, and whether disparities even getting to the waitlist are important and not to be ignored. This review article highlights major methodological and policy flaws with the current redistribution proposal. We demonstrate how the waitlist disparities that the proposal is intended to fix are not as they seem. Furthermore, if this proposal is passed, outcomes of liver transplantation nationally may worsen, and disparities for those with limited access to healthcare will worsen.

  14. Weibull models of fracture strengths and fatigue behavior of dental resins in flexure and shear.

    PubMed

    Baran, G R; McCool, J I; Paul, D; Boberick, K; Wunder, S

    1998-01-01

    In estimating lifetimes of dental restorative materials, it is useful to have available data on the fatigue behavior of these materials. Current efforts at estimation include several untested assumptions related to the equivalence of flaw distributions sampled by shear, tensile, and compressive stresses. Environmental influences on material properties are not accounted for, and it is unclear if fatigue limits exist. In this study, the shear and flexural strengths of three resins used as matrices in dental restorative composite materials were characterized by Weibull parameters. It was found that shear strengths were lower than flexural strengths, liquid sorption had a profound effect on characteristic strengths, and the Weibull shape parameter obtained from shear data differed for some materials from that obtained in flexure. In shear and flexural fatigue, a power law relationship applied for up to 250,000 cycles; no fatigue limits were found, and the data thus imply only one flaw population is responsible for failure. Again, liquid sorption adversely affected strength levels in most materials (decreasing shear strengths and flexural strengths by factors of 2-3) and to a greater extent than did the degree of cure or material chemistry.

  15. Laser-induced damage and fracture in fused silica vacuum windows

    NASA Astrophysics Data System (ADS)

    Campbell, John H.; Hurst, Patricia A.; Heggins, Dwight D.; Steele, William A.; Bumpas, Stanley E.

    1997-05-01

    Laser induced damage, that initiates catastrophic fracture, has been observed in large, fused silica lenses that also serve as vacuum barriers in high-fluence positions on the Nova and Beamlet lasers. In nearly all cases damage occurs on the vacuum side of the lens. The damage can lead to catastrophic crack growth if the flaw size exceeds the critical flaw size for SiO2. If the elastic stored energy in the lens in high enough, the lens will fracture into many pieces resulting in an implosion. The consequences of such an implosion can be severe, particularly for large vacuum systems. Three parameters control the degree of fracture in the vacuum barrier window: (1) the elastic stored energy, (2) the ratio of the window thickness to flaw depth and (3) secondary crack propagation. Fracture experiments have ben carried our on 15-cm diameter fused silica windows that contain surface flaws caused by laser damage. The results of these experiments, combined with data from window failures on Beamlet and Nova have been sued to develop design criteria for a 'fail-safe' lens. Specifically the window must be made thick enough such that the peak tensile stress is less than 500 psi and the corresponding ratio of the thickness to critical flaw size is less than 6. Under these conditions a properly mounted window, upon failure, will break into only tow pieces and will not implode. One caveat to these design criteria is that the air leak through the window before secondary crack growth occurs. Finite element stress calculations of a window before and immediately following fracture into two pieces show that the elastic stored energy is redistributed if the fragments 'lock' in place and thereby bridge the opening. In such cases, the peak stresses at the flaw site can increase leading to further crack growth.

  16. Multipurpose Pressure Vessel Scanner and Photon Doppler Velocimetry

    NASA Technical Reports Server (NTRS)

