Flexible pipe crawling device having articulated two axis coupling
Zollinger, William T.
1994-01-01
An apparatus for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in "inchworm" fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend.
Flexible pipe crawling device having articulated two axis coupling
Zollinger, W.T.
1994-05-10
An apparatus is described for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in inchworm' fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend. 4 figures.
NASA Technical Reports Server (NTRS)
By, Andre Bernard; Caron, Ken; Rothenberg, Michael; Sales, Vic
1994-01-01
This paper presents the first phase results of a collaborative effort between university researchers and a flexible assembly systems integrator to implement a comprehensive modular approach to flexible assembly automation. This approach, named MARAS (Modular Automated Reconfigurable Assembly System), has been structured to support multiple levels of modularity in terms of both physical components and system control functions. The initial focus of the MARAS development has been on parts gauging and feeding operations for cylinder lock assembly. This phase is nearing completion and has resulted in the development of a highly configurable system for vision gauging functions on a wide range of small components (2 mm to 100 mm in size). The reconfigurable concepts implemented in this adaptive Vision Gauging Module (VGM) are now being extended to applicable aspects of the singulating, selecting, and orienting functions required for the flexible feeding of similar mechanical components and assemblies.
Shaft flexibility effects on the forced response of a bladed-disk assembly
NASA Technical Reports Server (NTRS)
Khader, N.; Loewy, R. G.
1990-01-01
A model analysis approach is used to study the forced response of an actual flexible bladed-disk-shaft system. Both in-plane and out-of-plane flexible deformations of the bladed-disk assembly are considered, in addition to its rigid-body translations and rotations, resulting from the bending of the supporting flexible shaft in two orthogonal planes. The effects of Coriolis forces and structural coupling between flexible and rigid disk motions on the system's response are investigated. Aerodynamic loads acting on the rotating and vibrating bladed-disk assembly are accounted for through a simple quasi-steady representation, to evaluate their influence, combined with shaft flexibility and Coriolis effects.
An expert system executive for automated assembly of large space truss structures
NASA Technical Reports Server (NTRS)
Allen, Cheryl L.
1993-01-01
Langley Research Center developed a unique test bed for investigating the practical problems associated with the assembly of large space truss structures using robotic manipulators. The test bed is the result of an interdisciplinary effort that encompasses the full spectrum of assembly problems - from the design of mechanisms to the development of software. The automated structures assembly test bed and its operation are described, the expert system executive and its development are detailed, and the planned system evolution is discussed. Emphasis is on the expert system implementation of the program executive. The executive program must direct and reliably perform complex assembly tasks with the flexibility to recover from realistic system errors. The employment of an expert system permits information that pertains to the operation of the system to be encapsulated concisely within a knowledge base. This consolidation substantially reduced code, increased flexibility, eased software upgrades, and realized a savings in software maintenance costs.
NASA Astrophysics Data System (ADS)
Hsieh, Fu-Shiung
2011-03-01
Design of robust supervisory controllers for manufacturing systems with unreliable resources has received significant attention recently. Robustness analysis provides an alternative way to analyse a perturbed system to quickly respond to resource failures. Although we have analysed the robustness properties of several subclasses of ordinary Petri nets (PNs), analysis for non-ordinary PNs has not been done. Non-ordinary PNs have weighted arcs and have the advantage to compactly model operations requiring multiple parts or resources. In this article, we consider a class of flexible assembly/disassembly manufacturing systems and propose a non-ordinary flexible assembly/disassembly Petri net (NFADPN) model for this class of systems. As the class of flexible assembly/disassembly manufacturing systems can be regarded as the integration and interactions of a set of assembly/disassembly subprocesses, a bottom-up approach is adopted in this article to construct the NFADPN models. Due to the routing flexibility in NFADPN, there may exist different ways to accomplish the tasks. To characterise different ways to accomplish the tasks, we propose the concept of completely connected subprocesses. As long as there exists a set of completely connected subprocesses for certain type of products, the production of that type of products can still be maintained without requiring the whole NFADPN to be live. To take advantage of the alternative routes without enforcing liveness for the whole system, we generalise the concept of persistent production proposed to NFADPN. We propose a condition for persistent production based on the concept of completely connected subprocesses. We extend robustness analysis to NFADPN by exploiting its structure. We identify several patterns of resource failures and characterise the conditions to maintain operation in the presence of resource failures.
High-power fused assemblies enabled by advances in fiber-processing technologies
NASA Astrophysics Data System (ADS)
Wiley, Robert; Clark, Brett
2011-02-01
The power handling capabilities of fiber lasers are limited by the technologies available to fabricate and assemble the key optical system components. Previous tools for the assembly, tapering, and fusion of fiber laser elements have had drawbacks with regard to temperature range, alignment capability, assembly flexibility and surface contamination. To provide expanded capabilities for fiber laser assembly, a wide-area electrical plasma heat source was used in conjunction with an optimized image analysis method and a flexible alignment system, integrated according to mechatronic principles. High-resolution imaging and vision-based measurement provided feedback to adjust assembly, fusion, and tapering process parameters. The system was used to perform assembly steps including dissimilar-fiber splicing, tapering, bundling, capillary bundling, and fusion of fibers to bulk optic devices up to several mm in diameter. A wide range of fiber types and diameters were tested, including extremely large diameters and photonic crystal fibers. The assemblies were evaluated for conformation to optical and mechanical design criteria, such as taper geometry and splice loss. The completed assemblies met the performance targets and exhibited reduced surface contamination compared to assemblies prepared on previously existing equipment. The imaging system and image analysis algorithms provided in situ fiber geometry measurement data that agreed well with external measurement. The ability to adjust operating parameters dynamically based on imaging was shown to provide substantial performance benefits, particularly in the tapering of fibers and bundles. The integrated design approach was shown to provide sufficient flexibility to perform all required operations with a minimum of reconfiguration.
Core disruptive accident margin seal
Garin, John
1978-01-01
An apparatus for sealing the annulus defined between a substantially cylindrical rotatable first riser assembly and plug combination disposed in a substantially cylindrical second riser assembly and plug combination of a nuclear reactor system. The apparatus comprises a flexible metal member having a first side attached to one of the riser components and a second side extending toward the other riser component and an actuating mechanism attached to the flexible metal member while extending to an accessible location. When the actuating mechanism is not activated, the flexible metal member does not contact the other riser component thus allowing the free rotation of the riser assembly and plug combination. When desired, the actuating mechanism causes the second side of the flexible metal member to contact the other riser component thereby sealing the annulus between the components.
Lightweight IMM PV Flexible Blanket Assembly
NASA Technical Reports Server (NTRS)
Spence, Brian
2015-01-01
Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.
Flexible fuel cell gas manifold system
Cramer, Michael; Shah, Jagdish; Hayes, Richard P.; Kelley, Dana A.
2005-05-03
A fuel cell stack manifold system in which a flexible manifold body includes a pan having a central area, sidewall extending outward from the periphery of the central area, and at least one compound fold comprising a central area fold connecting adjacent portions of the central area and extending between opposite sides of the central area, and a sidewall fold connecting adjacent portions of the sidewall. The manifold system further includes a rail assembly for attachment to the manifold body and adapted to receive pins by which dielectric insulators are joined to the manifold assembly.
NASA Astrophysics Data System (ADS)
Gorlach, Igor; Wessel, Oliver
2008-09-01
In the global automotive industry, for decades, vehicle manufacturers have continually increased the level of automation of production systems in order to be competitive. However, there is a new trend to decrease the level of automation, especially in final car assembly, for reasons of economy and flexibility. In this research, the final car assembly lines at three production sites of Volkswagen are analysed in order to determine the best level of automation for each, in terms of manufacturing costs, productivity, quality and flexibility. The case study is based on the methodology proposed by the Fraunhofer Institute. The results of the analysis indicate that fully automated assembly systems are not necessarily the best option in terms of cost, productivity and quality combined, which is attributed to high complexity of final car assembly systems; some de-automation is therefore recommended. On the other hand, the analysis shows that low automation can result in poor product quality due to reasons related to plant location, such as inadequate workers' skills, motivation, etc. Hence, the automation strategy should be formulated on the basis of analysis of all relevant aspects of the manufacturing process, such as costs, quality, productivity and flexibility in relation to the local context. A more balanced combination of automated and manual assembly operations provides better utilisation of equipment, reduces production costs and improves throughput.
Condon, Joshua E; Jayaraman, Arthi
2017-10-04
Understanding the impact of incorporating new physical and chemical features in oligomeric DNA mimics, termed generally as "oligonucleic acids" (ONAs), on their structure and thermodynamics will be beneficial in designing novel materials for a variety of applications. In this work, we conduct coarse-grained molecular simulations of ONA-star polymer conjugates with varying ONA backbone flexibility, ONA backbone charge, and number of arms in the star polymer at a constant ONA strand volume fraction to elucidate the effect of these design parameters on the thermodynamics and assembly of multi-arm ONA-star polymer conjugates. We quantify the thermo-reversible behavior of the ONA-star polymer conjugates by quantifying the hybridization of the ONA strands in the system as a function of temperature (i.e. melting curve). Additionally, we characterize the assembly of the ONA-star polymer conjugates by tracking cluster formation and percolation as a function of temperature, as well as cluster size distribution at temperatures near the assembly transition region. The key results are as follows. The melting temperature (T m ) of the ONA strands decreases upon going from a neutral to a charged ONA backbone and upon increasing flexibility of the ONA backbone. Similar behavior is seen for the assembly transition temperature (T a ) with varying ONA backbone charge and flexibility. While the number of arms in the ONA-star polymer conjugate has a negligible effect on the ONA T m in these systems, as the number of ONA-star polymer arms increase, the assembly temperature T a increases and local ordering in the assembled state improves. By understanding how factors like ONA backbone charge, backbone flexibility, and ONA-star polymer conjugate architecture impact the behavior of ONA-star polymer conjugate systems, we can better inform how the selection of ONA chemistry will influence resulting ONA-star polymer assembly.
Methods for fabrication of flexible hybrid electronics
NASA Astrophysics Data System (ADS)
Street, Robert A.; Mei, Ping; Krusor, Brent; Ready, Steve E.; Zhang, Yong; Schwartz, David E.; Pierre, Adrien; Doris, Sean E.; Russo, Beverly; Kor, Siv; Veres, Janos
2017-08-01
Printed and flexible hybrid electronics is an emerging technology with potential applications in smart labels, wearable electronics, soft robotics, and prosthetics. Printed solution-based materials are compatible with plastic film substrates that are flexible, soft, and stretchable, thus enabling conformal integration with non-planar objects. In addition, manufacturing by printing is scalable to large areas and is amenable to low-cost sheet-fed and roll-to-roll processes. FHE includes display and sensory components to interface with users and environments. On the system level, devices also require electronic circuits for power, memory, signal conditioning, and communications. Those electronic components can be integrated onto a flexible substrate by either assembly or printing. PARC has developed systems and processes for realizing both approaches. This talk presents fabrication methods with an emphasis on techniques recently developed for the assembly of off-the-shelf chips. A few examples of systems fabricated with this approach are also described.
Horizontal wells in the Java Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, S.L.; Lyon, R.
1988-05-01
The utilization of the Navigation Drilling System in recent drilling activity has established that: Continuous build rates as high as 6.75 degrees/100 ft are achievable (with a .74 degree DTU), making possible the tapping of near platform reserves. The system provides the flexibility necessary to drill a continuous curve or an irregular path without bottomhole assembly changes. The system provides the flexibility for sidetracks to the ''low side'' of the well bore without coming out of the hole for bottomhole assembly changes or a cement plug. Geological objectives can be reached with a high degree of accuracy. The system greatlymore » reduces the costly learning curve associated with rotary bottomhole assemblies and substantially increases the confidence of the operator. Significant drilling cost reductions resulted from the use of the system. The cost per foot was further reduced as additional familiarity with the equipment was gained.« less
Minifactory: a precision assembly system adaptable to the product life cycle
NASA Astrophysics Data System (ADS)
Muir, Patrick F.; Rizzi, Alfred A.; Gowdy, Jay W.
1997-12-01
Automated product assembly systems are traditionally designed with the intent that they will be operated with few significant changes for as long as the product is being manufactured. This approach to factory design and programming has may undesirable qualities which have motivated the development of more 'flexible' systems. In an effort to improve agility, different types of flexibility have been integrated into factory designs. Specifically, automated assembly systems have been endowed with the ability to assemble differing products by means of computer-controlled robots, and to accommodate variations in parts locations and dimensions by means of sensing. The product life cycle (PLC) is a standard four-stage model of the performance of a product from the time that it is first introduced in the marketplace until the time that it is discontinued. Manufacturers can improve their return on investment by adapting the production process to the PLC. We are developing two concepts to enable manufacturers to more readily achieve this goal: the agile assembly architecture (AAA), an abstract framework for distributed modular automation; and minifactory, our physical instantation of this architecture for the assembly of precision electro-mechanical devices. By examining the requirements which each PLC stage places upon the production system, we identify characteristics of factory design and programming which are appropriate for that stage. As the product transitions from one stage to the next, the factory design and programing should also transition from one embodiment to the next in order to achieve the best return on investment. Modularity of the factory components, highly flexible product transport mechanisms, and a high level of distributed intelligence are key characteristics of minifactory that enable this adaptation.
Robustness analysis of non-ordinary Petri nets for flexible assembly systems
NASA Astrophysics Data System (ADS)
Hsieh, Fu-Shiung
2010-05-01
Non-ordinary controlled Petri nets (NCPNs) have the advantages to model flexible assembly systems in which multiple identical resources may be required to perform an operation. However, existing studies on NCPNs are still limited. For example, the robustness properties of NCPNs have not been studied. This motivates us to develop an analysis method for NCPNs. Robustness analysis concerns the ability for a system to maintain operation in the presence of uncertainties. It provides an alternative way to analyse a perturbed system without reanalysis. In our previous research, we have analysed the robustness properties of several subclasses of ordinary controlled Petri nets. To study the robustness properties of NCPNs, we augment NCPNs with an uncertainty model, which specifies an upper bound on the uncertainties for each reachable marking. The resulting PN models are called non-ordinary controlled Petri nets with uncertainties (NCPNU). Based on NCPNU, the problem is to characterise the maximal tolerable uncertainties for each reachable marking. The computational complexities to characterise maximal tolerable uncertainties for each reachable marking grow exponentially with the size of the nets. Instead of considering general NCPNU, we limit our scope to a subclass of PN models called non-ordinary controlled flexible assembly Petri net with uncertainties (NCFAPNU) for assembly systems and study its robustness. We will extend the robustness analysis to NCFAPNU. We identify two types of uncertainties under which the liveness of NCFAPNU can be maintained.
NASA Astrophysics Data System (ADS)
Chen, Ti; Wen, Hao
2018-06-01
This paper presents a distributed control law with disturbance observer for the autonomous assembly of a fleet of flexible spacecraft to construct a large flexible space structure. The fleet of flexible spacecraft is driven to the pre-assembly configuration firstly, and then to the desired assembly configuration. A distributed assembly control law with disturbance observer is proposed by treating the flexible dynamics as disturbances acting on the rigid motion of the flexible spacecraft. Theoretical analysis shows that the control law can actuate the fleet to the desired configuration. Moreover, the collision avoidance between the members is also considered in the process from initial configuration to pre-assembly configuration. Finally, a numerical example is presented to verify the feasibility of proposed mission planning and the effectiveness of control law.
Anode-cathode power distribution systems and methods of using the same for electrochemical reduction
Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L
2014-01-28
Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.
Research to Assembly Scheme for Satellite Deck Based on Robot Flexibility Control Principle
NASA Astrophysics Data System (ADS)
Guo, Tao; Hu, Ruiqin; Xiao, Zhengyi; Zhao, Jingjing; Fang, Zhikai
2018-03-01
Deck assembly is critical quality control point in final satellite assembly process, and cable extrusion and structure collision problems in assembly process will affect development quality and progress of satellite directly. Aimed at problems existing in deck assembly process, assembly project scheme for satellite deck based on robot flexibility control principle is proposed in this paper. Scheme is introduced firstly; secondly, key technologies on end force perception and flexible docking control in the scheme are studied; then, implementation process of assembly scheme for satellite deck is described in detail; finally, actual application case of assembly scheme is given. Result shows that compared with traditional assembly scheme, assembly scheme for satellite deck based on robot flexibility control principle has obvious advantages in work efficiency, reliability and universality aspects etc.
Flexible Electronics-Based Transformers for Extreme Environments
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Stoica, Adrian; Ingham, Michel; Thakur, Anubhav
2015-01-01
This paper provides a survey of the use of modular multifunctional systems, called Flexible Transformers, to facilitate the exploration of extreme and previously inaccessible environments. A novel dynamics and control model of a modular algorithm for assembly, folding, and unfolding of these innovative structural systems is also described, together with the control model and the simulation results.
Protein Flexibility Facilitates Quaternary Structure Assembly and Evolution
Marsh, Joseph A.; Teichmann, Sarah A.
2014-01-01
The intrinsic flexibility of proteins allows them to undergo large conformational fluctuations in solution or upon interaction with other molecules. Proteins also commonly assemble into complexes with diverse quaternary structure arrangements. Here we investigate how the flexibility of individual protein chains influences the assembly and evolution of protein complexes. We find that flexibility appears to be particularly conducive to the formation of heterologous (i.e., asymmetric) intersubunit interfaces. This leads to a strong association between subunit flexibility and homomeric complexes with cyclic and asymmetric quaternary structure topologies. Similarly, we also observe that the more nonhomologous subunits that assemble together within a complex, the more flexible those subunits tend to be. Importantly, these findings suggest that subunit flexibility should be closely related to the evolutionary history of a complex. We confirm this by showing that evolutionarily more recent subunits are generally more flexible than evolutionarily older subunits. Finally, we investigate the very different explorations of quaternary structure space that have occurred in different evolutionary lineages. In particular, the increased flexibility of eukaryotic proteins appears to enable the assembly of heteromeric complexes with more unique components. PMID:24866000
Evolving Systems: Adaptive Key Component Control and Inheritance of Passivity and Dissipativity
NASA Technical Reports Server (NTRS)
Frost, S. A.; Balas, M. J.
2010-01-01
We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. Autonomous assembly of large, complex flexible structures in space is a target application for Evolving Systems. A critical requirement for autonomous assembling structures is that they remain stable during and after assembly. The fundamental topic of inheritance of stability, dissipativity, and passivity in Evolving Systems is the primary focus of this research. In this paper, we develop an adaptive key component controller to restore stability in Nonlinear Evolving Systems that would otherwise fail to inherit the stability traits of their components. We provide sufficient conditions for the use of this novel control method and demonstrate its use on an illustrative example.
Modeling and controller design of a 6-DOF precision positioning system
NASA Astrophysics Data System (ADS)
Cai, Kunhai; Tian, Yanling; Liu, Xianping; Fatikow, Sergej; Wang, Fujun; Cui, Liangyu; Zhang, Dawei; Shirinzadeh, Bijan
2018-05-01
A key hurdle to meet the needs of micro/nano manipulation in some complex cases is the inadequate workspace and flexibility of the operation ends. This paper presents a 6-degree of freedom (DOF) serial-parallel precision positioning system, which consists of two compact type 3-DOF parallel mechanisms. Each parallel mechanism is driven by three piezoelectric actuators (PEAs), guided by three symmetric T-shape hinges and three elliptical flexible hinges, respectively. It can extend workspace and improve flexibility of the operation ends. The proposed system can be assembled easily, which will greatly reduce the assembly errors and improve the positioning accuracy. In addition, the kinematic and dynamic model of the 6-DOF system are established, respectively. Furthermore, in order to reduce the tracking error and improve the positioning accuracy, the Discrete-time Model Predictive Controller (DMPC) is applied as an effective control method. Meanwhile, the effectiveness of the DMCP control method is verified. Finally, the tracking experiment is performed to verify the tracking performances of the 6-DOF stage.
Framework for teleoperated microassembly systems
NASA Astrophysics Data System (ADS)
Reinhart, Gunther; Anton, Oliver; Ehrenstrasser, Michael; Patron, Christian; Petzold, Bernd
2002-02-01
Manual assembly of minute parts is currently done using simple devices such as tweezers or magnifying glasses. The operator therefore requires a great deal of concentration for successful assembly. Teleoperated micro-assembly systems are a promising method for overcoming the scaling barrier. However, most of today's telepresence systems are based on proprietary and one-of-a-kind solutions. Frameworks which supply the basic functions of a telepresence system, e.g. to establish flexible communication links that depend on bandwidth requirements or to synchronize distributed components, are not currently available. Large amounts of time and money have to be invested in order to create task-specific teleoperated micro-assembly systems from scratch. For this reason, an object-oriented framework for telepresence systems that is based on CORBA as a common middleware was developed at the Institute for Machine Tools and Industrial Management (iwb). The framework is based on a distributed architectural concept and is realized in C++. External hardware components such as haptic, video or sensor devices are coupled to the system by means of defined software interfaces. In this case, the special requirements of teleoperation systems have to be considered, e.g. dynamic parameter settings for sensors during operation. Consequently, an architectural concept based on logical sensors has been developed to achieve maximum flexibility and to enable a task-oriented integration of hardware components.
Modular robotic assembly of small devices.
Frauenfelder, M
2000-01-01
The use of robots for the automatic assembly of devices of up to 100 x 100 x 100 mm is relatively uncommon today. Insufficient return on investment and the long lead times that are required have been limiting factors. Innovations in vision technology have led to the development of robotic assembly systems that employ flexible part-feeding. The benefits of these systems are described, which suggest that better ratios of price to productivity and deployment times are now achievable.
NASA Astrophysics Data System (ADS)
Haag, Sebastian; Bernhardt, Henning; Rübenach, Olaf; Haverkamp, Tobias; Müller, Tobias; Zontar, Daniel; Brecher, Christian
2015-02-01
In many applications for high-power diode lasers, the production of beam-shaping and homogenizing optical systems experience rising volumes and dynamical market demands. The automation of assembly processes on flexible and reconfigurable machines can contribute to a more responsive and scalable production. The paper presents a flexible mounting device designed for the challenging assembly of side-tab based optical systems. It provides design elements for precisely referencing and fixating two optical elements in a well-defined geometric relation. Side tabs are presented to the machine allowing the application of glue and a rotating mechanism allows the attachment to the optical elements. The device can be adjusted to fit different form factors and it can be used in high-volume assembly machines. The paper shows the utilization of the device for a collimation module consisting of a fast-axis and a slow-axis collimation lens. Results regarding the repeatability and process capability of bonding side tab assemblies as well as estimates from 3D simulation for overall performance indicators achieved such as cycle time and throughput will be discussed.
Tube support grid and spacer therefor
Ringsmuth, Richard J.; Kaufman, Jay S.
1986-01-01
A tube support grid and spacers therefor provide radially inward preloading of heat exchange tubes to minimize stress upon base welds due to differential thermal expansion. The grid comprises a concentric series of rings and spacers with opposing concave sides for conforming to the tubes and V-shaped ends to provide resilient flexibility. The flexibility aids in assembly and in transmitting seismic vibrations from the tubes to a shroud. The tube support grid may be assembled in place to achieve the desired inwardly radial preloading of the heat exchange tubes. Tab and slot assembly further minimizes stresses in the system. The radii of the grid rings may be preselected to effect the desired radially inward preloading.
Implementation of a robotic flexible assembly system
NASA Technical Reports Server (NTRS)
Benton, Ronald C.
1987-01-01
As part of the Intelligent Task Automation program, a team developed enabling technologies for programmable, sensory controlled manipulation in unstructured environments. These technologies include 2-D/3-D vision sensing and understanding, force sensing and high speed force control, 2.5-D vision alignment and control, and multiple processor architectures. The subsequent design of a flexible, programmable, sensor controlled robotic assembly system for small electromechanical devices is described using these technologies and ongoing implementation and integration efforts. Using vision, the system picks parts dumped randomly in a tray. Using vision and force control, it performs high speed part mating, in-process monitoring/verification of expected results and autonomous recovery from some errors. It is programmed off line with semiautomatic action planning.
Industrial-scale spray layer-by-layer assembly for production of biomimetic photonic systems.
Krogman, K C; Cohen, R E; Hammond, P T; Rubner, M F; Wang, B N
2013-12-01
Layer-by-layer assembly is a powerful and flexible thin film process that has successfully reproduced biomimetic photonic systems such as structural colour. While most of the seminal work has been carried out using slow and ultimately unscalable immersion assembly, recent developments using spray layer-by-layer assembly provide a platform for addressing challenges to scale-up and manufacturability. A series of manufacturing systems has been developed to increase production throughput by orders of magnitude, making commercialized structural colour possible. Inspired by biomimetic photonic structures we developed and demonstrated a heat management system that relies on constructive reflection of near infrared radiation to bring about dramatic reductions in heat content.
Yoshimoto, Shusuke; Uemura, Takafumi; Akiyama, Mihoko; Ihara, Yoshihiro; Otake, Satoshi; Fujii, Tomoharu; Araki, Teppei; Sekitani, Tsuyoshi
2017-07-01
This paper presents a flexible organic thin-film transistor (OTFT) amplifier for bio-signal monitoring and presents the chip component assembly process. Using a conductive adhesive and a chip mounter, the chip components are mounted on a flexible film substrate, which has OTFT circuits. This study first investigates the assembly technique reliability for chip components on the flexible substrate. This study also specifically examines heart pulse wave monitoring conducted using the proposed flexible amplifier circuit and a flexible piezoelectric film. We connected the amplifier to a bluetooth device for a wearable device demonstration.
Pv-Thermal Solar Power Assembly
Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.
2001-10-02
A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.
An innovative platform for quick and flexible joining of assorted DNA fragments
De Paoli, Henrique Cestari; Tuskan, Gerald A.; Yang, Xiaohan
2016-01-13
Successful synthetic biology efforts rely on conceptual and experimental designs in combination with testing of multi-gene constructs. Despite recent progresses, several limitations still hinder the ability to flexibly assemble and collectively share different types of DNA segments. We describe an advanced system for joining DNA fragments from a universal library that automatically maintains open reading frames (ORFs) and does not require linkers, adaptors, sequence homology, amplification or mutation (domestication) of fragments in order to work properly. Moreover, we find that this system, which is enhanced by a unique buffer formulation, provides unforeseen capabilities for testing, and sharing, complex multi-gene circuitrymore » assembled from different DNA fragments.« less
Task planning and control synthesis for robotic manipulation in space applications
NASA Technical Reports Server (NTRS)
Sanderson, A. C.; Peshkin, M. A.; Homem-De-mello, L. S.
1987-01-01
Space-based robotic systems for diagnosis, repair and assembly of systems will require new techniques of planning and manipulation to accomplish these complex tasks. Results of work in assembly task representation, discrete task planning, and control synthesis which provide a design environment for flexible assembly systems in manufacturing applications, and which extend to planning of manipulatiuon operations in unstructured environments are summarized. Assembly planning is carried out using the AND/OR graph representation which encompasses all possible partial orders of operations and may be used to plan assembly sequences. Discrete task planning uses the configuration map which facilitates search over a space of discrete operations parameters in sequential operations in order to achieve required goals in the space of bounded configuration sets.
NASA Astrophysics Data System (ADS)
Watkins, James
2013-03-01
Roll-to-roll (R2R) technologies provide routes for continuous production of flexible, nanostructured materials and devices with high throughput and low cost. We employ additive-driven self-assembly to produce well-ordered polymer/nanoparticle hybrid materials that can serve as active device layers, we use highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index, and we employ R2R nanoimprint lithography for device scale patterning. Specific examples include the fabrication of flexible floating gate memory and large area films for optical/EM management. Our newly constructed R2R processing facility includes a custom designed, precision R2R UV-assisted nanoimprint lithography (NIL) system and hybrid nanostructured materials coaters.
Deployment/retraction ground testing of a large flexible solar array
NASA Technical Reports Server (NTRS)
Chung, D. T.
1982-01-01
The simulated zero-gravity ground testing of the flexible fold-up solar array consisting of eighty-four full-size panels (.368 m x .4 m each) is addressed. Automatic, hands-off extension, retraction, and lockup operations are included. Three methods of ground testing were investigated: (1) vertical testing; (2) horizontal testing, using an overhead water trough to support the panels; and (3) horizontal testing, using an overhead track in conjunction with a counterweight system to support the panels. Method 3 was selected as baseline. The wing/assembly vertical support structure, the five-tier overhead track, and the mast-element support track comprise the test structure. The flexible solar array wing assembly was successfully extended and retracted numerous times under simulated zero-gravity conditions.
Core disruptive accident margin seal
Garin, John; Belsick, James C.
1978-01-01
An apparatus for sealing the annulus defined between a substantially cylindrical rotatable first riser assembly and plug combination disposed in a substantially cylindrical second riser assembly and plug combination of a nuclear reactor system. The apparatus comprises a flexible member disposed between the first and second riser components and attached to a metal member which is attached to an actuating mechanism. When the actuating mechanism is not actuated, the flexible member does not contact the riser components thus allowing the free rotation of the riser components. When desired, the actuating mechanism causes the flexible member to contact the first and second riser components in a manner to block the annulus defined between the riser components, thereby sealing the annulus between the riser components.
An assembler for the MOS Technology 6502 microprocessor as implemented in jolt (TM) and KIM-1 (TM)
NASA Technical Reports Server (NTRS)
Lilley, R. W.
1976-01-01
Design of low-cost, microcomputer-based navigation receivers, and the assembler are described. The development of computer software for microprocessors is materially aided by the assembler program using mnemonic variable names. The flexibility of the environment provided by the IBM's Virtual Machine Facility and the Conversational Monitor System, make possible the convenient assembler access. The implementation of the assembler for the microprocessor chip serves a part of the present need and forms a model for support of other microprocessors.
Flexible Connectors between Capsomer Subunits that Regulate Capsid Assembly.
Hasek, Mary L; Maurer, Joshua B; Hendrix, Roger W; Duda, Robert L
2017-08-04
Viruses build icosahedral capsids of specific size and shape by regulating the spatial arrangement of the hexameric and pentameric protein capsomers in the growing shell during assembly. In the T=7 capsids of Escherichia coli bacteriophage HK97 and other phages, 60 capsomers are hexons, while the rest are pentons that are correctly positioned during assembly. Assembly of the HK97 capsid to the correct size and shape has been shown to depend on specific ionic contacts between capsomers. We now describe additional ionic interactions within capsomers that also regulate assembly. Each is between the long hairpin, the "E-loop," that extends from one subunit to the adjacent subunit within the same capsomer. Glutamate E153 on the E-loop and arginine R210 on the adjacent subunit's backbone alpha-helix form salt bridges in hexamers and pentamers. Mutations that disrupt these salt bridges were lethal for virus production, because the mutant proteins assembled into tubes or sheets instead of capsids. X-ray structures show that the E153-R210 links are flexible and maintained during maturation despite radical changes in capsomer shape. The E153-R210 links appear to form early in assembly to enable capsomers to make programmed changes in their shape during assembly. The links also prevent flattening of capsomers and premature maturation. Mutant phenotypes and modeling support an assembly model in which flexible E153-R210 links mediate capsomer shape changes that control where pentons are placed to create normal-sized capsids. The E-loop may be conserved in other systems in order to play similar roles in regulating assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.
Services for All: Are Outcome-Based Education and Flexible School Structures the Answer?
ERIC Educational Resources Information Center
Smith, Sarah J.
1995-01-01
This paper discusses the recent controversy over outcome-based education (OBE), arguing that while OBE may be correct in establishing high standards for student learning, its implementation has tended to establish rigid "assembly line" approaches to teaching. A call is made for more flexible and individualized systems that respond to…
PV/thermal solar power assembly
Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.
2004-01-13
A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar collector (4). The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof (20, 25) or side wall of a building or other structure, by use of adhesive and/or other types of fasteners (23).
Robot Arm with Tendon Connector Plate and Linear Actuator
NASA Technical Reports Server (NTRS)
Bridgwater, Lyndon (Inventor); Millerman, Alexander (Inventor); Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Nguyen, Vienny (Inventor)
2014-01-01
A robotic system includes a tendon-driven end effector, a linear actuator, a flexible tendon, and a plate assembly. The linear actuator assembly has a servo motor and a drive mechanism, the latter of which translates linearly with respect to a drive axis of the servo motor in response to output torque from the servo motor. The tendon connects to the end effector and drive mechanism. The plate assembly is disposed between the linear actuator assembly and the tendon-driven end effector and includes first and second plates. The first plate has a first side that defines a boss with a center opening. The second plate defines an accurate through-slot having tendon guide channels. The first plate defines a through passage for the tendon between the center opening and a second side of the first plate. A looped end of the flexible tendon is received within the tendon guide channels.
NASA Technical Reports Server (NTRS)
Singh, Sudeep K.; Lindenmoyer, Alan J.
1989-01-01
Results are presented from a preliminary control/structure interaction study of the Space Station, the Assembly Work Platform, and the STS orbiter dynamics coupled with the orbiter and station control systems. The first three Space Station assembly flight configurations and their finite element representations are illustrated. These configurations are compared in terms of control authority in each axis and propellant usage. The control systems design parameters during assembly are computed. Although the rigid body response was acceptable with the orbiter Primary Reaction Control System, the flexible body response showed large structural deflections and loads. It was found that severe control/structure interaction occurred if the stiffness of the Assembly Work Platform was equal to that of the station truss. Also, the response of the orbiter Vernier Reaction Control System to small changes in inertia properties is examined.
NASA Technical Reports Server (NTRS)
Morrison, Dennis R. (Inventor)
1991-01-01
A spiral vane bioreactor of a perfusion type is described in which a vertical chamber, intended for use in a microgravity condition, has a central rotating filter assembly and has flexible membranes disposed to rotate annularly about the filter assembly. The flexible members have end portions disposed angularly with respect to one another. A fluid replenishment medium is input from a closed loop liquid system to a completely liquid filled chamber containing microcarrier beads, cells and a fluid medium. Output of spent medium is to the closed loop. In the closed loop, the output and input parameters are sensed by sensors. A manifold permits recharging of the nutrients and pH adjustment. Oxygen is supplied and carbon dioxide and bubbles are removed and the system is monitored and controlled by a microprocessor.
Graphene based strain sensor with LCP substrate
NASA Astrophysics Data System (ADS)
Nie, M.; Yang, H. S.; Xia, Y. H.
2018-02-01
A flexible strain sensor constructed by an efficient, low-cost fabrication strategy is presented in this paper. It is assembled by adhering grid-like graphene on LCP substrate. Kinds of measurement setup have been designed to verify that the proposed flexible sensor device is suitable to be used in health monitoring system. From the experiment results, it can be proved that the sensor exhibits the following features: ultra-light, relatively good sensitivity, high reversibility, superior physical robustness, easy fabrication. With the great performance of this flexible strain sensor, it is considered to play an important role in body monitoring, structural health monitoring system, fatigue detection and healthcare systems in the near future.
A modular assembling platform for manufacturing of microsystems by optical tweezers
NASA Astrophysics Data System (ADS)
Ksouri, Sarah Isabelle; Aumann, Andreas; Ghadiri, Reza; Prüfer, Michael; Baer, Sebastian; Ostendorf, Andreas
2013-09-01
Due to the increased complexity in terms of materials and geometries for microsystems new assembling techniques are required. Assembling techniques from the semiconductor industry are often very specific and cannot fulfill all specifications in more complex microsystems. Therefore, holographic optical tweezers are applied to manipulate structures in micrometer range with highest flexibility and precision. As is well known non-spherical assemblies can be trapped and controlled by laser light and assembled with an additional light modulator application, where the incident laser beam is rearranged into flexible light patterns in order to generate multiple spots. The complementary building blocks are generated by a two-photon-polymerization process. The possibilities of manufacturing arbitrary microstructures and the potential of optical tweezers lead to the idea of combining manufacturing techniques with manipulation processes to "microrobotic" processes. This work presents the manipulation of generated complex microstructures with optical tools as well as a storage solution for 2PP assemblies. A sample holder has been developed for the manual feeding of 2PP building blocks. Furthermore, a modular assembling platform has been constructed for an `all-in-one' 2PP manufacturing process as a dedicated storage system. The long-term objective is the automation process of feeding and storage of several different 2PP micro-assemblies to realize an automated assembly process.
Robotic System For Greenhouse Or Nursery
NASA Technical Reports Server (NTRS)
Gill, Paul; Montgomery, Jim; Silver, John; Heffelfinger, Neil; Simonton, Ward; Pease, Jim
1993-01-01
Report presents additional information about robotic system described in "Robotic Gripper With Force Control And Optical Sensors" (MFS-28537). "Flexible Agricultural Robotics Manipulator System" (FARMS) serves as prototype of robotic systems intended to enhance productivities of agricultural assembly-line-type facilities in large commercial greenhouses and nurseries.
Pipe crawler with stabilizing midsection
Zollinger, W.T.; Treanor, R.C.
1994-12-27
A pipe crawler is described having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ''inch worm'' fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting. 5 figures.
Pipe crawler with stabilizing midsection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zollinger, W.T.; Treanor, R.C.
1994-12-27
A pipe crawler is described having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ''inch worm'' fashion with the front and rear leg assemblies alternating between anmore » extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting. 5 figures.« less
A Modular Approach To Developing A Large Deployable Reflector
NASA Astrophysics Data System (ADS)
Pittman, R.; Leidich, C.; Mascy, F.; Swenson, B.
1984-01-01
NASA is currently studying the feasibility of developing a Large Deployable Reflector (LDR) astronomical facility to perform astrophysical studies of the infrared and submillimeter portion of the spectrum in the mid 1990's. The LDR concept was recommended by the Astronomy Survey Committee of the National Academy of Sciences as one of two space based projects to be started this decade. The current baseline calls for a 20 m (65.6 ft) aperture telescope diffraction limited at 30 μm and automatically deployed from a single Shuttle launch. The volume, performance, and single launch constraints place great demands on the technology and place LDR beyond the state-of-the-art in certain areas such as lightweight reflector segments. The advent of the Shuttle is opening up many new options and capabilities for producing large space systems. Until now, LDR has always been conceived as an integrated system, deployed autonomously in a single launch. This paper will look at a combination of automatic deployment and on-orbit assembly that may reduce the technological complexity and cost of the LDR system. Many technological tools are now in use or under study that will greatly enhance our capabilities to do assembly in space. Two Shuttle volume budget scenarios will be examined to assess the potential of these tools to reduce the LDR system complexity. Further study will be required to reach the full optimal combination of deployment and assembly, since in most cases the capabilities of these new tools have not been demonstrated. In order to take maximum advantage of these concepts, the design of LDR must be flexible and allow one subsystem to be modified without adversely affecting the entire system. One method of achieving this flexibility is to use a modular design approach in which the major subsystems are physically separated during launch and assembled on orbit. A modular design approach facilitates this flexibility but requires that the subsystems be interfaced in a simple, straightforward, and controlled manner. NASA is currently defining a technology development plan for LDR which will identify the technology advances that are required. The modular approach offers the flexibility to easily incorporate these new advances into the design.
Two-axis movable concentrating solar energy collector
NASA Technical Reports Server (NTRS)
Perkins, G. S.
1977-01-01
Proposed solar-tracker collector assembly with boiler in fixed position, allows use of hard line connections, capable of withstanding optimum high temperature fluid flow. System thereby eliminates need for flexible or slip connection previously used with solar collector systems.
Guidelines and rules for automated assembly by robots in space
NASA Technical Reports Server (NTRS)
Srivastava, Sadanand
1992-01-01
The development of an expert system for a 'Mechanical Design System' is discussed. Two different implementation approaches are described. One is coded in C, and the other is realized by a software package - 'Exsys.' The first method has the advantage of greater flexibility and quicker responses, while the latter one is easier to develop. This report discusses the feasible ways to establish a real mechanical intelligent design system applying artificial intelligence techniques so that the products designed by this system could best meet the requirements for space assembly.
Pipe crawler with stabilizing midsection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zollinger, W.T.; Treanor, R.C.
1993-09-20
This invention is comprised of a pipe crawler having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ``inch worm`` fashion with the front and rear leg assembliesmore » alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting.« less
Inertia-Wheel Vibration-Damping System
NASA Technical Reports Server (NTRS)
Fedor, Joseph V.
1990-01-01
Proposed electromechanical system would damp vibrations in large, flexible structure. In active vibration-damping system motors and reaction wheels at tips of appendages apply reaction torques in response to signals from accelerometers. Velocity signal for vibrations about one axis processes into control signal to oppose each of n vibrational modes. Various modes suppressed one at a time. Intended primarily for use in spacecraft that has large, flexible solar panels and science-instrument truss assembly, embodies principle of control interesting in its own right and adaptable to terrestrial structures, vehicles, and instrument platforms.
Self-assembly micro optical filter
NASA Astrophysics Data System (ADS)
Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.
2006-01-01
Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.
Modular integration of electronics and microfluidic systems using flexible printed circuit boards.
Wu, Amy; Wang, Lisen; Jensen, Erik; Mathies, Richard; Boser, Bernhard
2010-02-21
Microfluidic systems offer an attractive alternative to conventional wet chemical methods with benefits including reduced sample and reagent volumes, shorter reaction times, high-throughput, automation, and low cost. However, most present microfluidic systems rely on external means to analyze reaction products. This substantially adds to the size, complexity, and cost of the overall system. Electronic detection based on sub-millimetre size integrated circuits (ICs) has been demonstrated for a wide range of targets including nucleic and amino acids, but deployment of this technology to date has been limited due to the lack of a flexible process to integrate these chips within microfluidic devices. This paper presents a modular and inexpensive process to integrate ICs with microfluidic systems based on standard printed circuit board (PCB) technology to assemble the independently designed microfluidic and electronic components. The integrated system can accommodate multiple chips of different sizes bonded to glass or PDMS microfluidic systems. Since IC chips and flex PCB manufacturing and assembly are industry standards with low cost, the integrated system is economical for both laboratory and point-of-care settings.
Slew maneuvers of Spacecraft Control Laboratory Experiment (SCOLE)
NASA Technical Reports Server (NTRS)
Kakad, Yogendra P.
1992-01-01
This is the final report on the dynamics and control of slew maneuvers of the Spacecraft Control Laboratory Experiment (SCOLE) test facility. The report documents the basic dynamical equation derivations for an arbitrary large angle slew maneuver as well as the basic decentralized slew maneuver control algorithm. The set of dynamical equations incorporate rigid body slew maneuver and three dimensional vibrations of the complete assembly comprising the rigid shuttle, the flexible beam, and the reflector with an offset mass. The analysis also includes kinematic nonlinearities of the entire assembly during the maneuver and the dynamics of the interactions between the rigid shuttle and the flexible appendage. The equations are simplified and evaluated numerically to include the first ten flexible modes to yield a model for designing control systems to perform slew maneuvers. The control problem incorporates the nonlinear dynamical equations and is expressed in terms of a two point boundary value problem.
Self-optimizing approach for automated laser resonator alignment
NASA Astrophysics Data System (ADS)
Brecher, C.; Schmitt, R.; Loosen, P.; Guerrero, V.; Pyschny, N.; Pavim, A.; Gatej, A.
2012-02-01
Nowadays, the assembly of laser systems is dominated by manual operations, involving elaborate alignment by means of adjustable mountings. From a competition perspective, the most challenging problem in laser source manufacturing is price pressure, a result of cost competition exerted mainly from Asia. From an economical point of view, an automated assembly of laser systems defines a better approach to produce more reliable units at lower cost. However, the step from today's manual solutions towards an automated assembly requires parallel developments regarding product design, automation equipment and assembly processes. This paper introduces briefly the idea of self-optimizing technical systems as a new approach towards highly flexible automation. Technically, the work focuses on the precision assembly of laser resonators, which is one of the final and most crucial assembly steps in terms of beam quality and laser power. The paper presents a new design approach for miniaturized laser systems and new automation concepts for a robot-based precision assembly, as well as passive and active alignment methods, which are based on a self-optimizing approach. Very promising results have already been achieved, considerably reducing the duration and complexity of the laser resonator assembly. These results as well as future development perspectives are discussed.
Shaft flexibility effects on aeroelastic stability of a rotating bladed disk
NASA Technical Reports Server (NTRS)
Khader, Naim; Loewy, Robert
1989-01-01
A comprehensive study of Coriolis forces and shaft flexibility effects on the structural dynamics and aeroelastic stability of a rotating bladed-disk assembly attached to a cantilever, massless, flexible shaft is presented. Analyses were performed for an actual bladed-disk assembly, used as the first stage in the fan of the 'E3' engine. In the structural model, both in-plane and out-of-plane elastic deformation of the bladed-disk assembly were considered relative to their hub, in addition to rigid disk translations and rotations introduced by shaft flexibility. Besides structural coupling between blades (through the flexible disk), additional coupling is introduced through quasisteady aerodynamic loads. Rotational effects are accounted for throughout the work, and some mode shapes for the whole structure are presented at a selected rpm.
Attaching solar collectors to a structural framework utilizing a flexible clip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruse, John S
Methods and apparatuses described herein provide for the attachment of solar collectors to a structural framework in a solar array assembly. A flexible clip is attached to either end of each solar collector and utilized to attach the solar collector to the structural framework. The solar collectors are positioned to allow a member of the framework to engage a pair of flexible clips attached to adjacent solar collectors during assembly of the solar array. Each flexible clip may have multiple frame-engaging portions, each with a flange on one end to cause the flexible clip to deflect inward when engaged bymore » the framework member during assembly and to guide each of the frame-engaging portions into contact with a surface of the framework member for attachment.« less
aTRAM 2.0: An Improved, Flexible Locus Assembler for NGS Data
Allen, Julie M; LaFrance, Raphael; Folk, Ryan A; Johnson, Kevin P; Guralnick, Robert P
2018-01-01
Massive strides have been made in technologies for collecting genome-scale data. However, tools for efficiently and flexibly assembling raw outputs into downstream analytical workflows are still nascent. aTRAM 1.0 was designed to assemble any locus from genome sequencing data but was neither optimized for efficiency nor able to serve as a single toolkit for all assembly needs. We have completely re-implemented aTRAM and redesigned its structure for faster read retrieval while adding a number of key features to improve flexibility and functionality. The software can now (1) assemble single- or paired-end data, (2) utilize both read directions in the database, (3) use an additional de novo assembly module, and (4) leverage new built-in pipelines to automate common workflows in phylogenomics. Owing to reimplementation of databasing strategies, we demonstrate that aTRAM 2.0 is much faster across all applications compared to the previous version. PMID:29881251
Differential pressure pin discharge apparatus
Oakley, David J.
1987-02-03
Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.
Differential pressure pin discharge apparatus
Oakley, D.J.
1984-05-30
Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pins passageway extending through the assembly.
Differential pressure pin discharge apparatus
Oakley, David J.
1987-01-01
Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.
NASA Technical Reports Server (NTRS)
Bodley, C. S.; Devers, A. D.; Park, A. C.
1975-01-01
Analytical procedures and digital computer code are presented for the dynamic analysis of a flexible spacecraft with rotating components. Topics, considered include: (1) nonlinear response in the time domain, and (2) linear response in the frequency domain. The spacecraft is assumed to consist of an assembly of connected rigid or flexible subassemblies. The total system is not restricted to a topological connection arrangement and may be acting under the influence of passive or active control systems and external environments. The analytics and associated digital code provide the user with the capability to establish spacecraft system nonlinear total response for specified initial conditions, linear perturbation response about a calculated or specified nominal motion, general frequency response and graphical display, and spacecraft system stability analysis.
76 FR 11199 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-01
... of the central nervous systems of freshwater prawns. Justification for Duty-Free Entry: There are no... 120 kV accelerating voltage, and an electron gun assembly with Cool Beam Illumination System--LaB6..., flexibility of software for signal acquisition and image processing, overall system stability, and ease of use...
Constraint elimination in dynamical systems
NASA Technical Reports Server (NTRS)
Singh, R. P.; Likins, P. W.
1989-01-01
Large space structures (LSSs) and other dynamical systems of current interest are often extremely complex assemblies of rigid and flexible bodies subjected to kinematical constraints. A formulation is presented for the governing equations of constrained multibody systems via the application of singular value decomposition (SVD). The resulting equations of motion are shown to be of minimum dimension.
Optical systems fabricated by printing-based assembly
Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred J; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung
2014-05-13
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
Optical systems fabricated by printing-based assembly
Rogers, John [Champaign, IL; Nuzzo, Ralph [Champaign, IL; Meitl, Matthew [Durham, NC; Menard, Etienne [Durham, NC; Baca, Alfred J [Urbana, IL; Motala, Michael [Champaign, IL; Ahn, Jong-Hyun [Suwon, KR; Park, Sang-II [Savoy, IL; Yu,; Chang-Jae, [Urbana, IL; Ko, Heung-Cho [Gwangju, KR; Stoykovich,; Mark, [Dover, NH; Yoon, Jongseung [Urbana, IL
2011-07-05
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
Optical systems fabricated by printing-based assembly
Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong -Hyun; Park, Sang -Il; Yu, Chang -Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung
2015-08-25
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
Optical systems fabricated by printing-based assembly
Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung
2017-03-21
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
NASA Astrophysics Data System (ADS)
Zhang, Yibin; Zheng, Yingxuan; Xiong, Wei; Peng, Cheng; Zhang, Yifan; Duan, Ran; Che, Yanke; Zhao, Jincai
2016-06-01
Kinetic control over the assembly pathways towards novel metastable functional materials or far-from-equilibrium systems has been much less studied compared to the thermodynamic equilibrium self-assembly. Herein, we report the distinct morphological transformation between nanocoils and nanoribbons in the self-assembly of unsymmetric perylene diimide (PDI) molecules. We demonstrate that the morphological transformation of the kinetically trapped assemblies into the thermodynamically stable forms proceeds via two distinct mechanisms, i.e., a direct structural rearrangement (molecule 1 or 2) and a fragmentation-recombination mechanism (molecule 4), respectively. The subtle interplay of the steric hindrance of the bulky substituents and the flexibility of the linker structure between the bulky moiety and the perylene core was demonstrated to enable the effective modulation of the energetic landscape of the assemblies and thus modulation of the assembly pathways. Herein, our work presents a new approach to control the self-assembly pathways and thereby can be used to achieve novel far-from-equilibrium systems.
NASA Technical Reports Server (NTRS)
Bodley, C. S.; Devers, A. D.; Park, A. C.; Frisch, H. P.
1978-01-01
A theoretical development and associated digital computer program system for the dynamic simulation and stability analysis of passive and actively controlled spacecraft are presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system is used to investigate total system dynamic characteristics, including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. In addition, the program system is used for designing attitude control systems and for evaluating total dynamic system performance, including time domain response and frequency domain stability analyses.
