The Perils of Paul: Near Disasters in Airborne Radiochemical Sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meade, Roger Allen
Beginning with the Trinity test in July 1945, Laboratory radiochemists have collected debris from nuclear tests by various means. At Trinity, two United States Army Sherman tanks were used. Beginning with Operation Crossroads and continuing throughout atmospheric testing, aircraft were used to fly in and around mushroom clouds to collect debris. Paul Guthals, the LASL project leader for sampling operations, flew on many of the B-57 sampling missions. Two such missions, one flown over the Nevada Test and one in the skies near Johnston Atoll, again proved the dangers involved in collecting airborne test debris. The events of these twomore » missions are briefly recounted.« less
HIPPO Experiment Data Access and Subseting System
NASA Astrophysics Data System (ADS)
Krassovski, Misha; Hook, Les; Christensen, Sigurd; Boden, Tom
2014-05-01
HIAPER Pole-to-Pole Observations (HIPPO) was an NSF- and NOAA-funded, multi-year global airborne research project to survey the latitudinal and vertical distribution of greenhouse and related gases, and aerosols. Project scientists and support staff flew five month-long missions over the Pacific Basin on the NSF/NCAR Gulfstream V, High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) aircraft between January 2009 and September 2011, spread throughout the annual cycle, from the surface to 14 km in altitude, and from 87N to 67S. The landmark study resulted in an extensive, highly detailed dataset of over 90 atmospheric species, from six categories, all with navigation and atmospheric structure data, including greenhouse gases and carbon cycle gases; ozone and water vapor; black carbon and aerosols; ozone-depleting substances and their replacements; light hydrocarbons and PAN; and sulfur gases/ocean-derived gases. A suite of specialized instruments on the aircraft made high-rate measurements as the plane flew, while several whole air samplers collected flasks of air for later analysis in laboratories around the U.S. Flights were conducted in a continuously profiling mode, with the aircraft alternately climbing or descending as it flew from its home base in Broomfield, Colorado north to Alaska and the Arctic, south down the middle of the Pacific Ocean to New Zealand and the Southern Ocean near Antarctica, and then back to the Arctic a second time before returning home. In all, the aircraft made 64 flights and flew 787 vertical profiles while covering 285,000 km. Instruments collected 434 hours of high-rate continuous measurements and 4,235 flask samples were collected during the five HIPPO missions. Data from the HIPPO study of greenhouse gases and aerosols are now available to the atmospheric research community and the public. This comprehensive dataset provides the first high-resolution vertically resolved measurements of over 90 unique atmospheric species from nearly pole-to-pole over the Pacific Ocean across all seasons. The suite of atmospheric trace gases and aerosols is pertinent to understanding the carbon cycle and challenging global climate models. This dataset will provide opportunities for research across a broad spectrum of Earth sciences, including those analyzing the evolution in time and space of the greenhouse gases that affect global climate. The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) provides data management support for the HIPPO experiment including long-term data storage and dissemination. CDIAC has developed a relational database to house HIPPO merged 10-second meteorology, atmospheric chemistry, and aerosol data. This data set provides measurements from all Missions, 1 through 5, that took place from January of 2009 to September 2011. This presentation introduces newly build database and web interface, reflects the present state and functionality of the HIPPO Database and Exploration System as well as future plans for expansion and inclusion of combined discrete flask and GC sample GHG, Halocarbon, and hydrocarbon data.
The Preliminary Examination of Organics in the Returned Stardust Samples from Comet Wild 2
NASA Technical Reports Server (NTRS)
Sandford, S. A.; Aleon, J.; Alexander, C.; Butterworth, A.; Clemett, S. J.; Cody, G.; Cooper, G.; Dworkin, J. P.; Flynn, G. J.; Gilles, M. K.
2006-01-01
The primary objective of STARDUST is to collect coma samples from comet 8lP/Wild 2. These samples were collected by impact onto aerogel tiles on Jan 2, 2004 when the spacecraft flew through the comet's coma at a relative velocity of about 6.1 km/sec. Measurements of dust impacts on the front of the spacecraft suggest that the aerogel particle collector was impacted by 2800 +/- 500 particles larger than 15 micron in diameter. Following recovery of the Sample Return Capsule (SRC) on Jan 15, 2006, the aerogel collector trays will be removed in a clean room at JSC. After documentation of the collection, selected aerogel tiles will be removed and aerogel and cometary samples will be extracted for study. A number of different extraction techniques will be used, each optimized for the analytical technique that is to be used. The STARDUST Mission will carry out a 6 month preliminary examination (PE) of a small portion of the returned samples. The examination of the samples will be made by a number of subteams that will concentrate on specific aspects of the samples. One of these is the Organics PE Team (see the author list above for team members). These team members will use a number of analytical techniques to produce a preliminary characterization of the abundance and nature of the organics (if any) in the returned samples.
NASA Technical Reports Server (NTRS)
Sandford, S. A.; Aleon, J.; Alexander, C. M. O'D.; Araki, T.; Bajt, S.; Baratta, G. A.; Borg, J.; Bradley J. P.; Brownlee, D. E.; Brucato, J. R.;
2007-01-01
STARDUST is the first mission designed to bring samples back to Earth from a known comet. The captured samples were successfully returned to Earth on 15 Jan 2006, after which they were subjected to a preliminary examination by a number of teams of scientists from around the world. This abstract describes the efforts of the Organics Preliminary Examination Team (PET). More detailed discussions of specific analyses of the samples can be found in other papers presented at this meeting by individual members of the Organics PET (see the author list above for team members). The studied Wild 2 gas and dust samples were collected by impact onto aerogel tiles and Al foils when the spacecraft flew through the coma of 81P/Wild 2 on 2 Jan 2004 at a relative velocity of approx.6.1 kilometers per second. After recovery of the Sample Return Capsule (SRC) on 15 Jan 2006, the aerogel collector trays were removed in a clean room at JSC. After documentation of the collection, selected aerogel tiles and aluminum foils were removed and aerogel and cometary samples extracted for study.
Size-specific composition of aerosols in the El Chichon volcanic cloud
NASA Technical Reports Server (NTRS)
Woods, D. C.; Chuan, R. L.
1983-01-01
A NASA U-2 research aircraft flew sampling missions in April, May, July, November, and December 1982 aimed at obtaining in situ data in the stratospheric cloud produced from the March-April 1982 El Chichon eruptions. Post flight analyses provided information on the aerosol composition and morphology. The particles ranged in size from smaller than 0.05 m to larger than 20 m diameter and were quite complex in composition. In the April, May, and July samples the aerosol mass was dominated by magmatic and lithic particles larger than about 3 m. The submicron particles consisted largely of sulfuric acid. Halite particles, believed to be related to a salt dome beneath El Chichon, were collected in the stratosphere in April and May. On the July 23 flight, copper-zinc oxide particles were collected. In July, November, and December, in addition to the volcanic ash and acid particles, carbon-rich particles smaller than about 0.1 m aerodynamic diameter were abundant.
NASA Astrophysics Data System (ADS)
Gil, A.
2016-12-01
The NASA Genesis Mission flew high-purity collector materials on a satellite from 2001-2004 to collect a sample of the solar wind. Upon return to Earth, a spacecraft malfunction caused the onboard sample materials to be severely contaminated during the crash landing in the Utah desert. As part of an ongoing effort to decontaminate the collector materials, they are being scanned with a scanning electron microscope (SEM) to determine the amount of dirt and spacecraft debris contaminating the collectors. This effort is underway currently, but we have identified an opportunity to improve the quality of the SEM data collected. At present, many small images are acquired and stitched together to form larger images of Genesis collector pieces, which are then analyzed. The collectors are physically distorted, however, and the imaging method presently used doesn't allow imaging parameters to be adjusted between images to correct for this distortion. In order to improve the quality of the collected imaging, we are developing a program to acquire a focus map of each sample prior to image collection. The program then uses this data to adjust the position of the sample in the SEM to image all sections in focus and at a constant focal length. This is accomplished using the Python programming language, and the programmatic interface built into our Tescan VEGA Scanning Electron Microscope. Our approach, progress to date, and challenges are discussed.
Estimating the abundance of the Southern Hudson Bay polar bear subpopulation with aerial surveys
Obbard, Martyn E.; Stapleton, Seth P.; Middel, Kevin R.; Thibault, Isabelle; Brodeur, Vincent; Jutras, Charles
2015-01-01
The Southern Hudson Bay (SH) polar bear subpopulation occurs at the southern extent of the species’ range. Although capture–recapture studies indicate abundance was likely unchanged between 1986 and 2005, declines in body condition and survival occurred during the period, possibly foreshadowing a future decrease in abundance. To obtain a current estimate of abundance, we conducted a comprehensive line transect aerial survey of SH during 2011–2012. We stratified the study site by anticipated densities and flew coastal contour transects and systematically spaced inland transects in Ontario and on Akimiski Island and large offshore islands in 2011. Data were collected with double-observer and distance sampling protocols. We surveyed small islands in James Bay and eastern Hudson Bay and flew a comprehensive transect along the Québec coastline in 2012. We observed 667 bears in Ontario and on Akimiski Island and nearby islands in 2011, and we sighted 80 bears on offshore islands during 2012. Mark–recapture distance sampling and sight–resight models yielded an estimate of 860 (SE = 174) for the 2011 study area. Our estimate of abundance for the entire SH subpopulation (943; SE = 174) suggests that abundance is unlikely to have changed significantly since 1986. However, this result should be interpreted cautiously because of the methodological differences between historical studies (physical capture–recapture) and this survey. A conservative management approach is warranted given previous increases in duration of the ice-free season, which are predicted to continue in the future, and previously documented declines in body condition and vital rates.
Obbard, Martyn E.; Middel, Kevin R.; Stapleton, Seth P.; Thibault, Isabelle; Brodeur, Vincent; Jutras, Charles
2013-01-01
The Southern Hudson Bay (SH) polar bear subpopulation occurs at the southern extent of the species’ range. Although capture-recapture studies indicate that abundance remained stable between 1986 and 2005, declines in body condition and survival were documented during the period, possibly foreshadowing a future decrease in abundance. To obtain a current estimate of abundance, we conducted a comprehensive line transect aerial survey of SH during 2011–2012. We stratified the study site by anticipated densities and flew coastal contour transects and systematically spaced inland transects in Ontario and on Akimiski Island and large offshore islands in 2011. Data were collected with double observer and distance sampling protocols. We also surveyed small islands in Hudson Bay and James Bay and flew a comprehensive transect along the Québec coastline in 2012. We observed 667 bears in Ontario and on Akimiski Island and nearby islands in 2011, and we sighted 80 bears on offshore islands during 2012. Mark-recapture distance sampling and sightresight models yielded a model-averaged estimate of 868 (SE: 177) for the 2011 study area. Our estimate of abundance for the entire SH subpopulation (951; SE: 177) suggests that abundance has remained unchanged. However, this result should be interpreted cautiously because of the methodological differences between historical studies (physical capture) and this survey. A conservative management approach is warranted given the previous increases in the duration of the ice-free season, which are predicted to continue in the future, and previously documented declines in body condition and vital rates.
NASA Technical Reports Server (NTRS)
Hymer, W. C.
1995-01-01
In spite of the fact that a vast majority of the electrophoresis effort (approximately 90%) could not be done on this mission (IML-2) due to failure of FFEU hardware, we find some interesting differences in flight samples obtained from other parts of the experiment. These differences are entirely novel and sometimes unexpected. This report is organized into 4 parts. Each part describes the data collected thus far from each of the 4 cell culture kits (CCK) which flew in space. Each CCK was loaded with 40x10(exp 6) fresh pituitary cells; all CCK's were identical at the start of the experiment because we prepared one pool of cells.
2015-05-18
response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and... reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information...five times the speed of sound. For reference, the SR-71 Blackbird , the fastest manned airbreathing typically flew at three times the speed of sound
Use of Traffic Displays for General Aviation Approach Spacing: A Human Factors Study
2007-12-01
engine rated pilots participated. Eight flew approaches in a twin-engine Piper Aztec originating in Sanford, ME, and eight flew approaches in the same...flew approaches in a twin-engine Piper Aztec originating in Sanford, ME, and eight flew approaches in the same aircraft originating in Atlantic City... Aztec . The plane was equipped with a horizontal Situation Indicator (hSI). The Garmin International MX-20™ multifunction traffic display or “Basic
Atmospheric Sampling on Ascension Island Using Multirotor UAVs.
Greatwood, Colin; Richardson, Thomas S; Freer, Jim; Thomas, Rick M; MacKenzie, A Rob; Brownlow, Rebecca; Lowry, David; Fisher, Rebecca E; Nisbet, Euan G
2017-05-23
As part of an NERC-funded project investigating the southern methane anomaly, a team drawn from the Universities of Bristol, Birmingham and Royal Holloway flew small unmanned multirotors from Ascension Island for the purposes of atmospheric sampling. The objective of these flights was to collect air samples from below, within and above a persistent atmospheric feature, the Trade Wind Inversion, in order to characterise methane concentrations and their isotopic composition. These parameters allow the methane in the different air masses to be tied to different source locations, which can be further analysed using back trajectory atmospheric computer modelling. This paper describes the campaigns as a whole including the design of the bespoke eight rotor aircraft and the operational requirements that were needed in order to collect targeted multiple air samples up to 2.5 km above the ground level in under 20 min of flight time. Key features of the system described include real-time feedback of temperature and humidity, as well as system health data. This enabled detailed targeting of the air sampling design to be realised and planned during the flight mission on the downward leg, a capability that is invaluable in the presence of uncertainty in the pre-flight meteorological data. Environmental considerations are also outlined together with the flight plans that were created in order to rapidly fly vertical transects of the atmosphere whilst encountering changing wind conditions. Two sampling campaigns were carried out in September 2014 and July 2015 with over one hundred high altitude sampling missions. Lessons learned are given throughout, including those associated with operating in the testing environment encountered on Ascension Island.
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Hillard, G. Barry
1994-01-01
SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the OAST-2 mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials and floating potentials for arrays and spacecraft in LEO.
NASA Technical Reports Server (NTRS)
Mahoney, M.; Hicke, J.; Rosenlof, K.; Tuck, A.; Hovde, S.
2000-01-01
On April 11, 1998 WB57F aircraft flew northwest at lower stratospheric altitudes from Houston, Texas, over eastern Wyoming as part of the WB57F Aerosol Mission to sample a vortex filament forecast to pass over that region.
Airborne Mission Concept for Coastal Ocean Color and Ecosystems Research
NASA Technical Reports Server (NTRS)
Guild, Liane S.; Hooker, Stanford B.; Morrow, John H.; Kudela, Raphael M.; Palacios, Sherry L.; Torres Perez, Juan L.; Hayashi, Kendra; Dunagan, Stephen E.
2016-01-01
NASA airborne missions in 2011 and 2013 over Monterey Bay, CA, demonstrated novel above- and in-water calibration and validation measurements supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The resultant airborne data characterize contemporaneous coastal atmospheric and aquatic properties plus sea-truth observations from state-of-the-art instrument systems spanning a next-generation spectral domain (320-875 nm). This airborne instrument suite for calibration, validation, and research flew at the lowest safe altitude (ca. 100 ft or 30 m) as well as higher altitudes (e.g., 6,000 ft or 1,800 m) above the sea surface covering a larger area in a single synoptic sortie than ship-based measurements at a few stations during the same sampling period. Data collection of coincident atmospheric and aquatic properties near the sea surface and at altitude allows the input of relevant variables into atmospheric correction schemes to improve the output of corrected imaging spectrometer data. Specific channels support legacy and next-generation satellite capabilities, and flights are planned to within 30 min of satellite overpass. This concept supports calibration and validation activities of ocean color phenomena (e.g., river plumes, algal blooms) and studies of water quality and coastal ecosystems. The 2011 COAST mission flew at 100 and 6,000 ft on a Twin Otter platform with flight plans accommodating the competing requirements of the sensor suite, which included the Coastal-Airborne In-situ Radiometers (C-AIR) for the first time. C-AIR (Biospherical Instruments Inc.) also flew in the 2013 OCEANIA mission at 100 and 1,000 ft on the Twin Otter below the California airborne simulation of the proposed NASA HyspIRI satellite system comprised of an imaging spectrometer and thermal infrared multispectral imager on the ER-2 at 65,000 ft (20,000 m). For both missions, the Compact-Optical Profiling System (Biospherical Instruments, Inc.), an in-water system with microradiometers matching C-AIR, was deployed to compare sea-truth measurements and low-altitude Twin Otter flights within Monterey Bay red tide events. This novel airborne and in-water sensor capability advances the science of coastal measurements and enables rapid response for coastal events.
Convair F-106B Delta Dart with Air Sampling Equipment
1974-04-21
The National Aeronautics and Space Administration (NASA) Lewis Research Center’s Convair F-106B Delta Dart equipped with air sampling equipment in the mid-1970s. NASA Lewis created and managed the Global Air Sampling Program (GASP) in 1972 in partnership with several airline companies. NASA researchers used the airliners’ Boeing 747 aircraft to gather air samples to determine the amount of pollution present in the stratosphere. Private companies developed the air sampling equipment for the GASP program, and Lewis created a particle collector. The collector was flight tested on NASA Lewis’ F-106B in the summer of 1973. The sampling equipment was automatically operated once the proper altitude was achieved. The sampling instruments collected dust particles in the air so their chemical composition could be analyzed. The equipment analyzed one second’s worth of data at a time. The researchers also monitored carbon monoxide, monozide, ozone, and water vapor. The 747 flights began in December 1974 and soon included four airlines flying routes all over the globe. The F-106B augmented the airline data with sampling of its own, seen here. It gathered samples throughout this period from locations such as New Mexico, Texas, Michigan, and Ohio. In July 1977 the F-106B flew eight GASP flights in nine days over Alaska to supplement the earlier data gathered by the airlines.
An Improved, Automated Whole-Air Sampler and VOC Analysis System: Results from SONGNEX 2015
NASA Astrophysics Data System (ADS)
Lerner, B. M.; Gilman, J.; Tokarek, T. W.; Peischl, J.; Koss, A.; Yuan, B.; Warneke, C.; Isaacman-VanWertz, G. A.; Sueper, D.; De Gouw, J. A.; Aikin, K. C.
2015-12-01
Accurate measurement of volatile organic compounds (VOCs) in the troposphere is critical for the understanding of emissions and physical and chemical processes that can impact both air quality and climate. Airborne VOC measurements have proven challenging due to the requirements of short sample collection times (=10 s) to maximize spatial resolution and sampling frequency and high sensitivity (pptv) to chemically diverse hydrocarbons, halocarbons, oxygen- and nitrogen-containing VOCs. NOAA ESRL CSD has built an improved whole air sampler (iWAS) which collects compressed ambient air samples in electropolished stainless steel canisters, based on the NCAR HAIS Advanced Whole Air Sampler [Atlas and Blake]. Post-flight chemical analysis is performed with a custom-built gas chromatograph-mass spectrometer system that pre-concentrates analyte cryostatically via a Stirling cooler, an electromechanical chiller which precludes the need for liquid nitrogen to reach trapping temperatures. For the 2015 Shale Oil and Natural Gas Nexus Study (SONGNEX), CSD conducted iWAS measurements on 19 flights aboard the NOAA WP-3D aircraft between March 19th and April 27th. Nine oil and natural gas production regions were surveyed during SONGNEX and more than 1500 air samples were collected and analyzed. For the first time, we employed real-time mapping of sample collection combined with live data from fast time-response measurements (e.g. ethane) for more uniform surveying and improved target plume sampling. Automated sample handling allowed for more than 90% of iWAS canisters to be analyzed within 96 hours of collection - for the second half of the campaign improved efficiencies reduced the median sample age at analysis to 36 hours. A new chromatography peak-fitting software package was developed to minimize data reduction time by an order of magnitude without a loss of precision or accuracy. Here we report mixing ratios for aliphatic and aromatic hydrocarbons (C2-C8) along with select oxygenated species (alcohols and ketones) and cycloalkanes. We present an intercomparison of the GC-MS analysis system and iWAS samples from SONGNEX with a new H3O+ CIMS-TOF and a spectroscopic ethane measurement that also flew aboard the NOAA WP-3D aircraft during SONGNEX. We also consider the effect of sample age on observed mixing ratio.
Atmospheric Sampling on Ascension Island Using Multirotor UAVs
Greatwood, Colin; Richardson, Thomas S.; Freer, Jim; Thomas, Rick M.; MacKenzie, A. Rob; Brownlow, Rebecca; Lowry, David; Fisher, Rebecca E.; Nisbet, Euan G.
2017-01-01
As part of an NERC-funded project investigating the southern methane anomaly, a team drawn from the Universities of Bristol, Birmingham and Royal Holloway flew small unmanned multirotors from Ascension Island for the purposes of atmospheric sampling. The objective of these flights was to collect air samples from below, within and above a persistent atmospheric feature, the Trade Wind Inversion, in order to characterise methane concentrations and their isotopic composition. These parameters allow the methane in the different air masses to be tied to different source locations, which can be further analysed using back trajectory atmospheric computer modelling. This paper describes the campaigns as a whole including the design of the bespoke eight rotor aircraft and the operational requirements that were needed in order to collect targeted multiple air samples up to 2.5 km above the ground level in under 20 min of flight time. Key features of the system described include real-time feedback of temperature and humidity, as well as system health data. This enabled detailed targeting of the air sampling design to be realised and planned during the flight mission on the downward leg, a capability that is invaluable in the presence of uncertainty in the pre-flight meteorological data. Environmental considerations are also outlined together with the flight plans that were created in order to rapidly fly vertical transects of the atmosphere whilst encountering changing wind conditions. Two sampling campaigns were carried out in September 2014 and July 2015 with over one hundred high altitude sampling missions. Lessons learned are given throughout, including those associated with operating in the testing environment encountered on Ascension Island. PMID:28545231
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Hillard, G. Barry
1994-01-01
SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the Office of Aeronautics and Space Technology-2 (OAST-2) mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials, and floating potentials for arrays and spacecraft in LEO.
Flight Test of the Engine Fuel Schedules of the X-43A Hyper-X Research Vehicles
NASA Technical Reports Server (NTRS)
Jones, Thomas
2006-01-01
The Hyper-X program flew two X-43A Hyper-X Research Vehicles (HXRVs) in 2004, referred to as Ship 2 and Ship 3. The scramjet engine of the X-43A research vehicle was autonomously controlled in flight to track a predetermined fueling schedule. Ship 2 flew at approximately Mach 7 and Ship 3 flew at approximately Mach 10.
STS-26 crew arrives at KSC Shuttle Landing Facility (SLF)
NASA Technical Reports Server (NTRS)
1987-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, crew arrives at Kennedy Space Center (KSC) Shuttle Landing Facility (SLF). The recently announced flight crew of the next space shuttle mission STS-26 stands in front of NASA T-38 aircraft. The STS-26 crew is making a motivational visit to KSC in order to talk to and meet the support teams that help launch the shuttle. From left to right are: Mission Specialist (MS) David C. Hilmers who flew on 51J; Pilot Richard O. Covey who flew on 51I; Commander Frederick H. Hauck who flew as commander on 51A and as pilot on STS-7; and MS George D. Nelson who flew on 41C and 61C.
An Advanced Tabu Search Approach to the Airlift Loading Problem
2006-12-01
This report specified that analysis of 14,692 strategic airlift missions demonstrated that … more than 86 percent flew with payloads that were lighter...The University of Texas at Austin December, 2006 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection...Information Operations and Reports , 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any
1999-07-16
KENNEDY SPACE CENTER, FLA. -- During an anniversary banquet honoring the Apollo program team, the people who made the entire lunar landing program possible, former Apollo astronaut Gene Cernan relates a humorous comment while Wally Schirra (background) gestures behind him. Cernan, who flew on Apollo 10 and 17, was the last man to walk on the moon; Schirra flew on Apollo 7. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Other guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin "Buzz" Aldrin who flew on Apollo 11, the launch of the first moon landing, and Walt Cunningham, who also flew on Apollo 7
DTO-675: Voice Control of the Closed Circuit Television System
NASA Technical Reports Server (NTRS)
Salazar, George; Gaston, Darilyn M.; Haynes, Dena S.
1996-01-01
This report presents the results of the Detail Test Object (DTO)-675 "Voice Control of the Closed Circuit Television (CCTV)" system. The DTO is a follow-on flight of the Voice Command System (VCS) that flew as a secondary payload on STS-41. Several design changes were made to the VCS for the STS-78 mission. This report discusses those design changes, the data collected during the mission, recognition problems encountered, and findings.
1992-06-01
The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs that provided scientists an opportunity to research various scientific investigations in a weightlessness environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology (crystal growth), and combustion science. This is a close-up view of the Drop Physics Module (DPM) in the USML science laboratory. The DPM was dedicated to the detailed study of the dynamics of fluid drops in microgravity: their equilibrium shapes, the dynamics of their flows, and their stable and chaotic behaviors. It also demonstrated a technique known as containerless processing. The DPM and microgravity combine to remove the effects of the container, such as chemical contamination and shape, on the sample being studied. Sound waves, generating acoustic forces, were used to suspend a sample in microgravity and to hold a sample of free drops away from the walls of the experiment chamber, which isolated the sample from potentially harmful external influences. The DPM gave scientists the opportunity to test theories of classical fluid physics, which have not been confirmed by experiments conducted on Earth. This image is a close-up view of the DPM. The USML-1 flew aboard the STS-50 mission on June 1992, and was managed by the Marshall Space Flight Center.
Non-Random Spatial Distribution of Impacts in the Stardust Cometary Collector
NASA Technical Reports Server (NTRS)
Westphal, Andrew J.; Bastien, Ronald K.; Borg, Janet; Bridges, John; Brownlee, Donald E.; Burchell, Mark J.; Cheng, Andrew F.; Clark, Benton C.; Djouadi, Zahia; Floss, Christine
2007-01-01
In January 2004, the Stardust spacecraft flew through the coma of comet P81/Wild2 at a relative speed of 6.1 km/sec. Cometary dust was collected at in a 0.1 sq m collector consisting of aerogel tiles and aluminum foils. Two years later, the samples successfully returned to earth and were recovered. We report the discovery that impacts in the Stardust cometary collector are not distributed randomly in the collecting media, but appear to be clustered on scales smaller than approx.10 cm. We also report the discovery of at least two populations of oblique tracks. We evaluated several hypotheses that could explain the observations. No hypothesis was consistent with all the observations, but the preponderance of evidence points toward at least one impact on the central Whipple shield of the spacecraft as the origin of both clustering and low-angle oblique tracks. High-angle oblique tracks unambiguously originate from a noncometary impact on the spacecraft bus just forward of the collector. Here we summarize the observations, and review the evidence for and against three scenarios that we have considered for explaining the impact clustering found on the Stardust aerogel and foil collectors.
Enabling Earth Science Measurements with NASA UAS Capabilites
NASA Technical Reports Server (NTRS)
Albertson, Randal; Schoenung, Susan; Fladeland, Matthew M.; Cutler, Frank; Tagg, Bruce
2015-01-01
NASA's Airborne Science Program (ASP) maintains a fleet of manned and unmanned aircraft for Earth Science measurements and observations. The unmanned aircraft systems (UAS) range in size from very large (Global Hawks) to medium (SIERRA, Viking) and relatively small (DragonEye). UAS fly from very low (boundary layer) to very high altitude (stratosphere). NASA also supports science and applied science projects using UAS operated by outside companies or agencies. The aircraft and accompanying data and support systems have been used in numerous investigations. For example, Global Hawks have been used to study both hurricanes and atmospheric composition. SIERRA has been used to study ice, earthquake faults, and coral reefs. DragonEye is being used to measure volcanic emissions. As a foundation for NASA's UAS work, Altair and Ikkana not only flew wildfires in the Western US, but also provided major programs for the development of real-time data download and processing capabilities. In early 2014, an advanced L-band Synthetic Aperture Radar (SAR) also flew for the first time on Global Hawk, proving the utility of UAVSAR, which has been flying successfully on a manned aircraft. In this paper, we focus on two topics: 1) the results of a NASA program called UAS-Enabled Earth Science, in which three different science teams flew (at least) two different UAS to demonstrate platform performance, airspace integration, sensor performance, and applied science results from the data collected; 2) recent accomplishments with the high altitude, long-duration Global Hawks, especially measurements from several payload suites consisting of multiple instruments. The latest upgrades to data processing, communications, tracking and flight planning systems will also be described.
1969-12-18
The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10. The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 20, 1972. The HL-10 flew from December 22, 1966 until July 17, 1970 and logged the highest and fastest records in the lifting body program.
1969-12-18
The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10. The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 20, 1972. The HL-10 flew from December 22, 1966 until July 17, 1970 and logged the highest and fastest records in the lifting body program.
1969-12-18
The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10. The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 21, 1971. The HL-10 flew from December 22, 1966 until July 17, 1970, and logged the highest and fastest records in the lifting body program.
1969-12-18
The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10. The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 22, 1972. The HL-10 flew from December 22, 1966 until July 17, 1970, and logged the highest and fastest records in the lifting body program.
1999-07-16
KENNEDY SPACE CENTER, FLA. -- In the Apollo/Saturn V Center, Lisa Malone (left), chief of KSC's Media Services branch, identifies a reporter to pose a question to one of the former Apollo astronauts seated next to her. From left, they are Neil A. Armstrong and Edwin "Buzz" Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. This is the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon
Carbon Observatory’s First Data on This Week @NASA - August 15, 2014
2014-08-15
A month after its launch, the Orbiting Carbon Observatory-2, NASA’s first spacecraft dedicated to studying atmospheric carbon dioxide – has reached its final operating orbit and returned its first science data. “First light” test data were collected on August 6 as OCO-2 flew over central New Guinea, confirming the health of the spacecraft’s science instrument’s. Also, ATV-5 Delivers Cargo, Cygnus Departs Station, Super Celestial Show, Black Hole Blurs X-ray Light, Million Pound Move and more!
2010-09-01
Electra Doppler Radar (ELDORA), dropwindsonde capability, a Doppler wind lidar , and the ability to collect flight-level data] flew aircraft research...ELDORA Electra Doppler Radar ECMWF European Center for Medium-range Weather Prediction Forecasts ER Equatorial Rossby ERA-40 ECMWF Reanalysis Data...2006) use Dual Doppler radar and rain gauge data to evaluate the performance of the TRMM TMI V6 rainfall algorithm. They 23 conclude that: “In
Project CHECO Southeast Asia Report. Ranch Hand: Herbicide Operations in SEA
1971-07-13
Fortunately, the value of collecting and documenting our SEA expe-Uriences was recognized at an early date. In 1962 , Hq USAF directed CINCPACAF to...January 1962 to carry out the specific operations plan published the previous month, code named Sillm bI I "Ranch Hand." The first Ranch Hand aircraft...flew missions from 12 January 1962 I through 20 March 1962 . These missions were conducted along Route 15 north- 7/ west of Saigon and in the Ca Mau
Bion 11 mission: primate experiments
NASA Technical Reports Server (NTRS)
Ilyin, E. A.; Korolkov, V. I.; Skidmore, M. G.; Viso, M.; Kozlovskaya, I. B.; Grindeland, R. E.; Lapin, B. A.; Gordeev, Y. V.; Krotov, V. P.; Fanton, J. W.;
2000-01-01
A summary is provided of the major operations required to conduct the wide range of primate experiments on the Bion 11 mission, which flew for 14 days beginning December 24, 1996. Information is given on preflight preparations, including flight candidate selection and training; attachment and implantation of bioinstrumentation; flight and ground experiment designs; onboard life support and test systems; ground and flight health monitoring; flight monkey selection and transport to the launch site; inflight procedures and data collection; postflight examinations and experiments; and assessment of results.
NASA Technical Reports Server (NTRS)
Hypes, W. D.; Wallace, J. W.; Gurganus, E. A.
1977-01-01
A remote sensor experiment was conducted at a sewage sludge dump site off the Delaware/Maryland coast. Two aircraft serving as remote sensor platforms flew over the dump site during a sludge dump. One aircraft carried a multispectral scanner and the other aircraft carried a rapid scanning spectrometer. Data from sea-truth stations were collected concurrent with overpasses of the aircraft. All sensors were operational and produced good digital data.
Experimental evidence of interhemispheric transport from airborne carbon monoxide measurements
NASA Technical Reports Server (NTRS)
Newell, R. E.; Gauntner, D. J.
1979-01-01
During the period 28-30 October 1977, a Pan American 747-SP aircraft flew around the world with an automated instrument package that included measurements of atmospheric CO made every 4 sec. The flight path extended from San Francisco, over the North Pole to London, south to Capetown, over the South Pole to Auckland, and back to San Francisco. The data collected show large changes with longitude, which are interpreted as direct evidence of interhemispheric mixing. Possible sources for CO are discussed.
1999-07-16
KENNEDY SPACE CENTER, FLA. -- In the Apollo/Saturn V Center, Lisa Malone (left), chief of KSC's Media Services branch, laughs at a humorous comment along with former Apollo astronauts Neil A. Armstrong and Edwin "Buzz" Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. The four met with the media before an anniversary banquet celebrating the accomplishments of the Apollo program team. This is the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon
Making the Connection: Transnational Civilian-to-Civilian Partnerships
2002-12-01
After learning that the tubes had arrived, the committee members flew from JFK Airport on a Friday, conferred with contractors and authorities over...the committee members flew from JFK Airport on a Friday, conferred with contractors and authorities over the weekend, and returned in time for
NASA X-57 Simulator Prepares Pilots, Engineers for Flight of Electric X-Plane
2016-11-29
NASA Administrator Charlie Bolden, a former pilot and astronaut who flew on four shuttle missions, appeared natural at the controls of the X-57 simulator cockpit, and flew a pair of simulations where he landed on the Edwards Air Force Base runway.
1991-09-01
The Advanced Automated Directional Solidification Furnace (AADSF) flew during the USMP-2 mission. During USMP-2, the AADSF was used to study the growth of mercury cadmium telluride crystals in microgravity by directional solidification, a process commonly used on earth to process metals and grow crystals. The furnace is tubular and has three independently controlled temperature zones. The sample travels from the hot zone of the furnace (1600 degrees F) where the material solidifies as it cools. The solidification region, known as the solid/liquid interface, moves from one end of the sample to the other at a controlled rate, thus the term directional solidification.
Predicting motion sickness during parabolic flight
NASA Technical Reports Server (NTRS)
Harm, Deborah L.; Schlegel, Todd T.
2002-01-01
BACKGROUND: There are large individual differences in susceptibility to motion sickness. Attempts to predict who will become motion sick have had limited success. In the present study, we examined gender differences in resting levels of salivary amylase and total protein, cardiac interbeat intervals (R-R intervals), and a sympathovagal index and evaluated their potential to correctly classify individuals into two motion sickness severity groups. METHODS: Sixteen subjects (10 men and 6 women) flew four sets of 10 parabolas aboard NASA's KC-135 aircraft. Saliva samples for amylase and total protein were collected preflight on the day of the flight and motion sickness symptoms were recorded during each parabola. Cardiovascular parameters were collected in the supine position 1-5 days before the flight. RESULTS: There were no significant gender differences in sickness severity or any of the other variables mentioned above. Discriminant analysis using salivary amylase, R-R intervals and the sympathovagal index produced a significant Wilks' lambda coefficient of 0.36, p=0.006. The analysis correctly classified 87% of the subjects into the none-mild sickness or the moderate-severe sickness group. CONCLUSIONS: The linear combination of resting levels of salivary amylase, high-frequency R-R interval levels, and a sympathovagal index may be useful in predicting motion sickness severity.
Predicting Motion Sickness During Parabolic Flight
NASA Technical Reports Server (NTRS)
Harm, Deborah L.; Schlegel, Todd T.
2002-01-01
Background: There are large individual differences in susceptibility to motion sickness. Attempts to predict who will become motion sick have had limited success. In the present study we examined gender differences in resting levels of salivary amylase and total protein, cardiac interbeat intervals (R-R intervals), and a sympathovagal index and evaluated their potential to correctly classify individuals into two motion sickness severity groups. Methods: Sixteen subjects (10 men and 6 women) flew 4 sets of 10 parabolas aboard NASA's KC-135 aircraft. Saliva samples for amylase and total protein were collected preflight on the day of the flight and motion sickness symptoms were recorded during each parabola. Cardiovascular parameters were collected in the supine position 1-5 days prior to the flight. Results: There were no significant gender differences in sickness severity or any of the other variables mentioned above. Discriminant analysis using salivary amylase, R-R intervals and the sympathovagal index produced a significant Wilks' lambda coefficient of 0.36, p= 0.006. The analysis correctly classified 87% of the subjects into the none-mild sickness or the moderate-severe sickness group. Conclusions: The linear combination of resting levels of salivary amylase, high frequency R-R interval levels, and a sympathovagal index may be useful in predicting motion sickness severity.
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators.
1999-07-16
KENNEDY SPACE CENTER, FLA. -- NASA Administrator Daniel S. Goldin addresses the audience at the Apollo 11 anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin "Buzz" Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7
NASA Administrator Dan Goldin speaks at Apollo 11 anniversary banquet.
NASA Technical Reports Server (NTRS)
1999-01-01
NASA Administrator Daniel S. Goldin addresses the audience at the Apollo 11 anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7.
Occurrence of the saw-whet owl in Florida
Lesser, F.H.; Stickley, A.R.
1967-01-01
On 31 October 1965 at 1000 hours we observed and collected a Saw-whet Owl (Aegolius acadicus) in adult plumage and in apparently good physical condition at Ponte Vedra, St. Johns County, Florida. The bird flew from beneath a truck to a cross beam in a garage adjoining a large, fresh-water, wooded swamp dominated by cabbage palms (Sabal palmetto). We found a regurgitated pellet and a freshly killed, partially eaten cotton mouse (Peromyscus gossypinus) beneath the truck. The bird was sent to Henry M. Stevenson for deposit in Florida State University Museum, Tallahassee (specimen no. 4092b). Dr. Stevenson found that the skull had been shattered and the gonads destroyed in collecting. Total length (before skinning) was 210 mm.
Microbiology and Crew Medical Events on the International Space Station
NASA Technical Reports Server (NTRS)
Oubre, Cherie M.; Charvat, Jacqueline M.; Kadwa, Biniafer; Taiym, Wafa; Ott, C. Mark; Pierson, Duane; Baalen, Mary Van
2014-01-01
The closed environment of the International Space Station (ISS) creates an ideal environment for microbial growth. Previous studies have identified the ubiquitous nature of microorganisms throughout the space station environment. To ensure safety of the crew, microbial monitoring of air and surface within ISS began in December 2000 and continues to be monitored on a quarterly basis. Water monitoring began in 2009 when the potable water dispenser was installed on ISS. However, it is unknown if high microbial counts are associated with inflight medical events. The microbial counts are determined for the air, surface, and water samples collected during flight operations and samples are returned to the Microbiology laboratory at the Johnson Space Center for identification. Instances of microbial counts above the established microbial limit requirements were noted and compared inflight medical events (any non-injury event such as illness, rashes, etc.) that were reported during the same calendar-quarter. Data were analyzed using repeated measures logistic regression for the forty-one US astronauts flew on ISS between 2000 and 2012. In that time frame, instances of microbial counts being above established limits were found for 10 times for air samples, 22 times for surface samples and twice for water. Seventy-eight inflight medical events were reported among the astronauts. A three times greater risk of a medical event was found when microbial samples were found to be high (OR = 3.01; p =.007). Engineering controls, crew training, and strict microbial limits have been established to mitigate the crew medical events and environmental risks. Due to the timing issues of sampling and the samples return to earth, identification of particular microorganisms causing a particular inflight medical event is difficult. Further analyses are underway.
1992-03-12
The Advanced Automated Directional Solidification Furnace (AADSF) with the Experimental Apparatus Container (EAC) removed flew during the USMP-2 mission. During USMP-2, the AADSF was used to study the growth of mercury cadmium telluride crystals in microgravity by directional solidification, a process commonly used on earth to process metals and grow crystals. The furnace is tubular and has three independently controlled temperature zones . The sample travels from the hot zone of the furnace (1600 degrees F) where the material solidifies as it cools. The solidification region, known as the solid/liquid interface, moves from one end of the sample to the other at a controlled rate, thus the term directional solidification.
1994-07-10
TEMPUS, an electromagnetic levitation facility that allows containerless processing of metallic samples in microgravity, first flew on the IML-2 Spacelab mission. The principle of electromagnetic levitation is used commonly in ground-based experiments to melt and then cool metallic melts below their freezing points without solidification occurring. The TEMPUS operation is controlled by its own microprocessor system; although commands may be sent remotely from the ground and real time adjustments may be made by the crew. Two video cameras, a two-color pyrometer for measuring sample temperatures, and a fast infrared detector for monitoring solidification spikes, will be mounted to the process chamber to facilitate observation and analysis. In addition, a dedicated high-resolution video camera can be attached to the TEMPUS to measure the sample volume precisely.
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Precision Hawk pilot readies Lancaster Mark 3 UAS for test flight.
1999-07-16
KENNEDY SPACE CENTER, FLA. -- During an anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible, former Apollo astronaut Neil A. Armstrong (left) shakes the hand of Judy Goldin (center), wife of NASA Administrator Daniel S. Goldin (right). The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin "Buzz" Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7
Seo, Meeja; Martini, Xavier; Rivera, Monique J; Stelinski, Lukasz L
2017-06-01
We compared the flight activity of Xyleborus glabratus Eichhoff, vector and symbiont of the causal agent of laurel wilt disease (Raffaelea lauricola), with a native species Monarthrum mali (Fitch) using flight mills. Flight mills were operated either for 24 h or for three 3-h time intervals. During the 3-h interval experiment, the shortest time to flight initiation for X. glabratus occurred at 1600-1900 hours. The average flight time and total flying distance during 1600-2100 hours were also higher than those quantified during the other two recording times investigated. However, total flight duration and proportion of fliers was highest at 1000-1300 hours. We compared several flight parameters. About 64.0% of tested X. glabratus flew <20 m. During 24-h recording periods, M. mali flew longer distances than X. glabratus. Over 50.0% of M. mali flew over 100 m on the flight mill. Xyleborus glabratus flight activity was greatest between 1200 and 1800 hours, while M. mali flew most frequently between 1500 and 2100 hours. Monarthrum mali flew more than five times more frequently than X. glabratus, and their longest single flight distance (37.5 ± 12.5 m) and total flight distance (213.7 ± 85.5 m) were greater than those of X. glabratus. These data will be useful for development of species-specific control and monitoring protocols for these ambrosia beetles based on greater understanding of their flight capacities and associated invasion distance. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
1999-07-16
KENNEDY SPACE CENTER, FLA. -- NASA Administrator Daniel S. Goldin (right) addresses the audience at the Apollo 11 anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex, with seating under an unused Saturn V rocket like those that powered the Apollo launches . This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin "Buzz" Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7
NASA Administrator Dan Goldin speaks at Apollo 11 anniversary banquet.
NASA Technical Reports Server (NTRS)
1999-01-01
NASA Administrator Daniel S. Goldin (right) addresses the audience at the Apollo 11 anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex, with seating under an unused Saturn V rocket like those that powered the Apollo launches . This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7.
NASA Administrator Dan Goldin greets Neil Armstrong at Apollo 11 anniversary banquet.
NASA Technical Reports Server (NTRS)
1999-01-01
During an anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible, former Apollo astronaut Neil A. Armstrong (left) shakes the hand of Judy Goldin (center), wife of NASA Administrator Daniel S. Goldin (right). The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7.
Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle.
safety tested, and flew hardware we call the Microencapsulation in Space (MIS) experiment. The MIS experiment flew on Space Shuttle Discovery...of the same composition. From our experience, these improved properties should improve the release properties of microencapsulated drugs and...eliminate unwanted residual process aids. Furthermore, it is likely that microencapsulation in space will let us encapsulate drugs that cannot be microencapsulated on the earth
Physics of Colloids in Space--Plus (PCS+) Experiment Completed Flight Acceptance Testing
NASA Technical Reports Server (NTRS)
Doherty, Michael P.
2004-01-01
The Physics of Colloids in Space--Plus (PCS+) experiment successfully completed system-level flight acceptance testing in the fall of 2003. This testing included electromagnetic interference (EMI) testing, vibration testing, and thermal testing. PCS+, an Expedite the Process of Experiments to Space Station (EXPRESS) Rack payload will deploy a second set of colloid samples within the PCS flight hardware system that flew on the International Space Station (ISS) from April 2001 to June 2002. PCS+ is slated to return to the ISS in late 2004 or early 2005.
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineer Joey Mercer reviews flight paths using the UAS traffic management research platform UTM coordinator app to verify and validate flight paths.
NASA Technical Reports Server (NTRS)
Schnell, Russell C.; Sheridan, Patrick J.; Peterson, Richard E.; Oltmans, S. J.
1988-01-01
Aircraft profiles of O3 concentrations over the Arctic ice pack in spring exhibit a depletion of O3 beneath the surface temperature inversion. One such profile from the NOAA WP-3D Arctic Gas and Aerosol Sampling Program (AGASP) flights in April, 1986 north of Alert, NWT (YLT, 82.5 N) is shown. The gradient of O3 across the temperature inversion, which is essentially a step function from tropospheric values (35 to 40 ppbv) to 0, is somewhat masked by a 1-min running mean applied to the data. Evidence is presented that O3 destruction beneath the Arctic temperature inversion is the result of a photochemical reaction between gaseous Br compounds and O3 to produce particulate Br aerosol. It is noted that in springtime, O3 at the Alert Baseline Station regularly decreases from 30 to 40 ppbv to near 0 over the period of a few hours to a day. At the same time, there is a production of particulate Br with a near 1.0 anti-correlation to O3 concentration. Surface concentrations of bromoform in the Arctic exhibit a rapid decrease following polar sunrise. AGASP aircraft measurements of filterable bromine particulates in the Arctic (March-April, 1983 and 1986) are shown. The greatest concentrations of Br aerosol (shown as enrichment factors relative to to Na in seawater, EFBR (Na)) were observed in samples collected beneath the surface temperature inversion over ice. Samples collected at the same altitude over open ocean (off Spitzbergen) labeled Marine did not exhibit similar Br enrichments. A second region of particulate Br enrichment was observed in the lower stratosphere, which regularly descends to below 500 mb (5.5 km) in the high Arctic. The NOAA WP-3D flew in the stratosphere on all AGASP flights and occasionally measured O3 concentrations in excess of 300 ppbv.
Development and Utilization of Space Fission Power Systems
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.
2009-01-01
Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.
Development and Utilization of Space Fission Power Systems
NASA Technical Reports Server (NTRS)
Houts, Michael; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.
2008-01-01
Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.
Feeding habitat use by colonially-breeding herons, egrets, and ibises in North Carolina
Custer, Thomas W.; Osborn, Ronald G.
1978-01-01
Nine species of herons, egrets, and ibises were followed by airplane from a nesting colony near Beaufort, North Carolina to their feeding sites. Except for Cattle Egrets, which flew exclusively to fields and dumps, the birds flew mainly to saltmarsh habitat. The selection of feeding habitats by Great Egrets and Louisiana Herons was directly related to tidal depth. The Great Egret was the only species that effectively used eelgrass beds, and its use of this habitat was restricted to between 1.5 h before and after low tide. We suspect that shorter-legged herons did not use eelgrass regularly because the water was too deep. Most Great Egrets, White Ibises, Louisiana Herons, and Snowy Egrets used areas near the colony (<4 km). Great Egrets, Black-crowned Night Herons, and White Ibises flew farther from the colony at high than at low tide. Great Egrets traveled farther from the colony when they used thermals; rate of travel to feeding sites was the same, however, whether or not they used thermals. Aggressive encounters were observed at the landing sites of Great Egrets, Louisiana Herons, Snowy Egrets, and Black-crowned Night Herons. In contrast to the other species studied, Cattle Egrets and White Ibises often flew in groups to feeding sites. Indirect evidence supports the hypothesis that colonies can act as "information centres," wherein unsuccessful birds follow successful ones to better feeding locations.
2000-01-23
NASA ER-2 # 809 and its DC-8 shown in Arena Arctica before the SAGE III Ozone Loss and Validation Experiment (SOLVE). The two airborne science platforms were based north of the Arctic Circle in Kiruna, Sweden, during the winter of 2000 to study ozone depletion as part of SOLVE. A large hangar built especially for research, "Arena Arctica" housed the instrumented aircraft and the scientists. Scientists have observed unusually low levels of ozone over the Arctic during recent winters, raising concerns that ozone depletion there could become more widespread as in the Antarctic ozone hole. The NASA-sponsored international mission took place between November 1999 and March 2000 and was divided into three phases. The DC-8 was involved in all three phases returning to Dryden between each phase. The ER-2 flew sample collection flights between January and March, remaining in Sweden from Jan. 9 through March 16. "The collaborative campaign will provide an immense new body of information about the Arctic stratosphere," said program scientist Dr. Michael Kurylo, NASA Headquarters. "Our understanding of the Earth's ozone will be greatly enhanced by this research."
27. RW Meyer Sugar Mill: 18761889. Centrifugals, 1879, 1881. Manufacturer, ...
27. RW Meyer Sugar Mill: 1876-1889. Centrifugals, 1879, 1881. Manufacturer, Unknown. Supplied by Honolulu Ironworks, Honolulu Hawaii, 1879, 1881. View: Historical view, 1934, from T.T. Waterman collection, Hawaiian Sugar Planters' Association. With the inner basket of the centrifugal revolving at 1200 rpm molasses flew outward from the granulated sugar, through the holes in the brass lining, and into the stationary outer basket. The molasses drained through the spout at the right and into molasses storage pits below the floor. The centrifugals were underdriven with a belt connected to the pulley beneath the basket. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Precision Hawk pilot launches UAS Lancaster Mark 3, one of 11 vehicles in the UTM TCL2 demonstration that will fly beyond line of sight of the pilot in command in Nevada test.
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineers Priya Venkatesan and Joey Mercer review flight paths using the UAS traffic management research platform at flight operations mission control at NASA’s UTM TCL2 test.
1969-04-25
NASA research pilot Bill Dana stands in front of the HL-10 Lifting Body following his first glide flight on April 25, 1969. Dana later retired as Chief Engineer at NASA's Dryden Flight Research Center, (called the NASA Flight Research Center in 1969). Prior to his lifting body assignment, Dana flew the X-15 research airplane. He flew the rocket-powered aircraft 16 times, reaching a top speed of 3,897 miles per hour and a peak altitude of 310,000 feet (almost 59 miles high).
Air System Information Management
NASA Technical Reports Server (NTRS)
Filman, Robert E.