    Ellis, Tayera

    2015-01-01

    Critical flight hardware typically undergoes a series of nondestructive evaluation methods to screen for defects before it is integrated into the flight system. Conventionally, pressure vessels have been inspected for flaws using a technique known as fluorescent dye penetrant, which is biased to inspector interpretation. An alternate method known as eddy current is automated and can detect small cracks better than dye penetrant. A new multipurpose pressure vessel scanner has been developed to perform internal and external eddy current scanning, laser profilometry, and thickness mapping on pressure vessels. Before this system can be implemented throughout industry, a probability of detection (POD) study needs to be performed to validate the system’s eddy current crack/flaw capabilities. The POD sample set will consist of 6 flight-like metal pressure vessel liners with defects of known size. Preparation for the POD includes sample set fabrication, system operation, procedure development, and eddy current settings optimization. For this, collaborating with subject matter experts was required. This technical paper details the preparation activities leading up to the POD study currently scheduled for winter 2015/2016. Once validated, this system will be a proven innovation for increasing the safety and reliability of necessary flight hardware.Additionally, testing of frangible joint requires Photon Doppler Velocimetry (PDV) and Digital Image Correlation instrumentation. There is often noise associated with PDV data, which necessitates a frequency modulation (FM) signal-to-noise pre-test. Generally, FM radio works by varying the carrier frequency and mixing it with a fixed frequency source, creating a beat frequency which is represented by audio frequency that can be heard between about 20 to 20,000 Hz. Similarly, PDV reflects a shifted frequency (a phenomenon known as the Doppler Effect) from a moving source and mixes it with a fixed source frequency, which results in a beat frequency. However, for PDV, discerning the signal from the noise is difficult without a moving source to induce the modulation. A rotating wheel is currently being used as the moving source but its configuration is impractical and has cumbersome placement inside the current frangible joint test cell. As a way to combat this problem and verify a satisfactory signal-to-noise ratio, a reflective moving crystal piezo will be used to modulate a beat frequency, and an absorptive target will be used to block the signal in order to determine any back reflection coming from the probe and discern the true signal-to noise ratio. The piezo will be mounted and inserted onto the test table on an extendable telescopic antenna grounded by a magnetic base in the test zone. This piezo configuration will be more compatible within the test zone and allow for easy removal of the disk following acceptable signal verification and prior to frangible joint tests.Additionally, topics of what was learned and smaller tasks given at White Sands Test Facility (WSTF) will be discussed. All statements in this paper are newly gained knowledge of what I have learned, observed, and have done while at WSTF.

  17. ‘Irresponsible and a Disservice’: The integrity of social psychology turns on the free will dilemma

    PubMed Central

    Miles, James B

    2013-01-01

    Over the last few years, a number of works have been published asserting both the putative prosocial benefits of belief in free will and the possible dangers of disclosing doubts about the existence of free will. Although concerns have been raised over the disservice of keeping such doubts from the public, this does not highlight the full danger that is presented by social psychology's newly found interest in the ‘hard problem’ of human free will. Almost all of the work on free will published to date by social psychologists appears methodologically flawed, misrepresents the state of academic knowledge, and risks linking social psychology with the irrational. PMID:22074173

  18. Setting priorities in health research using the model proposed by the World Health Organization: development of a quantitative methodology using tuberculosis in South Africa as a worked example.

    PubMed

    Hacking, Damian; Cleary, Susan

    2016-02-09

    Setting priorities is important in health research given the limited resources available for research. Various guidelines exist to assist in the priority setting process; however, priority setting still faces significant challenges such as the clear ranking of identified priorities. The World Health Organization (WHO) proposed a Disability Adjusted Life Year (DALY)-based model to rank priorities by research area (basic, health systems and biomedical) by dividing the DALYs into 'unavertable with existing interventions', 'avertable with improved efficiency' and 'avertable with existing but non-cost-effective interventions', respectively. However, the model has conceptual flaws and no clear methodology for its construction. Therefore, the aim of this paper was to amend the model to address these flaws, and develop a clear methodology by using tuberculosis in South Africa as a worked example. An amended model was constructed to represent total DALYs as the product of DALYs per person and absolute burden of disease. These figures were calculated for all countries from WHO datasets. The lowest figures achieved by any country were assumed to represent 'unavertable with existing interventions' if extrapolated to South Africa. The ratio of 'cost per patient treated' (adjusted for purchasing power and outcome weighted) between South Africa and the best country was used to calculate the 'avertable with improved efficiency section'. Finally, 'avertable with existing but non-cost-effective interventions' was calculated using Disease Control Priorities Project efficacy data, and the ratio between the best intervention and South Africa's current intervention, irrespective of cost. The amended model shows that South Africa has a tuberculosis burden of 1,009,837.3 DALYs; 0.009% of DALYs are unavertable with existing interventions and 96.3% of DALYs could be averted with improvements in efficiency. Of the remaining DALYs, a further 56.9% could be averted with existing but non-cost-effective interventions. The amended model was successfully constructed using limited data sources. The generalizability of the data used is the main limitation of the model. More complex formulas are required to deal with such potential confounding variables; however, the results act as starting point for development of a more robust model.