High-accuracy microassembly by intelligent vision systems and smart sensor integration
NASA Astrophysics Data System (ADS)
Schilp, Johannes; Harfensteller, Mark; Jacob, Dirk; Schilp, Michael
2003-10-01
Innovative production processes and strategies from batch production to high volume scale are playing a decisive role in generating microsystems economically. In particular assembly processes are crucial operations during the production of microsystems. Due to large batch sizes many microsystems can be produced economically by conventional assembly techniques using specialized and highly automated assembly systems. At laboratory stage microsystems are mostly assembled by hand. Between these extremes there is a wide field of small and middle sized batch production wherefore common automated solutions rarely are profitable. For assembly processes at these batch sizes a flexible automated assembly system has been developed at the iwb. It is based on a modular design. Actuators like grippers, dispensers or other process tools can easily be attached due to a special tool changing system. Therefore new joining techniques can easily be implemented. A force-sensor and a vision system are integrated into the tool head. The automated assembly processes are based on different optical sensors and smart actuators like high-accuracy robots or linear-motors. A fiber optic sensor is integrated in the dispensing module to measure contactless the clearance between the dispense needle and the substrate. Robot vision systems using the strategy of optical pattern recognition are also implemented as modules. In combination with relative positioning strategies, an assembly accuracy of the assembly system of less than 3 μm can be realized. A laser system is used for manufacturing processes like soldering.
Deployable radiator with flexible line loop
NASA Technical Reports Server (NTRS)
Keeler, Bryan V. (Inventor); Lehtinen, Arthur Mathias (Inventor); McGee, Billy W. (Inventor)
2003-01-01
Radiator assembly (10) for use on a spacecraft (12) is provided including at least one radiator panel assembly (26) repeatably movable between a panel stowed position (28) and a panel deployed position (36), at least two flexible lines (40) in fluid communication with the at least one radiator panel assembly (26) and repeatably movable between a stowage loop (42) and a flattened deployed loop (44).
Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability.
Wu, Hao; Huang, YongAn; Xu, Feng; Duan, Yongqing; Yin, Zhouping
2016-12-01
The rapid advancements of wearable electronics have caused a paradigm shift in consumer electronics, and the emerging development of stretchable electronics opens a new spectrum of applications for electronic systems. Playing a critical role as the power sources for independent electronic systems, energy harvesters with high flexibility or stretchability have been the focus of research efforts over the past decade. A large number of the flexible energy harvesters developed can only operate at very low strain level (≈0.1%), and their limited flexibility impedes their application in wearable or stretchable electronics. Here, the development of highly flexible and stretchable (stretchability >15% strain) energy harvesters is reviewed with emphasis on strategies of materials synthesis, device fabrication, and integration schemes for enhanced flexibility and stretchability. Due to their particular potential applications in wearable and stretchable electronics, energy-harvesting devices based on piezoelectricity, triboelectricity, thermoelectricity, and dielectric elastomers have been largely developed and the progress is summarized. The challenges and opportunities of assembly and integration of energy harvesters into stretchable systems are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Automation of assembly of electrical products
NASA Astrophysics Data System (ADS)
Lebedenko, V. A.
1984-10-01
Approaches to the operation of a production line with a free rather than rigid tempo and cycles are discussed, along with the installation of a interoperational transport with trays rather than a continuously moving convey belt and the use of standard technological equipment in lieu of small scale mechanization. The design of a production line which follow these principles is examined. The advantages as well as the disadvantages of such a system are considered in the development of an automated flexible production line with robotized technological complex. A single flexible assembly line for the hookup operations with the most important link, the automatic manipulator for joining the product components together, consists of modules classifiable into six groups: (1) movers of the base parts; (2) feeders and orientators of parts; (3) joiners of parts; (4) carriers and holders of parts; (5) inspection and control systems; and (6) fasteners of parts.
Notes on implementation of Coulomb friction in coupled dynamical simulations
NASA Technical Reports Server (NTRS)
Vandervoort, R. J.; Singh, R. P.
1987-01-01
A coupled dynamical system is defined as an assembly of rigid/flexible bodies that may be coupled by kinematic connections. The interfaces between bodies are modeled using hinges having 0 to 6 degrees of freedom. The equations of motion are presented for a mechanical system of n flexible bodies in a topological tree configuration. The Lagrange form of the D'Alembert principle was employed to derive the equations. The equations of motion are augmented by the kinematic constraint equations. This augmentation is accomplished via the method of singular value decomposition.
An assembly process model based on object-oriented hierarchical time Petri Nets
NASA Astrophysics Data System (ADS)
Wang, Jiapeng; Liu, Shaoli; Liu, Jianhua; Du, Zenghui
2017-04-01
In order to improve the versatility, accuracy and integrity of the assembly process model of complex products, an assembly process model based on object-oriented hierarchical time Petri Nets is presented. A complete assembly process information model including assembly resources, assembly inspection, time, structure and flexible parts is established, and this model describes the static and dynamic data involved in the assembly process. Through the analysis of three-dimensional assembly process information, the assembly information is hierarchically divided from the whole, the local to the details and the subnet model of different levels of object-oriented Petri Nets is established. The communication problem between Petri subnets is solved by using message database, and it reduces the complexity of system modeling effectively. Finally, the modeling process is presented, and a five layer Petri Nets model is established based on the hoisting process of the engine compartment of a wheeled armored vehicle.
Description of the PMAD DC test bed architecture and integration sequence
NASA Technical Reports Server (NTRS)
Beach, R. F.; Trash, L.; Fong, D.; Bolerjack, B.
1991-01-01
NASA-LEWIS is responsible for the development, fabrication, and assembly of the electric power system (EPS) for the Space Station Freedom (SSF). The SSF power system is radically different from previous spacecraft power systems in both the size and complexity of the system. Unlike past spacecraft power systems, the SSF EPS will grow and be maintained on orbit and must be flexible to meet challenging user power needs. The SSF power system is also unique in comparison with terrestrial power systems because it is dominated by power electronic converters which regulate and control the power. A description is provided of the Power Management and Distribution DC Testbed which was assembled to support the design and early evaluation of the SSF EPS. A description of the integration process used in the assembly sequence is also given along with a description of the support facility.
Okabe, Kenji; Jeewan, Horagodage Prabhath; Yamagiwa, Shota; Kawano, Takeshi; Ishida, Makoto; Akita, Ippei
2015-12-16
In this paper, a co-design method and a wafer-level packaging technique of a flexible antenna and a CMOS rectifier chip for use in a small-sized implantable system on the brain surface are proposed. The proposed co-design method optimizes the system architecture, and can help avoid the use of external matching components, resulting in the realization of a small-size system. In addition, the technique employed to assemble a silicon large-scale integration (LSI) chip on the very thin parylene film (5 μm) enables the integration of the rectifier circuits and the flexible antenna (rectenna). In the demonstration of wireless power transmission (WPT), the fabricated flexible rectenna achieved a maximum efficiency of 0.497% with a distance of 3 cm between antennas. In addition, WPT with radio waves allows a misalignment of 185% against antenna size, implying that the misalignment has a less effect on the WPT characteristics compared with electromagnetic induction.
Okabe, Kenji; Jeewan, Horagodage Prabhath; Yamagiwa, Shota; Kawano, Takeshi; Ishida, Makoto; Akita, Ippei
2015-01-01
In this paper, a co-design method and a wafer-level packaging technique of a flexible antenna and a CMOS rectifier chip for use in a small-sized implantable system on the brain surface are proposed. The proposed co-design method optimizes the system architecture, and can help avoid the use of external matching components, resulting in the realization of a small-size system. In addition, the technique employed to assemble a silicon large-scale integration (LSI) chip on the very thin parylene film (5 μm) enables the integration of the rectifier circuits and the flexible antenna (rectenna). In the demonstration of wireless power transmission (WPT), the fabricated flexible rectenna achieved a maximum efficiency of 0.497% with a distance of 3 cm between antennas. In addition, WPT with radio waves allows a misalignment of 185% against antenna size, implying that the misalignment has a less effect on the WPT characteristics compared with electromagnetic induction. PMID:26694407
Yeo, Giselle C; Tarakanova, Anna; Baldock, Clair; Wise, Steven G; Buehler, Markus J; Weiss, Anthony S
2016-02-01
The assembly of the tropoelastin monomer into elastin is vital for conferring elasticity on blood vessels, skin, and lungs. Tropoelastin has dual needs for flexibility and structure in self-assembly. We explore the structure-dynamics-function interplay, consider the duality of molecular order and disorder, and identify equally significant functional contributions by local and global structures. To study these organizational stratifications, we perturb a key hinge region by expressing an exon that is universally spliced out in human tropoelastins. We find a herniated nanostructure with a displaced C terminus and explain by molecular modeling that flexible helices are replaced with substantial β sheets. We see atypical higher-order cross-linking and inefficient assembly into discontinuous, thick elastic fibers. We explain this dysfunction by correlating local and global structural effects with changes in the molecule's assembly dynamics. This work has general implications for our understanding of elastomeric proteins, which balance disordered regions with defined structural modules at multiple scales for functional assembly.
Differential pressure pin discharge apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oakley, D.J.
Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in themore » low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pins passageway extending through the assembly.« less
Tuning carbon nanotube assembly for flexible, strong and conductive films.
Wang, Yanjie; Li, Min; Gu, Yizhuo; Zhang, Xiaohua; Wang, Shaokai; Li, Qingwen; Zhang, Zuoguang
2015-02-21
Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g(-1), greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive.
NASA Technical Reports Server (NTRS)
Spence, Brian; White, Steve; Schmid, Kevin; Douglas Mark
2012-01-01
The Flexible Array Concentrator Technology (FACT) is a lightweight, high-performance reflective concentrator blanket assembly that can be used on flexible solar array blankets. The FACT concentrator replaces every other row of solar cells on a solar array blanket, significantly reducing the cost of the array. The modular design is highly scalable for the array system designer, and exhibits compact stowage, good off-pointing acceptance, and mass/cost savings. The assembly s relatively low concentration ratio, accompanied by a large radiative area, provides for a low cell operating temperature, and eliminates many of the thermal problems inherent in high-concentration-ratio designs. Unlike other reflector technologies, the FACT concentrator modules function on both z-fold and rolled flexible solar array blankets, as well as rigid array systems. Mega-ROSA (Mega Roll-Out Solar Array) is a new, highly modularized and extremely scalable version of ROSA that provides immense power level range capability from 100 kW to several MW in size. Mega-ROSA will enable extremely high-power spacecraft and SEP-powered missions, including space-tug and largescale planetary science and lunar/asteroid exploration missions. Mega-ROSA's inherent broad power scalability is achieved while retaining ROSA s solar array performance metrics and missionenabling features for lightweight, compact stowage volume and affordability. This innovation will enable future ultra-high-power missions through lowcost (25 to 50% cost savings, depending on PV and blanket technology), lightweight, high specific power (greater than 200 to 400 Watts per kilogram BOL (beginning-of-life) at the wing level depending on PV and blanket technology), compact stowage volume (greater than 50 kilowatts per cubic meter for very large arrays), high reliability, platform simplicity (low failure modes), high deployed strength/stiffness when scaled to huge sizes, and high-voltage operation capability. Mega-ROSA is adaptable to all photovoltaic and concentrator flexible blanket technologies, and can readily accommodate standard multijunction and emerging ultra-lightweight IMM (inverted metamorphic) photovoltaic flexible blanket assemblies, as well as ENTECHs Stretched Lens Array (SLA) and DSSs (Deployable Space Systems) FACT, which allows for cost reduction at the array level.
NASA Astrophysics Data System (ADS)
JANG, G. H.; LEE, S. H.; JUNG, M. S.
2002-03-01
Free vibration of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft is analyzed by using Hamilton's principle, FEM and substructure synthesis. The spinning disk is described by using the Kirchhoff plate theory and von Karman non-linear strain. The rotating spindle and stationary shaft are modelled by Rayleigh beam and Euler beam respectively. Using Hamilton's principle and including the rigid body translation and tilting motion, partial differential equations of motion of the spinning flexible disk and spindle are derived consistently to satisfy the geometric compatibility in the internal boundary between substructures. FEM is used to discretize the derived governing equations, and substructure synthesis is introduced to assemble each component of the disk-spindle-bearing-shaft system. The developed method is applied to the spindle system of a computer hard disk drive with three disks, and modal testing is performed to verify the simulation results. The simulation result agrees very well with the experimental one. This research investigates critical design parameters in an HDD spindle system, i.e., the non-linearity of a spinning disk and the flexibility and boundary condition of a stationary shaft, to predict the free vibration characteristics accurately. The proposed method may be effectively applied to predict the vibration characteristics of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft in the various forms of computer storage device, i.e., FDD, CD, HDD and DVD.
Self-assembled single-crystal silicon circuits on plastic
Stauth, Sean A.; Parviz, Babak A.
2006-01-01
We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-μm-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems. PMID:16968780
Schiffels, Daniel; Szalai, Veronika A; Liddle, J Alexander
2017-07-25
Robust self-assembly across length scales is a ubiquitous feature of biological systems but remains challenging for synthetic structures. Taking a cue from biology-where disparate molecules work together to produce large, functional assemblies-we demonstrate how to engineer microscale structures with nanoscale features: Our self-assembly approach begins by using DNA polymerase to controllably create double-stranded DNA (dsDNA) sections on a single-stranded template. The single-stranded DNA (ssDNA) sections are then folded into a mechanically flexible skeleton by the origami method. This process simultaneously shapes the structure at the nanoscale and directs the large-scale geometry. The DNA skeleton guides the assembly of RecA protein filaments, which provides rigidity at the micrometer scale. We use our modular design strategy to assemble tetrahedral, rectangular, and linear shapes of defined dimensions. This method enables the robust construction of complex assemblies, greatly extending the range of DNA-based self-assembly methods.
Photovoltaic sheathing element with a flexible connector assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langmaid, Joseph A; Keenihan, James R; Mills, Michael E
2016-07-12
The present invention is premised upon an assembly including at least a photovoltaic sheathing element capable of being affixed on a building structure, the sheathing element including at least: a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly; at least a first and a second connector assembly disposed on opposing sides of the sheathing element and capable of directly or indirectly electrically connecting the photovoltaic cell assembly to at least two adjoining devices that are affixed to the building structure and wherein at least one of the connector assemblies includes amore » flexible portion; one or more connector pockets disposed in the body portion the pockets capable of receiving at least a portion of the connector assembly.« less
NASA Astrophysics Data System (ADS)
Schmitt, R.; Pavim, A.
2009-06-01
The demand for achieving smaller and more flexible production series with a considerable diversity of products complicates the control of the manufacturing tasks, leading to big challenges for the quality assurance systems. The quality assurance strategy that is nowadays used for mass production is unable to cope with the inspection flexibility needed among automated small series production, because the measuring strategy is totally dependent on the fixed features of the few manufactured object variants and on process parameters that can be controlled/compensated during production time. The major challenge faced by a quality assurance system applied to small series production facilities is to guarantee the needed quality level already at the first run, and therefore, the quality assurance system has to adapt itself constantly to the new manufacturing conditions. The small series production culture requires a change of paradigms, because its strategies are totally different from mass production. This work discusses the tight inspection requirements of small series production and presents flexible metrology strategies based on optical sensor data fusion techniques, agent-based systems as well as cognitive and self-optimised systems for assuring the needed quality level of flexible small series. Examples of application scenarios are provided among the automated assembly of solid state lasers and the flexible inspection of automotive headlights.
The assembly and use of continuous flow systems for chemical synthesis.
Britton, Joshua; Jamison, Timothy F
2017-11-01
The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.
Evolving Systems: An Outcome of Fondest Hopes and Wildest Dreams
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2012-01-01
New theory is presented for evolving systems, which are autonomously controlled subsystems that self-assemble into a new evolved system with a higher purpose. Evolving systems of aerospace structures often require additional control when assembling to maintain stability during the entire evolution process. This is the concept of Adaptive Key Component Control that operates through one specific component to maintain stability during the evolution. In addition, this control must often overcome persistent disturbances that occur while the evolution is in progress. Theoretical results will be presented for Adaptive Key Component control for persistent disturbance rejection. An illustrative example will demonstrate the Adaptive Key Component controller on a system composed of rigid body and flexible body modes.
Srujana, P; Radhakrishnan, T P
2015-06-15
Functional phase-change materials (PCMs) are conspicuously absent among molecular materials in which the various attributes of inorganic solids have been realized. While organic PCMs are primarily limited to thermal storage systems, the amorphous-crystalline transformation of materials like Ge-Sb-Te find use in advanced applications such as information storage. Reversible amorphous-crystalline transformations in molecular solids require a subtle balance between robust supramolecular assembly and flexible structural elements. We report novel diaminodicyanoquinodimethanes that achieve this transformation by interlinked helical assemblies coupled with conformationally flexible alkoxyalkyl chains. They exhibit highly reversible thermal transformations between bistable (crystalline/amorphous) forms, along with a prominent switching of the fluorescence emission energy and intensity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Macintosh based data system for array spectrometers (Poster)
NASA Astrophysics Data System (ADS)
Bregman, J.; Moss, N.
An interactive data aquisition and reduction system has been assembled by combining a Macintosh computer with an instrument controller (an Apple II computer) via an RS-232 interface. The data system provides flexibility for operating different linear array spectrometers. The standard Macintosh interface is used to provide ease of operation and to allow transferring the reduced data to commercial graphics software.
NASA Technical Reports Server (NTRS)
Himmel, R. P.
1975-01-01
Resin systems for coating hybrids prior to hermetic sealing are described. The resin systems are a flexible silicone junction resin system and a flexible cycloaliphatic epoxy resin system. The coatings are intended for application to the hybrid after all the chips have been assembled and wire bonded, but prior to hermetic sealing of the package. The purpose of the coating is to control particulate contamination by immobilizing particles and by passivating the hybrid. Recommended process controls for the purpose of minimizing contamination in hybrid microcircuit packages are given. Emphasis is placed on those critical hybrid processing steps in which contamination is most likely to occur.
In-Space Assembly Capability Assessment for Potential Human Exploration and Science Applications
NASA Technical Reports Server (NTRS)
Jefferies, Sharon A.; Jones, Christopher A.; Arney, Dale C.; Stillwagen, Frederic H.; Chai, Patrick R.; Hutchinson, Craig D.; Stafford, Matthew A.; Moses, Robert W.; Dempsey, James A.; Rodgers, Erica M.;
2017-01-01
Human missions to Mars present several major challenges that must be overcome, including delivering multiple large mass and volume elements, keeping the crew safe and productive, meeting cost constraints, and ensuring a sustainable campaign. Traditional methods for executing human Mars missions minimize or eliminate in-space assembly, which provides a narrow range of options for addressing these challenges and limits the types of missions that can be performed. This paper discusses recent work to evaluate how the inclusion of in-space assembly in space mission architectural concepts could provide novel solutions to address these challenges by increasing operational flexibility, robustness, risk reduction, crew health and safety, and sustainability. A hierarchical framework is presented to characterize assembly strategies, assembly tasks, and the required capabilities to assemble mission systems in space. The framework is used to identify general mission system design considerations and assembly system characteristics by assembly strategy. These general approaches are then applied to identify potential in-space assembly applications to address each challenge. Through this process, several focus areas were identified where applications of in-space assembly could affect multiple challenges. Each focus area was developed to identify functions, potential assembly solutions and operations, key architectural trades, and potential considerations and implications of implementation. This paper helps to identify key areas to investigate were potentially significant gains in addressing the challenges with human missions to Mars may be realized, and creates a foundation on which to further develop and analyze in-space assembly concepts and assembly-based architectures.
Design and fabrication of a foldable 3D silicon based package for solid state lighting applications
NASA Astrophysics Data System (ADS)
Sokolovskij, R.; Liu, P.; van Zeijl, H. W.; Mimoun, B.; Zhang, G. Q.
2015-05-01
Miniaturization of solid state lighting (SSL) luminaires as well as reduction of packaging and assembly costs are of prime interest for the SSL lighting industry. A novel silicon based LED package for lighting applications is presented in this paper. The proposed design consists of 5 rigid Si tiles connected by flexible polyimide hinges with embedded interconnects (ICs). Electrical, optical and thermal characteristics were taken into consideration during design. The fabrication process involved polyimide (PI) application and patterning, aluminium interconnect integration in the flexible hinge, LED reflector cavity formation and metalization followed by through wafer DRIE etching for chip formation and release. A method to connect chip front to backside without TSVs was also integrated into the process. Post-fabrication wafer level assembly included LED mounting and wirebond, phosphor-based colour conversion and silicone encapsulation. The package formation was finalized by vacuum assisted wrapping around an assembly structure to form a 3D geometry, which is beneficial for omnidirectional lighting. Bending tests were performed on the flexible ICs and optical performance at different temperatures was evaluated. It is suggested that 3D packages can be expanded to platforms for miniaturized luminaire applications by combining monolithic silicon integration and system-in-package (SiP) technologies.
Kinetics of DNA Tile Dimerization
2015-01-01
Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this report, we examined several spatial factors that affect the kinetics of bivalent, double-helical (DH) tile dimerization, including the orientation and number of sticky ends (SEs), the flexibility of the double helical domains, and the size of the tiles. The rate constants we obtained confirm our hypothesis that increased nucleation opportunities and well-aligned SEs accelerate tile–tile dimerization. Increased flexibility in the tiles causes slower dimerization rates, an effect that can be reversed by introducing restrictions to the tile flexibility. The higher dimerization rates of more rigid tiles results from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. We believe that the results presented here will assist in improved implementation of DNA tile based algorithmic self-assembly, DNA based molecular robotics, and other specific nucleic acid systems, and will provide guidance to design and assembly processes to improve overall yield and efficiency. PMID:24794259
Kinetics of DNA tile dimerization.
Jiang, Shuoxing; Yan, Hao; Liu, Yan
2014-06-24
Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this report, we examined several spatial factors that affect the kinetics of bivalent, double-helical (DH) tile dimerization, including the orientation and number of sticky ends (SEs), the flexibility of the double helical domains, and the size of the tiles. The rate constants we obtained confirm our hypothesis that increased nucleation opportunities and well-aligned SEs accelerate tile-tile dimerization. Increased flexibility in the tiles causes slower dimerization rates, an effect that can be reversed by introducing restrictions to the tile flexibility. The higher dimerization rates of more rigid tiles results from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. We believe that the results presented here will assist in improved implementation of DNA tile based algorithmic self-assembly, DNA based molecular robotics, and other specific nucleic acid systems, and will provide guidance to design and assembly processes to improve overall yield and efficiency.
Shuttle cryogenic supply system optimization study. Volume 5A-1: Users manual for math models
NASA Technical Reports Server (NTRS)
1973-01-01
The Integrated Math Model for Cryogenic Systems is a flexible, broadly applicable systems parametric analysis tool. The program will effectively accommodate systems of considerable complexity involving large numbers of performance dependent variables such as are found in the individual and integrated cryogen systems. Basically, the program logic structure pursues an orderly progression path through any given system in much the same fashion as is employed for manual systems analysis. The system configuration schematic is converted to an alpha-numeric formatted configuration data table input starting with the cryogen consumer and identifying all components, such as lines, fittings, and valves, each in its proper order and ending with the cryogen supply source assembly. Then, for each of the constituent component assemblies, such as gas generators, turbo machinery, heat exchangers, and accumulators, the performance requirements are assembled in input data tabulations. Systems operating constraints and duty cycle definitions are further added as input data coded to the configuration operating sequence.
MIDAS: A Modular DNA Assembly System for Synthetic Biology.
van Dolleweerd, Craig J; Kessans, Sarah A; Van de Bittner, Kyle C; Bustamante, Leyla Y; Bundela, Rudranuj; Scott, Barry; Nicholson, Matthew J; Parker, Emily J
2018-04-20
A modular and hierarchical DNA assembly platform for synthetic biology based on Golden Gate (Type IIS restriction enzyme) cloning is described. This enabling technology, termed MIDAS (for Modular Idempotent DNA Assembly System), can be used to precisely assemble multiple DNA fragments in a single reaction using a standardized assembly design. It can be used to build genes from libraries of sequence-verified, reusable parts and to assemble multiple genes in a single vector, with full user control over gene order and orientation, as well as control of the direction of growth (polarity) of the multigene assembly, a feature that allows genes to be nested between other genes or genetic elements. We describe the detailed design and use of MIDAS, exemplified by the reconstruction, in the filamentous fungus Penicillium paxilli, of the metabolic pathway for production of paspaline and paxilline, key intermediates in the biosynthesis of a range of indole diterpenes-a class of secondary metabolites produced by several species of filamentous fungi. MIDAS was used to efficiently assemble a 25.2 kb plasmid from 21 different modules (seven genes, each composed of three basic parts). By using a parts library-based system for construction of complex assemblies, and a unique set of vectors, MIDAS can provide a flexible route to assembling tailored combinations of genes and other genetic elements, thereby supporting synthetic biology applications in a wide range of expression hosts.
Design of electromagnetic bearing for vibration control of flexible transmission shaft
NASA Technical Reports Server (NTRS)
Gondhalekar, V.; Holmes, R.
1984-01-01
Recently magnetic bearings were proposed by several researchers and shown to be viable on a variety of rotor assemblies. The design and construction of such a bearing, which employs features hitherto not used by other workers is examined. These include an original approach to the design of the electromagnets and their amplifiers, and to software in a digital control system, to condition the control signals so as to make the magnets appear to be linear and uncoupled. The resulting system is used to control a rotor-bearing assembly, whose speed range covers two flexural-critical speeds.
Laser ablation system, and method of decontaminating surfaces
Ferguson, Russell L.; Edelson, Martin C.; Pang, Ho-ming
1998-07-14
A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.
Development System for Flexible Assembly System.
1986-02-01
in( tho .Iho Iacli: that is, the estimated so’arae hows extrene senisitivity t Ihe t’rr ,f ,rii It: input angles in the vacinity of a pole. These...investigating is to prerotate the world frame so that none of the uncertain transformations have nominal angles in the vacinity of a pole. 17 %% ’ ,’f
Standardized Modular Power Interfaces for Future Space Explorations Missions
NASA Technical Reports Server (NTRS)
Oeftering, Richard
2015-01-01
Earlier studies show that future human explorations missions are composed of multi-vehicle assemblies with interconnected electric power systems. Some vehicles are often intended to serve as flexible multi-purpose or multi-mission platforms. This drives the need for power architectures that can be reconfigured to support this level of flexibility. Power system developmental costs can be reduced, program wide, by utilizing a common set of modular building blocks. Further, there are mission operational and logistics cost benefits of using a common set of modular spares. These benefits are the goals of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project. A common set of modular blocks requires a substantial level of standardization in terms of the Electrical, Data System, and Mechanical interfaces. The AMPS project is developing a set of proposed interface standards that will provide useful guidance for modular hardware developers but not needlessly constrain technology options, or limit future growth in capability. In 2015 the AMPS project focused on standardizing the interfaces between the elements of spacecraft power distribution and energy storage. The development of the modular power standard starts with establishing mission assumptions and ground rules to define design application space. The standards are defined in terms of AMPS objectives including Commonality, Reliability-Availability, Flexibility-Configurability and Supportability-Reusability. The proposed standards are aimed at assembly and sub-assembly level building blocks. AMPS plans to adopt existing standards for spacecraft command and data, software, network interfaces, and electrical power interfaces where applicable. Other standards including structural encapsulation, heat transfer, and fluid transfer, are governed by launch and spacecraft environments and bound by practical limitations of weight and volume. Developing these mechanical interface standards is more difficult but an essential part of defining physical building blocks of modular power. This presentation describes the AMPS projects progress towards standardized modular power interfaces.
Dilday, Joshua; Sirkin, Maxwell R; Wertin, Thomas; Bradley, Frances; Hiles, Jason
The current forward surgical team (FST) operating table is heavy and burdensome and hinders essential movement flexibility. A novel attachable rail system, the Shrail, has been developed to overcome these obstacles. The Shrail turns a North Atlantic Treaty Organization litter into a functional operating table. A local FST compared the assembly of the FST operating table with assembling the Shrail. Device weight, storage space, and assembly space were directly measured and compared. The mean assembly time required for the Shrail was significantly less compared with the operating table (23.36 versus 151.6 seconds; p ≤ .01). The Shrail weighs less (6.80kg versus 73.03kg) and requires less storage space (0.019m3 versus 0.323m3) compared with the current FST operating table. The Shrail provides an FST with a faster, lighter surgical table assembly. For these reasons, it is better suited for the demands of an FST and the implementation of prolonged field care. 2018.
Concave Surround Optics for Rapid Multi-View Imaging
2006-11-01
thus is amenable to capturing dynamic events avoiding the need to construct and calibrate an array of cameras. We demonstrate the system with a high...hard to assemble and calibrate . In this paper we present an optical system capable of rapidly moving the viewpoint around a scene. Our system...flexibility, large camera arrays are typically expensive and require significant effort to calibrate temporally, geometrically and chromatically
Implications of multiplane-multispeed balancing for future turbine engine design and cost
NASA Technical Reports Server (NTRS)
Badgley, R. H.
1974-01-01
This paper describes several alternative approaches, provided by multiplane-multispeed balancing, to traditional gas turbine engine manufacture and assembly procedures. These alternatives, which range from addition of trim-balancing at the end of the traditional assembly process to modular design of the rotating system for assembly and balancing external to the engine, require attention by the engine designer as an integral part of the design process. Since multiplane-multispeed balancing may be incorporated at one or more of several points during manufacture-assembly, its deliberate use is expected to provide significant cost and performance (reduced vibration) benefits. Moreover, its availability provides the designer with a firm base from which he may advance, with reasonable assurance of success, into the flexible rotor dynamic regime.
Flight motor set 36OH005 (STS-28R). Volume 5: (Nozzle component)
NASA Technical Reports Server (NTRS)
Smith, Dan M., Jr.
1990-01-01
A review of the performance and post flight condition of the STS-28 redesigned solid rocket motor (RSRM) nozzles is presented in this document. Applicable discrepancy reports (DR's) and process departures (PD's) are presented in section 5.0. The nozzle component program team (NCPT) performance evaluation and the redesign program review board (RPRB) assessment is included in section 6.0. The STS-28 nozzle assemblies were flown on the RSRM fifth flight (Space Shuttle Columbia). The nozzles were a partially submerged convergent/divergent movable design with an aft pivot point flexible bearing. The nozzle assemblies incorporated the following features: (1) RSRM forward exit cone with snubber assembly; (2) RSRM fixed housing; (3) structural backup outer boot ring (OBR); (4) RSRM cowl ring; (5) RSRM nose inlet assembly; (6) RSRM throat assembly; (7) RSRM forward nose and aft inlet ring; (8) RSRM aft exit cone assembly with linear-shaped charge (LSC); (9) RTV backfill in joints 1, 3, and 4; (10) use of EA913 NA adhesive in place of EA913; (11) redesigned nozzle plug; and (12) carbon cloth phenolic (CCP) with 750 ppm sodium content. The RSRM fifth flight test objectives are as follows: (1) verify that flexible bearing seals operate within the specified temperature range; (2) verify that flexible bearing maintained a positive gas seal between its internal components; (3) inspect flexible bearing for damage due to water impact; (4) verify performance of the nozzle liner; (5) verify that nozzle parts are reusable; (6) verify through flight demonstration and a postflight inspection that the flexible bearing is reusable; (7) verify by inspection the remaining nozzle ablative thicknesses; and (8) verify the nozzle performance margins of safety.
Optical connections on flexible substrates
NASA Astrophysics Data System (ADS)
Bosman, Erwin; Geerinck, Peter; Christiaens, Wim; Van Steenberge, Geert; Vanfleteren, Jan; Van Daele, Peter
2006-04-01
Optical interconnections integrated on a flexible substrate combine the advantages of optical data transmissions (high bandwidth, no electromagnetic disturbance and low power consumption) and those of flexible substrates (compact, ease of assembly...). Especially the flexible character of the substrates can significantly lower the assembly cost and leads to more compact modules. Especially in automotive-, avionic-, biomedical and sensing applications there is a great potential for these flexible optical interconnections because of the increasing data-rates, increasing use of optical sensors and requirement for smaller size and weight. The research concentrates on the integration of commercially available polymer optical layers (Truemode Backplane TM Polymer, Ormocer®) on a flexible Polyimide film, the fabrication of waveguides and out-of plane deflecting 45° mirrors, the characterization of the optical losses due to the bending of the substrate, and the fabrication of a proof-of-principal demonstrator. The resulting optical structures should be compatible with the standard fabrication of flexible printed circuit boards.
Real-time control for manufacturing space shuttle main engines: Work in progress
NASA Technical Reports Server (NTRS)
Ruokangas, Corinne C.
1988-01-01
During the manufacture of space-based assemblies such as Space Shuttle Main Engines, flexibility is required due to the high-cost and low-volume nature of the end products. Various systems have been developed pursuing the goal of adaptive, flexible manufacturing for several space applications, including an Advanced Robotic Welding System for the manufacture of complex components of the Space Shuttle Main Engines. The Advanced Robotic Welding System (AROWS) is an on-going joint effort, funded by NASA, between NASA/Marshall Space Flight Center, and two divisions of Rockwell International: Rocketdyne and the Science Center. AROWS includes two levels of flexible control of both motion and process parameters: Off-line programming using both geometric and weld-process data bases, and real-time control incorporating multiple sensors during weld execution. Both control systems were implemented using conventional hardware and software architectures. The feasibility of enhancing the real-time control system using the problem-solving architecture of Schemer is investigated and described.
High-Rate Assembly of Nanomaterials on Insulating Surfaces Using Electro-Fluidic Directed Assembly.
Yilmaz, Cihan; Sirman, Asli; Halder, Aditi; Busnaina, Ahmed
2017-08-22
Conductive or semiconducting nanomaterials-based applications such as electronics and sensors often require direct placement of such nanomaterials on insulating surfaces. Most fluidic-based directed assembly techniques on insulating surfaces utilize capillary force and evaporation but are diffusion limited and slow. Electrophoretic-based assembly, on the other hand, is fast but can only be utilized for assembly on a conductive surface. Here, we present a directed assembly technique that enables rapid assembly of nanomaterials on insulating surfaces. The approach leverages and combines fluidic and electrophoretic assembly by applying the electric field through an insulating surface via a conductive film underneath. The approach (called electro-fluidic) yields an assembly process that is 2 orders of magnitude faster compared to fluidic assembly. By understanding the forces on the assembly process, we have demonstrated the controlled assembly of various types of nanomaterials that are conducting, semiconducting, and insulating including nanoparticles and single-walled carbon nanotubes on insulating rigid and flexible substrates. The presented approach shows great promise for making practical devices in miniaturized sensors and flexible electronics.
Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor.
Zhao, Yanzhi; Cao, Yachao; Zhang, Caifeng; Zhang, Dan; Zhang, Jie
2017-09-29
By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint) parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H) method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments.
Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor
Zhao, Yanzhi; Cao, Yachao; Zhang, Caifeng; Zhang, Dan; Zhang, Jie
2017-01-01
By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint) parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H) method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments. PMID:28961209
Solid state engine using nitinol memory alloy
Golestaneh, Ahmad A.
1981-01-01
A device for converting heat energy to mechanical energy includes a reservoir of a hot fluid and a rotor assembly mounted thereabove so a portion of it dips into the hot fluid. The rotor assembly may include a shaft having four spokes extending radially outwardly therefrom at right angles to each other, a floating ring and four flexible elements composed of a thermal memory material having a critical temperature between the temperature of the hot fluid and that of the ambient atmosphere extending between the ends of the spokes and the floating ring. Preferably, the flexible elements are attached to the floating ring through curved leaf springs. Energetic shape recovery of the flexible elements in the hot fluid causes the rotor assembly to rotate.
Solid state engine using nitinol memory alloy
Golestaneh, A.A.
1980-01-21
A device for converting heat energy to mechanical energy includes a reservoir of a hot fluid and a rotor assembly mounted thereabove so a portion of it dips into the hot fluid. The rotor assembly may include a shaft having four spokes extending radially outwardly therefrom at right angles to each other, a floating ring and four flexible elements composed of a thermal memory material having a critical temperature between the temperature of the hot fluid and that of the ambient atmosphere extending between the ends of the spokes and the floating ring. Preferably, the flexible elements are attached to the floating ring through curved leaf springs. Energetic shape recovery of the flexible elements in the hot fluid causes the rotor assembly to rotate.
Modular magazine for suitable handling of microparts in industry
NASA Astrophysics Data System (ADS)
Grimme, Ralf; Schmutz, Wolfgang; Schlenker, Dirk; Schuenemann, Matthias; Stock, Achim; Schaefer, Wolfgang
1998-01-01
Microassembly and microadjustment techniques are key technologies in the industrial production of hybrid microelectromechanical systems. One focal point in current microproduction research and engineering is the design and development of high-precision microassembly and microadjustment equipment capable of operating within the framework of flexible automated industrial production. As well as these developments, suitable microassembly tools for industrial use also need to be equipped with interfaces for the supply and delivery of microcomponents. The microassembly process necessitates the supply of microparts in a geometrically defined manner. In order to reduce processing steps and production costs, there is a demand for magazines capable of providing free accessibility to the fixed microcomponents. Commonly used at present are feeding techniques, which originate from the field of semiconductor production. However none of these techniques fully meets the requirements of industrial microassembly technology. A novel modular magazine set, developed and tested in a joint project, is presented here. The magazines are able to hold microcomponents during cleaning, inspection and assembly without nay additional handling steps. The modularity of their design allows for maximum technical flexibility. The modular magazine fits into currently practiced SEMI standards. The design and concept of the magazine enables industrial manufacturers to promote a cost-efficient and flexible precision assembly of microelectromechanical systems.
Hoshide, Tatsumasa; Zheng, Yuanchuan; Hou, Junyu; Wang, Zhiqiang; Li, Qingwen; Zhao, Zhigang; Ma, Renzhi; Sasaki, Takayoshi; Geng, Fengxia
2017-06-14
Increasing interest has recently been devoted to developing small, rapid, and portable electronic devices; thus, it is becoming critically important to provide matching light and flexible energy-storage systems to power them. To this end, compared with the inevitable drawbacks of being bulky, heavy, and rigid for traditional planar sandwiched structures, linear fiber-shaped lithium-ion batteries (LIB) have become increasingly important owing to their combined superiorities of miniaturization, adaptability, and weavability, the progress of which being heavily dependent on the development of new fiber-shaped electrodes. Here, we report a novel fiber battery electrode based on the most widely used LIB material, titanium oxide, which is processed into two-dimensional nanosheets and assembled into a macroscopic fiber by a scalable wet-spinning process. The titania sheets are regularly stacked and conformally hybridized in situ with reduced graphene oxide (rGO), thereby serving as efficient current collectors, which endows the novel fiber electrode with excellent integrated mechanical properties combined with superior battery performances in terms of linear densities, rate capabilities, and cyclic behaviors. The present study clearly demonstrates a new material-design paradigm toward novel fiber electrodes by assembling metal oxide nanosheets into an ordered macroscopic structure, which would represent the most-promising solution to advanced flexible energy-storage systems.
The space station assembly phase: System design trade-offs for the flight telerobotic servicer
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Gyamfi, Max; Volkmer, Kent; Zimmerman, Wayne
1988-01-01
The effects of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems often involves a substitution of automation capabilities for human EVA or IVA activities. A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effects of operational constaints. Changes in the region of cost-effectiveness are examined under a variety of system design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: as a research-oriented test bed to learn more about space usage of telerobotics; as a research based test bed having an experimental demonstration orientation with limited assembly and servicing applications; or as an operational system to augment EVA and to aid construction of the Space Station and to reduce the program (schedule) risk by increasing the flexibility of mission operations.
Dynamics of Rotating Multi-component Turbomachinery Systems
NASA Technical Reports Server (NTRS)
Lawrence, Charles
1993-01-01
The ultimate objective of turbomachinery vibration analysis is to predict both the overall, as well as component dynamic response. To accomplish this objective requires complete engine structural models, including multistages of bladed disk assemblies, flexible rotor shafts and bearings, and engine support structures and casings. In the present approach each component is analyzed as a separate structure and boundary information is exchanged at the inter-component connections. The advantage of this tactic is that even though readily available detailed component models are utilized, accurate and comprehensive system response information may be obtained. Sample problems, which include a fixed base rotating blade and a blade on a flexible rotor, are presented.
Large space telescope engineering scale model optical design
NASA Technical Reports Server (NTRS)
Facey, T. A.
1973-01-01
The objective is to develop the detailed design and tolerance data for the LST engineering scale model optical system. This will enable MSFC to move forward to the optical element procurement phase and also to evaluate tolerances, manufacturing requirements, assembly/checkout procedures, reliability, operational complexity, stability requirements of the structure and thermal system, and the flexibility to change and grow.
Laminated magnet field coil sheath
Skaritka, John R.
1987-12-01
a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.
Laminated magnet field coil sheath
Skaritka, J.R.
1987-05-15
A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.
DuBois, Neil J.; Amaral, Antonio M.
1992-10-27
A damped flexible seal assembly for a torpedo isolates the tailcone thereof rom vibrational energy present in the drive shaft assembly. A pair of outside flanges, each of which include an inwardly facing groove and an O-ring constrained therein, provide a watertight seal against the outer non-rotating surface of the drive shaft assembly. An inside flange includes an outwardly-facing groove and an O-ring constrained therein, and provides a watertight seal against the inner surface of the tail cone. Two cast-in-place elastomeric seals provide a watertight seal between the flanges and further provide a damping barrier between the outside flanges and the inside flanges for damping vibrational energy present in the drive shaft assembly before the energy can reach the tailcone through the seal assembly.
NASA Technical Reports Server (NTRS)
Kielb, R. (Editor); Crawley, E. (Editor); Simonis, J. C. (Editor)
1987-01-01
The present conference on bladed disk assemblies discusses aerodynamic indicial reponse and stability derivatives for a rotor annulus, an analysis of aerodynamically forced turbomachine vibration, the effect of downwash on the nonsteady forces in a turbomachine stage, the vibration of turbomachine blades with root flexibility effects, mistuned bladed disk assembly vibrations, and the model-generation and modal analysis of flexible bladed disk assemblies. Also discussed are the vibration characteristics of a mistuned bladed disk, free and forced vibrations associated with localization phenomena in mistuned assemblies with cyclic symmetry, steam turbine cyclic symmetry through constraint equations, and the interpretation of experimental and theoretical results predicting vibrating turbocharger blade mode shapes.
Ergonomically neutral arm support system
Siminovitch, Michael J; Chung, Jeffrey Y; Dellinges, Steven; Lafever, Robin E
2005-08-02
An ergonomic arm support system maintains a neutral position for the forearm. A mechanical support structure attached to a chair or other mounting structure supports the arms of a sitting or standing person. The system includes moving elements and tensioning elements to provide a dynamic balancing force against the forearms. The support structure is not fixed or locked in a rigid position, but is an active dynamic system that is maintained in equipoise by the continuous operation of the opposing forces. The support structure includes an armrest connected to a flexible linkage or articulated or pivoting assembly, which includes a tensioning element such as a spring. The pivoting assembly moves up and down, with the tensioning element providing the upward force that balances the downward force of the arm.
Grasp Assist Device with Shared Tendon Actuator Assembly
NASA Technical Reports Server (NTRS)
Ihrke, Chris A. (Inventor); Bergelin, Bryan J. (Inventor); Bridgwater, Lyndon (Inventor)
2015-01-01
A grasp assist device includes a glove with first and second tendon-driven fingers, a tendon, and a sleeve with a shared tendon actuator assembly. Tendon ends are connected to the respective first and second fingers. The actuator assembly includes a drive assembly having a drive axis and a tendon hook. The tendon hook, which defines an arcuate surface slot, is linearly translatable along the drive axis via the drive assembly, e.g., a servo motor thereof. The flexible tendon is routed through the surface slot such that the surface slot divides the flexible tendon into two portions each terminating in a respective one of the first and second ends. The drive assembly may include a ball screw and nut. An end cap of the actuator assembly may define two channels through which the respective tendon portions pass. The servo motor may be positioned off-axis with respect to the drive axis.
Lifetime predictions for dimmable two-channel drivers for color tuning luminaires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Lynn; Smith, Aaron; Clark, Terry
Two-channel tunable white lighting (TWL) systems represent the next wave of solid-state lighting (SSL) systems and promise flexibility in light environment while maintaining the high reliability and luminous efficacy expected with SSL devices. TWL systems utilize LED assemblies consisting of two different LED spectra (i.e., often a warm white assembly and a cool white assembly) that are integrated into modules. While these systems provide the ability to adjust the lighting spectrum to match the physiology needs of the task at hand, they also are a potentially more complex lighting system from a performance and reliability perspective. We report an initialmore » study on the reliability performance of such lighting systems including an examination of the lumen maintenance and chromaticity stability of warm white and cool white LED assemblies and the multi-channel driver that provides power to the assemblies. Accelerated stress tests including operational bake tests conducted at 75°C and 95°C were used to age the LED modules, while more aggressive temperature and humidity tests were used for the drivers in this study. Small differences in the performance between the two LED assemblies were found and can be attributed to the different phosphor chemistries. The lumen maintenances of both LED assemblies were excellent. The warm white LED assemblies were found to shift slightly in the green color direction over time while the cool white LED assemblies shifted slightly in the yellow color direction. The net result of these chromaticity shifts is a small, barely perceptible reduction in the tuning range after 6,000 hours of exposure to an accelerating elevated temperature of 75°C.« less
Bioinspired Graphene-Based Nanocomposites and Their Application in Flexible Energy Devices.
Wan, Sijie; Peng, Jingsong; Jiang, Lei; Cheng, Qunfeng
2016-09-01
Graphene is the strongest and stiffest material ever identified and the best electrical conductor known to date, making it an ideal candidate for constructing nanocomposites used in flexible energy devices. However, it remains a great challenge to assemble graphene nanosheets into macro-sized high-performance nanocomposites in practical applications of flexible energy devices using traditional approaches. Nacre, the gold standard for biomimicry, provides an excellent example and guideline for assembling two-dimensional nanosheets into high-performance nanocomposites. This review summarizes recent research on the bioinspired graphene-based nanocomposites (BGBNs), and discusses different bioinspired assembly strategies for constructing integrated high-strength and -toughness graphene-based nanocomposites through various synergistic effects. Fundamental properties of graphene-based nanocomposites, such as strength, toughness, and electrical conductivities, are highlighted. Applications of the BGBNs in flexible energy devices, as well as potential challenges, are addressed. Inspired from the past work done by the community a roadmap for the future of the BGBNs in flexible energy device applications is depicted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, HaiTao; Bao, NiNa; Yuan, Du; Ding, Jun
2013-09-21
Iron oxide nanocrystals are ideal building blocks for the construction of flexible nanodevices whose performance can be modulated by controlling the morphology of isolated particles and their organizational form. This work demonstrates the fabrication of high quality Langmuir-Blodgett (LB) nanocrystal assemblies with limited overlapping and higher coverage by systemically and combinatorially optimizing the parameters of compression pressure and quantity of spread nanocrystals. Monodispersed iron oxide nanocrystals with a diameter of 11.8 nm were synthesized by thermal decomposition of Fe(CO)5 in trioctylamine with the presence of oleic acid. Multilayer nanocrystal assemblies were obtained through a layer-by-layer (LBL) process by repeating the transfer procedure after their hydrophilicity had been improved via treatment in a UV-ozone oven. The quality of nanocrystal assemblies was investigated by UV-vis spectrometry and scanning electron microscopy. The nanomagnetism for the nanostructures of different combination manners was studied systemically by a superconducting quantum interference device (SQUID). A lower superparamagnetic blocking temperature was found in the monolayer Fe3O4 nanocrystal assembly. The superparamagnetic blocking temperature in magnetic nanocrystal assemblies could be tuned through modifying the interparticle interactions among the interlayer and intralayers by controlling the layer number of the assemblies.
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C.; Granda, Jose J.
2003-01-01
Conceptually, modeling of flexible, multi-body systems involves a formulation as a set of time-dependent partial differential equations. However, for practical, engineering purposes, this modeling is usually done using the method of Finite Elements, which approximates the set of partial differential equations, thus generalizing the approach to all continuous media. This research investigates the links between the Bond Graph method and the classical methods used to develop system models and advocates the Bond Graph Methodology and current bond graph tools as alternate approaches that will lead to a quick and precise understanding of a flexible multi-body system under automatic control. For long endurance, complex spacecraft, because of articulation and mission evolution the model of the physical system may change frequently. So a method of automatic generation and regeneration of system models that does not lead to implicit equations, as does the Lagrange equation approach, is desirable. The bond graph method has been shown to be amenable to automatic generation of equations with appropriate consideration of causality. Indeed human-interactive software now exists that automatically generates both symbolic and numeric system models and evaluates causality as the user develops the model, e.g. the CAMP-G software package. In this paper the CAMP-G package is used to generate a bond graph model of the International Space Station (ISS) at an early stage in its assembly, Zvezda. The ISS is an ideal example because it is a collection of bodies that are articulated, many of which are highly flexible. Also many reaction jets are used to control translation and attitude, and many electric motors are used to articulate appendages, which consist of photovoltaic arrays and composite assemblies. The Zvezda bond graph model is compared to an existing model, which was generated by the NASA Johnson Space Center during the Verification and Analysis Cycle of Zvezda.
USDA-ARS?s Scientific Manuscript database
Geographical information systems (GIS) software packages have been used for nearly three decades as analytical tools in natural resource management for geospatial data assembly, processing, storage, and visualization of input data and model output. However, with increasing availability and use of fu...
NASA Astrophysics Data System (ADS)
Deng, Zhengping; Li, Shuanggao; Huang, Xiang
2018-06-01
In the assembly process of large-size aerospace products, the leveling and horizontal alignment of large components are essential prior to the installation of an inertial navigation system (INS) and the final quality inspection. In general, the inherent coordinate systems of large-scale coordinate measuring devices are not coincident with the geodetic horizontal system, and a dual-axis compensation system is commonly required for the measurement of difference in heights. These compensation systems are expensive and dedicated designs for different devices at present. Considering that a large-size assembly site usually needs more than one measuring device, a compensation approach which is versatile for different devices would be a more convenient and economic choice for manufacturers. In this paper, a flexible and cost-effective compensation method is proposed. Firstly, an auxiliary measuring device called a versatile compensation fixture (VCF) is designed, which mainly comprises reference points for coordinate transformation and a dual-axis inclinometer, and a kind of network tighten points (NTPs) are introduced and temporarily deployed in the large measuring space to further reduce transformation error. Secondly, the measuring principle of height difference is studied, based on coordinate transformation theory and trigonometry while considering the effects of earth curvature, and the coordinate transformation parameters are derived by least squares adjustment. Thirdly, the analytical solution of leveling uncertainty is analyzed, based on which the key parameters of the VCF and the proper deployment of NTPs are determined according to the leveling accuracy requirement. Furthermore, the proposed method is practically applied to the assembly of a large helicopter by developing an automatic leveling and alignment system. By measuring four NTPs, the leveling uncertainty (2σ) is reduced by 29.4% to about 0.12 mm, compared with that without NTPs.