2004-01-01
I flew to Washington last week, a trip rich in distributed information management. Buying tickets, at the gate, in flight, landing and at the baggage claim, myriad messages about my reservation, the weather, our flight plans, gates, bags and so forth flew among a variety of travel agency, airline and Federal Aviation Administration (FAA) computers and personnel. By and large, each kind of information ran on a particular application, often specialized to own data formats and communications network. I went to Washington to attend an FAA meeting on System-Wide Information Management (SWIM) for the National Airspace System (NAS) (http://www.nasarchitecture.faa.gov/Tutorials/NAS101.cfm). NAS (and its information infrastructure, SWIM) is an attempt to bring greater regularity, efficiency and uniformity to the collection of stovepipe applications now used to manage air traffic. Current systems hold information about flight plans, flight trajectories, weather, air turbulence, current and forecast weather, radar summaries, hazardous condition warnings, airport and airspace capacity constraints, temporary flight restrictions, and so forth. Information moving among these stovepipe systems is usually mediated by people (for example, air traffic controllers) or single-purpose applications. People, whose intelligence is critical for difficult tasks and unusual circumstances, are not as efficient as computers for tasks that can be automated. Better information sharing can lead to higher system capacity, more efficient utilization and safer operations. Better information sharing through greater automation is possible though not necessarily easy.
AOPA Survey Summary of AGATE Concepts Demonstration October 17-19, 1996. Volume 1; Basic Report
NASA Technical Reports Server (NTRS)
1997-01-01
An AGATE Concepts Demonstration was conducted at the Annual Aircraft Owners and Pilots Association (AOPA) Convention in 1996. The demonstration consisted of an interactive simulation of a single-pilot, single-engine aircraft in which the participant took off, flew a brief enroute segment and then flew a Global Positioning System (GPS) approach and landing. The participant was provided an advanced 'pathway-in-the-sky' presentation on both a head-up display and a head-down display to follow throughout the flight. A single lever power control and display concept was also provided for control of the engine throughout the flight. A second head-down, multifunction display in the instrument panel provided a moving map display for navigation purposes and monitoring of the status of the aircraft's systems. An estimated 352 people observed or participated in the demonstration, and 144 surveys were collected. The pilot ratings of the participants ranged from student to Air Transport Rating with an average of 1850 hours total flight time. The performance of the participants was surprisingly good, considering the minimal training in a completely new system concept. The overwhelming response was that technologies that simplify piloting tasks are enthusiastically welcomed by pilots of all experience levels. The increase in situation awareness and reduction in pilot workload were universally accepted and lauded as steps in the right direction.
NASA Technical Reports Server (NTRS)
1997-01-01
An AGATE Concepts Demonstration was conducted at the Annual Aircraft Owners and Pilots Association (AOPA) Convention in 1996. The demonstration consisted of an interactive simulation of a single-pilot, single-engine aircraft in which the participant took off, flew a brief enroute segment and then flew a Global Positioning System (GPS) approach and landing. The participant was provided an advanced 'pathway-in-the-sky' presentation on both a head-up display and a head-down display to follow throughout the flight. A single lever power control and display concept was also provided for control of the engine throughout the flight A second head-down, multifunction display in the instrument panel provided a moving map display for navigation purposes and monitoring of the status of the aircraft's systems. An estimated 352 people observed or participated in the demonstration, and 144 surveys were collected. The pilot ratings of the participants ranged from student to Air Transport Rating with an average of 1850 hours total flight time. The performance of the participants was surprisingly good, considering the minimal training in a completely new system concept. The overwhelming response was that technologies that simplify piloting tasks are enthusiastically welcomed by pilots of all experience levels. The increase in situation awareness and reduction in pilot workload were universally accepted and lauded as steps in the right direction.
NASA Technical Reports Server (NTRS)
Voellmer, George
1997-01-01
The Goddard Space Flight Center has developed the Robot Operated Materials Processing System (ROMPS) that flew aboard STS-64 in September, 1994. The ROMPS robot transported pallets containing wafers of different materials from their storage racks to a furnace for thermal processing. A system of tapered guides and compliant springs was designed to deal with the potential misalignments. The robot and all the sample pallets were locked down for launch and landing. The design of the passive lockdown system, and the interplay between it and the alignment system are presented.
Long-duration orbital effects on optical coating materials
NASA Technical Reports Server (NTRS)
Herzig, Howard; Toft, Albert R.; Fleetwood, Charles M., Jr.
1993-01-01
We flew specimens of eight different optical coating materials in low earth orbit as part of the Long Duration Exposure Facility manifest to determine their ability to withstand exposure to the residual atomic 0 and other environmental effects at those altitudes. We included samples of Al, Au, Ir, Os, Pt, Al + MgF2, Al + SiO(x), and chemical-vapor-deposited SiC, representing reflective optical applications from the vacuum ultraviolet through the visible portions of the spectrum. We found that the majority of the materials suffered sufficient reflectance degradation to warrant careful consideration in the design of future space-flight instrumentation.
The use of feeding habitat by a colony of herons, egrets, and ibises near Beaufort, North Carolina
Custer, Thomas W.; Southern, William E.
1977-01-01
Nine species of herons were followed to their feeding sites from a nesting colony near Beaufort, North Carolina, by airplane. Except for the Cattle Egret, which flew exclusively to fields and dumps, all other species flew mainly to saltmarsh habitat. In addition, habitats were selected in relation to tidal depth and it appears, at least for the Great Egret, that low tide habitats were preferred. Most Great Egrets, White Ibises, Louisiana Herons, and Snowy Egrets flew close to the colony and numbers decreased farther from the colony. The Great Egret, Black-crowned Night Heron, and White Ibis flew farther from the colony at high than at low tide. In addition, the species differed in distance flown from the colony. Great Egrets traveled farther from the colony when they used thermals. Rate of travel to feeding sites, however, was the same whether Great Egrets used thermals or not. Aggressive encounters were observed in the Great Egret, Louisiana Heron, Snowy Egret, and Black-crowned Night Heron. Cattle Egrets and White Ibises followed other individuals to feeding sites and it appeared as though they were using the colony as an information center. The Great Egret is the only species to effectively use eelgrass beds near Beaufort. The Great Egrets use of this habitat was restricted to about 1.5 hours on either side of low tide. We suspect that other shorter legged species did not use eelgrass regularly because of its depth.
Poessel, Sharon; Brandt, Joseph; Mendenhall, Laura C.; Braham, Melissa A.; Lanzone, Michael J.; McGann, Andrew J.; Katzner, Todd
2018-01-01
Wind power is a fast-growing energy resource, but wind turbines can kill volant wildlife, and the flight behavior of obligate soaring birds can place them at risk of collision with these structures. We analyzed altitudinal data from GPS telemetry of critically endangered California Condors (Gymnogyps californianus) to assess the circumstances under which their flight behavior may place them at risk from collision with wind turbines. Condor flight behavior was strongly influenced by topography and land cover, and birds flew at lower altitudes and closer to the rotor-swept zone of wind turbines when over ridgelines and steep slopes and over forested and grassland cover types. Condor flight behavior was temporally predictable, and birds flew lower and closer to the rotor-swept zone during early morning and evening hours and during the winter months, when thermal updrafts were weakest. Although condors only occasionally flew at altitudes that placed them in the rotor-swept zone of turbines, they regularly flew near or within wind resource areas preferred by energy developers. Practitioners aiming to mitigate collision risk to this and other soaring bird species of conservation concern can consider the manner in which flight behavior varies temporally and in response to areas of high topographic relief and proximity to nocturnal roosting sites. By contrast, collision risk to large soaring birds from turbines should be relatively lower over flatter and less rugged areas and in habitat used during daytime soaring.
NASA Astrophysics Data System (ADS)
Kalina, E.; Cione, J.; Bryan, G. H.; Lenschow, D. H.; Fairall, C. W.
2016-12-01
Open-ocean measurements of turbulence variables in the tropical cyclone (TC) boundary layer are rare, given the dangers posed by convective downdrafts, high waves, and sea spray to manned hurricane reconnaissance aircraft. The Coyote Unmanned Aircraft System (UAS) represents an opportunity to mitigate the risk to personnel while simultaneously collecting low-altitude measurements of air pressure, temperature, humidity, and wind in TCs. In 2014, the Coyote UAS flew at a height of h = 760 m in Hurricane Edouard for 45 min. The resulting wind velocity measurements were used to estimate the turbulent eddy dissipation rate (ɛ) along the Coyote flight track, using power spectra and the second-order velocity structure function. Power spectra of both the longitudinal (Suu) and transverse wind components (Svv) exhibited well-defined inertial subranges with five-thirds scaling, as expected from Kolmogorov (1941). The ratio Svv:Suu was 4:3, in agreement with theory. Under the moderate wind speeds (15-25 m s-1) sampled by the Coyote, estimates of ɛ from the power spectra and structure function ranged from 2-3.5×10-4 m2 s-3. An idealized TC simulation with Cloud Model version 1 (CM1) and a horizontal grid spacing of dx = 20 m was then used to support the observed estimates of ɛ. Along the mock Coyote flight path, the model domain-averaged value of ɛ was 3.0×10-4 m2 s-3, which is within the range of the observationally-based estimates. This agreement was achieved despite the relatively slow sampling rate (1 Hz) of the Coyote sensors and occasional missing data. Therefore, a 1-Hz sampling rate may be adequate for estimating ɛ, and time series with missing samples may still contain the necessary information to estimate the power spectra and structure functions, and thus ɛ. These findings are motivating subsequent Coyote flights into high-wind regions of TCs to collect turbulence measurements that will be used to evaluate subgrid turbulence schemes for numerical models. Future flights in the surface layer (h < 100 m) will also be used to measure the surface drag coefficient at hurricane-force wind speeds.
NASA Technical Reports Server (NTRS)
Tarbell, Theodore D.; Title, Alan M.
1992-01-01
The Solar Optical Universal Polarimeter (SOUP) flew on the shuttle mission Spacelab 2 (STS-51F) in August, 1985, and collected historic solar observations. SOUP is the only solar telescope on either a spacecraft or balloon which has delivered long sequences of diffraction-limited images. These movies led to several discoveries about the solar atmosphere which were published in the scientific journals. After Spacelab 2, reflights were planned on the shuttle Sunlab mission, which was cancelled after the Challenger disaster, and on a balloon flights, which were also cancelled for funding reasons. In the meantime, the instrument was used in a productive program of ground-based observing, which collected excellent scientific data and served as instrument tests. Given here is an overview of the history of the SOUP program, the scientific discoveries, and the instrument design and performance.
NASA Astrophysics Data System (ADS)
Tarbell, Theodore D.; Title, Alan M.
1992-08-01
The Solar Optical Universal Polarimeter flew on the Shuttle Mission Spacelab 2 (STS-51F) in August, 1985, and collected historic solar observations. SOUP is the only solar telescope on either a spacecraft or balloon which has delivered long sequences of diffraction-limited images. These movies led to several discoveries about the solar atmosphere which were published in the scientific journals. After Spacelab 2, reflights were planned on the Space Shuttle Sunlab Mission, which was cancelled after the Challenger disaster, and on balloon flights, which were also cancelled for funding reasons. In the meantime, the instrument was used in a productive program of ground-based observing, which collected excellent scientific data and served as instrument tests. This report gives an overview of the history of the SOUP program, the scientific discoveries, and the instrument design and performance.
NASA Astrophysics Data System (ADS)
Tarbell, Theodore D.; Title, Alan M.
1992-08-01
The Solar Optical Universal Polarimeter (SOUP) flew on the shuttle mission Spacelab 2 (STS-51F) in August, 1985, and collected historic solar observations. SOUP is the only solar telescope on either a spacecraft or balloon which has delivered long sequences of diffraction-limited images. These movies led to several discoveries about the solar atmosphere which were published in the scientific journals. After Spacelab 2, reflights were planned on the shuttle Sunlab mission, which was cancelled after the Challenger disaster, and on a balloon flights, which were also cancelled for funding reasons. In the meantime, the instrument was used in a productive program of ground-based observing, which collected excellent scientific data and served as instrument tests. Given here is an overview of the history of the SOUP program, the scientific discoveries, and the instrument design and performance.
Scintillation Detector for the Measurement of Ultra-Heavy Cosmic Rays on the Super-TIGER Experiment
NASA Technical Reports Server (NTRS)
Link, Jason
2011-01-01
We discuss the design and construction of the scintillation detectors for the Super-TIGER experiment. Super-TIGER is a large-area (5.4sq m) balloon-borne experiment designed to measure the abundances of cosmic-ray nuclei between Z= 10 and Z=56. It is based on the successful TIGER experiment that flew in Antarctica in 2001 and 2003. Super-TIGER has three layers of scintillation detectors, two Cherenkov detectors and a scintillating fiber hodoscope. The scintillation detector employs four wavelength shifter bars surrounding the edges of the scintillator to collect the light from particles traversing the detector. PMTs are optically coupled at both ends of the bars for light collection. We report on laboratory performance of the scintillation counters using muons. In addition we discuss the design challenges and detector response over this broad charge range including the effect of scintilator saturation.
Bulk Growth of 2-6 Crystals in the Microgravity Environment of USML-1
NASA Technical Reports Server (NTRS)
Gillies, Donald C.; Lehoczky, Sandor L.; Szofran, Frank R.; Larson, David J.; Su, Ching-Hua; Sha, Yi-Gao; Alexander, Helga A.
1993-01-01
The first United States Microgravity Laboratory Mission (USML- 1) flew in June 1992 on the Space Shuttle Columbia. An important part of this SpaceLab mission was the debut of the Crystal Growth Furnace (CGF). Of the seven samples grown in the furnace, three were bulk grown 2-6 compounds, two of a cadmium zinc telluride alloy, and one of a mercury zinc telluride alloy. Ground based results are presented, together with the results of computer simulated growths of these experimental conditions. Preliminary characterization results for the three USML-1 growth runs are also presented and the flight sample characteristics are compared to the equivalent ground truth samples. Of particular interest are the effect of the containment vessel on surface features, and especially on the nucleation, and the effect of the gravity vector on radial and axial compositional variations and stress and defect levels.
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Drone Co-habitation Services operates a Phantom 3 commercial multi-rotor unmanned aircraft, one of 11 vehicles in the UTM TCL2 demonstration that will fly beyond line of sight of the pilot in command in Nevada test.
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Karen Bollinger pilot and Nick Atkins of Alaska Center for Unmanned Aircraft Systems Integration program fly Ptarmigan quadcopter, one of 11 vehicles in the UTM TCL2 demonstration that will fly beyond line of sight of the pilot in command in Nevada test.
NASA Technical Reports Server (NTRS)
Williams, David E.
2007-01-01
The International Space Station (ISS) Pressurized Mating Adapters (PMAs) Environmental Control and Life Support (ECLS) System is comprised of three subsystems: Atmosphere Control and Supply (ACS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). PMA 1 and PMA 2 flew to ISS on Flight 2A and PMA 3 flew to ISS on Flight 3A. This paper provides a summary of the PMAs ECLS design and the detailed Element Verification methodologies utilized during the Qualification phase for the PMAs.
NASA Technical Reports Server (NTRS)
Williams, David E.
2008-01-01
The International Space Station (ISS) Pressurized Mating Adapters (PMAs) Environmental Control and Life Support (ECLS) System is comprised of three subsystems: Atmosphere Control and Supply (ACS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). PMAs 1 and 2 flew to ISS on Flight 2A and Pressurized Mating Adapter (PMA) 3 flew to ISS on Flight 3A. This paper provides a summary of the PMAs ECLS design and a detailed discussion of the ISS ECLS Acceptance Testing methodologies utilized for the PMAs.
ISS Pass Over Hurricane Jose and Hurricane Irma 9/8/17
2017-09-08
The International Space Station passed over two major Atlantic hurricanes on Friday, Sept. 8. First, the station flew approximately 250 miles over Hurricane Jose at approximately 10:10 a.m. EDT while the Category 3 storm was in the Atlantic just east of the Caribbean. One orbit of the Earth later, the station flew over Hurricane Irma at approximately 11:40 a.m. EDT. The powerful Category 4 storm had already brought destructive wind and rain to islands across the Caribbean and is forecast to impact the Florida peninsula.
Modeling Relationships Between Flight Crew Demographics and Perceptions of Interval Management
NASA Technical Reports Server (NTRS)
Remy, Benjamin; Wilson, Sara R.
2016-01-01
The Interval Management Alternative Clearances (IMAC) human-in-the-loop simulation experiment was conducted to assess interval management system performance and participants' acceptability and workload while performing three interval management clearance types. Twenty-four subject pilots and eight subject controllers flew ten high-density arrival scenarios into Denver International Airport during two weeks of data collection. This analysis examined the possible relationships between subject pilot demographics on reported perceptions of interval management in IMAC. Multiple linear regression models were created with a new software tool to predict subject pilot questionnaire item responses from demographic information. General patterns were noted across models that may indicate flight crew demographics influence perceptions of interval management.
Raithel, C.J.; Ginsberg, H.S.; Prospero, M.L.
2006-01-01
The endangered American burying beetle, Nicrophorus americanus, was monitored on Block Island, RI, USA, from 1991-2003 using mark-recapture population estimates of adults collected in pitfall traps. Populations increased through time, especially after 1994 when a program was initiated that provided carrion for beetle production. Beetle captures increased with increasing temperature and dew point, and decreased with increasing wind speed. Short distance movement was not related to wind direction, while longer distance flights tended to be downwind. Although many individuals flew considerable distances along transects, most recaptures were in traps near the point of release. These behaviors probably have counterbalancing effects on population estimates.
Dynamic Echo Information Guides Flight in the Big Brown Bat
Warnecke, Michaela; Lee, Wu-Jung; Krishnan, Anand; Moss, Cynthia F.
2016-01-01
Animals rely on sensory feedback from their environment to guide locomotion. For instance, visually guided animals use patterns of optic flow to control their velocity and to estimate their distance to objects (e.g., Srinivasan et al., 1991, 1996). In this study, we investigated how acoustic information guides locomotion of animals that use hearing as a primary sensory modality to orient and navigate in the dark, where visual information is unavailable. We studied flight and echolocation behaviors of big brown bats as they flew under infrared illumination through a corridor with walls constructed from a series of individual vertical wooden poles. The spacing between poles on opposite walls of the corridor was experimentally manipulated to create dense/sparse and balanced/imbalanced spatial structure. The bats’ flight trajectories and echolocation signals were recorded with high-speed infrared motion-capture cameras and ultrasound microphones, respectively. As bats flew through the corridor, successive biosonar emissions returned cascades of echoes from the walls of the corridor. The bats flew through the center of the corridor when the pole spacing on opposite walls was balanced and closer to the side with wider pole spacing when opposite walls had an imbalanced density. Moreover, bats produced shorter duration echolocation calls when they flew through corridors with smaller spacing between poles, suggesting that clutter density influences features of the bat’s sonar signals. Flight speed and echolocation call rate did not, however, vary with dense and sparse spacing between the poles forming the corridor walls. Overall, these data demonstrate that bats adapt their flight and echolocation behavior dynamically when flying through acoustically complex environments. PMID:27199690
Electric field effects on a near-critical fluid in microgravity
NASA Technical Reports Server (NTRS)
Zimmerli, G.; Wilkinson, R. A.; Ferrell, R. A.; Hao, H.; Moldover, M. R.
1994-01-01
The effects of an electric field on a sample of SF6 fluid in the vicinity of the liquid-vapor critical point is studied. The isothermal increase of the density of a near-critical sample as a function of the applied electric field was measured. In agreement with theory, this electrostriction effect diverges near the critical point as the isothermal compressibility diverges. Also as expected, turning on the electric field in the presence of density gradients can induce flow within the fluid, in a way analogous to turning on gravity. These effects were observed in a microgravity environment by using the Critical Point Facility which flew onboard the Space Shuttle Columbia in July 1994 as part of the Second International Microgravity Laboratory Mission. Both visual and interferometric images of two separate sample cells were obtained by means of video downlink. The interferometric images provided quantitative information about the density distribution throughout the sample. The electric field was generated by applying 500 Volts to a fine wire passing through the critical fluid.
Low gravity environment on-board Columbia during STS-40
NASA Technical Reports Server (NTRS)
Rogers, M. J. B.; Baugher, C. R.; Blanchard, R. C.; Delombard, R.; During, W. W.; Matthiesen, D. H.; Neupert, W.; Roussel, P.
1993-01-01
The first NASA Spacelab Life Sciences mission (SLS-I) flew 5 June to 14 June 1991 on the orbiter Columbia (STS-40). The purpose of the mission was to investigate the human body's adaptation to the low gravity conditions of space flight and the body's readjustment after the mission to the 1 g environment of earth. In addition to the life sciences experiments manifested for the Spacelab module, a variety of experiments in other scientific disciplines flew in the Spacelab and in Get Away Special (GAS) Canisters on the GAS Bridge Assembly. Several principal investigators designed and flew specialized accelerometer systems to characterize the low gravity environment. This was done to better assess the results of theft experiments. This was also the first flight of the NASA Microgravity Science and Applications Division (MSAD) sponsored Space Acceleration Measurement System (SAMS) and the first flight of the NASA Orbiter Experiments Office (OEX) sponsored Orbital Acceleration Research Experiment accelerometer (OARE). We present a brief introduction to seven STS-40 accelerometer systems and discuss and compare the resulting data.
An Overview of the Landsat Data Continuity Mission
NASA Technical Reports Server (NTRS)
Irons, James R.; Dwyer, John L.
2010-01-01
The advent of the Landsat Data Continuity Mission (LDCM), currently with a launch readiness date of December, 2012, will see evolutionary changes in the Landsat data products available from the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. The USGS initiated a revolution in 2009 when EROS began distributing Landsat data products at no cost to requestors in contrast to the past practice of charging the cost of fulfilling a request; that is, charging $600 per Landsat scene. To implement this drastic change, EROS terminated data processing options for requestors and began to produce all data products using a consistent processing recipe. EROS plans to continue this practice for the LDCM and will required new algorithms to process data from the LDCM sensors. All previous Landsat satellites flew multispectral scanners to collect image data of the global land surface. Additionally, Landsats 4, 5, and 7 flew sensors that acquired imagery for both reflective spectral bands and a single thermal band. In contrast, the LDCM will carry two pushbroom sensors; the Operational Land Imager (OLI) for reflective spectral bands and the Thermal InfraRed Sensor (TIRS) for two thermal bands. EROS is developing the ground data processing system that will both calibrate and correct the data from the thousands of detectors employed by the pushbroom sensors and that will also combine the data from the two sensors to create a single data product with registered data for all of the OLI and TIRS bands.
NASA Technical Reports Server (NTRS)
1996-01-01
The remotely piloted Altus aircraft flew several developmental test flights from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif., in 1996. The Altus--the word is Latin for 'high'--is a variant of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. It is designed for high-altitude, long-duration scientific sampling missions, and is powered by a turbocharged four-cylinder piston engine. The first Altus was developed under NASA's Environmental Research Aircraft and Sensor Technology program, while a second Altus was built for a Naval Postgraduate School/Department of Energy program. A pilot in a control station on the ground flew the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system. Equipped with a single-stage turbocharger during the 1996 test flights, the first Altus reached altitudes in the 37,000-foot range, while the similarly-equipped second Altus reached 43,500 feet during developmental flights at Dryden in the summer of 1997. The NASA Altus also set an endurance record of more than 26 hours while flying a science mission in late 1996 and still had an estimated 10 hours of fuel remaining when it landed. Now equipped with a two-stage turbocharger, the NASA Altus maintained an altitude of 55,000 feet for four hours during flight tests in 1999.
NASA Astrophysics Data System (ADS)
Barletta, B.; Nissenson, P.; Meinardi, S.; Dabdub, D.; Sherwood Rowland, F.; Vancuren, R. A.; Pederson, J.; Diskin, G. S.; Blake, D. R.
2011-03-01
This work presents results from the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) study. Whole air samples were obtained on board research flights that flew over California during June 2008 and analyzed for selected volatile organic compounds, including several halogenated species. Samples collected over the South Coast Air Basin of California (SoCAB), which includes much of Los Angeles (LA) County, were compared with samples from inflow air masses over the Pacific Ocean. The levels of many halocarbon species were enhanced significantly over the SoCAB, including compounds regulated by the Montreal Protocol and subsequent amendments. Emissions estimates of HFC-152a (1,1-difluoroethane, CH3CHF2; 0.82 ± 0.11 Gg) and HFC-134a (1,1,1,2-tetrafluoroethane, CH2FCF3; 1.16 ± 0.22 Gg) in LA County for 2008 were obtained using the observed HFC:carbon monoxide (CO) enhancement ratio. Emission rates also were calculated for the SoCAB (1.60 ± 0.22 Gg yr-1 for HFC-152a and 2.12 ± 0.28 Gg yr-1 for HFC-134a) and then extrapolated to the United States (32 ± 4 Gg yr-1 for HFC-152a and 43 ± 6 Gg yr-1 for HFC-134a) using population data. In addition, emission rates of the two HFCs in LA County and SoCAB were calculated by a second method that utilizes air quality modeling. Emissions estimates obtained using both methods differ by less than 25% for the LA County and less than 45% for the SoCAB.
Single-pass Airborne InSAR for Wide-swath, High-Resolution Cryospheric Surface Topography Mapping
NASA Astrophysics Data System (ADS)
Moller, D.; Hensley, S.; Wu, X.; Muellerschoen, R.
2014-12-01
In May 2009 a mm-wave single-pass interferometric synthetic aperture radar (InSAR) for the first time demonstrated ice surface topography swath-mapping in Greenland. This was achieved with the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN-A). Ka-band (35.6GHz) was chosen for high-precision topographic mapping from a compact sensor with minimal surface penetration. In recent years, the system was comprehensively upgraded for improved performance, stability and calibration. In April 2013, after completing the upgrades, GLISTIN-A flew a brief campaign to Alaska. The primary purpose was to demonstrate the InSAR's ability to generate high-precision, high resolution maps of ice surface topography with swaths in excess of 10km. Comparison of GLISTIN-A's elevations over glacial ice with lidar verified the precision requirements and established elevation accuracies to within 2 m without tie points. Feature tracking of crevasses on Columbia Glacier using data acquired with a 3-day separation exhibit an impressive velocity mapping capability. Furthermore, GLISTIN-A flew over the Beaufort sea to determine if we could not only map sea ice, but also measure freeboard. Initial analysis has established we can measure sea-ice freeboard using height differences from the top of the sea-ice and the sea surface in open leads. In the future, a campaign with lidar is desired for a quantitative validation. Another proof-of-concept collection mapped snow-basins for hydrology. Snow depth measurements using summer and winter collections in the Sierras were compared with lidar measurements. Unsurprisingly when present, trees complicate the interpretation, but additional filtering and processing is in work. For each application, knowledge of the interferometric penetration is important for scientific interpretation. We present analytical predictions and experimental data to upper bound the elevation bias of the InSAR measurements over snow and snow-covered ice.
2000-01-28
ER-2 #809 awaiting pilot entry for the third flight of the SAGE III Ozone Loss and Validation Experiment (SOLVE). The ER-2, a civilian variant of Lockheed's U-2, and another NASA flying laboratory, Dryden's DC-8, were based north of the Arctic Circle in Kiruna, Sweden during the winter of 2000 to study ozone depletion as part of SOLVE. A large hangar built especially for research, "Arena Arctica" housed the instrumented aircraft and the scientists. Scientists have observed unusually low levels of ozone over the Arctic during recent winters, raising concerns that ozone depletion there could become more widespread as in the Antarctic ozone hole. The NASA-sponsored international mission took place between November 1999 and March 2000 and was divided into three phases. The DC-8 was involved in all three phases returning to Dryden between each phase. The ER-2 flew sample collection flights between January and March, remaining in Sweden from Jan. 9 through March 16. "The collaborative campaign will provide an immense new body of information about the Arctic stratosphere," said program scientist Dr. Michael Kurylo, NASA Headquarters. "Our understanding of the Earth's ozone will be greatly enhanced by this research."
Koski, William R.; Higdon, Jeff W.; Trites, Andrew W.; Baumgartner, Mark F.; Ferguson, Steven H.
2017-01-01
Bowhead whales (Balaena mysticetus) have a nearly circumpolar distribution, and occasionally occupy warmer shallow coastal areas during summertime that may facilitate molting. However, relatively little is known about the occurrence of molting and associated behaviors in bowhead whales. We opportunistically observed whales in Cumberland Sound, Nunavut, Canada with skin irregularities consistent with molting during August 2014, and collected a skin sample from a biopsied whale that revealed loose epidermis and sloughing. During August 2016, we flew a small unmanned aerial system (sUAS) over whales to take video and still images to: 1) determine unique individuals; 2) estimate the proportion of the body of unique individuals that exhibited sloughing skin; 3) determine the presence or absence of superficial lines representative of rock-rubbing behavior; and 4) measure body lengths to infer age-class. The still images revealed that all individuals (n = 81 whales) were sloughing skin, and that nearly 40% of them had mottled skin over more than two-thirds of their bodies. The video images captured bowhead whales rubbing on large rocks in shallow, coastal areas—likely to facilitate molting. Molting and rock rubbing appears to be pervasive during late summer for whales in the eastern Canadian Arctic. PMID:29166385
Fortune, Sarah M E; Koski, William R; Higdon, Jeff W; Trites, Andrew W; Baumgartner, Mark F; Ferguson, Steven H
2017-01-01
Bowhead whales (Balaena mysticetus) have a nearly circumpolar distribution, and occasionally occupy warmer shallow coastal areas during summertime that may facilitate molting. However, relatively little is known about the occurrence of molting and associated behaviors in bowhead whales. We opportunistically observed whales in Cumberland Sound, Nunavut, Canada with skin irregularities consistent with molting during August 2014, and collected a skin sample from a biopsied whale that revealed loose epidermis and sloughing. During August 2016, we flew a small unmanned aerial system (sUAS) over whales to take video and still images to: 1) determine unique individuals; 2) estimate the proportion of the body of unique individuals that exhibited sloughing skin; 3) determine the presence or absence of superficial lines representative of rock-rubbing behavior; and 4) measure body lengths to infer age-class. The still images revealed that all individuals (n = 81 whales) were sloughing skin, and that nearly 40% of them had mottled skin over more than two-thirds of their bodies. The video images captured bowhead whales rubbing on large rocks in shallow, coastal areas-likely to facilitate molting. Molting and rock rubbing appears to be pervasive during late summer for whales in the eastern Canadian Arctic.
Microgravity Science Laboratory (MSL-1)
NASA Technical Reports Server (NTRS)
Robinson, M. B. (Compiler)
1998-01-01
The MSL-1 payload first flew on the Space Shuttle Columbia (STS-83) April 4-8, 1997. Due to a fuel cell problem, the mission was cut short, and the payload flew again on Columbia (STS-94) July 1-17, 1997. The MSL-1 investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Twenty-nine experiments were performed and represented disciplines such as fluid physics, combustion, materials science, biotechnology, and plant growth. Four accelerometers were used to record and characterize the microgravity environment. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.
Test pilots 1962 - Armstrong, Walker, Dana, Peterson, McKay, Thompson, Butchart
NASA Technical Reports Server (NTRS)
1962-01-01
The research pilots at what in 1962 was called the Flight Research Center standing in front of the X-1E. They are (left to right) Neil Armstrong, Joe Walker, Bill Dana, Bruce Peterson, Jack McKay, Milt Thompson, and Stan Butchart. of the group, Armstrong, Walker, Dana, McKay and Thompson all flew the X-15. Bruce Peterson flew the M2-F2 and HL-10 lifting bodies, while Stan Butchart was the B-29 drop plane pilot for many of the D-558-II and X-1 series research aircraft.
NASA Technical Reports Server (NTRS)
Woods, D.
1980-01-01
The size distributions of particles in the exhaust plumes from the Titan rockets launched in August and September 1977 were determined from in situ measurements made from a small sampling aircraft that flew through the plumes. Two different sampling instruments were employed, a quartz crystal microbalance (QCM) cascade impactor and a forward scattering spectrometer probe (FSSP). The QCM measured the nonvolatile component of the aerosols in the plume covering an aerodynamic size ranging from 0.05 to 25 micrometers diameter. The FSSP, flown outside the aircraft under the nose section, measured both the liquid droplets and the solid particles over a size range from 0.5 to 7.5 micrometers in diameter. The particles were counted and classified into 15 size intervals. The presence of a large number of liquid droplets in the exhaust clouds is discussed and data are plotted for each launch and compared.
Space experiments with particle accelerators (SEPAC): Description of instrumentation
NASA Technical Reports Server (NTRS)
Taylor, W. W. L.; Roberts, W. T.; Reasoner, D. L.; Chappell, C. R.; Baker, B. B.; Burch, J. L.; Gibson, W. C.; Black, R. K.; Tomlinson, W. M.; Bounds, J. R.
1987-01-01
SEPAC (Space Experiments with Particle Accelerators) flew on Spacelab 1 (SL 1) in November and December 1983. SEPAC is a joint U.S.-Japan investigation of the interaction of electron, plasma, and neutral beams with the ionosphere, atmosphere and magnetosphere. It is scheduled to fly again on Atlas 1 in August 1990. On SL 1, SEPAC used an electron accelerator, a plasma accelerator, and neutral gas source as active elements and an array of diagnostics to investigate the interactions. For Atlas 1, the plasma accelerator will be replaced by a plasma contactor and charge collection devices to improve vehicle charging meutralization. This paper describes the SEPAC instrumentation in detail for the SL 1 and Atlas 1 flights and includes a bibliography of SEPAC papers.
State of the Venus Atmosphere from Venus Express at the time of MESSENGER FLy- By
NASA Astrophysics Data System (ADS)
Limaye, S. S.; Markiewicz, W. J.; Titov, D.; Piccione, G.; Baines, K. H.; Robinson, M.
2007-12-01
The Venus Monitoring Camera (VMC) and the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instruments on Venus Express spacecraft have been observing Venus since orbit insertion in April 2006. The state of the atmosphere in 2006 was in the form of a hemispheric vortex centered over the south pole, and presumably, another one in the northen hemisphere. The VMC and VIRTIS data have been used to determine cloud motions as well as the structure and organization of the atmospheric circulation from the the data collected since June 2006. In June 2007, the MESSENGER spacecraft flew-past Venus and also observed Venus on approach and departure from Venus. We report on the atmosphere of Venus as it appeared during this period.
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Fatoyinbo, Temilola; Carter, Lynn; Ranson, K. Jon; Vega, Manuel; Osmanoglu, Batuhan; Lee, SeungKuk; Sun, Guoqing
2014-01-01
The Digital Beamforming Synthetic Aperture radar (DBSAR) is a state-of-the-art airborne radar developed at NASA/Goddard for the implementation, and testing of digital beamforming techniques applicable to Earth and planetary sciences. The DBSAR measurements have been employed to study: The estimation of vegetation biomass and structure - critical parameters in the study of the carbon cycle; The measurement of geological features - to explore its applicability to planetary science by measuring planetary analogue targets. The instrument flew two test campaigns over the East coast of the United States in 2011, and 2012. During the campaigns the instrument operated in full polarimetric mode collecting data from vegetation and topography features.
Early results from NASA's SnowEx campaign
NASA Astrophysics Data System (ADS)
Kim, Edward; Gatebe, Charles; Hall, Dorothy; Misakonis, Amy; Elder, Kelly; Marshall, Hans Peter; Hiemstra, Chris; Brucker, Ludovic; Crawford, Chris; Kang, Do Hyuk; De Marco, Eugenia; Beckley, Matt; Entin, Jared
2017-04-01
SnowEx is a multi-year airborne snow campaign with the primary goal of addressing the question: How much water is stored in Earth's terrestrial snow-covered regions? Year 1 (2016-17) focuses on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. The year 1 primary site is Grand Mesa and the secondary site is the Senator Beck Basin, both in western, Colorado, USA. Ten core sensors on four core aircraft will make observations using a broad suite of airborne sensors including active and passive microwave, and active and passive optical/infrared sensing techniques to determine the sensitivity and accuracy of these potential satellite remote sensing techniques, along with models, to measure snow under a range of forest conditions. SnowEx also includes an extensive range of ground truth measurements—in-situ samples, snow pits, ground based remote sensing measurements, and sophisticated new techniques. A detailed description of the data collected will be given and some early results will be presented. Seasonal snow cover is the largest single component of the cryosphere in areal extent (covering an average of 46M km2 of Earth's surface (31 % of land areas) each year). This seasonal snow has major societal impacts in the areas of water resources, natural hazards (floods and droughts), water security, and weather and climate. The only practical way to estimate the quantity of snow on a consistent global basis is through satellites. Yet, current space-based techniques underestimate storage of snow water equivalent (SWE) by as much as 50%, and model-based estimates can differ greatly vs. estimates based on remotely-sensed observations. At peak coverage, as much as half of snow-covered terrestrial areas involve forested areas, so quantifying the challenge represented by forests is important to plan any future snow mission. Single-sensor approaches may work for certain snow types and certain conditions, but not for others. Snow simply varies too much. Thus, the snow community consensus is that a multi-sensor approach is needed to adequately address global snow, combined with modeling and data assimilation. What remains at issue, then, is how best to combine and use the various sensors in an optimal way. That requires field measurements. NASA's SnowEx airborne campaign is designed to do exactly that. A list of core sensors is as follows. All are from NASA unless otherwise noted. • Radar (volume scattering): European Space Agency's SnowSAR, operated by MetaSensing • Lidar & hyperspectral imager: Airborne Snow Observatory (ASO) • Passive microwave: Airborne Earth Science Microwave Imaging Radiometer (AESMIR) • Bi-directional Reflectance Function (BRDF): the Cloud Absorption Radiometer (CAR) • Thermal Infrared imager • Thermal infrared non-imager from U. Washington • Video camera The ASO suite flew on a King Air, and the other sensors flew on a Navy P-3. In addition, two NASA radars flew on G-III aircraft to test more experimental retrieval techniques: • InSAR altimetry: Glacier and Ice Surface Topography Interferometer (GLISTIN-A) • Radar phase delay: Uninhabited Aerial Vehicle Synthetic Aperture Radar, (UAVSAR)
1963-03-25
A North American Aviation A-5A Vigilante (Navy serial number 147858/NASA tail number 858) arrived from the Naval Air Test Center, Patuxent River, MD, on December 19, 1962, at the NASA Flight Research Center (now, Dryden Flight Research Center, Edwards, CA). The Center flew the A-5A in a year-long series of flights in support of the U.S. supersonic transport program. The Center flew the aircraft to determine the let-down and approach conditions of a supersonic transport flying into a dense air traffic network. With the completion of the research flights, the Center sent the A-5A back to the Navy on December 20, 1963.
1963-10-25
A North American Aviation A-5A Vigilante (Navy serial number 147858/NASA tail number 858) arrived from the Naval Air Test Center, Patuxent River, MD, on December 19, 1962, at the NASA Flight Research Center (now, Dryden Flight Research Center, Edwards, CA). The Center flew the A-5A in a year-long series of flights in support of the U.S. supersonic transport program. The Center flew the aircraft to determine the let-down and approach conditions of a supersonic transport flying into a dense air traffic network. With the completion of the research flights, the Center sent the A-5A back to the Navy on December 20, 1963.
M2-F1 in flight over lakebed on tow line
1963-08-30
Following the first M2-F1 airtow flight on 16 August 1963, the Flight Research Center used the vehicle for both research flights and to check out new lifting-body pilots. These included Bruce Peterson, Don Mallick, Fred Haise, and Bill Dana from NASA. Air Force pilots who flew the M2-F1 included Chuck Yeager, Jerry Gentry, Joe Engle, Jim Wood, and Don Sorlie, although Wood, Haise, and Engle only flew on car tows. In the three years between the first and last flights of the M2-F1, it made about 400 car tows and 77 air tows.
1992-07-15
A steel hemisphere was at the core of the Geophysical Fluid Flow Cell (GFFC) that flew on two Spacelab missions. It was capped by a sapphire dome. Silicone oil between the two played the part of a steller atmosphere. An electrostatic field pulled the oil inward to mimic gravity's effects during the experiments. The GFFC thus produced flow patterns that simulated conditions inside the atmospheres of Jupiter and the Sun and other stars. GFFC flew on Spacelab-3 in 1985 and U.S. Microgravity Laboratory-2 in 1995. The principal investigator was John Hart of the University of Colorado at Boulder. It was managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall Space Flight Center)
1995-10-10
This composite image depicts one set of flow patterns simulated in the Geophysical Fluid Flow Cell (GFFC) that flew on two Spacelab missions. Silicone oil served as the atmosphere around a rotating steel hemisphere (dotted circle) and an electrostatic field pulled the oil inward to mimic gravity's effects during the experiments. The GFFC thus produced flow patterns that simulated conditions inside the atmospheres of Jupiter and the Sun and other stars. GFFC flew on Spacelab-3 in 1985 and U.S. Microgravity Laboratory-2 in 1995. The principal investigator was John Hart of the University of Colorado at Boulder. It was managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall Space Flight Center)
Reading One Flew Over the Cuckoo's Nest in an undergraduate, US healthcare course.
Metcalf, James
2006-01-01
One Flew Over the Cuckoo's Nest, a modern classic in American literature by Ken Kesey, was used to complement conventional assignments in Healthcare USA, an undergraduate survey of the American healthcare system at George Mason University. The book contrasts perceptions of reality between a group of psychiatric patients and the institutional staff. It also depicts a power struggle between patients and staff and illustrates how patients can be enslaved by the healthcare system itself. The purpose of the assignment was to prompt student reflection upon both the contrasting realities and the power conflicts between patients and staff. Several examples of student responses are presented.
NASA's Observes Effects of Summer Melt on Greenland Ice Sheet
2017-12-08
NASA's IceBridge, an airborne survey of polar ice, flew over the Helheim/Kangerdlugssuaq region of Greenland on Sept. 11, 2016. This photograph from the flight captures Greenland's Steenstrup Glacier, with the midmorning sun glinting off of the Denmark Strait in the background. IceBridge completed the final flight of the summer campaign to observe the impact of the summer melt season on the ice sheet on Sept. 16. The IceBridge flights, which began on Aug. 27, are mostly repeats of lines that the team flew in early May, so that scientists can observe changes in ice elevation between the spring and late summer. For this short, end-of-summer campaign, the IceBridge scientists flew aboard an HU-25A Guardian aircraft from NASA's Langley Research Center in Hampton, Virginia. Credit: NASA/John Sonntag NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Diversity, abundance, and possible sources of fecal bacteria in the Yangtze River.
Sun, Haohao; He, Xiwei; Ye, Lin; Zhang, Xu-Xiang; Wu, Bing; Ren, Hongqiang
2017-03-01
The fecal bacteria in natural waters may pose serious risks on human health. Although many source tracking methods have been developed and used to determine the possible sources of the fecal pollution, little is known about the overall diversity and abundance of fecal bacterial community in natural waters. In this study, a method based on fecal bacterial sequence library was introduced to evaluate the fecal bacterial profile in the Yangtze River (Nanjing section). Our results suggested that the Yangtze River water harbors diverse fecal bacteria. Fifty-eight fecal operational taxonomic units (97% identity level) were detected in the Yangtze River water samples and the relative abundance of fecal bacteria in these samples ranged from 0.1 to 8%. It was also found that the relative abundances of the fecal bacteria in locations near to the downstream of wastewater treatment plants were obviously higher than those in other locations. However, the high abundance of fecal bacteria could decrease to the normal level in 2~4 km in the river due to degradation or dilution, and the overall fecal bacteria level changed little when the Yangtze River flew through the Nanjing City. Moreover, the fecal bacteria in the Yangtze River water were found to be highly associated (Spearman rho = 0.804, P < 0.001) with the potential pathogenic bacteria. Collectively, the findings in this study reveal the diversity, abundance, and possible sources of fecal bacteria in the Yangtze River and advance our understandings of the fecal bacteria community in the natural waters.
B-737 flight test of curved-path and steep-angle approaches using MLS guidance
NASA Technical Reports Server (NTRS)
Branstetter, J. R.; White, W. F.
1989-01-01
A series of flight tests were conducted to collect data for jet transport aircraft flying curved-path and steep-angle approaches using Microwave Landing System (MLS) guidance. During the test, 432 approaches comprising seven different curved-paths and four glidepath angles varying from 3 to 4 degrees were flown in NASA Langley's Boeing 737 aircraft (Transport Systems Research Vehicle) using an MLS ground station at the NASA Wallops Flight Facility. Subject pilots from Piedmont Airlines flew the approaches using conventional cockpit instrumentation (flight director and Horizontal Situation Indicator (HSI). The data collected will be used by FAA procedures specialists to develop standards and criteria for designing MLS terminal approach procedures (TERPS). The use of flight simulation techniques greatly aided the preliminary stages of approach development work and saved a significant amount of costly flight time. This report is intended to complement a data report to be issued by the FAA Office of Aviation Standards which will contain all detailed data analysis and statistics.
New Mobile Lidar Systems Aboard Ultra-Light Aircrafts
NASA Astrophysics Data System (ADS)
Chazette, Patrick; Shang, Xiaoxia; Totems, Julien; Marnas, Fabien; Sanak, Joseph
2013-04-01
Two lidar systems embedded on ultra light aircraft (ULA) flew over the Rhone valley, south-east of France, to characterize the vertical extend of pollution aerosols in this area influenced by large industrial sites. The main industrial source is the Etang de Berre (43°28' N, 5°01' E), close to Marseille city. The emissions are mainly due to metallurgy and petrochemical factories. Traffic related to Marseille's area contribute to pollution with its ~1500000 inhabitants. Note that the maritime traffic close to Marseille may play an important role due to its position as the leading French harbor . For the previous scientific purpose and for the first time on ULA, we flew a mini-N2 Raman lidar system to help the assessment of the aerosol optical properties. Another Ultra-Violet Rayleigh-Mie lidar has been integrated aboard a second ULA. The lidars are compact and eye safe instruments. They operate at the wavelength of 355 nm with a sampling along the line-of-sight of 0.75 m. Different flights plans were tested to use the two lidars in synergy. We will present the different approaches and discuss both their advantages and limitations. Acknowledgements: the lidar systems have been developed by CEA. They have been deployed with the support of FERRING France. We acknowledge the ULA pilots Franck Toussaint, François Bernard and José Coutet, and the Air Creation ULA Company for logistical help during the ULA campaign.
2003-08-25
NASA's F-15B research testbed jet from NASA's Dryden Flight Research Center flew in the supersonic shockwave of a Northrop Grumman Corp. modified U.S. Navy F-5E jet in support of the Shaped Sonic Boom Demonstration (SSBD) project, which is part of the DARPA's Quiet Supersonic Platform (QSP) program. On Aug. 27, 2003, the F-5 SSBD aircraft demonstrated a method to reduce the intensity of sonic booms.
2012-12-09
In Baikonur, Kazakhstan, Expedition 34/35 backup crewmembers Karen Nyberg of NASA (left), Luca Parmitano of the European Space Agency (center) and Fyodor Yurchikhin (right) view an exhibit honoring the Space Shuttle Program Dec. 9, 2012 during a traditional tour of the city. Nyberg flew on the STS-124 mission of the shuttle Discovery in 2008 and Yurchikhin flew on the shuttle Atlantis in 2002. Prime crewmembers Flight Engineer Tom Marshburn of NASA, Soyuz Commander Roman Romanenko and Flight Engineer Chris Hadfield of the Canadian Space Agency will launch Dec. 19 from the Baikonur Cosmodrome in their Soyuz TMA-07M spacecraft for a five-month mission on the International Space Station. Photo Credit: NASA/Victor Zelentsov
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- finds shelter in the Vehicle Assembly Building, or VAB, after rolling from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Ken Thornsley
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- winds its way from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- awaits entry into the Vehicle Assembly Building, or VAB, after rolling from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin
NASA Astrophysics Data System (ADS)
Blake, N. J.; Blake, D. R.; Meinardi, S.; Simpson, I. J.; Hughes, S.; Barletta, B.; Fleming, L.; Vizenor, N.; Schroeder, J.; Emmons, L. K.; Knote, C. J.
2017-12-01
The UC-Irvine Whole Air Sampler (WAS) collected a total of 2650 samples aboard the NASA DC-8 aircraft in support of the May-June 2016 field deployment phase of the KORUS-AQ mission: An International Cooperative Air Quality Field Study in Korea. Here we employ our trace gas measurements, along with CAM-chem tracers and back-trajectories to identify source regions during KORUS-AQ, with a focus on air masses which indicate Chinese and/or Korean origin. During KORUS-AQ we flew mostly over and around the Korean Peninsula with the intent of characterising Korean sources, but Chinese influence was observed offshore near the surface of the West Sea during several KORUS-AQ flights - in accord with forecast predictions from CAM-chem model runs. Unlike previous missions in the Asian region such as TRACE-P (2001), we found that halon-1211 (H-1211) is no longer a useful indicator of air masses from China because of production decline. By contrast, mixing ratios of the long-lived halocarbons carbon tetrachloride (CCl4) and chlorofluorocarbon-113 (CFC-113) were more strongly enhanced in air masses intercepted from China compared to Korea. We will use these tracers, the shorter-lived halocarbons, dichloromethane (CH2Cl2) and methyl chloride (CH3Cl), as well as the sulfur gas carbonyl sulfide (COS) and others, to characterize different regional air mass origins and their sources.
Li, Shuhong; Meng, Weiyue; Liu, Dongping; Yang, Qiqi; Chen, Lixia; Dai, Qiang; Ma, Tian; Gao, Ruyi; Ru, Wendong; Li, Yunfeng; Yu, Pengbo; Lu, Jun; Zhang, Guogang; Tian, Huaiyu; Chai, Hongliang; Li, Yanbing
2018-05-04
In late 2014, a highly pathogenic avian influenza (hereafter HPAI) H5N1 outbreak infected whooper swans Cygnus cygnus wintering at the Sanmenxia Reservoir area, China, and raised concerns about migratory linkages between wintering and breeding grounds of whooper swans. In this study, 61 swans were satellite tracked from 2013 to 2016 to determine the spatial association of their migration routes and H5N1 outbreaks, and 3596 fecal samples were collected along the migration routes for virology testing. Swans departed the wintering grounds and migrated along the Yellow River, and flew over the Yin Mountains in China. The Brownian bridge movement model showed there was a high degree of spatiotemporal overlap between the core use area along the spring migration pathway and historical H5N1 events in China and Mongolia from 2005 to 2015. The H5N1 strain was isolated and phylogenetic analyses confirmed that the HA gene sequence generated is genetically similar to that of the epidemic strain at a previous wintering site (the Sanmenxia Reservoir area) along its flyway. Our results identified a previously unknown migratory link of whooper swans in central China with Mongolia and confirmed that the swans could carry the HPAI H5N1 virus during migration, resulting in long-distance transmission.
Behavior of radio-marked breeding American woodcocks
McAuley, D.G.; Longcore, J.R.; Sepik, G.F.; Longcore, Jerry R.; Sepik, Greg F.