  19. Robust autoassociative memory with coupled networks of Kuramoto-type oscillators

    NASA Astrophysics Data System (ADS)

    Heger, Daniel; Krischer, Katharina

    2016-08-01

    Uncertain recognition success, unfavorable scaling of connection complexity, or dependence on complex external input impair the usefulness of current oscillatory neural networks for pattern recognition or restrict technical realizations to small networks. We propose a network architecture of coupled oscillators for pattern recognition which shows none of the mentioned flaws. Furthermore we illustrate the recognition process with simulation results and analyze the dynamics analytically: Possible output patterns are isolated attractors of the system. Additionally, simple criteria for recognition success are derived from a lower bound on the basins of attraction.

  20. Scrutinising the duty of care and standard of care in English medical negligence.

    PubMed

    Gromek-Broc, Katarzyna

    2012-03-01

    The aim of this article is to discuss the difficulties that claimants encounter in civil law action in English medical negligence cases. It argues that the current legal framework, in particular in relation to the existence of the duty of care and the assessment of standard of care, is haphazard and flawed. It suggests that the law should provide the boundaries that would encompass a moral obligation to rescue and to treat. In conclusion it discusses some timid attempts to reform the law in order to facilitate redress and compensation.

  1. Avoiding false discoveries in association studies.

    PubMed

    Sabatti, Chiara

    2007-01-01

    We consider the problem of controlling false discoveries in association studies. We assume that the design of the study is adequate so that the "false discoveries" are potentially only because of random chance, not to confounding or other flaws. Under this premise, we review the statistical framework for hypothesis testing and correction for multiple comparisons. We consider in detail the currently accepted strategies in linkage analysis. We then examine the underlying similarities and differences between linkage and association studies and document some of the most recent methodological developments for association mapping.

  2. Statistical models for causation: what inferential leverage do they provide?

    PubMed

    Freedman, David A

    2006-12-01

    Experiments offer more reliable evidence on causation than observational studies, which is not to gainsay the contribution to knowledge from observation. Experiments should be analyzed as experiments, not as observational studies. A simple comparison of rates might be just the right tool, with little value added by "sophisticated" models. This article discusses current models for causation, as applied to experimental and observational data. The intention-to-treat principle and the effect of treatment on the treated will also be discussed. Flaws in per-protocol and treatment-received estimates will be demonstrated.

  3. Complications of Guillain-Barré syndrome.

    PubMed

    Wang, Ying; Zhang, Hong-Liang; Wu, Xiujuan; Zhu, Jie

    2016-01-01

    Guillain-Barré syndrome (GBS) is an immune-mediated disorder in the peripheral nervous system with a wide spectrum of complications. A good understanding of the complications of GBS assists clinicians to recognize and manage the complications properly thereby reducing the mortality and morbidity of GBS patients. Herein, we systemically review the literature on complications of GBS, including short-term complications and long-term complications. We summarize the frequency, severity, clinical manifestations, managements and possible mechanisms of different kinds of complications, and point out the flaws of current studies as well as demonstrate the further investigations needed.