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr.; Balakrishnan, A. V.
1988-01-01
The problen of controlling large, flexible space systems has been evaluated using computer simulation. In several cases, ground experiments have also been used to validate system performance under more realistic conditions. There remains a need, however, to test additional control laws for flexible spacecraft and to directly compare competing design techniques. A program is discussed which has been initiated to make direct comparisons of control laws for, first, a mathematical problem, then and experimental test article being assembled under the cognizance of the Spacecraft Control Branch at the NASA Langley Research Center with the advice and counsel of the IEEE Subcommittee on Large Space Structures. The physical apparatus will consist of a softly supported dynamic model of an antenna attached to the Shuttle by a flexible beam. The control objective will include the task of directing the line-of-sight of the Shuttle antenna configuration toward a fixed target, under conditions of noisy data, control authority and random disturbances.
Waterproof stretchable optoelectronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, John A.; Kim, Rak-Hwan; Kim, Dae-Hyeong
Described herein are flexible and stretchable LED arrays and methods utilizing flexible and stretchable LED arrays. Assembly of flexible LED arrays alongside flexible plasmonic crystals is useful for construction of fluid monitors, permitting sensitive detection of fluid refractive index and composition. Co-integration of flexible LED arrays with flexible photodetector arrays is useful for construction of flexible proximity sensors. Application of stretchable LED arrays onto flexible threads as light emitting sutures provides novel means for performing radiation therapy on wounds.
Maximizing coupling-efficiency of high-power diode lasers utilizing hybrid assembly technology
NASA Astrophysics Data System (ADS)
Zontar, D.; Dogan, M.; Fulghum, S.; Müller, T.; Haag, S.; Brecher, C.
2015-03-01
In this paper, we present hybrid assembly technology to maximize coupling efficiency for spatially combined laser systems. High quality components, such as center-turned focusing units, as well as suitable assembly strategies are necessary to obtain highest possible output ratios. Alignment strategies are challenging tasks due to their complexity and sensitivity. Especially in low-volume production fully automated systems are economically at a disadvantage, as operator experience is often expensive. However reproducibility and quality of automatically assembled systems can be superior. Therefore automated and manual assembly techniques are combined to obtain high coupling efficiency while preserving maximum flexibility. The paper will describe necessary equipment and software to enable hybrid assembly processes. Micromanipulator technology with high step-resolution and six degrees of freedom provide a large number of possible evaluation points. Automated algorithms are necess ary to speed-up data gathering and alignment to efficiently utilize available granularity for manual assembly processes. Furthermore, an engineering environment is presented to enable rapid prototyping of automation tasks with simultaneous data ev aluation. Integration with simulation environments, e.g. Zemax, allows the verification of assembly strategies in advance. Data driven decision making ensures constant high quality, documents the assembly process and is a basis for further improvement. The hybrid assembly technology has been applied on several applications for efficiencies above 80% and will be discussed in this paper. High level coupling efficiency has been achieved with minimized assembly as a result of semi-automated alignment. This paper will focus on hybrid automation for optimizing and attaching turning mirrors and collimation lenses.
Human Grasp Assist Device Soft Goods
NASA Technical Reports Server (NTRS)
Ihrke, Chris A. (Inventor); Davis, Donald R. (Inventor); Bergelin, Bryan (Inventor); Bridgwater, Lyndon B. J. (Inventor); Bibby, Heather (Inventor); Schroeder, Judy (Inventor); Linn, Douglas Martin (Inventor); Erkkila, Craig (Inventor)
2015-01-01
A grasp assist system includes a glove and a flexible sleeve. The glove includes a digit such as a finger or thumb, a force sensor configured to measure a grasping force applied to an object by an operator wearing the glove, and adjustable phalange rings positioned with respect to the digit. A saddle is positioned with respect to the finger. A flexible tendon is looped at one end around the saddle. A conduit contains the tendon. A conduit anchor secured within a palm of the glove receives the conduit. The sleeve has pockets containing an actuator assembly connected to another end of the tendon and a controller. The controller is in communication with the force sensor, and calculates a tensile force in response to the measured grasping force. The controller commands the tensile force from the actuator assembly to tension the tendon and thereby move the finger.
Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper.
Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Li, Jia; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun
2013-08-14
The cellulose nanofibers (CNFs) paper exhibit high visible light transmittance, high mechanical strength, and excellent flexibility. Therefore, CNFs paper may be an excellent substrate material for flexible transparent electronic devices. In this paper, we endeavor to prepare CNFs-based flexible transparent conductive paper by layer-by-layer (LbL) assembly using divalent copper ions (Cu(2+)) as the crosslinking agent. The thickness of the reduced graphene oxide (RGO) active layer in the CNFs paper can be controlled by the cycle times of the LbL assembly. CNFs/[RGO]20 paper has the sheet resistances of ∼2.5 kΩ/□, and the transmittance of about 76% at a wavelength of 550 nm. Furthermore, CNFs/[RGO]20 paper inherits the excellent mechanical properties of CNFs paper, and the ultimate strength is about 136 MPa. CNFs-based flexible transparent conductive paper also exhibits excellent electrical stability and flexibility. Copyright © 2013. Published by Elsevier Ltd.
Integrated automation for manufacturing of electronic assemblies
NASA Technical Reports Server (NTRS)
Sampite, T. Joseph
1991-01-01
Since 1985, the Naval Ocean Systems Center has been identifying and developing needed technology for flexible manufacturing of hybrid microelectronic assemblies. Specific projects have been accomplished through contracts with manufacturing companies, equipment suppliers, and joint efforts with other government agencies. The resulting technology has been shared through semi-annual meetings with government, industry, and academic representatives who form an ad hoc advisory panel. More than 70 major technical capabilities have been identified for which new development is needed. Several of these developments have been completed and are being shared with industry.
High voltage feedthrough bushing
Brucker, John P.
1993-01-01
A feedthrough bushing for a high voltage diode provides for using compression sealing for all sealing surfaces. A diode assembly includes a central conductor extending through the bushing and a grading ring assembly circumferentially surrounding and coaxial with the central conductor. A flexible conductive plate extends between and compressively seals against the central conductor and the grading ring assembly, wherein the flexibility of the plate allows inner and outer portions of the plate to axially translate for compression sealing against the central conductor and the grading ring assembly, respectively. The inner portion of the plate is bolted to the central conductor for affecting sealing. A compression beam is also bolted to the central conductor and engages the outer portion of the plate to urge the outer portion toward the grading ring assembly to obtain compression sealing therebetween.
Tuning carbon nanotube assembly for flexible, strong and conductive films
NASA Astrophysics Data System (ADS)
Wang, Yanjie; Li, Min; Gu, Yizhuo; Zhang, Xiaohua; Wang, Shaokai; Li, Qingwen; Zhang, Zuoguang
2015-02-01
Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g-1, greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive.Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g-1, greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive. Electronic supplementary information (ESI) available: The TEM image of array CNTs. The surface height curves of x-z cross-section of the films. A comparison of the mechanical properties of the pure CNT films described in this work with other CNT films/fibers spun from CNT array reported in the literature. The measured evaporation rates of ethanol and acetone. See DOI: 10.1039/c4nr06401a
Lukan, Tjaša; Machens, Fabian; Coll, Anna; Baebler, Špela; Messerschmidt, Katrin; Gruden, Kristina
2018-01-01
Cloning multiple DNA fragments for delivery of several genes of interest into the plant genome is one of the main technological challenges in plant synthetic biology. Despite several modular assembly methods developed in recent years, the plant biotechnology community has not widely adopted them yet, probably due to the lack of appropriate vectors and software tools. Here we present Plant X-tender, an extension of the highly efficient, scar-free and sequence-independent multigene assembly strategy AssemblX, based on overlap-depended cloning methods and rare-cutting restriction enzymes. Plant X-tender consists of a set of plant expression vectors and the protocols for most efficient cloning into the novel vector set needed for plant expression and thus introduces advantages of AssemblX into plant synthetic biology. The novel vector set covers different backbones and selection markers to allow full design flexibility. We have included ccdB counterselection, thereby allowing the transfer of multigene constructs into the novel vector set in a straightforward and highly efficient way. Vectors are available as empty backbones and are fully flexible regarding the orientation of expression cassettes and addition of linkers between them, if required. We optimised the assembly and subcloning protocol by testing different scar-less assembly approaches: the noncommercial SLiCE and TAR methods and the commercial Gibson assembly and NEBuilder HiFi DNA assembly kits. Plant X-tender was applicable even in combination with low efficient homemade chemically competent or electrocompetent Escherichia coli. We have further validated the developed procedure for plant protein expression by cloning two cassettes into the newly developed vectors and subsequently transferred them to Nicotiana benthamiana in a transient expression setup. Thereby we show that multigene constructs can be delivered into plant cells in a streamlined and highly efficient way. Our results will support faster introduction of synthetic biology into plant science.
Machens, Fabian; Coll, Anna; Baebler, Špela; Messerschmidt, Katrin; Gruden, Kristina
2018-01-01
Cloning multiple DNA fragments for delivery of several genes of interest into the plant genome is one of the main technological challenges in plant synthetic biology. Despite several modular assembly methods developed in recent years, the plant biotechnology community has not widely adopted them yet, probably due to the lack of appropriate vectors and software tools. Here we present Plant X-tender, an extension of the highly efficient, scar-free and sequence-independent multigene assembly strategy AssemblX, based on overlap-depended cloning methods and rare-cutting restriction enzymes. Plant X-tender consists of a set of plant expression vectors and the protocols for most efficient cloning into the novel vector set needed for plant expression and thus introduces advantages of AssemblX into plant synthetic biology. The novel vector set covers different backbones and selection markers to allow full design flexibility. We have included ccdB counterselection, thereby allowing the transfer of multigene constructs into the novel vector set in a straightforward and highly efficient way. Vectors are available as empty backbones and are fully flexible regarding the orientation of expression cassettes and addition of linkers between them, if required. We optimised the assembly and subcloning protocol by testing different scar-less assembly approaches: the noncommercial SLiCE and TAR methods and the commercial Gibson assembly and NEBuilder HiFi DNA assembly kits. Plant X-tender was applicable even in combination with low efficient homemade chemically competent or electrocompetent Escherichia coli. We have further validated the developed procedure for plant protein expression by cloning two cassettes into the newly developed vectors and subsequently transferred them to Nicotiana benthamiana in a transient expression setup. Thereby we show that multigene constructs can be delivered into plant cells in a streamlined and highly efficient way. Our results will support faster introduction of synthetic biology into plant science. PMID:29300787
Stimuli-Responsive Intelligent Nanomaterials Self-Assembled from Rigid Flexible Molecules
2010-11-19
engineering, and controlled drug delivery . The hydrogels are formed through physical cross-links in a random way of flexible nanofibers . Here we...other to form hydrogels that have a variety of applications including tissue engineering, and controlled drug delivery . The hydrogels are formed through...opportunities in many biological applications including tissue regeneration and drug delivery vehicles. Molecular self-assembly into one-dimensional
Low-voltage self-assembled monolayer field-effect transistors on flexible substrates.
Schmaltz, Thomas; Amin, Atefeh Y; Khassanov, Artoem; Meyer-Friedrichsen, Timo; Steinrück, Hans-Georg; Magerl, Andreas; Segura, Juan José; Voitchovsky, Kislon; Stellacci, Francesco; Halik, Marcus
2013-08-27
Self-assembled monolayer field-effect transistors (SAMFETs) of BTBT functionalized phosphonic acids are fabricated. The molecular design enables device operation with charge carrier mobilities up to 10(-2) cm(2) V(-1) s(-1) and for the first time SAMFETs which operate on rough, flexible PEN substrates even under mechanical substrate bending. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A multi-sensor oceanographic measurement system for coastal environments
Martini, Marinna A.; Strahle, William J.
1993-01-01
An instrument system has been developed for long-term sediment transport studies that uses a modular design to combine off the shelf components into a complete and flexible package. A common data storage format is used in each instrument system so that the same hardware can be assembled in different ways to address specific scientific studies with minimal engineering support and modification. Three systems have been constructed and successfully deployed to date in two different coastal environments.
Feature-based component model for design of embedded systems
NASA Astrophysics Data System (ADS)
Zha, Xuan Fang; Sriram, Ram D.
2004-11-01
An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.
Micro-masonry for 3D additive micromanufacturing.
Keum, Hohyun; Kim, Seok
2014-08-01
Transfer printing is a method to transfer solid micro/nanoscale materials (herein called 'inks') from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices.
Spacecraft capture and docking system
NASA Technical Reports Server (NTRS)
Kong, Kinyuen (Inventor); Rafeek, Shaheed (Inventor); Myrick, Thomas (Inventor)
2001-01-01
A system for capturing and docking an active craft to a passive craft has a first docking assembly on the active craft with a first contact member and a spike projecting outwardly, a second docking assembly on the passive craft having a second contact member and a flexible net deployed over a target area with an open mesh for capturing the end of the spike of the active craft, and a motorized net drive for reeling in the net and active craft to mate with the passive craft's docking assembly. The spike has extendable tabs to allow it to become engaged with the net. The net's center is coupled to a net spool for reeling in. An alignment funnel has inclined walls to guide the net and captured spike towards the net spool. The passive craft's docking assembly includes circumferentially spaced preload wedges which are driven to lock the wedges against the contact member of the active craft. The active craft's docking assembly includes a rotary table and drive for rotating it to a predetermined angular alignment position, and mating connectors are then engaged with each other. The system may be used for docking spacecraft in zero or low-gravity environments, as well as for docking underwater vehicles, docking of ancillary craft to a mother craft in subsonic flight, in-flight refueling systems, etc.
Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials.
Filipov, Evgueni T; Tachi, Tomohiro; Paulino, Glaucio H
2015-10-06
Thin sheets have long been known to experience an increase in stiffness when they are bent, buckled, or assembled into smaller interlocking structures. We introduce a unique orientation for coupling rigidly foldable origami tubes in a "zipper" fashion that substantially increases the system stiffness and permits only one flexible deformation mode through which the structure can deploy. The flexible deployment of the tubular structures is permitted by localized bending of the origami along prescribed fold lines. All other deformation modes, such as global bending and twisting of the structural system, are substantially stiffer because the tubular assemblages are overconstrained and the thin sheets become engaged in tension and compression. The zipper-coupled tubes yield an unusually large eigenvalue bandgap that represents the unique difference in stiffness between deformation modes. Furthermore, we couple compatible origami tubes into a variety of cellular assemblages that can enhance mechanical characteristics and geometric versatility, leading to a potential design paradigm for structures and metamaterials that can be deployed, stiffened, and tuned. The enhanced mechanical properties, versatility, and adaptivity of these thin sheet systems can provide practical solutions of varying geometric scales in science and engineering.
Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials
Filipov, Evgueni T.; Tachi, Tomohiro; Paulino, Glaucio H.
2015-01-01
Thin sheets have long been known to experience an increase in stiffness when they are bent, buckled, or assembled into smaller interlocking structures. We introduce a unique orientation for coupling rigidly foldable origami tubes in a “zipper” fashion that substantially increases the system stiffness and permits only one flexible deformation mode through which the structure can deploy. The flexible deployment of the tubular structures is permitted by localized bending of the origami along prescribed fold lines. All other deformation modes, such as global bending and twisting of the structural system, are substantially stiffer because the tubular assemblages are overconstrained and the thin sheets become engaged in tension and compression. The zipper-coupled tubes yield an unusually large eigenvalue bandgap that represents the unique difference in stiffness between deformation modes. Furthermore, we couple compatible origami tubes into a variety of cellular assemblages that can enhance mechanical characteristics and geometric versatility, leading to a potential design paradigm for structures and metamaterials that can be deployed, stiffened, and tuned. The enhanced mechanical properties, versatility, and adaptivity of these thin sheet systems can provide practical solutions of varying geometric scales in science and engineering. PMID:26351693
Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials
NASA Astrophysics Data System (ADS)
Filipov, Evgueni T.; Tachi, Tomohiro; Paulino, Glaucio H.
2015-10-01
Thin sheets have long been known to experience an increase in stiffness when they are bent, buckled, or assembled into smaller interlocking structures. We introduce a unique orientation for coupling rigidly foldable origami tubes in a "zipper" fashion that substantially increases the system stiffness and permits only one flexible deformation mode through which the structure can deploy. The flexible deployment of the tubular structures is permitted by localized bending of the origami along prescribed fold lines. All other deformation modes, such as global bending and twisting of the structural system, are substantially stiffer because the tubular assemblages are overconstrained and the thin sheets become engaged in tension and compression. The zipper-coupled tubes yield an unusually large eigenvalue bandgap that represents the unique difference in stiffness between deformation modes. Furthermore, we couple compatible origami tubes into a variety of cellular assemblages that can enhance mechanical characteristics and geometric versatility, leading to a potential design paradigm for structures and metamaterials that can be deployed, stiffened, and tuned. The enhanced mechanical properties, versatility, and adaptivity of these thin sheet systems can provide practical solutions of varying geometric scales in science and engineering.
Benchmarking performance measurement and lean manufacturing in the rough mill
Dan Cumbo; D. Earl Kline; Matthew S. Bumgardner
2006-01-01
Lean manufacturing represents a set of tools and a stepwise strategy for achieving smooth, predictable product flow, maximum product flexibility, and minimum system waste. While lean manufacturing principles have been successfully applied to some components of the secondary wood products value stream (e.g., moulding, turning, assembly, and finishing), the rough mill is...
A space crane concept for performing on-orbit assembly
NASA Technical Reports Server (NTRS)
Dorsey, John T.
1992-01-01
The topics are presented in viewgraph form and include: in-space assembly and construction enhances future mission planning flexibility; in-space assembly and construction facility concept; space crane concept with mobile base; fundamental characteristics; space crane research approach; spacecraft component positioning and assembly test-bed; and articulating joint testbed.
NASA Technical Reports Server (NTRS)
Aston, Graeme; Brophy, John R.
1987-01-01
Results from a series of experiments to determine the effect of accelerator grid mount geometry on the performance of the J-series ion optics assembly are described. Three mounting schemes, two flexible and one rigid, are compared for their relative ion extraction capability over a range of total accelerating voltages. The largest ion beam current, for the maximum total voltage investigated, is shown to occur using one of the flexible grid mounting geometries. However, at lower total voltages and reduced engine input power levels, the original rigid J-series ion optics accelerator grid mounts result in marginally better grid system performance at the same cold interelectrode gap.
Ultrasonic imaging using optoelectronic transmitters.
Emery, C D; Casey, H C; Smith, S W
1998-04-01
Conventional ultrasound scanners utilize electronic transmitters and receivers at the scanner with a separate coaxial cable connected to each transducer element in the handle. The number of transducer elements determines the size and weight of the transducer cable assembly that connects the imaging array to the scanner. 2-D arrays that allow new imaging modalities to be introduced significantly increase the channel count making the transducer cable assembly more difficult to handle. Therefore, reducing the size and increasing the flexibility of the transducer cable assembly is a concern. Fiber optics can be used to transmit signals optically and has distinct advantages over standard coaxial cable to increase flexibility and decrease the weight of the transducer cable for larger channel numbers. The use of fiber optics to connect the array and the scanner entails the use of optoelectronics such as detectors and laser diodes to send and receive signals. In transmit, optoelectronics would have to be designed to produce high-voltage wide-bandwidth pulses across the transducer element. In this paper, we describe a 48 channel ultrasound system having 16 optoelectronic transmitters and 32 conventional electronic receivers. We investigated both silicon avalanche photodiodes (APD's) and GaAs lateral photoconductive semiconductor switches (PCSS's) for producing the transmit pulses. A Siemens SI-1200 scanner and a 2.25 MHz linear array were used to compare the optoelectronic system to a conventional electronic transmit system. Transmit signal results and images in tissue mimicking of cysts and tumors are provided for comparison.
NASA Astrophysics Data System (ADS)
Zarafshan, P.; Moosavian, S. Ali A.
2013-10-01
Dynamics modelling and control of multi-body space robotic systems composed of rigid and flexible elements is elaborated here. Control of such systems is highly complicated due to severe under-actuated condition caused by flexible elements, and an inherent uneven nonlinear dynamics. Therefore, developing a compact dynamics model with the requirement of limited computations is extremely useful for controller design, also to develop simulation studies in support of design improvement, and finally for practical implementations. In this paper, the Rigid-Flexible Interactive dynamics Modelling (RFIM) approach is introduced as a combination of Lagrange and Newton-Euler methods, in which the motion equations of rigid and flexible members are separately developed in an explicit closed form. These equations are then assembled and solved simultaneously at each time step by considering the mutual interaction and constraint forces. The proposed approach yields a compact model rather than common accumulation approach that leads to a massive set of equations in which the dynamics of flexible elements is united with the dynamics equations of rigid members. To reveal such merits of this new approach, a Hybrid Suppression Control (HSC) for a cooperative object manipulation task will be proposed, and applied to usual space systems. A Wheeled Mobile Robotic (WMR) system with flexible appendages as a typical space rover is considered which contains a rigid main body equipped with two manipulating arms and two flexible solar panels, and next a Space Free Flying Robotic system (SFFR) with flexible members is studied. Modelling verification of these complicated systems is vigorously performed using ANSYS and ADAMS programs, while the limited computations of RFIM approach provides an efficient tool for the proposed controller design. Furthermore, it will be shown that the vibrations of the flexible solar panels results in disturbing forces on the base which may produce undesirable errors and perturb the object manipulation task. So, it is shown that these effects can be significantly eliminated by the proposed Hybrid Suppression Control algorithm.
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Tsuha, Walter S.
1993-01-01
A two-stage model reduction methodology, combining the classical Component Mode Synthesis (CMS) method and the newly developed Enhanced Projection and Assembly (EP&A) method, is proposed in this research. The first stage of this methodology, called the COmponent Modes Projection and Assembly model REduction (COMPARE) method, involves the generation of CMS mode sets, such as the MacNeal-Rubin mode sets. These mode sets are then used to reduce the order of each component model in the Rayleigh-Ritz sense. The resultant component models are then combined to generate reduced-order system models at various system configurations. A composite mode set which retains important system modes at all system configurations is then selected from these reduced-order system models. In the second stage, the EP&A model reduction method is employed to reduce further the order of the system model generated in the first stage. The effectiveness of the COMPARE methodology has been successfully demonstrated on a high-order, finite-element model of the cruise-configured Galileo spacecraft.
Advanced construction management for lunar base construction - Surface operations planner
NASA Technical Reports Server (NTRS)
Kehoe, Robert P.
1992-01-01
The study proposes a conceptual solution and lays the framework for developing a new, sophisticated and intelligent tool for a lunar base construction crew to use. This concept integrates expert systems for critical decision making, virtual reality for training, logistics and laydown optimization, automated productivity measurements, and an advanced scheduling tool to form a unique new planning tool. The concept features extensive use of computers and expert systems software to support the actual work, while allowing the crew to control the project from the lunar surface. Consideration is given to a logistics data base, laydown area management, flexible critical progress scheduler, video simulation of assembly tasks, and assembly information and tracking documentation.
Flexible Packaging by Film-Assisted Molding for Microintegration of Inertia Sensors
Hera, Daniel; Berndt, Armin; Günther, Thomas; Schmiel, Stephan; Harendt, Christine; Zimmermann, André
2017-01-01
Packaging represents an important part in the microintegration of sensors based on microelectromechanical system (MEMS). Besides miniaturization and integration density, functionality and reliability in combination with flexibility in packaging design at moderate costs and consequently high-mix, low-volume production are the main requirements for future solutions in packaging. This study investigates possibilities employing printed circuit board (PCB-)based assemblies to provide high flexibility for circuit designs together with film-assisted transfer molding (FAM) to package sensors. The feasibility of FAM in combination with PCB and MEMS as a packaging technology for highly sensitive inertia sensors is being demonstrated. The results prove the technology to be a viable method for damage-free packaging of stress- and pressure-sensitive MEMS. PMID:28653992
Space Station on-orbit solar array loads during assembly
NASA Astrophysics Data System (ADS)
Ghofranian, S.; Fujii, E.; Larson, C. R.
This paper is concerned with the closed-loop dynamic analysis of on-orbit maneuvers when the Space Shuttle is fully mated to the Space Station Freedom. A flexible model of the Space Station in the form of component modes is attached to a rigid orbiter and on-orbit maneuvers are performed using the Shuttle Primary Reaction Control System jets. The traditional approach for this type of problems is to perform an open-loop analysis to determine the attitude control system jet profiles based on rigid vehicles and apply the resulting profile to a flexible Space Station. In this study a closed-loop Structure/Control model was developed in the Dynamic Analysis and Design System (DADS) program and the solar array loads were determined for single axis maneuvers with various delay times between jet firings. It is shown that the Digital Auto Pilot jet selection is affected by Space Station flexibility. It is also shown that for obtaining solar array loads the effect of high frequency modes cannot be ignored.
Directed-Assembly of Carbon Nanotubes on Soft Substrates for Flexible Biosensor Array
NASA Astrophysics Data System (ADS)
Lee, Hyoung Woo; Koh, Juntae; Lee, Byung Yang; Kim, Tae Hyun; Lee, Joohyung; Hong, Seunghun; Yi, Mihye; Jhon, Young Min
2009-03-01
We developed a method to selectively assemble and align carbon nanotubes (CNTs) on soft substrates for flexible biosensors. In this strategy, thin oxide layer was deposited on soft substrates via low temperature plasma enhanced chemical vapor deposition, and linker-free assembly process was applied onto the oxide surface where the assembly of carbon nanotubes was guided by methyl-terminated molecular patterns on the oxide surface. The electrical characterization of the fabricated CNT devices exhibited typical p-type gating effect and 1/f noise behavior. The bare oxide regions near CNTs were functionalized with glutamate oxidase to fabricate selective biosensors to detect two forms of glutamate substances existing in different situations: L-glutamic acid, a neuro-transmitting material, and monosodium glutamate, a food additive.
Department of Defense Abstracts of Phase 2 Awards 1991
1991-01-01
the static stiffness of these materials as measured by comprcssiun testing indicated that the materials are too flexible to sustain submergence ...design, analysis and experiment has been iti) procduce a comlplete design’ l’or an improved MBR systems. This objective has been completely met in a...propoised toc fabhricate, assemble, test, deliver, and install a complete MBR system including computer, and sollwaire lfar ciperatimig the mnstrummiicm
Initial development of a high-pressure crystal growth facility: Center director's discretionary fund
NASA Technical Reports Server (NTRS)
Szofran, F. R.; Lehoczky, S. L.; Cobb, S. D.; Gillies, D. C.
1993-01-01
A low-cost, flexible, high-pressure (600 psi) system for crystal growth and related thermophysical properties measurements was designed, assembled, and tested. The furnace system includes a magnetically coupled translation mechanism that eliminates the need for a high-pressure mechanical feedthru. The system is currently being used for continuing crystal growth experiments and thermophysical properties measurements on several material systems including Hg(1-x)Cd(x)Te, Hg(1-x)Zn(x)Te, and Hg(1-x)Zn(x)Se.
Automated standardization technique for an inductively-coupled plasma emission spectrometer
Garbarino, John R.; Taylor, Howard E.
1982-01-01
The manifold assembly subsystem described permits real-time computer-controlled standardization and quality control of a commercial inductively-coupled plasma atomic emission spectrometer. The manifold assembly consists of a branch-structured glass manifold, a series of microcomputer-controlled solenoid valves, and a reservoir for each standard. Automated standardization involves selective actuation of each solenoid valve that permits a specific mixed standard solution to be pumped to the nebulizer of the spectrometer. Quality control is based on the evaluation of results obtained for a mixed standard containing 17 analytes, that is measured periodically with unknown samples. An inaccurate standard evaluation triggers restandardization of the instrument according to a predetermined protocol. Interaction of the computer-controlled manifold assembly hardware with the spectrometer system is outlined. Evaluation of the automated standardization system with respect to reliability, simplicity, flexibility, and efficiency is compared to the manual procedure. ?? 1982.
Interconnect assembly for an electronic assembly and assembly method therefor
Gerbsch, Erich William
2003-06-10
An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.
Personnel occupied woven envelope robot power
NASA Technical Reports Server (NTRS)
1987-01-01
The Human Occupied Space Teleoperator (HOST) system currently under development utilizes a flexible tunnel/Stewart table structure to provide crew access to a pressurized manned work station or POD on the space station without extravehicular activity (EVA). The HOST structure facilitates moving a work station to multiple space station locations. The system has applications to orbiter docking, space station assembly, satellite servicing, space station maintenance, and logistics support. The conceptual systems design behind HOST is described in detail.
Harnessing Thin-Film Continuous-Flow Assembly Lines.
Britton, Joshua; Castle, Jared W; Weiss, Gregory A; Raston, Colin L
2016-07-25
Inspired by nature's ability to construct complex molecules through sequential synthetic transformations, an assembly line synthesis of α-aminophosphonates has been developed. In this approach, simple starting materials are continuously fed through a thin-film reactor where the intermediates accrue molecular complexity as they progress through the flow system. Flow chemistry allows rapid multistep transformations to occur via reaction compartmentalization, an approach not amenable to using conventional flasks. Thin film processing can also access facile in situ solvent exchange to drive reaction efficiency, and through this method, α-aminophosphonate synthesis requires only 443 s residence time to produce 3.22 g h(-1) . Assembly-line synthesis allows unprecedented reaction flexibility and processing efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabrication of hierarchical hybrid structures using bio-enabled layer-by-layer self-assembly.
Hnilova, Marketa; Karaca, Banu Taktak; Park, James; Jia, Carol; Wilson, Brandon R; Sarikaya, Mehmet; Tamerler, Candan
2012-05-01
Development of versatile and flexible assembly systems for fabrication of functional hybrid nanomaterials with well-defined hierarchical and spatial organization is of a significant importance in practical nanobiotechnology applications. Here we demonstrate a bio-enabled self-assembly technique for fabrication of multi-layered protein and nanometallic assemblies utilizing a modular gold-binding (AuBP1) fusion tag. To accomplish the bottom-up assembly we first genetically fused the AuBP1 peptide sequence to the C'-terminus of maltose-binding protein (MBP) using two different linkers to produce MBP-AuBP1 hetero-functional constructs. Using various spectroscopic techniques, surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR), we verified the exceptional binding and self-assembly characteristics of AuBP1 peptide. The AuBP1 peptide tag can direct the organization of recombinant MBP protein on various gold surfaces through an efficient control of the organic-inorganic interface at the molecular level. Furthermore using a combination of soft-lithography, self-assembly techniques and advanced AuBP1 peptide tag technology, we produced spatially and hierarchically controlled protein multi-layered assemblies on gold nanoparticle arrays with high molecular packing density and pattering efficiency in simple, reproducible steps. This model system offers layer-by-layer assembly capability based on specific AuBP1 peptide tag and constitutes novel biological routes for biofabrication of various protein arrays, plasmon-active nanometallic assemblies and devices with controlled organization, packing density and architecture. Copyright © 2011 Wiley Periodicals, Inc.
Ceramic-ceramic shell tile thermal protection system and method thereof
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Smith, Marnell (Inventor); Goldstein, Howard E. (Inventor); Zimmerman, Norman B. (Inventor)
1986-01-01
A ceramic reusable, externally applied composite thermal protection system (TPS) is proposed. The system functions by utilizing a ceramic/ceramic upper shell structure which effectively separates its primary functions as a thermal insulator and as a load carrier to transmit loads to the cold structure. The composite tile system also prevents impact damage to the atmospheric entry vehicle thermal protection system. The composite tile comprises a structurally strong upper ceramic/ceramic shell manufactured from ceramic fibers and ceramic matrix meeting the thermal and structural requirements of a tile used on a re-entry aerospace vehicle. In addition, a lightweight high temperature ceramic lower temperature base tile is used. The upper shell and lower tile are attached by means effective to withstand the extreme temperatures (3000 to 3200F) and stress conditions. The composite tile may include one or more layers of variable density rigid or flexible thermal insulation. The assembly of the overall tile is facilitated by two or more locking mechanisms on opposing sides of the overall tile assembly. The assembly may occur subsequent to the installation of the lower shell tile on the spacecraft structural skin.
NASA Astrophysics Data System (ADS)
Ge, Jun; Cheng, Guanghui; Chen, Liwei
2011-08-01
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.
Ge, Jun; Cheng, Guanghui; Chen, Liwei
2011-08-01
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm(-2) and 59 wt% PANI gives a specific capacitance of 55.0 F g(-1) at a current density of 2.6 A g(-1), showing its possibility for transparent and flexible energy storage. This journal is © The Royal Society of Chemistry 2011
In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration
NASA Astrophysics Data System (ADS)
Dietrich, P.-I.; Blaicher, M.; Reuter, I.; Billah, M.; Hoose, T.; Hofmann, A.; Caer, C.; Dangel, R.; Offrein, B.; Troppenz, U.; Moehrle, M.; Freude, W.; Koos, C.
2018-04-01
Hybrid photonic integration combines complementary advantages of different material platforms, offering superior performance and flexibility compared with monolithic approaches. This applies in particular to multi-chip concepts, where components can be individually optimized and tested. The assembly of such systems, however, requires expensive high-precision alignment and adaptation of optical mode profiles. We show that these challenges can be overcome by in situ printing of facet-attached beam-shaping elements. Our approach allows precise adaptation of vastly dissimilar mode profiles and permits alignment tolerances compatible with cost-efficient passive assembly techniques. We demonstrate a selection of beam-shaping elements at chip and fibre facets, achieving coupling efficiencies of up to 88% between edge-emitting lasers and single-mode fibres. We also realize printed free-form mirrors that simultaneously adapt beam shape and propagation direction, and we explore multi-lens systems for beam expansion. The concept paves the way to automated assembly of photonic multi-chip systems with unprecedented performance and versatility.
Description of the PMAD DC test bed architecture and integration sequence
NASA Technical Reports Server (NTRS)
Beach, R. F.; Trash, L.; Fong, D.; Bolerjack, B.
1991-01-01
NASA-Lewis is responsible for the development, fabrication, and assembly of the electric power system (EPS) for the Space Station Freedom (SSF). The SSF power system is radically different from previous spacecraft power systems in both the size and complexity of the system. Unlike past spacecraft power system the SSF EPS will grow and be maintained on orbit and must be flexible to meet changing user power needs. The SSF power system is also unique in comparison with terrestrial power systems because it is dominated by power electronic converters which regulate and control the power. Although spacecraft historically have used power converters for regulation they typically involved only a single series regulating element. The SSF EPS involves multiple regulating elements, two or more in series, prior to the load. These unique system features required the construction of a testbed which would allow the development of spacecraft power system technology. A description is provided of the Power Management and Distribution (PMAD) DC Testbed which was assembled to support the design and early evaluation of the SSF EPS. A description of the integration process used in the assembly sequence is also given along with a description of the support facility.
Image-based information, communication, and retrieval
NASA Technical Reports Server (NTRS)
Bryant, N. A.; Zobrist, A. L.
1980-01-01
IBIS/VICAR system combines video image processing and information management. Flexible programs require user to supply only parameters specific to particular application. Special-purpose input/output routines transfer image data with reduced memory requirements. New application programs are easily incorporated. Program is written in FORTRAN IV, Assembler, and OS JCL for batch execution and has been implemented on IBM 360.
Optical Trap Kits: Issues to Be Aware of
ERIC Educational Resources Information Center
Alexeev, I.; Quentin, U.; Leitz, K. -H.; Schmidt, M.
2012-01-01
An inexpensive and robust optical trap system can be built from off-the-shelf optical and opto-mechanical components or acquired as a kit to be assembled in a laboratory. The primary advantages of such a trap, besides being significantly more affordable, are its flexibility, and ease of modification and upgrade. In this paper, we consider several…
A flexible Au-Ir cell with quick assembly for hydrothermal experiments
Rosenbauer, R.J.; Bischoff, J.L.; Potter, J.M.
1993-01-01
The paper describes a new flexible reaction cell for high-temperature and high-pressure experiments in hydrothermal apparatus. The interior of the cell is all Au, except for two inert Ir gaskets. The design features an all Au cap that can be easily and rapidly assembled and disassembled. The capacity of the cell is approximately 240 mL, with a height of 20 cm and an o.d. of 6 cm. -Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Ki-Won; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr; Kim, Min-Yi
2015-12-15
We investigated a self-assembled Ag nanoparticle network electrode passivated by a nano-sized ZnO layer for use in high-performance transparent and flexible film heaters (TFFHs). The low temperature atomic layer deposition of a nano-sized ZnO layer effectively filled the uncovered area of Ag network and improved the current spreading in the self-assembled Ag network without a change in the sheet resistance and optical transmittance as well as mechanical flexibility. The time-temperature profiles and heat distribution analysis demonstrate that the performance of the TFTH with the ZnO/Ag network is superior to that of a TFFH with Ag nanowire electrodes. In addition, themore » TFTHs with ZnO/Ag network exhibited better stability than the TFFH with a bare Ag network due to the effective current spreading through the nano-sized ZnO layer.« less
Molecular Motions in Functional Self-Assembled Nanostructures
Dhotel, Alexandre; Chen, Ziguang; Delbreilh, Laurent; Youssef, Boulos; Saiter, Jean-Marc; Tan, Li
2013-01-01
The construction of “smart” materials able to perform specific functions at the molecular scale through the application of various stimuli is highly attractive but still challenging. The most recent applications indicate that the outstanding flexibility of self-assembled architectures can be employed as a powerful tool for the development of innovative molecular devices, functional surfaces and smart nanomaterials. Structural flexibility of these materials is known to be conferred by weak intermolecular forces involved in self-assembly strategies. However, some fundamental mechanisms responsible for conformational lability remain unexplored. Furthermore, the role played by stronger bonds, such as coordination, ionic and covalent bonding, is sometimes neglected while they can be employed readily to produce mechanically robust but also chemically reversible structures. In this review, recent applications of structural flexibility and molecular motions in self-assembled nanostructures are discussed. Special focus is given to advanced materials exhibiting significant performance changes after an external stimulus is applied, such as light exposure, pH variation, heat treatment or electromagnetic field. The crucial role played by strong intra- and weak intermolecular interactions on structural lability and responsiveness is highlighted. PMID:23348927
STRUCTURE FOR SUB-ASSEMBLIES OF ELECTRONIC EQUIPMENT
Bell, P.R.; Harris, C.C.
1959-03-31
Sub-assemblies for electronic systems, particularly a unit which is self- contained and which may be adapted for quick application to and detachment from a chassis or panel, are discussed. The disclosed structure serves the dual purpose of a cover or enclosure for a subassembly comprising a base plate and also acts as a clamp for retaining the base plate in position on a chassis. The clamping action is provided by flexible fingers projecting from the side walls of the cover and extending through grooves in the base plate to engage with the opposite side of the chassis.
Liang, Junfei; Cai, Zhi; Tian, Yu; Li, Lidong; Geng, Jianxin; Guo, Lin
2013-11-27
It is currently very urgent to develop flexible energy storage devices because of the growing academic interest in and strong technical demand of flexible electronics. Exploration of high-performance electrode materials and a corresponding assembly method for fabrication of flexible energy storage devices plays a critical role in fulfilling this demand. Here, we have developed a facile, economic, and green hydrothermal process to synthesize ultrasmall SnO2 nanocrystallites/nitrogen-doped graphene nanocomposites (USNGs) as a high-performance electrode material for Li-ion batteries (LIBs). Furthermore, using the glass microfiber filters (GMFs) as supporting substrate, the novel flexible USNG-GMF bilayered films have been prepared by depositing the as-prepared USNG on GMF through a simple vacuum filtration. Significantly, for the first time, the flexible USNG-GMF bilayered films have directly been used for assembling LIBs, where the GMF further functions as a separator. The obtained highly robust, binder-free, conducting agent-free, and current collector-free new type of flexible electrodes show excellent LIB performance.
Assembly Modulated by Particle Position and Shape: A New Concept in Self-Assembly.
Tavacoli, Joe W; Heuvingh, Julien; Du Roure, Olivia
2017-11-10
In this communication we outline how the bespoke arrangements and design of micron-sized superparamagnetic shapes provide levers to modulate their assembly under homogeneous magnetic fields. We label this new approach, 'assembly modulated by particle position and shape' (APPS). Specifically, using rectangular lattices of superparamagnetic micron-sized cuboids, we construct distinct microstructures by adjusting lattice pitch and angle of array with respect to a magnetic field. Broadly, we find two modes of assembly: (1) immediate 2D jamming of the cuboids as they rotate to align with the applied field (rotation-induced jamming) and (2) aggregation via translation after their full alignment (dipole-dipole assembly). The boundary between these two assembly pathways is independent on field strength being solely a function of the cuboid's dimensions, lattice pitch, and array angle with respect to field-a relationship which we capture, along with other features of the assembly process, in a 'phase diagram'. In doing so, we set out initial design rules to build custom made assemblies. Moreover, these assemblies can be made flexible thanks to the hinged contacts of their particle building blocks. This flexibility, combined with the superparamagnetic nature of the architectures, renders our assembly method particularly appropriate for the construction of complex actuators at a scale hitherto not possible.
Flexible, Symmetry-Directed Approach To Assembling Protein Cages (Publisher’s Version Open Access)
2016-08-01
widespread in nature and confers new biological properties. Engineered protein assemblies have potential applica- tions in nanotechnology and medicine...and nanotechnology in designing novel self-assembling proteins and adapting natural protein assem- blies for a range of applications broadly
Multibody model reduction by component mode synthesis and component cost analysis
NASA Technical Reports Server (NTRS)
Spanos, J. T.; Mingori, D. L.
1990-01-01
The classical assumed-modes method is widely used in modeling the dynamics of flexible multibody systems. According to the method, the elastic deformation of each component in the system is expanded in a series of spatial and temporal functions known as modes and modal coordinates, respectively. This paper focuses on the selection of component modes used in the assumed-modes expansion. A two-stage component modal reduction method is proposed combining Component Mode Synthesis (CMS) with Component Cost Analysis (CCA). First, each component model is truncated such that the contribution of the high frequency subsystem to the static response is preserved. Second, a new CMS procedure is employed to assemble the system model and CCA is used to further truncate component modes in accordance with their contribution to a quadratic cost function of the system output. The proposed method is demonstrated with a simple example of a flexible two-body system.
Directed assembly of carbon nanotubes on soft substrates for use as a flexible biosensor array.
Koh, Juntae; Yi, Mihye; Yang Lee, Byung; Kim, Tae Hyun; Lee, Joohyung; Jhon, Young Min; Hong, Seunghun
2008-12-17
We have developed a method to selectively assemble and align carbon nanotubes (CNTs) on soft substrates for use as flexible biosensors. In this strategy, a thin oxide layer was deposited on soft substrates via low temperature plasma enhanced chemical vapor deposition, and a linker-free assembly process was applied on the oxide surface where the assembly of carbon nanotubes was guided by methyl-terminated molecular patterns on the oxide surface. The electrical characterization of the fabricated CNT devices exhibited a typical p-type gating effect and 1/f noise behavior. The bare oxide regions near CNTs were functionalized with glutamate oxidase to fabricate selective biosensors to detect two forms of glutamate substances existing in different situations: L-glutamic acid, a neurotransmitting material, and monosodium glutamate, a food additive.
Kolappan, Subramania; Ng, Dixon; Yang, Guixiang; Harn, Tony; Craig, Lisa
2015-01-01
Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system. PMID:26324721
Kolappan, Subramania; Ng, Dixon; Yang, Guixiang; Harn, Tony; Craig, Lisa
2015-10-23
Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
On the danger of redundancies in some aerospace mechanisms
NASA Technical Reports Server (NTRS)
Chew, M.
1988-01-01
An attempt is made to show that redundancies in some aerospace mechanisms do not generally improve the odds for success. Some of these redundancies may even be the very cause for failure of the system. To illustrate this fallacy, two designs based on the Control of Flexible Structures I (COFS I) Mast deployer and retractor assembly (DRA) are presented together with novel designs to circumvent such design inadequacies, while improving system reliability.
Rambo, Robert P.; Tainer, John A.
2011-01-01
Unstructured proteins, RNA or DNA components provide functionally important flexibility that is key to many macromolecular assemblies throughout cell biology. As objective, quantitative experimental measures of flexibility and disorder in solution are limited, small angle scattering (SAS), and in particular small angle X-ray scattering (SAXS), provides a critical technology to assess macromolecular flexibility as well as shape and assembly. Here, we consider the Porod-Debye law as a powerful tool for detecting biopolymer flexibility in SAS experiments. We show that the Porod-Debye region fundamentally describes the nature of the scattering intensity decay, which captures information needed for distinguishing between folded and flexible particles. Particularly for comparative SAS experiments, application of the law, as described here, can distinguish between discrete conformational changes and localized flexibility relevant to molecular recognition and interaction networks. This approach aids insightful analyses of fully and partly flexible macromolecules that is more robust and conclusive than traditional Kratky analyses. Furthermore, we demonstrate for prototypic SAXS data that the ability to calculate particle density by the Porod-Debye criteria, as shown here, provides an objective quality assurance parameter that may prove of general use for SAXS modeling and validation. PMID:21509745
Advanced Electric Distribution, Switching, and Conversion Technology for Power Control
NASA Technical Reports Server (NTRS)
Soltis, James V.
1998-01-01
The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.
On-orbit assembly of a team of flexible spacecraft using potential field based method
NASA Astrophysics Data System (ADS)
Chen, Ti; Wen, Hao; Hu, Haiyan; Jin, Dongping
2017-04-01
In this paper, a novel control strategy is developed based on artificial potential field for the on-orbit autonomous assembly of four flexible spacecraft without inter-member collision. Each flexible spacecraft is simplified as a hub-beam model with truncated beam modes in the floating frame of reference and the communication graph among the four spacecraft is assumed to be a ring topology. The four spacecraft are driven to a pre-assembly configuration first and then to the assembly configuration. In order to design the artificial potential field for the first step, each spacecraft is outlined by an ellipse and a virtual leader of circle is introduced. The potential field mainly depends on the attitude error between the flexible spacecraft and its neighbor, the radial Euclidian distance between the ellipse and the circle and the classical Euclidian distance between the centers of the ellipse and the circle. It can be demonstrated that there are no local minima for the potential function and the global minimum is zero. If the function is equal to zero, the solution is not a certain state, but a set. All the states in the set are corresponding to the desired configurations. The Lyapunov analysis guarantees that the four spacecraft asymptotically converge to the target configuration. Moreover, the other potential field is also included to avoid the inter-member collision. In the control design of the second step, only small modification is made for the controller in the first step. Finally, the successful application of the proposed control law to the assembly mission is verified by two case studies.
Oblique view of the Orbiter Discovery from ground level in ...
Oblique view of the Orbiter Discovery from ground level in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note that the Forward Reaction Control System Module has been removed from the forward section. The void left behind by the removal of the reaction control system has been sealed with a clear flexible barrier and kept under positive pressure to reduce the contaminant infiltration potential. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
General view of the aft section of the Orbiter Discovery ...
General view of the aft section of the Orbiter Discovery in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note the main engines and Orbiter Maneuvering System/Reaction Control System pods are removed in this photo. The flexible hoses protruding from the starboard aft section are to control temperature, humidity and pressure in the orbiter's void spaces during its down time. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
General view of the aft, starboard section of the Orbiter ...
General view of the aft, starboard section of the Orbiter Discovery in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note the main engines and Orbiter Maneuvering System/Reaction Control System pods are removed in this photo. The flexible hoses protruding from the starboard aft section are to control temperature, humidity and pressure in the orbiter's void spaces during its down time. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Use your head! Perception of action possibilities by means of an object attached to the head.
Wagman, Jeffrey B; Hajnal, Alen
2016-03-01
Perceiving any environmental property requires spontaneously assembling a smart perceptual instrument-a task-specific measurement device assembled across potentially independent anatomical units. Previous research has shown that to a large degree, perception of a given environmental property is anatomically independent. We attempted to provide stronger evidence for this proposal by investigating perception by an organization of anatomical and inert components that likely requires the spontaneous assembly of a novel smart perceptual instrument-a rod attached to the head. Specifically, we compared cephalic and manual perception of whether an inclined surface affords standing on. In both conditions, perception reflected the action capabilities of the perceiver and not the appendage used to wield the rod. Such results provide stronger evidence for anatomical independence of perception within a given perceptual system and highlight that flexible task-specific detection units can be assembled across units that span the body and inert objects.
Acceptance test report, 241-SY-101 Flexible Receiver System, Phase 2 testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritter, G.A.
1995-02-06
This document summarizes the results of the Phase 2 acceptance test of the 241-SY-101 Flexible Receiver System (FRS). The FRS is one of six major components of the Equipment Removal System, which has been designed to retrieve, transport, and store the test mixer pump currently installed in Tank 241-SY-101. The purpose of this acceptance test is to verify the strength of the containment bag and bag bottom cinching mechanism. It is postulated that 68 gallons of waste could be trapped inside the pump internals. The bag must be capable of supporting this waste if it shakes loose and drains tomore » the bottom of the bag after the bag bottom has been cinched closed. This acceptance test was performed at the Maintenance and Storage Facility (MASF) Facility in the 400 area on January 23, 1995. The bag assembly supported the weight of 920 kg (2,020 lbs) of water with no leakage or damage to the bag. This value meets the acceptance criteria of 910 kg of water and therefore the results were found to be acceptable. The maximum volume of liquid expected to be held up in the pump internals is 258 L (68 gallons), which corresponds to 410 kg. This test weight gives just over a safety factor of 2. The bag also supported a small shock load while it was filled with water when the crane hoisted the bag assembly up and down. Based on the strength rating of the bag components, the bag assembly should support 2--3 times the test weight of 910 kg.« less
Flexibility of centromere and kinetochore structures
Burrack, Laura S.; Berman, Judith
2012-01-01
Centromeres, and the kinetochores that assemble on them, are essential for accurate chromosome segregation. Diverse centromere organization patterns and kinetochore structures have evolved in eukaryotes ranging from yeast to humans. In addition, centromere DNA and kinetochore position can vary even within individual cells. This flexibility manifests in several ways: centromere DNA sequences evolve rapidly, kinetochore positions shift in response to altered chromosome structure, and kinetochore complex numbers change in response to fluctuations in kinetochore protein levels. Despite their differences, all of these diverse structures promote efficient chromosome segregation. This robustness is inherent to chromosome segregation mechanisms and balances genome stability with adaptability. In this review, we explore the mechanisms and consequences of centromere and kinetochore flexibility as well as the benefits and limitations of different experimental model systems for studying them. PMID:22445183
Mechanical connection for a tubular assembly
Grover, J.M.