1993-01-01
During spring 1986-89, we equipped 175 male and 89 female American woodcocks (Scolopax minor) with radio transmitters. Radio-marking had little effect on behavior; within 1 day of marking, 37 of 64 (58%) displaying males were dominant and within 7 days, 138 of 157 (88%) were dominant. All females marked before nesting proceeded to nest, and marked females with broods remained with broods after release. Dominance of males declined from 73% in April to 69% in May and to 26% in June as breeding activity waned. In all years, after-second-year (ASY) males were dominant more often than second-year (SY) males (67.5% vs. 58.9%). ;Most males displayed at more than one (range = 2-12) site. Distances that males moved between the primary singing ground and subsequent singing grounds averaged 775 m in all years and ranged from 618 m (1986) to 966 m (1988). Females visited males at singing grounds throughout the breeding cycle; some females visited more than one site. During prenesting, females remained in daytime covers during the crepuscular period (55%), flew to different feeding covers (22%), visited singing grounds (14%), or flew from daytime covers to unknown locations (9%). During nesting, females left nests during the crepuscular period (72%) and moved to singing grounds (5%), to feeding areas (59%), and to undetermined locations (7%). Females with broods remained with their broods during the crepuscular period (62%), flew to feeding areas (30%), visited singing grounds (1%), or flew to undetermined locations (6%). The woodcock mating system is similar to a resource-based polygyny. Males compete for singing grounds near high-quality nesting areas. The fitness of males is expressed by dominance at more than one singing ground. Woodcocks are not monogamous; females may visit more than three different males during a single courtship period but do not visit males regularly. Most females leave nests during the crepuscular period to feed in a different cover.
YF-12A #935 with test pilot Donald L. Mallick
NASA Technical Reports Server (NTRS)
1972-01-01
NASA test pilot Don Mallick, in full pressure suit, stands in front of the YF-12A (60-6935). Don is ready for a flight across the Western United States. Donald L. Mallick joined the National Advisory Committee for Aeronautics' Langley Aeronautical Laboratory at Hampton, Virginia, as a research pilot, in June 1957. He transferred to the National Aeronautics and Space Administration's Flight Research Center, Edwards, California, in February 1963. Mallick attended Pennsylvania State University, University Park, Pennsylvania, for the period 1948-1949, studying Mechanical Engineering before entering the U.S. Navy for pilot training. Don served during the Korean War period, 1950-1954, flying F2H-2 Banshee jets from the carriers, USS F.D. Roosevelt and the USS Wasp. Later in 1954 he returned to school at the University of Florida, Gainesville, Florida, graduating with Honors in June 1957 and earning his degree in aeronautical engineering. Don joined the Naval Reserves and served in almost all categories of Reserve operations before retiring in 1970 as a Lieutenant Commander. As a research pilot at NACA-NASA Langley Don flew quantitative stability-&-control and handling-qualities tests on modified helicopters. On the Vertol VZ-2 Vertical Short Take-off and Landing research aircraft, he performed qualitative evaluation flights. Other aircraft flown for flight tests were: F2H-1 Banshee, F-86D, F9F-2 and F8U-3, F11F-1 Tigercat, and F-100C. Don also flew support and photo flights. In his capacity as research pilot at the NASA Flight Research Center Don was assigned to NASA's Lockheed Jetstar General Purpose Airborne Simulator (GPAS). He flew all of the tests, with the majority being as project pilot. Mallick made a flight in the lightweight M2-F1 lifting body on January 30, 1964. In 1964, Don was assigned to and completed the USAF Test pilot school, Class 64A. Later in 1964, he flew as the co-project pilot on the Lunar Landing Research Vehicle (LLRV) making over seventy flights including the first using the three-axis side controller. In 1967, he was assigned to fly as one of two NASA pilots on the joint NASA-USAF XB-70 flight test program. Don flew as one of two NASA test pilots on the NASA YF-12A and YF-12C test programs accumulating 215 hours in 105 flights of test time in the triple-sonic Blackbirds. He was project pilot on both programs. Mallick was appointed Chief Pilot of the Flight Research Center in 1967, a position that he held for fourteen years. He was proud of the fact that during this period he flew himself and also directed six other NASA test pilots without a fatal accident. In 1981, he became Deputy Chief of the Aircraft Operations Division. Don retired April 3, 1987, after logging over 11,000 flight hours in more than 125 different types of aircraft and helicopters. Mallick has written several reports. In 1975, he was selected and honored as a Fellow in the Society of Experimental Test Pilots, of which he is still a member.
NASA Technical Reports Server (NTRS)
Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; Abad, Gonzalo Gonzalez; Liu, Xiaojun; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William;
2016-01-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m x 250 m spatial resolution with a fitting precision of 2.2 x 10(exp 15) molecules/sq cm. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.
1973-01-01
This chart lists the various experiments that flew on Skylab, along with their assigned numerical designations. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.
Highlights of the Zeno Results from the USMP-2 Mission
NASA Technical Reports Server (NTRS)
Gammon, Robert W.; Shaumeyer, J. N.; Briggs, Matthew E.; Boukari, Hacene; Gent, David A.; Wilkinson, R. Allen
1995-01-01
The Zeno instrument, a High-precision, light-scattering spectrometer, was built to measure the decay rates of density fluctuations in xenon near its liquid-vapor critical point in the low-gravity environment of the U.S. Space Shuttle. Eliminating the severe density gradients created in a critical fluid by Earth's gravity, we were able to make measurements to within 100 microKelvin of the critical point. The instrument flew for fourteen days in March, 1994 on the Space Shuttle Columbia, STS-62 flight, as part of the very successful USMP-2 payload. We describe the instrument and document its performance on orbit, showing that it comfortably reached the desired 3 microKelvin temperature control of the sample. Locating the critical temperature of the sample on orbit was a scientific challenge; we discuss the advantages and short-comings of the two techniques we used. Finally we discuss problems encountered with making measurements of the turbidity of the sample, and close with the results of the measurement of the decay rates of the critical-point fluctuations.
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery ventures out in public seemingly "undressed" -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors. The shuttle is rolling from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- has arrived at the door of the Vehicle Assembly Building, or VAB, from Orbiter Processing Facility-2, or OPF-2, in the background. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- has arrived at the door of the Vehicle Assembly Building, or VAB, from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls past Orbiter Processing Facility-3, or OPF-3, at right, on its way from OPF-2 to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls past the Thermal Protection System Facility, at right, on its way from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery, as it is seldom seen in public -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls out of Orbiter Processing Facility-2, or OPF-2, on its way to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls past the Thermal Protection System Facility, at right, on its way from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- is welcomed into the Vehicle Assembly Building, or VAB, after its roll from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Ken Thornsley
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls out of Orbiter Processing Facility-2, or OPF-2, on its move to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Ken Thornsley
Test pilots 1962 - Thompson, McKay, Dana, Armstrong, Peterson, Butchart, Walker
NASA Technical Reports Server (NTRS)
1962-01-01
A group photo of NASA research pilots at the front door of the Flight Research Center headquarters building. In the front row are (left to right) Milt Thompson, Jack McKay, and Bill Dana. All three flew the X-15, and Thompson and Dana were also involved in the lifting body flights. McKay was injured in a crash landing in X-15 #2. Although he recovered, the injuries eventually forced him to retire from research flying. In the back row (left to right) are Neil Armstrong, Bruce Peterson, Stanley Butchart, and Joe Walker. Armstrong and Walker also both flew the X-15. Soon after this photo was taken, Armstrong was selected as an astronaut, and seven years later became the first man to walk on the Moon. Walker made the highest flight in the X-15, reaching 354,200 feet. He then went on to fly the Lunar Landing Research Vehicle, and was killed on June 8, 1966 when his F-104N collided with the XB-70. Peterson made the first flight in the HL-10 lifting body, and was later badly injured in the crash of the M2-F2 lifting body. Butchart flew a wide range of research missions in the 1950s, and was the B-29 drop plane pilot for a number of rocket flight.
Qi, H; Jiang, C; Zhang, Y; Yang, X; Cheng, D
2014-12-01
The summer and autumn migrations of the brown planthopper (Nilaparvata lugens) were observed in Southern China with a millimetric scanning entomological radar and a searchlight trap supplemented with capture in field cages, field surveys, and dissections of females. Nilaparvata lugens took off at dusk and dawn in summer, but in autumn there was sometimes only a dusk take-off. The variation of the area density of the radar targets indicated that flight durations were about 9-10 h. In summer, planthopper-size targets generally flew below 1800 m above ground level (AGL), although some insects reached 2000 m AGL; in autumn, they flew lower, generally below 1100 m although some insects reached 1700 m AGL. Multiple layer concentrations were seen every night in both summer and autumn. The depths of these layers in autumn were less than in summer. Nilaparvata lugens flew in strong winds; wind shear may be the main factor causing them to accumulate and form dense layers at certain heights. Nilaparvata lugens emigrating in summer from the vicinity of the radar site in the Northeastern Guangxi Zhuang Autonomous Region, and carried by the prevailing southwesterly wind, would have travelled northeastwards and reached Northern Hunan Province. In autumn, with the prevailing northeasterly wind, emigrants would have reached overwintering areas (south of 21°N).
2002-12-19
The first X-45A Unmanned Combat Air Vehicle (UCAV) technology demonstrator completed its sixth flight on Dec. 19, 2002, raising its landing gear in flight for the first time. The X-45A flew for 40 minutes and reached an airspeed of 195 knots and an altitude of 7,500 feet. Dryden is supporting the DARPA/Boeing team in the design, development, integration, and demonstration of the critical technologies, processes, and system attributes leading to an operational UCAV system. Dryden support of the X-45A demonstrator system includes analysis, component development, simulations, ground and flight tests.
Kupchak, Brian R; Kraemer, William J; Hooper, David R; Saenz, Cathy; Dulkis, Lexie L; Secola, Paul J; Brown, Lee E; Galpin, Andrew J; Coburn, Jared W; DuPont, William H; Caldwell, Lydia K; Volek, Jeff S; Maresh, Carl M
2017-01-01
Athletes and military service members are known to undergo strenuous exercise and sometimes have to take long haul flights soon afterwards; however, its combined effect on many physiological functions is relatively unknown. Therefore, we examined the combined effects of a full-body muscle-damaging workout and transcontinental flight on coagulation and fibrinolysis in healthy, resistance trained men. We also determined the efficacy of a full-body compression garment in limiting their coagulation responses. Nineteen healthy, resistance trained men flew from Connecticut (CT) to California (CA), performed a full-body muscle-damaging workout and then flew back to CT. Ten participants wore full-body compression garments (FCG) for the duration of both flights and during all other portions of the study except during workouts and blood draws, when they wore loose clothing. Nine controls wore loose clothing (CON) throughout the study. Blood samples were collected at 16 h and 3 h before the initial flight from CT, immediately after landing in CA, immediately before and immediately after the full-body workout in CA, immediately after landing in CT, and at 29 h after landing in CT. Plasma markers of coagulation included activated partial thromboplastin time (aPTT), prothrombin fragment 1+2 (PTF 1+2) and thrombin ant-thrombin (TAT). Markers of the fibrinolytic system included the tissue plasmigen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and D-Dimer. Both FCG and CON groups exhibited a faster aPTT after the full-body workout compared to all other time points. Thrombin generation markers, TAT and PTF 1+2, increased significantly after the full-body workout and immediately after landing in CT. Additionally, tPA increased after the full-body workout, while PAI-1 increased before the flight to CA, after the full-body workout, and just after landing in CT. The D-Dimer significantly increased after the full-body workout and at 29 h post-flight in both groups. Between groups, aPTT was significantly faster and TAT elevated with the CON group at 29 h post-flight. Also, PAI-1 demonstrated higher concentrations immediately after landing in CT for the CON group. A full-body muscle-damaging workout in conjunction with a trans-continental flight activated the coagulation and fibrinolytic systems. Additionally, wearing a full-body compression garment may limit coagulation following a workout through the recovery period.
NASA Technical Reports Server (NTRS)
Hyer, Robert W.; Trapaga, G.; Flemings, M. C.
1999-01-01
The viscosity of a liquid metal was successfully measured for the first time by a containerless method, the oscillating drop technique. This method also provides a means to obtain a precise, non-contact measurement of the surface tension of the droplet. This technique involves exciting the surface of the molten sample and then measuring the resulting oscillations; the natural frequency of the oscillating sample is determined by its surface tension, and the damping of the oscillations by the viscosity. These measurements were performed in TEMPUS, a microgravity electromagnetic levitator (EML), on the Space Shuttle as a part of the First Microgravity Science Laboratory (MSL-1), which flew in April and July 1997 (STS-83 and STS-94). Some results of the surface tension and viscosity measurements are presented for Pd82Si18. Some observations of the fluid dynamic characteristics (dominant flow patterns, turbulent transition, cavitation, etc.) of levitated droplets are presented and discussed together with magnetohydrodynamic calculations, which were performed to justify these findings.
The local environment of ice particles in arctic mixed-phase clouds
NASA Astrophysics Data System (ADS)
Schlenczek, Oliver; Fugal, Jacob P.; Schledewitz, Waldemar; Borrmann, Stephan
2015-04-01
During the RACEPAC field campaign in April and May 2014, research flights were made with the Polar 5 and Polar 6 aircraft from the Alfred Wegener Institute in Arctic clouds near Inuvik, Northwest Territories, Canada. One flight with the Polar 6 aircraft, done on May 16, 2014, flew under precipitating, stratiform, mid-level clouds with several penetrations through cloud base. Measurements with HALOHolo, an airborne digital in-line holographic instrument for cloud particles, show ice particles in a field of other cloud particles in a local three-dimensional sample volume (~14x19x130 mm3 or ~35 cm^3). Each holographic sample volume is a snapshot of a 3-dimensional piece of cloud at the cm-scale with typically thousands of cloud droplets per sample volume, so each sample volume yields a statistically significant droplet size distribution. Holograms are recorded at a rate of six times per second, which provides one volume sample approx. every 12 meters along the flight path. The size resolution limit for cloud droplets is better than 1 µm due to advanced sizing algorithms. Shown are preliminary results of, (1) the ice/liquid water partitioning at the cloud base and the distribution of water droplets around each ice particle, and (2) spatial and temporal variability of the cloud droplet size distributions at cloud base.
1999-10-08
A dark, smooth, relatively uncratered area on Mercury was photographed two hours after NASA Mariner 10 flew by the planet. The prominent, sharp crater with a central peak is 30 kilometers 19 miles across.
Pilot James Barrilleaux with ER-2 aircraft on ramp
1998-03-18
James Barrilleaux is the assistant chief pilot for ER-2s in the Flight Crew Branch of NASA's Dryden Flight Research Center, Edwards, California. The ER-2s--civilian variants of the military U-2S reconnaissance aircraft--are part of NASA's Airborne Science program. The ER-2s can carry airborne scientific payloads of up to 2,600 pounds to altitudes of about 70,000 feet to investigate such matters as earth resources, celestial phenomena, atmospheric chemistry and dynamics, and oceanic processes. Barrilleaux has held his current position since February 1998. Barrilleaux joined NASA in 1986 as a U-2/ER-2 pilot with NASA's Airborne Science program at Ames Research Center, Moffett Field, California. He flew both the U-2C (until 1989) and the ER-2 on a wide variety of missions both domestic and international. Barrilleaux flew high-altitude operations over Antarctica in which scientific instruments aboard the ER-2 defined the cause of ozone depletion over the continent, known as the ozone hole. He has also flown the ER-2 over the North Pole. Barrilleaux served for 20 years in the U.S. Air Force before he joined NASA. He completed pilot training at Reese Air Force Base, Lubbock, Texas, in 1966. He flew 120 combat missions as a F-4 fighter pilot over Laos and North Vietnam in 1970 and 1971. He joined the U-2 program in 1974, becoming the commander of an overseas U-2 operation in 1982. In 1983, he became commander of the squadron responsible for training all U-2 pilots and SR-71 crews located at Beale Air Force Base, Marysville, California. He retired from the Air Force as a lieutenant colonel in 1986. On active duty, he flew the U-2, F-4 Phantom, the T-38, T-37, and the T-33. His decorations included two Distinguished Flying Crosses, 12 Air Medals, two Meritorious Service Medals, and other Air Force and South Vietnamese awards. Barrilleaux earned a bachelor of science degree in chemical engineering from Texas A&M University, College Station, in 1964 and a master of science
2013-01-30
NASA Terra spacecraft flew over Jakarta, the capital and largest city of Indonesia. The population of the Jakarta conurbation is over 28 million, making it perhaps the largest metropolitan area in the world in terms of inhabitants.
Recurrent and Transient Spinal Pain Among Commercial Helicopter Pilots.
Andersen, Knut; Baardsen, Roald; Dalen, Ingvild; Larsen, Jan Petter
2015-11-01
The aim of this study was to provide information on the occurrence of spinal pain, i.e., low back and neck pain, among commercial helicopter pilots, along with possible associations between pain and anthropometric and demographic factors and flying exposure. Data were collected through a subjective and retrospective survey among all the 313 (294 men, 19 women) full-time pilots employed by two helicopter companies. A questionnaire was used to assess the extent of spinal complaints in a transient and recurrent pain pattern along with information on physical activities, occupational flying experience, and airframes. The survey had 207 responders (194 men, 13 women). The pilots had extensive flying experience. Spinal pain was reported by 67%. Flying-related transient pain was reported among 50%, whereas recurrent spinal pain, not necessarily associated with flying, was reported by 52%. Women experienced more pain, but sample size prevented further conclusions. Male pilots reporting any spinal pain flew significantly more hours last year (median 500 h, IQR 400-650) versus men with no pain (median 445 h, IQR 300-550). Male pilots with transient or recurrent spinal pain did not differ from nonaffected male colleagues in the measured parameters. Spinal pain is a frequent problem among male and female commercial helicopter pilots. For men, no significant associations were revealed for transient or recurrent spinal pain with age, flying experience in years, total hours, annual flying time, type of aircraft, or anthropometric factors except for any spinal pain related to hours flown in the last year.
Astronaut John Glenn dons space suit during preflight operations
NASA Technical Reports Server (NTRS)
1964-01-01
Astronaut John Glenn dons space suit during preflight operations at Cape Canaveral, February 20, 1962, the day he flew his Mercury-Atlas 6 spacecraft, Friendship 7, into orbital flight around the Earth.
Similarities to Lunar Highlands
1999-10-08
After passing Mercury the first time and making a trip around the Sun, NASA Mariner 10 again flew by Mercury on Sept. 21, 1974. This encounter brought the spacecraft in front of Mercury in the southern hemisphere.
1999-10-07
After passing Mercury the first time and making a trip around the Sun, NASA Mariner 10 again flew by Mercury on Sept. 21, 1974. This encounter brought the spacecraft in front of Mercury in the southern hemisphere.
Atmospheric Science Data Center
2016-08-24
... and island stations in the waters surrounding Japan and Korea. They characterized meteorological conditions, measured the atmospheric ... flew overhead. These MISR images, centered just north of Shikoku Island in southwest Japan, were acquired on April 13, 2001 ...
Helicopter pilot estimation of self-altitude in a degraded visual environment
NASA Astrophysics Data System (ADS)
Crowley, John S.; Haworth, Loran A.; Szoboszlay, Zoltan P.; Lee, Alan G.
2000-06-01
The effect of night vision devices and degraded visual imagery on self-attitude perception is unknown. Thirteen Army aviators with normal vision flew five flights under various visual conditions in a modified AH-1 (Cobra) helicopter. Subjects estimated their altitude or flew to specified altitudes while flying a series of maneuvers. The results showed that subjects were better at detecting and controlling changes in altitude than they were at flying to or naming a specific altitude. In cruise flight and descent, the subjects tended to fly above the desired altitude, an error in the safe direction. While hovering, the direction of error was less predictable. In the low-level cruise flight scenario tested in this study, altitude perception was affected more by changes in image resolution than by changes in FOV or ocularity.
NASA Technical Reports Server (NTRS)
Murphy, M. R.; Randle, R. J.; Tanner, T. A.; Frankel, R. M.; Goguen, J. A.; Linde, C.
1984-01-01
Sixteen three man crews flew a full mission scenario in an airline flight simulator. A high level of verbal interaction during instances of critical decision making was located. Each crew flew the scenario only once, without prior knowledge of the scenario problem. Following a simulator run and in accord with formal instructions, each of the three crew members independently viewed and commented on a videotape of their performance. Two check pilot observers rated pilot performance across all crews and, following each run, also commented on the video tape of the crew's performance. A linguistic analysis of voice transcript is made to provide assessment of crew coordination and decision making qualities. Measures of crew coordination and decision making factors are correlated with flight task performance measures.
Professional aircrews' attitudes toward infectious diseases and aviation medical issues.
Schwartz, Michael D; Macias-Moriarity, Lilia Z; Schelling, Joerg
2012-12-01
Air carrier and professional corporate aircrews provide a unique and highly distinct population in which to examine potential transport and transmission of infectious diseases (ID). This study sought to assess frequency of flying while acutely ill, identify clinical triggers in self-grounding, determine employer support for self-grounding, examine rates of influenza vaccination, and identify unmet needs for current information on ID issues related to extensive travel required of professional aircrews. Anonymous questionnaires were completed by select European mainline, U.S. regional airline, and professional corporate aircrews on ID topics such as flying while ill, flying with ill crewmembers, receipt of influenza vaccination, disinfection, and other aviation medical issues. Data were analyzed and reported as composite and stratified by airline vs. corporate aviation respondents. Aircrews often flew while ill (or with ill crewmembers); 52% flew until fever reached 38 degrees C (100.4 degrees F) and an additional 37% flew up to 38.89 degrees C (102 degrees F). Rate of annual influenza vaccination was quite low for all groups, but especially so for airline crews (21-27%), even given potential occupational exposure risk. Crews also had strongly differing perceptions of employer views on self-grounding, depending upon employment setting. There were sizable disparities between aircrew flying for U.S. regional, European mainline, and large corporate aviation departments with respect to self-grounding when ill and routinely receiving a seasonal influenza vaccination. All study groups reported a pressing need for enhanced anonymous access to current ID and medical information.
2017-12-08
On March 31, the P-3 departed Thule, Greenland. IceBridge teams flew a science transit flight to Kangerlussaq, Greenland, where missions will be based for the next several weeks before returning to Thule. Along the route, instruments surveyed several targets of opportunity including two ground tracks of the Ice, Cloud and land Elevation Satellite (ICESat) and several glaciers (Rink, Kangerdlugssuaq, Jakobshavn and Russell), turning up great data and spectacular views. March 29 was another perfect day for a land ice flight. The P-3 flew between deep canyons and over glaciers along the northwest coast of Greenland. But before the start of land ice flights, IceBridge reached a key milestone over sea ice. On March 28, IceBridge flew its eighth sea ice flight marking the completion of all high- and medium-priority sea ice missions planned from Thule. Among the sea ice missions was a science transit back from Fairbanks to Thule on March 25, during which the P-3 surveyed in complete darkness. Researchers watched the scanning pattern of the green lasers on the sea ice below and the beautiful Aurora Borealis above. To learn more about Ice Bridge go to: www.nasa.gov/mission_pages/icebridge/news/spr11/index.html NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
Seasonal movements and migration of Pallas's Gulls Larus ichthyaetus from Qinghai Lake, China
Muzaffar, S.B.; Takekawa, John Y.; Prosser, D.J.; Douglas, David C.; Yan, B.; Xing, Z.; Hou, Y.; Palm, E.C.; Newman, S.H.
2008-01-01
We studied the seasonal movements and migration often Pallas's Gulls Larus ichthyaetus trom Qinghai Lake to assess migratory routes and stopover areas. Each individual was captured and equipped with an 18 g solar-powered Platform Transmitter Terminal (PIT) to track its movements from September 2007 to May 2008. Six individuals remained near Qinghai Lake until the PTTs stopped transmitting. Three individuals flew 50-330 km from Qinghai Lake to nearby salt lakes. One individual departed on 8 December and flew over 1,700 km south-west to arrive at coastal Bangladesh on 9 January 2008. Two individuals flew in October to the Brahmaputra River in Assam, India, remaining in the area for at least one month until one stopped transmitting. The second individual travelled southwest to coastal Bangladesh. Of the two individuals overwintering in Bangladesh, one remained for 67 days before migrating north. The second bird departed after 96 days, and it returned to Qinghai on 10 May 2008 after 48 days in migration. Both individuals that overwintered in coastal Bangladesh arrived much later than the outbreaks of Highly Pathogenic Avian Influenza (HP AI H5N I) in poultry in 2007. This disparity in timing would tentatively suggest that this species was not involved in long-distance movements of the virus. Instead, the converse may be true: previous work demonstrates the potential for virus spill-over trom poultry into gulls and other wild bird species upon arrival into locations with widespread HPAI H5NI outbreaks and environmental contamination.
NASA Technical Reports Server (NTRS)
Kramer, Arthur F.; Sirevaag, Erik J.; Braune, Rolf
1986-01-01
This study explores the relationship between the P300 component of the event-related brain potential (ERP) and the processing demands of a complex real-world task. Seven male volunteers enrolled in an Instrument Flight Rule (IFR) aviation course flew a series of missions in a single engine fixed-based simulator. In dual task conditions subjects were also required to discriminate between two tones differing in frequency. ERPs time-locked to the tones, subjective effort ratings and overt performance measures were collected during two 45 min flights differing in difficulty (manipulated by varying both atmospheric conditions and instrument reliability). The more difficult flight was associated with poorer performance, increased subjective effort ratings, and smaller secondary task P300s. Within each flight, P300 amplitude was negatively correlated with deviations from command headings indicating that P300 amplitude was a sensitive workload metric both between and within the flight missions.
Advanced Thin Ionization Calorimeter (ATIC) Update
NASA Technical Reports Server (NTRS)
Ahn, H. S.; Ganel, O.; Kim, K. C.; Seo, E. S.; Sina, R.; Wang, J. Z.; Wu, J.; Case, G.; Ellison, S. B.; Gould, R.;
2002-01-01
The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range of approximately 10 GeV - 100 TeV. ATIC is comprised of an eight-layer, 18 radiation length deep Bismuth Germanate (BGO) calorimeter, downstream of a 0.75 nuclear interaction length graphite target and an approximately 1 sq m finely segmented silicon charge detector. Interleaved with the graphite layers are three scintillator strip hodoscopes for pre-triggering and tracking. ATIC flew for the first time on a Long Duration Balloon (LDB) launched from McMurdo, Antarctica in January 2001. During its 16-day flight ATIC collected more than 30 million science events, along with housekeeping, calibration, and rate data. This presentation will describe the ATIC data processing, including calibration and efficiency corrections, and show results from analysis of this dataset. The next launch is planned for December 2002.
NASA Technical Reports Server (NTRS)
Grindle, Thomas J.; Burcham, Frank W., Jr.
2003-01-01
The National Aeronautics and Space Administration (NASA) DC-8 airborne sciences research airplane inadvertently flew through a diffuse volcanic ash cloud of the Mt. Hekla volcano in February 2000 during a flight from Edwards Air Force Base (Edwards, California) to Kiruna, Sweden. Although the ash plume was not visible to the flight crew, sensitive research experiments and instruments detected it. In-flight performance checks and postflight visual inspections revealed no damage to the airplane or engine first-stage fan blades; subsequent detailed examination of the engines revealed clogged turbine cooling air passages. The engines were removed and overhauled. This paper presents volcanic ash plume analysis, trajectory from satellites, analysis of ash particles collected in cabin air heat exchanger filters and removed from the engines, and data from onboard instruments and engine conditions.
2007-10-09
In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds appearing as bright blue areas as they form and disperse.
New Horizons Best Close-Up of Pluto Surface
2016-05-27
This mosaic strip, extending across the hemisphere that faced the New Horizons spacecraft as it flew past Pluto on July 14, 2015, now includes all of the highest-resolution images taken by the NASA probe.
Mars Orbiter Observes Comet Siding Spring Animation
2014-11-07
This frame from an animated artist rendering begins with NASA Mars Reconnaissance Orbiter spacecraft above Mars. The movie then transitions to a sequence of HiRISE images of the comet taken as it flew past Mars.
Smoke over Lake Toba, Indonesia
1997-10-03
As the Space Shuttle Atlantis flew over the Indonesian archipelago on Saturday, Sept. 27, 1997, middle school students across the country used NASA Kidsat camera to photograph the fires and smoke that blanket the island of Sumatra.
CDI Sensitivity and Crosstrack Error on Nonprecision Approaches
DOT National Transportation Integrated Search
1991-01-01
This study was conducted to determine the influence of course deviation : indicator (CDI) sensitivity on pilot tracking error during nonprecision approaches. : Twelve pilots flew an instrumented single-engine airplane on 144 approaches at six : diffe...
TES (Thermal Energy Storage) Video News Release
NASA Technical Reports Server (NTRS)
1994-01-01
TES is an in-space technology experiment that flew on STS-62. Its intent is to investigate the behavior of two different thermal energy storage materials as they undergo repeated melting and freezing in the microgravity environment.
Image of the Moon taken by Expedition 13
2006-09-07
ISS013-E-78721 (7 Sept. 2006) --- A partial lunar eclipse is featured in this image photographed by an Expedition 13 crewmember on the International Space Station as the station flew over the southern Indian Ocean.
Image of the Moon taken by Expedition 13
2006-09-07
ISS013-E-78708 (7 Sept. 2006) --- A partial lunar eclipse is featured in this image photographed by an Expedition 13 crewmember on the International Space Station as the station flew over the southern Indian Ocean.
Image of the Moon taken by Expedition 13
2006-09-07
ISS013-E-78724 (7 Sept. 2006) --- A partial lunar eclipse is featured in this image photographed by an Expedition 13 crewmember on the International Space Station as the station flew over the southern Indian Ocean.
2016-03-31
One of the strangest landforms spotted by NASA New Horizons spacecraft when it flew past Pluto last July was the bladed terrain just east of Tombaugh Regio, the informal name given to Pluto large heart-shaped surface feature.
Eyjafjallajökull Ash Plume Particle Properties
2010-04-21
As NASA Terra satellite flew over Iceland erupting Eyjafjallajökull volcano, its Multi-angle Imaging SpectroRadiometer instrument acquired 36 near-simultaneous images of the ash plume, covering nine view angles in each of four wavelengths.
1996-01-29
This false-color mosaic of part of the Moon was constructed from 54 images taken by the imaging system aboard NASA's Galileo as the spacecraft flew past the Moon on December 7, 1992. http://photojournal.jpl.nasa.gov/catalog/PIA00129
1996-02-05
This view of the Moon north pole is a mosaic assembled from 18 images taken by NASA's Galileo imaging system through a green filter as the spacecraft flew by on December 7, 1992. http://photojournal.jpl.nasa.gov/catalog/PIA00130
1998-10-29
Amid the thousands of spectators watching the launch of STS-95 are Insurance Commissioner Bill Nelson (second from left, pointing) and Heavyweight Boxing Champion Evander Holyfield (next to him). A former U.S. representative, Nelson flew as a crew member on STS 61-C in January 1986. The STS-95 mission, which lifted off at 2:19:34 p.m. EST on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process. Extra attention has been drawn to the mission due to the addition to the crew of John H. Glenn Jr., a senator from Ohio. STS-95 is Glenn's second flight into space after 36 years; he was one of the original Project Mercury astronauts and flew his first mission in February 1962
Global ice and land climate studies using scatterometer image data
NASA Astrophysics Data System (ADS)
Long, David G.; Drinkwater, Mark R.; Holt, Benjamin; Saatchi, Sasan; Bertoia, Cheryl
Scatterometers have provided continuous synoptic microwave radar coverage of the Earth from space for nearly a decade. NASA launched three scatterometers: the current SeaWinds scatterometer onboard QuikSCAT (QSCAT, 13.4 GHz) launched in 1999; the NASA scatterometer (NSCAT, 14.0 GHz), which flew on the Japanese Space Agency's ADEOS-1 platform during 1996-1997 and the Seasat-A scatterometer system (SASS, 14.6 GHz), which flew in 1978. The European Space Agency's (ESA) 5.3-GHz scatterometer (ESCAT) has been carried onboard both the ERS-1 and ERS-2 satellites since 1991.properties, including the phase state, of a particular surface type. Varying response from the surface also results from different polarizations, viewing angles and orientations, and radar frequencies. The wide swath of scatterometers provides near daily global coverage at intrinsic sensor resolutions that are generally between 25-50 km.
Treatment of motion sickness in parabolic flight with buccal scopolamine
NASA Technical Reports Server (NTRS)
Norfleet, William T.; Degioanni, Joseph J.; Reschke, Millard F.; Bungo, Michael W.; Kutyna, Frank A.; Homick, Jerry L.; Calkins, D. S.
1992-01-01
Treatment of acute motion sickness induced by parabolic flight with a preparation of scopolamine placed in the buccal pouch was investigated. Twenty-one subjects flew aboard a KC-135 aircraft operated by NASA which performed parabolic maneuvers resulting in periods of 0-g, 1-g, and 1.8-g. Each subject flew once with a tablet containing scopolamine and once with a placebo in a random order, crossover design. Signs and symptoms of motion sickness were systematically recorded during each parabola by an investigator who was blind to the content of the tablet. Compared with flights using placebo, flights with buccal scopolamine resulted in significantly lower scores for nausea (31-35 percent reduction) and vomiting (50 percent reduction in number of parabolas with vomiting). Side effects of the drug during flight were negligible. It is concluded that buccal scopolamine is more effective than a placebo in treating ongoing motion sickness.
Stereo-Video Data Reduction of Wake Vortices and Trailing Aircrafts
NASA Technical Reports Server (NTRS)
Alter-Gartenberg, Rachel
1998-01-01
This report presents stereo image theory and the corresponding image processing software developed to analyze stereo imaging data acquired for the wake-vortex hazard flight experiment conducted at NASA Langley Research Center. In this experiment, a leading Lockheed C-130 was equipped with wing-tip smokers to visualize its wing vortices, while a trailing Boeing 737 flew into the wake vortices of the leading airplane. A Rockwell OV-10A airplane, fitted with video cameras under its wings, flew at 400 to 1000 feet above and parallel to the wakes, and photographed the wake interception process for the purpose of determining the three-dimensional location of the trailing aircraft relative to the wake. The report establishes the image-processing tools developed to analyze the video flight-test data, identifies sources of potential inaccuracies, and assesses the quality of the resultant set of stereo data reduction.
Atmospheric properties measurements and data collection from a hot-air balloon
NASA Astrophysics Data System (ADS)
Watson, Steven M.; Olson, N.; Dalley, R. P.; Bone, W. J.; Kroutil, Robert T.; Herr, Kenneth C.; Hall, Jeff L.; Schere, G. J.; Polak, M. L.; Wilkerson, Thomas D.; Bodrero, Dennis M.; Borys, R. O.; Lowenthal, D.
1995-02-01
Tethered and free-flying manned hot air balloons have been demonstrated as platforms for various atmospheric measurements and remote sensing tasks. We have been performing experiments in these areas since the winter of 1993. These platforms are extremely inexpensive to operate, do not cause disturbances such as prop wash and high airspeeds, and have substantial payload lifting and altitude capabilities. The equipment operated and tested on the balloons included FTIR spectrometers, multi-spectral imaging spectrometer, PM10 Beta attenuation monitor, mid- and far-infrared cameras, a radiometer, video recording equipment, ozone meter, condensation nuclei counter, aerodynamic particle sizer with associated computer equipment, a tethersonde and a 2.9 kW portable generator providing power to the equipment. Carbon monoxide and ozone concentration data and particle concentrations and size distributions were collected as functions of altitude in a wintertime inversion layer at Logan, Utah and summertime conditions in Salt Lake City, Utah and surrounding areas. Various FTIR spectrometers have been flown to characterize chemical plumes emitted from a simulated industrial stack. We also flew the balloon into diesel and fog oil smokes generated by U.S. Army and U.S. Air Force turbine generators to obtain particle size distributions.
STS-43 MS Lucid works with BIMDA-02 cell syringes on OV-104's middeck
1991-08-11
STS043-03-001 (2-11 Aug 1991) --- Astronaut Shannon W. Lucid, STS-43 mission specialist, is pictured with a sample from the Bio-serve Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA). BIMDA is designed to obtain data on scientific methods and commercial potential for growing large high quality protein crystals in microgravity. The experimental focus is on both synthetic and natural biological processes that provide the foundation of the assembly of large structures from macromolecules. In addition, cell processes and membrane (cell and artificial) processes are being evaluated. BIMDA experiments are stored and operated on the middeck in a refrigerator/incubator module (R/IM). During this flight, the R/IM maintains a constant internal temperature of 20 degrees Celsius. This experiment also flew on NASA?s STS-37 mission.
NASA Technical Reports Server (NTRS)
Benowitz, E.; Niessner, A.
2003-01-01
This work involves developing representative mission-critical spacecraft software using the Real-Time Specification for Java (RTSJ). This work currently leverages actual flight software used in the design of actual flight software in the NASA's Deep Space 1 (DSI), which flew in 1998.
Earth observtion taken by the Expedition 43 crew
2015-05-24
ISS043E249688 (04/24/2015) --- This picture of Hawaii was tweeted out by NASA astronaut Scott Kelly on the International Space Station with this comment: "Just flew over you #Honolulu #Hawaii. Happy #MemorialDay! #YearInSpace ".
High temperature and performance in a flight task simulator.
DOT National Transportation Integrated Search
1972-05-01
The effects of high cockpit temperature on physiological responses and performance were determined on pilots in a general aviation simulator. The pilots (all instrument rated) 'flew' an instrument flight while exposed to each of three cockpit tempera...
Eclipse Shadow from NASA's G-III Research Aircraft
2017-08-21
From aboard NASA's Armstrong Flight Research Center G-III aircraft, this wide angle video of the moon's umbra was captured as they flew over the coast of Oregon, near Lincoln City at 35,00 feet during the eclipse.
The effects of alcohol on pilot performance during instrument flight.
DOT National Transportation Integrated Search
1972-01-01
Sixteen instrument-rated pilots, eight of whom were very experienced professional aviators, flew instrument landing system approaches in a Cessna 172 under simulated instrument flight conditions while sober and while under the influence of 40, 80, an...
Pilot James Barrilleaux with ER-2 aircraft on ramp
NASA Technical Reports Server (NTRS)
1998-01-01
James Barrilleaux is the assistant chief pilot for ER-2s in the Flight Crew Branch of NASA's Dryden Flight Research Center, Edwards, California. The ER-2s--civilian variants of the military U-2S reconnaissance aircraft--are part of NASA's Airborne Science program. The ER-2s can carry airborne scientific payloads of up to 2,600 pounds to altitudes of about 70,000 feet to investigate such matters as earth resources, celestial phenomena, atmospheric chemistry and dynamics, and oceanic processes. Barrilleaux has held his current position since February 1998. Barrilleaux joined NASA in 1986 as a U-2/ER-2 pilot with NASA's Airborne Science program at Ames Research Center, Moffett Field, California. He flew both the U-2C (until 1989) and the ER-2 on a wide variety of missions both domestic and international. Barrilleaux flew high-altitude operations over Antarctica in which scientific instruments aboard the ER-2 defined the cause of ozone depletion over the continent, known as the ozone hole. He has also flown the ER-2 over the North Pole. Barrilleaux served for 20 years in the U.S. Air Force before he joined NASA. He completed pilot training at Reese Air Force Base, Lubbock, Texas, in 1966. He flew 120 combat missions as a F-4 fighter pilot over Laos and North Vietnam in 1970 and 1971. He joined the U-2 program in 1974, becoming the commander of an overseas U-2 operation in 1982. In 1983, he became commander of the squadron responsible for training all U-2 pilots and SR-71 crews located at Beale Air Force Base, Marysville, California. He retired from the Air Force as a lieutenant colonel in 1986. On active duty, he flew the U-2, F-4 Phantom, the T-38, T-37, and the T-33. His decorations included two Distinguished Flying Crosses, 12 Air Medals, two Meritorious Service Medals, and other Air Force and South Vietnamese awards. Barrilleaux earned a bachelor of science degree in chemical engineering from Texas A&M University, College Station, in 1964 and a master of science degree in systems management from the University of Southern California in 1979. He has accumulated more than 5,800 hours of flying time over a period of 33 years and is currently the oldest active U-2/ER-2 pilot.
Characterizing tree canopy temperature heterogeneity using an unmanned aircraft-borne thermal imager
NASA Astrophysics Data System (ADS)
Messinger, M.; Powell, R.; Silman, M.; Wright, M.; Nicholson, W.
2013-12-01
Leaf temperature (Tleaf) is an important control on many physiological processes such as photosynthesis and respiration, is a key variable for characterizing canopy energy fluxes, and is a valuable metric for identifying plant water stress or disease. Traditional methods of Tleaf measurement involve either the use of thermocouples, a time and labor-intensive method that samples sparsely in space, or the use of air temperature (Tair) as a proxy measure, which can introduce inaccuracies due to near constant canopy-atmosphere energy flux. Thermal infrared (TIR) imagery provides an efficient means of collecting Tleaf for large areas. Existing satellite and aircraft-based TIR imagery is, however, limited by low spatial and/or temporal resolution, while crane-mounted camera systems have strictly limited spatial extents. Unmanned aerial systems (UAS) offer new opportunities to acquire high spatial and temporal resolution imagery on demand. Here, we demonstrate the feasibility of collecting tree canopy Tleaf data using a small multirotor UAS fitted with a high spatial resolution TIR imager. The goals of this pilot study were to a) characterize basic patterns of within crown Tleaf for 4 study species and b) identify trends in Tleaf between species with varying leaf morphologies and canopy structures. TIR imagery was acquired for individual tree crowns of 4 species common to the North Carolina Piedmont ecoregion (Quercus phellos, Pinus strobus, Liriodendron tulipifera, Magnolia grandiflora) in an urban park environment. Due to significantly above-average summer precipitation, we assumed that none of the sampled trees was limited by soil water availability. We flew the TIR imaging system over 3-4 individuals of each of the 4 target species on 3 separate days. Imagery of all individuals was collected within the same 2-hour period in the afternoon on all days. There was low wind and partly cloudy skies during imaging. Tair, relative humidity, and wind speed were recorded at each site. Emissivity was assumed to be 0.98 for all species. Acquired images had a pixel resolution of <3 cm and measurement accuracy of ×1° C. We found the UAS-borne TIR imaging system to be an effective tool for collection of high resolution canopy imagery. The system imaged all targeted crowns quickly and reliably, providing a viable alternative to current methods of canopy Tleaf measurement. Analysis of the imagery indicated significant variability in Tleaf both within and between crowns. We identified trends in Tleaf related to average leaf size, shape, and crown structural traits. These data on the heterogeneity of Tleaf can further our understanding of canopy-atmosphere energy exchange. This pilot study demonstrates the promise of UAS-borne TIR sensors for acquiring high spatial resolution imagery at the scale of individual tree crowns.
Effects of neutral gas release on current collection during the CHARGE-2 rocket experiment
NASA Technical Reports Server (NTRS)
Gilchrist, B. E.; Banks, P. M.; Neubert, T.; Williamson, P. R.; Myers, Neil B.; Raitt, W. John; Sasaki, S.
1990-01-01
Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged rocket payload in the ionosphere are reported. These observations were made during the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother/daughter payload system. The current collection enhancement was observed at the daughter payload located 100 to 400 m away from the mother which was firing an energetic electron beam. The authors interpret these results in terms of an electrical discharge forming in close proximity to the daughter during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. These results can also be compared with recent laboratory observations of hollow cathode plasma contactors operating in the ignited mode. Experimental observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated daughter payload in the nighttime ionosphere were made. These observations were derived from the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother-daughter payload system. The rocket flew from White Sands Missile Range (WSMR) in December, 1985. The rocket achieved an altitude of 261 km and carried a 1 keV electron beam emitting up to 48 mA of current (Myers, et al., 1989a). The mother payload, carried the electron beam source, while the daughter acted as a remote current collection and observation platform and reached a distance of 426 m away from the main payload. Gas emissions at the daughter were due to periodic thruster jet firings to maintain separation velocity between the two payloads.
2014-10-07
Topography of Earth's moon generated from data collected by the Lunar Orbiter Laser Altimeter, aboard NASA's Lunar Reconnaissance Orbiter, with the gravity anomalies bordering the Procellarum region superimposed in blue. The border structures are shown using gravity gradients calculated with data from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission. These gravity anomalies are interpreted as ancient lava-flooded rift zones buried beneath the volcanic plains (or maria) on the nearside of the Moon. Launched as GRAIL A and GRAIL B in September 2011, the probes, renamed Ebb and Flow, operated in a nearly circular orbit near the poles of the moon at an altitude of about 34 miles (55 kilometers) until their mission ended in December 2012. The distance between the twin probes changed slightly as they flew over areas of greater and lesser gravity caused by visible features, such as mountains and craters, and by masses hidden beneath the lunar surface. The twin spacecraft flew in a nearly circular orbit until the end of the mission on Dec. 17, 2012, when the probes intentionally were sent into the moon's surface. NASA later named the impact site in honor of late astronaut Sally K. Ride, who was America's first woman in space and a member of the GRAIL mission team. GRAIL's prime and extended science missions generated the highest-resolution gravity field map of any celestial body. The map will provide a better understanding of how Earth and other rocky planets in the solar system formed and evolved. The GRAIL mission was managed by NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California, for NASA's Science Mission Directorate in Washington. The mission was part of the Discovery Program managed at NASA's Marshall Space Flight Center in Huntsville, Alabama. GRAIL was built by Lockheed Martin Space Systems in Denver. For more information about GRAIL, please visit grail.nasa.gov. Credit: NASA/Colorado School of Mines/MIT/GSFC/Scientific Visualization Studio
NASA Astrophysics Data System (ADS)
Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; González Abad, Gonzalo; Liu, Cheng; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; Murcray, Frank; Ruppert, Lyle; Soo, Daniel; Follette-Cook, Melanie B.; Janz, Scott J.; Kowalewski, Matthew G.; Loughner, Christopher P.; Pickering, Kenneth E.; Herman, Jay R.; Beaver, Melinda R.; Long, Russell W.; Szykman, James J.; Judd, Laura M.; Kelley, Paul; Luke, Winston T.; Ren, Xinrong; Al-Saadi, Jassim A.
2016-06-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 molecules
2010-11-04
Comet Hartley 2 can be seen in glorious detail in this image from NASA EPOXI mission. It was taken as the spacecraft flew by around 6:59 a.m. PDT 9:59 a.m. EDT, from a distance of about 700 kilometers 435 miles.
Physiological responses of low-time private pilots to cross-country flying.
DOT National Transportation Integrated Search
1971-04-01
Various physiological, biochemical, and psychophysiological measurements were made on low-time private pilots who each flew three cross-country flights. The round-trip flights were 320, 520, and 960 NM in length. Heart rate was recorded continuously ...
MERCURY-ATLAS (MA)-6 - SUITING-UP - CAPE
1962-02-20
S64-14848 (20 Feb. 1962) --- Astronaut John H. Glenn Jr. dons spacesuit during preflight operations at Cape Canaveral, Feb. 20, 1962, the day he flew his Mercury-Atlas 6 spacecraft, Friendship 7, into orbital flight around Earth. Photo credit: NASA
Dissecting the Wake of a Supernova Explosion
2007-12-20
The elements and molecules that flew out of the Cassiopeia A star when it exploded about 300 years ago can be seen clearly for the first time in this plot of data, called a spectrum, taken by NASA Spitzer Space Telescope.
Pilot tracking performance during successive in-flight simulated instrument approaches.
DOT National Transportation Integrated Search
1972-02-01
Eight instrument rated pilots with flying experience ranging from 600 to 12,271 hours each flew 10 simulated ILS instrument approaches in a single engine, general aviation aircraft equipped with a primary flight display arranged in a conventional 'T'...
Helicopter noise experiments in an urban environment
DOT National Transportation Integrated Search
1974-08-01
In two series of helicopter noise experiments, soundpressurelevel recordings were made on the ground while a helicopter flew over (i) an array of microphones placed in an open field, and (ii) a similar array placed in the center of a city stree...
1996-02-05
This false-color mosaic was constructed from a series of 53 images taken through three spectral filters by NASA's Galileo imaging system as the spacecraft flew over the northern regions of the Moon on December 7, 1992. http://photojournal.jpl.nasa.gov/catalog/PIA00131
X-48C Hybrid - Blended Wing Body Demonstrator
2013-02-28
NASA X-48C Hybrid Wing Body aircraft flew over one of the runways laid out on Rogers Dry Lake at Edwards Air Force Base, CA, during a test flight from NASA's Dryden Flight Research Center on Feb. 28, 2013.
The astrobiological mission EXPOSE-R on board of the International Space Station
NASA Astrophysics Data System (ADS)
Rabbow, Elke; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Parpart, Andre; Panitz, Corinna; Horneck, Gerda; Burfeindt, Jürgen; Molter, Ferdinand; Jaramillo, Esther; Pereira, Carlos; Weiß, Peter; Willnecker, Rainer; Demets, René; Dettmann, Jan
2015-01-01
EXPOSE-R flew as the second of the European Space Agency (ESA) EXPOSE multi-user facilities on the International Space Station. During the mission on the external URM-D platform of the Zvezda service module, samples of eight international astrobiology experiments selected by ESA and one Russian guest experiment were exposed to low Earth orbit space parameters from March 10th, 2009 to January 21st, 2011. EXPOSE-R accommodated a total of 1220 samples for exposure to selected space conditions and combinations, including space vacuum, temperature cycles through 273 K, cosmic radiation, solar electromagnetic radiation at >110, >170 or >200 nm at various fluences up to GJ m-2. Samples ranged from chemical compounds via unicellular organisms and multicellular mosquito larvae and seeds to passive radiation dosimeters. Additionally, one active radiation measurement instrument was accommodated on EXPOSE-R and commanded from ground in accordance with the facility itself. Data on ultraviolet radiation, cosmic radiation and temperature were measured every 10 s and downlinked by telemetry and data carrier every few months. The EXPOSE-R trays and samples returned to Earth on March 9th, 2011 with Shuttle flight, Space Transportation System (STS)-133/ULF 5, Discovery, after successful total mission duration of 27 months in space. The samples were analysed in the individual investigators laboratories. A parallel Mission Ground Reference experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions following to the data transmitted from the flight mission.
Flight Deck Interval Management Avionics: Eye-Tracking Analysis
NASA Technical Reports Server (NTRS)
Latorella, Kara; Harden, John W.
2015-01-01
Interval Management (IM) is one NexGen method for achieving airspace efficiencies. In order to initiate IM procedures, Air Traffic Control provides an IM clearance to the IM aircraft's pilots that indicates an intended spacing from another aircraft (the target to follow - or TTF) and the point at which this should be achieved. Pilots enter the clearance in the flight deck IM (FIM) system; and once the TTF's Automatic Dependent Surveillance-Broadcast signal is available, the FIM algorithm generates target speeds to meet that IM goal. This study examined four Avionics Conditions (defined by the instrumentation and location presenting FIM information) and three Notification Methods (defined by the visual and aural alerts that notified pilots to IM-related events). Current commercial pilots flew descents into Dallas/Fort-Worth in a high-fidelity commercial flight deck simulation environment with realistic traffic and communications. All 12 crews experienced each Avionics Condition, where order was counterbalanced over crews. Each crew used only one of the three Notification Methods. This paper presents results from eye tracking data collected from both pilots, including: normalized number of samples falling within FIM displays, normalized heads-up time, noticing time, dwell time on first FIM display look after a new speed, a workload-related metric, and a measure comparing the scan paths of pilot flying and pilot monitoring; and discusses these in the context of other objective (vertical and speed profile deviations, response time to dial in commanded speeds, out-of-speed-conformance and reminder indications) and subjective measures (workload, situation awareness, usability, and operational acceptability).