  4. Primary Science Assessment Item Setters' Misconceptions Concerning the State Changes of Water

    ERIC Educational Resources Information Center

    Boo, Hong Kwen

    2006-01-01

    Assessment is an integral and vital part of teaching and learning, providing feedback on progress through the assessment period to both learners and teachers. However, if test items are flawed because of misconceptions held by the questions setter, then such test items are invalid as assessment tools. Moreover, such flawed items are also likely to…

  5. Five Flaws of Staff Development and the Future Beyond

    ERIC Educational Resources Information Center

    Hargreaves, Andy

    2007-01-01

    Student learning and development do not occur without teacher learning and development. Not any teacher development will do, though. The old flaws of weak and wayward staff development are well-known--no staff development, in which trial and error are assumed to be enough; staff development that is all ideas and no implementation, i.e. the…

  6. Primary Science Assessment Item Setters' Misconceptions Concerning Biological Science Concepts

    ERIC Educational Resources Information Center

    Boo, Hong Kwen

    2007-01-01

    Assessment is an integral and vital part of teaching and learning, providing feedback on progress through the assessment period to both learners and teachers. However, if test items are flawed because of misconceptions held by the question setter, then such test items are invalid as assessment tools. Moreover, such flawed items are also likely to…

  7. The Dangerous Myth of Emerging Adulthood: An Evidence-Based Critique of a Flawed Developmental Theory

    ERIC Educational Resources Information Center

    Côté, James E.

    2014-01-01

    This article examines the theory of emerging adulthood, introduced into the literature by Arnett (2000), in terms of its methodological and evidential basis, and finds it to be unsubstantiated on numerous grounds. Other, more convincing, formulations of variations in the transition to adulthood are examined. Most flawed academic theories are…

  8. Short beam shear tests of polymeric laminates and unidirectional composites

    NASA Technical Reports Server (NTRS)

    Stinchcomb, W. W.; Henneke, E. G.

    1980-01-01

    The application of advanced composite materials in aerospace, ground transportation, and sporting industries are discussed. Failure theories for the design and mechanical behavior of composite materials are emphasized. Methods for detecting specific types of flaws are outlined. The effect of detected flaws on mechanical properties such as stiffness, strength, fatigue lifetime, or residual strength is described.

  9. Flaw Stability Considering Residual Stress for Aging Management of Spent Nuclear Fuel Multiple-Purpose Canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Poh-Sang; Sindelar, Robert L.

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. Because heat treatment for stress relief is not required for the construction of the MPC, the canister is susceptible to stress corrosion cracking in the weld or heat affected zone regions under long-term storage conditions. Logic for flaw acceptance is developed should crack-like flaws be detected by Inservice Inspection. The procedure recommended by API 579-1/ASME FFS-1, Fitness-for-Service, is used to calculate the instability crack length or depth by failure assessment diagram. It is demonstrated that the welding residual stress has amore » strong influence on the results.« less

  10. Influence of quality control variables on failure of graphite/epoxy under extreme moisture conditions

    NASA Technical Reports Server (NTRS)

    Clements, L. L.; Lee, P. R.

    1980-01-01

    Tension tests on graphite/epoxy composites were performed to determine the influence of various quality control variables on failure strength as a function of moisture and moderate temperatures. The extremely high and low moisture contents investigated were found to have less effect upon properties than did temperature or the quality control variables of specimen flaws and prepreg batch to batch variations. In particular, specimen flaws were found to drastically reduce the predicted strength of the composite, whereas specimens from different batches of prepreg displayed differences in strength as a function of temperature and extreme moisture exposure. The findings illustrate the need for careful specimen preparation, studies of flaw sensitivity, and careful quality control in any study of composite materials.

  11. Flaw Stability Considering Residual Stress for Aging Management of Spent Nuclear Fuel Multiple-Purpose Canisters

    DOE PAGES

    Lam, Poh-Sang; Sindelar, Robert L.

    2016-04-28

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. Because heat treatment for stress relief is not required for the construction of the MPC, the canister is susceptible to stress corrosion cracking in the weld or heat affected zone regions under long-term storage conditions. Logic for flaw acceptance is developed should crack-like flaws be detected by Inservice Inspection. The procedure recommended by API 579-1/ASME FFS-1, Fitness-for-Service, is used to calculate the instability crack length or depth by failure assessment diagram. It is demonstrated that the welding residual stress has amore » strong influence on the results.« less

  12. Application of the Boundary Element Method to Elastic Wave Scattering Problems in Ultrasonic Nondestructive Evaluation.