1984-09-12
Disclosed is a mechanical connection assembly for connecting two telescopically related parts together in a fluidtight relation. The system uses snap-in fasteners having flexible barbed tangs which are snapped into receiving holes formed in the parts being attached together. A locking pin can be inserted into a central aperture through the snap-in fastener to secure the fastener in the receiving holes. The system also includes a seal having sealing surfaces at least one of which is formed at an angle inclined relative to a true vertical. a metallic sealing element is interposed between the sealing surfaces. The geometry of the sealing surfaces is capable of compensating for the differential thermal growth rates occurring when the two parts are made from dissimilar metals.
Unitaxial constant velocity microactuator
McIntyre, Timothy J.
1994-01-01
A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.
bold: The Barcode of Life Data System (http://www.barcodinglife.org)
RATNASINGHAM, SUJEEVAN; HEBERT, PAUL D N
2007-01-01
The Barcode of Life Data System (bold) is an informatics workbench aiding the acquisition, storage, analysis and publication of DNA barcode records. By assembling molecular, morphological and distributional data, it bridges a traditional bioinformatics chasm. bold is freely available to any researcher with interests in DNA barcoding. By providing specialized services, it aids the assembly of records that meet the standards needed to gain BARCODE designation in the global sequence databases. Because of its web-based delivery and flexible data security model, it is also well positioned to support projects that involve broad research alliances. This paper provides a brief introduction to the key elements of bold, discusses their functional capabilities, and concludes by examining computational resources and future prospects. PMID:18784790
Active colloids as assembly machines
NASA Astrophysics Data System (ADS)
Goodrich, Carl; Brenner, Michael
Controlling motion at the microscopic scale is a fundamental goal in the development of biologically-inspired systems. We show that the motion of active, self-propelled colloids can be sufficiently controlled for use as a tool to assemble complex structures such as braids and weaves out of microscopic filaments. Unlike typical self-assembly paradigms, these structures are held together by geometric constraints rather than adhesive bonds. The out-of-equilibrium assembly that we propose involves precisely controlling the two-dimensional motion of active colloids so that their path has a non-trivial topology. We demonstrate with proof-of-principle Brownian dynamics simulations that, when the colloids are attached to long semi-flexible filaments, this motion causes the filaments to braid. The ability of the active particles to provide sufficient force necessary to bend the filaments into a braid depends on a number of factors, including the self-propulsion mechanism, the properties of the filament, and the maximum curvature in the braid. Our work demonstrates that non-equilibrium assembly pathways can be designed using active particles.
Stewart, Barry J; Wardle, Simon J; Haniford, David B
2002-08-15
The frequency of DNA transposition in transposition systems that employ a strand transfer step may be significantly affected by the occurrence of a disintegration reaction, a reaction that reverses the strand transfer event. We have asked whether disintegration occurs in the Tn10 transposition system. We show that disintegration substrates (substrates constituting one half of the strand transfer product) are assembled into a transpososome that mimics the strand transfer intermediate. This strand transfer transpososome (STT) does appear to support an intermolecular disintegration reaction, but only at a very low level. Strikingly, assembly of the STT is not dependent on IHF, a host protein that is required for de novo assembly of all previously characterized Tn10 transpososomes. We suggest that disintegration substrates are able to form both transposon end and target type contacts with transposase because of their enhanced conformational flexibility. This probably allows the conformation of DNA within the complex that prevents the destructive disintegration reaction, and is responsible for relaxing the DNA sequence requirements for STT formation relative to other Tn10 transpososomes.
Stewart, Barry J.; Wardle, Simon J.; Haniford, David B.
2002-01-01
The frequency of DNA transposition in transposition systems that employ a strand transfer step may be significantly affected by the occurrence of a disintegration reaction, a reaction that reverses the strand transfer event. We have asked whether disintegration occurs in the Tn10 transposition system. We show that disintegration substrates (substrates constituting one half of the strand transfer product) are assembled into a transpososome that mimics the strand transfer intermediate. This strand transfer transpososome (STT) does appear to support an intermolecular disintegration reaction, but only at a very low level. Strikingly, assembly of the STT is not dependent on IHF, a host protein that is required for de novo assembly of all previously characterized Tn10 transpososomes. We suggest that disintegration substrates are able to form both transposon end and target type contacts with transposase because of their enhanced conformational flexibility. This probably allows the conformation of DNA within the complex that prevents the destructive disintegration reaction, and is responsible for relaxing the DNA sequence requirements for STT formation relative to other Tn10 transpososomes. PMID:12169640
Micro-masonry for 3D Additive Micromanufacturing
Keum, Hohyun; Kim, Seok
2014-01-01
Transfer printing is a method to transfer solid micro/nanoscale materials (herein called ‘inks’) from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices. PMID:25146178
Nivaskumar, Mangayarkarasi; Bouvier, Guillaume; Campos, Manuel; Nadeau, Nathalie; Yu, Xiong; Egelman, Edward H; Nilges, Michael; Francetic, Olivera
2014-05-06
The closely related bacterial type II secretion (T2S) and type IV pilus (T4P) systems are sophisticated machines that assemble dynamic fibers promoting protein transport, motility, or adhesion. Despite their essential role in virulence, the molecular mechanisms underlying helical fiber assembly remain unknown. Here, we use electron microscopy and flexible modeling to study conformational changes of PulG pili assembled by the Klebsiella oxytoca T2SS. Neural network analysis of 3,900 pilus models suggested a transition path toward low-energy conformations driven by progressive increase in fiber helical twist. Detailed predictions of interprotomer contacts along this path were tested by site-directed mutagenesis, pilus assembly, and protein secretion analyses. We demonstrate that electrostatic interactions between adjacent protomers (P-P+1) in the membrane drive pseudopilin docking, while P-P+3 and P-P+4 contacts determine downstream fiber stabilization steps. These results support a model of a spool-like assembly mechanism for fibers of the T2SS-T4P superfamily. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nivaskumar, Mangayarkarasi; Bouvier, Guillaume; Campos, Manuel; Nadeau, Nathalie; Yu, Xiong; Egelman, Edward H.; Nilges, Michael; Francetic, Olivera
2014-01-01
SUMMARY The closely related bacterial type II secretion (T2S) and type IV pilus (T4P) systems are sophisticated machines that assemble dynamic fibers promoting protein transport, motility or adhesion. Despite their essential role in virulence, the molecular mechanisms underlying helical fiber assembly remain unknown. Here we use electron microscopy and flexible modeling to study conformational changes of PulG pili assembled by the Klebsiella oxytoca T2SS. Neural network analysis of 3900 pilus models suggested a transition path towards low-energy conformations driven by progressive increase in fiber helical twist. Detailed predictions of inter-protomer contacts along this path were tested by site-directed mutagenesis, pilus assembly and protein secretion analyses. We demonstrate that electrostatic interactions between adjacent protomers (P-P+1) in the membrane drive pseudopilin docking, while P-P+3 and P-P+4 contacts determine downstream fiber stabilization steps. These results support a new model of a spool-like assembly mechanism for fibers of the T2SS-T4P superfamily. PMID:24685147
General-Purpose Electronic System Tests Aircraft
NASA Technical Reports Server (NTRS)
Glover, Richard D.
1989-01-01
Versatile digital equipment supports research, development, and maintenance. Extended aircraft interrogation and display system is general-purpose assembly of digital electronic equipment on ground for testing of digital electronic systems on advanced aircraft. Many advanced features, including multiple 16-bit microprocessors, pipeline data-flow architecture, advanced operating system, and resident software-development tools. Basic collection of software includes program for handling many types of data and for displays in various formats. User easily extends basic software library. Hardware and software interfaces to subsystems provided by user designed for flexibility in configuration to meet user's requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Gregory; Mistrick, Ph.D., Richard; Lee, Eleanor
2011-01-21
We describe two methods which rely on bidirectional scattering distribution functions (BSDFs) to model the daylighting performance of complex fenestration systems (CFS), enabling greater flexibility and accuracy in evaluating arbitrary assemblies of glazing, shading, and other optically-complex coplanar window systems. Two tools within Radiance enable a) efficient annual performance evaluations of CFS, and b) accurate renderings of CFS despite the loss of spatial resolution associated with low-resolution BSDF datasets for inhomogeneous systems. Validation, accuracy, and limitations of the methods are discussed.
NASA Astrophysics Data System (ADS)
Kang, Dongseok; Lee, Sung-Min; Kwong, Anthony; Yoon, Jongseung
2015-03-01
Despite many unique advantages, vertical cavity surface emitting lasers (VCSELs) have been available mostly on rigid, planar wafers over restricted areas, thereby limiting their usage for applications that can benefit from large-scale, programmable assemblies, hybrid integration with dissimilar materials and devices, or mechanically flexible constructions. Here, materials design and fabrication strategies that address these limitations of conventional VCSELs are presented. Specialized design of epitaxial materials and etching processes, together with printing-based deterministic assemblies and substrate thermal engineering, enabled defect-free release of microscale VCSELs and their device- and circuit-level implementation on non-native, flexible substrates with performance comparable to devices on the growth substrate.
Park, Rowoon; Kim, Hyesu; Lone, Saifullah; Jeon, Sangheon; Kwon, Young Woo; Shin, Bosung; Hong, Suck Won
2018-06-06
The conversion of graphene oxide (GO) into reduced graphene oxide (rGO) is imperative for the electronic device applications of graphene-based materials. Efficient and cost-effective fabrication of highly uniform GO films and the successive reduction into rGO on a large area is still a cumbersome task through conventional protocols. Improved film casting of GO sheets on a polymeric substrate with quick and green reduction processes has a potential that may establish a path to the practical flexible electronics. Herein, we report a facile deposition process of GO on flexible polymer substrates to create highly uniform thin films over a large area by a flow-enabled self-assembly approach. The self-assembly of GO sheets was successfully performed by dragging the trapped solution of GO in confined geometry, which consisted of an upper stationary blade and a lower moving substrate on a motorized translational stage. The prepared GO thin films could be selectively reduced and facilitated from the simple laser direct writing process for programmable circuit printing with the desired configuration and less sample damage due to the non-contact mode operation without the use of photolithography, toxic chemistry, or high-temperature reduction methods. Furthermore, two different modes of the laser operating system for the reduction of GO films turned out to be valuable for the construction of novel graphene-based high-throughput electrical circuit boards compatible with integrating electronic module chips and flexible humidity sensors.
Direct writing of half-meter long CNT based fiber for flexible electronics.
Huang, Sihan; Zhao, Chunsong; Pan, Wei; Cui, Yi; Wu, Hui
2015-03-11
Rapid construction of flexible circuits has attracted increasing attention according to its important applications in future smart electronic devices. Herein, we introduce a convenient and efficient "writing" approach to fabricate and assemble ultralong functional fibers as fundamental building blocks for flexible electronic devices. We demonstrated that, by a simple hand-writing process, carbon nanotubes (CNTs) can be aligned inside a continuous and uniform polymer fiber with length of more than 50 cm and diameters ranging from 300 nm to several micrometers. The as-prepared continuous fibers exhibit high electrical conductivity as well as superior mechanical flexibility (no obvious conductance increase after 1000 bending cycles to 4 mm diameter). Such functional fibers can be easily configured into designed patterns with high precision according to the easy "writing" process. The easy construction and assembly of functional fiber shown here holds potential for convenient and scalable fabrication of flexible circuits in future smart devices like wearable electronics and three-dimensional (3D) electronic devices.
Dynamics and control of flexible spacecraft during and after slewing maneuvers
NASA Technical Reports Server (NTRS)
Kakad, Yogendra P.
1989-01-01
The dynamics and control of slewing maneuvers of NASA Spacecraft COntrol Laboratory Experiment (SCOLE) are analyzed. The control problem of slewing maneuvers of SCOLE is formulated in terms of an arbitrary maneuver about any given axis. The control system is developed for the combined problem of rigid-body slew maneuver and vibration suppression of the flexible appendage. The control problem formulation incorporates the nonlinear dynamical equations derived previously, and is expressed in terms of a two-point boundary value problem utilizing a quadratic type of performance index. The two-point boundary value problem is solved as a hierarchical control problem with the overall system being split in terms of two subsystems, namely the slewing of the entire assembly and the vibration suppression of the flexible antenna. The coupling variables between the two dynamical subsystems are identified and these two subsystems for control purposes are treated independently in parallel at the first level. Then the state-space trajectory of the combined problem is optimized at the second level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grubelich, Mark C.; Su, Jiann-Cherng; Knudsen, Steven D.
2017-02-28
A centralizer assembly is disclosed that allows for the assembly to be deployed in-situ. The centralizer assembly includes flexible members that can be extended into the well bore in situ by the initiation of a gas generating device. The centralizer assembly can support a large load carrying capability compared to a traditional bow spring with little or no installation drag. Additionally, larger displacements can be produced to centralize an extremely deviated casing.
Task oriented nonlinear control laws for telerobotic assembly operations
NASA Technical Reports Server (NTRS)
Walker, R. A.; Ward, L. S.; Elia, C. F.
1987-01-01
The goal of this research is to achieve very intelligent telerobotic controllers which are capable of receiving high-level commands from the human operator and implementing them in an adaptive manner in the object/task/manipulator workspace. Initiatives by the authors at Integrated Systems, Inc. to identify and develop the key technologies necessary to create such a flexible, highly programmable, telerobotic controller are presented. The focus of the discussion is on the modeling of insertion tasks in three dimensions and nonlinear implicit force feedback control laws which incorporate tool/workspace constraints. Preliminary experiments with dual arm beam assembly in 2-D are presented.
Substrateless Welding of Self-Assembled Silver Nanowires at Air/Water Interface.
Hu, Hang; Wang, Zhongyong; Ye, Qinxian; He, Jiaqing; Nie, Xiao; He, Gufeng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao
2016-08-10
Integrating connected silver nanowire networks with flexible polymers has appeared as a popular way to prepare flexible electronics. To reduce the contact resistance and enhance the connectivity between silver nanowires, various welding techniques have been developed. Herein, rather than welding on solid supporting substrates, which often requires complicated transferring operations and also may pose damage to heat-sensitive substrates, we report an alternative approach to prepare easily transferrable conductive networks through welding of self-assembled silver nanowires at the air/water interface using plasmonic heating. The intriguing welding behavior of partially aligned silver nanowires was analyzed with combined experimental observation and theoretical modeling. The underlying water not only physically supports the assembled silver nanowires but also buffers potential overheating during the welding process, thereby enabling effective welding within a broad range of illumination power density and illumination duration. The welded networks could be directly integrated with PDMS substrates to prepare high-performance stable flexible heaters that are stretchable, bendable, and can be easily patterned to explore selective heating applications.
Intelligent Reconfigurable System with Self-Dammage Assessmentand Control Stress Capabilities
NASA Astrophysics Data System (ADS)
Trivailo, P.; Plotnikova, L.; Kao, T. W.
2002-01-01
Modern space structures are constructed using a modular approach that facilitates their transportation and assembly in space. Modular architecture of space structures also enables reconfiguration of large structures such that they can adapt to possible changes in environment, and also allows use of the limited structural resources available in space for completion of a much larger variety of tasks. An increase in size and complexity demands development of materials with a "smart" or active structural modulus and also of effective control algorithms to control the motion of large flexible structures. This challenging task has generated a lot of interest amongst scientists and engineers during the last two decades, however, research into the development of control schemes which can adapt to structural configuration changes has received less attention. This is possibly due to the increased complexity caused by alterations in geometry, which inevitably lead to changes in the dynamic properties of the system. This paper presents results of the application of a decentralized control approach for active control of large flexible structures undergoing significant reconfigurations. The Control Component Synthesis methodology was used to build controlled components and to assemble them into a controlled flexible structure that meets required performance specifications. To illustrate the efficiency of the method, numerical simulations were conducted for 2D and 3D modular truss structures and a multi-link beam system. In each case the performance of the decentralized control system has been evaluated using pole location maps, step and impulse response simulations and frequency response analysis. The performance of the decentralized control system has been measured against the optimal centralised control system for various excitation scenarios. A special case where one of the local component controllers fails was also examined. For better interpretation of the efficiency of the designed controllers, results of the simulations are illustrated using a Virtual Reality computer environment, offering advanced visual effects. Plotnikova@rmit.edu.au # Tsunwah@hotmail.com
Pipe crawler with stabilizing midsection
Zollinger, William T.; Treanor, Richard C.
1994-01-01
A pipe crawler having a midsection that provides the stability and flexibty to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in "inch worm" fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting.
NASA Technical Reports Server (NTRS)
Homem De Mello, Luiz S.; Sanderson, Arthur C.
1991-01-01
The authors introduce two criteria for the evaluation and selection of assembly plans. The first criterion is to maximize the number of different sequences in which the assembly tasks can be executed. The second criterion is to minimize the total assembly time through simultaneous execution of assembly tasks. An algorithm that performs a heuristic search for the best assembly plan over the AND/OR graph representation of assembly plans is discussed. Admissible heuristics for each of the two criteria introduced are presented. Some implementation issues that affect the computational efficiency are addressed.
Lin, Yen-Heng; Ho, Kai-Siang; Yang, Chin-Tien; Wang, Jung-Hao; Lai, Chao-Sung
2014-06-02
The number and position of assembled nanowires cannot be controlled using most nanowire sensor assembling methods. In this paper, we demonstrate a high-yield, highly flexible platform for nanowire sensor assembly using a combination of optically induced dielectrophoresis (ODEP) and conventional dielectrophoresis (DEP). With the ODEP platform, optical images can be used as virtual electrodes to locally turn on a non-contact DEP force and manipulate a micron- or nano-scale substance suspended in fluid. Nanowires were first moved next to the previously deposited metal electrodes using optical images and, then, were attracted to and arranged in the gap between two electrodes through DEP forces generated by switching on alternating current signals to the metal electrodes. A single nanowire can be assembled within 24 seconds using this approach. In addition, the number of nanowires in a single nanowire sensor can be controlled, and the assembly of a single nanowire on each of the adjacent electrodes can also be achieved. The electrical properties of the assembled nanowires were characterized by IV curve measurement. Additionally, the contact resistance between the nanowires and electrodes and the stickiness between the nanowires and substrates were further investigated in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Abraham D.; Davidson, Erick M.
Disclosed herein is a belt assembly including a flexible belt with an improved belt attachment. The belt attachment includes two crossbars spaced along the length of the belt. The crossbars retain bearings that allow predetermined movement in six degrees of freedom. The crossbars are connected by a rigid body that attaches to the bearings. Implements that are attached to the rigid body are simply supported but restrained in pitching rotation.
Schneider, Abraham D.; Davidson, Erick M.
2016-02-02
Disclosed herein is a belt assembly including a flexible belt with an improved belt attachment. The belt attachment includes two crossbars spaced along the length of the belt. The crossbars retain bearings that allow predetermined movement in six degrees of freedom. The crossbars are connected by a rigid body that attaches to the bearings. Implements that are attached to the rigid body are simply supported but restrained in pitching rotation.
NASA Astrophysics Data System (ADS)
Olowinsky, A.; Boglea, A.
2011-03-01
Plastics play an important role in almost every facet of our lives and constitute a wide variety of products, from everyday products such as food and beverage packaging, over furniture and building materials to high tech products in the automotive, electronics, aerospace, white goods, medical and other sectors [1]. The objective of PolyBright, the European Research project on laser polymer welding, is to provide high speed and flexible laser manufacturing technology and expand the limits of current plastic part assembly. New laser polymer joining processes for optimized thermal management in combination with adapted wavelengths will provide higher quality, high processing speed up to 1 m/s and robust manufacturing processes at lower costs. Key innovations of the PolyBright project are fibre lasers with high powers up to 500 W, high speed scanning and flexible beam manipulation systems for simultaneous welding and high-resolution welding, such as dynamic masks and multi kHz scanning heads. With this initial step, PolyBright will break new paths in processing of advanced plastic products overcoming the quality and speed limitations of conventional plastic part assembly. Completely new concepts for high speed processing, flexibility and quality need to be established in combination with high brilliance lasers and related equipment. PolyBright will thus open new markets for laser systems with a short term potential of over several 100 laser installations per year and a future much larger market share in the still growing plastic market. PolyBright will hence establish a comprehensive and sustainable development activity on new high brilliance lasers that will strengthen the laser system industry.
On the improvement for charging large-scale flexible electrostatic actuators
NASA Astrophysics Data System (ADS)
Liao, Hsu-Ching; Chen, Han-Long; Su, Yu-Hao; Chen, Yu-Chi; Ko, Wen-Ching; Liou, Chang-Ho; Wu, Wen-Jong; Lee, Chih-Kung
2011-04-01
Recently, the development of flexible electret based electrostatic actuator has been widely discussed. The devices was shown to have high sound quality, energy saving, flexible structure and can be cut to any shape. However, achieving uniform charge on the electret diaphragm is one of the most critical processes needed to have the speaker ready for large-scale production. In this paper, corona discharge equipment contains multi-corona probes and grid bias was set up to inject spatial charges within the electret diaphragm. The optimal multi-corona probes system was adjusted to achieve uniform charge distribution of electret diaphragm. The processing conditions include the distance between the corona probes, the voltages of corona probe and grid bias, etc. We assembled the flexible electret loudspeakers first and then measured their sound pressure and beam pattern. The uniform charge distribution within the electret diaphragm based flexible electret loudspeaker provided us with the opportunity to shape the loudspeaker arbitrarily and to tailor the sound distribution per specifications request. Some of the potential futuristic applications for this device such as sound poster, smart clothes, and sound wallpaper, etc. were discussed as well.
Formation of Nanoparticle Stripe Patterns via Flexible-Blade Flow Coating
NASA Astrophysics Data System (ADS)
Lee, Dong Yun; Kim, Hyun Suk; Parkos, Cassandra; Lee, Cheol Hee; Emrick, Todd; Crosby, Alfred
2011-03-01
We present the controlled formation of nanostripe patterns of nanoparticles on underlying substrates by flexible-blade flow coating. This technique exploits the combination of convective flow of confined nanoparticle solutions and programmed translation of a substrate to fabricate nanoparticle-polymer line assemblies with width below 300 nm, thickness of a single nanoparticle, and lengths exceeding 10 cm. We demonstrate how the incorporation of a flexible blade into this technique allows capillary forces to self-regulate the uniformity of convective flow processes across large lateral lengths. Furthermore, we exploit solvent mixture dynamics to enhance intra-assembly particle packing and dimensional range. This facile technique opens up a new paradigm for integration of nanoscale patterns over large areas for various applications.
8. VIEW OF ROOM 101 (ASSEMBLY ROOM) FROM NORTHEAST CORNER ...
8. VIEW OF ROOM 101 (ASSEMBLY ROOM) FROM NORTHEAST CORNER SHOWING FLEXIBLE AIR-CONDITIONING DUCT - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Zhao, Quan-Liang; He, Guang-Ping; Di, Jie-Jian; Song, Wei-Li; Hou, Zhi-Ling; Tan, Pei-Pei; Wang, Da-Wei; Cao, Mao-Sheng
2017-07-26
A flexible semitransparent energy harvester is assembled based on laterally aligned Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) single-crystal nanowires (NWs). Such a harvester presents the highest open-circuit voltage and a stable area power density of up to 10 V and 0.27 μW/cm 2 , respectively. A high pressure sensitivity of 0.14 V/kPa is obtained in the dynamic pressure sensing, much larger than the values reported in other energy harvesters based on piezoelectric single-crystal NWs. Furthermore, theoretical and finite element analyses also confirm that the piezoelectric voltage constant g 33 of PZT NWs is competitive to the lead-based bulk single crystals and ceramics, and the enhanced pressure sensitivity and power density are substantially linked to the flexible structure with laterally aligned PZT NWs. The energy harvester in this work holds great potential in flexible and transparent sensing and self-powered systems.
Method and apparatus for production of subsea hydrocarbon formations
Blandford, Joseph W.
1994-01-01
A well tender system for controlling, separating, storing and offloading well fluids produced from subsea hydrocarbon formations. The system comprises a vertically aligned series of tethered cylindrical tanks which are torsionally stabilized by flexible catenary production riser and export riser bundles, and serviced by separate catenary pipe bundles. Piles are secured to the seabed, each pile assembly being pivotally connected to a lower rigid tendon, which is in turn connected to tendons arranged about the periphery of the interconnected cylindrical tanks.
Method and apparatus for production of subsea hydrocarbon formations
Blandford, Joseph W.
1992-01-01
A well tender system for controlling, separating, storing and offloading well fluids produced from subsea hydrocarbon formations. The system comprises a vertically aligned series of tethered cylindrical tanks which are torsionally stabilized by flexible catenary production riser and expert riser bundles, and serviced by separate catenary pipe bundles. Piles are secured to the seabed, each pile assembly being pivotally connected to a lower rigid tendon, which is in turn connected to tendons arranged about the periphery of the interconnected cylindrical tanks.
Closeup oblique view of the forward and starboard sides of ...
Close-up oblique view of the forward and starboard sides of the Orbiter Discovery in the Vehicle Assembly Building at NASA's Kennedy Space Center. The view shows the void created by the removal of the Forward Reaction Control System Module. The void has a clear flexible covering to maintain positive pressure in the void to minimize foreign object contamination possibilities in the orbiter. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Closeup view of the forward and starboard sides of the ...
Close-up view of the forward and starboard sides of the Orbiter Discovery in the Vehicle Assembly Building at NASA's Kennedy Space Center. The view shows the void created by the removal of the Forward Reaction Control System Module. The void has a clear flexible covering to maintain positive pressure in the void to minimize foreign object contamination possibilities in the orbiter. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Chronic, percutaneous connector for electrical recording and stimulation with microelectrode arrays.
Shah, Kedar G; Lee, Kye Young; Tolosa, Vanessa; Tooker, Angela; Felix, Sarah; Benett, William; Pannu, Satinderpall
2014-01-01
The translation of advances in neural stimulation and recording research into clinical practice hinges on the ability to perform chronic experiments in awake and behaving animal models. Advances in microelectrode array technology, most notably flexible polymer arrays, have significantly improved reliability of the neural interface. However, electrical connector technology has lagged and is prone to failure from non-biocompatibility, large size, contamination, corrosion, and difficulty of use. We present a novel chronic, percutaneous electrical connector system that is suitable for neural stimulation and recording. This system features biocompatible materials, low connect and disconnect forces, passive alignment, and a protective cap during non-use. We have successfully designed, assembled, and tested in vitro both a 16-channel system and a high density 64-channel system. Custom, polyimide, 16-channel, microelectrode arrays were electrically assembled with the connector system and tested using cyclic voltammetry and electrochemical impedance spectroscopy. This connector system is versatile and can be used with a variety of microelectrode array technologies for chronic studies.
Emitter and absorber assembly for multiple self-dual operation and directional transparency
NASA Astrophysics Data System (ADS)
Kalozoumis, P. A.; Morfonios, C. V.; Kodaxis, G.; Diakonos, F. K.; Schmelcher, P.
2017-03-01
We demonstrate how to systematically design wave scattering systems with simultaneous coherent perfect absorbing and lasing operation at multiple and prescribed frequencies. The approach is based on the recursive assembly of non-Hermitian emitter and absorber units into self-dual emitter-absorber trimers at different composition levels, exploiting the simple structure of the corresponding transfer matrices. In particular, lifting the restriction to parity-time-symmetric setups enables the realization of emitter and absorber action at distinct frequencies and provides flexibility with respect to the choice of realistic parameters. We further show how the same assembled scatterers can be rearranged to produce unidirectional and bidirectional transparency at the selected frequencies. With the design procedure being generically applicable to wave scattering in single-channel settings, we demonstrate it with concrete examples of photonic multilayer setups.
NASA Technical Reports Server (NTRS)
Bodley, C. S.; Devers, D. A.; Park, C. A.
1975-01-01
A theoretical development and associated digital computer program system is presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system may be used to investigate total system dynamic characteristics including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. Additionally, the program system may be used for design of attitude control systems and for evaluation of total dynamic system performance including time domain response and frequency domain stability analyses. Volume 1 presents the theoretical developments including a description of the physical system, the equations of dynamic equilibrium, discussion of kinematics and system topology, a complete treatment of momentum wheel coupling, and a discussion of gravity gradient and environmental effects. Volume 2, is a program users' guide and includes a description of the overall digital program code, individual subroutines and a description of required program input and generated program output. Volume 3 presents the results of selected demonstration problems that illustrate all program system capabilities.
Apparatus for obstacle traversion
Borenstein, Johann
2004-08-10
An apparatus for traversing obstacles having an elongated, round, flexible body that includes a plurality of drive track assemblies. The plurality of drive track assemblies cooperate to provide forward propulsion wherever a propulsion member is in contact with any feature of the environment, regardless of how many or which ones of the plurality of drive track assemblies make contact with such environmental feature.
Changes in Dimensionality and Fractal Scaling Suggest Soft-Assembled Dynamics in Human EEG
Wiltshire, Travis J.; Euler, Matthew J.; McKinney, Ty L.; Butner, Jonathan E.
2017-01-01
Humans are high-dimensional, complex systems consisting of many components that must coordinate in order to perform even the simplest of activities. Many behavioral studies, especially in the movement sciences, have advanced the notion of soft-assembly to describe how systems with many components coordinate to perform specific functions while also exhibiting the potential to re-structure and then perform other functions as task demands change. Consistent with this notion, within cognitive neuroscience it is increasingly accepted that the brain flexibly coordinates the networks needed to cope with changing task demands. However, evaluation of various indices of soft-assembly has so far been absent from neurophysiological research. To begin addressing this gap, we investigated task-related changes in two distinct indices of soft-assembly using the established phenomenon of EEG repetition suppression. In a repetition priming task, we assessed evidence for changes in the correlation dimension and fractal scaling exponents during stimulus-locked event-related potentials, as a function of stimulus onset and familiarity, and relative to spontaneous non-task-related activity. Consistent with predictions derived from soft-assembly, results indicated decreases in dimensionality and increases in fractal scaling exponents from resting to pre-stimulus states and following stimulus onset. However, contrary to predictions, familiarity tended to increase dimensionality estimates. Overall, the findings support the view from soft-assembly that neural dynamics should become increasingly ordered as external task demands increase, and support the broader application of soft-assembly logic in understanding human behavior and electrophysiology. PMID:28919862
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Gyanfi, Max; Volkmer, Kent; Zimmerman, Wayne
1988-01-01
The efforts of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems would involve a substitution of automation capabilities for human extravehicular or intravehicular activities (EVA, IVA). A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effect of operational constraints (space transportation system (STS), attached payload, and proximity operations). Changes in the region of cost-effectiveness are examined under a variety of systems design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: (1) as a research-oriented testbed to learn more about space usage of telerobotics; (2) as a research based testbed having an experimental demonstration orientation with limited assembly and servicing applications; or (3) as an operational system to augment EVA and to aid the construction of the Space Station and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations.
Plug-in nanoliter pneumatic liquid dispenser with nozzle design flexibility
Choi, In Ho; Kim, Hojin; Lee, Sanghyun; Baek, Seungbum; Kim, Joonwon
2015-01-01
This paper presents a novel plug-in nanoliter liquid dispensing system with a plug-and-play interface for simple and reversible, yet robust integration of the dispenser. A plug-in type dispenser was developed to facilitate assembly and disassembly with an actuating part through efficient modularization. The entire process for assembly and operation of the plug-in dispenser is performed via the plug-and-play interface in less than a minute without loss of dispensing quality. The minimum volume of droplets pneumatically dispensed using the plug-in dispenser was 124 nl with a coefficient of variation of 1.6%. The dispensed volume increased linearly with the nozzle size. Utilizing this linear relationship, two types of multinozzle dispensers consisting of six parallel channels (emerging from an inlet) and six nozzles were developed to demonstrate a novel strategy for volume gradient dispensing at a single operating condition. The droplet volume dispensed from each nozzle also increased linearly with nozzle size, demonstrating that nozzle size is a dominant factor on dispensed volume, even for multinozzle dispensing. Therefore, the proposed plug-in dispenser enables flexible design of nozzles and reversible integration to dispense droplets with different volumes, depending on the application. Furthermore, to demonstrate the practicality of the proposed dispensing system, we developed a pencil-type dispensing system as an alternative to a conventional pipette for rapid and reliable dispensing of minute volume droplets. PMID:26594263
Plug-in nanoliter pneumatic liquid dispenser with nozzle design flexibility.
Choi, In Ho; Kim, Hojin; Lee, Sanghyun; Baek, Seungbum; Kim, Joonwon
2015-11-01
This paper presents a novel plug-in nanoliter liquid dispensing system with a plug-and-play interface for simple and reversible, yet robust integration of the dispenser. A plug-in type dispenser was developed to facilitate assembly and disassembly with an actuating part through efficient modularization. The entire process for assembly and operation of the plug-in dispenser is performed via the plug-and-play interface in less than a minute without loss of dispensing quality. The minimum volume of droplets pneumatically dispensed using the plug-in dispenser was 124 nl with a coefficient of variation of 1.6%. The dispensed volume increased linearly with the nozzle size. Utilizing this linear relationship, two types of multinozzle dispensers consisting of six parallel channels (emerging from an inlet) and six nozzles were developed to demonstrate a novel strategy for volume gradient dispensing at a single operating condition. The droplet volume dispensed from each nozzle also increased linearly with nozzle size, demonstrating that nozzle size is a dominant factor on dispensed volume, even for multinozzle dispensing. Therefore, the proposed plug-in dispenser enables flexible design of nozzles and reversible integration to dispense droplets with different volumes, depending on the application. Furthermore, to demonstrate the practicality of the proposed dispensing system, we developed a pencil-type dispensing system as an alternative to a conventional pipette for rapid and reliable dispensing of minute volume droplets.
Stinson, W.J.
1958-09-16
A valve designed to selectively sample fluids from a number of sources is described. The valve comprises a rotatable operating lever connected through a bellows seal to a rotatable assembly containing a needle valve, bearings, and a rotational lock. The needle valve is connected through a flexible tube to the sample fluid outlet. By rotating the lever the needle valve is placed over . one of several fluid sources and locked in position so that the fluid is traasferred through the flexible tubing and outlet to a remote sampling system. The fluids from the nonselected sources are exhausted to a waste line. This valve constitutes a simple, dependable means of selecting a sample from one of several scurces.
Knuesel, Robert J.; Jacobs, Heiko O.
2010-01-01
This paper introduces a method for self-assembling and electrically connecting small (20–60 micrometer) semiconductor chiplets at predetermined locations on flexible substrates with high speed (62500 chips/45 s), accuracy (0.9 micrometer, 0.14°), and yield (> 98%). The process takes place at the triple interface between silicone oil, water, and a penetrating solder-patterned substrate. The assembly is driven by a stepwise reduction of interfacial free energy where chips are first collected and preoriented at an oil-water interface before they assemble on a solder-patterned substrate that is pulled through the interface. Patterned transfer occurs in a progressing linear front as the liquid layers recede. The process eliminates the dependency on gravity and sedimentation of prior methods, thereby extending the minimal chip size to the sub-100 micrometer scale. It provides a new route for the field of printable electronics to enable the integration of microscopic high performance inorganic semiconductors on foreign substrates with the freedom to choose target location, pitch, and integration density. As an example we demonstrate a fault-tolerant segmented flexible monocrystalline silicon solar cell, reducing the amount of Si that is used when compared to conventional rigid cells. PMID:20080682
Ren, Hengqian; Hu, Pingfan; Zhao, Huimin
2017-08-01
Pathway refactoring serves as an invaluable synthetic biology tool for natural product discovery, characterization, and engineering. However, the complicated and laborious molecular biology techniques largely hinder its application in natural product research, especially in a high-throughput manner. Here we report a plug-and-play pathway refactoring workflow for high-throughput, flexible pathway construction, and expression in both Escherichia coli and Saccharomyces cerevisiae. Biosynthetic genes were firstly cloned into pre-assembled helper plasmids with promoters and terminators, resulting in a series of expression cassettes. These expression cassettes were further assembled using Golden Gate reaction to generate fully refactored pathways. The inclusion of spacer plasmids in this system would not only increase the flexibility for refactoring pathways with different number of genes, but also facilitate gene deletion and replacement. As proof of concept, a total of 96 pathways for combinatorial carotenoid biosynthesis were built successfully. This workflow should be generally applicable to different classes of natural products produced by various organisms. Biotechnol. Bioeng. 2017;114: 1847-1854. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
How does symmetry impact the flexibility of proteins?
Schulze, Bernd; Sljoka, Adnan; Whiteley, Walter
2014-02-13
It is well known that (i) the flexibility and rigidity of proteins are central to their function, (ii) a number of oligomers with several copies of individual protein chains assemble with symmetry in the native state and (iii) added symmetry sometimes leads to added flexibility in structures. We observe that the most common symmetry classes of protein oligomers are also the symmetry classes that lead to increased flexibility in certain three-dimensional structures-and investigate the possible significance of this coincidence. This builds on the well-developed theory of generic rigidity of body-bar frameworks, which permits an analysis of the rigidity and flexibility of molecular structures such as proteins via fast combinatorial algorithms. In particular, we outline some very simple counting rules and possible algorithmic extensions that allow us to predict continuous symmetry-preserving motions in body-bar frameworks that possess non-trivial point-group symmetry. For simplicity, we focus on dimers, which typically assemble with twofold rotational axes, and often have allosteric function that requires motions to link distant sites on the two protein chains.
How does symmetry impact the flexibility of proteins?
Schulze, Bernd; Sljoka, Adnan; Whiteley, Walter
2014-01-01
It is well known that (i) the flexibility and rigidity of proteins are central to their function, (ii) a number of oligomers with several copies of individual protein chains assemble with symmetry in the native state and (iii) added symmetry sometimes leads to added flexibility in structures. We observe that the most common symmetry classes of protein oligomers are also the symmetry classes that lead to increased flexibility in certain three-dimensional structures—and investigate the possible significance of this coincidence. This builds on the well-developed theory of generic rigidity of body–bar frameworks, which permits an analysis of the rigidity and flexibility of molecular structures such as proteins via fast combinatorial algorithms. In particular, we outline some very simple counting rules and possible algorithmic extensions that allow us to predict continuous symmetry-preserving motions in body–bar frameworks that possess non-trivial point-group symmetry. For simplicity, we focus on dimers, which typically assemble with twofold rotational axes, and often have allosteric function that requires motions to link distant sites on the two protein chains. PMID:24379431
Wang, Qingrong; Wang, Xinyu; Wan, Fang; Chen, Kena; Niu, Zhiqiang; Chen, Jun
2018-06-01
The emergence of flexible and wearable electronics has raised the demand for flexible supercapacitors with accurate sizes and aesthetic shapes. Here, a strategy is developed to prepare flexible all-in-one integrated supercapacitors by combining all-freeze-casting with typography technique. The continuous seamless connection of all-in-one supercapacitor devices enhances the load and/or electron transfer capacity and avoids displacing and detaching between their neighboring components at bending status. Therefore, such a unique structure of all-in-one integrated devices is beneficial for retaining stable electrochemical performance at different bending levels. More importantly, the sizes and aesthetic shapes of integrated supercapacitors could be controlled by the designed molds, like type matrices of typography. The molds could be assembled together and typeset randomly, achieving the controllable construction and series and/or parallel connection of several supercapacitor devices. The preparation of flexible integrated supercapacitors will pave the way for assembling programmable all-in-one energy storage devices into highly flexible electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Bloch, J. T.; Hanger, R. T.; Nichols, F. W.
1979-01-01
Modified 70 mm movie film editor automatically attaches solar cells to flexible film substrate. Machine can rapidly and inexpensively assemble cells for solar panels at rate of 250 cells per minute. Further development is expected to boost production rate to 1000 cells per minute.
PEP solar array definition study
NASA Technical Reports Server (NTRS)
1979-01-01
The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.
NASA Technical Reports Server (NTRS)
Patterson, John W.
1992-01-01
The objectives are to build and demonstrate a low cost and highly flexible TV microscope facility and then use it to view the motion of magnetic domain boundaries as the local magnetic field is varied. The expense of an optical microscope and the videocam adapters sold for them is largely avoided by using the facility described below. The equipment, supplies, and procedure are presented.
Jung, Heesoo; Seo, Jin Ah; Choi, Seungki
2017-01-01
One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design—wearable APP (WAPP)—that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents. PMID:28098192
NASA Astrophysics Data System (ADS)
Jung, Heesoo; Seo, Jin Ah; Choi, Seungki
2017-01-01
One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design—wearable APP (WAPP)—that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents.
Jung, Heesoo; Seo, Jin Ah; Choi, Seungki
2017-01-18
One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design-wearable APP (WAPP)-that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents.
Piezoelectric ribbons printed onto rubber for flexible energy conversion.
Qi, Yi; Jafferis, Noah T; Lyons, Kenneth; Lee, Christine M; Ahmad, Habib; McAlpine, Michael C
2010-02-10
The development of a method for integrating highly efficient energy conversion materials onto stretchable, biocompatible rubbers could yield breakthroughs in implantable or wearable energy harvesting systems. Being electromechanically coupled, piezoelectric crystals represent a particularly interesting subset of smart materials that function as sensors/actuators, bioMEMS devices, and energy converters. Yet, the crystallization of these materials generally requires high temperatures for maximally efficient performance, rendering them incompatible with temperature-sensitive plastics and rubbers. Here, we overcome these limitations by presenting a scalable and parallel process for transferring crystalline piezoelectric nanothick ribbons of lead zirconate titanate from host substrates onto flexible rubbers over macroscopic areas. Fundamental characterization of the ribbons by piezo-force microscopy indicates that their electromechanical energy conversion metrics are among the highest reported on a flexible medium. The excellent performance of the piezo-ribbon assemblies coupled with stretchable, biocompatible rubber may enable a host of exciting avenues in fundamental research and novel applications.
Martín-Galiano, Antonio J.; Buey, Rubén M.; Cabezas, Marta; Andreu, José M.
2010-01-01
The molecular switch for nucleotide-regulated assembly and disassembly of the main prokaryotic cell division protein FtsZ is unknown despite the numerous crystal structures that are available. We have characterized the functional motions in FtsZ with a computational consensus of essential dynamics, structural comparisons, sequence conservation, and networks of co-evolving residues. Employing this information, we have constructed 17 mutants, which alter the FtsZ functional cycle at different stages, to modify FtsZ flexibility. The mutant phenotypes ranged from benign to total inactivation and included increased GTPase, reduced assembly, and stabilized assembly. Six mutations clustering at the long cleft between the C-terminal β-sheet and core helix H7 deviated FtsZ assembly into curved filaments with inhibited GTPase, which still polymerize cooperatively. These mutations may perturb the predicted closure of the C-terminal domain onto H7 required for switching between curved and straight association modes and for GTPase activation. By mapping the FtsZ assembly switch, this work also gives insight into FtsZ druggability because the curved mutations delineate the putative binding site of the promising antibacterial FtsZ inhibitor PC190723. PMID:20472561
Martín-Galiano, Antonio J; Buey, Rubén M; Cabezas, Marta; Andreu, José M
2010-07-16
The molecular switch for nucleotide-regulated assembly and disassembly of the main prokaryotic cell division protein FtsZ is unknown despite the numerous crystal structures that are available. We have characterized the functional motions in FtsZ with a computational consensus of essential dynamics, structural comparisons, sequence conservation, and networks of co-evolving residues. Employing this information, we have constructed 17 mutants, which alter the FtsZ functional cycle at different stages, to modify FtsZ flexibility. The mutant phenotypes ranged from benign to total inactivation and included increased GTPase, reduced assembly, and stabilized assembly. Six mutations clustering at the long cleft between the C-terminal beta-sheet and core helix H7 deviated FtsZ assembly into curved filaments with inhibited GTPase, which still polymerize cooperatively. These mutations may perturb the predicted closure of the C-terminal domain onto H7 required for switching between curved and straight association modes and for GTPase activation. By mapping the FtsZ assembly switch, this work also gives insight into FtsZ druggability because the curved mutations delineate the putative binding site of the promising antibacterial FtsZ inhibitor PC190723.
Garcia, Anthony R.; Johnston, Roger G.
2003-07-08
The present invention provides an apparatus and method whereby the reliability and tamper-resistance of tamper indicators can be improved. A flexible connector may be routed through a latch for an enclosure such as a door or container, and the free ends of the flexible connector may be passed through a first locking member and firmly attached to an insert through the use of one or more attachment members such as set screws. A second locking member may then be assembled in interlocking relation with the first locking member to form an interlocked assembly around the insert. The insert may have one or more sharp projections extending toward the first or second locking member so that any compressive force applied in an attempt to disassemble the interlocked assembly results in permanent, visible damage to the first or second locking member.
Transfer printing techniques for materials assembly and micro/nanodevice fabrication.
Carlson, Andrew; Bowen, Audrey M; Huang, Yonggang; Nuzzo, Ralph G; Rogers, John A
2012-10-09
Transfer printing represents a set of techniques for deterministic assembly of micro-and nanomaterials into spatially organized, functional arrangements with two and three-dimensional layouts. Such processes provide versatile routes not only to test structures and vehicles for scientific studies but also to high-performance, heterogeneously integrated functional systems, including those in flexible electronics, three-dimensional and/or curvilinear optoelectronics, and bio-integrated sensing and therapeutic devices. This article summarizes recent advances in a variety of transfer printing techniques, ranging from the mechanics and materials aspects that govern their operation to engineering features of their use in systems with varying levels of complexity. A concluding section presents perspectives on opportunities for basic and applied research, and on emerging use of these methods in high throughput, industrial-scale manufacturing. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energetics and electronic properties of Pt wires of different topologies on monolayer MoSe{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamdagni, Pooja, E-mail: j.poojaa1228@gmail.com; Ahluwalia, P. K.; Kumar, Ashok
2016-05-23
The energetics and electronic properties of different topology of Pt wires including linear, zigzag and ladder structures on MoSe{sub 2} monolayer have been investigated in the framework of density functional theory (DFT). The predicted order of stability of Pt wire on MoSe{sub 2} monolayer is found to be: linear > ladder > zigzag. Pt wires induce states near the Fermi level of MoSe{sub 2} that results into metallic characteristics of Pt-wire/MoSe{sub 2} assembled system. Valence band charge density signifies most of the contribution from Pt atoms near the Fermi energy of assembled wire/MoSe{sub 2} system. These findings are expected tomore » be important for the fabrication of devices based on MoSe{sub 2} layers for flexible nanoelectronics.« less
Improved Force-And-Torque Sensor Assembly
NASA Technical Reports Server (NTRS)
Bamford, Robert M.
1991-01-01
Improved sensor assembly measures forces and torques of interaction between supporting and supported object. Measures all three components of force and all three components of torque. Force measurements uncoupled from torque measurements. Price for improved measurement capability, complexity and flexibility, excessive in some applications.
NASA Astrophysics Data System (ADS)
Chawla, Viveak Kumar; Chanda, Arindam Kumar; Angra, Surjit
2018-03-01
The flexible manufacturing system (FMS) constitute of several programmable production work centers, material handling systems (MHSs), assembly stations and automatic storage and retrieval systems. In FMS, the automatic guided vehicles (AGVs) play a vital role in material handling operations and enhance the performance of the FMS in its overall operations. To achieve low makespan and high throughput yield in the FMS operations, it is highly imperative to integrate the production work centers schedules with the AGVs schedules. The Production schedule for work centers is generated by application of the Giffler and Thompson algorithm under four kind of priority hybrid dispatching rules. Then the clonal selection algorithm (CSA) is applied for the simultaneous scheduling to reduce backtracking as well as distance travel of AGVs within the FMS facility. The proposed procedure is computationally tested on the benchmark FMS configuration from the literature and findings from the investigations clearly indicates that the CSA yields best results in comparison of other applied methods from the literature.
The space station assembly phase: Flight telerobotic servicer feasibility, volume 1
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Gyamfi, Max A.; Volkmer, Kent; Zimmerman, Wayne F.
1987-01-01
The question is addressed which was raised by the Critical Evaluation Task Force (CETF) analysis of the space station: if a Flight Telerobotic Servicer (FTS) of a given technical risk could be built for use during space station assembly, could it save significant extravehicular (EVA) resources. Key issues and trade-offs associated with using an FTS to aid in space station assembly phase tasks such as construction and servicing are identified. A methodology is presented that incorporates assessment of candidate assembly phase tasks, telerobotics performance capabilities, development costs, operational constraints (STS and proximity operations), maintenance, attached payloads, and polar platforms. A discussion of the issues is presented with focus on potential FTS roles: (1) as a research-oriented test bed to learn more about space usage of telerobotics; (2) as a research-based test bed with an experimental demonstration orientation and limited assembly and servicing applications; or (3) as an operational system to augment EVA, to aid the construction of the space station, and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations. During the course of the study, the baseline configuration was modified into Phase 1 (a station assembled in 12 flights), and Phase 2 (a station assembled over a 30 flight period) configuration.
Peng, Zhiyuan; Zou, Yubo; Xu, Shiqi; Zhong, Wenbin; Yang, Wantai
2018-06-19
Employing renewable, earth-abundant, environmentally friendly, low-cost natural materials to design flexible supercapacitors (FSCs) as energy storage devices in wearable/portable electronics represents the global perspective to build sustainable and green society. Chemically stable and flexible cellulose and electroactive lignin have been employed to construct a biomass-based FSC for the first time. The FSC was assembled using lignosulfonate/single-walled carbon nanotube HNO 3 (Lig/SWCNT HNO 3 ) pressure-sensitive hydrogels as electrodes and cellulose hydrogels as an electrolyte separator. The assembled biomass-based FSC shows high specific capacitance (292 F g -1 at a current density of 0.5 A g -1 ), excellent rate capability, and an outstanding energy density of 17.1 W h kg -1 at a power density of 324 W kg -1 . Remarkably, the FSC presents outstanding electrochemical stability even suffering 1000 bending cycles. Such excellent flexibility, stability, and electrochemical performance enable the designed biomass-based FSCs as prominent candidates in applications of wearable electronic devices.
Development of a truss joint for robotic assembly of space structures
NASA Technical Reports Server (NTRS)
Parma, George F.