NASA Astrophysics Data System (ADS)
Nelson, P.; Paradis, D. P.
2017-12-01
The small stature and spectral diversity of arctic plant taxa presents challenges in mapping arctic vegetation. Mapping vegetation at the appropriate scale is needed to visualize effects of disturbance, directional vegetation change or mapping of specific plant groups for other applications (eg. habitat mapping). Fine spatial grain of remotely sensed data (ca. 10 cm pixels) is often necessary to resolve patches of many arctic plant groups, such as bryophytes and lichens. These groups are also spectrally different from mineral, litter and vascular plants. We sought to explore method to generate high-resolution spatial and spectral data to explore better mapping methods for arctic vegetation. We sampled ground vegetation at seven sites north or west of tree-line in Alaska, four north of Fairbanks and three northwest of Bethel, respectively. At each site, we estimated cover of plant functional types in 1m2 quadrats spaced approximately every 10 m along a 100 m long transect. Each quadrat was also scanned using a field spectroradiometer (PSR+ Spectral Evolution, 400-2500 nm range) and photographed from multiple perspectives. We then flew our small UAV with a RGB camera over the transect and at least 50 m on either side collecting on imagery of the plot, which were used to generate a image mosaic and digital surface model of the plot. We compare plant functional group cover ocular estimated in situ to post-hoc estimation, either automated or using a human observer, using the quadrat photos. We also compare interpolated lichen cover from UAV scenes to estimated lichen cover using a statistical models using Landsat data, with focus on lichens. Light and yellow lichens are discernable in the UAV imagery but certain lichens, especially dark colored lichens or those with spectral signatures similar to graminoid litter, present challenges. Future efforts will focus on integrating UAV-upscaled ground cover estimates to hyperspectral sensors (eg. AVIRIS ng) for better combined spectral and spatial resolution.
Wreath Laying Ceremony for Eugene Cernan
2017-01-18
A display for astronaut Gene Cernan is shown following a remembrance ceremony Jan. 18, 2017, at NASA's Kennedy Space Center in Florida. Cernan, who flew on Gemini and Apollo missions, commanded the Apollo 17 mission and was the last person to walk on the moon.
The Use of Analog Track Angle Error Display for Improving Simulated GPS Approach Performance
DOT National Transportation Integrated Search
1995-08-01
The effect of adding track angle error (TAE) information to general aviation aircraft cockpit displays used for GPS : nonprecision instrument approaches was studied experimentally. Six pilots flew 120 approaches in a Frasca 242 light : twin aircraft ...
Analysis of emission data from global commercial aviation : 2004 and 2006
DOT National Transportation Integrated Search
2010-07-14
The global commercial aircraft fleet in 2006 flew 31.26 million flights, burned 188.20 million metric tons of fuel, and covered 38.68 billion kilometers. This activity emitted substantial amounts of fossil-fuel combustion products within the upper tr...
X-15 drop launch, view from B-52 mothership
NASA Technical Reports Server (NTRS)
1960-01-01
This roughly 20-second video clip shows the first planned glide flight of X-15 #1 on June 8, 1959. Then-North American pilot Scott Crossfield flew the mission, dropped from the B-52A mothership that bore the tail number 0003.
2007-05-24
Two NASA Dryden F/A-18s flown by research pilots Frank Batteas and Nils Larson were captured by photographer Lori Losey from a third F/A-18 flown by Dick Ewers as they flew in tight formation over the desert at Edwards Air Force Base.
2016-03-10
NASA photographer Jim Ross captured this shot while pilot Troy Asher flew inverted in an F-15D. The F-15B is seen here flying over the mirror farm, AKA the Abengoa Mojave Solar Project, east of Four Corners off of Highway 58 in Southern California.
Use of traffic displays for general aviation approach spacing : a human factors study
DOT National Transportation Integrated Search
2007-12-01
A flight experiment was conducted to assess human factors issues associated with pilot use of traffic displays for approach : spacing. Sixteen multi-engine rated pilots participated. Eight flew approaches in a twin-engine Piper Aztec originating in :...
X-48C Flies Over Intersecting Runways
2013-02-28
The X-48C Hybrid Wing Body research aircraft flew over the intersection of several runways adjacent to the compass rose on Rogers Dry Lake at Edwards Air Force Base during one of the sub-scale aircraft's final test flights on Feb. 28, 2013.
NASA Astrophysics Data System (ADS)
Di Mauro, Biagio; Garzonio, Roberto; Rossini, Micol; Baccolo, Giovanni; Julitta, Tommaso; Cavallini, Giuseppe; Mattavelli, Matteo; Colombo, Roberto
2017-04-01
The impact of atmospheric impurities on the optical properties of snow and ice has been largely acknowledged in the scientific literature. Beyond this, the evaluation of the effect of specific organic and inorganic particles on melting dynamics remains a major challenge. In this contribution, we examine the annual melting dynamics of a large valley glacier of the Swiss Alps using UAV photogrammetry. We then compare the melting patterns to the presence of surface impurities on the glacier surface. Two surveys (in July and September 2016) with a lightweight Unmanned Aerial Vehicle (UAV) were organized on the ablation zone of the Morteratsch glacier (Swiss Alps). The UAV (DJI, Phantom 4) was equipped with a high resolution digital camera, and flew at a constant altitude of 150 from the glacier surface. 30 ground control points were placed on the glacier, and their coordinates were determined with a differential GPS (dGPS) for georeferencing UAV images. Contemporary to the UAV surveys, field spectroscopy data were collected on the glacier surface with an Analytical Spectral Device (ASD Field spec.) spectrometer covering the visible and near infrared spectral ranges, and ice samples were collected to determine the abundance of microorganism and algae. From the UAV RGB data, two point clouds were created using Structure from Motion (SfM) algorithms. The point clouds (each consisting of about 15M points) were then converted in Digital Surface Models (DSM) and orthomosaics by interpolation. The difference between the two DSM was calculated and converted in Snow Water Equivalent (SWE), in order to assess the ice lost by the glacier during the ablation season. The point clouds were compared and the displacement vectors were estimated using different algorithms. The elevation changes estimated from UAV data were compared with the abundance of microorganisms and algae. The reflectance spectra of ice with microorganisms and algae show a chlorophyll absorption feature at 680 nm. The depth of this absorption was extracted from reflectance spectra using a continuum-removal procedure and correlated to the abundance of microorganisms and algae in the snow sample. This result opens interesting perspectives for mapping the spatial distribution of organic material on the glacier surface using remote sensing data, enabling a better understanding of the effect of specific organic particles on melting dynamics.
High Prevalence and Clinical/Sociodemographic Correlates of Miscarriages Among Flight Attendants.
Heidecker, Bettina; Spencer, Rachel Maureen; Hayes, Victoria; Hall, Sarah; Parikh, Nisha; Stock, Eveline Oestreicher; Redberg, Rita
2017-12-01
There are many occupational health hazards associated with long hours of air travel, including cosmic radiation exposure, circadian rhythm disruptions, prior and secondhand smoke exposure, for flight attendants who flew before smoking bans were initiated in the 1990s. Previous studies in flight attendants have found increased incidence of breast cancer and melanoma. However, there is little information on the relationship of airline travel and reproductive health in flight attendants. Secondhand smoke exposure has numerous negative health effects, such as increased cardiac events and respiratory infections, but its effect on reproductive health is not known. This study seeks to examine the role of secondhand smoke exposure on the miscarriage rate in flight attendants who flew before the smoking ban. Flight attendants who flew before the smoking ban and participating in a study of health effects of secondhand smoke were asked to complete a reproductive health survey. We compared miscarriage rates of flight attendants to the general population using 2010 data from the Centers for Disease Control and Prevention. In our cohort of 145 female flight attendants exposed to secondhand smoke, there were 45 miscarriages (26%), compared with a 17.1% rate in the Centers for Disease Control and Prevention report (P = .002). There was no difference in secondhand smoke exposure between the flight attendants with miscarriage and the group without miscarriage (P = .93). This study found an increased incidence of miscarriage in flight attendants, which was unrelated to secondhand smoke exposure. Other factors, such as circadian rhythm disruption and radiation, may be related to these reproductive health findings and require further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.
A comparison of low-gravity measurements on-board Columbia during STS-40
NASA Technical Reports Server (NTRS)
Rogers, M. J. B.; Baugher, C. R.; Blanchard, R. C.; Delombard, R.; Durgin, W. W.; Matthiesen, D. H.; Neupert, W.; Roussel, P.
1993-01-01
The first NASA Spacelab Life Sciences mission (SLS-1) flew 5 June to 14 June 1991 on the orbiter Columbia (STS-40). The purpose of the mission was to investigate the human body's adaptation to the low-gravity conditions of space flight and the body's readjustment after the mission to the 1g environment of earth. In addition to the life sciences experiments manifested for the Spacelab module, a variety of experiments in other scientific disciplines flew in the Spacelab and in Get Away Special (GAS) Canisters on the GAS Bridge Assembly. Several principal investigators designed and flew specialized accelerometer systems to better assess the results of their experiments by means of a low-gravity environment characterization. This was also the first flight of the NASA Microgravity Science and Applications Division (MSAD) sponsored Space Acceleration Measurement System (SAMS) and the first flight of the NASA Orbiter Experiments Office (OEX) sponsored Orbital Acceleration Research Experiment accelerometer (OARE). We present a brief introduction to seven STS-40 accelerometer systems and discuss and compare the resulting data. During crew sleep periods, acceleration magnitudes in the 10(exp -6) to 10(exp -5)g range were recorded in the Spacelab module and on the GAS Bridge Assembly. Magnitudes increased to the 10(exp -4) level during periods of nominal crew activity. Vernier thruster firings caused acceleration shifts on the order of 10(exp -4)g and primary thruster firings caused accelerations as great as 10(exp -2) g. Frequency domain analysis revealed typical excitation of Orbiter and Spacelab structural modes at 3.5, 4.7, 5.2, 6.2, 7, and 17 Hz.
A comparison of low-gravity measurements on-board Columbia during STS-40
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Baugher, C. R.; Blanchard, R. C.; Delombard, R.; Durgin, W. W.; Matthiesen, D. H.; Neupert, W.; Roussel, P.
1993-01-01
The first NASA Spacelab Life Sciences mission (SLS-1) flew 5 Jun. to 14 Jun. 1991 on the orbiter Columbia (STS-40). The purpose of the mission was to investigate the human body's adaptation to the low-gravity conditions of space flight and the body's readjustment after the mission to the 1 g environment of earth. In addition to the life sciences experiments manifested for the Spacelab module, a variety of experiments in other scientific disciplines flew in the Spacelab and in Get Away Special (GAS) Canisters on the GAS Bridge Assembly. Several principal investigators designed and flew specialized accelerometer systems to better assess the results of their experiments by means of a low-gravity environment characterization. This was also the first flight of the NASA Microgravity Science and Applications Division (MSAD) sponsored Space Acceleration Measurement System (SAMS) and the first flight of the NASA Orbiter Experiments Office (OEX) sponsored Orbital Acceleration Research Experiment accelerometer (OARE). A brief introduction to seven STS-40 accelerometer systems are presented and the resulting data are discussed and compared. During crew sleep periods, acceleration magnitudes in the 10(exp -6) to 10(exp -5) g range were recorded in the Spacelab module and on the GAS Bridge Assembly. Magnitudes increased to the 10(exp -4) g level during periods of nominal crew activity. Vernier thruster firings caused acceleration shifts on the order of 10(exp -4) g and primary thruster firings caused accelerations as great as 10(exp -2) g. Frequency domain analysis revealed typical excitation of Orbiter and Spacelab structural modes at 3.5, 4.7, 5.2, 6.2, 7, and 17 Hz.
The Physics of Hard Spheres Experiment on MSL-1: Required Measurements and Instrument Performance
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Lant, Christian T.; Ling, Jerri S.
1998-01-01
The Physics of HArd Spheres Experiment (PHaSE), one of NASA Lewis Research Center's first major light scattering experiments for microgravity research on complex fluids, flew on board the Space Shuttle's Microgravity Science Laboratory (MSL-1) in 1997. Using colloidal systems of various concentrations of micron-sized plastic spheres in a refractive index-matching fluid as test samples, illuminated by laser light during and after crystallization, investigations were conducted to measure the nucleation and growth rate of colloidal crystals as well as the structure, rheology, and dynamics of the equilibrium crystal. Together, these measurements support an enhanced understanding of the nature of the liquid-to-solid transition. Achievement of the science objectives required an accurate experimental determination of eight fundamental properties for the hard sphere colloidal samples. The instrument design met almost all of the original measurement requirements, but with compromise on the number of samples on which data were taken. The instrument performs 2-D Bragg and low angle scattering from 0.4 deg. to 60 deg., dynamic and single-channel static scattering from 10 deg. to 170 deg., rheology using fiber optics, and white light imaging of the sample. As a result, PHaSE provided a timely microgravity demonstration of critical light scattering measurement techniques and hardware concepts, while generating data already showing promise of interesting new scientific findings in the field of condensed matter physics.
Pilot heart rate during in-flight simulated instrument approaches in a general aviation aircraft.
DOT National Transportation Integrated Search
1970-04-01
Eight instrument rated pilots with flying experience ranging from 600 to 12,271 hours each flew 10 simulated ILS instrument approaches in a single engine, general aviation aircraft equipped with a primary flight display arranged in conventional 'T' c...
1996-01-29
This montage of 11 images taken by NASA Galileo spacecraft as it flew by the asteroid Gaspra on Oct. 1991, shows Gaspra growing progressively larger in the field of view of Galileo solid-state imaging camera as the spacecraft approached the asteroid. http://photojournal.jpl.nasa.gov/catalog/PIA00079
Parachute-Deployment Flight Termination System on X-48C
2013-02-28
The X-48C Hybrid Wing Body aircraft flew over Rogers Dry Lake on Feb. 28, 2013, from NASA's Dryden Flight Research Center, Edwards, CA. The long boom protruding from between the tails was part of the aircraft's parachute-deployment flight termination system.
Measurements of cosmic-ray electrons and positrons by the Wizard/CAPRICE collaboration
NASA Astrophysics Data System (ADS)
Boezio, M.; Barbiellini, G.; Bonvicini, V.; Schiavon, P.; Vacchi, A.; Zampa, N.; Bergström, D.; Carlson, P.; Francke, T.; Grinstein, S.; Weber, N.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Stephens, S. A.; Ambriola, M.; Bellotti, R.; Cafagna, F. S.; Ciacio, F.; Circella, M.; De Marzo, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Bartalucci, S.; Ricci, M.; Grimani, C.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Bravar, U.; Stochaj, S. J.
Two recent ballon-borne experiments have been performed by the WiZard/CAPRICE collaboration in order to study the electron and positron components in the cosmic radiation. On 1994 August 8-9 the CAPRICE94 experiment flew from norther Canada and on 1998 May 28-29 the CAPRICE98 experiment flew from New Mexico, USA at altitudes corresponding to 3.9 and 5.5 g/cm 2 of average residual atmosphere respectively. The apparatus were equipped with a Ring Imaging Cherenkov (RICH) detector, a time-of-flight system, a superconducting magnet spectrometer with a tracking system and a 7-radiation-length silicon-tungsten imaging calorimeter. The RICH used in 1994 had a solid NaF radiator while in 1998 the RICH had a C 4F 10 gaseous radiator. We report on the electron and positron spectra and positron fraction at the top of the atmosphere from few hundred MeV to 40 GeV measured by these two experiments.
1969-09-10
The Hyper III was a low-cost test vehicle for an advanced lifting-body shape. Like the earlier M2-F1, it was a "homebuilt" research aircraft, i.e., built at the Flight Research Center (FRC), later redesignated the Dryden Flight Research Center. It had a steel-tube frame covered with Dacron, a fiberglass nose, sheet aluminum fins, and a wing from an HP-11 sailplane. Construction was by volunteers at the FRC. Although the Hyper III was to be flown remotely in its initial tests, it was fitted with a cockpit for a pilot. On the Hyper III's only flight, it was towed aloft attached to a Navy SH-3 helicopter by a 400-foot cable. NASA research pilot Bruce Peterson flew the SH-3. After he released the Hyper III from the cable, NASA research pilot Milt Thompson flew the vehicle by radio control until the final approach when Dick Fischer took over control using a model-airplane radio-control box. The Hyper III flared, then landed and slid to a stop on Rogers Dry Lakebed.
UV/visible albedos from airborne measurements
NASA Astrophysics Data System (ADS)
Webb, A.; Kylling, A.; Stromberg, I.
2003-04-01
During the INSPECTRO campaign effective surface albedo was measured at UV and visible wavelengths from two airborne platforms, a Cessna light aircraft and a hot air balloon. On board the Cessna was a scanning spectroradiometer measuring from 300 - 500nm at 10nm intervals. The NILU cube, with 6 faces and two UV channels at 312 and 340nm, was suspended beneath the hot air balloon. Flights took place over East Anglia during September, 2002. Balloon flights were made below cloud layers, while the Cessna flew both above and below cloud. The Cessna also flew over Barton Bendish, where surface albedos have been measured for ground truthing of satellite data, and measured the effective albedo at four visible wave- lengths in the centres of the satellite bandpass functions. Results of measurements from the different platforms are compared, and model simulations used to deduce the surface albedo from the effective albedo at altitude, giving, for example, an albedo of 0.02 ± 0.01 at 340nm.
Scouts behave as streakers in honeybee swarms
NASA Astrophysics Data System (ADS)
Greggers, Uwe; Schöning, Caspar; Degen, Jacqueline; Menzel, Randolf
2013-08-01
Harmonic radar tracking was used to record the flights of scout bees during takeoff and initial flight path of two honeybee swarms. One swarm remained intact and performed a full flight to a destination beyond the range of the harmonic radar, while a second swarm disintegrated within the range of the radar and most of the bees returned to the queen. The initial stretch of the full flight is characterized by accelerating speed, whereas the disintegrating swarm flew steadily at low speed. The two scouts in the swarm displaying full flight performed characteristic flight maneuvers. They flew at high speed when traveling in the direction of their destination and slowed down or returned over short stretches at low speed. Scouts in the disintegrating swarm did not exhibit the same kind of characteristic flight performance. Our data support the streaker bee hypothesis proposing that scout bees guide the swarm by traveling at high speed in the direction of the new nest site for short stretches of flight and slowing down when reversing flight direction.
Taking a 3-D Slice of Hurricane Maria's Cloud Structure
2017-09-20
NASA's CloudSat satellite flew over Hurricane Maria on Sept. 17, 2017, at 1:23 p.m. EDT (17:23 UTC) as the storm had just strengthened into a hurricane in the Atlantic Ocean. Hurricane Maria contained estimated maximum sustained winds of 75 miles per hour (65 knots) and had a minimum barometric pressure of 986 millibars. CloudSat flew over Maria through the center of the rapidly intensifying storm, directly through an overshooting cloud top (a dome-shaped protrusion that shoots out of the top of the anvil cloud of a thunderstorm). CloudSat reveals the vertical extent of the overshooting cloud top, showing the estimated height of the cloud to be 11 miles (18 kilometers). Areas of high reflectivity with deep red and pink colors extend well above 9 miles (15 kilometers) in height, showing large amounts of water being drawn upward high into the atmosphere. A movie is available at https://photojournal.jpl.nasa.gov/catalog/PIA21961
Spectators in the stands watch launch of STS-95 and Space Shuttle Discovery.
NASA Technical Reports Server (NTRS)
1998-01-01
Amid the thousands of spectators watching the launch of STS-95 are Insurance Commissioner Bill Nelson (second from left, pointing) and Heavyweight Boxing Champion Evander Holyfield (next to him). A former U.S. representative, Nelson flew as a crew member on STS 61-C in January 1986. The STS-95 mission, which lifted off at 2:19:34 p.m. EST on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process. Extra attention has been drawn to the mission due to the addition to the crew of John H. Glenn Jr., a senator from Ohio. STS-95 is Glenn's second flight into space after 36 years; he was one of the original Project Mercury astronauts and flew his first mission in February 1962.
NASA Technical Reports Server (NTRS)
Ranaudo, Richard J.; Martos, Borja; Norton, Bill W.; Gingras, David R.; Barnhart, Billy P.; Ratvasky, Thomas P.; Morelli, Eugene
2011-01-01
The utility of the Icing Contamination Envelope Protection (ICEPro) system for mitigating a potentially hazardous icing condition was evaluated by 29 pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). ICEPro provides real time envelope protection cues and alerting messages on pilot displays. The pilots participating in this test were divided into two groups; a control group using baseline displays without ICEPro, and an experimental group using ICEPro driven display cueing. Each group flew identical precision approach and missed approach procedures with a simulated failure case icing condition. Pilot performance, workload, and survey questionnaires were collected for both groups of pilots. Results showed that real time assessment cues were effective in reducing the number of potentially hazardous upset events and in lessening exposure to loss of control following an incipient upset condition. Pilot workload with the added ICEPro displays was not measurably affected, but pilot opinion surveys showed that real time cueing greatly improved their situation awareness of a hazardous aircraft state.
Trace Gas Retrievals from the GeoTASO Aircraft Instrument During the DISCOVER-AQ Campaigns
NASA Astrophysics Data System (ADS)
Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Kaptchen, P. F.; Loughner, C.; Follette-Cook, M. B.; Pickering, K. E.
2014-12-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a recently-developed passive remote sensing instrument capable of making 2-D measurements of trace gases from aircraft. GeoTASO was developed under NASA's Instrument Incubator program and is a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey and the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite missions. The instrument collects spectra of backscattered UV-visible radiation for the detection of tropospheric trace gases such as NO2, ozone, formaldehyde and SO2. GeoTASO flew on the NASA HU-25C Falcon aircraft during the 2013 (Texas) and 2014 (Colorado) DISCOVER-AQ field campaigns, making satellite-analog measurements of trace gases at a spatial resolution of approximately 500x500 m over urban areas, power plants and other industrial sources of pollution. We present the GeoTASO retrieval algorithms, trace gas measurement results, and validation comparisons with ground-based observations and other aircraft instruments during these campaigns.
Flight Simulator Evaluation of Display Media Devices for Synthetic Vision Concepts
NASA Technical Reports Server (NTRS)
Arthur, J. J., III; Williams, Steven P.; Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.
2004-01-01
The Synthetic Vision Systems (SVS) Project of the National Aeronautics and Space Administration's (NASA) Aviation Safety Program (AvSP) is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft. To accomplish these safety and capacity improvements, the SVS concept is designed to provide a clear view of the world around the aircraft through the display of computer-generated imagery derived from an onboard database of terrain, obstacle, and airport information. Display media devices with which to implement SVS technology that have been evaluated so far within the Project include fixed field of view head up displays and head down Primary Flight Displays with pilot-selectable field of view. A simulation experiment was conducted comparing these display devices to a fixed field of view, unlimited field of regard, full color Helmet-Mounted Display system. Subject pilots flew a visual circling maneuver in IMC at a terrain-challenged airport. The data collected for this experiment is compared to past SVS research studies.
The Substructure of the Solar Corona Observed in the Hi-C Telescope
NASA Technical Reports Server (NTRS)
Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.
2014-01-01
In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore calculate how the intensity scales from a low-resolution (AIA) pixels to high-resolution (Hi-C) pixels for both the dynamic events and "background" emission (meaning, the steady emission over the 5 minutes of data acquisition time). We find there is no evidence of substructure in the background corona; the intensity scales smoothly from low-resolution to high-resolution Hi-C pixels. In transient events, however, the intensity observed with Hi-C is, on average, 2.6 times larger than observed with AIA. This increase in intensity suggests that AIA is not resolving these events. This result suggests a finely structured dynamic corona embedded in a smoothly varying background.
NASA Technical Reports Server (NTRS)
Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.
2012-01-01
The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.
NASA Technical Reports Server (NTRS)
Holzman, Jon K.; Webb, Lannie D.; Burcham, Frank W., Jr.
1996-01-01
The exhaust flow properties (mass flow, pressure, temperature, velocity, and Mach number) of the F110-GE-129 engine in an F-16XL airplane were determined from a series of flight tests flown at NASA Dryden Flight Research Center, Edwards, California. These tests were performed in conjunction with NASA Langley Research Center, Hampton, Virginia (LARC) as part of a study to investigate the acoustic characteristics of jet engines operating at high nozzle pressure conditions. The range of interest for both objectives was from Mach 0.3 to Mach 0.9. NASA Dryden flew the airplane and acquired and analyzed the engine data to determine the exhaust characteristics. NASA Langley collected the flyover acoustic measurements and correlated these results with their current predictive codes. This paper describes the airplane, tests, and methods used to determine the exhaust flow properties and presents the exhaust flow properties. No acoustics results are presented.
Segre, Paolo S; Dakin, Roslyn; Zordan, Victor B; Dickinson, Michael H; Straw, Andrew D; Altshuler, Douglas L
2015-01-01
Despite recent advances in the study of animal flight, the biomechanical determinants of maneuverability are poorly understood. It is thought that maneuverability may be influenced by intrinsic body mass and wing morphology, and by physiological muscle capacity, but this hypothesis has not yet been evaluated because it requires tracking a large number of free flight maneuvers from known individuals. We used an automated tracking system to record flight sequences from 20 Anna's hummingbirds flying solo and in competition in a large chamber. We found that burst muscle capacity predicted most performance metrics. Hummingbirds with higher burst capacity flew with faster velocities, accelerations, and rotations, and they used more demanding complex turns. In contrast, body mass did not predict variation in maneuvering performance, and wing morphology predicted only the use of arcing turns and high centripetal accelerations. Collectively, our results indicate that burst muscle capacity is a key predictor of maneuverability. DOI: http://dx.doi.org/10.7554/eLife.11159.001 PMID:26583753
Wreath Laying Ceremony for Eugene Cernan
2017-01-18
A photo of astronaut Gene Cernan is displayed alongside a memorial wreath before a remembrance ceremony Jan. 18, 2017, at NASA's Kennedy Space Center in Florida. Cernan, who flew on Gemini and Apollo missions, commanded the Apollo 17 mission and was the last person to walk on the moon.
Wreath Laying Ceremony for Eugene Cernan
2017-01-18
The Astronaut Hall of Fame display for astronaut Gene Cernan is shown following a remembrance ceremony Jan. 18, 2017, at NASA's Kennedy Space Center in Florida. Cernan, who flew on Gemini and Apollo missions, commanded the Apollo 17 mission and was the last person to walk on the moon.
DOT National Transportation Integrated Search
1978-12-01
A Boeing 747 aircraft flew 54 passes at low altitude over ground based sensors. Vortex velocities were measured by a laser Doppler velocimeter, an array of monostatic acoustic sounders, and an array of propeller anemometers. Flow visualization of the...
Human factors in aviation crashes involving older pilots.
Li, Guohua; Baker, Susan P; Lamb, Margaret W; Grabowski, Jurek G; Rebok, George W
2002-02-01
Pilot errors are recognized as a contributing factor in as many as 80% of aviation crashes. Experimental studies using flight simulators indicate that due to decreased working memory capacity, older pilots are outperformed by their younger counterparts in communication tasks and flight summary scores. This study examines age-related differences in crash circumstances and pilot errors in a sample of pilots who flew commuter aircraft or air taxis and who were involved in airplane or helicopter crashes. A historical cohort of 3306 pilots who in 1987 flew commuter aircraft or air taxis and were 45-54 yr of age was constructed using the Federal Aviation Administration's airmen information system. Crash records of the study subjects for the years 1983-1997 were obtained from the National Transportation Safety Board (NTSB) by matching name and date of birth. NTSB's investigation reports were reviewed to identify pilot errors and other contributing factors. Comparisons of crash circumstances and human factors were made between pilots aged 40-49 yr and pilots aged 50-63 yr. A total of 165 crash records were studied, with 52% of these crashes involving pilots aged 50-63 yr. Crash circumstances, such as time and location of crash, type and phase of flight, and weather conditions, were similar between the two age groups. Pilot error was a contributing factor in 73% of the crashes involving younger pilots and in 69% of the crashes involving older pilots (p = 0.50). Age-related differences in the pattern of pilot errors were statistically insignificant. Overall, 23% of pilot errors were attributable to inattentiveness, 20% to flawed decisions, 18% to mishandled aircraft kinetics, and 18% to mishandled wind/runway conditions. Neither crash circumstances nor the prevalence and patterns of pilot errors appear to change significantly as age increases from the 40s to the 50s and early 60s.
DOT National Transportation Integrated Search
1993-11-01
Twelve general aviation pilots flew a Beechcraft Baron on 93 non-precision instrument approaches using a nondifferential : GPS receiver nodifled to satisfy selected functional requirements specified in TS0-C129. : The purposes of the effort were to d...
A Commentary on Mill’s Logic. Book I. Of Names and Propositions.
1983-10-01
truth . [’extension and intension’ in Flew (1979)]. The presumption is that manness necessarily implies rationality, but i- only contigently...guilty and inocent ; these are contraries rather than contradictories, since there are things, such as numbers, that are neither guilty nor innocent
2004-06-17
This image shows the comet Wild 2, which NASA's Stardust spacecraft flew by on Jan. 2, 2004. This image is the closest short exposure of the comet, taken at an11.4-degree phase angle, the angle between the camera, comet and the Sun. http://photojournal.jpl.nasa.gov/catalog/PIA06285
Discovery STS-133 Mission Landing
2011-03-09
Space Shuttle Discovery (STS-133) lands, Wednesday, March 9, 2011, at Kennedy Space Center in Cape Canaveral, Fla., completing its 39th and final flight. Since 1984, Discovery flew 39 missions, spent 365 days in space, orbited Earth 5,830 times and traveled 148,221,675 miles. Photo credit: (NASA/Bill Ingalls)
DOT National Transportation Integrated Search
1971-05-01
Forty instrument rated commercial and ATR pilots with 250 to 12,271 flight hours each flew ten simulated ILS approaches in a single engine, general aviation aircraft. Divided into five groups, each group used a different glide slope cue display in co...
1992-03-24
Space Shuttle Atlantis (STS-45) onboard photo of Mission Specialist Kathryn Sullivan working in the Atmospheric Laboratory for Applications and Science (Atlas-1) module. Atlas-1 flew in a series of Spacelab flights that measured long term variability in the total energy radiated by the Sun and determined the variability in the solar spectrum.
X-48C Hybrid - Blended Wing Body Demonstrator
2013-02-28
Earth and sky met as the X-48C Hybrid Wing Body aircraft flew over Edwards Air Force Base on Feb. 28, 2013, from NASA's Dryden Flight Research Center, Edwards, CA. The long boom protruding from between the tails is part of the aircraft's parachute-deployment flight termination system.
Effect of different runway size on pilot performance during simulated night landing approaches.
DOT National Transportation Integrated Search
1981-02-01
In Experiment I, three pilots flew simulated approaches and landings in a fixed-base simulator with a computer-generated-image visual display. Practice approaches were flown with an 8,000-ft-long runway that was either 75, 150, or 300 ft wide; test a...
NASA Technical Reports Server (NTRS)
1956-01-01
In March 1945 Joseph A. Walker joined the National Advisory Committee for Aeronautics' Aircraft Engine Research Laboratory, Cleveland, Ohio, (later NASA's Lewis Research Center, now the Glenn Research Center) as a physicist. He transferred to the NACA High-Speed Flight Research Station, Edwards, California in 1951, as a research pilot. For the next fifteen years Walker served as a pilot at the Edwards flight research facility (today known as NASA's Dryden Flight Research Center) on such projects as the Bell X-1#2 (2 flights, first on August 27, 1951), Bell X-1A (1 flight on July 20, 1955), X-1E (21 flights, first on December 12, 1955), Douglas D-558-I #3 Skystreak (14 flights, first on June 29, 1951), Douglas D-558-II #2 Skyrocket (3 flights, first on April 29, 1955), Douglas D-558-II #3 Skyrocket (2 flights, first on May 7, 1954). On the Douglas X-3, Joe was project pilot and made all 20 flights, the first on August 1, 1954. Joe considered this aircraft the 'worst' plane he ever flew. He flew the Northrup X-4 (2 flights, first on October 18, 1951), Bell X-5 (78 flights, first on January 9, 1952). He also flew programs involving the F-100, F-101, F-102, F-104 and the B-47. Walker made the first NASA flight on the North American X-15 on March 25, 1960. His 25th and final X-15 flight on August 22, 1963, reached 354,200 feet, an unofficial record altitude of almost 67 miles. On October 30, 1964, Walker took the first Bell Lunar Landing Research Vehicle (LLRV) on its maiden flight, reaching a peak altitude of 10 feet and a free flight time of just under one minute. Two LLRV's and three Lunar Landing Training Vehicles developed from them were used to develop piloting and operational techniques for lunar landings. In November, he left the program after 35 flights on the first LLRV. Walker flew chase flights as well as research flights. On June 8, 1966 he was flying chase in NASA's F-104N for the Air Force's experimental bomber, North American XB-70A, when he was fatally injured in a mid-air collision between the planes. Joe graduated from Washington and Jefferson College in 1942, with a Bachelors degree in Physics. He enrolled in the civilian pilot training program in 1941 and, after graduation from college, entered the Army Air Forces. During World War II he flew P-38 fighters and F-5A photo reconnaissance for the Air Force, earning the Distinguished Flying Cross and the Air Medal with Seven Oak Clusters. Walker was a charter member of the Society of Experimental Test Pilots and one of the first to be designated a Fellow. He was honored with the Robert J. Collier Trophy, the Harmon International Trophy for Aviators, the Iven C. Kincheloe Award and the Octave Chanute Award, all in 1961. He received an honorary Doctor of Aeronautical Sciences degree from his alma mater in June of 1961 and was named Pilot of the Year in 1963 by the National Pilots Association. Joseph Albert Walker was born February 20, 1921, in Washington, Pennsylvania; he died on June 8, 1966 at Edwards, California.
NASA Astrophysics Data System (ADS)
Petroy, S. B.; Leisso, N.; Goulden, T.; Gulbransen, T.
2016-12-01
The National Ecological Observatory Network (NEON) is a continental-scale ecological observation platform designed to collect and disseminate data that contributes to understanding and forecasting the impacts of climate change, land use change, and invasive species on ecology. NEON will collect in-situ and airborne data over 81 sites across the US, including Alaska, Hawaii, and Puerto Rico. The Airborne Observation Platform (AOP) group within the NEON project operates a payload suite that includes a waveform LiDAR, imaging spectrometer (NIS) and high resolution RGB camera. Data from this sensor suite will be collected annually over each site and processed into a set of standard data products, generally following the processing levels used by NASA (Level 1 through Level 3). We will present a summary of the first operational flight campaign (2016), where AOP flew 42 of the 81 planned NEON sites, our operational plans for 2017, and how we will ramp up to full operations by 2018. We will also describe the final set of AOP data products to be delivered as part of NEON construction and those field (observational) data products collected concurrently on the ground, that may be used to support validation efforts of algorithms for deriving vegetation characteristics from airborne data (e.g. Plant foliar physical/chemical properties, Digital Hemispherical Photos, Plant Diversity, etc.). Opportunities for future enhancements to data products or algorithms will be facilitated via NEON's cyberinfrastructure, which is designed to support wrapping/integration of externally-developed code. And finally, we will present NEON's plans for the third AOP Sensor Suite as an assignable asset and the intent of NSF to provide research opportunities to the community for developing higher level AOP data products that were removed from the NEON project in 2015.
The Energy Conversation: The First 3 Years
2009-07-01
Office of Naval Research CNA Robert J. Murray, CNA President and CEO Mitzi Wertheim, Director of The Energy Conversation Printed in the United States of... Mitzi Wertheim and flew out to Washington, DC to meet her for lunch. Wertheim had been Woolsey’s Deputy Under Secretary of the Navy. She is also the
NASA's Lesa Roe Talks Eclipse with Thomas Zurbuchen
2017-09-13
Lesa Roe, acting NASA deputy administrator, and Thomas Zurbuchen, NASA science mission directorate’s associate administrator, discuss their most notable experiences from the 2017 Solar Eclipse. Roe and Zurbuchen were passengers aboard NASA’s Armstrong Flight Research Center Gulfstream III aircraft, which flew 35,000 feet above the coast of Oregon during this phenomenal event.
2015-05-06
ENGINEERS FROM AMES RESEARCH CENTER AND MARSHALL SPACE FLIGHT CENTER REMOVE AVCOAT SEGMENTS FROM THE SURFACE OF THE ORION HEAT SHIELD, THE PROTECTIVE SHELL DESIGNED TO HELP THE NEXT GENERATION CREW MODULE WITHSTAND THE HEAT OF ATMOSPHERIC REENTRY. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALL FLIGHT TEST OF ORION IN DECEMBER 2014
2015-05-06
OVERSEEING ORION HEAT SHIELD WORK IN MARSHALL'S SEVEN-AXIS MILLING AND MACHINING FACILITY ARE, FROM LEFT, JOHN KOWAL, MANAGER OF ORION'S THERMAL PROTECTION SYSTEM AT JOHNSON SPACE CENTER; NICHOLAS CROWLEY, AN AMES ENGINEERING TECHNICIAN; AND ROB KORNIENKO, AMES ENGINEERING BRANCH CHIEF. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALE FLIGHT TEST OF ORION IN DECEMBER, 2014
NASA Technical Reports Server (NTRS)
2004-01-01
BioServe researcher Dr. Yi Li first flew plant experiments on board STS-63. Li discovered that exposure to microgravity increased a particular hormone concentration in plants. Since that time, Li has been able to manipulate this phenomenon and grow fruits, such as tomatoes, that overproduce the hormone, and these plants bear larger seedless fruit in the absence of pollination.
Influence of Marine Aviation on the Development of the Tentative Landing Operations Manual
2013-06-13
Germans near the town of Stadenburg, Belgium. Captain Francis P. Mulcahy and Gunnery Sergeant Thomas L. McCullough, as well as Captain Robert S...its own aircraft and flew its first mission as a Marine aviation unit. Captain Robert S. Lytle led the mission to cripple the German held railroad
NASA Technical Reports Server (NTRS)
Lang, Timothy J.; Biswas, Sayak
2017-01-01
AMPR is an airborne instrument that flew aboard the NASA ER-2 during the OLYMPEX/RADEX field campaign in late 2015. This poster's goal is to explore how well the instrument can retrieve near-surface wind speed over the ocean.
Some recollections of D. R. Griffin as a young man
NASA Astrophysics Data System (ADS)
Galambos, Robert
2004-05-01
In 1939 Don Griffin invited me to join him in his earliest bat echolocation experiments. I will tell a few stories about what we two graduate students did together, and show the sound movie in which, for the first time, we recorded their cries as they flew and avoided obstacles.
ERIC Educational Resources Information Center
Glenn, David
2007-01-01
In late April, John D. Lewis, a historian and classicist at Ashland University, flew to Virginia to deliver a lecture at George Mason University about U.S. policy toward Iran. Mr. Lewis is an admirer of the late Ayn Rand, and he shares her belief that democracies should respond to external attacks without much concern for civilian casualties. He…
Discovery STS-133 Mission Landing
2011-03-09
Space Shuttle Discovery (STS-133) is seen shortly after it landed, Wednesday, March 9, 2011, at Kennedy Space Center in Cape Canaveral, Fla., completing its 39th and final flight. Since 1984, Discovery flew 39 missions, spent 365 days in space, orbited Earth 5,830 times and traveled 148,221,675 miles. Photo credit: (NASA/Bill Ingalls)
Studies in Intelligence. Volume 53, Number 3, September 2009
2009-09-01
picture includes a vision of an Air America aircraft. My first tour out of pilot training was in III Corps where I flew O-1 Bird Dogs for the 25th...surveillance”—a nov- el but inaccurate thought. Holzman spends considerable time regurgitating the Church Committee hearings and Angleton’s role in the
The Geology of Comet 19/P Borrelly
NASA Technical Reports Server (NTRS)
Britt, D. T.; Boice, D. C; Buratti, B. J.; Hicks, M. D.; Nelson, R. M.; Oberst, J.; Sandel, B. R.; Soderblom, L. A.; Stern, S. A.; Thomas, N.
2002-01-01
The Deep Space One spacecraft flew by Comet 19P/Borrelly on September 22, 2001 and returned a rich array of imagery with resolutions of up to 48 m/pixel. These images provide a window into the surface structure, processes, and geological history of a comet. Additional information is contained in the original extended abstract.
A Simple Spreadsheet Strikes a Nerve among Adjuncts
ERIC Educational Resources Information Center
Stratford, Michael
2012-01-01
Energized by his fellow adjunct professors who had gathered for a national meeting last month in Washington, District of Columbia, Joshua A. Boldt flew home to Athens, Georgia, opened his laptop, and created a Google document. On his personal blog, the writing instructor implored colleagues to contribute to the publicly editable spreadsheet,…
The Lesson That Flew: A Political-Action Primer for Students.
ERIC Educational Resources Information Center
Scharle, Catherine M.
1993-01-01
Describes the activities in a high school English class aimed at bringing attention through the media to a local political issue. Outlines how teachers can initiate students into acts of social and political activism by writing letters. Narrates how one teacher got students directly involved with a local sewage-treatment problem. Includes an…
2004-06-22
Nicole Schultheiss, a fourth-grader at Ulrich Elementary School in California City, "flew" an F/A-18 simulator with NASA engineer Byron Simpson's coaching during Take Your Children to Work Day June 22 at NASA Dryden Flight Research Center.
2004-04-15
BioServe researcher Dr. Yi Li first flew plant experiments on board STS-63. Li discovered that exposure to microgravity increased a particular hormone concentration in plants. Since that time, Li has been able to manipulate this phenomenon and grow fruits, such as tomatoes, that overproduce the hormone, and these plants bear larger seedless fruit in the absence of pollination.
Air & Space Power Journal. Volume 24, Number 3, Fall 2010
2010-01-01
36 F4Es, directly to Israeli Air Force (IAF) stocks. Featuring USAF camouflage, these aircraft flew in combat with freshly painted IAF insignia ...certain death as members of Eighth Air Force’s bomber crews over Nazi -occupied Europe. One of these men, James “Jim” Davis, from Texas, recounts his
NASA Technical Reports Server (NTRS)
1996-01-01
On this ninth day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, Mission Specialists, Thomas D. Akers, Shannon Lucid, Jay Apt, and Carl E. Walz having completed five days of joint operations between the American astronauts and the Russian cosmonauts are seen flying solo once again after undocking from the Mir Space Station. As Atlantis/Mir flew over the Ural Mountains of central Asia, the docking hooks and latches that joined the vehicles together were commanded open and Atlantis drifted slowly away from Mir. Wilcutt then initiated a tail-forward fly-around of the Russian space station. After one and one-half revolutions around Mir, Atlantis' jets were fired in a separation maneuver to enable Atlantis to break away from Mir. On board Atlantis, the six-member crew is settling back into its normal routine with a fairly light schedule for the remainder of the day. Early in the morning as Atlantis flew over the United States, the crew took time to talk with anchors for the CBS Up to the Minute' network news broadcast.
Utility of an airframe referenced spatial auditory display for general aviation operations
NASA Astrophysics Data System (ADS)
Naqvi, M. Hassan; Wigdahl, Alan J.; Ranaudo, Richard J.
2009-05-01
The University of Tennessee Space Institute (UTSI) completed flight testing with an airframe-referenced localized audio cueing display. The purpose was to assess its affect on pilot performance, workload, and situational awareness in two scenarios simulating single-pilot general aviation operations under instrument meteorological conditions. Each scenario consisted of 12 test procedures conducted under simulated instrument meteorological conditions, half with the cue off, and half with the cue on. Simulated aircraft malfunctions were strategically inserted at critical times during each test procedure. Ten pilots participated in the study; half flew a moderate workload scenario consisting of point to point navigation and holding pattern operations and half flew a high workload scenario consisting of non precision approaches and missed approach procedures. Flight data consisted of aircraft and navigation state parameters, NASA Task Load Index (TLX) assessments, and post-flight questionnaires. With localized cues there was slightly better pilot technical performance, a reduction in workload, and a perceived improvement in situational awareness. Results indicate that an airframe-referenced auditory display has utility and pilot acceptance in general aviation operations.
Fluid Acquisition and Resupply Experiments on Space Shuttle Flights STS-53 and STS-57
NASA Technical Reports Server (NTRS)
Dominick, S. M.; Tegart, J. R.; Driscoll, S. L.; Sledd, J. D.; Hastings, L. J.
2011-01-01
The Fluid Acquisition and Resupply Experiment (FARE) program, managed by the Marshall Space Flight Center Space Propulsion Branch with Martin Marietta Civil Space and Communications as the contractor, consisted of two flights designated FARE I and FARE II. FARE I flew in December 1992 on STS-53 with a screen channel liquid acquisition device (LAD) and FARE II flew in June 1993 on STS-57 with a vane-type LAD. Thus, the FARE I and II flights represent the two basic LAD categories usually considered for in-space fluid management. Although both LAD types have been used extensively, the usefulness of the on-orbit data has been constrained by the lack of experimentation beyond predicted performance limits, including both propellant fill and expulsion. Therefore, the FARE tests were designed to obtain data that would satisfy two primary objectives: (1) Demonstrate the performance of the two types of LADs, screen channel and vane, and (2) support the anchoring of analytical models. Both flights were considered highly successful in meeting these two primary objectives.
F-16XL Ship #2 during last flight viewed from below showing shock fence on left wing
NASA Technical Reports Server (NTRS)
1996-01-01
A special 'shock fence' installed beneath the leading edge of the left wing is visible in this underside aerial view of NASA's F-16XL #2 research aircraft. The small structure assisted researchers in NASA's Supersonic Laminar Flow Control (SLFC) program in controlling the shock wave coming off the F-16XL's engine air inlet when the craft flew at speeds above Mach 1, or the speed of sound. The two-seat F-16XL, one of two 'XLs' flown by NASA's Drdyen Flight Research Center, Edwards, California, flew 45 missions comprising over 90 flight hours during the SLFC project, much of it at supersonic speeds up to Mach 2 and altitudes up to 55,000 feet. The project demonstrated that laminar -- or smooth -- airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. Data acquired during the program will be used to develop a design code calibration database which could assist designers in reducing aerodynamic drag of a proposed second-generation supersonic transport.
1992-06-01
The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs that provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology (crystal growth), and combustion science. This photograph shows astronaut Ken Bowersox conducting the Astroculture experiment in the middeck of the orbiter Columbia. This experiment was to evaluate and find effective ways to supply nutrient solutions for optimizing plant growth and avoid releasing solutions into the crew quarters in microgravity. Since fluids behave differently in microgravity, plant watering systems that operate well on Earth do not function effectively in space. Plants can reduce the costs of providing food, oxygen, and pure water as well as lower the costs of removing carbon dioxide in human space habitats. The Astroculture experiment flew aboard the STS-50 mission in June 1992 and was managed by the Marshall Space Flight Center.
NASA Technical Reports Server (NTRS)
Dick, A. O.
1980-01-01
Eye movement data and other parameters including instrument readings, aircraft state and position variables, and control maneuvers were recorded while pilots flew ILS simulations in a B 737. The experiment itself employed seven airline pilots, each of whom flew approximately 40 approach/landing sequences. The simulator was equipped with a night visual scene but the scene was fogged out down to approximately 60 meters (200 ft). The instrument scanning appeared to follow aircraft parameters not physical position of instruments. One important implication of the results is: pilots look for categories or packets of information. Control inputs were tabulated according to throttle, wheel position, column, and pitch trim changes. Three seconds of eye movements before and after the control input were then obtained. Analysis of the eye movement data for the controlling periods showed clear patterns. The results suggest a set of miniscan patterns which are used according to the specific details of the situation. A model is developed which integrates scanning and controlling. Differentiations are made between monitoring and controlling scans.
1992-06-01
The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs that provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology (crystal growth), and combustion science. This is a close-up view of the Astroculture experiment rack in the middeck of the orbiter. The Astroculture experiment was to evaluate and find effective ways to supply nutrient solutions for optimizing plant growth and avoid releasing solutions into the crew quarters in microgravity. Since fluids behave differently in microgravity, plant watering systems that operate well on Earth do not function effectively in space. Plants can reduce the costs of providing food, oxygen, and pure water, as well as lower the costs of removing carbon dioxide in human space habitats. The USML-1 flew aboard the STS-50 mission on June 1992 and was managed by the Marshall Space Flight Center.
Astronaut John Young Remembrance, Wreath Laying Ceremony
2018-01-11
NASA is remembering the accomplishments and legacy of astronaut John Young, who died Jan. 5 at the age of 87. The U.S. Navy fighter pilot joined the space program in 1962 and went on to fly six missions spanning three generations of NASA spacecraft. NASA, the Astronaut Memorial Foundation and the Kennedy Space Center Visitor Complex hosted a wreath laying ceremony at the Heroes and Legends exhibit at Kennedy’s Visitor Complex Jan. 11 in honor of Young. Young flew aboard Gemini 3 in 1965 and commanded Gemini 10 the following year. In May 1969, he served as command module pilot on Apollo 10 and returned to the Moon as commander of Apollo 16. In April 1981, he commanded the ultimate test flight: STS-1, the first flight of the space shuttle. He was joined aboard shuttle Columbia by pilot Bob Crippen. Young flew his final mission, STS-9, in 1983, but he continued to work in NASA’s astronaut office until his retirement in 2004. Kennedy’s Firing Room 1 was named the Young-Crippen Firing Room in April 2006, the 25th anniversary of Columbia’s maiden voyage.
2004-02-01
KENNEDY SPACE CENTER, FLA. - Winston Scott, executive director of Florida Space Authority, speaks to attendees at a memorial service honoring the crew of Columbia. He stands in front of the Space Memorial Mirror at the KSC Visitor Complex. Feb. 1 is the one-year anniversary of the loss of the crew and orbiter Columbia in a tragic accident as the ship returned to Earth following mission STS-107. Scott is a former astronaut who flew on Columbia in 1997. Attended by many friends, co-workers and families, the memorial service was also open to the public.
Report on phase 2 of 1990 OSSA data census
NASA Technical Reports Server (NTRS)
King, Joseph H.
1991-01-01
The 1990 NASA Office of Space Science and Applications (OSSA) data census contributed significantly to a database intended to identify and briefly describe all archived data and potentially archive-desirable data from active and inactive NASA/OSSA spaceflight investigations. This database is being created at the National Space Science Data Center (NSSDC) and will be more comprehensive than the databases describing data held at individual sites such as NSSDC. Active investigations are defined as those flying on currently operational spacecraft or those that flew on recently operational spacecraft for which project-coordinated data archiving is continuing. Inactive investigations are those that flew on spacecraft that are no longer operational, and for which systematic archiving has ended. The principal purpose of this report is to describe phase two of the 1990 census. The previously reported phase one of this census, as well as a relevant 1981 census, are briefly discussed. The phase two survey instrument is described, those surveyed and respondents/reponses are identified, and data sets from inactive OSSA investigations discovered during the 1990 census (phase two) are briefly discussed individually.