    NASA Astrophysics Data System (ADS)

    Schafbuch, Paul Jay

    The boundary element method (BEM) is used to numerically simulate the interaction of ultrasonic waves with material defects such as voids, inclusions, and open cracks. The time harmonic formulation is in 3D and therefore allows flaws of arbitrary shape to be modeled. The BEM makes such problems feasible because the underlying boundary integral equation only requires a surface (2D) integration and difficulties associated with the seemingly infinite extent of the host domain are not encountered. The computer code utilized in this work is built upon recent advances in elastodynamic boundary element theory such as a scheme for self adjusting integration order and singular integration regularization. Incident fields may be taken as compressional or shear plane waves or predicted by an approximate Gauss -Hermite beam model. The code is highly optimized for voids and has been coupled with computer aided engineering packages for automated flaw shape definition and mesh generation. Subsequent graphical display of intermediate results supports model refinement and physical interpretation. Final results are typically cast in a nondestructive evaluation (NDE) context as either scattering amplitudes or flaw signals (via a measurement model based on a reciprocity integral). The near field is also predicted which allows for improved physical insight into the scattering process and the evaluation of certain modeling approximations. The accuracy of the BEM approach is first examined by comparing its predictions to those of other models for single, isolated scatterers. The comparisons are with the predictions of analytical solutions for spherical defects and with MOOT and T-matrix calculations for axisymmetric flaws. Experimental comparisons are also made for volumetric shapes with different characteristic dimensions in all three directions, since no other numerical approach has yet produced results of this type. Theoretical findings regarding the fictitious eigenfrequency difficulty are substantiated through the analytical solution of a fundamental elastodynamics problem and corresponding BEM studies. Given the confidence in the BEM technique engendered by these comparisons, it is then used to investigate the modeling of "open", cracklike defects amenable to a volumetric formulation. The limits of applicability of approximate theories (e.g., quasistatic, Kirchhoff, and geometric theory of diffraction) are explored for elliptical cracks, from this basis. The problem of two interacting scatterers is then considered. Results from a fully implicit approach and from a more efficient hybrid scheme are compared with generalized Born and farfield approximate interaction theories.

  13. Application of the boundary element method to elastic wave scattering problems in ultrasonic nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Schafbuch, Paul Jay

    1991-02-01

    The boundary element method (BEM) is used to numerically simulate the interaction of ultrasonic waves with material defects such as voids, inclusions, and open cracks. The time harmonic formulation is in 3D and therefore allows flaws of arbitrary shape to be modeled. The BEM makes such problems feasible because the underlying boundary integral equation only requires a surface (2D) integration and difficulties associated with the seemingly infinite extent of the host domain are not encountered. The computer code utilized in this work is built upon recent advances in elastodynamic boundary element theory such as a scheme for self adjusting integration order and singular integration regularization. Incident fields may be taken as compressional or shear plane waves or predicted by an approximate Gauss-Hermite beam model. The code is highly optimized for voids and has been coupled with computer aided engineering packages for automated flaw shape definition and mesh generation. Subsequent graphical display of intermediate results supports model refinement and physical interpretation. Final results are typically cast in a nondestructive evaluation (NDE) context as either scattering amplitudes or flaw signals (via a measurement model based on a reciprocity integral). The near field is also predicted which allows for improved physical insight into the scattering process and the evaluation of certain modeling approximations. The accuracy of the BEM approach is first examined by comparing its predictions to those of other models for single, isolated scatters. The comparisons are with the predictions of analytical solutions for spherical defects and with MOOT and T-matrix calculations for axisymmetric flaws. Experimental comparisons are also made for volumetric shapes with different characteristic dimensions in all three directions, since no other numerical approach has yet produced results of this type. Theoretical findings regarding the fictitious eigenfrequency difficulty are substantiated through the analytical solution of a fundamental elastodynamics problem and corresponding BEM studies. Given the confidence in the BEM technique engendered by these comparisons, it is then used to investigate the modeling of 'open', cracklike defects amenable to a volumetric formulation. The limits of applicability of approximate theories (e.g., quasistatic, Kirchhoff, and geometric theory of diffraction) are explored for elliptical cracks, from this basis. The problem of two interacting scatterers is then considered. Results from a fully implicit approach and from a more efficient hybrid scheme are compared with generalized Born and farfield approximate interaction theories.