1992-01-01
This report presents the results of a detailed study of mechanical fasteners which were designed to facilitate robotic assembly of structures. Design requirements for robotic structural assembly were developed, taking into account structural properties and overall system design, and four candidate fasteners were designed to meet them. These fasteners were built and evaluated in the laboratory, and the Hammer-Head joint was chosen as superior overall. It had a high reliability of fastening under misalignments of 2.54 mm (0.1 in) and 3 deg, the highest end fixity (2.18), the simplest end effector, an integral capture guide, good visual verification, and the lightest weight (782 g, 1.72 lb). The study found that a good design should incorporate chamfers sliding on chamfers, cylinders sliding on chamfers, and hard surface finishes on sliding surfaces. The study also comments on robot flexibility, sag, hysteresis, thermal expansion, and friction which were observed during the testing.
A component-based software environment for visualizing large macromolecular assemblies.
Sanner, Michel F
2005-03-01
The interactive visualization of large biological assemblies poses a number of challenging problems, including the development of multiresolution representations and new interaction methods for navigating and analyzing these complex systems. An additional challenge is the development of flexible software environments that will facilitate the integration and interoperation of computational models and techniques from a wide variety of scientific disciplines. In this paper, we present a component-based software development strategy centered on the high-level, object-oriented, interpretive programming language: Python. We present several software components, discuss their integration, and describe some of their features that are relevant to the visualization of large molecular assemblies. Several examples are given to illustrate the interoperation of these software components and the integration of structural data from a variety of experimental sources. These examples illustrate how combining visual programming with component-based software development facilitates the rapid prototyping of novel visualization tools.
Human Grasp Assist Device With Exoskeleton
NASA Technical Reports Server (NTRS)
Bergelin, Bryan J (Inventor); Ihrke, Chris A. (Inventor); Davis, Donald R. (Inventor); Linn, Douglas Martin (Inventor); Bridgwater, Lyndon B. J. (Inventor)
2014-01-01
A grasp assist system includes a glove, actuator assembly, and controller. The glove includes a digit, i.e., a finger or thumb, and a force sensor. The sensor measures a grasping force applied to an object by an operator wearing the glove. Phalange rings are positioned with respect to the digit. A flexible tendon is connected at one end to one of the rings and is routed through the remaining rings. An exoskeleton positioned with respect to the digit includes hinged interconnecting members each connected to a corresponding ring, and/or a single piece of slotted material. The actuator assembly is connected to another end of the tendon. The controller calculates a tensile force in response to the measured grasping force, and commands the tensile force from the actuator assembly to thereby pull on the tendon. The exoskeleton offloads some of the tensile force from the operator's finger to the glove.
Columbia, OV-102, forward middeck locker experiments and meal tray assemblies
NASA Technical Reports Server (NTRS)
1982-01-01
Overall view of forward middeck locker shows Continuous Flow Electrophoresis System (CFES) experiment control and monitoring module and sample storage module (on port side) and Monodisperse Latex Reactor (MLR) (on starboard side). Water Dispenser Kit water gun (above CFES module) and meal tray assemblies covered with snack food packages and beverage containers appear around the two experiments. Thanks to a variety of juices and other food items, this array in the middeck probably represents the most colorful area onboard the Earth-orbiting Columbia, Orbiter Vehicle (OV) 102. Most of the meal items have been carefully fastened to meal tray assemblies (foodtrays) and locker doors (or both). What has not been attached by conventional methods has been safely 'tucked' under something heavy (note jacket shoved into space occupied MLR). MLR is making its second flight and is designed to test the flexibility of making large-size, monodisperse (same size), polystyrene latex micro-spheres using
Modular Power Standard for Space Explorations Missions
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Gardner, Brent G.
2016-01-01
Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.
NASA Technical Reports Server (NTRS)
1974-01-01
The capabilities for preflight feeding of flight personnel and the supply and control of the space shuttle flight food system were investigated to determine ground support requirements; and the functional details of an onboard food system galley are shown in photographic mockups. The elements which were identified as necessary to the efficient accomplishment of ground support functions include the following: (1) administration; (2) dietetics; (3) analytical laboratories; (4) flight food warehouse; (5) stowage module assembly area; (6) launch site module storage area; (7) alert crew restaurant and disperse crew galleys; (8) ground food warehouse; (9) manufacturing facilities; (10) transport; and (11) computer support. Each element is discussed according to the design criteria of minimum cost, maximum flexibility, reliability, and efficiency consistent with space shuttle requirements. The galley mockup overview illustrates the initial operation configuration, food stowage locations, meal assembly and serving trays, meal preparation configuration, serving, trash management, and the logistics of handling and cleanup equipment.
ERIC Educational Resources Information Center
Weitz, Rebecca; Guild, Todd
1985-01-01
Describes how Hughes Aircraft trainers followed four steps in meeting the challenges of a flexible manufacturing environment: needs assessment, design strategy, pilot evaluation, and follow-through. Within this environment, 50 self-paced training products were developed for one of the company's wire and back plane harness assembly departments. (CT)
Torreira, Eva; Jha, Sudhakar; López-Blanco, José R.; Arias-Palomo, Ernesto; Chacón, Pablo; Cañas, Cristina; Ayora, Sylvia; Dutta, Anindya; Llorca, Oscar
2008-01-01
Summary Pontin and reptin belong to the AAA+ family and they are essential for the structural integrity and catalytic activity of several chromatin remodeling complexes. They are also indispensable for the assembly of several ribonucleoprotein complexes, including telomerase. Here, we propose a structural model of the yeast pontin/reptin complex based on a cryo-electron microscopy reconstruction at 13 Å. Pontin/reptin hetero-dodecamers were purified from in vivo assembled complexes forming a double ring. Two rings interact through flexible domains projecting from each hexamer, constituting an atypical asymmetric form of oligomerization. These flexible domains and the AAA+ cores reveal significant conformational changes when compared to the crystal structure of human pontin that generate enlarged channels. This structure of endogenously assembled pontin/reptin complexes is different to previously described structures, suggesting that pontin and reptin could acquire distinct structural states to regulate their broad functions as molecular motors and scaffolds for nucleic acids and proteins. PMID:18940606
Development and modeling of a more efficient frangible separation joint
NASA Astrophysics Data System (ADS)
Renfro, Steven L.; Harris, Gary N.; Olson, Steven L.
1993-06-01
A low-cost, robust, and contamination-free separation system for spacecraft or launch vehicle stage and fairing separation was developed, which includes a frangible joint to sever an aluminum extrusion and to control contamination. The installed joint uses a sealing manifold to provide redundant initiation transfer between Flexible Confined Detonating Cord assemblies and HNS-IA loaded cups on the ends of the HNS-IIA Mild Detonating Fuse. A shock matching model of the system was developed, and the margin of joint severance, contamination control of the system, and correlation of the model are demonstrated.
Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion
Wang, Peng; Chang, Angela Y.; Novosad, Valentyn; ...
2017-06-11
We report on entirely man-made nanobio hybrid fabricated through assembly of cell-free expressed transmembrane proton pump and semiconductor nanoparticles as an efficient nanocatalysis for photocatalytic H 2 evolution. The system produces H 2 at a turnover rate of 239 (μmole protein) -1 h -1 under green and 17742 (μmole protein) -1 h -1 under white light at ambient conditions, in water at neutral pH with methanol as a sacrificial electron donor. Robustness and flexibility of this approach allows for systemic manipulation at nanoparticle-bio interface toward directed evolution of energy transformation materials and artificial systems.
Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Peng; Chang, Angela Y.; Novosad, Valentyn
We report on entirely man-made nanobio hybrid fabricated through assembly of cell-free expressed transmembrane proton pump and semiconductor nanoparticles as an efficient nanocatalysis for photocatalytic H 2 evolution. The system produces H 2 at a turnover rate of 239 (μmole protein) -1 h -1 under green and 17742 (μmole protein) -1 h -1 under white light at ambient conditions, in water at neutral pH with methanol as a sacrificial electron donor. Robustness and flexibility of this approach allows for systemic manipulation at nanoparticle-bio interface toward directed evolution of energy transformation materials and artificial systems.
Flexible structure control laboratory development and technology demonstration
NASA Technical Reports Server (NTRS)
Vivian, H. C.; Blaire, P. E.; Eldred, D. B.; Fleischer, G. E.; Ih, C.-H. C.; Nerheim, N. M.; Scheid, R. E.; Wen, J. T.
1987-01-01
An experimental structure is described which was constructed to demonstrate and validate recent emerging technologies in the active control and identification of large flexible space structures. The configuration consists of a large, 20 foot diameter antenna-like flexible structure in the horizontal plane with a gimballed central hub, a flexible feed-boom assembly hanging from the hub, and 12 flexible ribs radiating outward. Fourteen electrodynamic force actuators mounted to the hub and to the individual ribs provide the means to excite the structure and exert control forces. Thirty permanently mounted sensors, including optical encoders and analog induction devices provide measurements of structural response at widely distributed points. An experimental remote optical sensor provides sixteen additional sensing channels. A computer samples the sensors, computes the control updates and sends commands to the actuators in real time, while simultaneously displaying selected outputs on a graphics terminal and saving them in memory. Several control experiments were conducted thus far and are documented. These include implementation of distributed parameter system control, model reference adaptive control, and static shape control. These experiments have demonstrated the successful implementation of state-of-the-art control approaches using actual hardware.
46 CFR 28.880 - Hydraulic equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... hydraulic equipment and the adjacent work area. Protection shall be afforded to the operator of hydraulic... personnel. (h) Nonmetallic flexible hose assemblies must only be used between two points of relative motion... (method). (j) Nonmetallic flexible hose shall be marked with the manufacturer's name or trademark, type or...
Liu, Ying; Zhou, Jinyuan; Chen, Lulu; Zhang, Peng; Fu, Wenbin; Zhao, Hao; Ma, Yufang; Pan, Xiaojun; Zhang, Zhenxing; Han, Weihua; Xie, Erqing
2015-10-28
Highly flexible porous carbon nanofibers (P-CNFs) were fabricated by electrospining technique combining with metal ion-assistant acid corrosion process. The resultant fibers display high conductivity and outstanding mechanical flexibility, whereas little change in their resistance can be observed under repeatedly bending, even to 180°. Further results indicate that the improved flexibility of P-CNFs can be due to the high graphitization degree caused by Co ions. In view of electrode materials for high-performance supercapacitors, this type of porous nanostructure and high graphitization degree could synergistically facilitate the electrolyte ion diffusion and electron transportation. In the three electrodes testing system, the resultant P-CNFs electrodes can exhibit a specific capacitance of 104.5 F g(-1) (0.2 A g(-1)), high rate capability (remain 56.5% at 10 A g(-1)), and capacitance retention of ∼94% after 2000 cycles. Furthermore, the assembled symmetric supercapacitors showed a high flexibility and can deliver an energy density of 3.22 Wh kg(-1) at power density of 600 W kg(-1). This work might open a way to improve the mechanical properties of carbon fibers and suggests that this type of freestanding P-CNFs be used as effective electrode materials for flexible all-carbon supercapacitors.
NASA Astrophysics Data System (ADS)
Kroneberger, Monika; Calleri, Andrea; Ulfers, Hendrik; Klossek, Andreas; Goepel, Michael
2017-09-01
The Meteosat Third Generation (MTG) program will ensure the continuity and enhancement of meteorological data from geostationary orbit as currently provided by the Meteosat Second Generation (MSG) system. OHB-Munich, as part of the core team consortium of the industrial prime contractor for the space segment Thales Alenia Space (France), is responsible for the Flexible Combined Imager - Telescope Assembly (FCI-TA) as well as the Infrared Sounder (IRS).
The design of a microprocessor-based data logger
Leap, K.J.; Dedini, L.A.
1982-01-01
The design of a microprocessor-based data logger, which collects and digitizes analog voltage signals from a continuous-measuring instrumentation system and transmits serial data to a magnetic tape recorder, is discussed. The data logger was assembled from commercially-available components and can be user-programmed for greater flexibility. A description of the data logger hardware and software designs, general operating instructions, the microprocessor program listing, and electrical schematic diagrams are presented.
A Flexible Stretchable Hydrogel Electrolyte for Healable All-in-One Configured Supercapacitors.
Guo, Ying; Zheng, Kaiqiang; Wan, Pengbo
2018-04-01
The development of integrated high-performance supercapacitors with all-in-one configuration, excellent flexibility and autonomously intrinsic self-healability, and without the extra healable film layers, is still tremendously challenging. Compared to the sandwich-like laminated structures of supercapacitors with augmented interfacial contact resistance, the flexible healable integrated supercapacitor with all-in-one structure could theoretically improve their interfacial contact resistance and energy densities, simplify the tedious device assembly process, prolong the lifetime, and avoid the displacement and delamination of multilayered configurations under deformations. Herein, a flexible healable all-in-one configured supercapacitor with excellent flexibility and reliable self-healing ability by avoiding the extra healable film substrates and the postassembled sandwich-like laminated structures is developed. The healable all-in-one configured supercapacitor is prepared from in situ polymerization and deposition of nanocomposites electrode materials onto the two-sided faces of the self-healing hydrogel electrolyte separator. The self-healing hydrogel film is obtained from the physically crosslinked hydrogel with enormous hydrogen bonds, which can endow the healable capability through dynamic hydrogen bonding. The assembled all-in-one configured supercapacitor exhibits enhanced capacitive performance, good cycling stability, reliable self-healing capability, and excellent flexibility. It holds broad prospects for obtaining various flexible healable all-in-one configured supercapacitors for working as portable energy storage devices in wearable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tchernichovski, Ofer; Marcus, Gary
2014-01-01
Studies of vocal learning in songbirds typically focus on the acquisition of sensory templates for song imitation and on the consequent process of matching song production to templates. However, functional vocal development also requires the capacity to adaptively diverge from sensory templates, and to flexibly assemble vocal units. Examples of adaptive divergence include the corrective imitation of abnormal songs, and the decreased tendency to copy overabundant syllables. Such frequency-dependent effects might mirror tradeoffs between the assimilation of group identity (culture) while establishing individual and flexibly expressive songs. Intriguingly, although the requirements for vocal plasticity vary across songbirds, and more so between birdsong and language, the capacity to flexibly assemble vocal sounds develops in a similar, stepwise manner across species. Therefore, universal features of vocal learning go well beyond the capacity to imitate. PMID:25005823
Self-Assembly of Emulsion Droplets into Polymer Chains
NASA Astrophysics Data System (ADS)
Bargteil, Dylan; McMullen, Angus; Brujic, Jasna
We experimentally investigate `beads-on-a-string' models of polymers using the spontaneous assembly of emulsion droplets into linear chains. Droplets functionalized with surface-mobile DNA allow for programmable 'monomers' through which we can influence the three-dimensional structure of the assembled 'polymer'. Such model polymers can be used to study conformational changes of polypeptides and the principles governing protein folding. In our system, we find that droplets bind via complementary DNA strands that are recruited into adhesion patches. Recruitment is driven by the DNA hybridization energy, and is limited by the energy cost of surface deformation and the entropy loss of the mobile linkers, yielding adhesion patches of a characteristic size with a given number of linkers. By tuning the initial surface coverage of linkers, we control valency between the droplets to create linear or branched polymer chains. We additionally control the flexibility of the model polymers by varying the salt concentration and study their dynamics between extended and collapsed states. This system opens the possibility of programming stable three-dimensional structures, such as those found within folded proteins.
An Expert Supervisor For A Robotic Work Cell
NASA Astrophysics Data System (ADS)
Moed, M. C.; Kelley, R. B.
1988-02-01
To increase task flexibility in a robotic assembly environment, a hierarchical planning and execution system is being developed which will map user specified 3D part assembly tasks into various target robotic work cells, and execute these tasks efficiently using manipulators and sensors available in the work cell. One level of this hierarchy, the Supervisor, is responsible for assigning subtasks of a system generated Task Plan to a set of task specific Specialists and on-line coordination of the activity of these Specialists to accomplish the user specified assembly. The design of the Supervisor can be broken down into five major functional blocks: resource management; concurrency detection; task scheduling; error recovery; and interprocess communication. The Supervisor implementation has been completed on a VAX 11/750 under a Unix environment. PC card Pick-Insert experiments were performed to test this implementation. To test the robustness of the architecture, the Supervisor was then transported to a new work cell under a VMS environment. The experiments performed under Supervisor control in both implementations are discussed after a brief explanation of the functional blocks of the Supervisor and the other levels in the hierarchy.
A distributed finite-element modeling and control approach for large flexible structures
NASA Technical Reports Server (NTRS)
Young, K. D.
1989-01-01
An unconventional framework is described for the design of decentralized controllers for large flexible structures. In contrast to conventional control system design practice which begins with a model of the open loop plant, the controlled plant is assembled from controlled components in which the modeling phase and the control design phase are integrated at the component level. The developed framework is called controlled component synthesis (CCS) to reflect that it is motivated by the well developed Component Mode Synthesis (CMS) methods which were demonstrated to be effective for solving large complex structural analysis problems for almost three decades. The design philosophy behind CCS is also closely related to that of the subsystem decomposition approach in decentralized control.
Chip bonding of low-melting eutectic alloys by transmitted laser radiation
NASA Astrophysics Data System (ADS)
Hoff, Christian; Venkatesh, Arjun; Schneider, Friedrich; Hermsdorf, Jörg; Bengsch, Sebastian; Wurz, Marc C.; Kaierle, Stefan; Overmeyer, Ludger
2017-06-01
Present-day thermode bond systems for the assembly of radio-frequency identification (RFID) chips are mechanically inflexible, difficult to control, and will not meet future manufacturing challenges sufficiently. Chip bonding, one of the key processes in the production of integrated circuits (ICs), has a high potential for optimization with respect to process duration and process flexibility. For this purpose, the technologies used, so far, are supposed to be replaced by a transmission laser-bonding process using low-melting eutectic alloys. In this study, successful bonding investigations of mock silicon chips and of RFID chips on flexible polymer substrates are presented using the low-melting eutectic alloy, 52In48Sn, and a laser with a wavelength of 2 μm.
Dashti, Noor H; Abidin, Rufika S; Sainsbury, Frank
2018-05-22
Bioinspired self-sorting and self-assembling systems using engineered versions of natural protein cages are being developed for biocatalysis and therapeutic delivery. The packaging and intracellular delivery of guest proteins is of particular interest for both in vitro and in vivo cell engineering. However, there is a lack of bionanotechnology platforms that combine programmable guest protein encapsidation with efficient intracellular uptake. We report a minimal peptide anchor for in vivo self-sorting of cargo-linked capsomeres of murine polyomavirus (MPyV) that enables controlled encapsidation of guest proteins by in vitro self-assembly. Using Förster resonance energy transfer, we demonstrate the flexibility in this system to support coencapsidation of multiple proteins. Complementing these ensemble measurements with single-particle analysis by super-resolution microscopy shows that the stochastic nature of coencapsidation is an overriding principle. This has implications for the design and deployment of both native and engineered self-sorting encapsulation systems and for the assembly of infectious virions. Taking advantage of the encoded affinity for sialic acids ubiquitously displayed on the surface of mammalian cells, we demonstrate the ability of self-assembled MPyV virus-like particles to mediate efficient delivery of guest proteins to the cytosol of primary human cells. This platform for programmable coencapsidation and efficient cytosolic delivery of complementary biomolecules therefore has enormous potential in cell engineering.
Beddows, Patricia A; Mallon, Edward K
2018-02-09
A low-cost data logging platform is presented that provides long-term operation in remote or submerged environments. Three premade "breakout boards" from the open-source Arduino ecosystem are assembled into the core of the data logger. Power optimization techniques are presented which extend the operational life of this module-based design to >1 year on three alkaline AA batteries. Robust underwater housings are constructed for these loggers using PVC fittings. Both the logging platform and the enclosures, are easy to build and modify without specialized tools or a significant background in electronics. This combination turns the Cave Pearl data logger into a generalized prototyping system and this design flexibility is demonstrated with two field studies recording drip rates in a cave and water flow in a flooded cave system. This paper describes a complete DIY solution, suitable for a wide range of challenging deployment conditions.
Mallon, Edward K.
2018-01-01
A low-cost data logging platform is presented that provides long-term operation in remote or submerged environments. Three premade “breakout boards” from the open-source Arduino ecosystem are assembled into the core of the data logger. Power optimization techniques are presented which extend the operational life of this module-based design to >1 year on three alkaline AA batteries. Robust underwater housings are constructed for these loggers using PVC fittings. Both the logging platform and the enclosures, are easy to build and modify without specialized tools or a significant background in electronics. This combination turns the Cave Pearl data logger into a generalized prototyping system and this design flexibility is demonstrated with two field studies recording drip rates in a cave and water flow in a flooded cave system. This paper describes a complete DIY solution, suitable for a wide range of challenging deployment conditions. PMID:29425185
Kang, Dae Y; Kim, Yun-Soung; Ornelas, Gladys; Sinha, Mridu; Naidu, Keerthiga; Coleman, Todd P
2015-09-16
New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach.
Beck, Peter; Truskaller, Thomas; Rakovac, Ivo; Cadonna, Bruno; Pieber, Thomas R
2006-01-01
In this paper we describe the approach to build a web-based clinical data management infrastructure on top of an entity-attribute-value (EAV) database which provides for flexible definition and extension of clinical data sets as well as efficient data handling and high performance query execution. A "mixed" EAV implementation provides a flexible and configurable data repository and at the same time utilizes the performance advantages of conventional database tables for rarely changing data structures. A dynamically configurable data dictionary contains further information for data validation. The online user interface can also be assembled dynamically. A data transfer object which encapsulates data together with all required metadata is populated by the backend and directly used to dynamically render frontend forms and handle incoming data. The "mixed" EAV model enables flexible definition and modification of clinical data sets while reducing performance drawbacks of pure EAV implementations to a minimum. The system currently is in use in an electronic patient record with focus on flexibility and a quality management application (www.healthgate.at) with high performance requirements.
Kang, Dae Y.; Kim, Yun-Soung; Ornelas, Gladys; Sinha, Mridu; Naidu, Keerthiga; Coleman, Todd P.
2015-01-01
New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach. PMID:26389915
NASA Astrophysics Data System (ADS)
Huang, Wenyi; Liu, Jiajia; Bai, Bing; Huang, Liu; Xu, Meng; Liu, Jia; Rong, Hongpan; Zhang, Jiatao
2018-03-01
Perovskite nanocrystals (NCs), which are a good fluorescence candidate with excellent photoelectric properties, have opened new avenues in the fabrication of highly efficient solar cells, light-emitting diodes (LEDs), and other optoelectronic devices. Further advances will rely on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional (3D) perovskites with architectural innovations. In this work, the perovskite film was fabricated on a flexible substrate using simple dip-coating technology and 3D assemblies of perovskite NCs were obtained through an attachment process. Original perovskite NCs had a rectangular or square morphology with high particle uniformity and the narrow and symmetric fluorescence emission peak was adjustable at 515-527 nm. The controllable self-assembly of the micron size cuboid-like 3D assembly had an apparent enhancement on peak (111) in the x-ray diffraction (XRD) pattern. Surface ligands not only play a role in the attachment process but also keep the independence of each NC in 3D assemblies. Such assembly of the perovskite film maintained the original perovskite NCs fluorescence emission peak and narrow full width at the half-maximum (FWHM), which is of great importance for the investigation of future devices.
Functionalization of quantum rods with oligonucleotides for programmable assembly with DNA origami
NASA Astrophysics Data System (ADS)
Doane, Tennyson L.; Alam, Rabeka; Maye, Mathew M.
2015-02-01
The DNA-mediated self-assembly of CdSe/CdS quantum rods (QRs) onto DNA origami is described. Two QR types with unique optical emission and high polarization were synthesized, and then functionalized with oligonucleotides (ssDNA) using a novel protection-deprotection approach, which harnessed ssDNA's tailorable rigidity and denaturation temperature to increase DNA coverage by reducing non-specific coordination and wrapping. The QR assembly was programmable, and occurred at two different assembly zones that had capture strands in parallel alignment. QRs with different optical properties were assembled, opening up future studies on orientation dependent QR FRET. The QR-origami conjugates could be purified via gel electrophoresis and sucrose gradient ultracentrifugation. Assembly yields, QR stoichiometry and orientation, as well as energy transfer implications were studied in light of QR distances, origami flexibility, and conditions.The DNA-mediated self-assembly of CdSe/CdS quantum rods (QRs) onto DNA origami is described. Two QR types with unique optical emission and high polarization were synthesized, and then functionalized with oligonucleotides (ssDNA) using a novel protection-deprotection approach, which harnessed ssDNA's tailorable rigidity and denaturation temperature to increase DNA coverage by reducing non-specific coordination and wrapping. The QR assembly was programmable, and occurred at two different assembly zones that had capture strands in parallel alignment. QRs with different optical properties were assembled, opening up future studies on orientation dependent QR FRET. The QR-origami conjugates could be purified via gel electrophoresis and sucrose gradient ultracentrifugation. Assembly yields, QR stoichiometry and orientation, as well as energy transfer implications were studied in light of QR distances, origami flexibility, and conditions. Electronic supplementary information (ESI) available: Experimental conditions, DNA origami blueprint and sequences, FRET calculations. Additional Fig. S1-S13. See DOI: 10.1039/c4nr07662a
NASA Astrophysics Data System (ADS)
Aguirre-Pablo, A. A.; Zhang, J. M.; Li, E. Q.; Thoroddsen, S. T.
2015-11-01
We report a new 3D-printed microfluidic system with assembly of capillaries for droplet generation. The system consists of the following parts: 3Dprinted Droplet Generation Units (DGUs) with embedded capillaries and two 3D-printed pyramid distributors for supplying two different fluid phases into every DGU. A single DGU consists of four independent parts: a top channel, a bottom channel, a capillary and a sealing gasket. All components are produced by 3dprinting except the capillaries, which are formed in a glass-puller. DGUs are independent of the distributor and from each other; they can easily be assembled, replaced and modified due to its modular design which is an advantage in case of a faulty part or clogging, eliminating the need to fabricate a complete new system which is cost and time demanding. We assessed the feasibility of producing droplets in this device varying different fluid parameters, such as liquid viscosity and flow rate, which affect droplet size and generation frequency. The design and fabrication of this device is simple and low-cost with the 3D printing technology. Due to the modular design of independent parts, low-cost fabrication and easy parallelization of multiple DGU's, this system provides great flexibility for industrial applications.
NASA Astrophysics Data System (ADS)
Montano, Gabriel
Lipids serve as the organizing matrix material for biological membranes, the site of interaction of cells with the external environment. . As such, lipids play a critical role in structure/function relationships of an extraordinary number of critical biological processes. In this talk, we will look at bio-inspired membrane assemblies to better understand the roles of lipids in biological systems as well as attempt to generate materials that can mimic and potentially advance upon biological membrane processes. First, we will investigate the response of lipids to adverse conditions. In particular, I will present data that demonstrates the response of lipids to harsh conditions and how such responses can be exploited to generate nanocomposite rearrangements. I will also show the effect of adding the endotoxin lipopolysaccharide (LPS) to lipid bilayer assemblies and describe implications on our understanding of LPS organization in biological systems as well as describe induced lipid modifications that can be exploited to organize membrane composites with precise, two-dimensional geometric control. Lastly, I will describe the use of amphiphilic block copolymers to create membrane nanocomposites capable of mimicking biological systems. In particular, I will describe the use of our polymer-based membranes in creating artificial photosynthetic assemblies that rival biological systems in function in a more flexible, dynamic matrix.
Colloidal assembly directed by virtual magnetic moulds
NASA Astrophysics Data System (ADS)
Demirörs, Ahmet F.; Pillai, Pramod P.; Kowalczyk, Bartlomiej; Grzybowski, Bartosz A.
2013-11-01
Interest in assemblies of colloidal particles has long been motivated by their applications in photonics, electronics, sensors and microlenses. Existing assembly schemes can position colloids of one type relatively flexibly into a range of desired structures, but it remains challenging to produce multicomponent lattices, clusters with precisely controlled symmetries and three-dimensional assemblies. A few schemes can efficiently produce complex colloidal structures, but they require system-specific procedures. Here we show that magnetic field microgradients established in a paramagnetic fluid can serve as `virtual moulds' to act as templates for the assembly of large numbers (~108) of both non-magnetic and magnetic colloidal particles with micrometre precision and typical yields of 80 to 90 per cent. We illustrate the versatility of this approach by producing single-component and multicomponent colloidal arrays, complex three-dimensional structures and a variety of colloidal molecules from polymeric particles, silica particles and live bacteria and by showing that all of these structures can be made permanent. In addition, although our magnetic moulds currently resemble optical traps in that they are limited to the manipulation of micrometre-sized objects, they are massively parallel and can manipulate non-magnetic and magnetic objects simultaneously in two and three dimensions.
Assembly planning based on subassembly extraction
NASA Technical Reports Server (NTRS)
Lee, Sukhan; Shin, Yeong Gil
1990-01-01
A method is presented for the automatic determination of assembly partial orders from a liaison graph representation of an assembly through the extraction of preferred subassemblies. In particular, the authors show how to select a set of tentative subassemblies by decomposing a liaison graph into a set of subgraphs based on feasibility and difficulty of disassembly, how to evaluate each of the tentative subassemblies in terms of assembly cost using the subassembly selection indices, and how to construct a hierarchical partial order graph (HPOG) as an assembly plan. The method provides an approach to assembly planning by identifying spatial parallelism in assembly as a means of constructing temporal relationships among assembly operations and solves the problem of finding a cost-effective assembly plan in a flexible environment. A case study of the assembly planning of a mechanical assembly is presented.
Flexible Work Group Methods in Apparel Manufacturing
1993-04-01
machine can take several. A real life example would be a machine that assembles skateboards . The input parts (wheels, trucks, deck) are different. At the...end of the operation, one kind of item comes out, an assembled skateboard . class source This is a derivative of sequentialmachine that has no input
Reduced graphene oxide nanoshells for flexible and stretchable conductors
NASA Astrophysics Data System (ADS)
Jiang, Wen-Shuai; Liu, Zhi-Bo; Xin, Wei; Chen, Xu-Dong; Tian, Jian-Guo
2016-03-01
Graphene has been extensively investigated for its use in flexible electronics, especially graphene synthesized by chemical vapor deposition (CVD). To enhance the flexibility of CVD graphene, wrinkles are often introduced. However, reports on the flexibility of reduced graphene oxide (RGO) films are few, because of their weak conductivity and, in particular, poor flexibility. To improve the flexibility of RGO, reduced graphene oxide nanoshells are fabricated, which combine self-assembled polystyrene nanosphere arrays and high-temperature thermal annealing processes. The resulting RGO films with nanoshells present a better resistance stabilization after stretching and bending the devices than RGO without nanoshells. The sustainability and performance advances demonstrated here are promising for the adoption of flexible electronics in a wide variety of future applications.
Bjune, Caroline K; Marinis, Thomas F; Brady, Jeanne M; Moran, James; Wheeler, Jesse; Sriram, Tirunelveli S; Parks, Philip D; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N
2015-08-01
An implanted neural stimulator with closed loop control requires electrodes for stimulation pulses and recording neuron activity. Our system features arrays of 64 electrodes. Each electrode can be addressed through a cross bar switch, to enable it to be used for stimulation or recording. This electrode switch, a bank of low noise amplifiers with an integrated analog to digital converter, power conditioning electronics, and a communications and control gate array are co-located with the electrode array in a 14 millimeter diameter satellite package that is designed to be flush mounted in a skull burr hole. Our system features five satellite packages connected to a central hub processor-controller via ten conductor cables that terminate in a custom designed, miniaturized connector. The connector incorporates features of high reliability, military grade devices and utilizes three distinct seals to isolate the contacts from fluid permeation. The hub system is comprised of a connector header, hermetic electronics package, and rechargeable battery pack, which are mounted on and electrically interconnected by a flexible circuit board. The assembly is over molded with a compliant silicone rubber. The electronics package contains two antennas, a large coil, used for recharging the battery and a high bandwidth antenna that is used to download data and update software. The package is assembled from two machined alumina pieces, a flat base with brazed in, electrical feed through pins and a rectangular cover with rounded corners. Titanium seal rings are brazed onto these two pieces so that they can be sealed by laser welding. A third system antenna is incorporated in the flexible circuit board. It is used to communicate with an externally worn control package, which monitors the health of the system and allows both the user and clinician to control or modify various system function parameters.
Martella, Andrea; Matjusaitis, Mantas; Auxillos, Jamie; Pollard, Steven M; Cai, Yizhi
2017-07-21
Mammalian plasmid expression vectors are critical reagents underpinning many facets of research across biology, biomedical research, and the biotechnology industry. Traditional cloning methods often require laborious manual design and assembly of plasmids using tailored sequential cloning steps. This process can be protracted, complicated, expensive, and error-prone. New tools and strategies that facilitate the efficient design and production of bespoke vectors would help relieve a current bottleneck for researchers. To address this, we have developed an extensible mammalian modular assembly kit (EMMA). This enables rapid and efficient modular assembly of mammalian expression vectors in a one-tube, one-step golden-gate cloning reaction, using a standardized library of compatible genetic parts. The high modularity, flexibility, and extensibility of EMMA provide a simple method for the production of functionally diverse mammalian expression vectors. We demonstrate the value of this toolkit by constructing and validating a range of representative vectors, such as transient and stable expression vectors (transposon based vectors), targeting vectors, inducible systems, polycistronic expression cassettes, fusion proteins, and fluorescent reporters. The method also supports simple assembly combinatorial libraries and hierarchical assembly for production of larger multigenetic cargos. In summary, EMMA is compatible with automated production, and novel genetic parts can be easily incorporated, providing new opportunities for mammalian synthetic biology.
Pedemis: a portable electromagnetic induction sensor with integrated positioning
NASA Astrophysics Data System (ADS)
Barrowes, Benjamin E.; Shubitidze, Fridon; Grzegorczyk, Tomasz M.; Fernández, Pablo; O'Neill, Kevin
2012-06-01
Pedemis (PortablE Decoupled Electromagnetic Induction Sensor) is a time-domain handheld electromagnetic induction (EMI) instrument with the intended purpose of improving the detection and classification of UneXploded Ordnance (UXO). Pedemis sports nine coplanar transmitters (the Tx assembly) and nine triaxial receivers held in a fixed geometry with respect to each other (the Rx assembly) but with that Rx assembly physically decoupled from the Tx assembly allowing flexible data acquisition modes and deployment options. The data acquisition (DAQ) electronics consists of the National Instruments (NI) cRIO platform which is much lighter and more energy efficient that prior DAQ platforms. Pedemis has successfully acquired initial data, and inversion of the data acquired during these initial tests has yielded satisfactory polarizabilities of a spherical target. In addition, precise positioning of the Rx assembly has been achieved via position inversion algorithms based solely on the data acquired from the receivers during the "on-time" of the primary field. Pedemis has been designed to be a flexible yet user friendly EMI instrument that can survey, detect and classify targets in a one pass solution. In this paper, the Pedemis instrument is introduced along with its operation protocols, initial data results, and current status.
Flexible Piezoresistive Sensors Embedded in 3D Printed Tires
Emon, Md Omar Faruk; Choi, Jae-Won
2017-01-01
In this article, we report the development of a flexible, 3D printable piezoresistive pressure sensor capable of measuring force and detecting the location of the force. The multilayer sensor comprises of an ionic liquid-based piezoresistive intermediate layer in between carbon nanotube (CNT)-based stretchable electrodes. A sensor containing an array of different sensing units was embedded on the inner liner surface of a 3D printed tire to provide with force information at different points of contact between the tire and road. Four scaled tires, as well as wheels, were 3D printed using a flexible and a rigid material, respectively, which were later assembled with a 3D-printed chassis. Only one tire was equipped with a sensor and the chassis was driven through a motorized linear stage at different speeds and load conditions to evaluate the sensor performance. The sensor was fabricated via molding and screen printing processes using a commercially available 3D-printable photopolymer as 3D printing is our target manufacturing technique to fabricate the entire tire assembly with the sensor. Results show that the proposed sensors, inserted in the 3D printed tire assembly, could detect forces, as well as their locations, properly. PMID:28327533
Flexible Piezoresistive Sensors Embedded in 3D Printed Tires.
Emon, Md Omar Faruk; Choi, Jae-Won
2017-03-22
In this article, we report the development of a flexible, 3D printable piezoresistive pressure sensor capable of measuring force and detecting the location of the force. The multilayer sensor comprises of an ionic liquid-based piezoresistive intermediate layer in between carbon nanotube (CNT)-based stretchable electrodes. A sensor containing an array of different sensing units was embedded on the inner liner surface of a 3D printed tire to provide with force information at different points of contact between the tire and road. Four scaled tires, as well as wheels, were 3D printed using a flexible and a rigid material, respectively, which were later assembled with a 3D-printed chassis. Only one tire was equipped with a sensor and the chassis was driven through a motorized linear stage at different speeds and load conditions to evaluate the sensor performance. The sensor was fabricated via molding and screen printing processes using a commercially available 3D-printable photopolymer as 3D printing is our target manufacturing technique to fabricate the entire tire assembly with the sensor. Results show that the proposed sensors, inserted in the 3D printed tire assembly, could detect forces, as well as their locations, properly.
A Framework and Toolkit for the Construction of Multimodal Learning Interfaces
1998-04-29
human communication modalities in the context of a broad class of applications, specifically those that support state manipulation via parameterized actions. The multimodal semantic model is also the basis for a flexible, domain independent, incrementally trainable multimodal interpretation algorithm based on a connectionist network. The second major contribution is an application framework consisting of reusable components and a modular, distributed system architecture. Multimodal application developers can assemble the components in the framework into a new application,
Richter, H.G.; Gillespie, A.S. Jr.
1963-11-12
A flexible Geiger counter constructed from materials composed of vinyl chloride polymerized with plasticizers or co-polymers is presented. The counter can be made either by attaching short segments of corrugated plastic sleeving together, or by starting with a length of vacuum cleaner hose composed of the above materials. The anode is maintained substantially axial Within the sleeving or hose during tube flexing by means of polystyrene spacer disks or an easily assembled polyethylene flexible cage assembly. The cathode is a wire spiraled on the outside of the counter. The sleeving or hose is fitted with glass end-pieces or any other good insulator to maintain the anode wire taut and to admit a counting gas mixture into the counter. Having the cathode wire on the outside of the counter substantially eliminates the objectional sheath effect of prior counters and permits counting rates up to 300,000 counts per minute. (AEC)
Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles
Sun, Jing; Jiang, Xi; Lund, Reidar; ...
2016-03-28
The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here,more » we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures.« less
Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jing; Jiang, Xi; Lund, Reidar
The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here,more » we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures.« less
NASA Astrophysics Data System (ADS)
Zhang, Dongzhi; Jiang, Chuanxing; Tong, Jun; Zong, Xiaoqi; Hu, Wei
2018-04-01
Graphene is a potential building block for next generation electronic devices including field-effect transistors, chemical sensors, and radio frequency switches. Investigations of strain application of graphene-based films have emerged in recent years, but the challenges in synthesis and processing achieving control over its fabrication constitute the main obstacles towards device applications. This work presents an alternative approach, layer-by-layer self-assembly, allowing a controllable fabrication of graphene/polymer film strain sensor on flexible substrates of polyimide with interdigital electrodes. Carboxylated graphene and poly (diallyldimethylammonium chloride) (PDDA) were exploited to form hierarchical nanostructure due to electrostatic action. The morphology and structure of the film were inspected by using scanning electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The strain-sensing properties of the graphene/PDDA film sensor were investigated through tuning micrometer caliper exertion and a PC-assisted piezoresistive measurement system. Experimental result shows that the sensor exhibited not only excellent response and reversibility behavior as a function of deflection, but also good repeatability and acceptable linearity. The strain-sensing mechanism of the proposed sensor was attributed to the electrical resistance change resulted from piezoresistive effect.
Machine learnt bond order potential to model metal-organic (Co-C) heterostructures.
Narayanan, Badri; Chan, Henry; Kinaci, Alper; Sen, Fatih G; Gray, Stephen K; Chan, Maria K Y; Sankaranarayanan, Subramanian K R S
2017-11-30
A fundamental understanding of the inter-relationships between structure, morphology, atomic scale dynamics, chemistry, and physical properties of mixed metallic-covalent systems is essential to design novel functional materials for applications in flexible nano-electronics, energy storage and catalysis. To achieve such knowledge, it is imperative to develop robust and computationally efficient atomistic models that describe atomic interactions accurately within a single framework. Here, we present a unified Tersoff-Brenner type bond order potential (BOP) for a Co-C system, trained against lattice parameters, cohesive energies, equation of state, and elastic constants of different crystalline phases of cobalt as well as orthorhombic Co 2 C derived from density functional theory (DFT) calculations. The independent BOP parameters are determined using a combination of supervised machine learning (genetic algorithms) and local minimization via the simplex method. Our newly developed BOP accurately describes the structural, thermodynamic, mechanical, and surface properties of both the elemental components as well as the carbide phases, in excellent accordance with DFT calculations and experiments. Using our machine-learnt BOP potential, we performed large-scale molecular dynamics simulations to investigate the effect of metal/carbon concentration on the structure and mechanical properties of porous architectures obtained via self-assembly of cobalt nanoparticles and fullerene molecules. Such porous structures have implications in flexible electronics, where materials with high electrical conductivity and low elastic stiffness are desired. Using unsupervised machine learning (clustering), we identify the pore structure, pore-distribution, and metallic conduction pathways in self-assembled structures at different C/Co ratios. We find that as the C/Co ratio increases, the connectivity between the Co nanoparticles becomes limited, likely resulting in low electrical conductivity; on the other hand, such C-rich hybrid structures are highly flexible (i.e., low stiffness). The BOP model developed in this work is a valuable tool to investigate atomic scale processes, structure-property relationships, and temperature/pressure response of Co-C systems, as well as design organic-inorganic hybrid structures with a desired set of properties.
Shi, HaoTian H; Khalili, Nazanin; Morrison, Taylor; Naguib, Hani E
2018-05-21
A novel polyaniline nanorod (PAniNR) three-dimensional structure was successfully grown on flexible polyacrylonitrile (PAN) nanofiber substrate as the electrode material for electrochemical capacitors (ECs), constructed via self-stabilized dispersion polymerization process. The electrode offered desired mechanical properties such as flexibility and bendability, whereas it maintained optimal electrochemical characteristics. The electrode and the assembled EC cell also achieved intrinsic piezoresistive sensing properties, leading to real-time monitoring of excess mechanical pressure and bending during cell operations. The PAniNR@PAN electrodes show an average diameter of 173.6 nm, with the PAniNR growth of 50.7 nm in length. Compared to the electrodes made from pristine PAni, the gravimetric capacitance increased by 39.8% to 629.6 F/g with aqueous acidic electrolyte. The electrode and the assembled EC cell with gel electrolyte were responsive to tensile, compressive, and bending stresses with a sensitivity of 0.95 MPa -1 .
Locomotion of Amorphous Surface Robots
NASA Technical Reports Server (NTRS)
Bradley, Arthur T. (Inventor)
2018-01-01
An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.
Locomotion of Amorphous Surface Robots
NASA Technical Reports Server (NTRS)
Bradley, Arthur T. (Inventor)
2016-01-01
An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.
Locomotion of Amorphous Surface Robots
NASA Technical Reports Server (NTRS)
Bradley, Arthur T. (Inventor)
2014-01-01
An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.
Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.
Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung
2016-02-24
Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sutar, Papri; Maji, Tapas Kumar
2016-11-18
We design a flexible, amphiphilic LMWG consisting of donor and acceptor π-chromophores which self-assembles into a hydrogel and an organogel with different nano-morphologies. Different mechanisms of self-assembly evolve charge transfer (CT) emission in the hydrogel and LMWG-based emission in the organogel. Moreover, the hydrogel-nanostructure with surface exposed amide groups is explored for catalyzing Knoevenagel condensation reaction.
C-MOS array design techniques: SUMC multiprocessor system study
NASA Technical Reports Server (NTRS)
Clapp, W. A.; Helbig, W. A.; Merriam, A. S.
1972-01-01
The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units.
Liu, Ximeng; Guan, Cao; Hu, Yating; Zhang, Lei; Elshahawy, Abdelnaby M; Wang, John
2017-10-27
Direct assembling of active materials on carbon cloth (CC) is a promising way to achieve flexible electrodes for energy storage. However, the overall surface area and electrical conductivity of such electrodes are usually limited. Herein, 2D metal-organic framework derived nanocarbon nanowall (MOFC) arrays are successfully developed on carbon cloth by a facile solution + carbonization process. Upon growth of the MOFC arrays, the sites for growth of the active materials are greatly increased, and the equivalent series resistance is decreased, which contribute to the enhancement of the bare CC substrate. After decorating ultrathin flakes of MnO 2 and Bi 2 O 3 on the flexible CC/MOFC substrate, the hierarchical electrode materials show an abrupt improvement of areal capacitances by around 50% and 100%, respectively, compared to those of the active materials on pristine carbon cloth. A flexible supercapacitor can be further assembled using two hierarchical electrodes, which demonstrates an energy density of 124.8 µWh cm -2 at the power density of 2.55 mW cm -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Zehang; Panatdasirisuk, Weerapha; Mathis, Tyler S; Anasori, Babak; Lu, Canhui; Zhang, Xinxing; Liao, Zhiwei; Gogotsi, Yury; Yang, Shu
2018-03-29
Free-standing, highly flexible and foldable supercapacitor electrodes were fabricated through the spray-coating assisted layer-by-layer assembly of Ti3C2Tx (MXene) nanoflakes together with multi-walled carbon nanotubes (MWCNTs) on electrospun polycaprolactone (PCL) fiber networks. The open structure of the PCL network and the use of MWCNTs as spacers not only limit the restacking of Ti3C2Tx flakes but also increase the accessible surface of the active materials, facilitating fast diffusion of electrolyte ions within the electrode. Composite electrodes have areal capacitance (30-50 mF cm-2) comparable to other templated electrodes reported in the literature, but showed significantly improved rate performance (14-16% capacitance retention at a scan rate of 100 V s-1). Furthermore, the composite electrodes are flexible and foldable, demonstrating good tolerance against repeated mechanical deformation, including twisting and folding. Therefore, these tens of micron thick fiber electrodes will be attractive for applications in energy storage, electroanalytical chemistry, brain electrodes, electrocatalysis and other fields, where flexible freestanding electrodes with an open and accessible surface are highly desired.
Printed Spacecraft Separation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmans, Walter; Dehoff, Ryan
In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly intomore » a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.« less
Agents, assemblers, and ANTS: scheduling assembly with market and biological software mechanisms
NASA Astrophysics Data System (ADS)
Toth-Fejel, Tihamer T.
2000-06-01
Nanoscale assemblers will need robust, scalable, flexible, and well-understood mechanisms such as software agents to control them. This paper discusses assemblers and agents, and proposes a taxonomy of their possible interaction. Molecular assembly is seen as a special case of general assembly, subject to many of the same issues, such as the advantages of convergent assembly, and the problem of scheduling. This paper discusses the contract net architecture of ANTS, an agent-based scheduling application under development. It also describes an algorithm for least commitment scheduling, which uses probabilistic committed capacity profiles of resources over time, along with realistic costs, to provide an abstract search space over which the agents can wander to quickly find optimal solutions.
Jiang, Chao; Luo, Caijun; Liu, Xiaolin; Shao, Lei; Dong, Youqing; Zhang, Yingwei; Shi, Feng
2015-05-27
The layer-by-layer (LbL) assembled multilayer has been widely used as good barrier film or capsule due to the advantages of its flexible tailoring of film permeability and compactness. Although many specific systems have been proposed for film design, developing a versatile strategy to control film compactness remains a challenge. We introduced the simple mechanical energy of a high gravity field to the LbL assembly process to tailor the multilayer permeability through adjusting film compactness. By taking poly(diallyldimethylammonium chloride) (PDDA) and poly{1-4[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl sodium salt} (PAzo) as a model system, we investigated the LbL assembly process under a high gravity field. The results showed that the high gravity field introduced effectively accelerated the multilayer deposition process by 20-fold compared with conventional dipping assembly; the adsorption rate was positively dependent on the rotating speed of the high gravity equipment and the concentration of the building block solutions. More interestingly, the film compactness of the PDDA/PAzo multilayer prepared under the high gravity field increased remarkably with the growing rotational speed of the high gravity equipment, as demonstrated through comparisons of surface morphology, cyclic voltammetry curves, and photoisomerization kinetics of PDDA/PAzo multilayers fabricated through the conventional dipping method and through LbL assembly under a high gravity field, respectively. In this way, we have introduced a simple and versatile external form of mechanical energy into the LbL assembling process to improve film compactness, which should be useful for further applications in controlled ion permeability, anticorrosion, and drug loading.
Challenges and advances in the field of self-assembled membranes.
van Rijn, Patrick; Tutus, Murat; Kathrein, Christine; Zhu, Leilei; Wessling, Matthias; Schwaneberg, Ulrich; Böker, Alexander
2013-08-21
Self-assembled membranes are of vital importance in biological systems e.g. cellular and organelle membranes, however, more focus is being put on synthetic self-assembled membranes not only as an alternative for lipid membranes but also as an alternative for lithographic methods. More investigations move towards self-assembly processes because of the low-cost preparations, structural self-regulation and the ease of creating composite materials and tunable properties. The fabrication of new smart membrane materials via self-assembly is of interest for delivery vessels, size selective separation and purification, controlled-release materials, sensors and catalysts, scaffolds for tissue engineering, low dielectric constant materials for microelectronic devices, antireflective coatings and proton exchange membranes for polymer electrolyte membrane fuel cells. Polymers and nanoparticles offer the most straightforward approaches to create membrane structures. However, alternative approaches using small molecules or composite materials offer novel ultra-thin membranes or multi-functional membranes, respectively. Especially, the composite material membranes are regarded as highly promising since they offer the possibility to combine properties of different systems. The advantages of polymers which provide elastic and flexible yet stable matrices can be combined with nanoparticles being either inorganic, organic or even protein-based which offers pore-size control, catalytic activity or permeation regulation. It is therefore believed that at the interface of different disciplines with each offering different materials or approaches, the most novel and interesting membrane structures are going to be produced. The combinations and approaches presented in this review offer non-conventional self-assembled membrane materials which exhibit a high potential to advance membrane science and find more practical applications.
A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor.