Search for Antihelium with the BESS-Polar Spectrometer
NASA Technical Reports Server (NTRS)
Sasaki, M.; Mitchell, J. W.; Hams, T.; Abe, K.; Fuke, H.; Haino, S.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.;
2012-01-01
In two long-duration balloon flights over Antarctica, the BESS-Polar collaboration has searched for antihelium in the cosmic radiation with higher sensitivity than any reported investigation. BESSPolar I flew in 2004, observing for 8.5 days. BESS-Polar II flew in 2007-2008, observing for 24.5 days. No antihelium candidate was found in BESS-Polar I data among 8.4 x 10(exp 6) [Z] = 2 nuclei from 1.0 to 20 GV or in BESS-Polar II data among 4.0 x 10(exp 7) [Z] = 2 nuclei from 1.0 to 14 GV. Assuming antihelium to have the same spectral shape as helium, a 95% confidence upper limit of 6.9 x 10(exp -8) was determined by combining all the BESS data, including the two BESS-Polar flights. With no assumed antihelium spectrum and a weighted average of the lowest antihelium efficiencies from 1.6 to 14 GV, an upper limit of 1.0 x 10(exp -7) was determined for the combined BESS-Polar data. These are the most stringent limits obtained to date.
Synthetic vision systems: the effects of guidance symbology, display size, and field of view.
Alexander, Amy L; Wickens, Christopher D; Hardy, Thomas J
2005-01-01
Two experiments conducted in a high-fidelity flight simulator examined the effects of guidance symbology, display size, and geometric field of view (GFOV) within a synthetic vision system (SVS). In Experiment 1, 18 pilots flew highlighted and low-lighted tunnel-in-the-sky displays, as well as a less cluttered follow-me aircraft (FMA), through a series of curved approaches over rugged terrain. The results revealed that both tunnels supported better flight path tracking and lower workload levels than did the FMA because of the availability of more preview information. Increasing tunnel intensity had no benefit on tracking and, in fact, degraded traffic awareness because of clutter and attentional tunneling. In Experiment 2, 24 pilots flew a lowlighted tunnel configured according to different display sizes (small or large) and GFOVs (30 degrees or 60 degrees). Measures of flight path tracking and terrain awareness generally favored the 60 degrees GFOV; however, there were no effects of display size. Actual or potential applications of this research include understanding the impact of SVS properties on flight path tracking, traffic and terrain awareness, workload, and the allocation of attention.
Space Acceleration Measurement System (SAMS)/Orbital Acceleration Research Experiment (OARE)
NASA Technical Reports Server (NTRS)
Hakimzadeh, Roshanak
1998-01-01
The Life and Microgravity Spacelab (LMS) payload flew on the Orbiter Columbia on mission STS-78 from June 20th to July 7th, 1996. The LMS payload on STS-78 was dedicated to life sciences and microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LERC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). In addition, the Microgravity Measurement Assembly (NOAA), managed by the European Space Research and Technology Center (ESA/ESTEC), and sponsored by NASA, collected acceleration data in support of the experiments on-board the LMS mission. OARE downlinked real-time quasi-steady acceleration data, which was provided to the investigators. The SAMS recorded higher frequency data on-board for post-mission analysis. The MMA downlinked real-time quasi-steady as well as higher frequency acceleration data, which was provided to the investigators. The Principal Investigator Microgravity Services (PIMS) project at NASA LERC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-78, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-78 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-78 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, radiator deployment, Vernier Reaction Control System (VRCS) reboost, venting operations, Flight Control System (FCS) checkout, rack excitation, operation of the Life Sciences Laboratory Equipment Refrigerator/Freezer (LSLE R/F), operation of the JSC Projects Centrifuge, crew sleep, and attitude changes. The low-gravity environment related to these activities is discussed in the summary report.
D-558-2 in flight with F-86 chase
NASA Technical Reports Server (NTRS)
1950-01-01
This 1950s photograph shows the Douglas D-558-2 and the North American F-86 Sabre chase aircraft in-flight. Both aircraft display early examples of sweptwing airfoils. The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS); the Navy-Marine Corps; and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in Calif. on February 4, 1948. The goals of the program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitch-up (uncommanded rotation of the nose of the airplane upwards)--a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft's behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitch-up problem in swept-wing aircraft. The three airplanes flew a total of 313 times--123 by the number one aircraft (Bureau No. 37973--NACA 143), 103 by the second Skyrocket (Bureau No. 37974--NACA 144), and 87 by airplane number three (Bureau No. 37975--NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J-34-40 turbojet engine configured only for ground take-offs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force's LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of the airplane's performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a turbojet powerplant. NACA pilots Robert A. Champine and John H. Griffith flew 21 times in this configuration to test airspeed calibrations and to research longitudinal and lateral stability and control. In the process, during August of 1949 they encountered pitch-up problems, which NACA engineers recognized as serious because they could produce a limiting and dangerous restriction on flight performance. Hence, they determined to make a complete investigation of the problem. In 1950, Douglas replaced the turbojet with an LR-8 rocket engine, and its pilot, William B. Bridgeman, flew the aircraft seven times up to a speed of Mach 1.88 (1.88 times the speed of sound) and an altitude of 79,494 feet (the latter an unofficial world's altitude record at the time, achieved on August 15, 1951). In the rocket configuration, a Navy P2B (Navy version of the B-29) launched the airplane at approximately 30,000 feet after taking off from the ground with the Skyrocket attached beneath its bomb bay. During Bridgeman's supersonic flights, he encountered a violent rolling motion known as lateral instability that was less pronounced on the Mach 1.88 flight on August 7, 1951, than on a Mach 1.85 flight in June when he pushed over to a low angle of attack (angle of the fuselage or wing to the prevailing wind direction). The NACA engineers studied the behavior of the aircraft before beginning their own flight research in the airplane in September 1951. Over the next couple of years, NACA pilot A. Scott Crossfield flew the airplane 20 times to gather data on longitudinal and lateral stability and control, wing and tail loads, and lift, drag, and buffeting characteristics at speeds up to Mach 1.878. At that point, Marine Lt. Col. Marion Carl flew the airplane to a new (unofficial) altitude record of 83,235 feet on August 21, 1953, and to a maximum speed of Mach 1.728. Following Carl's completion of these flights for the Navy, NACA technicians at the High-Speed Flight Research Station (HSFRS) near Mojave, Calif., outfitted the LR-8 engine's cylinders with nozzle extensions to prevent the exhaust gas from affecting the rudders at supersonic speeds. This addition also increased the engine's thrust by 6.5 percent at Mach 1.7 and 70,000 feet. Even before Marion Carl had flown the Skyrocket, HSFRS Chief Walter C. Williams had petitioned NACA headquarters unsuccessfully to fly the aircraft to Mach 2 to garner the research data at that speed. Finally, after Crossfield had secured the agreement of the Navy's Bureau of Aeronautics, NACA director Hugh L. Dryden relaxed the organization's usual practice of leaving record setting to others and consented to attempting a flight to Mach 2. In addition to adding the nozzle extensions, the NACA flight team at the HSFRS chilled the fuel (alcohol) so more could be poured into the tank and waxed the fuselage to reduce drag. With these preparations and employing a flight plan devised by project engineer Herman O. Ankenbruck to fly to approximately 72,000 feet and push over into a slight dive, Crossfield made aviation history on November 20, 1953, when he flew to Mach 2.005 (1,291 miles per hour). He became the first pilot to reach Mach 2 in this, the only flight in which the Skyrocket flew that fast. Following this flight, Crossfield and NACA pilots Joseph A. Walker and John B. McKay flew the airplane for such purposes as to gather data on pressure distribution, structural loads, and structural heating, with the last flight in the program occurring on December 20, 1956, when McKay obtained dynamic stability data and sound-pressure levels at transonic speeds and above. Meanwhile, NACA 145 had completed 21 contractor flights by Douglas pilots Eugene F. May and Bill Bridgeman in November 1950. In this jet-and-rocket-propelled craft, Scott Crossfield and Walter Jones began the NACA's investigation of pitch-up lasting from September 1951 well into the summer of 1953. They flew the Skyrocket with a variety of wing-fence, wing-slat, and leading-edge chord extension configurations, performing various maneuvers as well as straight-and-level flying at transonic speeds. While fences significantly aided recovery from pitch-up conditions, leading edge chord extensions did not, disproving wind-tunnel tests to the contrary. Slats (long, narrow auxiliary airfoils) in the fully open position eliminated pitch-up except in the speed range around Mach 0.8 to 0.85. In June 1954, Crossfield began an investigation of the effects of external stores (bomb shapes and fuel tanks) upon the aircraft's transonic behavior. McKay and Stanley Butchart completed the NACA's investigation of this issue, with McKay flying the final mission on August 28, 1956. Besides setting several records, the Skyrocket pilots had gathered important data and understanding about what would and would not work to provide stable, controlled flight of a swept-wing aircraft in the transonic and supersonic flight regimes. The data they gathered also helped to enable a better correlation of wind-tunnel test results with actual flight values, enhancing the abilities of designers to produce more capable aircraft for the armed services, especially those with swept wings. Moreover, data on such matters as stability and control from this and other early research airplanes aided in the design of the century series of fighter airplanes, all of which featured the movable horizontal stabilizers first employed on the X-1 and D-558 series.
NASA Astrophysics Data System (ADS)
Herranz, Raul; Benguria, Alberto; Medina, Javier; Gasset, Gilbert; van Loon, Jack J.; Zaballos, Angel; Marco, Roberto
2005-08-01
The ISS expedition 8, a Soyuz Mission, flew to the International Space Station (ISS) to replace the two- member ISS crew during October 2003. During this crew exchanging flight, the Spanish Cervantes Scientific Mission took place. In it some biological experiments were performed among them three proposed by our Team. The third member of the expedition, the Spanish born ESA astronaut Pedro Duque, returned within the Soyuz 7 capsule carrying the experiment containing transport box after almost 11 days in microgravity. In one of the three experiments, the GENE experiment, we intended to determine how microgravity affects the gene expression pattern of Drosophila with one of the current more powerful technologies , a complete Drosophila melanogaster genome microarray (AffymetrixTM, version 1.0). Due to the constrains in the current ISS experiments, we decided to limit our experiment to the organism rebuilding processes that occurs during Drosophila metamorphosis. In addition to the ISS samples, several control experiments have been performed including a 1g Ground control parallel to the ISS flight samples, a Random Position Machine microgravity simulated control and a parallel Hypergravity (10g) experiment. Extracted RNA from the samples was used to test the differences in gene expression during Drosophila development. A preliminary analysis of the results indicates that around five hundred genes change their expression profiles, many of them belonging to particular ontology classification groups.
McIntyre, Carol L.; Douglas, David C.; Adams, Layne G.
2009-01-01
Juvenile raptors often travel thousands of kilometers from the time they leave their natal areas to the time they enter a breeding population. Documenting movements and identifying areas used by raptors before they enter a breeding population is important for understanding the factors that influence their survival. In North America, juvenile Gyrfalcons (Falco rusticolus) are routinely observed outside the species' breeding range during the nonbreeding season, but the natal origins of these birds are rarely known. We used satellite telemetry to track the movements of juvenile Gyrfalcons during their first months of independence. We instrumented nestlings with lightweight satellite transmitters within 10 d of estimated fledging dates on the Seward Peninsula in western Alaska and in Denali National Park (Denali) in interior Alaska. Gyrfalcons spent an average of 41.4 ± 6.1 d (range = 30–50 d) in their natal areas after fledging. The mean departure date from natal areas was 27 August ± 6.4 d. We tracked 15 individuals for an average of 70.5 ± 28.1 d post-departure; Gyrfalcons moved from 105 to 4299 km during this period and tended to move greater distances earlier in the tracking period than later in the tracking period. Gyrfalcons did not establish temporary winter ranges within the tracking period. We identified several movement patterns among Gyrfalcons, including unidirectional long-distance movements, multidirectional long- and short-distance movements, and shorter movements within a local region. Gyrfalcons from the Seward Peninsula remained in western Alaska or flew to eastern Russia with no movements into interior Alaska. In contrast, Gyrfalcons from Denali remained in interior Alaska, flew to northern and western Alaska, or flew to northern Alberta. Gyrfalcons from both study areas tended to move to coastal, riparian, and wetland areas during autumn and early winter. Because juvenile Gyrfalcons dispersed over a large geographic area and across three international boundaries, conservation efforts should focus on both regional and international scales.
Passive Microwave Measurements Over Conifer Forests at L-Band and C-Band
NASA Technical Reports Server (NTRS)
LeVine, D. M.; Lang, R.; Chauhan, N.; Kim, E.; Bidwell, S.; Goodberlet, M.; Haken, M.; deMatthaeis, P.
2000-01-01
Measurements have been made at L-band and C-band over conifer forests in Virginia to study the response of passive microwave instruments to biomass and soil moisture. A series of aircraft measurements were made in July, August and November, 1999 over relatively homogenous conifer forests of varying biomass. Three radiometers participated in these measurements. These were: 1) the L-band radiometer ESTAR, a horizontally polarized synthetic aperture radiometer which has been used extensively in past measurements of soil moisture; 2) the L-band radiometer SLFMR, a vertically polarized cross-track scanner which has been used successfully in the past for mapping sea surface salinity; and 3) The ACMR, a new C-band radiometer which operates at V- and H-polarization and in the configuration for these experiments did not scan. All three radiometers were flown on the NASA P-3 aircraft based at the Goddard Space Flight Center's Wallops Flight Facility. The ESTAR and SLFMR were mounted in the bomb bay of the P-3 and imaged across track whereas the ACMR was mounted to look aft at 54 degrees up from nadir. Data was collected at altitudes of 915 meters and 457 meters. The forests consisted of relatively homogeneous "managed" stands of conifer located near Waverly, Virginia. This is a relatively flat area about 30 miles southeast of Richmond, VA with numerous stands of trees being grown for the forestry industry. The stands selected for study consisted of areas of regrowth and mature stands of pine. In addition, a small stand of very large trees was observed. Soil moisture sampling was done in each stand during the aircraft over flights. Data was collected on July 7, August 27, November 15 and November 30, 1999. Measurements were made with ESTAR on all days. The ACMR flew on the summer missions and the SLFMR was present only on the August 27 flight. Soil moisture varied from quite dry on July 7 to quite moist on November 30 (which was shortly after a period of rain). The microwave images clearly distinguish between the different forest stands. Research is continuing to seek a quantitative correlation with biomass and surface soil moisture.
Test pilots 1952 - Walker, Butchart, and Jones
NASA Technical Reports Server (NTRS)
1952-01-01
This photo shows test pilots, (Left-Right) Joseph A. Walker, Stanley P. Butchart and Walter P. Jones, standing in front of the Douglas D-558-II Skystreak, in 1952. These three test pilots at the National Advisory Committee for Aeronautics' High-Speed Flight Research Station probably were discussing their flights in the aircraft. Joe flew research flights on the D-558-I #3 (14 flights, first on June 29, 1951) investigating buffeting, tail loads, and longitudinal stability. He flew the D-558-II #2 (3 flights, first on April 29, 1955) and recorded data on lateral stability and control. He also made pilot check-out flights in the D-558-II #3 (2 flights, first on May 7, 1954). For fifteen years Walker served as a pilot at the Edwards flight research facility (today known as the National Aeronautics and Space Administration's Dryden Flight Research Center) on research flights as well as chase missions for other pilots on NASA and Air Force research programs. On June 8, 1966, he was flying chase in NASA's F-104N for the Air Force's experimental bomber, North American XB-70A, when he was fatally injured in a mid-air collision between the planes. Stan flew the D-558-I #3 (12 flights, first on October 19, 1951) to determine the dynamic longitudinal stability characteristics and investigations of the lateral stability and control. He made one flight in the D-558-II #3 on June 26, 1953, as a pilot check-out flight. Butchart retired from the NASA Dryden Flight Research Center at Edwards, California, on February 27, 1976, after a 25-year career in research aviation. Stan served as a research pilot, chief pilot, and director of flight operations. Walter P. Jones was a research pilot for NACA from the fall of 1950 to July 1952. He had been in the U.S. Air Force as a pilot before joining the Station. Jones flew the D-558-I #3 (5 flights, first on February 13, 1951) to study buffeting, tail loads and longitudinal stability. Jones made research flights on the D-558-II #3 ( 7 flights, first on July 20, 1951). These flights investigated pitch-up and evaluated outboard wing fences. Walt also made research flights in the Northrop X-4 (14 flights, first on March 26, 1952) and the Bell X-5 (8 flights, first on June 20, 1952). In July 1952, Walt left NACA's High-Speed Flight Research Station to join Northrop Corporation as a pilot. Returning from a test mission in a Northrop YF-89D Scorpion he was fatally injured on October 20, 1953, near Edwards Air Force Base.
Stardust Imaging of Comet Wild 2: First Look
NASA Technical Reports Server (NTRS)
Newburn, R.; Acton, C.; Bhaskaran, S.; Brownlee, D.; Cheuvront, A.; Duxbury, T.; Hanner, M.; Semenov, B.; Sandford, S.; Tsou, P.
2004-01-01
On 2 January 2004 during its historic flight to return cometary dust samples to earth, the STARDUST spacecraft flew within the coma of comet Wild 2 and also took 72 images where the surface was resolved during the flyby. A combination of long and short exposures was used to observe the jets and the surface. Comet Surface: The images revealed a planetary body, one not having a significant atmosphere, quite different from any other such body seen from other spacecraft. Surface depressions, potentially a combination of craters and vents, were not bowl-shaped but typically had steep walls and flattened floors. One depression considered to be a vent, the source of a jet, had a depth to diameter ratio of approx.0.4, with near vertical walls. Jets: At least 10 to possibly 20 jets were active during the flyby. Some were traced back to the surface where they seem to originate from the near vertical walls of depressions (vents) that were facing the sun, having the highest solar insolation.
Coarsening Experiment Prepared for Flight
NASA Technical Reports Server (NTRS)
Hickman, J. Mark
2003-01-01
The Coarsening in Solid-Liquid Mixtures-2 (CSLM-2) experiment is a materials science spaceflight experiment whose purpose is to investigate the kinetics of competitive particle growth within a liquid matrix. During coarsening, small particles shrink by losing atoms to larger particles, causing the larger particles to grow. In this experiment, solid particles of tin will grow (coarsen) within a liquid lead-tin eutectic matrix. The following figures show the coarsening of tin particles in a lead-tin (Pb-Sn) eutectic as a function of time. By conducting this experiment in a microgravity environment, we can study a greater range of solid volume fractions, and the effects of sedimentation present in terrestrial experiments will be negligible. The CSLM-2 experiment flew November 2002 on space shuttle flight STS-113 for operation on the International Space Station, but it could not be run because of problems with the Microgravity Science Glovebox in the U.S. Laboratory module. Additional samples will be sent to ISS on subsequent shuttle flights.
Walter, Garry; McDonald, Andrew; Rey, Joseph M; Rosen, Alan
2002-03-01
We surveyed samples of medical students in the United Kingdom (U.K.) and Australia, prior to their psychiatry placement, to ascertain views about electroconvulsive therapy (ECT) and the effect on those views of watching ECT scenes in movies. A 26-item questionnaire was constructed by the authors and administered to the students. At set times during the questionnaire, students were asked to view five movie clips showing, or making reference to, ECT. The clips were from Return to Oz, The Hudsucker Proxy, Ordinary People, One Flew Over the Cuckoo's Nest, and Beverly Hillbillies. Ninety-four students participated in the study. Levels of knowledge about the indications, side effects, and mode of administration were poor, and attitudes were generally negative. Viewing the ECT scenes influenced attitudes toward the treatment; after viewing, one-third of the students decreased their support for ECT, and the proportion of students who would dissuade a family member or friend from having ECT rose from less than 10% to almost 25%.
2013-05-22
During a visit to NASA's Dryden Flight Research Center on May 22, 2013, NASA Administrator Charlie Bolden spoke at a media event showcasing Sierra Nevada Corporation’s (SNC) Dream Chaser flight test vehicle that had recently arrived at the center. Bolden, a former Marine Corps pilot and space shuttle astronaut, also flew a simulation of the Dream Chaser's approach and landing profile at Dryden.
A decade on board America's Space Shuttle
NASA Technical Reports Server (NTRS)
1991-01-01
Spectacular moments from a decade (1981-1991) of Space Shuttle missions, captured on film by the astronauts who flew the missions, are presented. First hand accounts of astronauts' experiences aboard the Shuttle are given. A Space Shuttle mission chronology featuring flight number, vehicle name, crew, launch and landing dates, and mission highlights is given in tabular form.
ERIC Educational Resources Information Center
Ruiz, Michael J.
2005-01-01
In this article we present the fascinating reconstruction of an accident where a car hit a boy riding his bicycle. The boy dramatically flew several metres through the air after the collision and was injured, but made a swift and complete recovery from the accident with no long-term after-effects. Students are challenged to determine the speed of…
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...
Single-Pilot Workload Management in Entry-Level Jets
2013-09-01
under Instrument Flight Rules ( IFR ) in a Cessna Citation Mustang ELJ level 5 flight training device at CAMI. Eight of the pilots were Mustang owner...Instrument Landing System IFR ............Instrument Flight Rules IMC ...........Instrument Meteorological Conditions ISA...pilots flew an experimental flight with two legs involving high workload management under Instrument Flight Rules ( IFR ) in a Cessna Citation Mustang
Pathfinder-Plus flight in Hawaii
NASA Technical Reports Server (NTRS)
2002-01-01
Pathfinder-Plus flight in Hawaii June 2002 AeroVironment's Pathfinder-Plus solar-powered flying wing recently flew a three-flight demonstration of its ability to relay third-generation cell phone and video signals as well as provide Internet linkage. The two pods underneath the center section of the wing carried the advanced two-way telecom package, developed by Japanese telecommunications interests.
ERIC Educational Resources Information Center
Brownstein, Rhonda
2009-01-01
These days, when people want to travel a long way, they take an airplane. But once, not so long ago really, only rich people flew in airplanes. Most people took a train or a bus. Back then, in the Montgomery Greyhound station, one could notice a bricked-up doorway that was once an open door with a sign above it that said "Colored…
Abstracts, 19th Annual Meeting Society of Engineering Science, Inc. October 27, 28, & 29, 1982.
1982-10-01
nickel best syperellys used as turbine disk merlals t Mr Force engines. The types of tess and date are described alang Vth the pre- cedres for...microplar boundary layers. The specific geo- mtries of the flow are the flat plate flew, cross flow on a circular eylinder and longituadinal flow alang
Juan Guerra-Hernández; Eduardo González-Ferreiro; Vicente Monleon; Sonia Faias; Margarida Tomé; Ramón Díaz-Varela
2017-01-01
High spatial resolution imagery provided by unmanned aerial vehicles (UAVs) can yield accurate and efficient estimation of tree dimensions and canopy structural variables at the local scale. We flew a low-cost, lightweight UAV over an experimental Pinus pinea L. plantation (290 trees distributed over 16 ha with different fertirrigation treatments)...
Observations and reinterpretation of kingfisher-raptor interactions
Kirby, Ronald E.; Fuller, Mark R.
1978-01-01
Reported observations of Belted Kingfisher (Megaceryle alcyon)-raptor interactions have ranged from brief encounters where the kingfisher escaped the raptor and the hawk subsequently flew away to repeated chases (Johnson 1925, McCabe and McCabe 1928, Skinner 1928, Smith 1963). In some repetitive chases, kingfishers appeared to initiate the interaction (McCabe and McCabe 1928, Skinner 1928).
Results of a simulator test comparing two display concepts for piloted flight-path-angle control
NASA Technical Reports Server (NTRS)
Kelley, W. W.
1978-01-01
Results of a simulator experiment which was conducted in order to compare pilot gamma-control performance using two display formats are reported. Pilots flew a variable flight path angle tracking task in the landing configuration. Pilot and airplane performance parameters were recorded and pilot comments noted for each case.
Howard Hughes and His Colorful Aircraft Career
ERIC Educational Resources Information Center
Karwatka, Dennis
2012-01-01
The HK-1 "Hercules" airplane made its maiden flight over 60 years ago, and it still holds the record as the airplane with the largest wingspan that ever flew. Powered by eight massive 28-cylinder engines, it was piloted by Howard Hughes during its one brief flight in California. A large portion of the airplane was made of wood, which…
National Federation of the Blind Braille Coin
2009-07-30
NAME sings the National Anthem at a ceremony where senior NASA officials presented the NFB with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)
National Federation of the Blind Braille Coin
2009-07-30
Dr. Marc Mauer, president of the National Federation of the Blind, left, accepts two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009 from NASA Associate Administrator Chris Scolese, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)
The Sensor Test for Orion RelNav Risk Mitigation (STORRM) Development Test Objective
NASA Technical Reports Server (NTRS)
Christian, John A.; Hinkel, Heather; D'Souza, Christopher N.; Maguire, Sean; Patangan, Mogi
2011-01-01
The Sensor Test for Orion Relative-Navigation Risk Mitigation (STORRM) Development Test Objective (DTO) flew aboard the Space Shuttle Endeavour on STS-134 in May- June 2011, and was designed to characterize the performance of the flash LIDAR and docking camera being developed for the Orion Multi-Purpose Crew Vehicle. The flash LIDAR, called the Vision Navigation Sensor (VNS), will be the primary navigation instrument used by the Orion vehicle during rendezvous, proximity operations, and docking. The DC will be used by the Orion crew for piloting cues during docking. This paper provides an overview of the STORRM test objectives and the concept of operations. It continues with a description of STORRM's major hardware components, which include the VNS, docking camera, and supporting avionics. Next, an overview of crew and analyst training activities will describe how the STORRM team prepared for flight. Then an overview of in-flight data collection and analysis is presented. Key findings and results from this project are summarized. Finally, the paper concludes with lessons learned from the STORRM DTO.
Nile River, Lake Nasser, North Sudan and Lower Egypt
1992-11-01
STS052-152-026 (22Oct-1 Nov 1992) --- Backdropped over eastern Egypt, the Canadian-built remote manipulator system (RMS) attached to NASA's Earth-orbiting Space Shuttle Columbia displays a Canadian Space Agency (CSA) experiment. Materials Exposure in Low Earth Orbit (MELEO) is one of a number of Canadian experiments which flew aboard Columbia for the ten-day STS-52 mission. Principal investigator for the experiment is Dr. David G. Zimick of the CSA. Plastic and composite materials used on the external surfaces of spacecraft have been found to degrade in the harsh environment of space. Evidence suggests that this degradation is caused by interaction with atomic oxygen which induces damaging chemical and physical reactions. The result is a loss in mass, strength, stiffness and stability of size and shape. During the mission, MELEO exposed over 350 material specimens mounted on "witness plates" on the RMS arm. The specimen collection will be analyzed in the weeks following the mission. Typical spacecraft materials and new developments in protective measures against atomic oxygen were tested as part of the MELEO experiment.
Kramer, V L; Carper, E R; Beesley, C; Reisen, W K
1995-05-01
Two mark-release-recapture studies were conducted along the Sacramento-San Joaquin River Delta in northern California to describe the population ecology and dispersal pattern of Aedes dorsalis (Meigen). Immature Ae. dorsalis were collected from saline tidal marshes, reared to adults, marked, and released. Recapture grids during the July and September studies were within 8.0 and 2.4 km of the release sites, and recapture rates were 0.1 and 1.2%, respectively. The longest recorded flight was 5.8 km, and mosquitoes were recaptured up to 15 d after release. In September, 84% of the marked mosquitoes were recaptured within 2.0 km of the release site, and the mean dispersal distance was 1.9 km. Marked mosquitoes flew predominantly downwind to the east. There was no evidence that Ae. dorsalis traversed the 1.6-km-wide river from Contra Costa to Solano County. Temporal and spatial recapture patterns indicated a possible short-range migration pattern from oviposition sites to upland host-seeking areas. Changes in the recapture rate with cohort age delineated a 7-d gonotrophic cycle during September.
Beam Tests of the Balloon-Borne ATIC Experiment
NASA Technical Reports Server (NTRS)
Ganel, O.; Adams, J. H., Jr.; Ahn, E. J.; Ampe, J.; Bashindzhagyan, G.; Case, G.; Chang, J.; Ellison, S.; Fazely, A.; Gould, R.
2003-01-01
The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-ray elemental spectra measurement from 50 GeV to 100 TeV for nuclei from hydrogen to iron. These measurements are expected to provide crucial hints about some of the most fundamental questions in astroparticle physics today. ATTIC'S design centers on an 18 radiation length (X(sub Omnicron)) deep bismuth germanate (BGO) calorimeter, preceded by a 0.75 lambda(sub int) graphite target. In September 1999 the ATIC detector was exposed to high-energy beams at CERN's SPS accelerator, within the framework of the development program for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). In December 2000 - January 2001, ATIC flew on the first of a series of long duration balloon (LDB) flights from McMurdo Station, Antarctica. We present here results from the 1999 beam-tests, including energy resolutions for electrons and protons at several beam energies from 100 GeV to 375 GeV, as well as signal linearity and collection efficiency estimates. We show how these results compare with expectations based on simulations, and their expected impacts on mission performance.
The 2013 Arctic Field Season of the NRL Sea-Ice Measurement Program
NASA Astrophysics Data System (ADS)
Gardner, J. M.; Brozena, J. M.; Ball, D.; Hagen, R. A.; Liang, R.; Stoudt, C.
2013-12-01
The U.S. Naval Research Laboratory (NRL) is conducting a five year study of the changing Arctic with a particular focus on ice thickness and distribution variability with the intent of optimizing state-of-the-art computer models which are currently used to predict sea ice changes. An important part of our study is to calibrate/validate CryoSat2 ice thickness data prior to its incorporation into new ice forecast models. NRL Code 7420 collected coincident data with the CryoSat2 satellite in 2011 and 2012 using a LiDAR (Riegl Q560) to measure combined snow and ice thickness and a 10 GHz pulse-limited precision radar altimeter to measure sea-ice freeboard. This field season, LiDAR data was collected using the Riegl Q680 which permitted higher density operation and data collection. Concident radar data was collected using an improved version of the NRL 10 GHz pulse limited radar that was used for the 2012 fieldwork. 8 coincident tracks of CryoSat2 satellite data were collected. Additionally a series of grids (7 total) of adjacent tracks were flown coincident with Cryosat2 satellite overpass. These grids cover the approximate satellite footprint of the satellite on the ice as it passes overhead. Data from these grids are shown here and will be used to examine the relationship of the tracked satellite waveform data to the actual surface across the footprint. We also coordinated with the Seasonal Ice Zone Observing Network (SIZONet) group who conducted surface based ice thickness surveys using a Geonics EM-31 along hunter trails on the landfast ice near Barrow as well as on drifting ice offshore during helicopter landings. On two sorties, a twin otter carrying the NRL LiDAR and radar altimeter flew in tandem with the helicopter carrying the EM-31 to achieve synchronous data acquisition. Data from these flights are shown here along with a digital elevation map.
A UAV-based active AirCore system for measurements of greenhouse gases
NASA Astrophysics Data System (ADS)
Andersen, Truls; Scheeren, Bert; Peters, Wouter; Chen, Huilin
2018-05-01
We developed and field-tested an unmanned aerial vehicle (UAV)-based active AirCore for atmospheric mole fraction measurements of CO2, CH4, and CO. The system applies an alternative way of using the AirCore technique invented by NOAA. As opposed to the conventional concept of passively sampling air using the atmospheric pressure gradient during descent, the active AirCore collects atmospheric air samples using a pump to pull the air through the tube during flight, which opens up the possibility to spatially sample atmospheric air. The active AirCore system used for this study weighs ˜ 1.1 kg. It consists of a ˜ 50 m long stainless-steel tube, a small stainless-steel tube filled with magnesium perchlorate, a KNF micropump, and a 45 µm orifice working together to form a critical flow of dried atmospheric air through the active AirCore. A cavity ring-down spectrometer (CRDS) was used to analyze the air samples on site not more than 7 min after landing for mole fraction measurements of CO2, CH4, and CO. We flew the active AirCore system on a UAV near the atmospheric measurement station at Lutjewad, located in the northwest of the city of Groningen in the Netherlands. Five consecutive flights took place over a 5 h period on the same morning, from sunrise until noon. We validated the measurements of CO2 and CH4 from the active AirCore against those from the Lutjewad station at 60 m. The results show a good agreement between the measurements from the active AirCore and the atmospheric station (N = 146; R2CO2: 0.97 and R2CH4: 0.94; and mean differences: ΔCO2: 0.18 ppm and ΔCH4: 5.13 ppb). The vertical and horizontal resolution (for CH4) at typical UAV speeds of 1.5 and 2.5 m s-1 were determined to be ±24.7 to 29.3 and ±41.2 to 48.9 m, respectively, depending on the storage time. The collapse of the nocturnal boundary layer and the buildup of the mixed layer were clearly observed with three consecutive vertical profile measurements in the early morning hours. Besides this, we furthermore detected a CH4 hotspot in the coastal wetlands from a horizontal flight north to the dike, which demonstrates the potential of this new active AirCore method to measure at locations where other techniques have no practical access.
Cooperative Collision Avoidance Step 1 - Technology Demonstration Flight Test Report. Revision 1
NASA Technical Reports Server (NTRS)
Trongale, Nicholas A.
2006-01-01
The National Aeronautics and Space Administration (NASA) Access 5 Project Office sponsored a cooperative collision avoidance flight demonstration program for unmanned aircraft systems (UAS). This flight test was accomplished between September 21st and September 27th 2005 from the Mojave Airport, Mojave, California. The objective of these flights was to collect data for the Access 5 Cooperative Collision Avoidance (CCA) Work Package simulation effort, i.e., to gather data under select conditions to allow validation of the CCA simulation. Subsequent simulation to be verified were: Demonstrate the ability to detect cooperative traffic and provide situational awareness to the ROA pilot; Demonstrate the ability to track the detected cooperative traffic and provide position information to the ROA pilot; Demonstrate the ability to determine collision potential with detected cooperative traffic and provide notification to the ROA pilot; Demonstrate that the CCA subsystem provides information in sufficient time for the ROA pilot to initiate an evasive maneuver to avoid collision; Demonstrate an evasive maneuver that avoids collision with the threat aircraft; and lastly, Demonstrate the ability to assess the adequacy of the maneuver and determine that the collision potential has been avoided. The Scaled Composites, LLC Proteus Optionally Piloted Vehicle (OPV) was chosen as the test platform. Proteus was manned by two on-board pilots but was also capable of being controlled from an Air Vehicle Control Station (AVCS) located on the ground. For this demonstration, Proteus was equipped with cooperative collision sensors and the required hardware and software to place the data on the downlink. Prior to the flight phase, a detailed set of flight test scenarios were developed to address the flight test objectives. Two cooperative collision avoidance sensors were utilized for detecting aircraft in the evaluation: Traffic Alert and Collision Avoidance System-II (TCAS-II) and Automatic Dependent Surveillance Broadcast (ADS-B). A single intruder aircraft was used during all the flight testing, a NASA Gulfstream III (G-III). During the course of the testing, six geometrically different near-collision scenarios were evaluated. These six scenarios were each tested using various combinations of sensors and collision avoidance software. Of the 54 planned test points 49 were accomplished successfully. Proteus flew a total of 21.5 hours during the testing and the G-III flew 19.8 hours. The testing fully achieved all flight test objectives. The Flight IPT performed an analysis to determine the accuracy of the simulation model used to predict the location of the host aircraft downstream during an avoidance maneuver. The data collected by this flight program was delivered to the Access 5 Cooperative Collision Avoidance (CCA) Work Package Team who was responsible for reporting on their analysis of this flight data.
San Andreas Fault in the Carrizo Plain
NASA Technical Reports Server (NTRS)
2000-01-01
The 1,200-kilometer (800-mile)San Andreas is the longest fault in California and one of the longest in North America. This perspective view of a portion of the fault was generated using data from the Shuttle Radar Topography Mission (SRTM), which flew on NASA's Space Shuttle last February, and an enhanced, true-color Landsat satellite image. The view shown looks southeast along the San Andreas where it cuts along the base of the mountains in the Temblor Range near Bakersfield. The fault is the distinctively linear feature to the right of the mountains. To the left of the range is a portion of the agriculturally rich San Joaquin Valley. In the background is the snow-capped peak of Mt. Pinos at an elevation of 2,692 meters (8,831 feet). The complex topography in the area is some of the most spectacular along the course of the fault. To the right of the fault is the famous Carrizo Plain. Dry conditions on the plain have helped preserve the surface trace of the fault, which is scrutinized by both amateur and professional geologists. In 1857, one of the largest earthquakes ever recorded in the United States occurred just north of the Carrizo Plain. With an estimated magnitude of 8.0, the quake severely shook buildings in Los Angeles, caused significant surface rupture along a 350-kilometer (220-mile) segment of the fault, and was felt as far away as Las Vegas, Nev. This portion of the San Andreas is an important area of study for seismologists. For visualization purposes, topographic heights displayed in this image are exaggerated two times.
The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet) long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif, for NASA's Earth Science Enterprise, Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena.Distance to Horizon: 73 kilometers (45.3 miles) Location: 35.42 deg. North lat., 119.5 deg. West lon. View: Toward the Southeast Date Acquired: February 16, 2000 SRTM, December 14, 1984 Landsat Image: NASA/JPL/NIMAEngaging College Students at Two-year Campuses in Aerospace Research
NASA Astrophysics Data System (ADS)
Dirienzo, William
2018-01-01
College students at two-year campuses have unique challenges to their learning and are often "nontraditional" students, including first-generation and/or returning adult students. They have little or no exposure to research, related to science and aerospace or otherwise, and so they do not think of these fields as possible careers or understand how the disciplines operate. Exposing these students to real research projects, especially ones that include rocket payloads, have a dramatic effect on the interests and academic success of students. Projects such as these can be quite large and expensive, perhaps prohibitively so for small institutions. We engaged a group of these students through the RockOn and RockSat programs lead by the Colorado Space Grant Consortium, which are programs for postsecondary students to access space with relatively easy access and low cost. The student team designed, built, and flew a scientific payload on a suborbital sounding rocket launched at NASA's Wallops Flight Facility in Virginia. The experiment sent E. coli DNA samples into space to assess the damage and measured the radiation exposure with and without radiation shielding, and assessed the samples for DNA damage upon their return. We report on the process and the effects on the students as part of their experience.
NASA Technical Reports Server (NTRS)
Calaway, Michael J.; Stansbery, Eileen K.
2006-01-01
The Genesis spacecraft sampling arrays were exposed to various regimes of solar wind during flight that included: 313.01 days of high-speed wind from coronal holes, 335.19 days of low-speed inter-stream wind, 191.79 days of coronal mass ejections, and 852.83 days of bulk solar wind at Lagrange 1 orbit. Ellipsometry measurements taken at NASA s Johnson Space Center show that all nine flown array materials from the four Genesis regimes have been altered by solar wind exposure during flight. These measurements show significant changes in the optical constant for all nine ultra-pure materials that flew on Genesis when compared with their non-flight material standard. This change in the optical constant (n and k) of the material suggests that the molecular structure of the all nine ultra-pure materials have been altered by solar radiation. In addition, 50 samples of float-zone and czochralski silicon bulk array ellipsometry results were modeled with an effective medium approximation layer (EMA substrate layer) revealing a solar radiation molecular damage zone depth below the SiO2 native oxide layer ranging from 392 to 613 . This bulk solar wind radiation penetration depth is comparable to the depth of solar wind implantation depth of Mg measured by SIMS and SARISA.
2010-09-09
Dr. Michael A'Hearn, Principal Investigator, EPOXI Comet Encounter Mission, speaks during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)
JPL-19671111-SURVEYf-0001-AVC2002083 Surveyor 6 Lands on Moon
1967-11-11
After its soft landing, Surveyor 6 was the first spacecraft to be launched from the surface of the moon. It lifted itself to about 3 meters altitude and flew about 2.5 meters from its initial landing point to further validate Surveyor 5's finding that the lunar soil is basaltic, an important detail for Apollo mission planners.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Astronaut, born in Auglaize County, OH, trained as a pilot (Korean War). He flew on Gemini 8 and in 1969, with Michael Collins and EDWIN ALDRIN, took Apollo 11 to the Moon. On 21 July 1969, at 02:56 GMT, Armstrong became the first man to walk on the Moon, with the famous statement, 'That's one small step for a man, one giant leap for mankind'....
ERIC Educational Resources Information Center
Lakusta, Laura; Muentener, Paul; Petrillo, Lauren; Mullanaphy, Noelle; Muniz, Lauren
2017-01-01
Previous studies have shown a robust bias to express the goal path over the source path when describing events ("the bird flew into the pitcher," rather than "… out of the bucket into the pitcher"). Motivated by linguistic theory, this study manipulated the causal structure of events (specifically, making the source cause the…
ERIC Educational Resources Information Center
DeSensi, Frank; Rostov, Susan
These lesson plans are designed for use by middle school social studies teachers who take their students on a tour of the regional airports of Louisville, Kentucky. Twelve lesson plans are included: "Let's Go There Next, Mom"; "Who Wrote That?"; "The Games They Play!"; "You Flew on What?"; "I Wonder…
2010-09-09
Dr. James L. Green, Director of Planetary Science at NASA, speaks during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)
Space Life Sciences-2 (SLS-2) logo or patch
1993-03-01
S93-26894 (March 1993) --- Spacelab Life Sciences 2, scheduled to fly as the major payload on the STS-58 mission, is represented with this logo. As in the case of SLS-1, which flew in space in June of 1991, this Spacelab mission will be devoted to life sciences and will carry a crew of experts in the associated disciplines.
Steven J. Seybold; Jennifer A. King; Daren R. Harris; Lori J. Nelson; Shakeeb M. Hamud; Yigen. Chen
2012-01-01
The diurnal flight response of the walnut twig beetle, Pityophthorus juglandis Blackman (Coleoptera: Scolytidae), was assessed during two seasonal periods at two sites in northern California. Males and females flew primarily at dusk in response to aggregation pheromone-baited traps during late June/early July, and the percentage of beetles that...
1999-08-18
The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.
1999-09-08
The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.
1999-08-18
The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.
1999-09-08
The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.
1999-09-08
The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.
National Federation of the Blind Braille Coin
2009-07-30
NASA astronaut Greg Johnson, at podium, speaks at a ceremony where senior NASA officials presented the National Federation of the Blind with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)
National Federation of the Blind Braille Coin
2009-07-30
Dr. Marc Mauer, president of the National Federation of the Blind speaks at a ceremony where senior NASA officials presented the NFB with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)
National Federation of the Blind Braille Coin
2009-07-30
Chris Scolese, NASA Associate Administrator, speaks at a ceremony where senior NASA officials presented the National Federation of the Blind with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)
National Federation of the Blind Braille Coin
2009-07-30
Chris Scolese, NASA Associate Administrator, speaks at a ceremony where senior NASA officials presented the National Federation of the Blind, with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)
"There is One Story Worth Telling": An Essay for James Britton and Nancy Martin
ERIC Educational Resources Information Center
Lofty, John S.
2009-01-01
In 1992, the University of New Hampshire (UNH) held a conference featuring leaders in the field of composition studies, attended by a wish list of luminaries, including Lil Brannon, Ed Corbett, Peter Elbow, Donald Murray, and Ken Macrorie. James Britton and Nancy Martin flew over from England to join the conversation. The prestigious research…
From Self-Flying Helicopters to Classrooms of the Future
ERIC Educational Resources Information Center
Young, Jeffrey R.
2012-01-01
On a summer day four years ago, a Stanford University computer-science professor named Andrew Ng held an unusual air show on a field near the campus. His fleet of small helicopter drones flew under computer control, piloted by artificial-intelligence software that could teach itself to fly after watching a human operator. By the end of the day,…
CFIT Prevention Using Synthetic Vision
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.; Parrish, Russell V.
2003-01-01
In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents where a fully functioning airplane is inadvertently flown into the ground, water, or an obstacle. An experiment was conducted at NASA Langley Research Center investigating the presentation of a synthetic terrain database scene to the pilot on a Primary Flight Display (PFD). The major hypothesis for the experiment is that a synthetic vision system (SVS) will improve the pilot s ability to detect and avoid a potential CFIT compared to conventional flight instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Sixteen pilots each flew 22 approach - departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, the flight guidance cues were altered such that the departure path went into the terrain. All pilots with a SVS enhanced PFD (12 of 16 pilots) noticed and avoided the potential CFIT situation. All of the pilots who flew the anomaly with the baseline display configuration (which included a TAWS and VSD enhanced ND) had a CFIT event.
Influence of military activities on raptor abundance and behavior
Schueck, Linda S.; Marzluff, J.M.; Steenhof, Karen
2001-01-01
We investigated the influence of military training on the abundance and behavior of raptors at a military training area in the Snake River Birds of Prey National Conservation Area in Idaho during the breeding seasons of 1991a??1994. Raptor counts on military training ranges did not differ when we compared all training days to all non-training days. However, during one period of intensive military training in one breeding season, raptor counts were lower during training than on non-training days. During training, Northern Harriers (Circus cyaneus) did not alter their behavior on training days. In years when prey numbers were low, falcons, hawks, and eagles perched and flew at low levels less often and flew at higher altitudes more often during training than they did when training did not occur. We observed fewer prey capture attempts on ranges on days with training than on days without training. Specific types of military training activity affected counts of raptors on ranges. The lowest raptor counts were associated with firing of artillery, small arms, and main turret guns or machine guns on tanks. Raptor counts associated with tank preparation (i.e., assembling and loading ammunition), driving, laser training, and convoy traffic were similar to non-training periods.
Castro, Lauren A; Peterson, Jennifer K; Saldana, Azael; Perea, Milixa Y; Calzada, Jose E; Pineda, Vanessa; Dobson, Andrew P; Gottdenker, Nicole L
2014-09-01
ABSTRACT Flight dispersal of the triatomine bug species Rhodnius pallescens Barber, the principal vector of Chagas disease in Panama, is an important mechanism for spreading Trypanosoma cruzi, causative agent of Chagas disease. This study measures R. pallescens flight performance using a tethered flight mill both when uninfected, and when infected with T. cruzi or Trypanosoma rangeli. Forty-four out of the 48 (91.7%) insects initiated flight across all treatments, and trypanosome infection did not significantly impact flight initiation. Insects from all treatments flew a cumulative distance ranging from 0.5 to 5 km before fatiguing. The median cumulative distance flown before insect fatigue was higher in T. cruzi- and T. rangeli-infected insects than in control insects; however, this difference was not statistically significant. There was a positive relationship between parasite load ingested and time until flight initiation in T. rangeli-infected bugs, and T. rangeli- and T. cruzi-infected females flew significantly faster than males at different time points. These novel findings allow for a better understanding of R. pallescens dispersal ability and peridomestic management strategies for the prevention of Chagas disease in Panama.
M2-F3 with test pilot John A. Manke
1972-12-20
NASA research pilot John A. Manke is seen here in front of the M2-F3 Lifting Body. Manke was hired by NASA on May 25, 1962, as a flight research engineer. He was later assigned to the pilot's office and flew various support aircraft including the F-104, F5D, F-111 and C-47. After leaving the Marine Corps in 1960, Manke worked for Honeywell Corporation as a test engineer for two years before coming to NASA. He was project pilot on the X-24B and also flew the HL-10, M2-F3, and X-24A lifting bodies. John made the first supersonic flight of a lifting body and the first landing of a lifting body on a hard surface runway. Manke served as Director of the Flight Operations and Support Directorate at the Dryden Flight Research Center prior to its integration with Ames Research Center in October 1981. After this date John was named to head the joint Ames-Dryden Directorate of Flight Operations. He also served as site manager of the NASA Ames-Dryden Flight Research Facility. John is a member of the Society of Experimental Test Pilots. He retired on April 27, 1984.
2004-03-05
KENNEDY SPACE CENTER, FLA. - - In the Orbiter Processing Facility, STS-114 Mission Specialists Andrew Thomas, Soichi Noguchi and Charles Camarda greet astronaut John Young (far right), who flew on the first flight of Space Shuttle Columbia with Robert Crippen. Behind Camarda is Pilot James Kelly. Young is associate director, Technical, at Johnson Space Center. Noguchi represents the Japanese Aerospace and Exploration Agency. The STS-114 crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
2004-02-01
KENNEDY SPACE CENTER, FLA. - Among the visitors placing flowers in the wire mesh fence surrounding the Space Memorial Mirror is one of the Indian dancers who performed a healing ceremony during a memorial service for the crew of Columbia. Feb. 1 is the one-year anniversary of the loss of the crew and orbiter Columbia in a tragic accident as the ship returned to Earth following mission STS-107. The public was invited to the memorial service, which included comments by Center Director Jim Kennedy and Executive Director of Florida Space Authority Winston Scott. Scott is a former astronaut who flew on Columbia in 1997.
Attentional models of multitask pilot performance using advanced display technology.
Wickens, Christopher D; Goh, Juliana; Helleberg, John; Horrey, William J; Talleur, Donald A
2003-01-01
In the first part of the reported research, 12 instrument-rated pilots flew a high-fidelity simulation, in which air traffic control presentation of auditory (voice) information regarding traffic and flight parameters was compared with advanced display technology presentation of equivalent information regarding traffic (cockpit display of traffic information) and flight parameters (data link display). Redundant combinations were also examined while pilots flew the aircraft simulation, monitored for outside traffic, and read back communications messages. The data suggested a modest cost for visual presentation over auditory presentation, a cost mediated by head-down visual scanning, and no benefit for redundant presentation. The effects in Part 1 were modeled by multiple-resource and preemption models of divided attention. In the second part of the research, visual scanning in all conditions was fit by an expected value model of selective attention derived from a previous experiment. This model accounted for 94% of the variance in the scanning data and 90% of the variance in a second validation experiment. Actual or potential applications of this research include guidance on choosing the appropriate modality for presenting in-cockpit information and understanding task strategies induced by introducing new aviation technology.
Flight performance of the orange wheat blossom midge (Diptera: Cecidomyiidae).
Hao, Ya-Nan; Miao, Jin; Wu, Yu-Qing; Gong, Zhong-Jun; Jiang, Yue-Li; Duan, Yun; Li, Tong; Cheng, Wei-Ning; Cui, Jian-Xin
2013-10-01
The orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), is a chronic wheat pest worldwide. Adult S. mosellana engage in short-distance flight, but also exploit weather patterns for long-distance dispersal. However, little is known about the flight performance of S. mosellana, and the effects of the biotic and abiotic factors that influence its flight activity. In this study, we explored the active flight potential of S. mosellana under various environmental factors using a 26-channel computer-monitored flight mill system. The most suitable temperature for flight and flight distance was 16-24 degrees C; flight duration peaked at 16 degrees C while speed peaked at 28 degrees C. Flight performance gradually declined between 10 and 400 lux light intensity. More than 50% individuals of 1-d-old females flew > 500 m, while only 24% of males flew > 500 m. One-day-old S. mosellana had stronger flight ability than that of 2-d-old individuals. This research showed that S. mosellana possessed strong enough flight ability that they can fly to a high altitude and then disperse via moving air currents. These results can aid in forecasting S. mosellana outbreak.