  14. The Bouma Sequence and the turbidite mind set

    NASA Astrophysics Data System (ADS)

    Shanmugam, G.

    1997-11-01

    Conventionally, the Bouma Sequence [Bouma, A.H., 1962. Sedimentology of some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 168 pp.], composed of T a, T b, T c, T d, and T e divisions, is interpreted to be the product of a turbidity current. However, recent core and outcrop studies show that the complete and partial Bouma sequences can also be interpreted to be deposits formed by processes other than turbidity currents, such as sandy debris flows and bottom-current reworking. Many published examples of turbidites, most of them hydrocarbon-bearing sands, in the North Sea, the Norwegian Sea, offshore Nigeria, offshore Gabon, Gulf of Mexico, and the Ouachita Mountains, are being reinterpreted by the present author as dominantly deposits of sandy debris flows and bottom-current reworking with only a minor percentage of true turbidites (i.e., deposits of turbidity currents with fluidal or Newtonian rheology in which sediment is suspended by fluid turbulence). This reinterpretation is based on detailed description of 21,000 ft (6402 m) of conventional cores and 1200 ft (365 m) of outcrop sections. The predominance of interpreted turbidites in these areas by other workers can be attributed to the following: (1) loose applications of turbidity-current concepts without regard for fluid rheology, flow state, and sediment-support mechanism that result in a category of 'turbidity currents' that includes debris flows and bottom currents; (2) field description of deep-water sands using the Bouma Sequence (an interpretive model) that invariably leads to a model-driven turbidite interpretation; (3) the prevailing turbidite mind set that subconsciously forces one to routinely interpret most deep-water sands as some kind of turbidites; (4) the use of our inability to interpret transport mechanism from the depositional record as an excuse for assuming deep-water sands as deposits of turbidity currents; (5) the flawed concept of high-density turbidity currents that allows room for interpreting debris-flow deposits as turbidites; (6) the flawed comparison of subaerial river currents (fluid-gravity flows dominated by bed-load transport) with subaqueous turbidity currents (sediment-gravity flows dominated by suspended load transport) that results in misinterpreting ungraded or parallel-stratified deep-sea deposits as turbidites; and (7) the attraction to use obsolete submarine-fan models with channels and lobes that require a turbidite interpretation. Although the turbidite paradigm is alive and well for now, the turbidites themselves are becoming an endangered facies!

  15. Damage modeling of small-scale experiments on dental enamel with hierarchical microstructure.

    PubMed

    Scheider, I; Xiao, T; Yilmaz, E; Schneider, G A; Huber, N; Bargmann, S

    2015-03-01

    Dental enamel is a highly anisotropic and heterogeneous material, which exhibits an optimal reliability with respect to the various loads occurring over years. In this work, enamel's microstructure of parallel aligned rods of mineral fibers is modeled and mechanical properties are evaluated in terms of strength and toughness with the help of a multiscale modeling method. The established model is validated by comparing it with the stress-strain curves identified by microcantilever beam experiments extracted from these rods. Moreover, in order to gain further insight in the damage-tolerant behavior of enamel, the size of crystallites below which the structure becomes insensitive to flaws is studied by a microstructural finite element model. The assumption regarding the fiber strength is verified by a numerical study leading to accordance of fiber size and flaw tolerance size, and the debonding strength is estimated by optimizing the failure behavior of the microstructure on the hierarchical level above the individual fibers. Based on these well-grounded properties, the material behavior is predicted well by homogenization of a representative unit cell including damage, taking imperfections (like microcracks in the present case) into account. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size

    PubMed Central

    Wang, Qiang; Zhang, Wei; Jiang, Shan

    2015-01-01

    Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS) concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V) under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given. PMID:28793625