Li, Yong; Kang, Zhuo; Yan, Xiaoqin; Cao, Shiyao; Li, Minghua; Guo, Yan; Huan, Yahuan; Wen, Xiaosong; Zhang, Yue
2018-05-17
In recent years, the rapid development of portable and wearable electronic products has promoted the prosperity of fiber supercapacitors (FSCs), which serve as flexible and lightweight energy supply devices. However, research on FSCs is still in its infancy and the energy density of FSCs is far below the level of lithium-ion batteries. Here, we report a facile method to prepare a novel fibrous CNT-aerogel by electrochemical activation and freeze-drying. The fibrous CNT-aerogel electrode possesses a large specific surface area, high mechanical strength, excellent electrical conductivity, as well as a high specific capacitance of 160.8 F g-1 at 0.5 mA and long cycling stability. Then we assembled a non-faradaic FSC based on a fibrous CNT-aerogel as the electrode and a P(VDF-HFP)/EMIMBF4 ionogel as the electrolyte. The introduction of the ionogel electrolyte increases the operating voltage of the FSC to 3 V, and makes the device combine the intrinsic high power density (27.3 kW kg-1) of non-faradaic SCs with an ultrahigh energy density of 29.6 W h kg-1. More importantly, the assembled FSCs show excellent flexibility and bending-stability, and can still operate normally within a wide working temperature window (0-80 °C). The outstanding electrochemical performance and the mechanical/thermal stability indicate that the assembled FSC device is a promising power source for flexible electronics.
NASA Technical Reports Server (NTRS)
Hirsch, David B.
2009-01-01
This slide presentation reviews selected lessons that were learned during the design, development, assembly and operation of the International Space Station. The critical importance of standards and common interfaces is emphasized to create a common operation environment that can lead to flexibility and adaptability.
ERIC Educational Resources Information Center
Seth, Anupam
2009-01-01
Production planning and scheduling for printed circuit, board assembly has so far defied standard operations research approaches due to the size and complexity of the underlying problems, resulting in unexploited automation flexibility. In this thesis, the increasingly popular collect-and-place machine configuration is studied and the assembly…
77 FR 72200 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... correctly on the engine fuel feed manifold couplings. This AD also requires inspecting the assembly of the engine fuel feed manifold rigid and full flexible couplings. This AD was prompted by reports of fuel leaks due to improperly assembled engine fuel feed manifold couplings. We are issuing this AD to detect...
Marchal, Claire; Filinchuk, Yaroslav; Chen, Xiao-Yan; Imbert, Daniel; Mazzanti, Marinella
2009-01-01
Four picolinate building blocks were implemented into the multidentate linker N,N',N'-tetrakis[(6-carboxypyridin-2-yl)methyl]butylenediamine (H(4)tpabn) with a linear flexible spacer to promote the assembly of lanthanide-based 1D coordination polymers. The role of the linker in directing the geometry of the final assembly is evidenced by the different results obtained in the presence of Htpabn(3-) and tpabn(4-) ions. The tpabn(4-) ion leads to the desired 1D polymer {[Nd(tpabn)]H(3)O x 6 H(2)O}(infinity) (12). The Htpabn(3-) ion leads to the assembly of Tb(III) and Er(III) ions into 1D zigzag chains of the general formula {[M(Htpabn)] x xH(2)O}(infinity) (M = Tb, x = 14 (1); M = Tb, x = 8 (11); M = Er, x = 14 (2); M = Er, x = 5.5 (4)), a 2D network is formed by the Eu(III) ion (i.e., {[Eu(Htpabn)] x 10 H(2)O}(infinity) (7)), and both supramolecular isomers (1D and 2D) are obtained by the Tb(III) ion. The high flexibility of the polymeric chains results in a dynamic behavior with a solvent-induced reversible structural transition. The Tb(III)- and Eu(III)-containing polymers display high-luminescence quantum yields (38 and 18%, respectively). A sizeable near-IR luminescence emission is observed for the Er(III)- and Nd(III)-containing polymers when lattice water molecules are removed.
NASA Technical Reports Server (NTRS)
Eastman, G. Yale; Dussinger, Peter M.; Hartenstine, John R.
1994-01-01
Three modular heat-transfer components designed for use together or separately. Simple mechanical connections facilitate assembly of these and related heat-transfer components into cooling systems of various configurations, such as to cool laboratory equipment rearranged for different experiments. Components are clamp-on cold plate, cold plate attached to flexible heat pipe, and thermal-bus receptacle. Clamp-on cold plate moved to any convenient location for attachment of equipment cooled by it, then clamped onto thermal bus. Heat from equipment conducted through plate and into coolant. Thermal-bus receptacle integral with thermal bus. Includes part of thermal bus to which clamp-on cold plate attached, plus tapered socket into which condenser end of flexible heat pipe plugged. Thermal-bus receptacle includes heat-pipe wick structure using coolant in bus to enhance transfer of heat from cold plate.
Modelling and simulation of Space Station Freedom berthing dynamics and control
NASA Technical Reports Server (NTRS)
Cooper, Paul A.; Garrison, James L., Jr.; Montgomery, Raymond C.; Wu, Shih-Chin; Stockwell, Alan E.; Demeo, Martha E.
1994-01-01
A large-angle, flexible, multibody, dynamic modeling capability has been developed to help validate numerical simulations of the dynamic motion and control forces which occur during berthing of Space Station Freedom to the Shuttle Orbiter in the early assembly flights. This paper outlines the dynamics and control of the station, the attached Shuttle Remote Manipulator System, and the orbiter. The simulation tool developed for the analysis is described and the results of two simulations are presented. The first is a simulated maneuver from a gravity-gradient attitude to a torque equilibrium attitude using the station reaction control jets. The second simulation is the berthing of the station to the orbiter with the station control moment gyros actively maintaining an estimated torque equilibrium attitude. The influence of the elastic dynamic behavior of the station and of the Remote Manipulator System on the attitude control of the station/orbiter system during each maneuver was investigated. The flexibility of the station and the arm were found to have only a minor influence on the attitude control of the system during the maneuvers.
NASA Astrophysics Data System (ADS)
Kim, Dae-Hyeong; Lee, Mincheol; Lee, Hyunjae
2016-05-01
Recent advances in soft electronics have attracted great attention, largely due to their potential applications in personalized, bio-integrated healthcare devices. The mechanical mismatch between conventional electronic/optoelectronic devices and soft human tissues/organs have presented many challenges, such as the low signalto- noise ratio of biosensors because of the incomplete integration of rigid devices with the body, inflammation and excessive immune responses of implanted stiff devices originated from friction and their foreign nature to biotic systems, and the considerable discomfort and consequent stress experienced by users when wearing/implanting these devices. Ultra-flexible and stretchable electronic devices are being highlighted due to their low system modulus and the intrinsic system-level softness that are important to solve these issues. Here, we describe our unique strategies for the nanomaterial synthesis and fabrication, their seamless assembly and integration, and the design and development of corresponding wearable healthcare devices and minimally invasive surgical tools. These bioelectronic systems fully utilize recent breakthroughs in unconventional soft electronics based on nanomaterials to address unsolved issues in clinical medicine and to provide new opportunities in the personalized healthcare.
Experience with helium leak and thermal shocks test of SST-1 cryo components
NASA Astrophysics Data System (ADS)
Sharma, Rajiv; Nimavat, Hiren; Srikanth, G. L. N.; Bairagi, Nitin; Shah, Pankil; Tanna, V. L.; Pradhan, S.
2012-11-01
A steady state superconducting Tokamak SST-1 is presently under its assembly stage at the Institute for Plasma Research. The SST-1 machine is a family of Superconducting SC coils for both Toroidal field and Poloidal Field. An ultra high vacuum compatible vacuum vessel, placed in the bore of the TF coils, houses the plasma facing components. A high vacuum cryostat encloses all the SC coils and the vacuum vessel. Liquid Nitrogen (LN2) cooled thermal shield between the vacuum vessel & SC coils as well as between cryostat and the SC coils. There are number of crucial cryogenic components as Electrical isolators, 80 K thermal shield, Cryogenic flexible hose etc., which have to be passed the performance validation tests as part of fulfillment of the stringent QA/QC before incorporated in the main assembly. The individual leak tests of components at RT as well as after thermal cycle from 300 K to 77 K ensure us to make final overall leak proof system. These components include, Large numbers of Electrical Isolators for Helium as well as LN2 services, Flexible Bellows and Hoses for Helium as well as LN2 services, Thermal shock tests of large numbers of 80 K Bubble shields In order to validate the helium leak tightness of these components, we have used the calibrated mass spectrometer leak detector (MSLD) at 300 K, 77 K and 4.2. Since it is very difficult to locate the leaks, which are appearing at rather lower temperatures e.g. less than 20 K, We have invented different approaches to resolve the issue of such leaks. This paper, in general describes the design of cryogenic flexible hose, assembly, couplings for leak testing, test method and techniques of thermal cycles test at 77 K inflow conditions and leak testing aspects of different cryogenic components. The test results, the problems encountered and its solutions techniques are discussed.
Integrated Avionics System (IAS), Integrating 3-D Technology On A Spacecraft Panel
NASA Technical Reports Server (NTRS)
Hunter, Don J.; Halpert, Gerald
1999-01-01
As spacecraft designs converge toward miniaturization, and with the volumetric and mass challenges placed on avionics, programs will continue to advance the "state of the art" in spacecraft system development with new challenges to reduce power, mass and volume. Traditionally, the trend is to focus on high-density 3-D packaging technologies. Industry has made significant progress in 3-D technologies, and other related internal and external interconnection schemes. Although new technologies have improved packaging densities, a system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and flexibility to accommodate multiple missions while maintaining a low recurring cost. With these challenges in mind, a novel system packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. The Integrated Avionics System (IAS) provides for a low-mass, modular distributed or centralized packaging architecture which combines ridged-flex technologies, high-density COTS hardware and a new 3-D mechanical packaging approach, Horizontal Mounted Cube (HMC). This paper will describe the fundamental elements of the IAS, HMC hardware design, system integration and environmental test results.
An artificial elementary eye with optic flow detection and compositional properties.
Pericet-Camara, Ramon; Dobrzynski, Michal K; Juston, Raphaël; Viollet, Stéphane; Leitel, Robert; Mallot, Hanspeter A; Floreano, Dario
2015-08-06
We describe a 2 mg artificial elementary eye whose structure and functionality is inspired by compound eye ommatidia. Its optical sensitivity and electronic architecture are sufficient to generate the required signals for the measurement of local optic flow vectors in multiple directions. Multiple elementary eyes can be assembled to create a compound vision system of desired shape and curvature spanning large fields of view. The system configurability is validated with the fabrication of a flexible linear array of artificial elementary eyes capable of extracting optic flow over multiple visual directions. © 2015 The Author(s).
Laser fluorescence bronchoscope for localization of occult lung tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Profio, A.E.; Doiron, D.R.; King, E.G.
1979-11-01
A system for imaging occult bronchogenic carcinoma by the fluorescence of previously-injected, tumor-specific compound hematoporphyrin-derivative has been assembled and successfully used to locate a tumor l mm thick. The violet excitation source is a krypton ion laser coupled to fused quartz fiber light conductor. An electrostatic image intensifier attached to a standard flexible fiberoptic bronchoscope provides a bright image even at relatively low irradiance. A red secondary filter rejects most reflected background and autofluorescence. Sensitivity and contrast capability of the system should permit detection of a tumor less than 0.1 mm thick.
Lambert, D.R.
1982-09-27
A flexible connector apparatus used to join two stiff non-deformable members, such as piping, is described. The apparatus is provided with one or more flexible sections or assemblies each utilizing a bellows of a rolling cuff type connected between two ridge members, with the bellows being supported by a back-up ring, such that only the curved end sections of the bellows are unsupported. Thus, the bellows can be considered as being of a tube-shaped configuration and thus have high pressure resistance. The components of the flexible apparatus are sealed or welded one to another such that it is fluid tight.
Flexible nanomembrane photonic-crystal cavities for tensilely strained-germanium light emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Jian; Wang, Xiaowei; Paiella, Roberto
2016-06-13
Flexible photonic-crystal cavities in the form of Si-column arrays embedded in polymeric films are developed on Ge nanomembranes using direct membrane assembly. The resulting devices can sustain large biaxial tensile strain under mechanical stress, as a way to enhance the Ge radiative efficiency. Pronounced emission peaks associated with photonic-crystal cavity resonances are observed in photoluminescence measurements. These results show that ultrathin nanomembrane active layers can be effectively coupled to an optical cavity, while still preserving their mechanical flexibility. Thus, they are promising for the development of strain-enabled Ge lasers, and more generally uniquely flexible optoelectronic devices.
NASA Astrophysics Data System (ADS)
Michon, Frédéric; Aarts, Arno; Holzhammer, Tobias; Ruther, Patrick; Borghs, Gustaaf; McNaughton, Bruce; Kloosterman, Fabian
2016-08-01
Objective. Understanding how neuronal assemblies underlie cognitive function is a fundamental question in system neuroscience. It poses the technical challenge to monitor the activity of populations of neurons, potentially widely separated, in relation to behaviour. In this paper, we present a new system which aims at simultaneously recording from a large population of neurons from multiple separated brain regions in freely behaving animals. Approach. The concept of the new device is to combine the benefits of two existing electrophysiological techniques, i.e. the flexibility and modularity of micro-drive arrays and the high sampling ability of electrode-dense silicon probes. Main results. Newly engineered long bendable silicon probes were integrated into a micro-drive array. The resulting device can carry up to 16 independently movable silicon probes, each carrying 16 recording sites. Populations of neurons were recorded simultaneously in multiple cortical and/or hippocampal sites in two freely behaving implanted rats. Significance. Current approaches to monitor neuronal activity either allow to flexibly record from multiple widely separated brain regions (micro-drive arrays) but with a limited sampling density or to provide denser sampling at the expense of a flexible placement in multiple brain regions (neural probes). By combining these two approaches and their benefits, we present an alternative solution for flexible and simultaneous recordings from widely distributed populations of neurons in freely behaving rats.
Substructural controller synthesis
NASA Technical Reports Server (NTRS)
Su, Tzu-Jeng; Craig, Roy R., Jr.
1989-01-01
A decentralized design procedure which combines substructural synthesis, model reduction, decentralized controller design, subcontroller synthesis, and controller reduction is proposed for the control design of flexible structures. The structure to be controlled is decomposed into several substructures, which are modeled by component mode synthesis methods. For each substructure, a subcontroller is designed by using the linear quadratic optimal control theory. Then, a controller synthesis scheme called Substructural Controller Synthesis (SCS) is used to assemble the subcontrollers into a system controller, which is to be used to control the whole structure.
Virtual environment tactile system
Renzi, Ronald
1996-01-01
A method for providing a realistic sense of touch in virtual reality by means of programmable actuator assemblies is disclosed. Each tactile actuator assembly consists of a number of individual actuators whose movement is controlled by a computer and associated drive electronics. When an actuator is energized, the rare earth magnet and the associated contactor, incorporated within the actuator, are set in motion by the opposing electromagnetic field of a surrounding coil. The magnet pushes the contactor forward to contact the skin resulting in the sensation of touch. When the electromagnetic field is turned off, the rare earth magnet and the contactor return to their neutral positions due to the magnetic equilibrium caused by the interaction with the ferrous outer sleeve. The small size and flexible nature of the actuator assemblies permit incorporation into a glove, boot or body suit. The actuator has additional applications, such as, for example, as an accelerometer, an actuator for precisely controlled actuations or to simulate the sensation of braille letters.
Virtual environment tactile system
Renzi, R.
1996-12-10
A method for providing a realistic sense of touch in virtual reality by means of programmable actuator assemblies is disclosed. Each tactile actuator assembly consists of a number of individual actuators whose movement is controlled by a computer and associated drive electronics. When an actuator is energized, the rare earth magnet and the associated contactor, incorporated within the actuator, are set in motion by the opposing electromagnetic field of a surrounding coil. The magnet pushes the contactor forward to contact the skin resulting in the sensation of touch. When the electromagnetic field is turned off, the rare earth magnet and the contactor return to their neutral positions due to the magnetic equilibrium caused by the interaction with the ferrous outer sleeve. The small size and flexible nature of the actuator assemblies permit incorporation into a glove, boot or body suit. The actuator has additional applications, such as, for example, as an accelerometer, an actuator for precisely controlled actuations or to simulate the sensation of braille letters. 28 figs.
Sharma, Vishnu D; Aifuwa, Eronmwon O; Heiney, Paul A; Ilies, Marc A
2013-09-01
Pyridinium gemini surfactants possess a soft charge, a high charge/mass ratio and a high molecular flexibility - all key parameters that recommend their use in synthetic gene delivery systems with in vitro and in vivo efficiency. In present study we generated a DNA delivery system through interfacial engineering of pyridinium gemini surfactants at the level of linker, hydrophobic chains and counterions. The self-assembling of the pyridinium amphiphiles and the physicochemical properties of the resultant supra-molecular assemblies were studied in bulk and in solution through a combination of techniques that included DSC, X-ray diffraction, polarized microscopy, CMC, dynamic light scattering and zeta potential measurements. We assessed the impact of different structural elements and formulation parameters of these pyridinium amphiphiles on their DNA compaction properties, transfection efficiency, cytotoxicity, in a complete structure-activity relationship study. This interfacial engineering process generated transfection systems with reduced cytotoxicity and high transfection efficiency in media containing elevated levels of serum that mimic the in vivo conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
RosettaRemodel: A Generalized Framework for Flexible Backbone Protein Design
Huang, Po-Ssu; Ban, Yih-En Andrew; Richter, Florian; Andre, Ingemar; Vernon, Robert; Schief, William R.; Baker, David
2011-01-01
We describe RosettaRemodel, a generalized framework for flexible protein design that provides a versatile and convenient interface to the Rosetta modeling suite. RosettaRemodel employs a unified interface, called a blueprint, which allows detailed control over many aspects of flexible backbone protein design calculations. RosettaRemodel allows the construction and elaboration of customized protocols for a wide range of design problems ranging from loop insertion and deletion, disulfide engineering, domain assembly, loop remodeling, motif grafting, symmetrical units, to de novo structure modeling. PMID:21909381
Self-Assembly of Optical Molecules with Supramolecular Concepts
Okamoto, Ken; Chithra, Parayalil; Richards, Gary J.; Hill, Jonathan P.; Ariga, Katsuhiko
2009-01-01
Fabrication of nano-sized objects is one of the most important issues in nanoscience and nanotechnology. Soft nanomaterials with flexible properties have been given much attention and can be obtained through bottom-up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and techniques. Among the various functional molecules, dyes have become important materials in certain areas of nanotechnology and their self-assembling behaviors have been actively researched. In this short review, we briefly introduce recent progress in self-assembly of optical molecules and dyes, based mainly on supramolecular concepts. The introduced examples are classified into four categories: self-assembly of (i) low-molecular-weight dyes and (ii) polymeric dyes and dye self-assembly (iii) in nanoscale architectures and (iv) at surfaces. PMID:19564931
Automated Test Assembly for Cognitive Diagnosis Models Using a Genetic Algorithm
ERIC Educational Resources Information Center
Finkelman, Matthew; Kim, Wonsuk; Roussos, Louis A.
2009-01-01
Much recent psychometric literature has focused on cognitive diagnosis models (CDMs), a promising class of instruments used to measure the strengths and weaknesses of examinees. This article introduces a genetic algorithm to perform automated test assembly alongside CDMs. The algorithm is flexible in that it can be applied whether the goal is to…
USDA-ARS?s Scientific Manuscript database
Polyoxin (POL) is an unusual nucleoside antibiotic, in which peptidyl moiety and nucleoside skeleton are linked by an amide bond. However, their biosynthesis remains poorly understood. Here, we report the deciphering of PolG as an ATP-dependent ligase responsible for the assembly of POL. A polG muta...
Study of the dynamics of orbital assemblies including interactions with geometrical appendages
NASA Technical Reports Server (NTRS)
Ness, D. J.
1972-01-01
The complete equations for the Unified Flexible Spacecraft Simulation (UFSS) program developed for the NASA/MSFC are presented. This general purpose simulation program is based on an algorithm which utilizes the digital computer to synthesize the dynamic and kinematic equations for a topological tree configuration of N interconnected bodies (the interconnected system of bodies forms no closed loops), the terminal members of which may be flexible. Necessary input quantities to the dynamic subroutine include the mass and inertia properties of each body and the flexible characteristics of each terminal member in addition to the specification, for each body, of those bodies to which it connects. This latter description involves the specification of the number of rotational degrees of freedom at each interconnection along with the associated position vectors defining these connections relative to the mass centers of the bodies involved. These position vectors can be input as time-varying functions if desired, thus affording the capability of studying the effects of time-varying hinge locations. Springs and dampers are assumed to act at each interconnection and structural damping in the flexible terminal members is included in the form of equivalent viscous damping.
Flexible supercapacitor electrodes based on real metal-like cellulose papers.
Ko, Yongmin; Kwon, Minseong; Bae, Wan Ki; Lee, Byeongyong; Lee, Seung Woo; Cho, Jinhan
2017-09-14
The effective implantation of conductive and charge storage materials into flexible frames has been strongly demanded for the development of flexible supercapacitors. Here, we introduce metallic cellulose paper-based supercapacitor electrodes with excellent energy storage performance by minimizing the contact resistance between neighboring metal and/or metal oxide nanoparticles using an assembly approach, called ligand-mediated layer-by-layer assembly. This approach can convert the insulating paper to the highly porous metallic paper with large surface areas that can function as current collectors and nanoparticle reservoirs for supercapacitor electrodes. Moreover, we demonstrate that the alternating structure design of the metal and pseudocapacitive nanoparticles on the metallic papers can remarkably increase the areal capacitance and rate capability with a notable decrease in the internal resistance. The maximum power and energy density of the metallic paper-based supercapacitors are estimated to be 15.1 mW cm -2 and 267.3 μWh cm -2 , respectively, substantially outperforming the performance of conventional paper or textile-type supercapacitors.With ligand-mediated layer-by-layer assembly between metal nanoparticles and small organic molecules, the authors prepare metallic paper electrodes for supercapacitors with high power and energy densities. This approach could be extended to various electrodes for portable/wearable electronics.
Particle Line Assembly/Patterning by Microfluidic AC Electroosmosis
NASA Astrophysics Data System (ADS)
Lian, Meng; Islam, Nazmul; Wu, Jie
2006-04-01
Recently AC electroosmosis has attracted research interests worldwide. This paper is the first to investigate particle line assembly/patterning by AC electroosmosis. Since AC electroosmotic force has no dependence on particle sizes, this technique is particularly useful for manipulating nanoscale substance, and hopefully constructs functional nanoscale devices. Two types of ACEO devices, in the configurations of planar interdigitated electrodes and parallel plate electrodes, and a biased ACEO technique are studied, which provides added flexibility in particle manipulation and line assembly. The paper also investigates the effects of electrical field distributions on generating microflows for particle assembly. The results are corroborated experimentally.
Cooling assembly for fuel cells
Kaufman, Arthur; Werth, John
1990-01-01
A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet.
Systems of mechanized and reactive droplets powered by multi-responsive surfactants
NASA Astrophysics Data System (ADS)
Yang, Zhijie; Wei, Jingjing; Sobolev, Yaroslav I.; Grzybowski, Bartosz A.
2018-01-01
Although ‘active’ surfactants, which are responsive to individual external stimuli such as temperature, electric or magnetic fields, light, redox processes or chemical agents, are well known, it would be interesting to combine several of these properties within one surfactant species. Such multi-responsive surfactants could provide ways of manipulating individual droplets and possibly assembling them into larger systems of dynamic reactors. Here we describe surfactants based on functionalized nanoparticle dimers that combine all of these and several other characteristics. These surfactants and therefore the droplets that they cover are simultaneously addressable by magnetic, optical and electric fields. As a result, the surfactant-covered droplets can be assembled into various hierarchical structures, including dynamic ones, in which light powers the rapid rotation of the droplets. Such rotating droplets can transfer mechanical torques to their non-nearest neighbours, thus acting like systems of mechanical gears. Furthermore, droplets of different types can be merged by applying electric fields and, owing to interfacial jamming, can form complex, non-spherical, ‘patchy’ structures with different surface regions covered with different surfactants. In systems of droplets that carry different chemicals, combinations of multiple stimuli can be used to control the orientations of the droplets, inter-droplet transport, mixing of contents and, ultimately, sequences of chemical reactions. Overall, the multi-responsive active surfactants that we describe provide an unprecedented level of flexibility with which liquid droplets can be manipulated, assembled and reacted.
Aerodynamic flail for a spinning projectile
Cole, James K.
1990-05-01
A flail is provided which reduces the spin of a projectile in a recovery system which includes a parachute, a cable connected to the parachute, a swivel, and means for connecting the swivel to the projectile. The flail includes a plurality of flexible filaments and a rotor for attaching the filaments to the front end of the projectile. The rotor is located radially with respect to the spinning axis of the projectile. In one embodiment, the projectile includes a first nose cone section housing a deployable spin damping assembly; a second nose cone section, housing a deployable parachute assembly; a shell section, supporting the first and second nose cone sections during flight of the projectile; a mechanism for releasing the first nose cone section from the second cone section; and a mechanism for releasing the second nose cone section from the shell section. In operation of this embodiment, the deployable spin damping assembly deploys during flight of the projectile when the mechanism for releasing the first nose cone section from the second nose cone section are actuated. Then, upon actuation of the mechanism for releasing the second nose cone section from the shell section, two things happen: the spin damping assembly separates from the projectile; and the deployable parachute assembly is deployed.
Aerodynamic flail for a spinning projectile
Cole, James K.
1990-01-01
A flail is provided which reduces the spin of a projectile in a recovery system which includes a parachute, a cable connected to the parachute, a swivel, and means for connecting the swivel to the projectile. The flail includes a plurality of flexible filaments and a rotor for attaching the filaments to the front end of the projectile. The rotor is located radially with respect to the spinning axis of the projectile. In one embodiment, the projectile includes a first nose cone section housing a deployable spin damping assembly; a second nose cone section, housing a deployable parachute assembly; a shell section, supporting the first and second nose cone sections during flight of the projectile; a mechanism for releasing the first nose cone section from the second cone section; and a mechanism for releasing the second nose cone section from the shell section. In operation of this embodiment, the deployable spin damping assembly deploys during flight of the projectile when the mechanism for releasing the first nose cone section from the second nose cone section are actuated. Then, upon actuation of the mechanism for releasing the second nose cone section from the shell section, two things happen: the spin damping assembly separates from the projectile; and the deployable parachute assembly is deployed.
Koehler Leman, Julia; Bonneau, Richard
2018-04-03
Membrane proteins composed of soluble and membrane domains are often studied one domain at a time. However, to understand the biological function of entire protein systems and their interactions with each other and drugs, knowledge of full-length structures or models is required. Although few computational methods exist that could potentially be used to model full-length constructs of membrane proteins, none of these methods are perfectly suited for the problem at hand. Existing methods require an interface or knowledge of the relative orientations of the domains or are not designed for domain assembly, and none of them are developed for membrane proteins. Here we describe the first domain assembly protocol specifically designed for membrane proteins that assembles intra- and extracellular soluble domains and the transmembrane domain into models of the full-length membrane protein. Our protocol does not require an interface between the domains and samples possible domain orientations based on backbone dihedrals in the flexible linker regions, created via fragment insertion, while keeping the transmembrane domain fixed in the membrane. For five examples tested, our method mp_domain_assembly, implemented in RosettaMP, samples domain orientations close to the known structure and is best used in conjunction with experimental data to reduce the conformational search space.
Double window viewing chamber assembly
NASA Technical Reports Server (NTRS)
Keller, V. W. (Inventor); Owen, R. B. (Inventor); Elkins, B. R. (Inventor); White, W. T. (Inventor)
1986-01-01
A viewing chamber which permits observation of a sample retained therein includes a pair of double window assemblies mounted in opposed openings in the walls thereof so that a light beam can directly enter and exit from the chamber. A flexible mounting arrangement for the outer windows of the window assemblies enables the windows to be brought into proper alignment. An electrical heating arrangement prevents fogging of the outer windows whereas desiccated air in the volume between the outer and inner windows prevents fogging of the latter.
Assembling new technologies at the interface of materials science and biology
NASA Astrophysics Data System (ADS)
Stendahl, John C.
Molecular self-assembly can be used to construct advanced materials by taking cues from nature and harnessing noncovalent interactions. This bottom-up approach affords molecular level precision that can cultivate pathways to improved materials function. The graduate research presented in this thesis integrates molecular self-assembly with traditional concepts in chemistry and materials science, with the ultimate goal of developing innovative solutions in technology and medicine. In the field of polymer engineering, self-assembly was used to create supramolecular nanoribbons that, when incorporated into polystyrene, modify its microstructure and significantly enhance its toughness and ductility. In medicine, self-assembly was used to create ordered, chemically functional materials to improve interactions with cells and other constituents of the biological environment. One system that was investigated is based on a triblock molecule in which cholesterol is connected to a lysine dendron by a flexible oligo-(L-lactic acid) spacer. These molecules self-assemble into polar surface coatings on fibrous poly(L-lactic acid) scaffolds that improve the scaffold's wettability and increase its retention of cells during seeding. Another self-assembling system that was investigated for biomedical applications is a family of molecules referred to as peptide amphiphiles (PA's). PA's consist of hydrophobic alkyl tails connected to short, hydrophilic peptides that incorporate biological signaling epitopes. These molecules spontaneously assemble into networks of well-defined nanofibers in aqueous environments, with the signaling epitopes presented in high density on the nanofiber exteriors. Nanofiber assembly is triggered by charge screening on the peptides and is able to produce self-supporting gels in concentrations of less than 1.0 wt.-%. The assembly process and mechanical properties of PA gels was investigated in detail with vibrational spectroscopy and oscillatory rheology. PA nanofibers were used in conjunction with fibrous poly(L-lactic acid] fabrics to create chemically functional scaffolds to facilitate islet cell transplantation. In transplant studies in diabetic mice, the use of scaffolds for islet delivery was shown to significantly improve transplant outcomes over free islet injections. Together, these studies illustrate that molecular self-assembly can be used to create functional materials for a variety of applications. These materials utilize noncovalent interactions to produce supramolecular structures that have important impacts on properties.
Dynamic analysis of Space Shuttle/RMS configuration using continuum approach
NASA Technical Reports Server (NTRS)
Ramakrishnan, Jayant; Taylor, Lawrence W., Jr.
1994-01-01
The initial assembly of Space Station Freedom involves the Space Shuttle, its Remote Manipulation System (RMS) and the evolving Space Station Freedom. The dynamics of this coupled system involves both the structural and the control system dynamics of each of these components. The modeling and analysis of such an assembly is made even more formidable by kinematic and joint nonlinearities. The current practice of modeling such flexible structures is to use finite element modeling in which the mass and interior dynamics is ignored between thousands of nodes, for each major component. The model characteristics of only tens of modes are kept out of thousands which are calculated. The components are then connected by approximating the boundary conditions and inserting the control system dynamics. In this paper continuum models are used instead of finite element models because of the improved accuracy, reduced number of model parameters, the avoidance of model order reduction, and the ability to represent the structural and control system dynamics in the same system of equations. Dynamic analysis of linear versions of the model is performed and compared with finite element model results. Additionally, the transfer matrix to continuum modeling is presented.
Gamboa, Daniel; Priolo, Morgan A; Ham, Aaron; Grunlan, Jaime C
2010-03-01
A versatile, high speed robot for layer-by-layer deposition of multifunctional thin films, which integrates concepts from previous dipping systems, has been designed with dramatic improvements in software, positioning, rinsing, drying, and waste removal. This system exploits the electrostatic interaction of oppositely charged species to deposit nanolayers (1-10 nm thick) from water onto the surface of a substrate. Dip times and number of deposited layers are adjustable through a graphical user interface. In between dips the system spray rinses and dries the substrate by positioning it in the two-tiered rinse-dry station. This feature significantly reduces processing time and provides the flexibility to choose from four different procedures for rinsing and drying. Assemblies of natural montmorillonite clay and polyethylenimine are deposited onto 175 microm poly(ethylene terephthalate) film to demonstrate the utility of this automated deposition system. By altering the type of rinse-dry procedure, these clay-based assemblies are shown to exhibit variations in film thickness and oxygen transmission rate. This type of system reproducibly deposits films containing 20 or more layers and may also be useful for other types of coatings that make use of dipping.
A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazockdast, Ehssan, E-mail: ehssan@cims.nyu.edu; Center for Computational Biology, Simons Foundation, New York, NY 10010; Rahimian, Abtin, E-mail: arahimian@acm.org
We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs),more » and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid–structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler–Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber–fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a cloud of semi-flexible fibers.« less
A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics
NASA Astrophysics Data System (ADS)
Nazockdast, Ehssan; Rahimian, Abtin; Zorin, Denis; Shelley, Michael
2017-01-01
We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs), and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid-structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler-Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber-fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a cloud of semi-flexible fibers.
Liu, Bin; Tan, Dongsheng; Wang, Xianfu; Chen, Di; Shen, Guozhen
2013-06-10
Flexible and highly efficient energy storage units act as one of the key components in portable electronics. In this work, by planar-integrated assembly of hierarchical ZnCo₂O₄ nanowire arrays/carbon fibers electrodes, a new class of flexible all-solid-state planar-integrated fiber supercapacitors are designed and produced via a low-cost and facile method. The as-fabricated flexible devices exhibit high-efficiency, enhanced capacity, long cycle life, and excellent electrical stability. An enhanced distributed-capacitance effect is experimentally observed for the device. This strategy enables highly flexible new structured supercapacitors with maximum functionality and minimized size, thus making it possible to be readily applied in flexible/portable photoelectronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Amrillah, Tahta; Bitla, Yugandhar; Shin, Kwangwoo; ...
2017-05-22
Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric–ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. In this paper, we investigated the magnetoelectric coupling in a self-assembled BiFeO 3 (BFO)–CoFe 2O 4 (CFO) bulk heterojunction epitaxially grownmore » on a flexible muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate clamping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO–CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm·Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Finally and therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amrillah, Tahta; Bitla, Yugandhar; Shin, Kwangwoo
Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric–ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. In this paper, we investigated the magnetoelectric coupling in a self-assembled BiFeO 3 (BFO)–CoFe 2O 4 (CFO) bulk heterojunction epitaxially grownmore » on a flexible muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate clamping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO–CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm·Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Finally and therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance.« less
Investigation of squeeze-film dampers
NASA Technical Reports Server (NTRS)
Holmes, R.; Dogan, M.
1982-01-01
Squeeze film dampers are a means of curing instabilities in rotating shaft assemblies. Their efficiency depends very much on the condition of the oil, which in turn depends on inlet and outlet arrangements, on damper geometry and on the flexibility of the rotor and surrounding structure. Rig investigations in which structural flexibility is included experimentally are discussed. Comparisons are made between measured and predicted results.
Nanostructured graphene composite papers for highly flexible and foldable supercapacitors.
Liu, Lili; Niu, Zhiqiang; Zhang, Li; Zhou, Weiya; Chen, Xiaodong; Xie, Sishen
2014-07-23
Reduced graphene oxide (rGO) and polyaniline (PANI) assemble onto the surface of cellulose fibers (CFs) and into the pores of CF paper, to form a hierarchical nanostructured PANI-rGO/CF composite paper. Based on these composite papers, flexible and foldable all-solid-state supercapacitors are achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xi, Jun; Wu, Zhaoxin; Jiao, Bo; Dong, Hua; Ran, Chenxin; Piao, Chengcheng; Lei, Ting; Song, Tze-Bin; Ke, Weijun; Yokoyama, Takamichi; Hou, Xun; Kanatzidis, Mercouri G
2017-06-01
Tin (Sn)-based perovskites are increasingly attractive because they offer lead-free alternatives in perovskite solar cells. However, depositing high-quality Sn-based perovskite films is still a challenge, particularly for low-temperature planar heterojunction (PHJ) devices. Here, a "multichannel interdiffusion" protocol is demonstrated by annealing stacked layers of aqueous solution deposited formamidinium iodide (FAI)/polymer layer followed with an evaporated SnI 2 layer to create uniform FASnI 3 films. In this protocol, tiny FAI crystals, significantly inhibited by the introduced polymer, can offer multiple interdiffusion pathways for complete reaction with SnI 2 . What is more, water, rather than traditional aprotic organic solvents, is used to dissolve the precursors. The best-performing FASnI 3 PHJ solar cell assembled by this protocol exhibits a power conversion efficiency (PCE) of 3.98%. In addition, a flexible FASnI 3 -based flexible solar cell assembled on a polyethylene naphthalate-indium tin oxide flexible substrate with a PCE of 3.12% is demonstrated. This novel interdiffusion process can help to further boost the performance of lead-free Sn-based perovskites. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microtubule assembly governed by tubulin allosteric gain in flexibility and lattice induced fit
2018-01-01
Microtubules (MTs) are key components of the cytoskeleton and play a central role in cell division and development. MT assembly is known to be associated with a structural change in αβ-tubulin dimers from kinked to straight conformations. How GTP binding renders individual dimers polymerization-competent, however, is still unclear. Here, we have characterized the conformational dynamics and energetics of unassembled tubulin using atomistic molecular dynamics and free energy calculations. Contrary to existing allosteric and lattice models, we find that GTP-tubulin favors a broad range of almost isoenergetic curvatures, whereas GDP-tubulin has a much lower bending flexibility. Moreover, irrespective of the bound nucleotide and curvature, two conformational states exist differing in location of the anchor point connecting the monomers that affects tubulin bending, with one state being strongly favored in solution. Our findings suggest a new combined model in which MTs incorporate and stabilize flexible GTP-dimers with a specific anchor point state. PMID:29652248
Deng, Lingjuan; Gao, Yihong; Ma, Zhanying; Fan, Guang
2017-11-01
Preparation of free-standing electrode materials with three-dimensional network architecture has emerged as an effective strategy for acquiring advanced portable and wearable power sources. Herein, graphene/vanadium oxide (GR/V 2 O 5 ) free-standing monolith composite has been prepared via a simple hydrothermal process. Flexible GR sheets acted as binder to connect the belt-like V 2 O 5 for assembling three-dimensional network architecture. The obtained GR/V 2 O 5 composite can be reshaped into GR/V 2 O 5 flexible film which exhibits more compact structure by ultrasonication and vacuum filtration. A high specific capacitance of 358Fg -1 for GR/V 2 O 5 monolith compared with that of GR/V 2 O 5 flexible film (272Fg -1 ) has been achieved in 0.5molL -1 K 2 SO 4 solution when used as binder free electrodes in three-electrode system. An asymmetrical supercapacitor has been assembled using GR/V 2 O 5 monolith as positive electrode and GR monolith as negative electrode, and it can be reversibly charged-discharged at a cell voltage of 1.7V in 0.5molL -1 K 2 SO 4 electrolyte. The asymmetrical capacitor can deliver an energy density of 26.22Whkg -1 at a power density of 425Wkg -1 , much higher than that of the symmetrical supercapacitor based on GR/V 2 O 5 monolith electrode. Moreover, the asymmetrical supercapacitor preserves 90% of its initial capacitance over 1000 cycles at a current density of 5Ag -1 . Copyright © 2017 Elsevier Inc. All rights reserved.
2013-01-01
Background Select cellulolytic bacteria produce multi-enzymatic cellulosome complexes that bind to the plant cell wall and catalyze its efficient degradation. The multi-modular interconnecting cellulosomal subunits comprise dockerin-containing enzymes that bind cohesively to cohesin-containing scaffoldins. The organization of the modules into functional polypeptides is achieved by intermodular linkers of different lengths and composition, which provide flexibility to the complex and determine its overall architecture. Results Using a synthetic biology approach, we systematically investigated the spatial organization of the scaffoldin subunit and its effect on cellulose hydrolysis by designing a combinatorial library of recombinant trivalent designer scaffoldins, which contain a carbohydrate-binding module (CBM) and 3 divergent cohesin modules. The positions of the individual modules were shuffled into 24 different arrangements of chimaeric scaffoldins. This basic set was further extended into three sub-sets for each arrangement with intermodular linkers ranging from zero (no linkers), 5 (short linkers) and native linkers of 27–35 amino acids (long linkers). Of the 72 possible scaffoldins, 56 were successfully cloned and 45 of them expressed, representing 14 full sets of chimaeric scaffoldins. The resultant 42-component scaffoldin library was used to assemble designer cellulosomes, comprising three model C. thermocellum cellulases. Activities were examined using Avicel as a pure microcrystalline cellulose substrate and pretreated cellulose-enriched wheat straw as a model substrate derived from a native source. All scaffoldin combinations yielded active trivalent designer cellulosome assemblies on both substrates that exceeded the levels of the free enzyme systems. A preferred modular arrangement for the trivalent designer scaffoldin was not observed for the three enzymes used in this study, indicating that they could be integrated at any position in the designer cellulosome without significant effect on cellulose-degrading activity. Designer cellulosomes assembled with the long-linker scaffoldins achieved higher levels of activity, compared to those assembled with short-and no-linker scaffoldins. Conclusions The results demonstrate the robustness of the cellulosome system. Long intermodular scaffoldin linkers are preferable, thus leading to enhanced degradation of cellulosic substrates, presumably due to the increased flexibility and spatial positioning of the attached enzymes in the complex. These findings provide a general basis for improved designer cellulosome systems as a platform for bioethanol production. PMID:24341331
Analysis and experiments for delay compensation in attitude control of flexible spacecraft
NASA Astrophysics Data System (ADS)
Sabatini, Marco; Palmerini, Giovanni B.; Leonangeli, Nazareno; Gasbarri, Paolo
2014-11-01
Space vehicles are often characterized by highly flexible appendages, with low natural frequencies which can generate coupling phenomena during orbital maneuvering. The stability and delay margins of the controlled system are deeply affected by the presence of bodies with different elastic properties, assembled to form a complex multibody system. As a consequence, unstable behavior can arise. In this paper the problem is first faced from a numerical point of view, developing accurate multibody mathematical models, as well as relevant navigation and control algorithms. One of the main causes of instability is identified with the unavoidable presence of time delays in the GNC loop. A strategy to compensate for these delays is elaborated and tested using the simulation tool, and finally validated by means of a free floating platform, replicating the flexible spacecraft attitude dynamics (single axis rotation). The platform is equipped with thrusters commanded according to the on-off modulation of the Linear Quadratic Regulator (LQR) control law. The LQR is based on the estimate of the full state vector, i.e. including both rigid - attitude - and elastic variables, that is possible thanks to the on line measurement of the flexible displacements, realized by processing the images acquired by a dedicated camera. The accurate mathematical model of the system and the rigid and elastic measurements enable a prediction of the state, so that the control is evaluated taking the predicted state relevant to a delayed time into account. Both the simulations and the experimental campaign demonstrate that by compensating in this way the time delay, the instability is eliminated, and the maneuver is performed accurately.
Self-assembly of discrete metal complexes in aqueous solution via block copolypeptide amphiphiles.
Kuroiwa, Keita; Masaki, Yoshitaka; Koga, Yuko; Deming, Timothy J
2013-01-21
The integration of discrete metal complexes has been attracting significant interest due to the potential of these materials for soft metal-metal interactions and supramolecular assembly. Additionally, block copolypeptide amphiphiles have been investigated concerning their capacity for self-assembly into structures such as nanoparticles, nanosheets and nanofibers. In this study, we combined these two concepts by investigating the self-assembly of discrete metal complexes in aqueous solution using block copolypeptides. Normally, discrete metal complexes such as [Au(CN)(2)]-, when molecularly dispersed in water, cannot interact with one another. Our results demonstrated, however, that the addition of block copolypeptide amphiphiles such as K(183)L(19) to [Au(CN)(2)]- solutions induced one-dimensional integration of the discrete metal complex, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Transmission electron microscopy (TEM) showed a fibrous nanostructure with lengths and widths of approximately 100 and 20 nm, respectively, which grew to form advanced nanoarchitectures, including those resembling the weave patterns of Waraji (traditional Japanese straw sandals). This concept of combining block copolypeptide amphiphiles with discrete coordination compounds allows the design of flexible and functional supramolecular coordination systems in water.
Battery-Free Smart Sock for Abnormal Relative Plantar Pressure Monitoring.
Lin, Xiaoyou; Seet, Boon-Chong
2017-04-01
This paper presents a new design of a wearable plantar pressure monitoring system in the form of a smart sock for sensing abnormal relative pressure changes. One advantage of this approach is that with a battery-free design, this system can be powered solely by radio frequency (RF) energy harvested from a radio frequency identification (RFID) reader unit hosted on a smartphone of the wearer. At the same time, this RFID reader can read foot pressure values from an embedded sensor-tag in the sock. A pressure sensing matrix made of conductive fabric and flexible piezo-resistive material is integrated into the sock during the knitting process. Sensed foot pressures are digitized and stored in the memory of a sensor-tag, thus allowing relative foot pressure values to be tracked. The control unit of the smart sock is assembled on a flexible printed circuit board (FPC) that can be strapped to the lower limb and detached easily when it is not in use. Experiments show that the system can operate reliably in both tasks of RF energy harvesting and pressure measurement.
NASA Astrophysics Data System (ADS)
Ido, Shinichiro; Kimiya, Hirokazu; Kobayashi, Kei; Kominami, Hiroaki; Matsushige, Kazumi; Yamada, Hirofumi
2014-03-01
The conformational flexibility of antibodies in solution directly affects their immune function. Namely, the flexible hinge regions of immunoglobulin G (IgG) antibodies are essential in epitope-specific antigen recognition and biological effector function. The antibody structure, which is strongly related to its functions, has been partially revealed by electron microscopy and X-ray crystallography, but only under non-physiological conditions. Here we observed monoclonal IgG antibodies in aqueous solution by high-resolution frequency modulation atomic force microscopy (FM-AFM). We found that monoclonal antibodies self-assemble into hexamers, which form two-dimensional crystals in aqueous solution. Furthermore, by directly observing antibody-antigen interactions using FM-AFM, we revealed that IgG molecules in the crystal retain immunoactivity. As the self-assembled monolayer crystal of antibodies retains immunoactivity at a neutral pH and is functionally stable at a wide range of pH and temperature, the antibody crystal is applicable to new biotechnological platforms for biosensors or bioassays.
The selective autophagy receptor p62 forms a flexible filamentous helical scaffold.
Ciuffa, Rodolfo; Lamark, Trond; Tarafder, Abul K; Guesdon, Audrey; Rybina, Sofia; Hagen, Wim J H; Johansen, Terje; Sachse, Carsten
2015-05-05
The scaffold protein p62/SQSTM1 is involved in protein turnover and signaling and is commonly found in dense protein bodies in eukaryotic cells. In autophagy, p62 acts as a selective autophagy receptor that recognizes and shuttles ubiquitinated proteins to the autophagosome for degradation. The structural organization of p62 in cellular bodies and the interplay of these assemblies with ubiquitin and the autophagic marker LC3 remain to be elucidated. Here, we present a cryo-EM structural analysis of p62. Together with structures of assemblies from the PB1 domain, we show that p62 is organized in flexible polymers with the PB1 domain constituting a helical scaffold. Filamentous p62 is capable of binding LC3 and addition of long ubiquitin chains induces disassembly and shortening of filaments. These studies explain how p62 assemblies provide a large molecular scaffold for the nascent autophagosome and reveal how they can bind ubiquitinated cargo. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
2013-01-01
In this paper, new bolaform cholesteryl imide derivatives with different spacers were designed and synthesized. Their gelation behaviors in 23 solvents were investigated, and some of them were found to be low molecular mass organic gelators. The experimental results indicated that these as-formed organogels can be regulated by changing the flexible/rigid segments in spacers and organic solvents. Suitable combination of flexible/rigid segments in molecular spacers in the present cholesteryl gelators is favorable for the gelation of organic solvents. Scanning electron microscopy and atomic force microscopy observations revealed that the gelator molecules self-assemble into different aggregates, from wrinkle and belt to fiber with the change of spacers and solvents. Spectral studies indicated that there existed different H-bond formations between imide groups and assembly modes, depending on the substituent spacers in molecular skeletons. The present work may give some insight into the design and character of new organogelators and soft materials with special molecular structures. PMID:24083361
NASA Astrophysics Data System (ADS)
Jiao, Tifeng; Gao, Fengqing; Zhang, Qingrui; Zhou, Jingxin; Gao, Faming
2013-10-01
In this paper, new bolaform cholesteryl imide derivatives with different spacers were designed and synthesized. Their gelation behaviors in 23 solvents were investigated, and some of them were found to be low molecular mass organic gelators. The experimental results indicated that these as-formed organogels can be regulated by changing the flexible/rigid segments in spacers and organic solvents. Suitable combination of flexible/rigid segments in molecular spacers in the present cholesteryl gelators is favorable for the gelation of organic solvents. Scanning electron microscopy and atomic force microscopy observations revealed that the gelator molecules self-assemble into different aggregates, from wrinkle and belt to fiber with the change of spacers and solvents. Spectral studies indicated that there existed different H-bond formations between imide groups and assembly modes, depending on the substituent spacers in molecular skeletons. The present work may give some insight into the design and character of new organogelators and soft materials with special molecular structures.
Altering DNA-Programmable Colloidal Crystallization Paths by Modulating Particle Repulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mary X.; Brodin, Jeffrey D.; Millan, Jaime A.
Colloidal crystal engineering with DNA can be used to realize precise control over nanoparticle (NP) arrangement. Here, we investigate a case of DNA-based assembly where the properties of DNA as a polyelectrolyte brush are employed to alter a hybridization-driven NP crystallization pathway. Using the co-assembly of DNA-conjugated proteins and spherical gold 2 nanoparticles (AuNPs) as a model system, we explore how steric repulsion between non-complementary, neighboring DNA-NPs due to overlapping DNA shells can influence their ligand-directed behavior. Specifically, our experimental data coupled with coarse-grained molecular dynamics (MD) simulations reveal that by changing factors related to NP repulsion, two structurally distinctmore » outcomes can be achieved. When steric repulsion between DNA-AuNPs is significantly greater than that between DNA-proteins, a lower packing density crystal lattice is favored over the structure that is predicted by design rules based on DNA-hybridization considerations alone. This is enabled by the large difference in DNA density on AuNPs versus proteins and can be tuned by modulating the flexibility, and thus conformational entropy, of the DNA on the constituent particles. At intermediate ligand flexibility, the crystallization pathways are energetically similar and the structural outcome can be adjusted using the density of DNA duplexes on DNA-AuNPs and by screening the Coulomb potential between them. Such lattices are shown to undergo dynamic reorganization upon changing salt concentration. These data help elucidate the structural considerations necessary for understanding repulsive forces in DNA-assembly and lay the groundwork for using them to increase architectural diversity in engineering colloidal crystals.« less
FLBEIA : A simulation model to conduct Bio-Economic evaluation of fisheries management strategies
NASA Astrophysics Data System (ADS)
Garcia, Dorleta; Sánchez, Sonia; Prellezo, Raúl; Urtizberea, Agurtzane; Andrés, Marga
Fishery systems are complex systems that need to be managed in order to ensure a sustainable and efficient exploitation of marine resources. Traditionally, fisheries management has relied on biological models. However, in recent years the focus on mathematical models which incorporate economic and social aspects has increased. Here, we present FLBEIA, a flexible software to conduct bio-economic evaluation of fisheries management strategies. The model is multi-stock, multi-fleet, stochastic and seasonal. The fishery system is described as a sum of processes, which are internally assembled in a predetermined way. There are several functions available to describe the dynamic of each process and new functions can be added to satisfy specific requirements.