Trapped Energetic Electrons in the Magnetosphere of Ganymede
NASA Technical Reports Server (NTRS)
Eviatar, Aharon; Williams, Donald J.; Paranicas, Chris; McEntire, Richard W.; Mauk, Barry H.; Kivelson, Margaret G.
2000-01-01
On May 7, 1997, the Galileo orbiter flew through the magnetosphere of Ganymede and crossed flux tubes connected at both ends to the satellite. Energetic electrons, observed during this encounter by means of the Energetic Particle Detector on board Galileo, showed double loss cones and "butterfly" type pitch angle distributions, as has been noted in past publications. In addition, as the spacecraft flew toward Ganymede, both the shape and magnitude of the spectrum changed. The intensities decreased, with the greatest depletion observed at the lowest energies, and the monotonic slope characteristic of the Jovian environment was replaced by a rollover of the spectrum at the low-energy end. The spectra lead us to infer a strongly energy-dependent injection efficiency into the trapping region. As on previous encounters, the pitch angle distributions confirmed the position of the magnetopause as indicated by the magnetometer measurements, but the spectra remained Jovian until the trapping region was reached. Various physical mechanisms capable of generating the observed spectra and pitch angle distributions, including downstream reconnection insertion followed by magnetic gradient drift and absorption of the lowest-energy electrons by Ganymede and injection from Jovian flux tubes upstream are assessed.
Second flight of the Focusing Optics X-ray Solar Imager sounding rocket [FOXSI-2
NASA Astrophysics Data System (ADS)
Buitrago-Casas, J. C.; Krucker, S.; Christe, S.; Glesener, L.; Ishikawa, S. N.; Ramsey, B.; Foster, N. D.
2015-12-01
The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket experiment that has flown twice to test a direct focusing method for measuring solar hard X-rays (HXRs). These HXRs are associated with particle acceleration mechanisms at work in powering solar flares and aid us in investigating the role of nanoflares in heating the solar corona. FOXSI-1 successfully flew for the first time on November 2, 2012. After some upgrades including the addition of extra mirrors to two optics modules and the inclusion of new fine-pitch CdTe strip detectors, in addition to the Si detectors from FOXSI-1, the FOXSI-2 payload flew successfully again on December 11, 2014. During the second flight four targets on the Sun were observed, including at least three active regions, two microflares, and ~1 minute of quiet Sun observation. This work is focused in giving an overview of the FOXSI rocket program and a detailed description of the upgrades for the second flight. In addition, we show images and spectra investigating the presence of no thermal emission for each of the flaring targets that we observed during the second flight.
2004-02-01
KENNEDY SPACE CENTER, FLA. - Standing in front of the Space Memorial Mirror at the KSC Visitor Complex, KSC Deputy Director Woodrow Whitlow Jr., Center Director Jim Kennedy and Executive Director of Florida Space Authority Winston Scott bow their heads in prayer during a memorial service remembering and honoring the crew of Columbia. Feb. 1 is the one-year anniversary of the loss of the crew and orbiter Columbia in a tragic accident as the ship returned to Earth following mission STS-107. Scott is a former astronaut who flew on Columbia in 1997. The public was also invited to the memorial service.
Orbiter LH2 Feedline Flowliner Cracking Problem. Version 1.0
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Cragg, Clinton H.; Raju, Ivatury S.; Elliot, Kenny B.; Madaras, Eric I.; Piascik, Robert S.; Halford, Gary R.; Bonacuse, Peter J.; Sutliff, Daniel L.; Bakhle, Milind A.
2005-01-01
In May of 2002, three cracks were found in the downstream flowliner at the gimbal joint in the LH2 feedline at the interface with the Low Pressure Fuel Turbopump (LPFP) of Space Shuttle Main Engine (SSME) #1 of Orbiter OV-104. Subsequent inspections of the feedline flowliners in the other orbiters revealed the existence of 8 additional cracks. No cracks were found in the LO2 feedline flowliners. A solution to the cracking problem was developed and implemented on all orbiters. The solution included weld repair of all detectable cracks and the polishing of all slot edges to remove manufacturing discrepancies that could initiate new cracks. Using the results of a fracture mechanics analysis with a scatter factor of 4 on the predicted fatigue life, the orbiters were cleared for return to flight with a one-flight rationale requiring inspections after each flight. OV-104 flew mission STS-112 and OV-105 flew mission STS-113. The post-flight inspections did not find any cracks in the repaired flowliners. At the request of the Orbiter Program, the NESC conducted an assessment of the Orbiter LH2 Feedline Flowliner cracking problem with a team of subject matter experts from throughout NASA.
Cast Glance Near Infrared Imaging Observations of the Space Shuttle During Hypersonic Re-Entry
NASA Technical Reports Server (NTRS)
Tack, Steve; Tomek, Deborah M.; Horvath, Thomas J.; Verstynen, Harry A.; Shea, Edward J.
2010-01-01
High resolution calibrated infrared imagery of the Space Shuttle was obtained during hypervelocity atmospheric entries of the STS-119, STS-125 and STS128 missions and has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. This data collect was initiated by NASA s Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team and incorporated the use of air- and land-based optical assets to image the Shuttle during atmospheric re-entry. The HYTHIRM objective is to develop and implement a set of mission planning tools designed to establish confidence in the ability of an existing optical asset to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. On Space Shuttle Discovery s STS-119 mission, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. On STS-119, the windward airflow on the port wing was deliberately disrupted by a four-inch wide and quarter-inch tall protuberance built into the modified tile. In coordination with this flight experiment, a US Navy NP-3D Orion aircraft was flown 28 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 using a long-range infrared optical package referred to as Cast Glance. Approximately two months later, the same Navy Cast Glance aircraft successfully monitored the surface temperatures of the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission. In contrast to Discovery, Atlantis was not part of the Boundary Layer Transition (BLT) flight experiment, thus the vehicle was not configured with a protuberance on the port wing. In September 2009, Cast Glance was again successful in capturing infrared imagery and monitoring the surface temperatures on Discovery s next flight, STS-128. Again, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. During this mission, Cast Glance was able to image laminar and turbulent flow phenomenology optimizing data collection for Mach 14.7. The purpose of this paper is to describe key elements associated with STS-119/125/128 mission planning and execution from the perspective of the Cast Glance flight crew that obtained the imagery. The paper will emphasize a human element of experience, expertise and adaptability seamlessly coupled with Cast Glance system and sensor technology required to manually collect the required imagery. Specific topics will include a near infrared (NIR) camera upgrade that was implemented just prior to the missions, how pre-flight radiance modeling was utilized to optimize the IR sensor configuration, communications, the development of aircraft test support positions based upon Shuttle trajectory information, support to contingencies such as Shuttle one orbit wave-offs/west coast diversions and then the Cast Glance perspective during an actual Shuttle imaging mission.
Exposure of LDEF materials to atomic oxygen: Results of EOIM 3
NASA Technical Reports Server (NTRS)
Jaggers, C. H.; Meshishnek, M. J.
1995-01-01
The third Effects of Oxygen Atom Interaction with Materials (EOIM 3) experiment flew on STS-46 from July 31 to August 8, 1992. The EOIM-3 sample tray was exposed to the low-earth orbit space environment for 58.55 hours at an altitude of 124 nautical miles resulting in a calculated total atomic oxygen (AO) fluence of 1.99 x 10(exp 20) atoms/sq cm. Five samples previously flown on the Long Duration Exposure Facility (LDEF) Experiment M0003 were included on the Aerospace EOIM 3 experimental tray: (1) Chemglaze A276 white thermal control paint from the LDEF trailing edge (TE); (2) S13GLO white thermal control paint from the LDEF TE; (3) S13GLO from the LDEF leading edge (LE) with a visible contamination layer from the LDEF mission; (4) Z306 black thermal control paint from the LDEF TE with a contamination layer from the LDEF mission; and (5) anodized aluminum from the LDEF TE with a contamination layer from the LDEF mission. The purpose of this experiment was twofold: (l) investigate the response of trailing edge LDEF materials to atomic oxygen exposure, thereby simulating LDEF leading edge phenomena; (2) investigate the response of contaminated LDEF samples to atomic oxygen in attempts to understand LDEF contamination-atomic oxygen interactions. This paper describes the response of these materials to atomic oxygen exposure, and compares the results of the EOIM 3 experiment to the LDEF mission and to ground-based atomic oxygen exposure studies.
D-558-2 being mounted to P2B-1S launch aircraft
NASA Technical Reports Server (NTRS)
1953-01-01
This 1953 NACA High-Speed Flight Research Station photograph shows the Douglas D-558-2 #2 Skyrocket (NACA 144), prior to flight, being towed under the P2B-1S (Navy designation for the Air Force B-29) launch vehicle (NACA 137) for attachment. In this view the tail of the Skyrocket is almost aligned with the opening cut to fit in the bottom of the P2B-1S. The photograph also shows the large hydraulic jacks used to elevate the P2B-1S launch vehicle. The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS). Also partners in the flight research were the Navy-Marine Corps and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in Calif. on February 4, 1948. The goals of the program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitch-up (uncommanded rotation of the nose of the airplane upwards)--a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft's behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitch-up problem in swept-wing aircraft. The three airplanes flew a total of 313 times--123 by the number one aircraft (Bureau No. 37973--NACA 143), 103 by the second Skyrocket (Bureau No. 37974--NACA 144), and 87 by airplane number three (Bureau No. 37975--NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J-34-40 turbojet engine configured only for ground take-offs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force's LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of the airplane's performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a turbojet powerplant. NACA pilots Robert A. Champine and John H. Griffith flew 21 times in this configuration to test airspeed calibrations and to research longitudinal and lateral stability and control. In the process, during August of 1949 they encountered pitch-up problems, which NACA engineers recognized as serious because they could produce a limiting and dangerous restriction on flight performance. Hence, they determined to make a complete investigation of the problem. In 1950, Douglas replaced the turbojet with an LR-8 rocket engine, and its pilot, William B. Bridgeman, flew the aircraft seven times up to a speed of Mach 1.88 (1.88 times the speed of sound) and an altitude of 79,494 feet (the latter an unofficial world's altitude record at the time, achieved on August 15, 1951). In the rocket configuration, a Navy P2B (Navy version of the B-29) launched the airplane at approximately 30,000 feet after taking off from the ground with the Skyrocket attached beneath its bomb bay. During Bridgeman's supersonic flights, he encountered a violent rolling motion known as lateral instability that was less pronounced on the Mach 1.88 flight on August 7, 1951, than on a Mach 1.85 flight in June when he pushed over to a low angle of attack (angle of the fuselage or wing to the prevailing wind direction). The NACA engineers studied the behavior of the aircraft before beginning their own flight research in the airplane in September 1951. Over the next couple of years, NACA pilot A. Scott Crossfield flew the airplane 20 times to gather data on longitudinal and lateral stability and control, wing and tail loads, and lift, drag, and buffeting characteristics at speeds up to Mach 1.878. At that point, Marine Lt. Col. Marion Carl flew the airplane to a new (unofficial) altitude record of 83,235 feet on August 21, 1953, and to a maximum speed of Mach 1.728. Following Carl's completion of these flights for the Navy, NACA technicians at the High-Speed Flight Research Station (HSFRS) near Mojave, Calif., outfitted the LR-8 engine's cylinders with nozzle extensions to prevent the exhaust gas from affecting the rudders at supersonic speeds. This addition also increased the engine's thrust by 6.5 percent at Mach 1.7 and 70,000 feet. Even before Marion Carl had flown the Skyrocket, HSFRS Chief Walter C. Williams had petitioned NACA headquarters unsuccessfully to fly the aircraft to Mach 2 to garner the research data at that speed. Finally, after Crossfield had secured the agreement of the Navy's Bureau of Aeronautics, NACA director Hugh L. Dryden relaxed the organization's usual practice of leaving record setting to others and consented to attempting a flight to Mach 2. In addition to adding the nozzle extensions, the NACA flight team at the HSFRS chilled the fuel (alcohol) so more could be poured into the tank and waxed the fuselage to reduce drag. With these preparations and employing a flight plan devised by project engineer Herman O. Ankenbruck to fly to approximately 72,000 feet and push over into a slight dive, Crossfield made aviation history on November 20, 1953, when he flew to Mach 2.005 (1,291 miles per hour). He became the first pilot to reach Mach 2 in this, the only flight in which the Skyrocket flew that fast. Following this flight, Crossfield and NACA pilots Joseph A. Walker and John B. McKay flew the airplane for such purposes as to gather data on pressure distribution, structural loads, and structural heating, with the last flight in the program occurring on December 20, 1956, when McKay obtained dynamic stability data and sound-pressure levels at transonic speeds and above. Meanwhile, NACA 145 had completed 21 contractor flights by Douglas pilots Eugene F. May and Bill Bridgeman in November 1950. In this jet-and-rocket-propelled craft, Scott Crossfield and Walter Jones began the NACA's investigation of pitch-up lasting from September 1951 well into the summer of 1953. They flew the Skyrocket with a variety of wing-fence, wing-slat, and leading-edge chord extension configurations, performing various maneuvers as well as straight-and-level flying at transonic speeds. While fences significantly aided recovery from pitch-up conditions, leading edge chord extensions did not, disproving wind-tunnel tests to the contrary. Slats (long, narrow auxiliary airfoils) in the fully open position eliminated pitch-up except in the speed range around Mach 0.8 to 0.85. In June 1954, Crossfield began an investigation of the effects of external stores (bomb shapes and fuel tanks) upon the aircraft's transonic behavior. McKay and Stanley Butchart completed the NACA's investigation of this issue, with McKay flying the final mission on August 28, 1956. Besides setting several records, the Skyrocket pilots had gathered important data and understanding about what would and would not work to provide stable, controlled flight of a swept-wing aircraft in the transonic and supersonic flight regimes. The data they gathered also helped to enable a better correlation of wind-tunnel test results with actual flight values, enhancing the abilities of designers to produce more capable aircraft for the armed services, especially those with swept wings. Moreover, data on such matters as stability and control from this and other early research airplanes aided in the design of the century series of fighter airplanes, all of which featured the movable horizontal stabilizers first employed on the X-1 and D-558 series.
D-558-2 being mounted to P2B-1S launch aircraft
NASA Technical Reports Server (NTRS)
1953-01-01
This 1953 NACA High-Speed Flight Research Station photograph shows the Douglas D-558-2 #2 Skyrocket (NACA 144), prior to flight, being towed under the P2B-1S launch vehicle (NACA 137) for attachment. The photograph also shows the large hydraulic jacks used to elevate the P2B-1S launch vehicle. Once the D-558-2 was in position, the P2B-1S would be lowered and the attachment made. The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS); the Navy-Marine Corps; and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in Calif. on February 4, 1948. The goals of the program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitch-up (uncommanded rotation of the nose of the airplane upwards)--a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft's behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitch-up problem in swept-wing aircraft. The three airplanes flew a total of 313 times--123 by the number one aircraft (Bureau No. 37973--NACA 143), 103 by the second Skyrocket (Bureau No. 37974--NACA 144), and 87 by airplane number three (Bureau No. 37975--NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J-34-40 turbojet engine configured only for ground take-offs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force's LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of the airplane's performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a turbojet powerplant. NACA pilots Robert A. Champine and John H. Griffith flew 21 times in this configuration to test airspeed calibrations and to research longitudinal and lateral stability and control. In the process, during August of 1949 they encountered pitch-up problems, which NACA engineers recognized as serious because they could produce a limiting and dangerous restriction on flight performance. Hence, they determined to make a complete investigation of the problem. In 1950, Douglas replaced the turbojet with an LR-8 rocket engine, and its pilot, William B. Bridgeman, flew the aircraft seven times up to a speed of Mach 1.88 (1.88 times the speed of sound) and an altitude of 79,494 feet (the latter an unofficial world's altitude record at the time, achieved on August 15, 1951). In the rocket configuration, a Navy P2B (Navy version of the B-29) launched the airplane at approximately 30,000 feet after taking off from the ground with the Skyrocket attached beneath its bomb bay. During Bridgeman's supersonic flights, he encountered a violent rolling motion known as lateral instability that was less pronounced on the Mach 1.88 flight on August 7, 1951, than on a Mach 1.85 flight in June when he pushed over to a low angle of attack (angle of the fuselage or wing to the prevailing wind direction). The NACA engineers studied the behavior of the aircraft before beginning their own flight research in the airplane in September 1951. Over the next couple of years, NACA pilot A. Scott Crossfield flew the airplane 20 times to gather data on longitudinal and lateral stability and control, wing and tail loads, and lift, drag, and buffeting characteristics at speeds up to Mach 1.878. At that point, Marine Lt. Col. Marion Carl flew the airplane to a new (unofficial) altitude record of 83,235 feet on August 21, 1953, and to a maximum speed of Mach 1.728. Following Carl's completion of these flights for the Navy, NACA technicians at the High-Speed Flight Research Station (HSFRS) near Mojave, Calif., outfitted the LR-8 engine's cylinders with nozzle extensions to prevent the exhaust gas from affecting the rudders at supersonic speeds. This addition also increased the engine's thrust by 6.5 percent at Mach 1.7 and 70,000 feet. Even before Marion Carl had flown the Skyrocket, HSFRS Chief Walter C. Williams had petitioned NACA headquarters unsuccessfully to fly the aircraft to Mach 2 to garner the research data at that speed. Finally, after Crossfield had secured the agreement of the Navy's Bureau of Aeronautics, NACA director Hugh L. Dryden relaxed the organization's usual practice of leaving record setting to others and consented to attempting a flight to Mach 2. In addition to adding the nozzle extensions, the NACA flight team at the HSFRS chilled the fuel (alcohol) so more could be poured into the tank and waxed the fuselage to reduce drag. With these preparations and employing a flight plan devised by project engineer Herman O. Ankenbruck to fly to approximately 72,000 feet and push over into a slight dive, Crossfield made aviation history on November 20, 1953, when he flew to Mach 2.005 (1,291 miles per hour). He became the first pilot to reach Mach 2 in this, the only flight in which the Skyrocket flew that fast. Following this flight, Crossfield and NACA pilots Joseph A. Walker and John B. McKay flew the airplane for such purposes as to gather data on pressure distribution, structural loads, and structural heating, with the last flight in the program occurring on December 20, 1956, when McKay obtained dynamic stability data and sound-pressure levels at transonic speeds and above. Meanwhile, NACA 145 had completed 21 contractor flights by Douglas pilots Eugene F. May and Bill Bridgeman in November 1950. In this jet-and-rocket-propelled craft, Scott Crossfield and Walter Jones began the NACA's investigation of pitch-up lasting from September 1951 well into the summer of 1953. They flew the Skyrocket with a variety of wing-fence, wing-slat, and leading-edge chord extension configurations, performing various maneuvers as well as straight-and-level flying at transonic speeds. While fences significantly aided recovery from pitch-up conditions, leading edge chord extensions did not, disproving wind-tunnel tests to the contrary. Slats (long, narrow auxiliary airfoils) in the fully open position eliminated pitch-up except in the speed range around Mach 0.8 to 0.85. In June 1954, Crossfield began an investigation of the effects of external stores (bomb shapes and fuel tanks) upon the aircraft's transonic behavior. McKay and Stanley Butchart completed the NACA's investigation of this issue, with McKay flying the final mission on August 28, 1956. Besides setting several records, the Skyrocket pilots had gathered important data and understanding about what would and would not work to provide stable, controlled flight of a swept-wing aircraft in the transonic and supersonic flight regimes. The data they gathered also helped to enable a better correlation of wind-tunnel test results with actual flight values, enhancing the abilities of designers to produce more capable aircraft for the armed services, especially those with swept wings. Moreover, data on such matters as stability and control from this and other early research airplanes aided in the design of the century series of fighter airplanes, all of which featured the movable horizontal stabilizers first employed on the X-1 and D-558 series.
APOLLO 17 PRELAUNCH ASTRONAUT TRAINING
NASA Technical Reports Server (NTRS)
1972-01-01
Apollo Command Module Pilot Evans, left, and Mission Commander Cernan, right, discuss their flight plans as each prepares to fly a T-38 jet aircraft at Patrick Air Force Base just south of the Spaceport. Astronauts Cernan and Evans flew the T-38 aircraft today on training flights over the Kennedy Space Center area to practice flying skills in preparation for upcoming launch to the Moon scheduled 12/06/72.
The Impact of Conflicting Spatial Representations in Airborne Unmanned Aerial System Sensor Control
2016-02-01
Spatial Discordance 1 Running head: SPATIAL DISCORDANCE IN AIRBORNE UAS OPERATIONS The impact of conflicting spatial...representations in airborne unmanned aerial system sensor control Joseph W Geeseman, James E Patrey, Caroline Davy, Katherine Peditto, & Christine Zernickow...system (UAS) simulation while riding in the fuselage of an airborne Lockheed P-3 Orion. The P-3 flew a flight profile of intermittent ascending
2002-02-24
KENNEDY SPACE CENTER, FLA. - John Glenn Jr. speaks to the audience at KSC's Apollo/Saturn V Center during the dinner celebration of the 40th anniversary of American spaceflight. Glenn was the first American to orbit the Earth, aboard the Friendship 7 spacecraft. That journey lasted nearly five hours. In 1998, 36 years later, Glenn flew on Space Shuttle Discovery on mission STS-95, orbiting the Earth for 218 hours
1969-11-18
The HL-10 Lifting Body is seen here in powered flight shortly after launch from the B-52 mothership. When HL-10 powered flights began on October 23, 1968, the vehicle used the same basic XLR-11 rocket engine that powered the original X-1s. A total of five powered flights were made before the HL-10 first flew supersonically on May 9, 1969, with John Manke in the pilot's seat.
CloudSat Takes a 3D Slice of Hurricane Matthew
2016-10-07
NASA's CloudSat flew east of Hurricane Matthew's center on Oct. 6 at 11:30 a.m. PDT (2:30 p.m. EDT), intersecting parts of Matthew's outer rain bands and revealing Matthew's anvil clouds (thick cirrus cloud cover), with cumulus and cumulonimbus clouds beneath (lower image). Reds/pinks are larger water/ice droplets. http://photojournal.jpl.nasa.gov/catalog/PIA21095
The response of adult red-cockaded woodpeckers to a fallen nestling
Richard R. Schaefer; D. Craig Rudolph; Richard N. Conner
1991-01-01
The response of adult Red-cockaded Woodpeckers to a fallen nestling- On 31 May 1990, while watching a pair of Red-cockaded Woodpeckers (Picoides borealis) feeding two 20- day-old nestlings, we observed the following behavior. At 6:30 DST, the adult male flew to the entrance of the nest cavity with prey. He did not immediately offer the prey to the...
2010-09-09
Dr. Anita Cochran, Assistant Director, McDonald Observatory at the University of Texas-Austin, speaks during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)
NASA's F-15B conducts a local Mach investigation flight over California's Mojave Desert.
2004-06-01
NASA's F-15B Research Testbed aircraft flew instrumentation in June 2004 called the Local Mach Investigation (LMI), designed to gather local airflow data for future research projects using the aircraft's Propulsion Flight Test Fixture (PFTF). The PFTF is the black rectangular fixture attached to the aircraft's belly. The LMI package was located in the orange device attached to the PFTF.
NASA's F-15B conducts a local Mach investigation flight over California's Mojave Desert.
2004-06-04
NASA's F-15B Research Testbed aircraft flew instrumentation in June 2004 called the Local Mach Investigation (LMI), designed to gather local airflow data for future research projects using the aircraft's Propulsion Flight Test Fixture (PFTF). The PFTF is the black rectangular fixture attached to the aircraft's belly. The LMI package was located in the orange device attached to the PFTF.
National Federation of the Blind Braille Coin
2009-07-30
Dr. Marc Mauer, president of the National Federation of the Blind, at podium, speaks at a ceremony where senior NASA officials presented the NFB with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)
National Federation of the Blind Braille Coin
2009-07-30
Mark Riccobono, executive director of the Jernigan Institute of the National Federation of the Blind speaks at a ceremony where senior NASA officials presented the NFB with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)
National Federation of the Blind Braille Coin
2009-07-30
House Majority Leader U.S. Rep. Steny Hoyer, D-Md., speaks at a ceremony where senior NASA officials presented the National Federation for the Blind with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)
National Federation of the Blind Braille Coin
2009-07-30
House Majority Leader U.S. Rep. Steny Hoyer, D-Md., speaks at a ceremony where senior NASA officials presented the National Federation of the Blind with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)
Through the Libyan Looking Glass
2012-05-22
Treasury, Spending Review 2010 (London: The Stationary Office, October 2010), 57-58. 10 removed wholesale capabilities such as the NIMROD maritime...With the cancellation of the NIMROD programme, the UK no longer maintains a Maritime Patrol Aircraft that can provide maritime early warning for...target indicator aircraft, and the NIMROD R1 Signals Intelligence platform, which flew missions every other day. The “limited” US contribution
NASA Technical Reports Server (NTRS)
1999-01-01
Edwin W. Lewis Jr. is a research pilot in the Airborne Science program, Flight Crew Branch, Dryden Flight Research Center, Edwards, California. He currently flies the DC-8, F/A-18, Lear Jet 24, King Air, and T-34C in support of Dryden's flight operations and is mentor pilot for the King Air and the Lear Jet. Prior to accepting this assignment Lewis was a pilot for eight years at NASA's Ames Research Center, Moffett Field, California, flying 10 different aircraft - C-130B, DC-8-72, UH-1, SH-3, King Air, Lear 24, T-38A, T-39G and YO-3A - in support of NASA flight missions. Lewis also flew the Kuiper Airborne Observatory (a modified civilian version of the Lockheed C-141 Starlifter). He was project pilot for Ames' 747 and T-38 programs. Lewis was born in New York City on May 19, 1936, and began flight training as a Civil Air Patrol cadet in 1951, ultimately earning his commercial pilot's certificate in 1958. He received a bachelor of arts degree in biology from Hobart College, Geneva, N.Y., and entered the U.S. Air Force through the Reserve Officer Training Corps. Following pilot training he was assigned to Moody Air Force Base, Ga., as an instructor pilot, for both the T-33 and T-37 aircraft. He served in Vietnam in 1965 and 1966, where he was a forward air controller, instructor and standardization/evaluation pilot, flying more than 1,000 hours in the O-1 'Bird Dog.' Lewis separated from the regular Air Force and joined Pan American World Airways and the 129th Air Commando Group, California Air National Guard (ANG) based in Hayward, California. During his 18-year career with the California ANG he flew the U-6, U-10, C-119, HC-130 aircraft and the HH-3 helicopter. He retired as commander, 129th Air Rescue and Recovery Group, a composite combat rescue group, in the grade of colonel. During his 22 years as an airline pilot, he flew the Boeing 707, 727 and 747. He took early retirement from Pan American in 1989 to become a pilot with NASA.
1999-09-29
Edwin W. Lewis Jr. is a research pilot in the Airborne Science program, Flight Crew Branch, Dryden Flight Research Center, Edwards, California. He currently flies the DC-8, F/A-18, Lear Jet 24, King Air, and T-34C in support of Dryden's flight operations and is mentor pilot for the King Air and the Lear Jet. Prior to accepting this assignment Lewis was a pilot for eight years at NASA's Ames Research Center, Moffett Field, California, flying 10 different aircraft C-130B, DC-8-72, UH-1, SH-3, King Air, Lear 24, T-38A, T-39G and YO-3A in support of NASA flight missions. Lewis also flew the Kuiper Airborne Observatory (a modified civilian version of the Lockheed C-141 Starlifter). He was project pilot for Ames' 747 and T-38 programs. Lewis was born in New York City on May 19, 1936, and began flight training as a Civil Air Patrol cadet in 1951, ultimately earning his commercial pilot's certificate in 1958. He received a bachelor of arts degree in biology from Hobart College, Geneva, N.Y., and entered the U.S. Air Force through the Reserve Officer Training Corps. Following pilot training he was assigned to Moody Air Force Base, Ga., as an instructor pilot, for both the T-33 and T-37 aircraft. He served in Vietnam in 1965 and 1966, where he was a forward air controller, instructor and standardization/evaluation pilot, flying more than 1,000 hours in the O-1 "Bird Dog." Lewis separated from the regular Air Force and joined Pan American World Airways and the 129th Air Commando Group, California Air National Guard (ANG) based in Hayward, California. During his 18-year career with the California ANG he flew the U-6, U-10, C-119, HC-130 aircraft and the HH-3 helicopter. He retired as commander, 129th Air Rescue and Recovery Group, a composite combat rescue group, in the grade of colonel. During his 22 years as an airline pilot, he flew the Boeing 707, 727 and 747. He took early retirement from Pan American in 1989 to become a pilot with NASA.
Joseph A. Walker after X-15 flight #2-14-28
1961-03-30
Joseph A. Walker was a Chief Research Pilot at the NASA Dryden Flight Research Center during the mid-1960s. He joined the NACA in March 1945, and served as project pilot at the Edwards flight research facility on such pioneering research projects as the D-558-1, D-558-2, X-1, X-3, X-4, X-5, and the X-15. He also flew programs involving the F-100, F-101, F-102, F-104, and the B-47. Walker made the first NASA X-15 flight on March 25, 1960. He flew the research aircraft 24 times and achieved its fastest speed and highest altitude. He attained a speed of 4,104 mph (Mach 5.92) during a flight on June 27, 1962, and reached an altitude of 354,300 feet on August 22, 1963 (his last X-15 flight). He was the first man to pilot the Lunar Landing Research Vehicle (LLRV) that was used to develop piloting and operational techniques for lunar landings. Walker was born February 20, 1921, in Washington, Pa. He lived there until graduating from Washington and Jefferson College in 1942, with a B.A. degree in Physics. During World War II he flew P-38 fighters for the Air Force, earning the Distinguished Flying Cross and the Air Medal with Seven Oak Clusters. Walker was the recipient of many awards during his 21 years as a research pilot. These include the 1961 Robert J. Collier Trophy, 1961 Harmon International Trophy for Aviators, the 1961 Kincheloe Award and 1961 Octave Chanute Award. He received an honorary Doctor of Aeronautical Sciences degree from his alma mater in June of 1962. Walker was named Pilot of the Year in 1963 by the National Pilots Association. He was a charter member of the Society of Experimental Test Pilots, and one of the first to be designated a Fellow. He was fatally injured on June 8, 1966, in a mid-air collision between an F-104 he was piloting and the XB-70.
2007-03-16
Nils Larson is a research pilot in the Flight Crew Branch of NASA's Dryden Flight Research Center, Edwards, Calif. Larson joined NASA in February 2007 and will fly the F-15, F-18, T-38 and ER-2. Prior to joining NASA, Larson was on active duty with the U.S. Air Force. He has accumulated more that 4,900 hours of military and civilian flight experience in more than 70 fixed and rotary winged aircraft. Larson completed undergraduate pilot training at Williams Air Force Base, Chandler, Ariz., in 1987. He remained at Williams as a T-37 instructor pilot. In 1991, Larson was assigned to Beale Air Force Base, Calif., as a U-2 pilot. He flew 88 operational missions from Korea, Saudi Arabia, the United Kingdom, Panama and other locations. Larson graduated from the U.S. Air Force Test Pilot School at Edwards Air Force Base, Calif., in Class 95A. He became a flight commander and assistant operations officer for the 445th squadron at Edwards. He flew the radar, avionics integration and engine tests in F-15 A-D, the early flights of the glass cockpit T-38C and airworthiness flights of the Coast Guard RU-38. He was selected to serve as an Air Force exchange instructor at the U.S. Naval Test Pilot School, Patuxent River, Md. He taught systems and fixed-wing flight test and flew as an instructor pilot in the F-18, T-2, U-6A Beaver and X-26 Schweizer sailplane. Larson commanded U-2 operations for Warner Robins Air Logistics Center's Detachment 2 located in Palmdale, Calif. In addition to flying the U-2, Larson supervised the aircraft's depot maintenance and flight test. He was the deputy group commander for the 412th Operations Group at Edwards before retiring from active duty in 2007 with the rank of lieutenant colonel. His first experience with NASA was at the Glenn Research Center, Cleveland, where he served a college summer internship working on arcjet engines. Larson is a native of Bethany, W.Va,, and received his commission from the U.S. Air Force Academy in 1986 with a
Research pilot John Griffith leaning out of the hatch on the X-1 #2
NASA Technical Reports Server (NTRS)
1950-01-01
In this photo, NACA research pilot John Griffith is leaning out the hatch of the X-1 #2. Surrounding him (left to right) are Dick Payne, Eddie Edwards, and maintenance chief Clyde Bailey. John Griffith became a research pilot at the National Advisory Committee for Aeronautics's Muroc Flight Test Unit in August of 1949, shortly before the NACA unit became the High-Speed Flight Research Station (now, NASA's Dryden Flight Research Center at Edwards, California). He flew the early experimental airplanes-the X-1, X-4, and D-558-1 and -2-flying the X-1 nine times, the X-4 three times, the D-558-1 fifteen times, and the D-558-2 nine times. He reached his top speed in the X-1 on 26 May 1950 when he achieved a speed of Mach 1.20. He was the first NACA pilot to fly the X-4. He left the NACA in 1950 to fly for Chance Vought in the F7U Cutlass. He then flew for United Airlines and for Westinghouse, where he became the Chief Engineering Test Pilot. He went on to work for the Federal Aviation Administration, assisting in the development of a supersonic transport before funding for that project ended. He then returned to United Airlines and worked as a flight instructor. John grew up in Homewood, Illinois, and attended Thornton Township Junior College in Harvey, Illinois, where he graduated as valedictorian in pre-engineering. He entered the Army Air Corps in November 1941, serving in the South Pacific during the Second World War that started soon after he joined. In 1942 and 1943 he flew 189 missions in the P-40 in New Guinea and was awarded two Distinguished Flying Crosses and four air medals. In October 1946, he left the service and studied aeronautical engineering at Purdue University, graduating with honors. He then joined the NACA at the Lewis Flight Propulsion Laboratory in Cleveland, Ohio (today's Glenn Research Center), where he participated in ramjet testing and icing research until moving to Muroc. Following his distinguished career, he retired to Penn Valley, California.
Rosetta - ESA's new comet chaser
NASA Astrophysics Data System (ADS)
1999-06-01
The Rosetta orbiter will literally chase comet Wirtanen for two years, sending back valuable data and ensuring Europe retains its lead in comet science. A lander will attach itself to this lump of frozen ice and dust, which is travelling through space at over 130,000 kilometres per hour, and analyse samples. Just as the re-discovery of the Rosetta Stone, 200 years ago, enabled the mysteries of ancient Egyptian hieroglyphics to be unrravelled, so the Rosetta mission will help scientists learn even more about comets, the most primitive objects in the solar system. In 1986, ESA's Giotto spacecraft flew into the tail of Halley's Comet. That was ESA's first interplanetary mission and it was hailed as an outstanding success. The pictures and scientific data that Giotto sent back placed Europe at the forefront of comet science. Notes for Editors : On the day of the press event, the now deactivated Giotto spacecraft will do an Earth flyby 13 years after its encounter with Halley's Comet. The British Museum is celebrating 200-years anniversary of the Rosetta Stone, with an exhibition that includes a model of its modern equivalent, the Rosetta spacecraft.
Flight performance, energetics and water turnover of tippler pigeons with a harness and dorsal load
Gessaman, J.A.; Workman, G.W.; Fuller, M.R.
1991-01-01
We measured carbon dioxide production and water efflux of 12 tippler pigeons (Columba spp.) during seven experimental flights using the doubly labeled water (DLW) method. Prior to the experiment birds were randomly assigned to one of two groups. One group flew as controls (no load or harness) on all seven flights. The other group wore a harness on two flights, a dorsal load/harness package (weighing about 5% of a bird's mass) on two flights, and they were without a load in three flights. Flight duration of pigeons with only a harness and with a dorsal load/harness package was 21 and 26% less, respectively, than the controls. Pigeons wearing a harness, or wearing a dorsal load/harness package lost water 50-90%, and 57-100% faster, respectively, than control pigeons. The mean CO2 production of pigeons wearing a harness or a load/harness package was not significantly different than pigeons without a harness or load. The small sample sizes and large variability in DLW measuremets precluded a good test of the energetic cost of flying with a harness and dorsal load.
Flight performance energetics and water turnovers of Tippler Pigeons with a harness and doorsal load
Gessaman, James A.; Workman, Gar W.; Fuller, Mark R.
1991-01-01
We measured carbon dioxide production and water efflux of 12 tippler pigeons (Columba spp.) during seven experimental flights using the doubly labeled water (DLW) method. Prior to the experiment birds were randomly assigned to one of two groups. One group flew as controls (no load or harness) on all seven flights. The other group wore a harness on two flights, a dorsal load/harness package (weighing about 5% of a birda??s mass) on two flights, and they were without a load in three flights. Plight duration of pigeons with only a harness and with a dorsal load/harness package was 21 and 26% less, respectively, than the controls. Pigeons wearing a harness, or wearing a dorsal load/harness package lost water 50-90%, and 57-100% faster, respectively, than control pigeons. The mean CO, production of pigeons wearing a harness or a load/harness package was not significantly different than pigeons without a harness or load. The small sample sizes and large variability in DLW measurements precluded a good test of the energetic cost of flying with a harness and dorsal load.
Coarsening in Solid-Liquid Mixtures-2: A Materials Science Experiment for the ISS
NASA Technical Reports Server (NTRS)
Hickman, J. Mark; Voorhees, Peter W.; Kwon, Yongwoo; Lorik, Tibor
2004-01-01
A materials science experiment has been developed and readied for operation aboard the International Space Station (ISS). Components of this experiment are onboard ISS and area awaiting the flight of science samples. The goal of the experiment is to understand the dynamics of Ostwald ripening, also known as coarsening, a process that occurs in nearly any two-phase mixture found in nature. Attempts to obtain experimental data in ground-based laboratories are hindered due to the presence of gravity, which introduces material transport modes other than that of the coarsening phenomenon. This introduces adjustable parameters in the formulation of theory. The original Coarsening in Solid-Liquid Mixtures (CSLM) mission, which flew on the Space Shuttle in 1997, produced data from a coarsened eutectic alloy. Unfortunately, both the science matrix and the hardware, while nominally functional, did not account adequately for operations in microgravity. A significantly redesigned follow-on experiment, CSLM-2 has been developed to redress the inadequacies of the original experiment. This paper reviews the CSLM-2 project: its history, science goals, flight hardware implementation, and planned operations and analysis
STS-69 Mission Commander David M. Walker arrives at SLF
NASA Technical Reports Server (NTRS)
1995-01-01
STS-69 Mission Commander David M. Walker arrives at KSC's Shuttle Landing Facility. Walker and four fellow crew members flew in from Johnson Space Center, Houston in the T-38 jet aircraft traditionally used by the astronaut corps. Later today, the countdown will begin as final preparations continue toward liftoff of the Space Shuttle Endeavour at 11:04 a.m. EDT, August 31 on STS-69.
JPRS Report, Near East & South Asia
1990-10-23
booster was tested at the Interim Testing Range at Balasore , Orissa and flew till the CMDB (Composite Modified Double Base) solid-propellent burned...ITR) at Chandipur-on-sea in Balasore dis- trict yesterday, according to Dr A.P.J. Abdul Kalam, director of the Defence Research and Development...high-energy propulsion system was used in the missile but the next launch would have another propulsion system. Meanwhile, a Balasore report
Threat Recognition and Response. Volume 2,
1986-08-01
strongly anti-communist caretaker regime. Tunku Abdul Rahman, the Malay conservative anti-colonialist leader of the Alliance Party was invited to pay an...May 1961 Tunku Abdul Rahman, the new Prime Minister of Malaya, proposed a ’closer understanding’ with Britain and the peoples of Singapore, North...dispute. Senator Robert Kennedy met Sukarno in Tokyo in mid-January 1964, and later flew to Kuala Lumpur for discussions with Tunku Abdul Rahman. A
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Bryan, Thomas C.
2007-01-01
The Advanced Video Guidance Sensor (AVGS) was designed to be the proximity operations sensor for the Demonstration of Autonomous Rendezvous Technologies (DART). The DART mission flew in April of2005 and was a partial success. The AVGS did not get the opportunity to operate in every mode in orbit, but those modes in which it did operate were completely successful. This paper will detail the development, testing, and on-orbit performance of the AVGS.
The Star-Spangled Banner Project: Save Our History[TM]. Teacher's Manual, Grades K-8.
ERIC Educational Resources Information Center
O'Connell, Libby, Ed.
The Star-Spangled Banner is the original flag that flew over Fort McHenry in Baltimore (Maryland) during its attack by the British during the War of 1812. It inspired Francis Scott Key, a lawyer being held on board a British ship in Baltimore Harbor, to write a poem that later became the words to the national anthem. Since 1907, the Star-Spangled…
Asteroid 5535 Annefrank size, shape, and orientation: Stardust first results
NASA Technical Reports Server (NTRS)
Duxbury, T. C.; Newburn, R. L., Jr.; Acton, C. H.; Carranza, E.; McElrath, T. P.; Ryan, R. E.; Synnott, S. P.; You, T. H.; Brownlee, D. E.; Cheuvront, A. R.;
2004-01-01
The NASA Discovery Stardust spacecraft flew by the main belt asteroid 5535 Annefrank at a distance of 3100 km and a speed of 7.4 km/s in November 2002 to test the encounter sequence developed for its primary science target, the comet 81P/Wild2. During this testing, over 70 images of Annefrank were obtained, taken over a phase angle range from 40 to 140 degrees.
Galileo - Ganymede Family Night
NASA Technical Reports Server (NTRS)
1996-01-01
This videotape is a continuation of tape number NONP-NASA-VT-2000036029. When the Galileo spacecraft flew by Ganymede, Jupiter's and the solar system's largest satellite, the project scientist and engineers gather together with their friends and family to view the photos as they are received. This videotape presents the last part of that meeting, which culminates in the announcement of the confirmation of the fly-by, and a review of the current trajectory status.
Discovery STS-133 Mission Landing
2011-03-09
The runway of the Shuttle Landing Facility (SLF) is marked to show where the wheels stopped for the space shuttle Discovery (STS-133) shortly after it landed, Wednesday, March 9, 2011, at Kennedy Space Center in Cape Canaveral, Fla., completing its 39th and final flight. Since 1984, Discovery flew 39 missions, spent 365 days in space, orbited Earth 5,830 times and traveled 148,221,675 miles. Photo credit: (NASA/Bill Ingalls)
Physics-Based Virtual Fly-Outs of Projectiles on Supercomputers
2006-11-01
moved along with its grid as it flew downrange. The supersonic projectile modeled in this study is an ogive- cylinder -finned configuration (see...resulting from the unsteady jet interaction flow field is clearly evident (Figure 10). The effect of the jet is stronger as evidenced by the larger...little or no effect on the other aerodynamic forces. These results show the potential to gain fundamental understanding of the complex, flow
2012-06-01
Soviet Union to the most recent operations of the United States. The British presence in the region dates back to the nineteenth century. The British...lost several dozen men. Maj N. G. Ten’kov Introduction The Soviet Union occupied Afghanistan for nine years from the end of 1979 to 1989...terrain, transport aircraft flew in supplies from the Soviet Union , as well as missions to supply isolated posts and surrounded garrisons.26 They
NASA STS-132 Air and Space Museum
2010-07-26
Dr. John Mather, NASA Goddard Space Flight Center scientist and Nobel Laureate, center, presents Gen. John R. “Jack” Dailey, director of the Smithsonian National Air and Space Museum, left, with a a replica of Mather’s Nobel Prize medal that flew in space aboard STS-132, as astronaut Piers Sellers looks on, during a ceremony at the museum, Tuesday, July 27, 2010, in Washington. Photo Credit: (NASA/Paul E. Alers)
NASA ER-2 flys over Hurricane Dennis during TSCP mission.
2005-07-06
The NASA ER-2 airplane flew over hurricane Dennis as part of the Tropical Cloud Systems and Processes "TSCP" Mission. This 28-day field mission sponsored by NASA's Science Mission Directorate is studying the bursting conditions for tropical storms, hurricanes and related phenomena. The flight originated from TSCP's base-of-operations in San Juan Santa Maria airport in San Jose, Costa Rica. Photo Credit: "NASA/Bill Ingalls"
National Federation of the Blind Braille Coin
2009-07-30
NASA astronaut Greg Johnson, left, speaks with Dr. Marc Mauer, president of the National Federation of the Blind, right, prior to a ceremony where senior NASA officials presented the NFB with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)
National Federation of the Blind Braille Coin
2009-07-30
Mark Riccobono, executive director of the Jernigan Institute of the National Federation of the Blind, at podium, delivers remarks at a ceremony where senior NASA officials presented the NFB with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)
Plasma and radio waves from Neptune: Source mechamisms and propagation
NASA Technical Reports Server (NTRS)
Menietti, J. Douglas
1994-01-01
The purpose of this project was to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as it flew by Neptune. The study has included data analysis, theoretical and numerical calculations, and ray tracing to determine the possible source mechanisms and locations of the radiation, including the narrowband bursty and smooth components of the Neptune radio emission.
2012-04-03
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, Mike Williams, a thermal protection system technician with United Space Alliance, applies adhesive to the right wing of space shuttle Endeavour in preparation for tile bonding. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston
Wiegmann, Douglas A; Goh, Juliana; O'Hare, David
2002-01-01
Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.
Results of an International Space Crew Debrief
NASA Technical Reports Server (NTRS)
Santy, P. A.; Holland, A. W.; Looper, L.; Marcondes-North, R.
1992-01-01
In order to identify potential multi-cultural and multinational problems for future International Space Station Freedom crew, a crew debrief questionnaire was developed for U.S. astronauts who flew on shuttle missions with one or more crew members from other countries. Methods: From 1981-90, a total of 20 U.S. astronauts flew on international space missions. Debriefs were mailed to all 20 with instructions not to identify themselves or their specific mission. The debrief focused primarily on preflight training and post flight incidents of misunderstanding, miscommunication, and interpersonal friction among crewmembers. Astronauts were also asked to rate the impact of the incident to the mission (low, medium, high). Results: Ten astronauts responded, but only nine responses were able to be scored, for a return rate of 45 percent. 42 incidents were reported, 9 in the preflight period, 26 inflight, and 7 in the postflight period. Most of the incidents were rated at a low or medium impact, but 5 of the inflight incidents were rated at a 'high' mission impact. A number of causes for the problems were listed, and are discussed. Conclusions: The debrief respondents provide useful and timely recommendations on preflight training which might help facilitate the integration of multinational crews and prevent multi-cultural or multinational factors from interfering with mission operations.
Effects of workload preview on task scheduling during simulated instrument flight.
Andre, A D; Heers, S T; Cashion, P A
1995-01-01
Our study examined pilot scheduling behavior in the context of simulated instrument flight. Over the course of the flight, pilots flew along specified routes while scheduling and performing several flight-related secondary tasks. The first phase of flight was flown under low-workload conditions, whereas the second phase of flight was flown under high-workload conditions in the form of increased turbulence and a disorganized instrument layout. Six pilots were randomly assigned to each of three workload preview groups. Subjects in the no-preview group were not given preview of the increased-workload conditions. Subjects in the declarative preview group were verbally informed of the nature of the flight workload manipulation but did not receive any practice under the high-workload conditions. Subjects in the procedural preview group received the same instructions as the declarative preview group but also flew half of the practice flight under the high-workload conditions. The results show that workload preview fostered efficient scheduling strategies. Specifically, those pilots with either declarative or procedural preview of future workload demands adopted an efficient strategy of scheduling more of the difficult secondary tasks during the low-workload phase of flight. However, those pilots given a procedural preview showed the greatest benefits in overall flight performance.
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.
2015-01-01
The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Parrish, Russell V.; Bailey, Randall E.
2004-01-01
In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents, where a fully functioning airplane is inadvertently flown into the ground. The major hypothesis for a simulation experiment conducted at NASA Langley Research Center was that a Primary Flight Display (PFD) with synthetic terrain will improve pilots ability to detect and avoid potential CFITs compared to conventional instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Each pilot flew twenty-two approach departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, flight guidance cues were altered such that the departure path went into terrain. All pilots with a synthetic vision system (SVS) PFD (twelve of sixteen pilots) noticed and avoided the potential CFIT situation. The four pilots who flew the anomaly with the conventional baseline PFD configuration (which included a TAWS and VSD enhanced ND) had a CFIT event. Additionally, all the SVS display concepts enhanced the pilot s situational awareness, decreased workload and improved flight technical error (FTE) compared to the baseline configuration.
Cockpit Displays to Support Hazard Awareness in Free Flight
NASA Technical Reports Server (NTRS)
Wickens, Christopher D.; Carbonari, Ron; Merwin, Dave; Morphew, Ephimia; OBrien, Janelle V.
1997-01-01
Three experiments are described which each examine different aspects of the formatting and integration of cockpit displays of traffic information to support pilots in traffic avoidance planning. The first two experiments compared two-dimensional (coplanar) with three-dimensional (perspective) versions of a cockpit display of traffic information. In Experiment 1, 30 certified flight instructors flew a series of traffic conflict detection and avoidance maneuvers around an intruder aircraft, sometimes in the presence of a second intruder. The results revealed an advantage for the coplanar display, particularly when there was vertical intruder behavior. In Experiment 2, 17 instructors flew with the coplanar and perspective formats when weather information was either overlaid or displayed separately. Again performance was best with the coplanar display, particularly when the weather data were overlaid. The results of both experiments are also discussed in ten-ns of the traffic maneuver stereotypes exhibited by the pilots. Experiment 3 examined the benefits of the two different predictor elements used in the coplanar displays of Experiments 1 and 2. The study was carried out in a multitask context. These elements were both found to improve safety (reduce actual and predicted conflicts) and to reduce workload, although the different elements affected workload in different ways. Neither predictor element imposed a cost to concurrent task performance.
Seabird species vary in behavioural response to drone census.
Brisson-Curadeau, Émile; Bird, David; Burke, Chantelle; Fifield, David A; Pace, Paul; Sherley, Richard B; Elliott, Kyle H
2017-12-20
Unmanned aerial vehicles (UAVs) provide an opportunity to rapidly census wildlife in remote areas while removing some of the hazards. However, wildlife may respond negatively to the UAVs, thereby skewing counts. We surveyed four species of Arctic cliff-nesting seabirds (glaucous gull Larus hyperboreus, Iceland gull Larus glaucoides, common murre Uria aalge and thick-billed murre Uria lomvia) using a UAV and compared censusing techniques to ground photography. An average of 8.5% of murres flew off in response to the UAV, but >99% of those birds were non-breeders. We were unable to detect any impact of the UAV on breeding success of murres, except at a site where aerial predators were abundant and several birds lost their eggs to predators following UAV flights. Furthermore, we found little evidence for habituation by murres to the UAV. Most gulls flew off in response to the UAV, but returned to the nest within five minutes. Counts of gull nests and adults were similar between UAV and ground photography, however the UAV detected up to 52.4% more chicks because chicks were camouflaged and invisible to ground observers. UAVs provide a less hazardous and potentially more accurate method for surveying wildlife. We provide some simple recommendations for their use.