  17. Data Science in Radiology: A Path Forward.

    PubMed

    Aerts, Hugo J W L

    2018-02-01

    Artificial intelligence (AI), especially deep learning, has the potential to fundamentally alter clinical radiology. AI algorithms, which excel in quantifying complex patterns in data, have shown remarkable progress in applications ranging from self-driving cars to speech recognition. The AI application within radiology, known as radiomics, can provide detailed quantifications of the radiographic characteristics of underlying tissues. This information can be used throughout the clinical care path to improve diagnosis and treatment planning, as well as assess treatment response. This tremendous potential for clinical translation has led to a vast increase in the number of research studies being conducted in the field, a number that is expected to rise sharply in the future. Many studies have reported robust and meaningful findings; however, a growing number also suffer from flawed experimental or analytic designs. Such errors could not only result in invalid discoveries, but also may lead others to perpetuate similar flaws in their own work. This perspective article aims to increase awareness of the issue, identify potential reasons why this is happening, and provide a path forward. Clin Cancer Res; 24(3); 532-4. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. PKI Layer Cake: New Collision Attacks against the Global X.509 Infrastructure

    NASA Astrophysics Data System (ADS)

    Kaminsky, Dan; Patterson, Meredith L.; Sassaman, Len

    Research unveiled in December of 2008 [15] showed how MD5's long-known flaws could be actively exploited to attack the real-worldCertification Authority infrastructure. In this paper, we demonstrate two new classes of collision, which will be somewhat trickier to address than previous attacks against X.509: the applicability of MD2 preimage attacks against the primary root certificate for Verisign, and the difficulty of validating X.509 Names contained within PKCS#10 Certificate Requests.We also draw particular attention to two possibly unrecognized vectors for implementation flaws that have been problematic in the past: the ASN.1 BER decoder required to parsePKCS#10, and the potential for SQL injection fromtext contained within its requests. Finally, we explore why the implications of these attacks are broader than some have realized - first, because Client Authentication is sometimes tied to X.509, and second, because Extended Validation certificates were only intended to stop phishing attacks from names similar to trusted brands. As per the work of Adam Barth and Collin Jackson [4], EV does not prevent an attacker who can synthesize or acquire a "low assurance" certificate for a given name from acquiring the "green bar" EV experience.

  19. Are you sitting comfortably? The political economy of the body.

    PubMed

    Wilkin, Peter

    2009-01-01

    The aim of this paper is to examine the relationship between the mass production of furniture in modern industrial societies and lower back pain (LBP). The latter has proven to be a major cost to health services and private industry throughout the industrialised world and now represents a global health issue as recent WHO reports on obesity and LBP reveal. Thus far there have been few co-ordinated attempts to deal with the causes of the problem through public policy. Drawing upon a range of sources in anthropology, health studies, politics and economics, the paper argues that this a modern social problem rooted in the contingent conjuncture of natural and social causal mechanisms. The key question it raises is: what are the appropriate mechanisms for addressing this problem? This paper develops an analysis rooted in libertarian social theory and argues that both the state and the capitalist market are flawed mechanisms for resolving this problem. There remains a fundamental dilemma for libertarians, however. Whilst the state and the market may well be flawed mechanisms, they are the dominant ones shaping global political economy. To what extent can libertarians work within these structures and remain committed to libertarian goals?

  20. Validation Test Results for Orthogonal Probe Eddy Current Thruster Inspection System

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.

    2007-01-01

    Recent nondestructive evaluation efforts within NASA have focused on an inspection system for the detection of intergranular cracking originating in the relief radius of Primary Reaction Control System (PCRS) Thrusters. Of particular concern is deep cracking in this area which could lead to combustion leakage in the event of through wall cracking from the relief radius into an acoustic cavity of the combustion chamber. In order to reliably detect such defects while ensuring minimal false positives during inspection, the Orthogonal Probe Eddy Current (OPEC) system has been developed and an extensive validation study performed. This report describes the validation procedure, sample set, and inspection results as well as comparing validation flaws with the response from naturally occuring damage.

Top