Flexible Silk-Inorganic Nanocomposites: From Transparent to Highly Reflective
2010-02-16
assembly. The organized assembly of the silk fibroin with clay ( montmorillonite ) nanosheets results in highly transparent nanoscale films with...mechanical and optical properties of the nanocomposites. For that purpose we utilized individually dispersed, aluminosilicate layers of montmorillonite (MMT...to the thickness of an individual aluminosilicate layer of montmorillonite ,[43] and indicates that monolayer formation occurs upon adsorption (Fig. 2a
Preparation and Characterization of Monomodal Grapevine Virus A Capsid Protein.
Santana, Vinícius S; Mariutti, Ricardo B; Eberle, Raphael J; Ullah, Anwar; Caruso, Icaro P; Arni, Raghuvir K
2015-01-01
Grapevine virus A (GVA), a flexible filament of approximately 800 nm in length is composed of capsid subunits that spontaneously assembles around a positive sense genomic RNA. In addition to encapsidation, plant viruses capsid proteins (CPs) participate in other processes throughout infection and GVA CP is involved in cell-to-cell translocation of the virus. A protocol was developed to obtain low-molecular weight GVA-CP that is not prone to aggregation and spontaneous assembly and this was characterized by circular dichroism and dynamic light scattering. These results indicate the suitably of GVA-CP for X-ray crystallographic and NMR studies that should lead to the elucidation of the first three-dimensional structure of a flexible filamentous virus from the Betaflexiviridae family.
Iglesias, Daniel; Senokos, Evgeny; Alemán, Belén; Cabana, Laura; Navío, Cristina; Marcilla, Rebeca; Prato, Maurizio; Vilatela, Juan J; Marchesan, Silvia
2018-02-14
The assembly of aligned carbon nanotubes (CNTs) into fibers (CNTFs) is a convenient approach to exploit and apply the unique physico-chemical properties of CNTs in many fields. CNT functionalization has been extensively used for its implementation into composites and devices. However, CNTF functionalization is still in its infancy because of the challenges associated with preservation of CNTF morphology. Here, we report a thorough study of the gas-phase functionalization of CNTF assemblies using ozone which was generated in situ from a UV source. In contrast with liquid-based oxidation methods, this gas-phase approach preserves CNTF morphology, while notably increasing its hydrophilicity. The functionalized material is thoroughly characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Its newly acquired hydrophilicity enables CNTF electrochemical characterization in aqueous media, which was not possible for the pristine material. Through comparison of electrochemical measurements in aqueous electrolytes and ionic liquids, we decouple the effects of functionalization on pseudocapacitive reactions and quantum capacitance. The functionalized CNTF assembly is successfully used as an active material and a current collector in all-solid supercapacitor flexible devices with an ionic liquid-based polymer electrolyte.
Self-assembly programming of DNA polyominoes.
Ong, Hui San; Syafiq-Rahim, Mohd; Kasim, Noor Hayaty Abu; Firdaus-Raih, Mohd; Ramlan, Effirul Ikhwan
2016-10-20
Fabrication of functional DNA nanostructures operating at a cellular level has been accomplished through molecular programming techniques such as DNA origami and single-stranded tiles (SST). During implementation, restrictive and constraint dependent designs are enforced to ensure conformity is attainable. We propose a concept of DNA polyominoes that promotes flexibility in molecular programming. The fabrication of complex structures is achieved through self-assembly of distinct heterogeneous shapes (i.e., self-organised optimisation among competing DNA basic shapes) with total flexibility during the design and assembly phases. In this study, the plausibility of the approach is validated using the formation of multiple 3×4 DNA network fabricated from five basic DNA shapes with distinct configurations (monomino, tromino and tetrominoes). Computational tools to aid the design of compatible DNA shapes and the structure assembly assessment are presented. The formations of the desired structures were validated using Atomic Force Microscopy (AFM) imagery. Five 3×4 DNA networks were successfully constructed using combinatorics of these five distinct DNA heterogeneous shapes. Our findings revealed that the construction of DNA supra-structures could be achieved using a more natural-like orchestration as compared to the rigid and restrictive conventional approaches adopted previously. Copyright © 2016 Elsevier B.V. All rights reserved.
Gosal, Walraj S; Morten, Isobel J; Hewitt, Eric W; Smith, D Alastair; Thomson, Neil H; Radford, Sheena E
2005-08-26
Despite its importance in biological phenomena, a comprehensive understanding of the mechanism of amyloid formation remains elusive. Here, we use atomic force microscopy to map the formation of beta2-microglobulin amyloid fibrils with distinct morphologies and persistence lengths, when protein concentration, pH and ionic strength are varied. Using the resulting state-diagrams, we demonstrate the existence of two distinct competitive pathways of assembly, which define an energy landscape that rationalises the sensitivity of fibril morphology on the solution conditions. Importantly, we show that semi-flexible (worm-like) fibrils, which form rapidly during assembly, are kinetically trapped species, formed via a non-nucleated pathway that is explicitly distinct from that leading to the formation of the relatively rigid long-straight fibrils classically associated with amyloid. These semi-flexible fibrils also share an antibody epitope common to other protein oligomers that are known to be toxic species linked to human disease. The results demonstrate the heterogeneity of amyloid assembly, and have important implications for our understanding of the importance of oligomeric states in amyloid disease, the origins of prion strains, and the development of therapeutic strategies.
Double Dutch: A Tool for Designing Combinatorial Libraries of Biological Systems.
Roehner, Nicholas; Young, Eric M; Voigt, Christopher A; Gordon, D Benjamin; Densmore, Douglas
2016-06-17
Recently, semirational approaches that rely on combinatorial assembly of characterized DNA components have been used to engineer biosynthetic pathways. In practice, however, it is not practical to assemble and test millions of pathway variants in order to elucidate how different DNA components affect the behavior of a pathway. To address this challenge, we apply a rigorous mathematical approach known as design of experiments (DOE) that can be used to construct empirical models of system behavior without testing all variants. To support this approach, we have developed a tool named Double Dutch, which uses a formal grammar and heuristic algorithms to automate the process of DOE library design. Compared to designing by hand, Double Dutch enables users to more efficiently and scalably design libraries of pathway variants that can be used in a DOE framework and uniquely provides a means to flexibly balance design considerations of statistical analysis, construction cost, and risk of homologous recombination, thereby demonstrating the utility of automating decision making when faced with complex design trade-offs.
Newton-Euler Dynamic Equations of Motion for a Multi-body Spacecraft
NASA Technical Reports Server (NTRS)
Stoneking, Eric
2007-01-01
The Magnetospheric MultiScale (MMS) mission employs a formation of spinning spacecraft with several flexible appendages and thruster-based control. To understand the complex dynamic interaction of thruster actuation, appendage motion, and spin dynamics, each spacecraft is modeled as a tree of rigid bodies connected by spherical or gimballed joints. The method presented facilitates assembling by inspection the exact, nonlinear dynamic equations of motion for a multibody spacecraft suitable for solution by numerical integration. The building block equations are derived by applying Newton's and Euler's equations of motion to an "element" consisting of two bodies and one joint (spherical and gimballed joints are considered separately). Patterns in the "mass" and L'force" matrices guide assembly by inspection of a general N-body tree-topology system. Straightforward linear algebra operations are employed to eliminate extraneous constraint equations, resulting in a minimum-dimension system of equations to solve. This method thus combines a straightforward, easily-extendable, easily-mechanized formulation with an efficient computer implementation.
preAssemble: a tool for automatic sequencer trace data processing.
Adzhubei, Alexei A; Laerdahl, Jon K; Vlasova, Anna V
2006-01-17
Trace or chromatogram files (raw data) are produced by automatic nucleic acid sequencing equipment or sequencers. Each file contains information which can be interpreted by specialised software to reveal the sequence (base calling). This is done by the sequencer proprietary software or publicly available programs. Depending on the size of a sequencing project the number of trace files can vary from just a few to thousands of files. Sequencing quality assessment on various criteria is important at the stage preceding clustering and contig assembly. Two major publicly available packages--Phred and Staden are used by preAssemble to perform sequence quality processing. The preAssemble pre-assembly sequence processing pipeline has been developed for small to large scale automatic processing of DNA sequencer chromatogram (trace) data. The Staden Package Pregap4 module and base-calling program Phred are utilized in the pipeline, which produces detailed and self-explanatory output that can be displayed with a web browser. preAssemble can be used successfully with very little previous experience, however options for parameter tuning are provided for advanced users. preAssemble runs under UNIX and LINUX operating systems. It is available for downloading and will run as stand-alone software. It can also be accessed on the Norwegian Salmon Genome Project web site where preAssemble jobs can be run on the project server. preAssemble is a tool allowing to perform quality assessment of sequences generated by automatic sequencing equipment. preAssemble is flexible since both interactive jobs on the preAssemble server and the stand alone downloadable version are available. Virtually no previous experience is necessary to run a default preAssemble job, on the other hand options for parameter tuning are provided. Consequently preAssemble can be used as efficiently for just several trace files as for large scale sequence processing.
A New Self-Consistent Field Model of Polymer/Nanoparticle Mixture
NASA Astrophysics Data System (ADS)
Chen, Kang; Li, Hui-Shu; Zhang, Bo-Kai; Li, Jian; Tian, Wen-De
2016-02-01
Field-theoretical method is efficient in predicting assembling structures of polymeric systems. However, it’s challenging to generalize this method to study the polymer/nanoparticle mixture due to its multi-scale nature. Here, we develop a new field-based model which unifies the nanoparticle description with the polymer field within the self-consistent field theory. Instead of being “ensemble-averaged” continuous distribution, the particle density in the final morphology can represent individual particles located at preferred positions. The discreteness of particle density allows our model to properly address the polymer-particle interface and the excluded-volume interaction. We use this model to study the simplest system of nanoparticles immersed in the dense homopolymer solution. The flexibility of tuning the interfacial details allows our model to capture the rich phenomena such as bridging aggregation and depletion attraction. Insights are obtained on the enthalpic and/or entropic origin of the structural variation due to the competition between depletion and interfacial interaction. This approach is readily extendable to the study of more complex polymer-based nanocomposites or biology-related systems, such as dendrimer/drug encapsulation and membrane/particle assembly.
Architectonics: Design of Molecular Architecture for Functional Applications.
Avinash, M B; Govindaraju, Thimmaiah
2018-02-20
The term architectonics has its roots in the architectural and philosophical (as early as 1600s) literature that refers to "the theory of structure" and "the structure of theory", respectively. The concept of architectonics has been adapted to advance the field of molecular self-assembly and termed as molecular architectonics. In essence, the methodology of organizing molecular units in the required and controlled configurations to develop advanced functional systems for materials and biological applications comprises the field of molecular architectonics. This concept of designing noncovalent systems enables to focus on different functional aspects of designer molecules for biological and nonbiological applications and also strengthens our efforts toward the mastery over the art of controlled molecular self-assemblies. Programming complex molecular interactions and assemblies for specific functions has been one of the most challenging tasks in the modern era. Meticulously ordered molecular assemblies can impart remarkable developments in several areas spanning energy, health, and environment. For example, the well-defined nano-, micro-, and macroarchitectures of functional molecules with specific molecular ordering possess potential applications in flexible electronics, photovoltaics, photonic crystals, microreactors, sensors, drug delivery, biomedicine, and superhydrophobic coatings, among others. The functional molecular architectures having unparalleled properties are widely evident in various designs of Nature. By drawing inspirations from Nature, intended molecular architectures can be designed and developed to harvest various functions, as there is an inexhaustible resource and scope. In this Account, we present exquisite designer molecules developed by our group and others with an objective to master the art of molecular recognition and self-assembly for functional applications. We demonstrate the tailor-ability of molecular self-assemblies by employing biomolecules like amino acids and nucleobases as auxiliaries. Naphthalenediimide (NDI), perylenediimide (PDI), and few other molecular systems serve as functional modules. The effects of stereochemistry and minute structural modifications in the molecular designs on the supramolecular interactions, and construction of self-assembled zero-dimensional (OD), one-dimensional (1D), and two-dimensional (2D) nano- and microarchitectures like particles, spheres, cups, bowls, fibers, belts, helical belts, supercoiled helices, sheets, fractals, and honeycomb-like arrays are discussed in extensive detail. Additionally, we present molecular systems that showcase the elegant designs of coassembly, templated assembly, hierarchical assembly, transient self-assembly, chiral denaturation, retentive helical memory, self-replication, supramolecular regulation, supramolecular speciation, supernon linearity, dynamic pathway complexity, supramolecular heterojunction, living supramolecular polymerization, and molecular machines. Finally, we describe the molecular engineering principles learnt over the years that have led to several applications, namely, organic electronics, self-cleaning, high-mechanical strength, and tissue engineering.
Ten Hove, J B; Wang, J; van Leeuwen, F W B; Velders, A H
2017-12-07
The hierarchically controlled synthesis and characterization of self-assembling macromolecules and particles are key to explore and exploit new nanomaterials. Here we present a versatile strategy for constructing particle-in-a-box-in-a-box systems by assembling dendrimer-encapsulated gold nanoparticles (DENs) into dendrimicelles. This is realized by combining positively charged PAMAM dendrimers with a negative-neutral block copolymer. The number of particles per dendrimicelle can be controlled by mixing DENs with empty PAMAM dendrimers. The dendrimicelles are stable in solution for months and provide improved resistance for the nanoparticles against degradation. The dendrimicelle strategy provides a flexible platform with a plethora of options for variation in the type of nanoparticles, dendrimers and block copolymers used, and hence is tunable for applications ranging from nanomedicine to catalysis.
Transparent, flexible supercapacitors from nano-engineered carbon films.
Jung, Hyun Young; Karimi, Majid B; Hahm, Myung Gwan; Ajayan, Pulickel M; Jung, Yung Joon
2012-01-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.
Transparent, flexible supercapacitors from nano-engineered carbon films
Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon
2012-01-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications. PMID:23105970
Transparent, flexible supercapacitors from nano-engineered carbon films
NASA Astrophysics Data System (ADS)
Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon
2012-10-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.
Sodium heat engine system: Space application
NASA Astrophysics Data System (ADS)
Betz, Bryan H.; Sungu, Sabri; Vu, Hung V.
1994-08-01
This paper explores the possibility of utilizing the Sodium Heat Engine (SHE) or known as AMTEC (Alkali Metal Thermoelectric Converter), for electrical power generation in ``near earth'' geosynchronous orbit. The Sodium Heat Engine principle is very flexible and adapts well to a variety of physical geometries. The proposed system can be easily folded and then deployed into orbit without the need for on site assembly in space. Electric power generated from SHE engine can be used in communication satellites, in space station, and other applications such as electrical recharging of vehicles in space is one of the applications the Sodium Heat Engine could be adapted to serve.
Automation and Robotics for Space-Based Systems, 1991
NASA Technical Reports Server (NTRS)
Williams, Robert L., II (Editor)
1992-01-01
The purpose of this in-house workshop was to assess the state-of-the-art of automation and robotics for space operations from an LaRC perspective and to identify areas of opportunity for future research. Over half of the presentations came from the Automation Technology Branch, covering telerobotic control, extravehicular activity (EVA) and intra-vehicular activity (IVA) robotics, hand controllers for teleoperation, sensors, neural networks, and automated structural assembly, all applied to space missions. Other talks covered the Remote Manipulator System (RMS) active damping augmentation, space crane work, modeling, simulation, and control of large, flexible space manipulators, and virtual passive controller designs for space robots.
Portable Microcomputer Utilization for On-Line Pulmonary Testing
Pugh, R.; Fourre, J.; Karetzky, M.
1981-01-01
A host-remote pulmonary function testing system is described that is flexible, non-dedicated, inexpensive, and readily upgradable. It is applicable for laboratories considering computerization as well as for those which have converted to one of the already available but restricted systems. The remote unit has an 8 slot bus for memory, input-output boards, and an A-D converter. It has its own terminal for manual input and display of computed and measured data which is transmitted via an acoustic modem to a larger microcomputer. The program modules are written in Pascal-Z and/or the supplied Z-80 macro assembler as external procedures.
Integrated Avionics System (IAS)
NASA Technical Reports Server (NTRS)
Hunter, D. J.
2001-01-01
As spacecraft designs converge toward miniaturization and with the volumetric and mass constraints placed on avionics, programs will continue to advance the 'state of the art' in spacecraft systems development with new challenges to reduce power, mass, and volume. Although new technologies have improved packaging densities, a total system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and scalability to accommodate multiple missions. With these challenges in mind, a novel packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. This paper will describe the fundamental elements of the Integrated Avionics System (IAS), Horizontally Mounted Cube (HMC) hardware design, system and environmental test results. Additional information is contained in the original extended abstract.
Shi, Zhenyu; Wedd, Anthony G.; Gras, Sally L.
2013-01-01
The development of synthetic biology requires rapid batch construction of large gene networks from combinations of smaller units. Despite the availability of computational predictions for well-characterized enzymes, the optimization of most synthetic biology projects requires combinational constructions and tests. A new building-brick-style parallel DNA assembly framework for simple and flexible batch construction is presented here. It is based on robust recombination steps and allows a variety of DNA assembly techniques to be organized for complex constructions (with or without scars). The assembly of five DNA fragments into a host genome was performed as an experimental demonstration. PMID:23468883
Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles
NASA Astrophysics Data System (ADS)
Xia, Yunsheng; Nguyen, Trung Dac; Yang, Ming; Lee, Byeongdu; Santos, Aaron; Podsiadlo, Paul; Tang, Zhiyong; Glotzer, Sharon C.; Kotov, Nicholas A.
2011-09-01
Nanoparticles are known to self-assemble into larger structures through growth processes that typically occur continuously and depend on the uniformity of the individual nanoparticles. Here, we show that inorganic nanoparticles with non-uniform size distributions can spontaneously assemble into uniformly sized supraparticles with core-shell morphologies. This self-limiting growth process is governed by a balance between electrostatic repulsion and van der Waals attraction, which is aided by the broad polydispersity of the nanoparticles. The generic nature of the interactions creates flexibility in the composition, size and shape of the constituent nanoparticles, and leads to a large family of self-assembled structures, including hierarchically organized colloidal crystals.
An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly
NASA Astrophysics Data System (ADS)
Zhang, Bo; Cui, Tianhong
2011-02-01
The flexible cancer sensor based on layer-by-layer self-assembled graphene reported in this letter demonstrates features including ultrahigh sensitivity and low cost due to graphene material properties in nature, self-assembly technique, and polyethylene terephthalate substrate. According to the conductance change of self-assembled graphene, the label free and labeled graphene sensors are capable of detecting very low concentrations of prostate specific antigen down to 4 fg/ml (0.11 fM) and 0.4 pg/ml (11 fM), respectively, which are three orders of magnitude lower than carbon nanotube sensors under the same conditions of design, manufacture, and measurement.
2014-05-19
their acceptable thermal stability, Polyimides have established as a conventional substrate material for flexible interconnects, which can be...of the silver flake ink for the screen-printed interconnects, the assembled unit fulfills biocompatibility requirements in a limited manner ([29...30]). Even though biocompatibility of substrate [31] is fulfilled, toxicity of the insulating mask [32] and encapsulation need to be considered
Highly crystalline covalent organic frameworks from flexible building blocks.
Xu, Liqian; Ding, San-Yuan; Liu, Junmin; Sun, Junliang; Wang, Wei; Zheng, Qi-Yu
2016-03-28
Two novel 2D covalent organic frameworks (TPT-COF-1 and TPT-COF-2) were synthesized from the flexible 2,4,6-triaryloxy-1,3,5-triazine building blocks on a gram scale, which show high crystallinity and large surface area. The controllable formation of highly ordered frameworks is mainly attributed to the self-assembly Piedfort unit of 2,4,6-triaryloxy-1,3,5-triazine.
NASA Technical Reports Server (NTRS)
2000-01-01
A bundle of flexible pipes arcing toward the Vehicle Assembly Building (left) and Operations Support Building (right) presents an artistic design to travelers on nearby Kennedy Parkway and Saturn Causeway.
Experimentally Tracing the Key Steps in the Origin of Life: The Aromatic World
NASA Astrophysics Data System (ADS)
Ehrenfreund, Pascale; Rasmussen, Steen; Cleaves, James; Chen, Liaohai
2006-06-01
Life is generally believed to emerge on Earth, to be at least functionally similar to life as we know it today, and to be much simpler than modern life. Although minimal life is notoriously difficult to define, a molecular system can be considered alive if it turns resources into building blocks, replicates, and evolves. Primitive life may have consisted of a compartmentalized genetic system coupled with an energy-harvesting mechanism. How prebiotic building blocks self-assemble and transform themselves into a minimal living system can be broken into two questions: (1) How can prebiotic building blocks form containers, metabolic networks, and informational polymers? (2) How can these three components cooperatively organize to form a protocell that satisfies the minimal requirements for a living system? The functional integration of these components is a difficult puzzle that requires cooperation among all the aspects of protocell assembly: starting material, reaction mechanisms, thermodynamics, and the integration of the inheritance, metabolism, and container functionalities. Protocells may have been self-assembled from components different from those used in modern biochemistry. We propose that assemblies based on aromatic hydrocarbons may have been the most abundant flexible and stable organic materials on the primitive Earth and discuss their possible integration into a minimal life form. In this paper we attempt to combine current knowledge of the composition of prebiotic organic material of extraterrestrial and terrestrial origin, and put these in the context of possible prebiotic scenarios. We also describe laboratory experiments that might help clarify the transition from nonliving to living matter using aromatic material. This paper presents an interdisciplinary approach to interface state of the art knowledge in astrochemistry, prebiotic chemistry, and artificial life research.
FLASHFLOOD: A 3D Field-based similarity search and alignment method for flexible molecules
NASA Astrophysics Data System (ADS)
Pitman, Michael C.; Huber, Wolfgang K.; Horn, Hans; Krämer, Andreas; Rice, Julia E.; Swope, William C.
2001-07-01
A three-dimensional field-based similarity search and alignment method for flexible molecules is introduced. The conformational space of a flexible molecule is represented in terms of fragments and torsional angles of allowed conformations. A user-definable property field is used to compute features of fragment pairs. Features are generalizations of CoMMA descriptors (Silverman, B.D. and Platt, D.E., J. Med. Chem., 39 (1996) 2129.) that characterize local regions of the property field by its local moments. The features are invariant under coordinate system transformations. Features taken from a query molecule are used to form alignments with fragment pairs in the database. An assembly algorithm is then used to merge the fragment pairs into full structures, aligned to the query. Key to the method is the use of a context adaptive descriptor scaling procedure as the basis for similarity. This allows the user to tune the weights of the various feature components based on examples relevant to the particular context under investigation. The property fields may range from simple, phenomenological fields, to fields derived from quantum mechanical calculations. We apply the method to the dihydrofolate/methotrexate benchmark system, and show that when one injects relevant contextual information into the descriptor scaling procedure, better results are obtained more efficiently. We also show how the method works and include computer times for a query from a database that represents approximately 23 million conformers of seventeen flexible molecules.
Chen, Feng; Zhu, Ying-Jie
2016-12-27
Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly ordered self-assembly, and macroscopic processing of nanostructures. Hydroxyapatite (HAP), the major inorganic component of human bone and tooth, is an important biomaterial with high biocompatibility, bioactivity, and high thermal stability. Large-sized highly ordered HAP nanostructures are of great significance for applications in various fields and for understanding the formation mechanisms of bone and tooth. However, the synthesis of large-sized highly ordered HAP nanostructures remains a great challenge, especially for the preparation of large-sized highly ordered ultralong HAP nanowires because ultralong HAP nanowires are easily tangled and aggregated. Herein, we report our three main research findings: (1) the large-scale synthesis of highly flexible ultralong HAP nanowires with lengths up to >100 μm and aspect ratios up to >10000; (2) the demonstration of a strategy for the rapid automated production of highly flexible, fire-resistant, large-sized, self-assembled highly ordered ultralong HAP nanowires (SHOUHNs) at room temperature; and (3) the successful construction of various flexible fire-resistant HAP ordered architectures using the SHOUHNs, such as high-strength highly flexible nanostructured ropes (nanoropes), highly flexible textiles, and 3-D printed well-defined highly ordered patterns. The SHOUHNs are successively formed from the nanoscale to the microscale then to the macroscale, and the ordering direction of the ordered HAP structure is controllable. These ordered HAP architectures made from the SHOUHNs, such as highly flexible textiles, may be engineered into advanced functional products for applications in various fields, for example, fireproof clothing.
Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles
NASA Astrophysics Data System (ADS)
Riley, Conor T.; Smalley, Joseph S. T.; Brodie, Jeffrey R. J.; Fainman, Yeshaiahu; Sirbuly, Donald J.; Liu, Zhaowei
2017-02-01
Broadband absorbers are essential components of many light detection, energy harvesting, and camouflage schemes. Current designs are either bulky or use planar films that cause problems in cracking and delamination during flexing or heating. In addition, transferring planar materials to flexible, thin, or low-cost substrates poses a significant challenge. On the other hand, particle-based materials are highly flexible and can be transferred and assembled onto a more desirable substrate but have not shown high performance as an absorber in a standalone system. Here, we introduce a class of particle absorbers called transferable hyperbolic metamaterial particles (THMMP) that display selective, omnidirectional, tunable, broadband absorption when closely packed. This is demonstrated with vertically aligned hyperbolic nanotube (HNT) arrays composed of alternating layers of aluminum-doped zinc oxide and zinc oxide. The broadband absorption measures >87% from 1,200 nm to over 2,200 nm with a maximum absorption of 98.1% at 1,550 nm and remains large for high angles. Furthermore, we show the advantages of particle-based absorbers by transferring the HNTs to a polymer substrate that shows excellent mechanical flexibility and visible transparency while maintaining near-perfect absorption in the telecommunications region. In addition, other material systems and geometries are proposed for a wider range of applications.
All-SPEEK flexible supercapacitor exploiting laser-induced graphenization
NASA Astrophysics Data System (ADS)
Lamberti, A.; Serrapede, M.; Ferraro, G.; Fontana, M.; Perrucci, F.; Bianco, S.; Chiolerio, A.; Bocchini, S.
2017-09-01
Flexible supercapacitors have emerged as one of the more promising and efficient space-saving energy storage system for portable and wearable electronics. Laser-induced graphenization has been recently proposed as a powerful and scalable method to directly convert a polymeric substrate into a 3D network of few layer graphene as high-performance supercapacitor electrode. Unfortunately this outstanding process has been reported to be feasible only for few thermoplastic polymers, strongly limiting its future developments. Here we show that laser induced graphenization of sulfonated poly(ether ether ketone) (SPEEK) can be obtained and the mechanism of this novel process is proposed. The resulting material can act at the same time as binder-free electrode and current collector. Moreover SPEEK is also used both as separator and polymeric electrolyte allowing the assembling of an all-SPEEK flexible supercapacitor. Chemico-physical characterization provides deep understanding of the laser-induced graphenization process, reported on this polymer for the first time, while the device performance studied by cyclic voltammetry, charging-discharging, and impedance spectroscopy prove the enormous potential of the proposed approach.
Self-assembled three-dimensional chiral colloidal architecture
NASA Astrophysics Data System (ADS)
Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.
2017-11-01
Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.
NASA Technical Reports Server (NTRS)
1985-01-01
A mock-up for the development of the Engineering Model (EM) and Flight Model (FM) is introduced which shortens the delay of 7 weeks regarding the previous planned launch date of September 30, to about 3 weeks maintaining the 4 weeks reserve is discussed. As compared with the new assembly integration test (EM-AIT) schedule of March 11, 1985, the EM data handling system is on the critical path. For the attitude measurement and control subsystem, sufficiently flexibility is achieved through combination of dummies and EM hardware to catch up with the existing delays.
Conformational Asymmetry and Quasicrystal Approximants in Linear Diblock Copolymers
NASA Astrophysics Data System (ADS)
Schulze, Morgan W.; Lewis, Ronald M.; Lettow, James H.; Hickey, Robert J.; Gillard, Timothy M.; Hillmyer, Marc A.; Bates, Frank S.
2017-05-01
Small angle x-ray scattering experiments on three model low molar mass diblock copolymer systems containing minority polylactide and majority hydrocarbon blocks demonstrate that conformational asymmetry stabilizes the Frank-Kasper σ phase. Differences in block flexibility compete with space filling at constant density inducing the formation of polyhedral shaped particles that assemble into this low symmetry ordered state with local tetrahedral coordination. These results confirm predictions from self-consistent field theory that establish the origins of symmetry breaking in the ordering of block polymer melts subjected to compositional and conformational asymmetry.
Characterizing DNA Star-Tile-Based Nanostructures Using a Coarse-Grained Model.
Schreck, John S; Romano, Flavio; Zimmer, Matthew H; Louis, Ard A; Doye, Jonathan P K
2016-04-26
We use oxDNA, a coarse-grained model of DNA at the nucleotide level, to simulate large nanoprisms that are composed of multi-arm star tiles, in which the size of bulge loops that have been incorporated into the tile design is used to control the flexibility of the tiles. The oxDNA model predicts equilibrium structures for several different nanoprism designs that are in excellent agreement with the experimental structures as measured by cryoTEM. In particular we reproduce the chiral twisting of the top and bottom faces of the nanoprisms, as the bulge sizes in these structures are varied due to the greater flexibility of larger bulges. We are also able to follow how the properties of the star tiles evolve as the prisms are assembled. Individual star tiles are very flexible, but their structures become increasingly well-defined and rigid as they are incorporated into larger assemblies. oxDNA also finds that the experimentally observed prisms are more stable than their inverted counterparts, but interestingly this preference for the arms of the tiles to bend in a given direction only emerges after they are part of larger assemblies. These results show the potential for oxDNA to provide detailed structural insight as well as to predict the properties of DNA nanostructures and hence to aid rational design in DNA nanotechnology.
Face seal assembly for rotating drum
Morgan, J. Giles; Rennich, Mark J.; Whatley, Marvin E.
1982-01-01
A seal assembly comprises a tube rotatable about its longitudinal axis and having two longitudinally spaced flanges projecting radially outwardly from the outer surface thereof. Slidably positioned against one of the flanges is a seal ring, and disposed between this seal ring and the other flange are two rings that are forced apart by springs, one of the latter rings being attached to a flexible wall.
Flexible roof drill for low coal. Volume 2. Phase III and Phase IV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoup, N.H.
1977-09-01
Design specifications were developed for a flexible drilling and bolting system. The system configuration is based on the use of the Galis dual-boom roof drill as a vehicle for the drilling/bolting system. The WSU Flex-drill drivehead is mounted on the Galis drill boom and the Galis parts are modified to accommodate the revised system. The flexible drillhead supports a bolt bender/inserter designed by Bendix Corporation and is integrated into the system operation. A supplemental bolt thruster was designed to complete insertion of the roof bolt following operation and removal of the Bendix bender from the bolt shank. The complete cyclemore » of drilling a 1-3/8-in. diameter bolt hole, bending a roof bolt into the hole, thrusting the bolt head and washer to the roof surface, and final torquing of the bolt is manually controlled by the operator located in the new position behind the bolting line. The new operating position is beneath newly bolted roof in a safer location in back of the stab jack ad roof jacks positioning the drill boom and drivehead. The Flex-drill/bolting system prototype was constructed from both purchased components and parts specially fabricated in the shops for this design. This unit was assembled and test-operated with appropriate support equipment in a laboratory test stand. Numerous test holes were drilled in blocks of concrete at feed rates of 5 ft/min with drill rotation speeds of 360 rpm. The drill feeds uniformly and cuts smoothly with no difficulty in collection of dust or clogging of the drill bit. The holes drilled were straight, as evidence by passage of a 1-1/4-in. diameter bar full depth into the hole with no binding or evidence of curvature. The flexible drill is capable of drilling 8-ft-deep roof bolt holes in low coal 36 in. in height.« less
Infrared Imaging System for Studying Brain Function
NASA Technical Reports Server (NTRS)
Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath
2007-01-01
A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be stored in a relational database for comparison with corresponding responses previously observed in other subjects.
Cho, Seungse; Kang, Saewon; Pandya, Ashish; Shanker, Ravi; Khan, Ziyauddin; Lee, Youngsu; Park, Jonghwa; Craig, Stephen L; Ko, Hyunhyub
2017-04-25
Silver nanowire (AgNW) networks are considered to be promising structures for use as flexible transparent electrodes for various optoelectronic devices. One important application of AgNW transparent electrodes is the flexible touch screens. However, the performances of flexible touch screens are still limited by the large surface roughness and low electrical to optical conductivity ratio of random network AgNW electrodes. In addition, although the perception of writing force on the touch screen enables a variety of different functions, the current technology still relies on the complicated capacitive force touch sensors. This paper demonstrates a simple and high-throughput bar-coating assembly technique for the fabrication of large-area (>20 × 20 cm 2 ), highly cross-aligned AgNW networks for transparent electrodes with the sheet resistance of 21.0 Ω sq -1 at 95.0% of optical transmittance, which compares favorably with that of random AgNW networks (sheet resistance of 21.0 Ω sq -1 at 90.4% of optical transmittance). As a proof of concept demonstration, we fabricate flexible, transparent, and force-sensitive touch screens using cross-aligned AgNW electrodes integrated with mechanochromic spiropyran-polydimethylsiloxane composite film. Our force-sensitive touch screens enable the precise monitoring of dynamic writings, tracing and drawing of underneath pictures, and perception of handwriting patterns with locally different writing forces. The suggested technique provides a robust and powerful platform for the controllable assembly of nanowires beyond the scale of conventional fabrication techniques, which can find diverse applications in multifunctional flexible electronic and optoelectronic devices.
Chen, Chang-Hsiao; Chuang, Shih-Chang; Su, Huan-Chieh; Hsu, Wei-Lun; Yew, Tri-Rung; Chang, Yen-Chung; Yeh, Shih-Rung; Yao, Da-Jeng
2011-05-07
We designed, fabricated and tested a novel three-dimensional flexible microprobe to record neural signals of a lateral giant nerve fiber of the escape circuit of an American crayfish. An electrostatic actuation folded planar probes into three-dimensional neural probes with arbitrary orientations for neuroscientific applications. A batch assembly based on electrostatic forces simplified the fabrication and was non-toxic. A novel fabrication for these three-dimensional flexible probes used SU-8 and Parylene technology. The mechanical strength of the neural probe was great enough to penetrate into a bio-gel. A flexible probe both decreased the micromotion and alleviated tissue encapsulation of the implant caused by chronic inflammation of tissue when an animal breathes or moves. The cortex consisted of six horizontal layers, and the neurons of the cortex were arranged in vertical structures; the three-dimensional microelectrode arrays were suitable to investigate the cooperative activity for neurons in horizontal separate layers and in vertical cortical columns. With this flexible probe we recorded neural signals of a lateral giant cell from an American crayfish. The response amplitude of action potentials was about 343 µV during 1 ms period; the average recorded data had a ratio of signal to noise as great as 30.22 ± 3.58 dB. The improved performance of this electrode made feasible the separation of neural signals according to their distinct shapes. The cytotoxicity indicated a satisfactory biocompatibility and non-toxicity of the flexible device fabricated in this work. © The Royal Society of Chemistry 2011
Yu, Chenfei; Ma, Peipei; Zhou, Xi; Wang, Anqi; Qian, Tao; Wu, Shishan; Chen, Qiang
2014-10-22
Highly dispersed polypyrrole nanowires are decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composites exhibit high dispersibility, large effective surface area, and high electric conductivity. All-solid-state flexible supercapacitors are assembled based on the prepared composites, which show excellent electrochemical performances with a specific capacitance of 434.7 F g(-1) at a current density of 1 A g(-1). The as-fabricated supercapacitor also exhibits excellent cycling stability (88.1% capacitance retention after 5000 cycles) and exceptional mechanical flexibility. In addition, outstanding power and energy densities were obtained, demonstrating the significant potential of prepared material for flexible and portable energy storage devices.
Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Xue, Xin; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi
2015-05-27
A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm(-1). The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g(-1) even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.
NASA Astrophysics Data System (ADS)
Shields, Charles
Acoustic radiation forces offer a promising approach to rapidly arrange particles across a broad range of scales, yet it remains largely unexplored compared to classical methods like centrifugation, electrophoresis, and magnetophoresis. Acoustic forces offer numerous advantages, including scalability, programmability, and the ability to manipulate particles of variable composition (i.e., without narrowly defined electromagnetic or other properties). While some groups have shown the ability to concentrate particles with ultrasonic radiation, the capabilities and limitations for precise particle assembly and morphological control remain poorly understood. Here, I will discuss our recent efforts to explore the flexibility and limitations of acoustophoresis to rapidly arrange microparticles into organized and programmable structures. In order to execute these studies, we employ a simple ``sonocrystallization chamber'' that creates multidimensional bulk acoustic standing waves to propel particles toward the pressure nodes or antinodes, depending on their contrast factor. We can thus create thousands of size-limited assemblies within minutes. We pair these experiments with simulations and theory to model the migration kinetics and assembly patterns of different particles types. I will further discuss how we have extended these results to understand the lower particle size limit for assembly in systems such as gold nanoparticles with diameters <200 nm. Finally, I will show how we incorporated a simple light-based crosslinking approach for stabilizing the assembly in the small particle limit (i.e., beyond the acoustic focusing limit), which might enable use in a variety of plasmonic and photonic applications.
Flexible Electrostatic Technology for Capture and Handling Project
NASA Technical Reports Server (NTRS)
Keys, Andrew; Bryan, Tom; Horwitz, Chris; Rakoczy, John; Waggoner, Jason
2015-01-01
To NASA unfunded & planned missions: This new capability to sense proximity, flexibly align to, and attractively grip and capture practically any object in space without any pre-designed physical features or added sensors or actuators will enable or enhance many of MSFC's strategic emphasis areas in space transportation, and space systems such as: 1. A Flexible Electrostatic gripper can enable the capture, gripping and releasing of an extraterrestrial sample of different minerals or a sample canister (metallic or composite) without requiring a handle or grapple fixture.(B) 2. Flexible self-aligning in-space capture/soft docking or berthing of ISS resupply vehicles, pressurized modules, or nodes for in-space assembly and shielding, radiator, and solar Array deployment for space habitats (C) 3. The flexible electrostatic gripper when combined with a simple steerable extendible boom can grip, position, and release objects of various shapes and materials with low mass and power without any prior handles or physical accommodations or surface contamination for ISS experiment experiments and in-situ repair.(F)(G) 4. The Dexterous Docking concept previously proposed to allow simple commercial resupply ships to station-keep and capture either ISS or an Exploration vehicle for supply or fluid transfer lacked a self-sensing, compliant, soft capture gripper like FETCH that could retract and attach to a CBM. (I) 5. To enable a soft capture and de-orbit of a piece of orbital debris will require self-aligning gripping and holding an object wherever possible (thermal coverings or shields of various materials, radiators, solar arrays, antenna dishes) with little or no residual power while adding either drag or active low level thrust.(K) 6. With the scalability of the FETCH technology, small satellites can be captured and handled or can incorporate FETCH gripper to dock to and handle other small vehicles and larger objects for de-orbiting or mitigating Orbital debris (L) 7. Many of previous MSFC and NASA proposals or concepts can now be realized or simplified by the development of the this initial and future FETCH grippers including commercial resupply, Exploration vehicle assembly, Satellite servicing, and orbital debris removal since a major part of these missions is to align to and capture some handle. Completed Project (2013 - 2014) Flexible Electrostatic Technology for Capture & Handling Project Center Innovation Fund: MSFC CIF Program | Space Technology Mission Directorate (STMD) For more information visit techport.nasa.gov Some NASA technology projects are smaller (for example SBIR/STTR, NIAC and Center Innovation Fund), and will have less content than other, larger projects. Newly created projects may not sensors or injection of permanent adhesives. With gripping forces estimated between 0.5 and 2.5 pounds per square inch or 70-300 lb./sq. ft. of surface contact, the FETCH can turn-on and turn-off rapidly and repeatedly to enable sample handling, soft docking, in-space assembly, and precision relocation for accurate anchor adhesion.
Coarse-grained Simulations of Viral Assembly
NASA Astrophysics Data System (ADS)
Elrad, Oren M.
2011-12-01
The formation of viral capsids is a marvel of natural engineering and design. A large number (from 60 to thousands) of protein subunits assemble into complete, reproducible structures under a variety of conditions while avoiding kinetic and thermodynamic traps. Small single-stranded RNA viruses not only assemble their coat proteins in this fashion but also package their genome during the self-assembly process. Recent experiments have shown that the coat proteins are competent to assemble not merely around their own genomes but heterologous RNA, synthetic polyanions and even functionalized gold nanoparticles. Remarkably these viruses can even assemble around cargo not commensurate with their native state by adopting different morphologies. Understanding the properties that confer such exquisite precision and flexibility to the assembly process could aid biomedical research in the search for novel antiviral remedies, drug-delivery vehicles and contrast agents used in bioimaging. At the same time, viral assembly provides an excellent model system for the development of a statistical mechanical understanding of biological self-assembly, in the hopes of that we will identify some universal principles that underly such processes. This work consists of computational studies using coarse-grained representations of viral coat proteins and their cargoes. We find the relative strength of protein-cargo and protein-protein interactions has a profound effect on the assembly pathway, in some cases leading to assembly mechanisms that are markedly different from those found in previous work on the assembly of empty capsids. In the case of polymeric cargo, we find the first evidence for a previously theorized mechanism in which the polymer actively participates in recruiting free subunits to the assembly process through cooperative polymer-protein motions. We find that successful assembly is non-monotonic in protein-cargo affinity, such affinity can be detrimental to assembly if it becomes strong enough to stabilize frustrated intermediates that are incompatible with the ground state structure. In cases where the subunits are capable of assembly into different morphologies, we find that maintaining the precise spatial arrangement of subunits seen in the crystal structure is possible even if non-native interactions are disfavored by as little as the thermal energy.
Aulin, Christian; Karabulut, Erdem; Tran, Amy; Wågberg, Lars; Lindström, Tom
2013-08-14
The layer-by-layer (LbL) deposition method was used for the build-up of alternating layers of nanofibrillated cellulose (NFC) or carboxymethyl cellulose (CMC) with a branched, cationic polyelectrolyte, polyethyleneimine (PEI) on flexible poly (lactic acid) (PLA) substrates. With this procedure, optically transparent nanocellulosic films with tunable gas barrier properties were formed. 50 layer pairs of PEI/NFC and PEI/CMC deposited on PLA have oxygen permeabilities of 0.34 and 0.71 cm(3)·μm/m(2)·day·kPa at 23 °C and 50% relative humidity, respectively, which is in the same range as polyvinyl alcohol and ethylene vinyl alcohol. The oxygen permeability of these multilayer nanocomposites outperforms those of pure NFC films prepared by solvent-casting. The nanocellulosic LbL assemblies on PLA substrates was in detailed characterized using a quartz crystal microbalance with dissipation (QCM-D). Atomic force microscopy (AFM) reveals large structural differences between the PEI/NFC and the PEI/CMC assemblies, with the PEI/NFC assembly showing a highly entangled network of nanofibrils, whereas the PEI/CMC surfaces lacked structural features. Scanning electron microscopy images showed a nearly perfect uniformity of the nanocellulosic coatings on PLA, and light transmittance results revealed remarkable transparency of the LbL-coated PLA films. The present work demonstrates the first ever LbL films based on high aspect ratio, water-dispersible nanofibrillated cellulose, and water-soluble carboxymethyl cellulose polymers that can be used as multifunctional films and coatings with tailorable properties, such as gas barriers and transparency. Owing to its flexibility, transparency and high-performance gas barrier properties, these thin film assemblies are promising candidates for several large-scale applications, including flexible electronics and renewable packaging.
NASA Technical Reports Server (NTRS)
Elliott, John; Alkalai, Leon
2010-01-01
The International Space Station (ISS) has developed as a very capable center for scientific research in Lower Earth Orbit. An additional potential of the ISS that has not thus far been exploited, is the use of this orbiting plat-form for the assembly and launching of vehicles that could be sent to more distant destinations. This paper reports the results of a recent study that looked at an architecture and conceptual flight system design for a lunar transfer vehicle (LTV) that could be delivered to the ISS in segments, assembled, loaded with payload and launched from the ISS with the objective of delivering multiple small and micro satellites to lunar orbit. The design of the LTV was optimized for low cost and high payload capability, as well as ease of assembly. The resulting design would use solar electric propulsion (SEP) to carry a total payload mass of 250 kg from the ISS to a 100 km lunar orbit. A preliminary concept of operations was developed considering currently available delivery options and ISS capabili-ties that should prove flexible enough to accommodate a variety of payloads and missions. This paper will present an overview of the study, including key trades, mission and flight system design, and notional operational concept.
On the accuracy of modelling the dynamics of large space structures
NASA Technical Reports Server (NTRS)
Diarra, C. M.; Bainum, P. M.
1985-01-01
Proposed space missions will require large scale, light weight, space based structural systems. Large space structure technology (LSST) systems will have to accommodate (among others): ocean data systems; electronic mail systems; large multibeam antenna systems; and, space based solar power systems. The structures are to be delivered into orbit by the space shuttle. Because of their inherent size, modelling techniques and scaling algorithms must be developed so that system performance can be predicted accurately prior to launch and assembly. When the size and weight-to-area ratio of proposed LSST systems dictate that the entire system be considered flexible, there are two basic modeling methods which can be used. The first is a continuum approach, a mathematical formulation for predicting the motion of a general orbiting flexible body, in which elastic deformations are considered small compared with characteristic body dimensions. This approach is based on an a priori knowledge of the frequencies and shape functions of all modes included within the system model. Alternatively, finite element techniques can be used to model the entire structure as a system of lumped masses connected by a series of (restoring) springs and possibly dampers. In addition, a computational algorithm was developed to evaluate the coefficients of the various coupling terms in the equations of motion as applied to the finite element model of the Hoop/Column.
Microrheological Characterization of Collagen Systems: From Molecular Solutions to Fibrillar Gels
Shayegan, Marjan; Forde, Nancy R.
2013-01-01
Collagen is the most abundant protein in the extracellular matrix (ECM), where its structural organization conveys mechanical information to cells. Using optical-tweezers-based microrheology, we investigated mechanical properties both of collagen molecules at a range of concentrations in acidic solution where fibrils cannot form and of gels of collagen fibrils formed at neutral pH, as well as the development of microscale mechanical heterogeneity during the self-assembly process. The frequency scaling of the complex shear modulus even at frequencies of ∼10 kHz was not able to resolve the flexibility of collagen molecules in acidic solution. In these solutions, molecular interactions cause significant transient elasticity, as we observed for 5 mg/ml solutions at frequencies above ∼200 Hz. We found the viscoelasticity of solutions of collagen molecules to be spatially homogeneous, in sharp contrast to the heterogeneity of self-assembled fibrillar collagen systems, whose elasticity varied by more than an order of magnitude and in power-law behavior at different locations within the sample. By probing changes in the complex shear modulus over 100-minute timescales as collagen self-assembled into fibrils, we conclude that microscale heterogeneity appears during early phases of fibrillar growth and continues to develop further during this growth phase. Experiments in which growing fibrils dislodge microspheres from an optical trap suggest that fibril growth is a force-generating process. These data contribute to understanding how heterogeneities develop during self-assembly, which in turn can help synthesis of new materials for cellular engineering. PMID:23936454
NASA Astrophysics Data System (ADS)
Kamesh, D.; Pandiyan, R.; Ghosal, Ashitava
2012-03-01
Reaction wheel assemblies (RWAs) are momentum exchange devices used in fine pointing control of spacecrafts. Even though the spinning rotor of the reaction wheel is precisely balanced to minimize emitted vibration due to static and dynamic imbalances, precision instrument payloads placed in the neighborhood can always be severely impacted by residual vibration forces emitted by reaction wheel assemblies. The reduction of the vibration level at sensitive payloads can be achieved by placing the RWA on appropriate mountings. A low frequency flexible space platform consisting of folded continuous beams has been designed to serve as a mount for isolating a disturbance source in precision payloads equipped spacecrafts. Analytical and experimental investigations have been carried out to test the usefulness of the low frequency flexible platform as a vibration isolator for RWAs. Measurements and tests have been conducted at varying wheel speeds, to quantify and characterize the amount of isolation obtained from the reaction wheel generated vibration. These tests are further extended to other variants of similar design in order to bring out the best isolation for given disturbance loads. Both time and frequency domain analysis of test data show that the flexible beam platform as a mount for reaction wheels is quite effective and can be used in spacecrafts for passive vibration control.
An electron microscope for the aberration-corrected era.
Krivanek, O L; Corbin, G J; Dellby, N; Elston, B F; Keyse, R J; Murfitt, M F; Own, C S; Szilagyi, Z S; Woodruff, J W
2008-02-01
Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown.
An active locking mechanism for assembling 3D micro structures
NASA Astrophysics Data System (ADS)
Zhang, Ping; Mayyas, Mohammad; Lee, Woo Ho; Popa, Dan; Shiakolas, Panos; Stephanou, Harry; Chiao, J. C.
2007-01-01
Microassembly is an enabling technology to build 3D microsystems consisting of microparts made of different materials and processes. Multiple microparts can be connected together to construct complicated in-plane and out-of-plane microsystems by using compliant mechanical structures such as micro hinges and snap fasteners. This paper presents design, fabrication, and assembly of an active locking mechanism that provides mechanical and electrical interconnections between mating microparts. The active locking mechanism is composed of thermally actuated Chevron beams and sockets. Assembly by means of an active locking mechanism offers more flexibility in designing microgrippers as it reduces or minimizes mating force, which is one of the main reasons causing fractures in a microgripper during microassembly operation. Microgrippers, microparts, and active locking mechanisms were fabricated on a silicon substrate using the deep reactive ion etching (DRIE) processes with 100-um thick silicon on insulator (SOI) wafers. A precision robotic assembly platform with a dual microscope vision system was used to automate the manipulation and assembly processes of microparts. The assembly sequence includes (1) tether breaking and picking up of a micropart by using an electrothermally actuated microgripper, (2) opening of a socket area for zero-force insertion, (3) a series of translation and rotation of a mating micropart to align it onto the socket, (4) insertion of a micropart into the socket, and (5) deactivation and releasing of locking fingers. As a result, the micropart was held vertically to the substrate and locked by the compliance of Chevron beams. Microparts were successfully assembled using the active locking mechanism and the measured normal angle was 89.2°. This active locking mechanism provides mechanical and electrical interconnections, and it can potentially be used to implement a reconfigurable microrobot that requires complex assembly of multiple links and joints.