Delp, Michael D.; Charvat, Jacqueline M.; Limoli, Charles L.; Globus, Ruth K.; Ghosh, Payal
2016-01-01
As multiple spacefaring nations contemplate extended manned missions to Mars and the Moon, health risks could be elevated as travel goes beyond the Earth’s protective magnetosphere into the more intense deep space radiation environment. The primary purpose of this study was to determine whether mortality rates due to cardiovascular disease (CVD), cancer, accidents and all other causes of death differ in (1) astronauts who never flew orbital missions in space, (2) astronauts who flew only in low Earth orbit (LEO), and (3) Apollo lunar astronauts, the only humans to have traveled beyond Earth’s magnetosphere. Results show there were no differences in CVD mortality rate between non-flight (9%) and LEO (11%) astronauts. However, the CVD mortality rate among Apollo lunar astronauts (43%) was 4–5 times higher than in non-flight and LEO astronauts. To test a possible mechanistic basis for these findings, a secondary purpose was to determine the long-term effects of simulated weightlessness and space-relevant total-body irradiation on vascular responsiveness in mice. The results demonstrate that space-relevant irradiation induces a sustained vascular endothelial cell dysfunction. Such impairment is known to lead to occlusive artery disease, and may be an important risk factor for CVD among astronauts exposed to deep space radiation. PMID:27467019
Delp, Michael D; Charvat, Jacqueline M; Limoli, Charles L; Globus, Ruth K; Ghosh, Payal
2016-07-28
As multiple spacefaring nations contemplate extended manned missions to Mars and the Moon, health risks could be elevated as travel goes beyond the Earth's protective magnetosphere into the more intense deep space radiation environment. The primary purpose of this study was to determine whether mortality rates due to cardiovascular disease (CVD), cancer, accidents and all other causes of death differ in (1) astronauts who never flew orbital missions in space, (2) astronauts who flew only in low Earth orbit (LEO), and (3) Apollo lunar astronauts, the only humans to have traveled beyond Earth's magnetosphere. Results show there were no differences in CVD mortality rate between non-flight (9%) and LEO (11%) astronauts. However, the CVD mortality rate among Apollo lunar astronauts (43%) was 4-5 times higher than in non-flight and LEO astronauts. To test a possible mechanistic basis for these findings, a secondary purpose was to determine the long-term effects of simulated weightlessness and space-relevant total-body irradiation on vascular responsiveness in mice. The results demonstrate that space-relevant irradiation induces a sustained vascular endothelial cell dysfunction. Such impairment is known to lead to occlusive artery disease, and may be an important risk factor for CVD among astronauts exposed to deep space radiation.
1969-07-09
In preparation of the nation’s first lunar landing mission, Apollo 11, crew members underwent training to practice activities they would be performing during the mission. In this photograph Neil Armstrong approaches the helicopter he flew to practice landing the Lunar Module (LM) on the Moon. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished
2015-11-03
The 230-foot 70-meter DSS-14 antenna at Goldstone, Ca. obtained these radar images of asteroid 2015 TB145 on Oct. 31, 2015. Asteroid 2015 TB145 is depicted in eight individual radar images collected on Oct. 31, 2015 between 5:55 a.m. PDT (8:55 a.m. EDT) and 6:08 a.m. PDT (9:08 a.m. EDT). At the time the radar images were taken, the asteroid was between 440,000 miles (710,000 kilometers) and about 430,000 miles (690,000 kilometers) distant. Asteroid 2015 TB145 safely flew past Earth on Oct. 31, at 10:00 a.m. PDT (1 p.m. EDT) at about 1.3 lunar distances (300,000 miles, 480,000 kilometers). To obtain the radar images, the scientists used the 230-foot (70-meter) DSS-14 antenna at Goldstone, California, to transmit high power microwaves toward the asteroid. The signal bounced of the asteroid, and their radar echoes were received by the National Radio Astronomy Observatory's 100-meter (330-foot) Green Bank Telescope in West Virginia. The images achieve a spatial resolution of about 13 feet (4 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20043
Synthesized voice approach callouts for air transport operations
NASA Technical Reports Server (NTRS)
Simpson, C. A.
1980-01-01
A flight simulation experiment was performed to determine the effectiveness of synthesized voice approach callouts for air transport operations. Flight deck data was first collected on scheduled air carrier operations to describe existing pilot-not-flying callout procedures in the flight context and to document the types and amounts of other auditory cockpit information during different types of air carrier operations. A flight simulation scenario for a wide-body jet transport airline training simulator was developed in collaboration with a major U.S. air carrier and flown by three-man crews of qualified line pilots as part of their normally scheduled recurrent training. Each crew flew half their approaches using the experimental synthesized voice approach callout system (SYNCALL) and the other half using the company pilot-not-flying approach callout procedures (PNF). Airspeed and sink rate performance was better with the SYNCALL system than with the PNF system for non-precision approaches. For the one-engine approach, for which SYNCALL made inappropriate deviation callouts, airspeed performance was worse with SYNCALL than with PNF. Reliability of normal altitude approach callouts was comparable for PNF on the line and in the simulator and for SYNCALL in the simulator.
Anderson, E.D.; Finn, C.A.; Damaske, D.; Abraham, J.D.; Goldmann, F.; Goodge, J.W.; Braddock, P.
2006-01-01
Near complete coverage of the East Antarctic Shield by ice hampers geological study of crustal architecture important for understanding global tectonic and climate history. Limited exposures in the central Transantarctic Mountains (CTAM), however, show that Archean and Proterozoic rocks of the shield as well as Neoproterozoic-lower Paleozoic sedimentary successions were involved in oblique convergence associated with Gondwana amalgamation. Subsequently, the area was overprinted by Jurassic magmatism and Cenozoic uplift. To extend the known geology of the region to ice-covered areas, we conducted an aeromagnetic survey flown in draped mode by helicopters over the Central Transantarctic Mountains and by fixed-wing aircraft over the adjacent polar plateau. We flew more than 32,000 line km covering an area of nearly 60,000 km2 at an average altitude of 600 m, with average line spacing 2.5 km over most areas and 1.25 km over basement rocks exposed in the Miller and Geologists ranges. Additional lines flown to the north, south, and west extended preliminary coverage and tied with existing surveys. Gravity data was collected on the ground along a central transect of the helicopter survey area.
ARCADE-R2 experiment on board BEXUS 17 stratospheric balloon
NASA Astrophysics Data System (ADS)
Barbetta, Marco; Boesso, Alessandro; Branz, Francesco; Carron, Andrea; Olivieri, Lorenzo; Prendin, Jacopo; Rodeghiero, Gabriele; Sansone, Francesco; Savioli, Livia; Spinello, Fabio; Francesconi, Alessandro
2015-09-01
This paper provides an overview of the ARCADE-R2 experiment, a technology demonstrator that aimed to prove the feasibility of small-scale satellite and/or aircraft systems with automatic (a) attitude determination, (b) control and (c) docking capabilities. The experiment embodies a simplified scenario in which an unmanned vehicle mock-up performs rendezvous and docking operations with a fixed complementary unit. The experiment is composed by a supporting structure, which holds a small vehicle with one translational and one rotational degree of freedom, and its fixed target. The dual system features three main custom subsystems: a relative infrared navigation sensor, an attitude control system based on a reaction wheel and a small-scale docking mechanism. The experiment bus is equipped with pressure and temperature sensors, and wind probes to monitor the external environmental conditions. The experiment flew on board the BEXUS 17 stratospheric balloon on October 10, 2013, where several navigation-control-docking sequences were executed and data on the external pressure, temperature, wind speed and direction were collected, characterizing the atmospheric loads applied to the vehicle. This paper describes the critical components of ARCADE-R2 as well as the main results obtained from the balloon flight.
2000-12-21
Nobel laureate Professor Samuel C. C. Ting of the Massachusetts Institute of Technology pauses for a photo in the Space Station Processing Facility. Dr. Ting is directing an experiment, an international collaboration of some 37 universities and laboratories, using a state-of-the-art particle physics detector called the Alpha Magnetic Spectrometer (AMS), which will fly on a future launch to the International Space Station. Using the unique environment of space, the AMS will study the properties and origin of cosmic particles and nuclei including antimatter and dark matter. AMS flew initially as a Space Shuttle payload on the June 1998 mission STS-91 that provided the investigating team with data on background sources and verified the detector’s performance under actual space flight conditions. The detector’s second space flight is scheduled to be launched on mission UF-4 October 2003 for installation on the Space Station as an attached payload. Current plans call for operating the detector for three years before it is returned to Earth on the Shuttle. Using the Space Station offers the science team the opportunity to conduct the long-duration research above the Earth’s atmosphere necessary to collect sufficient data required to accomplish the science objectives
2000-12-21
Nobel laureate Professor Samuel C. C. Ting of the Massachusetts Institute of Technology pauses for a photo in the Space Station Processing Facility. Dr. Ting is directing an experiment, an international collaboration of some 37 universities and laboratories, using a state-of-the-art particle physics detector called the Alpha Magnetic Spectrometer (AMS), which will fly on a future launch to the International Space Station. Using the unique environment of space, the AMS will study the properties and origin of cosmic particles and nuclei including antimatter and dark matter. AMS flew initially as a Space Shuttle payload on the June 1998 mission STS-91 that provided the investigating team with data on background sources and verified the detector’s performance under actual space flight conditions. The detector’s second space flight is scheduled to be launched on mission UF-4 October 2003 for installation on the Space Station as an attached payload. Current plans call for operating the detector for three years before it is returned to Earth on the Shuttle. Using the Space Station offers the science team the opportunity to conduct the long-duration research above the Earth’s atmosphere necessary to collect sufficient data required to accomplish the science objectives
AIRSAR deployment in Australia, September 1993: Management and objectives
NASA Technical Reports Server (NTRS)
Milne, A. K.; Tapley, I. J.
1993-01-01
Past co-operation between the NASA Earth Science and Applications Division and the CSIRO and Australian university researchers has led to a number of mutually beneficial activities. These include the deployment of the C-130 aircraft with TIMS, AIS, and NS001 sensors in Australia in 1985; collaboration between scientists from the USA and Australia in soils research which has extended for the past decade; and in the development of imaging spectroscopy where DSIRO and NASA have worked closely together and regularly exchanged visiting scientists. In May this year TIMS was flown in eastern Australia on board a CSIRO-owned aircraft together with a CSIRO-designed CO2 laser spectrometer. The Science Investigation Team for the Shuttle Imaging Radar (SIRC-C) Program includes one Australian Principal Investigator and ten Australian co-investigators who will work on nine projects related to studying land and near-shore surfaces after the Shuttle flight scheduled for April 1994. This long-term continued joint collaboration was progressed further with the deployment of AIRSAR downunder in September 1993. During a five week period, the DC-8 aircraft flew in all Australian states and collected data from some 65 individual test sites.
The U.S. Rosetta Project: Mars Gravity Assist
NASA Technical Reports Server (NTRS)
Alexander, Claudia; Holmes, Dwight P.; Goldstein, R.; Parker, Joel
2008-01-01
Since launch on March 2, 2004, the International Rosetta Mission has flown by the Earth/Moon system one time and conducted several distant observations of comets, including support for the Deep Impact measurements of comet 9 P/Tempel 1. In 2007, Rosetta flew by Mars for a gravity assist, and conducted observations of the Martian upper atmosphere as well as extended observations, in support of the New Horizons Jupiter encounter, of the Jovian magnetotail and Io torus. In late 2007 Rosetta had its second encounter with the Earth/Moon system. NASA's contribution to the Rosetta mission consists of three hardware experiments, and the portion of the electronics package for a fourth, as well as the participation of an Interdisciplinary Scientist (IDS); backup tracking, telecommunications, and navigation assurance provided by the Deep Space Network (DSN); support for the scientific participation of U.S. investigators on non-U.S. PI-led experiments. Collectively these elements are known as the U.S. Rosetta Project. In this paper we will update the status of the instruments following the both the Mars and Earth/Moon gravity assists. In addition, we will present a summary of the science observations for both Mars and Jupiter. 12.
Airborne mapping of Seoul's atmosphere: Trace gas measurements from GeoTASO during KORUS-AQ
NASA Astrophysics Data System (ADS)
Nowlan, C. R.; Al-Saadi, J. A.; Castellanos, P.; Chance, K.; Gonzalez Abad, G.; Janz, S. J.; Judd, L.; Kowalewski, M. G.; Liu, X.
2017-12-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a pushbroom airborne remote sensing instrument capable of making measurements of air quality and ocean color using backscattered UV and visible light. GeoTASO is an airborne test-bed for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, which will measure air quality over North America and Asia, respectively. GeoTASO also acts as a satellite analogue during field campaigns. GeoTASO flew on the NASA Langley Research Center UC-12 aircraft during the Korea-United States Air Quality Study in May-June 2016, collecting spectra over South Korea during 30 flights over 19 flight days. These observations can be used to derive 2-D maps of tropospheric trace gases including ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, nitrous acid and glyoxal below the aircraft at spatial resolutions between 250 m x 250 m and 1 km x 1 km, depending on the gas. We present spatially resolved trace gas retrievals over Seoul and its surrounding industrial regions, and comparisons with correlative satellite and campaign data.
NASA Astrophysics Data System (ADS)
Bitzer, George
The purpose of this research project was to trace and locate 113 P- 38 Lightning Aircraft that were constructed by Consolidated-Vultee Aviation Corporation of Nashville-Tennessee. A determination as to where they were located at the end of World War II, along with their subsequent location, was attempted. This project utilized historical research with a qualitative approach where data was accumulated, evaluated and formulated based on events that happened 70 years ago. A triangulation practice is the process of collecting data, not from just one source, but from several sources. This process helps strengthen the individual data, compensated by others to create a complete picture of the phenomenon being researched. The research does not focus on pilots that flew the P-38's. However, a few pilot names may be mentioned that were involved in an accident the aircraft may have suffered. The Army Air Force requested 2000 P-38's Model " L " built by Consolidated-Vultee for the Lockheed Aircraft Corporation in Burbank, California. The War Department did not know at the time how long the present conflict of war might last.
Documentation of Atmospheric Conditions During Observed Rising Aircraft Wakes
NASA Technical Reports Server (NTRS)
Zak, J. Allen; Rodgers, William G., Jr.
1997-01-01
Flight tests were conducted in the fall of 1995 off the coast of Wallops Island, Virginia in order to determine characteristics of wake vortices at flight altitudes. A NASA Wallops Flight Facility C130 aircraft equipped with smoke generators produced visible wakes at altitudes ranging from 775 to 2225 m in a variety of atmospheric conditions, orientations (head wind, cross wind), and airspeeds. Meteorological and aircraft parameters were collected continuously from a Langley Research Center OV-10A aircraft as it flew alongside and through the wake vortices at varying distances behind the C130. Meteorological data were also obtained from special balloon observations made at Wallops. Differential GPS capabilities were on each aircraft from which accurate altitude profiles were obtained. Vortices were observed to rise at distances beyond a mile behind the C130. The maximum altitude was 150 m above the C130 in a near neutral atmosphere with significant turbulence. This occurred from large vertical oscillations in the wakes. There were several cases when vortices did not descend after a very short initial period and remained near generation altitude in a variety of moderately stable atmospheres and wind shears.
NASA Astrophysics Data System (ADS)
Bretherton, Christopher; Wood, Robert; Albrecht, Bruce; Zuidema, Paquita; Ghate, Virendra; Mohrmann, Johannes; Oh, Kuan-Ting; Blossey, Peter
2017-04-01
The CSET field study in July-August 2015 over the Northeast Pacific ocean was motivated by a need for more in-situ sampling of the subtropical stratocumulus to cumulus (Sc-Cu) transition zones. One goal was comprehensive documentation of observational cases suitable for detailed intercomparison with large-eddy simulation models run following Lagrangian air columns and global models run in a hindcast mode. A second goal was to understand the role of aerosol and precipitation processes in this transition. The U.S. National Science Foundation G-V, equipped with cloud, aerosol, turbulence probes, a multispectral lidar, a cloud radar, and dropsondes, flew seven missions consisting of an outbound leg from northern California to Hawaii and a return leg two days later. Each mission was based on forecast air trajectories within the boundary layer; the goal was to sample a 2000-km long vertical curtain of boundary-layer air on the outbound leg and resample the advected position of that curtain on the return leg, using ramped sawtooths. In this way, most missions successfully captured the Lagrangian Sc-Cu transition. While CSET sampled diverse aerosol conditions, including the interaction of the boundary layer with smoke plumes from massive forest fires, lower tropospheric stability was the primary control on cloud cover. Mesoscale cloud organization was ubiquitous. Toward Hawaii, clusters of 2 km deep precipitating shallow cumulus and patchy thin stratiform 'veil cloud' with extremely low droplet concentrations were embedded in ultraclean layers at the trade inversion. These were separated by drier regions of suppressed convection. LES and parcel modeling plausibly explain these features.
Observations and Modeling of the Green Ocean Amazon: Sounding Enhancement Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Courtney
2016-05-01
The goal of this campaign was to provide higher temporal sampling of the vertical structure of the atmosphere during the two intensive observational periods (IOPs) of the GoAmazon 2014/15 campaign. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s first ARM Mobile Facility (AMF1) baseline launches for 2014 and 2015 was 4 sondes/day at 2 am, 8 am, 2 pm, and 8 pm local time (LT) (6, 12, 18 and 0 Coordinated Universal Time [UTC]). However, rapid changes in boundary layer and free tropospheric temperature, humidity, and wind profiles happen throughout the diurnal cycle over Manaus,more » Brazil's complex forest canopy with resulting responses in aerosol, cloud, and precipitation characteristics. This campaign increased sampling to 5 sondes/day for the 2014 wet and dry season IOPs by adding a launch at 11 am (15 UTC) to capture rapid changes in boundary layer properties and convective cloud growth during that time. The extra launch also corresponded to the time of day the ARM Gulfstream (G-1) and German HALO aircraft most often flew, thus providing useful measurements of the large-scale environment during the flights. In addition, the extra launch will significantly add to the quality of AMF1 instrument retrievals and variational analysis forcing data set during the IOPs.« less
Psychosocial Research on the International Space Station: Special Privacy Considerations
NASA Astrophysics Data System (ADS)
Kanas, N.; Salnitskiy, V.; Ritsher, J.; Grund, E.; Weiss, D.; Gushin, V.; Kozerenko, O.
Conducting psychosocial research with astronauts and cosmonauts requires special privacy and confidentiality precautions due to the high profile nature of the subject population and to individual crewmember perception of the risks inherent in divulging sensitive psychological information. Sampling from this small population necessitates subject protections above and beyond standard scientific human subject protocols. Many of these protections have relevance for psychosocial research on the International Space Station. In our previous study of psychosocial issues involving crewmembers on the Mir space station, special precautions were taken during each phase of the missions. These were implemented in order to gain the trust necessary to ameliorate the perceived risks of divulging potentially sensitive psychological information and to encourage candid responses. Pre-flight, a standard confidentiality agreement was provided along with a special layman's summary indicating that only group-level data would be presented, and subjects chose their own ID codes known only to themselves. In-flight, special procedures and technologies (such as encryption) were employed to protect the data during the collection. Post-flight, an analytic strategy was chosen to further mask subject identifiers, and draft manuscripts were reviewed by the astronaut office prior to publication. All of the eligible five astronauts and eight cosmonauts who flew joint US/Russian missions on the Mir were successfully recruited to participate, and their data completion rate was 76%. Descriptive analyses of the data indicated that there was sufficient variability in all of the measures to indicate that thoughtful, discriminating responses were being provided (e.g., the full range of response options was used in 63 of the 65 items of the Profile of Mood States measure, and both true and false response options were used in all 126 items of the Group Environment and the Work Environment measures). This presentation will discuss and expand on the lessons learned during the Mir study and relate them to future long-duration space missions.
NASA Technical Reports Server (NTRS)
2007-01-01
[figure removed for brevity, see original site] Click on the image for movie of Ammonia Ice Clouds on Jupiter In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds (appearing as bright blue areas) as they form and disperse over five successive Jupiter 'days.' Scientists noted how the larger cloud travels along with a small, local deep hole.Tactical Reconnaissance: UAVS Versus Manned Aircraft
1997-03-01
level missions under the missile and radar detection envelope. It flew 1651 missions with a return rate of 87.2%. 3 The development of newer and more... level . The organizational structure of manned aircraft squadrons is therefore time tested and clearly defined. 12 By contrast UAV operations have had a ... a high level of information and sensor technology is available today it has been integrated to only a fraction of its combat potential following the
The X-15 airplane - Lessons learned
NASA Technical Reports Server (NTRS)
Dana, William H.
1993-01-01
The X-15 rocket research airplane flew to an altitude of 354,000 ft and reached Mach 6.70. In almost 200 flights, this airplane was used to gather aerodynamic-heating, structural loads, stability and control, and atmospheric-reentry data. This paper describes the origins, design, and operation of the X-15 airplane. In addition, lessons learned from the X-15 airplane that are applicable to designing and testing the National Aero-Space Plane are discussed.
Wings of Hope: The US Air Force and Humanitarian Airlift Operations
1997-01-01
Islamic pilgrims en route to Mecca became stranded in Beirut, Lebanon. Thirteen Air Force C-54s flew them to the holy city in time for their religious...of supplies easier. 17 Overseas facilities also proved necessary. For example, bases in Panama refueled aircraft en route to South America. Airfields...relief sup- plies. Nov Following the devastation of British Honduras (now Belize ) by Hurricane Hattie, U.S. airlifters brought in communications equip
Celebrating John Glenn’s Legacy
2012-03-02
Former NASA Astronaut Steve Lindsey gives remarks at an event celebrating John Glenn's legacy and 50 years of americans in orbit held at the Cleveland State University Wolstein Center on Friday, March 3, 2012 in Cleveland, Ohio. In 1998 Lindsey flew onboard the space shuttle Discovery along with then 77 year-old Sen. John Glenn for the STS-95 mission. Glenn became the first American to orbit Earth in 1962. Photo Credit: (NASA/Bill Ingalls)
Naval Space Forum. March-April 2010
2010-04-01
of Dennis Tito, an U.S. businessman. In all, seven space tourists have made the journey, the latest, Canadian Guy Laliberte, founder of Cirque du ... Soleil , who flew to the space station in October. I R A N — I N F U S E D W I T H T H E I R O W N O R B I T A L P O T E N T I A L satnews.com
Geologic Exploration of the Planets: The First 50 Years
NASA Astrophysics Data System (ADS)
Carr, Michael H.
2013-01-01
Fifty years ago, on 14 December 1962, the Mariner 2 spacecraft flew by Venus and inaugurated the modern era of planetary exploration. Since that first Venus flyby, roughly 80 spacecraft have successfully probed, orbited, flown by, landed on, or roved on other planets, satellites, asteroids, and comets. As Carl Sagan used to say, only one generation of humankind can be the first explorers of the solar system, and we are that generation.
Korean Affairs Report, Number 279
1983-04-27
said, was affecting the armed forces, seriously affecting military discipline, and that if this went on unrectified something bad could happen. And...OF GABONESE PRESIDENT—Seoul, 8 Apr—Ali Ben Bongo , son of Gabonese President Omar Bongo , flew into Seoul Friday evening for a nine-day visit at the...Benevolently looking at the team members as if he wanted to show affection to the young intellectuals who were about to leave for their first mission, the
National Federation of the Blind Braille Coin
2009-07-30
Dr. Marc Mauer, president of the National Federation of the Blind accepts an award from William Gerstenmaier, Associate Administrator, Space Operations, NASA Headquarters at a ceremony where senior NASA officials presented the NFB with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)
National Federation of the Blind Braille Coin
2009-07-30
Derrick Tuff, right in wheelchair, and Kayla Weathers, standing left, deliver remarks at a ceremony where senior NASA officials presented the National Federation of the Blind with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Man standing at center is unidentified. Photo Credit: (NASA/Paul E. Alers)
National Federation of the Blind Braille Coin
2009-07-30
House Majority Leader U.S. Rep. Steny Hoyer, D-Md., smiles as he speaks to those in attendance at a ceremony where senior NASA officials presented the National Federation of the Blind with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)
2012-04-03
CAPE CANAVERAL, Fla. – Jeremy Schwarz, left, quality assurance technician, and Mike Williams, right, a thermal protection system technician, both with United Space Alliance, affix a section of tile to the right wing of space shuttle Endeavour at NASA's Kennedy Space Center in Florida. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston
2012-04-03
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, Mike Williams, a thermal protection system technician with United Space Alliance, crouches on space shuttle Endeavour's right wing as he prepares the wing surface for tile bonding. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston
Analysis of the research sample collections of Uppsala biobank.
Engelmark, Malin T; Beskow, Anna H
2014-10-01
Uppsala Biobank is the joint and only biobank organization of the two principals, Uppsala University and Uppsala University Hospital. Biobanks are required to have updated registries on sample collection composition and management in order to fulfill legal regulations. We report here the results from the first comprehensive and overall analysis of the 131 research sample collections organized in the biobank. The results show that the median of the number of samples in the collections was 700 and that the number of samples varied from less than 500 to over one million. Blood samples, such as whole blood, serum, and plasma, were included in the vast majority, 84.0%, of the research sample collections. Also, as much as 95.5% of the newly collected samples within healthcare included blood samples, which further supports the concept that blood samples have fundamental importance for medical research. Tissue samples were also commonly used and occurred in 39.7% of the research sample collections, often combined with other types of samples. In total, 96.9% of the 131 sample collections included samples collected for healthcare, showing the importance of healthcare as a research infrastructure. Of the collections that had accessed existing samples from healthcare, as much as 96.3% included tissue samples from the Department of Pathology, which shows the importance of pathology samples as a resource for medical research. Analysis of different research areas shows that the most common of known public health diseases are covered. Collections that had generated the most publications, up to over 300, contained a large number of samples collected systematically and repeatedly over many years. More knowledge about existing biobank materials, together with public registries on sample collections, will support research collaborations, improve transparency, and bring us closer to the goals of biobanks, which is to save and prolong human lives and improve health and quality of life.
D-558-2 pilot entry from P2B-1S mothership
NASA Technical Reports Server (NTRS)
1954-01-01
This 28-second video clip shows Scott Crossfield descending from the bomb bay of the P2B-1S into the cockpit of the D-558-2, strapping in, and having the hatch closed by a crewmember. The Douglas D-558-2 Skyrocket airplanes were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of these single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA); the Navy-Marine Corps; and the Douglas Aircraft Company, Long Beach, California. Flight research was done at the NACA Muroc Flight Test Unit in California, redesignated in 1949 the High-Speed Flight Research Station (HSFRS). The HSFRS is now known as the NASA Dryden Flight Research Center, Edwards, California. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. Douglas Aircraft pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in California on February 4, 1948. The goals of that program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitchup (uncommanded rotation of the nose of the airplane upwards) -- a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during takeoff and landing and in tight turns. The three aircraft gathered a great deal of data about pitchup and the coupling of lateral (yaw) and longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitchup problem in swept-wing aircraft. The Navy contracted with Douglas Aircraft Company to design the airplane, and in the course of the design process, the D-558 came to be divided into two separate phases. Phase one was a straight-wing turbojet aircraft and phase two consisted of a swept-wing design with turbojet and rocket propulsion. At the NACA suggestion, which was based on the research of Robert Jones at Langley and some captured German documents, Douglas Aircraft and the Navy had agreed to the swept-wing design and to provide sufficient power to propel the swept-wing airplane past Mach 1. They also agreed to add rocket propulsion. Then, to fit both a turbojet and rocket engine in the phase two aircraft a new fuselage was required. Like the D-558-1, the Skyrocket featured a horizontal stabilizer high on the vertical tail to avoid the wake from the wing. As with the X-1 and the D-558-1, the Skyrocket also featured, at NACA suggestion, a horizontal stabilizer that was thinner than the wing and movable in flight so as to avoid simultaneous shock wave effects for the wing and horizontal tail and to provide pitch (noseup or nosedown) control when shock waves made the elevators ineffective. While Douglas Aircraft was constructing the D-558-2 airplanes, the NACA continued to furnish the contractor data it needed on aircraft performance based on tests in Langley Research Center wind tunnels and with rocket-propelled models from the Wallops Island Pilotless Aircraft Research Station, Wallops Island, Virginia. The three airplanes flew a total of 313 times -- 123 by the number one aircraft (Bureau No. 37973 -- NACA 143), 103 by the second Skyrocket (Bureau No. 37974 -- NACA 144), and 87 by airplane number three (Bureau No. 37975 -- NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas Aircraft contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J-34-40 turbojet engine configured only for ground takeoffs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of Skyrocket performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a turbojet powerplant. NACA pilots Robert A. Champine and John H. Griffith flew 21 times in this configuration to test airspeed calibrations and to research longitudinal and lateral stability and control. In the process, during August of 1949 they encountered pitchup problems, which NACA engineers recognized as serious because pitchup could produce a limiting and dangerous restriction on flight performance. Hence, they determined to make a complete investigation of the problem. In 1950, Douglas Aircraft Company replaced the turbojet with an LR-8 rocket engine, and its pilot, William B. Bridgeman, flew the aircraft seven times -- up to a speed of Mach 1.88 (1.88 times the speed of sound) and an altitude of 79,494 feet (the latter an unofficial world altitude record at the time, achieved on August 15, 1951). In the rocket configuration, a Navy P2B (Navy version of the B-29) launched the airplane at an altitude of approximately 30,000 feet after taking off from the ground with the Skyrocket attached beneath its bomb bay. During Bridgeman's supersonic flights, he encountered a violent rolling motion known as lateral instability. This phenomenon was less pronounced on the Mach 1.88 flight on August 7, 1951, than on a Mach 1.85 flight in June when he pushed over to a low angle of attack (angle of the fuselage or wing to the prevailing wind direction). The NACA engineers studied the behavior of this aircraft before beginning their own flight research in the airplane in September 1951. Over the next couple of years, NACA pilot A. Scott Crossfield flew the airplane 20 times to gather data on longitudinal and lateral stability and control; wing and tail loads; and lift, drag, and buffeting characteristics at speeds up to Mach 1.878. At that point, Marine Lt. Col. Marion Carl flew the airplane to a new (unofficial) altitude record of 83,235 feet on August 21, 1953, and to a maximum speed of Mach 1.728. Following Carl's completion of these flights for the Navy, NACA technicians at the High-Speed Flight Research Station (HSFRS) near Mojave, California, outfitted the LR-8 engine cylinders with nozzle extensions to prevent the exhaust gas from affecting the rudders at supersonic speeds. This addition also increased the engine thrust by 6.5 percent at Mach 1.7 and an altitude of 70,000 feet. Even before Marion Carl had flown the Skyrocket, HSFRS Chief Walter C. Williams had unsuccessfully petitioned NACA headquarters to fly the aircraft to Mach 2 to garner the research data at that speed. Finally, after Crossfield had secured the agreement of the Navy Bureau of Aeronautics, NACA director Hugh L. Dryden relaxed the organization's usual practice of leaving record setting to others and consented to attempting a flight to Mach 2. In addition to adding the nozzle extensions, the NACA flight team at the HSFRS chilled the fuel (alcohol) so more could be poured into the tank and waxed the fuselage to reduce drag. With these preparations and employing a flight plan devised by project engineer Herman O. Ankenbruck to fly to an altitude of approximately 72,000 feet and push over into a slight dive, Crossfield made aviation history on November 20, 1953, when he flew to Mach 2.005 (1,291 miles per hour). He became the first pilot to reach Mach 2 in this, the only flight in which the Skyrocket flew that fast. Following this flight, Crossfield and NACA pilots Joseph A. Walker and John B. McKay flew the airplane for such purposes as to gather data on pressure distribution, structural loads, and structural heating. The last flight in the program occurred on December 20, 1956, when McKay obtained dynamic stability data and sound-pressure levels at transonic speeds and above. Meanwhile, NACA 145 had completed 21 contractor flights by Douglas Aircraft pilots Eugene F. May and Bill Bridgeman in November 1950. In this jet-and-rocket-propelled craft, Scott Crossfield and Walter Jones began the NACA investigation of pitchup lasting from September 1951 well into the summer of 1953. They flew the Skyrocket with a variety of wing-fence, wing-slat, and leading-edge chord extension configurations, performing various maneuvers as well as straight-and-level flying at transonic speeds. While fences significantly aided recovery from pitchup conditions, leading edge chord extensions did not, disproving wind-tunnel tests to the contrary. Slats (long, narrow auxiliary airfoils) in the fully open position eliminated pitchup except in the speed range around Mach 0.8 to 0.85. In June 1954, Crossfield began an investigation of the effects of external stores (bomb shapes and fuel tanks) upon the Skyrocket transonic behavior. McKay and Stanley Butchart completed the NACA investigation of this issue, with McKay flying the final mission on August 28, 1956. Besides setting several records, the Skyrocket pilots had gathered important data and understanding about what would and would not work to provide stable, controlled flight of a swept-wing aircraft in the transonic and supersonic flight regimes. The data they gathered also helped to enable a better correlation of wind-tunnel test results with actual flight values, enhancing the abilities of designers to produce more capable aircraft for the armed services, especially those with swept wings. Moreover, data on such matters as stability and control from this and other early research airplanes aided in the design of the century series of fighter airplanes, all of which featured the movable horizontal stabilizers first employed on the X-1 and D-558 series.
NASA Technical Reports Server (NTRS)
1954-01-01
This 19-second video clip shows the D-558-2 being dropped from the P2B-1S mothership, flying and landing. Near the end of the clip the wing of the TF-86 video chase aircraft is visible landing on the Rogers Dry Lakebed next to the Skyrocket. The Douglas D-558-2 Skyrocket airplanes were early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of these single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA); the Navy-Marine Corps; and the Douglas Aircraft Company, Long Beach, California. Flight research was done at the NACA Muroc Flight Test Unit in California, redesignated in 1949 the High-Speed Flight Research Station (HSFRS). The HSFRS is now known as the NASA Dryden Flight Research Center, Edwards, California. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. Douglas Aircraft pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in California on February 4, 1948. The goals of that program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitchup (uncommanded rotation of the nose of the airplane upwards) -- a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during takeoff and landing and in tight turns. The three aircraft gathered a great deal of data about pitchup and the coupling of lateral (yaw) and longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitchup problem in swept-wing aircraft. The Navy contracted with Douglas Aircraft Company to design the airplane, and in the course of the design process, the D-558 came to be divided into two separate phases. Phase one was a straight-wing turbojet aircraft and phase two consisted of a swept-wing design with turbojet and rocket propulsion. At the NACA suggestion, which was based on the research of Robert Jones at Langley Research Center (Hampton, Virginia) and some captured German documents, Douglas Aircraft and the Navy had agreed to the swept-wing design and to provide sufficient power to propel the swept-wing airplane past Mach 1. They also agreed to add rocket propulsion. Then, a new fuselage was required to fit both a turbojet and rocket engine in the phase two aircraft. Like the D-558-1, the Skyrocket featured a horizontal stabilizer high on the vertical tail to avoid the wake from the wing. As with the X-1 and the D-558-1, the Skyrocket also featured, at NACA suggestion, a horizontal stabilizer that was thinner than the wing and movable in flight so as to avoid simultaneous shock wave effects for the wing and horizontal tail and to provide pitch (noseup or nosedown) control when shock waves made the elevators ineffective. While Douglas Aircraft Company was constructing the D-558-2 airplanes, the NACA continued to furnish the contractor with data it needed on aircraft performance, based on tests in Langley Research Center wind tunnels and with rocket-propelled models from the Wallops Island Pilotless Aircraft Research Station (Wallops Island, Virginia). The three airplanes flew a total of 313 times -- 123 by the number one aircraft (Bureau No. 37973 -- NACA 143), 103 by the second Skyrocket (Bureau No. 37974 -- NACA 144), and 87 by airplane number three (Bureau No. 37975 -- NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas Aircraft Company contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J34-40 turbojet engine configured only for ground takeoffs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of Skyrocket performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a turbojet powerplant. NACA pilots Robert A. Champine and John H. Griffith flew 21 times in this configuration to test airspeed calibrations and to research longitudinal and lateral stability and control. In the process, during August of 1949 they encountered pitchup problems, which NACA engineers recognized as serious because pitchups could produce a limiting and dangerous restriction on flight performance. Hence, they determined to make a complete investigation of the problem. In 1950 Douglas Aircraft Company replaced the turbojet with an LR-8 rocket engine, and its pilot, William B. Bridgeman, flew the aircraft seven times -- up to a speed of Mach 1.88 (1.88 times the speed of sound) and an altitude of 79,494 feet (the latter an unofficial world altitude record at the time, achieved on August 15, 1951). In the rocket configuration, a Navy P2B (Navy version of the B-29) launched the airplane at an altitude of approximately 30,000 feet after taking off from the ground with the Skyrocket attached beneath its bomb bay. During Bridgeman's supersonic flights, he encountered a violent rolling motion known as lateral instability. This phenomenon was less pronounced on the Mach 1.88 flight on August 7, 1951, than on a Mach 1.85 flight in June when he pushed over to a low angle of attack (angle of the fuselage or wing to the prevailing wind direction). The NACA engineers studied the behavior of this aircraft before beginning their own flight research in the airplane in September 1951. Over the next couple of years, NACA pilot A. Scott Crossfield flew the airplane 20 times to gather data on longitudinal and lateral stability and control; wing and tail loads; and lift, drag, and buffeting characteristics at speeds up to Mach 1.878. At that point, Marine Lt. Col. Marion Carl flew the airplane to a new (unofficial) altitude record of 83,235 feet on August 21, 1953, and to a maximum speed of Mach 1.728. Following Carl's completion of these flights for the Navy, NACA technicians at the High-Speed Flight Research Station (HSFRS) near Mojave, California, outfitted the LR-8 engine cylinders with nozzle extensions to prevent the exhaust gas from affecting the rudders at supersonic speeds. This addition also increased the engine thrust by 6.5 percent at Mach 1.7 and at an altitude of 70,000 feet. Even before Marion Carl had flown the Skyrocket, HSFRS Chief Walter C. Williams had unsuccessfully petitioned NACA headquarters to fly the aircraft to Mach 2 to garner the research data at that speed. Finally, after Crossfield had secured the agreement of the Navy Bureau of Aeronautics, NACA director Hugh L. Dryden relaxed the organization's usual practice of leaving record setting to others and consented to attempting a flight to Mach 2. In addition to adding the nozzle extensions, the NACA flight team at the HSFRS chilled the fuel (alcohol) so more could be poured into the tank and waxed the fuselage to reduce drag. With these preparations and employing a flight plan devised by project engineer Herman O. Ankenbruck to fly to an altitude of approximately 72,000 feet and push over into a slight dive, Crossfield made aviation history on November 20, 1953, when he flew to Mach 2.005 (1,291 miles per hour). He became the first pilot to reach Mach 2 in this, the only flight in which the Skyrocket flew that fast. Following this flight, Crossfield and NACA pilots Joseph A. Walker and John B. McKay flew the airplane for such purposes as to gather data on pressure distribution, structural loads, and structural heating. The last flight in the program occurred on December 20, 1956, when McKay obtained dynamic stability data and sound-pressure levels at transonic speeds and above. Meanwhile, NACA 145 had completed 21 contractor flights by Douglas Aircraft pilots Eugene F. May and Bill Bridgeman in November 1950. In this jet-and-rocket-propelled craft, Scott Crossfield and Walter Jones began the NACA investigation of pitchup, which lasted from September 1951 well into the summer of 1953. They flew the Skyrocket with a variety of wing-fence, wing-slat, and leading-edge chord extension configurations, performing various maneuvers as well as straight-and-level flying at transonic speeds. While fences significantly aided recovery from pitchup conditions, leading edge chord extensions did not, disproving wind-tunnel tests to the contrary. Slats (long, narrow auxiliary airfoils) in the fully open position eliminated pitchup except in the speed range around Mach 0.8 to 0.85. In June 1954, Crossfield began an investigation of the effects of external stores (bomb shapes and fuel tanks) upon the D-558-2 transonic behavior. McKay and Stanley Butchart completed the NACA investigation of this issue, with McKay flying the final mission on August 28, 1956. Besides setting several records, the Skyrocket pilots had gathered important data and understanding about what would and would not work to provide stable, controlled flight of a swept-wing aircraft in the transonic and supersonic flight regimes. The data they gathered also helped to enable a better correlation of wind-tunnel test results with actual flight values, enhancing the abilities of designers to produce more capable aircraft for the armed services, especially those with swept wings. Moreover, data on such matters as stability and control from this and other early research airplanes aided in the design of the century series of fighter airplanes, all of which featured the movable horizontal stabilizers first employed on the X-1 and D-558 series.
D-558-2 LOX (Liquid OXygen) jettison on ramp
NASA Technical Reports Server (NTRS)
1956-01-01
In this 1956 photograph the Douglas D-558-2 #1 is shown venting liquid oxigen (LOX). The photograph was taken in back of the NACA High-Speed Flight Station's new hangar and building on the main base at Edwards Air Force Base. The P2B-1S Superfortress (Navy version of the Air Force B-29) launch aircraft is parked in the background. The NACA acquired this aircraft on August 31, 1951, after Douglas had completed the contract flights. The Douglas plant later converted its powerplant to an all-rocket system that required launch from a mothership (the P2B-1S). Douglas returned the aircraft to the NACA on November 15, 1955. The High-Speed Flight Station intended to use it for tests of external stores at supersonic speeds. NACA research pilot John McKay made a single flight in the aircraft on September 17, 1956, but the NACA subsequently cancelled the program. The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS). Also partners in the flight research were the Navy-Marine Corps and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in Calif. on February 4, 1948. The goals of the program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitch-up (uncommanded rotation of the nose of the airplane upwards)--a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft's behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitch-up problem in swept-wing aircraft. The three airplanes flew a total of 313 times--123 by the number one aircraft (Bureau No. 37973--NACA 143), 103 by the second Skyrocket (Bureau No. 37974--NACA 144), and 87 by airplane number three (Bureau No. 37975--NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J-34-40 turbojet engine configured only for ground take-offs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force's LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of the airplane's performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a turbojet powerplant. NACA pilots Robert A. Champine and John H. Griffith flew 21 times in this configuration to test airspeed calibrations and to research longitudinal and lateral stability and control. In the process, during August of 1949 they encountered pitch-up problems, which NACA engineers recognized as serious because they could produce a limiting and dangerous restriction on flight performance. Hence, they determined to make a complete investigation of the problem. In 1950, Douglas replaced the turbojet with an LR-8 rocket engine, and its pilot, William B. Bridgeman, flew the aircraft seven times up to a speed of Mach 1.88 (1.88 times the speed of sound) and an altitude of 79,494 feet (the latter an unofficial world's altitude record at the time, achieved on August 15, 1951). In the rocket configuration, a Navy P2B (Navy version of the B-29) launched the airplane at approximately 30,000 feet after taking off from the ground with the Skyrocket attached beneath its bomb bay. During Bridgeman's supersonic flights, he encountered a violent rolling motion known as lateral instability that was less pronounced on the Mach 1.88 flight on August 7, 1951, than on a Mach 1.85 flight in June when he pushed over to a low angle of attack (angle of the fuselage or wing to the prevailing wind direction). The NACA engineers studied the behavior of the aircraft before beginning their own flight research in the airplane in September 1951. Over the next couple of years, NACA pilot A. Scott Crossfield flew the airplane 20 times to gather data on longitudinal and lateral stability and control, wing and tail loads, and lift, drag, and buffeting characteristics at speeds up to Mach 1.878. At that point, Marine Lt. Col. Marion Carl flew the airplane to a new (unofficial) altitude record of 83,235 feet on August 21, 1953, and to a maximum speed of Mach 1.728. Following Carl's completion of these flights for the Navy, NACA technicians at the High-Speed Flight Research Station (HSFRS) near Mojave, Calif., outfitted the LR-8 engine's cylinders with nozzle extensions to prevent the exhaust gas from affecting the rudders at supersonic speeds. This addition also increased the engine's thrust by 6.5 percent at Mach 1.7 and 70,000 feet. Even before Marion Carl had flown the Skyrocket, HSFRS Chief Walter C. Williams had petitioned NACA headquarters unsuccessfully to fly the aircraft to Mach 2 to garner the research data at that speed. Finally, after Crossfield had secured the agreement of the Navy's Bureau of Aeronautics, NACA director Hugh L. Dryden relaxed the organization's usual practice of leaving record setting to others and consented to attempting a flight to Mach 2. In addition to adding the nozzle extensions, the NACA flight team at the HSFRS chilled the fuel (alcohol) so more could be poured into the tank and waxed the fuselage to reduce drag. With these preparations and employing a flight plan devised by project engineer Herman O. Ankenbruck to fly to approximately 72,000 feet and push over into a slight dive, Crossfield made aviation history on November 20, 1953, when he flew to Mach 2.005 (1,291 miles per hour). He became the first pilot to reach Mach 2 in this, the only flight in which the Skyrocket flew that fast. Following this flight, Crossfield and NACA pilots Joseph A. Walker and John B. McKay flew the airplane for such purposes as to gather data on pressure distribution, structural loads, and structural heating, with the last flight in the program occurring on December 20, 1956, when McKay obtained dynamic stability data and sound-pressure levels at transonic speeds and above. Meanwhile, NACA 145 had completed 21 contractor flights by Douglas pilots Eugene F. May and Bill Bridgeman in November 1950. In this jet-and-rocket-propelled craft, Scott Crossfield and Walter Jones began the NACA's investigation of pitch-up lasting from September 1951 well into the summer of 1953. They flew the Skyrocket with a variety of wing-fence, wing-slat, and leading-edge chord extension configurations, performing various maneuvers as well as straight-and-level flying at transonic speeds. While fences significantly aided recovery from pitch-up conditions, leading edge chord extensions did not, disproving wind-tunnel tests to the contrary. Slats (long, narrow auxiliary airfoils) in the fully open position eliminated pitch-up except in the speed range around Mach 0.8 to 0.85. In June 1954, Crossfield began an investigation of the effects of external stores (bomb shapes and fuel tanks) upon the aircraft's transonic behavior. McKay and Stanley Butchart completed the NACA's investigation of this issue, with McKay flying the final mission on August 28, 1956. Besides setting several records, the Skyrocket pilots had gathered important data and understanding about what would and would not work to provide stable, controlled flight of a swept-wing aircraft in the transonic and supersonic flight regimes. The data they gathered also helped to enable a better correlation of wind-tunnel test results with actual flight values, enhancing the abilities of designers to produce more capable aircraft for the armed services, especially those with swept wings. Moreover, data on such matters as stability and control from this and other early research airplanes aided in the design of the century series of fighter airplanes, all of which featured the movable horizontal stabilizers first employed on the X-1 and D-558 series.
Chernesky, Max; Jang, Dan; Gilchrist, Jodi; Elit, Laurie; Lytwyn, Alice; Smieja, Marek; Dockter, Janel; Getman, Damon; Reid, Jennifer; Hill, Craig
2014-06-01
An APTIMA specimen collection and transportation (SCT) kit was developed by Hologic/Gen-Probe. To compare cervical SCT samples to PreservCyt and SurePath samples and self-collected vaginal samples to physician-collected vaginal and cervical SCT samples. To determine ease and comfort of self-collection with the kit. Each woman (n = 580) self-collected a vaginal SCT, then filled out a questionnaire (n = 563) to determine ease and comfort of self-collection. Colposcopy physicians collected a vaginal SCT and cervical PreservCyt, SCT, and SurePath samples. Samples were tested by APTIMA HPV (AHPV) assay. Agreement between testing of cervical SCT and PreservCyt was 91.1% (κ = 0.82), and that of SurePath samples was 86.7% (κ = 0.72). Agreement of self-collected vaginal SCT to physician-collected SCT was 84.7% (κ = 0.68), and that of self-collected vaginal to cervical SCT was 82.0% (κ = 0.63). For 30 patients with CIN2+, AHPV testing of cervical SCT was 100% sensitive and 59.8% specific compared with PreservCyt (96.6% and 66.2%) and SurePath (93.3% and 70.9%). Vaginal SCT sensitivity was 86.7% for self-collection and 80.0% for physician collection. Most patients found that vaginal self-collection was easy, 5.3% reported some difficulty, and 87.6% expressed no discomfort. Cervical samples collected with the new SCT kit compared well to traditional liquid-based samples tested by AHPV. Although there was good agreement between self-collected and physician-collected samples with the SCT, in a limited number of 30 women, vaginal sampling identified fewer with CIN2+ precancerous cervical lesions than cervical SCT sampling. Comfort, ease of use, and detection of high-risk HPV demonstrated that the kit could be used for cervical and vaginal sampling.
HL-10 on lakebed with pilot John Manke
NASA Technical Reports Server (NTRS)
1969-01-01
John Manke is shown here on the lakebed next to the HL-10, one of four different lifting-body vehicles he flew, including the X-24B, which he flew 16 times. His total of 42 lifting-body flights was second only to the 51 flights Milt Thompson achieved, including one in the remotely piloted Hyper III. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
Helicopters in Irregular Warfare: Algeria, Vietnam, and Afghanistan
2013-06-13
drop smoke to show wind conditions, first assault helicopter lands 100-300 yards behind last rocket pass with successive aircraft as permitted by the...agents on VC tunnel complexes. Later, the 1st Cavalry Division employed a few of their Chinooks as “Go-Go birds ,” armed with twenty millimeter Gatling...cannons, forty-millimeter grenade launchers, fifty caliber machine guns, and rockets.182 Of the three “Go-Go birds ” that flew, the enemy downed two
John H Glenn Jr. Wreath Laying Ceremony - Inside Hereos and Lege
2016-12-09
A plaque inside the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex shows the name of astronaut Sen. John Glenn. Glenn, who passed away Dec. 8, 2016 at age 95, was the last surviving member of NASA's original astronaut class. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.
Pathfinder, Volume 7, Number 5, September/October 2009. Charting the Sea and Sky
2009-10-01
During the six-month season, ski-equipped LC-130s, the polar version of the C-130 Hercules transport plane, flew more than 8.7 million pounds of...collaborate closely with the Space and Naval Warfare Systems Command (SPAWAR), Office of Polar Programs; the Federal Avia- tion Administration (FAA...only worldwide vector chart coverage. Recently, the Navy implemented polar navigation using NGA charts and is now capable of true worldwide digital
NASA Technical Reports Server (NTRS)
1998-01-01
On this third day of the STS-89 mission, the flight crew, Cmdr. Terrence W. Wilcutt, Pilot Frank Edwards, and Mission Specialists Michael P. Anderson, James F. Reilly, Bonnie J. Dunbar, Salizhan Shakirovich Sharipov, David A. Wolf and Andrew S.W. Thomas, can be seen performing a flawless docking with the Mir. The linkup occurred while the two spaceships flew over southeastern Russia, west of Kazakhstan. After the docking the two crews open the entry hatch and greet each other.
Earth Observation taken during the Expedition 37 mission
2013-10-30
ISS037-E-022828 (30 Oct. 2013) --- This isn?t someone?s frame grab of a decorative Halloween scene, although it was photographed on Halloween eve. It is actually a picture of the Aurora Australis or Southern Lights, photographed by one of the Expedition 37 crew members on the International Space Station as the orbital complex flew over Tasmania on Oct. 30. The human-produced hardware in the picture is part of the outpost?s robotic arm system.
Israel’s Attack on Osiraq: A Model for Future Preventive Strikes?
2004-09-01
destroying Israel. July 28, 1980 Israeli Foreign Minister Yitzhak Shamir met with French Ambassador to Israel, Jean-Pierre Chauvet . Shamir told Chauvet ... Chauvet argued, “Acquisition of nuclear arms would be lunacy on the part of Iraq. After all, Israel’s Jewish and Arab populations are intermingled, and... caved in and a destroyed cooling pool.57 However, Perlmutter claims a specially equipped F-15 flew by the reactor after the bombing on a special
Space Experiments with Particle Accelerators: SEPAC
NASA Technical Reports Server (NTRS)
Burch, J. L.; Roberts, W. T.; Taylor, W. W. L.; Kawashima, N.; Marshall, J. A.; Moses, S. L.; Neubert, T.; Mende, S. B.; Choueiri, E. Y.
1994-01-01
The Space Experiments with Particle Accelerators (SEPAC), which flew on the Atmospheric Laboratory for Applications and Science (ATLAS) 1 mission, used new techniques to study natural phenomena in the Earth's upper atmosphere, ionosphere and magnetosphere by introducing energetic perturbations into the system from a high power electron beam with known characteristics. Properties of auroras were studied by directing the electron beam into the upper atmosphere while making measurements of optical emissions. Studies were also performed of the critical ionization velocity phenomenon.
Krikalev dismantles probe-and-cone docking mechanism (StM) in the Progress M-53 (18P)
2005-06-19
ISS011-E-09204 (19 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, dismantles the probe-and-cone docking mechanism in the Progress 18 spacecraft. The Progress docked to the aft port of the Zvezda Service Module of the International Space Station (ISS) at 7:42 p.m. (CDT) as the Station flew approximately 225 statute miles, above a point near Beijing, China.
2010-08-16
A researcher points out the trajectory of a weather pattern on a computer monitor during a flight aboard the NASA DC-8 aircraft, Tuesday, Aug. 17, 2010, over the Gulf of Mexico. Sceintists and researchers flew Tuesday to study weather as part of the Genesis and Rapid Intensification Processes (GRIP) experiment is a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
Translations on Eastern Europe, Political, Sociological, and Military Affairs, Number 1555
1978-06-29
Available Copy - a - [III - EE - 6.3J J INTERNATIONAL AFFAIRS HUNGARIAN WRITER FROM ROMANIA PUBLICIZES NEW LITERARY WORKS Budapest ELET ES...8217 In Budapest "] [Text] Sandor Huszar, chief editor of our sister paper, A HET in Bucharest, visited us last in March 1977. And because he returned...what business are you this time? [Answer] I flew to Budapest as a human advertisement. I came to our friends with the problems of A HET. [Questions
The P-38 Lightning Aircraft: Lessons Learned for Future Weapon Systems Development
2010-04-01
PMBOK TEL \\ u.s. WER List of ~cronyms iv Brake Horse Power Design-Build Team District of Columbia Department of Defense Department of...record. Despite unresolved issues like the flap and brake system problems and limited test hours, on 11 February 1939, Lieutenant Kelsey flew the XP-38...engine, giving the P-3 8 engines a 1425 brake horse power (BHP)22 rating. However, limitations of the integral wing leading edge intercoolers23 could
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Figure 1
This image shows the comet Wild 2, which NASA's Stardust spacecraft flew by on Jan. 2, 2004. This image is the closest short exposure of the comet, taken at an11.4-degree phase angle, the angle between the camera, comet and the Sun. The listed names on the diagram (see Figure 1) are those used by the Stardust team to identify features. 'Basin' does not imply an impact origin.Air and Space Power Journal. Volume 23, Number 3, Fall 2009
2009-01-01
MOPP) gear and fixed airplanes, loaded airplanes, and flew airplanes. We conducted operations in a hos tile environment. That’s what operating...space station. The general commanded the 9th Reconnaissance Wing and Eighth Air Force, and served on the Air Staff and Joint Staff. Prior to assuming...through the eyes of Congress or the me dia. The second view is the perspective of joint force commanders and their rep resentatives, which typically
The Get Away Special Program: Year 2000 and Beyond
NASA Technical Reports Server (NTRS)
Wilcox, David A.
1999-01-01
The Get Away Special (GAS) Program flew its first payload in 1982. Since then, 157 payloads have flown on the STS. As the GAS program approaches the new millennium, interest in flying the low-cost access to space continues. Many changes are in store, or are already underway, that will impact the GAS user community in the coming years. This presentation will briefly outline some of those changes and other external impacts to the GAS Program.
Celebrating John Glenn’s Legacy
2012-03-02
Cleveland State University Master of Music Major James Binion Jr. sings a musical tribute during an event celebrating John Glenn's legacy and 50 years of americans in orbit held at the university's Wolstein Center on Friday, March 3, 2012 in Cleveland, Ohio. In 1998 Lindsey flew onboard the space shuttle Discovery along with then 77 year-old Sen. John Glenn for the STS-95 mission. Glenn became the first American to orbit Earth in 1962. Photo Credit: (NASA/Bill Ingalls)
Operation Overlord and the Principles of War
2002-06-06
ring of steel began to close around the trapped Seventh Army (18:64). In a retrospective look at the command and control organization, it would be seen...Modern History. London: Octopus Publishing Group Ltd., 2001. 15. Norman, Albert, Ph.D. Operation Overlord Design and Reality. Harrisburg: The... Blue , the Men and Boys Who Flew the B-24s Over Germany 1944-45. New York: Simon & Schuster, 2002. Astor, Gerald. June 6, 1944 The Voices of D-Day
1996-10-01
TITLE: Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle - Follow-On Experiments PRINCIPAL INVESTIGATOR...REPORT DATE 3. REPORT TYPE AND DATES COVERED October 1996 Final (4 May 92 - 3 Jul 96) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Microencapsulation of...call the Microencapsulation in Space (MIS-B) experiment. The MIS-B experiment flew on Space Shuttle Discovery -- Mission STS-70. Before launch, NASA
NASA Technical Reports Server (NTRS)
Kanzawa, Hiroshi; Fujii, Ryoichi; Yamazaki, Koji; Yamanaka, Manabu D.
1994-01-01
Actual trajectories of two PPB's which flew in the Antarctic stratosphere in austral summer and spring are compared with those calculated based on objective analysis data of Japan Meteorological Agency (JMA). The differences between the actual and calculated trajectories are discussed to check reliability of the JMA objective analysis data for the stratosphere, and to detect subsynoptic scale variability due to gravity waves and others.
2010-09-09
Dr. James L. Green, Director of Planetary Science at NASA, right, speaks with Dr. Robert Farquar, an executive for space exploration at KinetX Inc., during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)
Total Eclipse From Onboard NASA's G-III Research Aircraft
2017-09-13
As the 2017 solar eclipse approaches and enters totality, NASA Armstrong staff and NASA senior management share their excitement and first-hand experience from aboard NASA’s Armstrong Flight Research Center Gulfstream III aircraft. The G-III aircraft flew at 35,000 feet above the coast of Oregon during the 2017 total solar eclipse, capturing some of the very first views of the 2017 total solar eclipse as it made its way across the United States.
2012-04-03
CAPE CANAVERAL, Fla. – Jeremy Schwarz, left, quality assurance technician, and Mike Williams, right, a thermal protection system technician, both with United Space Alliance, prepare the right wing of space shuttle Endeavour for tile bonding. Endeavour is inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston
2002-07-01
Knowledge From Data .................................................. 25 HIGH-CONFIDENCE SOFTWARE AND SYSTEMS Reliability, Security, and Safety for...NOAA’s Cessna Citation flew over the 16-acre World Trade Center site, scanning with an Optech ALSM unit. The system recorded data points from 33,000...provide the data storage and compute power for intelligence analysis, high-performance national defense systems , and critical scientific research • Large
2003-06-07
The first flight of a large aircraft to be powered by electric fuel cells began with a takeoff at 8:43 a.m. HST today from the Hawaiian island of Kauai. The Helios Prototype flying wing, built by AeroVironment, Inc., of Monrovia, Calif., as part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program, used solar panels to power its 10 electric motors for takeoff and during daylight portions of its planned 20-hour shakedown flight. As sunlight diminishes, Helios will switch to a fuel cell system to continue flight into the night. The takeoff set the stage for a two-day Helios endurance flight in the stratosphere planned for mid-July. The Helios wing, spanning 247 feet and weighing about 2,400 pounds, gave NASA and industry engineers confidence that remotely piloted aircraft would be able to stay aloft for weeks at a time, providing environmental monitoring capabilities and telecommunications relay services. Helios was an all-electric airplane. In addition to being non-polluting, Helios flew above storms, and used the power of the sun to stay aloft during daylight. Key to the success of this type of aircraft was the ability to fly in darkness, using fuel cells when sunlight cannot furnish energy. Helios flew over the Navy's Pacific Missile Range Facility where favorable sun exposure and test ranges closed to other air traffic benefited the NASA research effort. In 2003 the aircraft was lost to a crash.
The incidence, importance, and prophylaxis of acute mountain sickness.
Hackett, P H; Rennie, D; Levine, H D
1976-11-27
Acute mountain sickness (A.M.S.) and its severe complications, high-altitude pulmonary oedema (H.A.P.O.) and cerebral oedema (C.O.), were studied in 278 unacclimatised hikers at 4243 m altitude at Pheriche in the Himalayas of Nepal. The overall incidence of A.M.S. was 53%, the incidence being increased in the young and in those who flew to 2800 m, climbed fast, and spent fewer nights acclimatising en route. It was unrelated to sex, to previous altitude experience, to the load carried, and to recent respiratory infections. The severity of A.M.S. was inversely related to age (independent of rate of ascent) and the highest altitude attained, and was highly ocrrelated with speed of ascent. There were 7 cases of H.A.P.O. and 5 with the more intractable C.O. and, of these 12, 11 had flown in, 9 had spent only one night at Pheriche, and none were on acetazolamide. 11 required evacuation. Acetazolamide, compared in a double-blind study with a placebo and also compared with no tablets at all, reduced both the incidence and the severity of A.M.S. in those who flew to 2800 m but not in those who hiked up to that altitude. Prevention consists in slow ascent, rapid recognition of warning signs, and prompt descent to avoid progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawn Lenz; Raymond T. Lines; Darryl Murdock
ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of betweenmore » 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.« less
Helicopter pilot scan techniques during low-altitude high-speed flight.
Kirby, Christopher E; Kennedy, Quinn; Yang, Ji Hyun
2014-07-01
This study examined pilots' visual scan patterns during a simulated high-speed, low-level flight and how their scan rates related to flight performance. As helicopters become faster and more agile, pilots are expected to navigate at low altitudes while traveling at high speeds. A pilot's ability to interpret information from a combination of visual sources determines not only mission success, but also aircraft and crew survival. In a fixed-base helicopter simulator modeled after the U.S. Navy's MH-60S, 17 active-duty Navy helicopter pilots with varying total flight times flew and navigated through a simulated southern Californian desert course. Pilots' scan rate and fixation locations were monitored using an eye-tracking system while they flew through the course. Flight parameters, including altitude, were recorded using the simulator's recording system. Experienced pilots with more than 1000 total flight hours better maintained a constant altitude (mean altitude deviation = 48.52 ft, SD = 31.78) than less experienced pilots (mean altitude deviation = 73.03 ft, SD = 10.61) and differed in some aspects of their visual scans. They spent more time looking at the instrument display and less time looking out the window (OTW) than less experienced pilots. Looking OTW was associated with less consistency in maintaining altitude. Results may aid training effectiveness specific to helicopter aviation, particularly in high-speed low-level flight conditions.
2004-03-05
KENNEDY SPACE CENTER, FLA. - The STS-114 crew stands in front of the operations desk in the Orbiter Processing Facility. At far right is astronaut John Young, who flew on the first flight of Space Shuttle Columbia with Robert Crippen. Young is associate director, Technical, at Johnson Space Center. From left are Young’s pilot; STS-114 Commander Eileen Collins; Mission Specialists Andrew Thomas, Soichi Noguchi and Stephen Robinson; Pilot James Kelly; and Mission Specialist Charles Camarda. Noguchi represents the Japanese Aerospace and Exploration Agency. The STS-114 crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
2004-02-01
KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy (right) speaks to attendees at a memorial service honoring the crew of Columbia. Behind him are KSC Deputy Director Woodrow Whitlow Jr. and Executive Director of Florida Space Authority Winston Scott, who is a former astronaut who flew on Columbia in 1997. They are standing in front of the Space Memorial Mirror at the KSC Visitor Complex. Attended by many friends, co-workers and families, the memorial service was also open to the public, some of whom are seen at left. Feb. 1 is the one-year anniversary of the loss of the crew and orbiter Columbia in a tragic accident as the ship returned to Earth following mission STS-107.
2004-02-01
KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy (right) speaks to attendees at a memorial service honoring the crew of Columbia. At left are KSC Deputy Director Woodrow Whitlow Jr. and Executive Director of Florida Space Authority Winston Scott, who was an invited speaker. Scott is a former astronaut who flew on Columbia in 1997. They are standing in front of the Space Memorial Mirror at the KSC Visitor Complex. Feb. 1 is the one-year anniversary of the loss of the crew and orbiter Columbia in a tragic accident as the ship returned to Earth following mission STS-107. Attended by many friends, co-workers and families, the memorial service was also open to the public.
Gill, Robert E.; Tibbitts, T.L.; Douglas, David C.; Handel, Colleen M.; Mulcahy, D.M.; Gottschalck, J.C.; Warnock, N.; McCaffery, B.J.; Battley, Phil F.; Piersma, Theunis
2009-01-01
Mountain ranges, deserts, ice fields and oceans generally act as barriers to the movement of land-dependent animals, often profoundly shaping migration routes. We used satellite telemetry to track the southward flights of bar-tailed godwits (Limosa lapponica baueri), shorebirds whose breeding and non-breeding areas are separated by the vast central Pacific Ocean. Seven females with surgically implanted transmitters flew non-stop 8117-11680km (10153??1043 s.d.) directly across the Pacific Ocean; two males with external transmitters flew non-stop along the same corridor for 7008-7390km. Flight duration ranged from 6.0 to 9.4 days (7.8??1.3 s.d.) for birds with implants and 5.0 to 6.6 days for birds with externally attached transmitters. These extraordinary non-stop flights establish new extremes for avian flight performance, have profound implications for understanding the physiological capabilities of vertebrates and how birds navigate, and challenge current physiological paradigms on topics such as sleep, dehydration and phenotypic flexibility. Predicted changes in climatic systems may affect survival rates if weather conditions at their departure hub or along the migration corridor should change. We propose that this transoceanic route may function as an ecological corridor rather than a barrier, providing a wind-assisted passage relatively free of pathogens and predators. ?? 2008 The Royal Society.
NASA Technical Reports Server (NTRS)
Rabin, Douglas M.; Thomas, Roger J.; Brosius, Jeffrey W.
2008-01-01
The Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket instrument is a two-channel imaging spectrograph that observes the solar corona with high spectral resolution and a rapid cadence made possible by unprecedented sensitivity. EUNIS flew for the first time on 2006 April 12 (EUNIS-06), returning over 140 science exposures at a cadence of 2.1 s; each exposure comprises six 1K x 1K active pixel sensor (APS) images, three for each wavelength channel (170-205 $\\AA$ and 300-370 $\\AA$). Analysis of EUNIS-06 data has so far shed new light on the nature of coronal bright points, cool transients, and coronal loop arcades and has enabled calibration updates for TRACE and SOHO's CDS and EIT. EUNIS flew successfully again on 2007 November 6 (EUNIS-07). Because the APS's were operated in video rather than snapshot mode, a faster cadence of 1.3 s was possible (97% duty cycle), resulting in 276 science exposures. We present an overview of the EUNIS-07 spectra and describe the coordinated observing program executed by the Hinode Extreme ultraviolet Imaging Spectrograph (EIS) that will, in conjunction with the absolute radiometric calibration of EUNIS-07, result in the first on-orbit radiometric calibration of EIS. EUNIS data are freely available to the solar physics community. EUNIS is supported by the NASA Heliophysics Division through its Low Cost Access to Space Program in Solar and Heliospheric Physics.
Gill, Robert E.; Tibbitts, T. Lee; Douglas, David C.; Handel, Colleen M.; Mulcahy, Daniel M.; Gottschalck, Jon C.; Warnock, Nils; McCaffery, Brian J.; Battley, Philip F.; Piersma, Theunis
2008-01-01
Mountain ranges, deserts, ice fields and oceans generally act as barriers to the movement of land-dependent animals, often profoundly shaping migration routes. We used satellite telemetry to track the southward flights of bar-tailed godwits (Limosa lapponica baueri), shorebirds whose breeding and non-breeding areas are separated by the vast central Pacific Ocean. Seven females with surgically implanted transmitters flew non-stop 8117–11 680 km (10 153±1043 s.d.) directly across the Pacific Ocean; two males with external transmitters flew non-stop along the same corridor for 7008–7390 km. Flight duration ranged from 6.0 to 9.4 days (7.8±1.3 s.d.) for birds with implants and 5.0 to 6.6 days for birds with externally attached transmitters. These extraordinary non-stop flights establish new extremes for avian flight performance, have profound implications for understanding the physiological capabilities of vertebrates and how birds navigate, and challenge current physiological paradigms on topics such as sleep, dehydration and phenotypic flexibility. Predicted changes in climatic systems may affect survival rates if weather conditions at their departure hub or along the migration corridor should change. We propose that this transoceanic route may function as an ecological corridor rather than a barrier, providing a wind-assisted passage relatively free of pathogens and predators. PMID:18974033
Experimental Studies of Intent Information on Cockpit Traffic Displays
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Hansman, R. John, Jr.
1997-01-01
Intent information provides knowledge of another aircraft's current and future trajectory states. Prototype traffic displays were designed for four different levels of intent: No Intent, Rate, Commanded State, and Flight Management System (FMS)-Path. The TCAS Display was used as a baseline and represents the No Intent Level. The Rate, Commanded State, and FMS-Path Displays show increasing levels of intent information using TCAS-like symbology in addition to incorporating a conflict probe and profile view display. An experiment was run on the MIT Part Task Flight Simulator in which eight airline pilots flew five traffic scenarios with each of the four displays. Results show that pilots had fewer separation violations and maneuvered earlier with the three intent displays. Separation violations were reduced when pilots maneuvered earlier. A second experiment was run to compare performance between displaying intent information directly and incorporating it into a conflict probe. A different set of eight airline pilots flew four traffic scenarios with the TCAS and Commanded State Displays with and without the conflict probe. Conflict probes with two minute and long range look-ahead times were tested. Displaying conflict bands or showing intent information directly both led to fewer separation violations and earlier avoidance maneuvers than the base TCAS Display. Performance was similar between the two minute and long range look-ahead conflict probes. Pilots preferred all intent displays over the TCAS Display.
CTEPP STANDARD OPERATING PROCEDURE FOR COLLECTION OF URINE SAMPLES (SOP-2.14)
This SOP describes the method for collecting urine samples from the study participants (children and their primary caregivers). Urine samples will be approximate 48-hr collections, collected as spot urine samples accumulated over the 48-hr sampling period. If the household or da...
Circadian adaptation of airline pilots during extended duration operations between the USA and Asia.
Gander, Philippa; van den Berg, Margo; Mulrine, Hannah; Signal, Leigh; Mangie, Jim
2013-10-01
This study tracked circadian adaptation among airline pilots before, during, and after trips where they flew from Seattle (SEA) or Los Angeles (LAX) to Asia (7--9 time zones westward), spent 7--12 d in Asia, and then flew back to the USA. In Asia, pilots' exposures to local time cues and sleep opportunities were constrained by duty (short-haul flights crossing ≤ 1 time zone/24 h). Fourteen captains and 16 first officers participated (median age = 56 versus 48 yrs, p.U) < 0.001). Their sleep was monitored (actigraphy, duty/sleep diaries) from 3 d pre-trip to 5 d post-trip. For every flight, Karolinska Sleepiness and Samn-Perelli Fatigue scales and 5-min psychomotor vigilance task (PVT) tests were completed pre-flight and at top of descent (TOD). Participants had ≥ 3 d free of duty prior to outbound flight(s). From 72--24 h prior to departure (baseline sleep), mean total sleep/24 h (TST) = 7.00 h (SD = 1.18 h) and mean sleep efficiency = 87% (SD = 4.9%). Most pilots (23/30) flew direct to and from Asia, but 7 LAX-based pilots flew via a 1-d layover in Honolulu (HNL). On flights with ≥ 2 pilots, mean total in-flight sleep varied from 0.40 to 2.09 h outbound and from 0.74 to 1.88 h inbound. Duty patterns in Asia were variable, with ≤ 2 flights/d (mean flight duration = 3.53 h, SD = 0.53 h). TST on days 17 in Asia did not differ from baseline (p.F) = 0.2031). However, mean sleep efficiency was significantly lower than baseline on days 5--7 (p.F) = 0.0041). More pilots were on duty between 20:00 and 24:00 h on days 57 (mean = 21%) than on days 24 (mean = 14%). Sleep propensity distribution phase markers and chi-square periodogram analyses suggest that adaptation to local time was complete by day 4 in Asia. On pre-flight PVT tests in Asia, the slowest 10% of responses improved for flights departing 14:00--19:59 h (p.F) = 0.0484). At TOD, the slowest 10% of responses improved across days for flights arriving 14:00--19:59 h (p.F) = 0.0349) and 20:00--01:59 h (p.F) = 0.0379). Sleepiness and fatigue ratings pre-flight and at TOD did not change across days in Asia. TST on post-trip day 1 was longer than baseline (estimated mean extension = 1.68 h; adjusted p(t) < 0.0001). On all post-trip days, sleep efficiency was comparable to baseline. Sleep propensity distribution phase markers and chi-square periodogram analyses suggest complete readaptation in 12 d. Two opposing influences appeared to affect sleep and PVT performance across days in Asia: progressive circadian adaptation to local time and increasing duty during local night, which displaced sleep from the optimal physiological time. Cumulative sleep restriction across the return flight may explain the large rebound in TST on day 1 post-trip. Thereafter TST, sleep efficiency, and sleep timing suggest that readaptation was complete. Rapid post-trip readaptation may be facilitated by pilots having unconstrained nocturnal sleep opportunities, coupled with stronger patterns of family and social cues than in Asia.
28 CFR 28.12 - Collection of DNA samples.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Collection of DNA samples. 28.12 Section 28.12 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.12 Collection of DNA samples. (a) The Bureau of Prisons shall collect a DNA...
28 CFR 28.12 - Collection of DNA samples.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Collection of DNA samples. 28.12 Section 28.12 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.12 Collection of DNA samples. (a) The Bureau of Prisons shall collect a DNA...
28 CFR 28.12 - Collection of DNA samples.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Collection of DNA samples. 28.12 Section 28.12 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.12 Collection of DNA samples. (a) The Bureau of Prisons shall collect a DNA...
28 CFR 28.12 - Collection of DNA samples.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Collection of DNA samples. 28.12 Section 28.12 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.12 Collection of DNA samples. (a) The Bureau of Prisons shall collect a DNA...
28 CFR 28.12 - Collection of DNA samples.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Collection of DNA samples. 28.12 Section 28.12 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.12 Collection of DNA samples. (a) The Bureau of Prisons shall collect a DNA...
Comparison of oral fluid collection methods for the molecular detection of hepatitis B virus.
Portilho, M M; Mendonça, Acf; Marques, V A; Nabuco, L C; Villela-Nogueira, C A; Ivantes, Cap; Lewis-Ximenez, L L; Lampe, E; Villar, L M
2017-11-01
This study aims to compare the efficiency of four oral fluid collection methods (Salivette, FTA Card, spitting and DNA-Sal) to detect HBV DNA by qualitative PCR. Seventy-four individuals (32 HBV reactive and 42 with no HBV markers) donated serum and oral fluid. In-house qualitative PCR to detect HBV was used for both samples and commercial quantitative PCR for serum. HBV DNA was detected in all serum samples from HBV-infected individuals, and it was not detected in control group. HBV DNA from HBV group was detected in 17 samples collected with Salivette device, 16 samples collected by FTA Card device, 16 samples collected from spitting and 13 samples collected by DNA-Sal device. Samples that corresponded to a higher viral load in their paired serum sample could be detected using all oral fluid collection methods, but Salivette collection device yielded the largest numbers of positive samples and had a wide range of viral load that was detected. It was possible to detect HBV DNA using all devices tested, but higher number of positive samples was observed when samples were collected using Salivette device, which shows high concordance to viral load observed in the paired serum samples. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.
Du, Zhongzhou; Su, Rijian; Liu, Wenzhong; Huang, Zhixing
2015-01-01
The signal transmission module of a magnetic nanoparticle thermometer (MNPT) was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias), was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA) when the hardware system of the MNPT was designed with the aforementioned method. PMID:25875188
Performance of selected polymeric materials on LDEF
NASA Technical Reports Server (NTRS)
Young, Philip R.; Slemp, Wayne S.; Stein, Bland A.
1993-01-01
The NASA Long Duration Exposure Facility (LDEF) provided a unique environmental exposure of a wide variety of materials for potential advanced spacecraft application. This paper examines the molecular level response of selected polymeric materials which flew onboard this vehicle. Polymers include epolyimide, polysulfone, and polystyrene film and polyimide, polysulfone, and epoxy matrix resin/graphite fiber reinforced composites. Several promising experimental films were also studied. Most specimens received 5.8 years of low Earth orbital (LEO) exposure on LDEF. Several samples received on 10 months of exposure. Chemical characterization techniques included ultraviolet-visible and infrared spectroscopy, thermal analysis, x-ray photoelectron spectroscopy, and selected solution property measurements. Results suggest that many molecular level effects present during the first 10 months of exposure were not present after 5.8 years of exposure for specimens on or near Row 9. Increased AO fluence near the end of the mission likely eroded away much environmentally induced surface phenomena. The objective of this work is to provide fundamental information for use in improving the performance of polymeric materials for LEO application. A secondary objective is to gain an appreciation for the constraints and limitations of results from LDEF polymeric materials experiments.
Arbes, Samuel J; Sever, Michelle; Vaughn, Ben; Mehta, Jigna; Lynch, Jeffrey T; Mitchell, Herman; Hoppin, Jane A; Spencer, Harvey L; Sandler, Dale P; Zeldin, Darryl C
2005-06-01
Studies of indoor allergen exposures are often limited by the cost and logistics of sending technicians to homes to collect dust. In this study we evaluated the feasibility of having subjects collect their own dust samples. The objectives were to compare allergen concentrations between subject- and technician-collected samples and to examine the sample return rate. Using a dust collection device and written instructions provided to them by mail, 102 subjects collected a combined dust sample from a bed and bedroom floor. Later the same day, a technician collected a side-by-side sample. Dust samples were weighed and analyzed for the cat allergen Fel d 1 and the dust mite allergen Der p 1. Fifty additional subjects who were enrolled by telephone were mailed dust collection packages and asked to return a dust sample and questionnaire by mail. A technician did not visit their homes. Correlations between subject- and technician-collected samples were strong for concentrations of Fel d 1 (r = 0.88) and Der p 1 (r = 0.87). With allergen concentrations dichotomized at lower limits of detection and clinically relevant thresholds, agreements between methodologies ranged from 91 to 98%. Although dust weights were correlated (r = 0.48, p < 0.001), subjects collected lighter samples. Among the group of 50 subjects, 46 returned a dust sample and completed questionnaire. The median number of days to receive a sample was 15. With some limitations, subject-collected dust sampling appears to be a valid and practical option for epidemiologic and clinical studies that report allergen concentration as a measure of exposure.
Huffman, Raegan L.
2002-01-01
Ground-water samples were collected in April 1999 at Naval Air Station Whidbey Island, Washington, with passive diffusion samplers and a submersible pump to compare concentrations of volatile organic compounds (VOCs) in water samples collected using the two sampling methods. Single diffusion samplers were installed in wells with 10-foot screened intervals, and multiple diffusion samplers were installed in wells with 20- to 40-foot screened intervals. The diffusion samplers were recovered after 20 days and the wells were then sampled using a submersible pump. VOC concentrations in the 10-foot screened wells in water samples collected with diffusion samplers closely matched concentrations in samples collected with the submersible pump. Analysis of VOC concentrations in samples collected from the 20- to 40-foot screened wells with multiple diffusion samplers indicated vertical concentration variation within the screened interval, whereas the analysis of VOC concentrations in samples collected with the submersible pump indicated mixing during pumping. The results obtained using the two sampling methods indicate that the samples collected with the diffusion samplers were comparable with and can be considerably less expensive than samples collected using a submersible pump.
Sauvard, Daniel; Imbault, Vanessa; Darrouzet, Éric
2018-01-01
The invasive yellow-legged hornet, Vespa velutina nigrithorax Lepeletier, 1836 (Hymenoptera: Vespidae), is native to Southeast Asia. It was first detected in France (in the southwest) in 2005. It has since expanded throughout Europe and has caused significant harm to honeybee populations. We must better characterize the hornet's flight capacity to understand the species' success and develop improved control strategies. Here, we carried out a study in which we quantified the flight capacities of V. velutina workers using computerized flight mills. We observed that workers were able to spend around 40% of the daily 7-hour flight tests flying. On average, they flew 10km to 30km during each flight test, although there was a large amount of variation. Workers sampled in early summer had lower flight capacities than workers sampled later in the season. Flight capacity decreased as workers aged. However, in the field, workers probably often die before this decrease becomes significant. During each flight test, workers performed several continuous flight phases of variable length that were separated by rest phases. Based on the length of those continuous flight phases and certain key assumptions, we estimated that V. velutina colony foraging radius is at least 700 m (half that in early summer); however, some workers are able to forage much farther. While these laboratory findings remain to be confirmed by field studies, our results can nonetheless help inform V. velutina biology and control efforts.
Imbault, Vanessa; Darrouzet, Éric
2018-01-01
The invasive yellow-legged hornet, Vespa velutina nigrithorax Lepeletier, 1836 (Hymenoptera: Vespidae), is native to Southeast Asia. It was first detected in France (in the southwest) in 2005. It has since expanded throughout Europe and has caused significant harm to honeybee populations. We must better characterize the hornet’s flight capacity to understand the species’ success and develop improved control strategies. Here, we carried out a study in which we quantified the flight capacities of V. velutina workers using computerized flight mills. We observed that workers were able to spend around 40% of the daily 7-hour flight tests flying. On average, they flew 10km to 30km during each flight test, although there was a large amount of variation. Workers sampled in early summer had lower flight capacities than workers sampled later in the season. Flight capacity decreased as workers aged. However, in the field, workers probably often die before this decrease becomes significant. During each flight test, workers performed several continuous flight phases of variable length that were separated by rest phases. Based on the length of those continuous flight phases and certain key assumptions, we estimated that V. velutina colony foraging radius is at least 700 m (half that in early summer); however, some workers are able to forage much farther. While these laboratory findings remain to be confirmed by field studies, our results can nonetheless help inform V. velutina biology and control efforts. PMID:29883467
Evaluation of Oxygen Interactions with Materials 3: Mission and induced environments
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Leger, Lubert J.; Rickman, Steven L.; Hakes, Charles L.; Bui, David T.; Hunton, Donald; Cross, Jon B.
1995-01-01
The Evaluation of Oxygen Interactions with Materials 3 (EOIM-3) flight experiment was developed to obtain benchmark atomic oxygen/material reactivity data. The experiment was conducted during Space Shuttle mission 46 (STS-46), which flew July 31 to August 7, 1992. Quantitative interpretation of the materials reactivity measurements requires a complete and accurate definition of the space environment exposure, including the thermal history of the payload, the solar ultraviolet exposure, the atomic oxygen fluence, and any spacecraft outgassing contamination effects. The thermal history of the payload was measured using twelve thermocouple sensors placed behind selected samples and on the EOIM-3 payload structure. The solar ultraviolet exposure history of the EOIM-3 payload was determined by analysis of the as-flown orbit and vehicle attitude combined with daily average solar ultraviolet and vacuum ultraviolet (UV/VUV) fluxes. The atomic oxygen fluence was assessed in three different ways. First, the O-atom fluence was calculated using a program that incorporates the MSIS-86 atmospheric model, the as-flown Space Shuttle trajectory, and solar activity parameters. Second, the oxygen atom fluence was estimated directly from Kapton film erosion. Third, ambient oxygen atom measurements were made using the quadrupole mass spectrometer on the EOIM-3 payload. Our best estimate of the oxygen atom fluence as of this writing is 2.3 +/- 0.3 x 10(exp 20) atoms/sq cm. Finally, results of post-flight X-ray photoelectron spectroscopy (XPS) surface analyses of selected samples indicate low levels of contamination on the payload surface.
Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees.
Blanken, Lisa J; van Langevelde, Frank; van Dooremalen, Coby
2015-12-07
Current high losses of honeybees seriously threaten crop pollination. Whereas parasite exposure is acknowledged as an important cause of these losses, the role of insecticides is controversial. Parasites and neonicotinoid insecticides reduce homing success of foragers (e.g. by reduced orientation), but it is unknown whether they negatively affect flight capacity. We investigated how exposing colonies to the parasitic mite Varroa destructor and the neonicotinoid insecticide imidacloprid affect flight capacity of foragers. Flight distance, time and speed of foragers were measured in flight mills to assess the relative and interactive effects of high V. destructor load and a field-realistic, chronic sub-lethal dose of imidacloprid. Foragers from colonies exposed to high levels of V. destructor flew shorter distances, with a larger effect when also exposed to imidacloprid. Bee body mass partly explained our results as bees were heavier when exposed to these stressors, possibly due to an earlier onset of foraging. Our findings contribute to understanding of interacting stressors that can explain colony losses. Reduced flight capacity decreases the food-collecting ability of honeybees and may hamper the use of precocious foraging as a coping mechanism during colony (nutritional) stress. Ineffective coping mechanisms may lead to destructive cascading effects and subsequent colony collapse. © 2015 The Author(s).
Linear Aerospike SR-71 Experiment (LASRE) dumps water after first in-flight cold flow test
1998-03-04
The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST. "I think all in all we had a good mission today," Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew "thought it was a really good flight." Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, "We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE."
Seymour, A. C.; Dale, J.; Hammill, M.; Halpin, P. N.; Johnston, D. W.
2017-01-01
Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95–98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management. PMID:28338047
NASA Technical Reports Server (NTRS)
Hueschen, Richard M.; Hankins, Walter W., III; Barker, L. Keith
2001-01-01
This report examines a rollout and turnoff (ROTO) system for reducing the runway occupancy time for transport aircraft in low-visibility weather. Simulator runs were made to evaluate the system that includes a head-up display (HUD) to show the pilot a graphical overlay of the runway along with guidance and steering information to a chosen exit. Fourteen pilots (airline, corporate jet, and research pilots) collectively flew a total of 560 rollout and turnoff runs using all eight runways at Hartsfield Atlanta International Airport. The runs consisted of 280 runs for each of two runway visual ranges (RVRs) (300 and 1200 ft). For each visual range, half the runs were conducted with the HUD information and half without. For the runs conducted with the HUD information, the runway occupancy times were lower and more consistent. The effect was more pronounced as visibility decreased. For the 1200-ft visibility, the runway occupancy times were 13% lower with HUD information (46.1 versus 52.8 sec). Similarly, for the 300-ft visibility, the times were 28% lower (45.4 versus 63.0 sec). Also, for the runs with HUD information, 78% (RVR 1200) and 75% (RVR 300) had runway occupancy times less than 50 sec, versus 41 and 20%, respectively, without HUD information.
The QMAP and MAT/TOCO Experiments for Measuring Anisotropy in the Cosmic Microwave Background
NASA Astrophysics Data System (ADS)
Miller, A.; Beach, J.; Bradley, S.; Caldwell, R.; Chapman, H.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Jones, D.; Monnelly, G.; Netterfield, C. B.; Nolta, M.; Page, L. A.; Puchalla, J.; Robertson, T.; Torbet, E.; Tran, H. T.; Vinje, W. E.
2002-06-01
We describe two related experiments that measured the anisotropy in the cosmic microwave background (CMB). QMAP was a balloon-borne telescope that flew twice in 1996, collecting data on degree angular scales with an array of six high electron mobility transistor-based amplifiers (HEMTs). QMAP used an interlocking scan strategy to directly produce high signal-to-noise ratio CMB maps over a limited region of sky. The QMAP gondola was then refitted for ground-based work as the MAT/TOCO experiment. Observations were made from 5200 m on Cerro Toco in Northern Chile in 1997 and 1998 using time domain beam synthesis. MAT/TOCO measured the rise and fall of the CMB angular spectrum, thereby localizing the position of the first peak to lpeak=216+/-14. In addition to describing the instruments, we discuss the data selection methods, check for systematic errors, and compare the MAT/TOCO results to those from recent experiments. The previously reported data are updated to account for a small calibration shift and corrected to account for a small contribution from known sources of foreground emission. The resulting amplitude of the first peak for 160
Evaluation of simulation motion fidelity criteria in the vertical and directional axes
NASA Technical Reports Server (NTRS)
Schroeder, Jeffery A.
1993-01-01
An evaluation of existing motion fidelity criteria was conducted on the NASA Ames Vertical Motion Simulator. Experienced test pilots flew single-axis repositioning tasks in both the vertical and the directional axes. Using a first-order approximation of a hovering helicopter, tasks were flown with variations only in the filters that attenuate the commands to the simulator motion system. These filters had second-order high-pass characteristics, and the variations were made in the filter gain and natural frequency. The variations spanned motion response characteristics from nearly full math-model motion to fixed-base. Between configurations, pilots recalibrated their motion response perception by flying the task with full motion. Pilots subjectively rated the motion fidelity of subsequent configurations relative to this full motion case, which was considered the standard for comparison. The results suggested that the existing vertical-axis criterion was accurate for combinations of gain and natural frequency changes. However, if only the gain or the natural frequency was changed, the rated motion fidelity was better than the criterion predicted. In the vertical axis, the objective and subjective results indicated that a larger gain reduction was tolerated than the existing criterion allowed. The limited data collected in the yaw axis revealed that pilots had difficulty in distinguishing among the variations in the pure yaw motion cues.
NASA Astrophysics Data System (ADS)
Seymour, A. C.; Dale, J.; Hammill, M.; Halpin, P. N.; Johnston, D. W.
2017-03-01
Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95-98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management.
Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees
Blanken, Lisa J.; van Dooremalen, Coby
2015-01-01
Current high losses of honeybees seriously threaten crop pollination. Whereas parasite exposure is acknowledged as an important cause of these losses, the role of insecticides is controversial. Parasites and neonicotinoid insecticides reduce homing success of foragers (e.g. by reduced orientation), but it is unknown whether they negatively affect flight capacity. We investigated how exposing colonies to the parasitic mite Varroa destructor and the neonicotinoid insecticide imidacloprid affect flight capacity of foragers. Flight distance, time and speed of foragers were measured in flight mills to assess the relative and interactive effects of high V. destructor load and a field-realistic, chronic sub-lethal dose of imidacloprid. Foragers from colonies exposed to high levels of V. destructor flew shorter distances, with a larger effect when also exposed to imidacloprid. Bee body mass partly explained our results as bees were heavier when exposed to these stressors, possibly due to an earlier onset of foraging. Our findings contribute to understanding of interacting stressors that can explain colony losses. Reduced flight capacity decreases the food-collecting ability of honeybees and may hamper the use of precocious foraging as a coping mechanism during colony (nutritional) stress. Ineffective coping mechanisms may lead to destructive cascading effects and subsequent colony collapse. PMID:26631559
Use of Electronic Hand-held Devices for Collection of Savannah River Site Environmental Data - 13329
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marberry, Hugh; Moore, Winston
2013-07-01
Savannah River Nuclear Solutions has begun using Xplore Tablet PC's to collect data in the field for soil samples, groundwater samples, air samples and round sheets at the Savannah River Site (SRS). EPA guidelines for groundwater sampling are incorporated into the application to ensure the sample technician follows the proper protocol. The sample technician is guided through the process for sampling and round sheet data collection by a series of menus and input boxes. Field measurements and well stabilization information are entered into the tablet for uploading into Environmental Restoration Data Management System (ERDMS). The process helps to eliminate inputmore » errors and provides data integrity. A soil sample technician has the ability to collect information about location of sample, field parameter, describe the soil sample, print bottle labels, and print chain of custody for the sample that they have collected. An air sample technician has the ability to provide flow, pressure, hours of operation, print bottle labels and chain of custody for samples they collect. Round sheets are collected using the information provided in the various procedures. The data are collected and uploaded into ERDMS. The equipment used is weather proof and hardened for the field use. Global Positioning System (GPS) capabilities are integrated into the applications to provide the location where samples were collected and to help sample technicians locate wells that are not visited often. (authors)« less
Bird flight characteristics near wind turbines in Minnesota
Osborn, R.G.; Dieter, C.D.; Higgins, K.F.; Usgaard, R.E.
1998-01-01
During 1994-1995, we saw 70 species of birds on the Buffalo Ridge Wind Resource Area. In both years bird abundance peaked in spring. Red-winged blackbirds (Agelaius phoeniceus), mallards (Anas platyrhynchos), common grackles (Quiscalus quiscula), and barn swallows (Hirundo rustica) were the species most commonly seen. Most birds (82-84%) flew above or below the height range of wind turbine blades (22-55 m). The Buffalo Ridge Wind Resource Area poses little threat to resident or migrating birds at its current operating level.
["Junk-food"-intervention in poisoning delusion].
Schwerthöffer, Dirk; Bäuml, Josef
2007-11-01
Case report about a 29-year old US-American patient who suddenly flew to Germany due to a schizoaffektive disorder. During a stay in our psychiatric hospital she refused food, liquid and medication because of fear of being poisoned. After four days her general condition had worsened rapidly so that parenteral nutrition was discussed. Surprisingly her poisoning delusion could be overcome by offering American "Junk-Food". From this moment on compliance in taking of medication improved too, so that renormalisation of her condition was achieved.
Colloidal Disorder-Order Transition Experiment Probes Particle Interactions in Microgravity
NASA Technical Reports Server (NTRS)
1997-01-01
Everything in the universe is made up of the same basic building blocks - atoms. All physical properties of matter such as weight, hardness, and color are determined by the kind of atoms present and the way they interact with each other. The Colloidal Disorder-Order Transition (CDOT) shuttle flight experiment tested fundamental theories that model atomic interactions. The experiment was part of the Second United States Microgravity Laboratory (USML-2) aboard the Space Shuttle Columbia, which flew from October 20 to November 5, 1995.
Learning How to Fight Together: The British Experience with Joint Air-Land Warfare
2009-03-01
El Hamma , from 3 to 9 April, when the NATAF flew more than 3,000 sorties and dropped over ,500,000 pounds of bombs in direct support of 01...He is a senior lec- turer in the Defence Studies Department, King’s College London (KCL), based at the Joint Services Command and Staff College...and ended in stalemate 42 days later at El Alamein, some 220 miles inside the Egyp- tian border.55 A rough comparison of the opposing numbers of tanks
Foot Reaction Forces during Long Duration Space Flight
NASA Technical Reports Server (NTRS)
Gopalakrishnan, R.; Rice, A. J.; Genc, K. O.; Maender, C. C.; Kuklis, M. M.; Humphreys, B.; Cavanagh, P. R.
2008-01-01
Musculoskeletal changes, particularly in the lower extremities, are an established consequence of long-duration space flight despite exercise countermeasures. It is widely believed that disuse and reduction in load bearing are key to these physiological changes, but no quantitative data characterizing the on-orbit movement environments currently exist. Here we present data from the Foot Experiment (E318) regarding astronaut activity on the ground and on-orbit during typical days from 4 International Space Station (ISS) crew members who flew during increments 6, 8, 11, and 12.
John H Glenn Jr. Wreath Laying Ceremony
2016-12-09
A memorial wreath stands at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex before a ceremony remembering astronaut Sen. John Glenn, who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.
John H Glenn Jr. Wreath Laying Ceremony
2016-12-09
Former space shuttle astronaut Jon McBride speaks at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex during a ceremony remembering astronaut Sen. John Glenn who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.
John H Glenn Jr. Wreath Laying Ceremony
2016-12-09
A portrait of Sen. John Glenn and a memorial wreath stand at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex before a ceremony remembering the iconic astronaut who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.
John H Glenn Jr. Wreath Laying Ceremony
2016-12-09
News media members and visitors gather at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex during a ceremony remembering astronaut Sen. John Glenn who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.
2010-03-01
Research Laboratory Hypobaric DCS Research Database developed at Brooks AFB, TX, which has detailed information on over 3,000 research chamber... hyperbaric oxygen therapy resulting in complete resolution of all symptoms. After instituting EDP, the same pilot flew 36 U-2 high flights without any...consultation with base SGP and USAFSAM Hyperbarics and MAJCOM/SGPA. Earlier guidance in the 1980’s was much more restrictive and, in fact, permanently
2011-12-01
The DHC-7 originally flew as a commercial regional airliner, operating on intercity routes between major metropolitan areas from small local...eight hours and travel approximately 1,100 nautical miles. In an effort to maximize their TOS, or loiter time, INSCOM ARL operators currently must...real-world units (3rd MI BN and 204th MI BN) travel their transit legs at approximately 140 knots and conduct their missions at this same speed
NASA Hubble Space Telescope (HST) Research Project Capstone Even
2014-05-05
John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Grunsfeld flew on three of the five servicing missions to the Hubble Space Telescope. Photo Credit: (NASA/Joel Kowsky)
1998-10-28
The day before the launch of mission STS-95, the Press Site was inundated with 40 trailers, 75 trucks and RVs, 8 stages and 8 risers to accommodate the 3,750 media requests to cover the launch and return to space of John H. Glenn Jr., a senator from Ohio. Glenn flew aboard Friendship 7 in February 1962, and was the first American to orbit the Earth. Glenn is one of a crew of seven on board Space Shuttle Discovery for the nine-day mission
NASA’s Kuiper Airborne Observatory 1974-1995 - Twenty One Years of Discovery
NASA Astrophysics Data System (ADS)
Erickson, Edwin F.
2017-01-01
The Gerard P. Kuiper Airborne Observatory (KAO) forged a unique record in the annals of astronomy. Teams of scientists developed and flew with their specialized, state-of-the-art instruments to make observations not possible from the ground, at wavelengths from 0.3 µm to 1.6 mm. The talk will describe the KAO and its legacy of scientific findings, infrared instrumentation technology, experience for young astronomers and their impact on the field of infrared astronomy - and the rationale for SOFIA.
Phillips with probe-and-cone docking mechanism (StM) in the Zvezda module
2005-06-19
ISS011-E-09205 (19 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, works on the dismantled probe-and-cone docking mechanism from the Progress 18 spacecraft in the Zvezda Service Module of the International Space Station (ISS). The Progress docked to the aft port of the Service Module at 7:42 p.m. (CDT) as the two spacecraft flew approximately 225 statute miles, above a point near Beijing, China.
Krikalev with probe-and-cone docking mechanism (StM) in the Zvezda module
2005-06-19
ISS011-E-09210 (19 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, holds the dismantled probe-and-cone docking mechanism from the Progress 18 spacecraft in the Zvezda Service Module of the International Space Station (ISS). The Progress docked to the aft port of the Service Module at 7:42 p.m. (CDT) as the two spacecraft flew approximately 225 statute miles, above a point near Beijing, China.
2010-08-16
An unidentified researcher looks over the wiring connecting the Airbrorne Precipitation Radar (APR-2) during a flight aboard the NASA DC-8 aircraft, Tuesday, Aug. 17, 2010, over the Gulf of Mexico. Scientists taking part in the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes, flew out over a weather pattern Tuesday to begin their research. Photo Credit: (NASA/Paul E. Alers)
Celebrating John Glenn’s Legacy
2012-03-02
Sen. John Glenn, left, shakes hands with former Astronaut Steve Lindsey as NASA Administrator Charles Bolden smiles at an event celebrating John Glenn's legacy and 50 years of americans in orbit held at the Cleveland State University Wolstein Center on Friday, March 3, 2012 in Cleveland, Ohio. In 1998 Lindsey flew onboard the space shuttle Discovery along with then 77 year-old Sen. John Glenn for the STS-95 mission. Glenn became the first American to orbit Earth in 1962. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
A'Hearn, Michael F.; Belton, Michael J. S.; Delamere, W. Alan; Feaga, Lori M.; Hampton, Donald; Kissel, Jochen; Klaasen, Kenneth P.; McFadden, Jessica M.; Meech, Karen J.; Melosh, H. Jay;
2011-01-01
Understanding how comets work, i,e., what drives their activity, is crucial to using comets to study the early solar system. EPOXI flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus. taking both images and spectra. Unlike large, relatively inactive nuclei, this nncleus is outgassing primarily due to CO2, which drags chnnks of ice out of the nnclens. It also shows significant differences in the relative abundance of volatiles from various parts of the nucleus.
2005-04-24
Expedition 10 Commander Leroy Chiao, left, is greeted by his wife after arriving in Star City, Russia from Kazakhstan, Monday, April 25, 2005. The Expedition 10 crew brought their Soyuz TMA-5 capsule to a pre-dawn landing April 25 northeast of the town of Arkalyk to wrap up a six-month mission aboard the International Space Station for Chiao and Sharipov, and a ten-day mission for Vittori, who flew under a commercial contract between ESA and the Russian Federal Space Agency. Photo Credit: (NASA/Bill Ingalls)
2016-12-28
2016 presented the opportunity for NASA's Ames Research Center to meet its challenges and opportunities head on. Projects ranged from testing the next generation of air traffic control software to studying the stars of our galaxy. From developing life science experiments that flew aboard the International Space Station to helping protect our planet through airborne Earth observation campaigns. NASA's missions and programs are challenging and the people at NASA Ames Research Center continue to reach new heights and reveal the unknown for the benefit of all humankind!
NASA Technical Reports Server (NTRS)
2004-01-01
Ever since humans first saw birds soar through the sky, they have wanted to fly. The ancient Greeks and Romans pictured many of their gods with winged feet, and imagined mythological winged animals. According to the legend of Daedalus and Icarus, the father and son escaped prison by attaching wings made of wax and feathers to their bodies. Unfortunately, Icarus flew too near the sun, and the heat caused the wax and feathers to melt. The feathers fell off, and Icarus plummeted to the sea. Daedalus landed safely in Sicily.