NASA Astrophysics Data System (ADS)
Ołdakowska, E.
2017-11-01
The flexible structures from the corrugated metal sheets are used in particular in the road building, especially as passages for animals. Easy and quick assembly, as well as lower realization costs when compared to the traditional solutions increase interest in such structures. Availability and variety of systems allows for searching for solutions which are the best and optimal in the economical range. The article presents the comparison of costs of the basic materials used in various systems of flexible structures from the corrugated metal sheets. In order to determine the costs of the material solutions the data for two systems used in Poland (for construction of the upper passages for animals) since 2008 have been used. The cost estimation for the basic materials required for realization of 1 m2 of the flexible structure from the corrugated steel sheets have been prepared with use of prices obtained directly from the Polish contractors and manufacturers, as well as process included in the quarterly information (Sekocenbud). The difference of prices of materials available on the market allows the investor for selecting the structure depending on the needs and financial possibilities, as well as for achieving some savings. The savings in case of purchasing sheets of identical parameters (thickness, profile characteristics) are from approx. 4% to 8% per 1 m2 of sheet. The connectors in form of bolts M20 cl. 8.8 of various lengths are an expense from 3.00 PLN to 3.50 PLN. Those values may seem low, but taking into consideration amounts connected with construction of many square meters of structure they may become very important factor in the total investment costs.
Flexible-Path Human Exploration
NASA Technical Reports Server (NTRS)
Sherwood, B.; Adler, M.; Alkalai, L.; Burdick, G.; Coulter, D.; Jordan, F.; Naderi, F.; Graham, L.; Landis, R.; Drake, B.;
2010-01-01
In the fourth quarter of 2009 an in-house, multi-center NASA study team briefly examined "Flexible Path" concepts to begin understanding characteristics, content, and roles of potential missions consistent with the strategy proposed by the Augustine Committee. We present an overview of the study findings. Three illustrative human/robotic mission concepts not requiring planet surface operations are described: assembly of very large in-space telescopes in cis-lunar space; exploration of near Earth objects (NEOs); exploration of Mars' moon Phobos. For each, a representative mission is described, technology and science objectives are outlined, and a basic mission operations concept is quantified. A fourth type of mission, using the lunar surface as preparation for Mars, is also described. Each mission's "capability legacy" is summarized. All four illustrative missions could achieve NASA's stated human space exploration objectives and advance human space flight toward Mars surface exploration. Telescope assembly missions would require the fewest new system developments. NEO missions would offer a wide range of deep-space trip times between several months and two years. Phobos exploration would retire several Marsclass risks, leaving another large remainder set (associated with entry, descent, surface operations, and ascent) for retirement by subsequent missions. And extended lunar surface operations would build confidence for Mars surface missions by addressing a complementary set of risks. Six enabling developments (robotic precursors, ISS exploration testbed, heavy-lift launch, deep-space-capable crew capsule, deep-space habitat, and reusable in-space propulsion stage) would apply across multiple program sequence options, and thus could be started even without committing to a specific mission sequence now. Flexible Path appears to be a viable strategy, with meaningful and worthy mission content.
Imaging demonstration of a flexible micro-OCT endobronchial probe (Conference Presentation)
NASA Astrophysics Data System (ADS)
Cui, Dongyao; Chu, Kengyeh K.; Ford, Timothy N.; Hyun, Daryl Chulho; Leung, Hui Min; Yin, Biwei; Birket, Susan E.; Solomon, George M.; Rowe, Steven M.; Tearney, Guillermo J.
2017-04-01
The human respiratory system is protected by a defense mechanism termed mucociliary clearance (MCC). Deficiency in MCC leads to respiratory obstruction and pulmonary infection, which often are the main causes of morbidity and mortality in diseases such as cystic fibrosis and chronic obstructive pulmonary disease (COPD). Studying key parameters that govern MCC, including ciliary beat frequency, velocity and volume of airway mucus transport, as well as periciliary liquid layer thickness are therefore of great importance in understanding human respiratory health. However, direct, in vivo visualization of ciliary function and MCC has been challenging, hindering the diagnosis of disease pathogenesis and mechanistic evaluation of novel therapeutics. Our laboratory has previously developed a 1-µm resolution optical coherence tomography method, termed Micro-OCT, which is a unique tool for visualizing the spatiotemporal features of ciliary function and MCC. We have previously described the design of a flexible 2.5 mm Micro-OCT probe that is compatible with standard flexible bronchoscopes. This device utilizes a common-path interferometer and annular sample arm apodization to attain a sharply focused spot over an extended depth of focus. Here, we present the most recent iteration of this probe and demonstrate its imaging performance in a mouse trachea tissue culture model. In addition, we have developed an ergonomic assembly for attaching the probe to a standard bronchoscope. The ergonomic assembly fixes the Micro-OCT probe's within the bronchoscope and contains a means transducing linear motion through the sheath so that the Micro-OCT beam can be scanned along the trachea. We have tested the performance of these devices for Micro-OCT imaging in an anatomically correct model of the human airway. Future studies are planned to use this technology to conduct Micro-OCT in human trachea and bronchi in vivo.
Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion.
Wang, Peng; Chang, Angela Y; Novosad, Valentyn; Chupin, Vladimir V; Schaller, Richard D; Rozhkova, Elena A
2017-07-25
We report on an entirely man-made nano-bio architecture fabricated through noncovalent assembly of a cell-free expressed transmembrane proton pump and TiO 2 semiconductor nanoparticles as an efficient nanophotocatalyst for H 2 evolution. The system produces hydrogen at a turnover of about 240 μmol of H 2 (μmol protein) -1 h -1 and 17.74 mmol of H 2 (μmol protein) -1 h -1 under monochromatic green and white light, respectively, at ambient conditions, in water at neutral pH and room temperature, with methanol as a sacrificial electron donor. Robustness and flexibility of this approach allow for systemic manipulation at the nanoparticle-bio interface toward directed evolution of energy transformation materials and artificial systems.
Concepts for the evolution of the Space Station Program
NASA Technical Reports Server (NTRS)
Michaud, Roger B.; Miller, Ladonna J.; Primeaux, Gary R.
1986-01-01
An evaluation is made of innovative but pragmatic waste management, interior and exterior orbital module construction, Space Shuttle docking, orbital repair operation, and EVA techniques applicable to the NASA Space Station program over the course of its evolution. Accounts are given of the Space Shuttle's middeck extender module, an on-orbit module assembly technique employing 'Pringles' stack-transportable conformal panels, a flexible Shuttle/Space Station docking tunnel, an 'expandable dome' for transfer of objects into the Space Station, and a Space Station dual-hatch system. For EVA operations, pressurized bubbles with articulating manipulator arms and EVA hard suits incorporating maneuvering, life support and propulsion capabilities, as well as an EVA gas propulsion system, are proposed. A Space Station ultrasound cleaning system is also discussed.
Stretchable inorganic nanomembrane electronics for healthcare devices
NASA Astrophysics Data System (ADS)
Kim, Dae-Hyeong; Son, Donghee; Kim, Jaemin
2015-05-01
Flexible or stretchable electronic devices for healthcare technologies have attracted much attention in terms of usefulness to assist doctors in their operating rooms and to monitor patients' physical conditions for a long period of time. Each device to monitor the patients' physiological signals real-time, such as strain, pressure, temperature, and humidity, etc. has been reported recently. However, their limitations are found in acquisition of various physiological signals simultaneously because all the functions are not assembled in one skin-like electronic system. Here, we describe a skin-like, multi-functional healthcare system, which includes single crystalline silicon nanomembrane based sensors, nanoparticle-integrated non-volatile memory modules, electro-resistive thermal actuators, and drug delivery. Smart prosthetics coupled with therapeutic electronic system would provide new approaches to personalized healthcare.
He, Junzhi; Zhao, Junhong; Run, Zhen; Sun, Mengjun; Pang, Huan
2015-02-01
Ultrathin CeVO4 nanobelts were successfully synthesized by a hydrothermal method. The thickness of a single nanobelt is about 2.4 nm, which can effectively shorten the ion diffusion and fasten the charge pathway. More importantly, ultrathin CeVO4 nanobelts and graphene are easily assembled as a flexible all-solid-state asymmetric device, which shows a highly flexible property and achieves a maximum energy density of 0.78 mW h cm(-3) and a high life cycle of >6000 cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Honda, Wataru; Harada, Shingo; Ishida, Shohei; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2015-08-26
A vertically integrated inorganic-based flexible complementary metal-oxide-semiconductor (CMOS) inverter with a temperature sensor with a high inverter gain of ≈50 and a low power consumption of <7 nW mm(-1) is demonstrated using a layer-by-layer assembly process. In addition, the negligible influence of the mechanical flexibility on the performance of the CMOS inverter and the temperature dependence of the CMOS inverter characteristics are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chak, Yew-Chung; Varatharajoo, Renuganth
2016-07-01
Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to the actual angular velocity. Numerical results are presented to demonstrate the effectiveness of the proposed scheme in tracking the desired attitude, as well as suppressing the elastic deflection effects of solar arrays during maneuver.
Methods and devices for fabricating and assembling printable semiconductor elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
Borenstein, Johann; Granosik, Grzegorz
2005-03-22
An apparatus for traversing obstacles having an elongated, round, flexible body that includes a plurality of segments interconnected by an integrated joint actuator assembly. The integrated joint actuator assembly includes a plurality of bellows-type actuators individually coupling adjacent segments to permit pivotal actuation of the apparatus therebetween. A controller is employed to maintain proper positional control and stiffness control while minimize air flow.
Methods and devices for fabricating and assembling printable semiconductor elements
Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao
2014-03-04
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
NASA Astrophysics Data System (ADS)
Wüster, S.; Rost, J.-M.
2018-02-01
We review Rydberg aggregates, assemblies of a few Rydberg atoms exhibiting energy transport through collective eigenstates, considering isolated atoms or assemblies embedded within clouds of cold ground-state atoms. We classify Rydberg aggregates, and provide an overview of their possible applications as quantum simulators for phenomena from chemical or biological physics. Our main focus is on flexible Rydberg aggregates, in which atomic motion is an essential feature. In these, simultaneous control over Rydberg-Rydberg interactions, external trapping and electronic energies, allows Born-Oppenheimer surfaces for the motion of the entire aggregate to be tailored as desired. This is illustrated with theory proposals towards the demonstration of joint motion and excitation transport, conical intersections and non-adiabatic effects. Additional flexibility for quantum simulations is enabled by the use of dressed dipole-dipole interactions or the embedding of the aggregate in a cold gas or Bose-Einstein condensate environment. Finally we provide some guidance regarding the parameter regimes that are most suitable for the realization of either static or flexible Rydberg aggregates based on Li or Rb atoms. The current status of experimental progress towards enabling Rydberg aggregates is also reviewed.
NASA Astrophysics Data System (ADS)
Zhang, Haitao; Su, Hai; Zhang, Lei; Zhang, Binbin; Chun, Fengjun; Chu, Xiang; He, Weidong; Yang, Weiqing
2016-11-01
Hierarchical structure design can greatly enhance the unique properties of primary material(s) but suffers from complicated preparation process and difficult self-assembly of materials with different dimensionalities. Here we report on the growth of single carbon tubular nanostructures with hierarchical structure (hCTNs) through a simple method based on direct conversion of carbon dioxide. Resorting to in-situ transformation and self-assembly of carbon micro/nano-structures, the obtained hCTNs are blood-like multichannel hierarchy composed of one large channel across the hCTNs and plenty of small branches connected to each other. Due to the unique pore structure and high surface area, these hCTN-based flexible supercapacitors possess the highest areal capacitance of ∼320 mF cm-2, as well as good rate-capability and excellent cycling stability (95% retention after 2500 cycles). It was established that this method can control the morphology, size, and density of hCTNs and effectively construct hCTNs well anchored to the various substrates. Our work unambiguously demonstrated the potential of hCTNs for large flexible supercapacitors and integrated energy management electronics.
Advanced Research Deposition System (ARDS) for processing CdTe solar cells
NASA Astrophysics Data System (ADS)
Barricklow, Keegan Corey
CdTe solar cells have been commercialized at the Gigawatt/year level. The development of volume manufacturing processes for next generation CdTe photovoltaics (PV) with higher efficiencies requires research systems with flexibility, scalability, repeatability and automation. The Advanced Research Deposition Systems (ARDS) developed by the Materials Engineering Laboratory (MEL) provides such a platform for the investigation of materials and manufacturing processes necessary to produce the next generation of CdTe PV. Limited by previous research systems, the ARDS was developed to provide process and hardware flexibility, accommodating advanced processing techniques, and capable of producing device quality films. The ARDS is a unique, in-line process tool with nine processing stations. The system was designed, built and assembled at the Materials Engineering Laboratory. Final assembly, startup, characterization and process development are the focus of this research. Many technical challenges encountered during the startup of the ARDS were addressed in this research. In this study, several hardware modifications needed for the reliable operation of the ARDS were designed, constructed and successfully incorporated into the ARDS. The effect of process condition on film properties for each process step was quantified. Process development to achieve 12% efficient baseline solar cell required investigation of discrete processing steps, troubleshooting process variation, and developing performance correlations. Subsequent to this research, many advances have been demonstrated with the ARDS. The ARDS consistently produces devices of 12% +/-.5% by the process of record (POR). The champion cell produced to date utilizing the ARDS has an efficiency of 16.2% on low cost commercial sodalime glass and utilizes advanced films. The ARDS has enabled investigation of advanced concepts for processing CdTe devices including, Plasma Cleaning, Plasma Enhanced Closed Space Sublimation (PECSS), Electron Reflector (ER) using Cd1-xMgxTe (CMT) structure and alternative device structures. The ARDS has been instrumental in the collaborative research with many institutions.
Molecular Strategies for Morphology Control in Semiconducting Polymers for Optoelectronics.
Rahmanudin, Aiman; Sivula, Kevin
2017-06-28
Solution-processable semiconducting polymers have been explored over the last decades for their potential applications in inexpensively fabricated transistors, diodes and photovoltaic cells. However, a remaining challenge in the field is to control the solid-state self-assembly of polymer chains in thin films devices, as the aspects of (semi)crystallinity, grain boundaries, and chain entanglement can drastically affect intra-and inter-molecular charge transport/transfer and thus device performance. In this short review we examine how the aspects of molecular weight and chain rigidity affect solid-state self-assembly and highlight molecular engineering strategies to tune thin film morphology. Side chain engineering, flexibly linking conjugation segments, and block co-polymer strategies are specifically discussed with respect to their effect on field effect charge carrier mobility in transistors and power conversion efficiency in solar cells. Example systems are taken from recent literature including work from our laboratories to illustrate the potential of molecular engineering semiconducting polymers.
Fabrication of ZnO Nanowire Based Piezoelectric Generators and Related Structures
NASA Astrophysics Data System (ADS)
Opoku, Charles; Dahiya, Abhishek Singh; Oshman, Christopher; Cayrel, Frederic; Poulin-Vittrant, Guylaine; Alquier, Daniel; Camara, Nicolas
Using vertically grown hydrothermal ZnO nanowires, we demonstrate the assembly of fully functional piezoelectric energy harvesters on plastics substrates. A seedless hydrothermal process is employed for the growth of single crystalline vertically orientated ZnO NWs at around 100oC. Flexible NG are assembled using ∼7 μm thick PDMS polymer matrix on a 3x3cm substrate. A representative device with an active area of 4cm2 is characterised revealing average output voltage generation of ∼22mV (±1.2) and -32mV (±0.16) in the positive and negative cycles after 3-4mm periodic deflection at 20Hz. A power density of ∼288nW/cm3 is estimated for the device. It is envisaged that such energy scavengers may find potential applications targeting self-powered systems, sensors and on-body charging of electronics.
Knowledge acquisition and rapid protyping of an expert system: Dealing with real world problems
NASA Technical Reports Server (NTRS)
Bailey, Patrick A.; Doehr, Brett B.
1988-01-01
The knowledge engineering and rapid prototyping phases of an expert system that does fault handling for a Solid Amine, Water Desorbed CO2 removal assembly for the Environmental Control and Life Support System for space based platforms are addressed. The knowledge acquisition phase for this project was interesting because it could not follow the textbook examples. As a result of this, a variety of methods were used during the knowledge acquisition task. The use of rapid prototyping and the need for a flexible prototype suggested certain types of knowledge representation. By combining various techniques, a representative subset of faults and a method for handling those faults was achieved. The experiences should prove useful for developing future fault handling expert systems under similar constraints.
Binder, Andreas; Lambert, Jayne; Morbitzer, Robert; Popp, Claudia; Ott, Thomas; Lahaye, Thomas; Parniske, Martin
2014-01-01
The Golden Gate (GG) modular assembly approach offers a standardized, inexpensive and reliable way to ligate multiple DNA fragments in a pre-defined order in a single-tube reaction. We developed a GG based toolkit for the flexible construction of binary plasmids for transgene expression in plants. Starting from a common set of modules, such as promoters, protein tags and transcribed regions of interest, synthetic genes are assembled, which can be further combined to multigene constructs. As an example, we created T-DNA constructs encoding multiple fluorescent proteins targeted to distinct cellular compartments (nucleus, cytosol, plastids) and demonstrated simultaneous expression of all genes in Nicotiana benthamiana, Lotus japonicus and Arabidopsis thaliana. We assembled an RNA interference (RNAi) module for the construction of intron-spliced hairpin RNA constructs and demonstrated silencing of GFP in N. benthamiana. By combination of the silencing construct together with a codon adapted rescue construct into one vector, our system facilitates genetic complementation and thus confirmation of the causative gene responsible for a given RNAi phenotype. As proof of principle, we silenced a destabilized GFP gene (dGFP) and restored GFP fluorescence by expression of a recoded version of dGFP, which was not targeted by the silencing construct. PMID:24551083
Assembly and Self-Assembly of Nanomembrane Materials-From 2D to 3D.
Huang, Gaoshan; Mei, Yongfeng
2018-04-01
Nanoscience and nanotechnology offer great opportunities and challenges in both fundamental research and practical applications, which require precise control of building blocks with micro/nanoscale resolution in both individual and mass-production ways. The recent and intensive nanotechnology development gives birth to a new focus on nanomembrane materials, which are defined as structures with thickness limited to about one to several hundred nanometers and with much larger (typically at least two orders of magnitude larger, or even macroscopic scale) lateral dimensions. Nanomembranes can be readily processed in an accurate manner and integrated into functional devices and systems. In this Review, a nanotechnology perspective of nanomembranes is provided, with examples of science and applications in semiconductor, metal, insulator, polymer, and composite materials. Assisted assembly of nanomembranes leads to wrinkled/buckled geometries for flexible electronics and stacked structures for applications in photonics and thermoelectrics. Inspired by kirigami/origami, self-assembled 3D structures are constructed via strain engineering. Many advanced materials have begun to be explored in the format of nanomembranes and extend to biomimetic and 2D materials for various applications. Nanomembranes, as a new type of nanomaterials, allow nanotechnology in a controllable and precise way for practical applications and promise great potential for future nanorelated products. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigation of fluctuations in angular velocity in magnetic memory devices
NASA Technical Reports Server (NTRS)
Meshkis, Y. A.; Potsyus, Z. Y.
1973-01-01
The fluctuations in the angular velocity of individual assemblies of a precision mechanical system were analyzed. The system was composed of an electric motor and a magnetic drum which were connected by a flexible coupling. A dynamic model was constructed which took into account the absence of torsion in the rigid shafts of the electric motor drive rotor and the magnetic drum. The motion was described by Lagrange differential equations of the second kind. Curves are developed to show the nature of amplitude fluctuation of the magnetic drum angular velocity at a specific excitation frequency. Additional curves show the amplitudes of fluctuation of the magnetic drum angular velocity compared to the quantity of damping at specific frequencies.
Self-assembling segmented coiled tubing
Raymond, David W.
2016-09-27
Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.
Assembly line inspection using neural networks
NASA Astrophysics Data System (ADS)
McAulay, Alastair D.; Danset, Paul; Wicker, Devert W.
1990-09-01
A user friendly flexible system for assembly line part inspection which learns good and bad parts is described. The system detects missing rivets and springs in clutch drivers. The system extracts features in a circular region of interest from a video image processes these using a Fast Fourier Transform for rotation invariance and uses this as inputs to a neural network trained with back-propagation. The advantage of a learning system is that expensive reprogramming and delays are avoided when a part is modified. Two cases were considered. The first one could use back lighting in that surface effects could be ignored. The second case required front lighting because the part had a cover which prevented light from passing through the parts. 100 percent classification of good and bad parts was achieved for both back-lit and front-lit cases with a limited number of training parts available. 1. BACKGROUND A vision system to inspect clutch drivers for missing rivets and springs at the Harrison Radiator Plant of General Motors (GM) works only on parts without covers Fig. 1 and is expensive. The system does not work when there are cover plates Fig. 2 that rule out back light passing through the area of missing rivets and springs. Also the system like all such systems must be reprogrammed at significant time and cost when the system needs to classify a different fault or a
Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin
2015-01-01
Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates. PMID:26159121
NASA Technical Reports Server (NTRS)
Williams, P.; Sagraniching, E.; Bennett, M.; Singh, R.
1991-01-01
A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight.
Jin, Yu; Chen, Hongyuan; Chen, Minghai; Liu, Ning; Li, Qingwen
2013-04-24
MnO2 has been widely studied as the pseudo-capactive electrode material of high-performance supercapacitors for its large operating voltage, low cost, and environmental friendliness. However, it suffers from low conductivity and being hardly handle as the electrodes of supercapacitors especially with flexibility, which largely limit its electrochemical performance and application. Herein, we report a novel ternary composite paper composed of reduced graphene sheet (GR)-patched carbon nanotube (CNT)/MnO2, which has controllable structures and prominent electrochemical properties for a flexible electrode of the supercapacitor. The composite paper was prepared by electrochemical deposition of MnO2 on a flexible CNT paper and further adsorption of GR on its surface to enhance the surface conductivity of the electrode and prohibit MnO2 nanospheres from detaching with the electrode. The presence of GR was found remarkably effective in enhancing the initial electrochemical capacitance of the composite paper from 280 F/g to 486.6 F/g. Furthermore, it ensures the stability of the capacitance after a long period of charge/discharge cycles. A flexible CNT/polyaniline/CNT/MnO2/GR asymmetric supercapacitor was assembled with this composite paper as an electrode and aqueous electrolyte gel as the separator. Its operating voltage reached 1.6 V, with an energy density at 24.8 Wh/kg. Such a composite structure derived from a multiscale assembly can offer not only a robust scaffold loading MnO2 nanospheres but also a conductive network for efficient ionic and electronic transport; thus, it is potentially promising as a novel electrode architecture for high-performance flexible energy storage devices.
Recombinant Expression of Tandem-HBc Virus-Like Particles (VLPs).
Stephen, Sam L; Beales, Lucy; Peyret, Hadrien; Roe, Amy; Stonehouse, Nicola J; Rowlands, David J
2018-01-01
The hepatitis B virus (HBV) core protein (HBc) has formed the building block for virus-like particle (VLP) production for more than 30 years. The ease of production of the protein, the robust ability of the core monomers to dimerize and assemble into intact core particles, and the strong immune responses they elicit when presenting antigenic epitopes all demonstrate its promise for vaccine development (reviewed in Pumpens and Grens (Intervirology 44: 98-114, 2001)). HBc has been modified in a number of ways in attempts to expand its potential as a novel vaccine platform. The HBc protein is predominantly α-helical in structure and folds to form an L-shaped molecule. The structural subunit of the HBc particle is a dimer of monomeric HBc proteins which together form an inverted T-shaped structure. In the assembled HBc particle the four-helix bundle formed at each dimer interface appears at the surface as a prominent "spike." The tips of the "spikes" are the preferred sites for the insertion of foreign sequences for vaccine purposes as they are the most highly exposed regions of the assembled particles. In the tandem-core modification two copies of the HBc protein are covalently linked by a flexible amino acid sequence which allows the fused dimer to fold correctly and assemble into HBc particles. The advantage of the modified structure is that the assembly of the dimeric subunits is defined and not formed by random association. This facilitates the introduction of single, larger sequences at the tip of each surface "spike," thus overcoming the conformational clashes contingent on insertion of large structures into monomeric HBc proteins.Differences in inserted sequences influence the assembly characteristics of the modified proteins, and it is important to optimize the design of each novel construct to maximize efficiency of assembly into regular VLPs. In addition to optimization of the construct, the expression system used can also influence the ability of recombinant structures to assemble into regular isometric particles. Here, we describe the production of recombinant tandem-core particles in bacterial, yeast and plant expression systems.
Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.
Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming
2017-05-31
Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.
NASA Technical Reports Server (NTRS)
Horsham, Gary A. P.; Schmidt, George R.; Gilland, James H.
2010-01-01
The strategy for accomplishing civilian exploration goals and objectives is in the process of a fundamental shift towards a potential new approach called Flexible Path. This paper suggests that a government-industry or public-private partnership in the commercial development of low Earth orbit to geostationary orbit (LEO-to-GEO (LTG)) space, following or in parallel with the commercialization of Earth-to-LEO and International Space Station (ISS) operations, could serve as a necessary, logical step that can be incorporated into the flexible path approach. A LTG satellite-servicing infrastructure and architecture concept is discussed within this new strategic context. The concept consists of a space harbor that serves as a transport facility for a fleet of specialized, fully- or semi-autonomous robotic servicing spacecraft. The baseline, conceptual system architecture is composed of a space harbor equipped with specialized servicer spacecraft; a satellite command, communication, and control system; a parts station; a fuel station or depot; and a fuel/parts replenishment transport. The commercial servicer fleet would consist of several types of spacecraft, each designed with specialized robotic manipulation subsystems to provide services such as refueling, upgrade, repair, inspection, relocation, and removal. The space harbor is conceptualized as an ISS-type, octagonal truss structure equipped with radiation tolerant subsystems. This space harbor would be primarily capable of serving as an operational platform for various commercially owned and operated servicer spacecraft positioned and docked symmetrically on four of the eight sides. Several aspects of this concept are discussed, such as: system-level feasibility in terms of ISS-truss-type infrastructure and subsystems emplacement and maintenance between LEO and GEO; infrastructure components assembly in LEO, derived from ISS assembly experience, and transfer to various higher orbital locations; the evolving Earth-to-orbit (ETO) capability to deliver humans and cargo to LEO for assembly purposes; system architectural definition, optimal orbital parameters, mass estimations, delta velocity ( V) estimations, power and propulsion options, and assessments of various critical technologies. Large-scale, robotic, LTG satellite servicing is considered as an essential economic pre-condition and next parallel or sequential step on the road toward exploration beyond LEO. Such a step might produce the necessary pre-requisite economic value that can be used by future decision makers to justify further investment in exploration beyond LEO.
Scholz, Matthew; Lo, Chien -Chi; Chain, Patrick S. G.
2014-10-01
Assembly of metagenomic samples is a very complex process, with algorithms designed to address sequencing platform-specific issues, (read length, data volume, and/or community complexity), while also faced with genomes that differ greatly in nucleotide compositional biases and in abundance. To address these issues, we have developed a post-assembly process: MetaGenomic Assembly by Merging (MeGAMerge). We compare this process to the performance of several assemblers, using both real, and in-silico generated samples of different community composition and complexity. MeGAMerge consistently outperforms individual assembly methods, producing larger contigs with an increased number of predicted genes, without replication of data. MeGAMerge contigs aremore » supported by read mapping and contig alignment data, when using synthetically-derived and real metagenomic data, as well as by gene prediction analyses and similarity searches. Ultimately, MeGAMerge is a flexible method that generates improved metagenome assemblies, with the ability to accommodate upcoming sequencing platforms, as well as present and future assembly algorithms.« less
Role of Polymer-grafted Nanoparticle Interactions in Supercrystal Self-Assembly
NASA Astrophysics Data System (ADS)
Horst, Nathan; Waltmann, Curt; Travesset, Alex
Many successful strategies are available for the programmable self-assembly of nanoparticle superlattices. In this talk, we discuss the the case of nanoparticles with grafted polymer ligands. For very short polymers, the phase diagram is rationalized by borrowing results from hard-sphere packing models. Although a clear correlation exists between the maximum of the packing fraction of hard spheres and supercrystal equilibrium phases found experimentally, these systems are flexible, which leads to clear deviations from the sphere packing model. Using theoretical and computational models, we present an investigation of the interactions of polymer-grafted nanoparticles, focusing on the role of the rigidity of the chain, and how it affects the resulting two and three-dimensional superlattice structures. Comparison with an experimental system of gold nanoparticles grafted with polyethylene glycol is also presented. Supported by the U.S. Department of Energy (U.S. DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358.
Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk
2011-09-20
A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers andmore » towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.« less
DNA Origami Patterned Colloids for Programmed Design and Chirality
NASA Astrophysics Data System (ADS)
Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna; Sha, Ruojie; Seeman, Ned; Chaikin, Paul
Micron size colloidal particles are scientifically important as model systems for equilibrium and active systems in physics, chemistry and biology and for technologies ranging from catalysis to photonics. The past decade has seen development of new particles with directional patches, lock and key reactions and specific recognition that guide assembly of structures such as complex crystalline arrays. What remains lacking is the ability to self-assemble structures of arbitrary shape with specific chirality, placement and orientation of neighbors. Here we demonstrate the adaptation of DNA origami nanotechnology to the micron colloidal scale with designed control of neighbor type, placement and dihedral angle. We use DNA origami belts with programmed flexibility, and functionality to pattern colloidal surfaces and bind particles to specific sites at specific angles and make uniquely right handed or left handed structures. The hybrid DNA origami colloid technology should allow the synthesis of designed functional structural and active materials. This work was supported as part of the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989.
A Soft Parallel Kinematic Mechanism.
White, Edward L; Case, Jennifer C; Kramer-Bottiglio, Rebecca
2018-02-01
In this article, we describe a novel holonomic soft robotic structure based on a parallel kinematic mechanism. The design is based on the Stewart platform, which uses six sensors and actuators to achieve full six-degree-of-freedom motion. Our design is much less complex than a traditional platform, since it replaces the 12 spherical and universal joints found in a traditional Stewart platform with a single highly deformable elastomer body and flexible actuators. This reduces the total number of parts in the system and simplifies the assembly process. Actuation is achieved through coiled-shape memory alloy actuators. State observation and feedback is accomplished through the use of capacitive elastomer strain gauges. The main structural element is an elastomer joint that provides antagonistic force. We report the response of the actuators and sensors individually, then report the response of the complete assembly. We show that the completed robotic system is able to achieve full position control, and we discuss the limitations associated with using responsive material actuators. We believe that control demonstrated on a single body in this work could be extended to chains of such bodies to create complex soft robots.
Saporito, Salvatore; Van Riper, David; Wakchaure, Ashwini
2017-01-01
The School Attendance Boundary Information System is a social science data infrastructure project that assembles, processes, and distributes spatial data delineating K through 12th grade school attendance boundaries for thousands of school districts in U.S. Although geography is a fundamental organizing feature of K to 12 education, until now school attendance boundary data have not been made readily available on a massive basis and in an easy-to-use format. The School Attendance Boundary Information System removes these barriers by linking spatial data delineating school attendance boundaries with tabular data describing the demographic characteristics of populations living within those boundaries. This paper explains why a comprehensive GIS database of K through 12 school attendance boundaries is valuable, how original spatial information delineating school attendance boundaries is collected from local agencies, and techniques for modeling and storing the data so they provide maximum flexibility to the user community. An important goal of this paper is to share the techniques used to assemble the SABINS database so that local and state agencies apply a standard set of procedures and models as they gather data for their regions. PMID:29151773
Saporito, Salvatore; Van Riper, David; Wakchaure, Ashwini
2013-01-01
The School Attendance Boundary Information System is a social science data infrastructure project that assembles, processes, and distributes spatial data delineating K through 12 th grade school attendance boundaries for thousands of school districts in U.S. Although geography is a fundamental organizing feature of K to 12 education, until now school attendance boundary data have not been made readily available on a massive basis and in an easy-to-use format. The School Attendance Boundary Information System removes these barriers by linking spatial data delineating school attendance boundaries with tabular data describing the demographic characteristics of populations living within those boundaries. This paper explains why a comprehensive GIS database of K through 12 school attendance boundaries is valuable, how original spatial information delineating school attendance boundaries is collected from local agencies, and techniques for modeling and storing the data so they provide maximum flexibility to the user community. An important goal of this paper is to share the techniques used to assemble the SABINS database so that local and state agencies apply a standard set of procedures and models as they gather data for their regions.
Martinez-Torrecuadrada, J L; Castón, J R; Castro, M; Carrascosa, J L; Rodriguez, J F; Casal, J I
2000-12-20
Infectious bursal disease virus (IBDV) capsid is formed by the processing of a large polyprotein and subsequent assembly of VPX/VP2 and VP3. To learn more about the processing of the polyprotein and factors affecting the correct assembly of the viral capsid in vitro, different constructs were made using two baculovirus transfer vectors, pFastBac and pAcYM1. Surprisingly, the expression of the capsid proteins gave rise to different types of particles in each system, as observed by electron microscopy and immunofluorescence. FastBac expression led to the production of only rigid tubular structures, similar to those described as type I in viral infection. Western blot analysis revealed that these rigid tubules are formed exclusively by VPX. These tubules revealed a hexagonal arrangement of units that are trimer clustered, similar to those observed in IBDV virions. In contrast, pAcYM1 expression led to the assembly of virus-like particles (VLPs), flexible tubules, and intermediate assembly products formed by icosahedral caps elongated in tubes, suggesting an aberrant morphogenesis. Processing of VPX to VP2 seems to be a crucial requirement for the proper morphogenesis and assembly of IBDV particles. After immunoelectron microscopy, VPX/VP2 was detected on the surface of tubules and VLPs. We also demonstrated that VP3 is found only on the inner surfaces of VLPs and caps of the tubular structures. In summary, assembly of VLPs requires the internal scaffolding of VP3, which seems to induce the closing of the tubular architecture into VLPs and, thereafter, the subsequent processing of VPX to VP2. Copyright 2000 Academic Press.
Minimus: a fast, lightweight genome assembler.
Sommer, Daniel D; Delcher, Arthur L; Salzberg, Steven L; Pop, Mihai
2007-02-26
Genome assemblers have grown very large and complex in response to the need for algorithms to handle the challenges of large whole-genome sequencing projects. Many of the most common uses of assemblers, however, are best served by a simpler type of assembler that requires fewer software components, uses less memory, and is far easier to install and run. We have developed the Minimus assembler to address these issues, and tested it on a range of assembly problems. We show that Minimus performs well on several small assembly tasks, including the assembly of viral genomes, individual genes, and BAC clones. In addition, we evaluate Minimus' performance in assembling bacterial genomes in order to assess its suitability as a component of a larger assembly pipeline. We show that, unlike other software currently used for these tasks, Minimus produces significantly fewer assembly errors, at the cost of generating a more fragmented assembly. We find that for small genomes and other small assembly tasks, Minimus is faster and far more flexible than existing tools. Due to its small size and modular design Minimus is perfectly suited to be a component of complex assembly pipelines. Minimus is released as an open-source software project and the code is available as part of the AMOS project at Sourceforge.
Motion synchronization of a mechanism to deploy and restow a truss beam
NASA Technical Reports Server (NTRS)
Lucy, M.
1988-01-01
The functions of the Control of Flexible Structures I (COFS I) deployer and retractor assembly (DRA) are primarily to deploy and retract the Mast I beam, and secondarily to latch, unlatch, and restow the DRA mechanism. The problems associated with the diagonal folding mechanism that retracts the beam is presented, the synchronization requirements critical to the process of restowing the beam is discussed, and a proposed solution to the problem of synchronization between the mechanical systems is presented. In addition, a detailed description is presented of the design and functioning of the DRA.
Structure of a designed protein cage that self-assembles into a highly porous cube
Lai, Yen-Ting; Reading, Eamonn; Hura, Greg L.; ...
2014-11-10
Natural proteins can be versatile building blocks for multimeric, self-assembling structures. Yet, creating protein-based assemblies with specific geometries and chemical properties remains challenging. Highly porous materials represent particularly interesting targets for designed assembly. Here we utilize a strategy of fusing two natural protein oligomers using a continuous alpha-helical linker to design a novel protein that self assembles into a 750 kDa, 225 Å diameter, cube-shaped cage with large openings into a 130 Å diameter inner cavity. A crystal structure of the cage showed atomic level agreement with the designed model, while electron microscopy, native mass spectrometry, and small angle x-raymore » scattering revealed alternate assembly forms in solution. These studies show that accurate design of large porous assemblies with specific shapes is feasible, while further specificity improvements will likely require limiting flexibility to select against alternative forms. Finally, these results provide a foundation for the design of advanced materials with applications in bionanotechnology, nanomedicine and material sciences.« less
Nuclear reactor removable radial shielding assembly having a self-bowing feature
Pennell, William E.; Kalinowski, Joseph E.; Waldby, Robert N.; Rylatt, John A.; Swenson, Daniel V.
1978-01-01
A removable radial shielding assembly for use in the periphery of the core of a liquid-metal-cooled fast-breeder reactor, for closing interassembly gaps in the reactor core assembly load plane prior to reactor criticality and power operation to prevent positive reactivity insertion. The assembly has a lower nozzle portion for inserting into the core support and a flexible heat-sensitive bimetallic central spine surrounded by blocks of shielding material. At refueling temperature and below the spine is relaxed and in a vertical position so that the tolerances permitted by the interassembly gaps allow removal and replacement of the various reactor core assemblies. During an increase in reactor temperature from refueling to hot standby, the bimetallic spine expands, bowing the assembly toward the core center line, exerting a radially inward gap-closing-force on the above core load plane of the reactor core assembly, closing load plane interassembly gaps throughout the core prior to startup and preventing positive reactivity insertion.
Visualization of Bacterial Microcompartment Facet Assembly Using High-Speed Atomic Force Microscopy
Sutter, Markus; Faulkner, Matthew; Aussignargues, Clément; ...
2015-11-30
Bacterial microcompartments (BMCs) are proteinaceous organelles widespread among bacterial phyla. They compartmentalize enzymes within a selectively permeable shell and play important roles in CO 2 fixation, pathogenesis, and microbial ecology. Here, we combine X-ray crystallography and high-speed atomic force microscopy to characterize, at molecular resolution, the structure and dynamics of BMC shell facet assembly. Our results show that preformed hexamers assemble into uniformly oriented shell layers, a single hexamer thick. We also observe the dynamic process of shell facet assembly. Shell hexamers can dissociate from and incorporate into assembled sheets, indicating a flexible intermolecular interaction. Furthermore, we demonstrate that themore » self-assembly and dynamics of shell proteins are governed by specific contacts at the interfaces of shell proteins. Our study provides novel insights into the formation, interactions, and dynamics of BMC shell facets, which are essential for the design and engineering of self-assembled biological nanoreactors and scaffolds based on BMC architectures.« less
NASA Astrophysics Data System (ADS)
Lin, Tao
Organic molecules are envisioned as the building blocks for design and fabrication of functional devices in future, owing to their versatility, low cost and flexibility. Although some devices such as organic light-emitting diode (OLED) have been already applied in our daily lives, the field is still in its infancy and numerous challenges still remain. In particular, fundamental understanding of the process of organic material fabrication at a molecular level is highly desirable. This thesis focuses on the design and fabrication of supramolecular and macromolecular nanostructures on a Au(111) surface through self-assembly, polymerization and a combination of two. We used scanning tunneling microscopy (STM) as an experimental tool and Monte Carlo (MC) and kinetic Monte Carlo (KMC) simulations as theoretical tools to characterize the structures of these systems and to investigate the mechanisms of the self-assembly and polymerization processes at a single-molecular level. The results of this thesis consist of four parts as below: Part I addresses the mechanisms of two-dimensional multicomponent supramolecular self-assembly via pyridyl-Fe-terpyridyl coordination. Firstly, we studied four types of self-assembled metal-organic systems exhibiting different dimensionalities using specifically-designed molecular building blocks. We found that the two-dimensional system is under thermodynamic controls while the systems of lower dimension are under kinetic controls. Secondly, we studied the self-assembly of a series of cyclic supramolecular polygons. Our results indicate that the yield of on-surface cyclic polygon structures is very low independent of temperature and concentration and this phenomenon can be attributed to a subtle competition between kinetic and thermodynamic controls. These results shed light on thermodynamic and kinetic controls in on-surface coordination self-assembly. Part II addresses the two-dimensional supramolecular self-assembly of porphyrin derivatives. Firstly, we investigated the coordination self-assembly of a series of peripheral bromo-phenyl and pyridyl substituted porphyrins with Fe. The self-assembly of the porphyrin derivatives in which phenyl groups are substituted by bromo-phenyl results in coordination networks exhibiting identical structures to that of the parent compounds, but contained nanopores that are functionalized by bromine substitutes. Secondly, we studied a two-dimensional coordination networks formed by 5,10,15,20-tetra(4-pyridyl)porphyrin and Fe. We discovered a novel coordination motif in which a pair of vertically aligned Fe atoms is ligated by four equatorial pyridyl groups. Lateral manipulation, vertical manipulation and tunneling spectroscopy were employed to characterize the networks. These novel coordination networks decorated with Br or vertically aligned Fe atoms may provide potential functions as nano-receptor, molecular magnetism or catalyst. Part III addresses the mechanism of on-surface Ullmann coupling reaction. We studied Pd- and Cu-catalyzed Ullmann coupling reactions between phenyl bromide functionalized porphyrin derivatives. We discovered that the reactions catalyzed by Pd or Cu can be described as a two-phase process that involves an initial activation followed by C-C bond formation. Analysis of rate constants of the Pd-catalyzed reactions allowed us to determine its activation energy as (0.41 +/- 0.03) eV. These results provide a quantitative understanding of on-surface Ullmann coupling reaction. Part IV addresses the on-surface self-assembly driven by a combination of coordination bonds and covalent bonds. Firstly, we utilized metal-directed template to control the on-surface polymerization process. Taking advantage of efficient topochemical enhancement owing to the conformation flexibility of the Cu-pyridyl bonds, macromolecular porphyrin structures that exhibit a narrow size distribution were synthesized. The results reveal that the polymerization process profited from the rich chemistry of Cu which catalyzed the C-C bond formation, controlled the size of the macromolecular products, and organized the macromolecules in a highly ordered manner on the surface. Secondly, we demonstrated a two-step approach for assembling metal-organic coordination network exhibiting very large pores. The first step involves obtaining one kind of building blocks via on-surface Ullmann coupling and the second step is coordination self-assembly. Moreover, the modulation of the surface-state electrons in the network was studied. These results provide new approaches to design and fabricate on-surface nanostructures. In summary, we resolved the structures and studied the on-surface assembly and reaction mechanisms of supramolecular and macromolecular nanostructures at a sub-molecular level. These fundamental studies may shed lights on design and fabrication of low-dimensional organic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousseau, Aymeric
2013-02-01
Several tools already exist to develop detailed plant model, including GT-Power, AMESim, CarSim, and SimScape. The objective of Autonomie is not to provide a language to develop detailed models; rather, Autonomie supports the assembly and use of models from design to simulation to analysis with complete plug-and-play capabilities. Autonomie provides a plug-and-play architecture to support this ideal use of modeling and simulation for math-based automotive control system design. Models in the standard format create building blocks, which are assembled at runtime into a simulation model of a vehicle, system, subsystem, or component to simulate. All parts of the graphical usermore » interface (GUI) are designed to be flexible to support architectures, systems, components, and processes not yet envisioned. This allows the software to be molded to individual uses, so it can grow as requirements and technical knowledge expands. This flexibility also allows for implementation of legacy code, including models, controller code, processes, drive cycles, and post-processing equations. A library of useful and tested models and processes is included as part of the software package to support a full range of simulation and analysis tasks, immediately. Autonomie also includes a configuration and database management front end to facilitate the storage, versioning, and maintenance of all required files, such as the models themselves, the model’s supporting files, test data, and reports. During the duration of the CRADA, Argonne has worked closely with GM to implement and demonstrate each one of their requirements. A use case was developed by GM for every requirement and demonstrated by Argonne. Each of the new features were verified by GM experts through a series of Gate. Once all the requirements were validated they were presented to the directors as part of GM Gate process.« less
Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling
Aguilera, Miguel; Bedia, Manuel G.; Barandiaran, Xabier E.
2016-01-01
The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of “internalist neuroscience.” A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We conclude with a reflection about how our results contribute in a more general way to current progress in neuroscientific research. PMID:27721746
Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling.
Aguilera, Miguel; Bedia, Manuel G; Barandiaran, Xabier E
2016-01-01
The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of "internalist neuroscience." A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We conclude with a reflection about how our results contribute in a more general way to current progress in neuroscientific research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darawsheh, M. D.; Barrios, L. A.; Roubeau, O.
Ligand 1,3-bis(3-(pyridin-2-yl)-1H-pyrazol-5-yl)benzene, L, forms mononuclear spin crossover complexes [FeL 3] 2+ with pendant arms that cause them to dimerize through numerous intermolecular interactions forming supramolecular (X@[FeL 3] 2) 3+ cations. Finally, hey have the flexibility to encapsulate Cl -, Br - or I -, which allow tuning the magnetic properties, in the solid state and in solution.
Darawsheh, M. D.; Barrios, L. A.; Roubeau, O.; ...
2016-12-05
Ligand 1,3-bis(3-(pyridin-2-yl)-1H-pyrazol-5-yl)benzene, L, forms mononuclear spin crossover complexes [FeL 3] 2+ with pendant arms that cause them to dimerize through numerous intermolecular interactions forming supramolecular (X@[FeL 3] 2) 3+ cations. Finally, hey have the flexibility to encapsulate Cl -, Br - or I -, which allow tuning the magnetic properties, in the solid state and in solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi
Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H{sub 2}ndc) or 4,4′-(hydroxymethylene)dibenzoic acid (H{sub 2}hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd{sub 2}(2,6-ndc){sub 2}(bpp)(DMF)]·2DMF (1) and [Cd{sub 3}(hmdb){sub 3}(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations inmore » 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process. - Graphical abstract: Compound 1 exhibits a 3D self-penetrating 6-connected framework based on dinuclear cluster, and 2 displays an infinite 3D ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster. The flexible 1,3-bis(4-pyridyl)propane ligand displays different conformations in 1 and 2, which successfully controlled by size-matching mixed ligands during the self-assembly process.« less
Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs.
Song, Yuanyuan; Jiang, Yaoquan; Shi, Liyi; Cao, Shaomei; Feng, Xin; Miao, Miao; Fang, Jianhui
2015-08-28
Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq(-1), equal to the electronic conductivity, which is about 500 S cm(-1). The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products.
NASA Astrophysics Data System (ADS)
Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.
2017-09-01
Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.
Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions.
Abraham, Alex; Chatterji, Apratim
2018-04-21
We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.
Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions
NASA Astrophysics Data System (ADS)
Abraham, Alex; Chatterji, Apratim
2018-04-01
We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.
Facilitated ion transport in all-solid-state flexible supercapacitors.
Choi, Bong Gill; Hong, Jinkee; Hong, Won Hi; Hammond, Paula T; Park, HoSeok
2011-09-27
The realization of highly flexible and all-solid-state energy-storage devices strongly depends on both the electrical properties and mechanical integrity of the constitutive materials and the controlled assembly of electrode and solid electrolyte. Herein we report the preparation of all-solid-state flexible supercapacitors (SCs) through the easy assembly of functionalized reduced graphene oxide (f-RGO) thin films (as electrode) and solvent-cast Nafion electrolyte membranes (as electrolyte and separator). In particular, the f-RGO-based SCs (f-RGO-SCs) showed a 2-fold higher specific capacitance (118.5 F/g at 1 A/g) and rate capability (90% retention at 30 A/g) compared to those of all-solid-state graphene SCs (62.3 F/g at 1A/g and 48% retention at 30 A/g). As proven by the 4-fold faster relaxation of the f-RGO-SCs than that of the RGO-SCs and more capacitive behavior of the former at the low-frequency region, these results were attributed to the facilitated ionic transport at the electrical double layer by means of the interfacial engineering of RGO by Nafion. Moreover, the superiority of all-solid-state flexible f-RGO-SCs was demonstrated by the good performance durability under the 1000 cycles of charging and discharging due to the mechanical integrity as a consequence of the interconnected networking structures. Therefore, this research provides new insight into the rational design and fabrication of all-solid-state flexible energy-storage devices as well as the fundamental understanding of ion and charge transport at the interface. © 2011 American Chemical Society
Sub-millisecond closed-loop feedback stimulation between arbitrary sets of individual neurons
Müller, Jan; Bakkum, Douglas J.; Hierlemann, Andreas
2012-01-01
We present a system to artificially correlate the spike timing between sets of arbitrary neurons that were interfaced to a complementary metal–oxide–semiconductor (CMOS) high-density microelectrode array (MEA). The system features a novel reprogrammable and flexible event engine unit to detect arbitrary spatio-temporal patterns of recorded action potentials and is capable of delivering sub-millisecond closed-loop feedback of electrical stimulation upon trigger events in real-time. The relative timing between action potentials of individual neurons as well as the temporal pattern among multiple neurons, or neuronal assemblies, is considered an important factor governing memory and learning in the brain. Artificially changing timings between arbitrary sets of spiking neurons with our system could provide a “knob” to tune information processing in the network. PMID:23335887
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Michael; Spindler, Jeff
For this DOE award, Acuity Brands Lighting developed a novel OLED luminaire system featuring panel-integrated drivers at each individual OLED panel. The luminaire has a base station that receives user commands and performs AC/DC conversion. A power line communication (PLC) protocol is used to provide both power and digital control to each panel. A 66-panel CanvisTM luminaire using state-of-art OLED panels based on this system was successfully constructed. This is a first demonstration of such a luminaire architecture. It is also the first known implementation of this number of independently addressable nodes with a PLC protocol. This luminaire system architecturemore » has added benefits in the flexibility of using multiple panel vendors for a given product, forward compatibility with future panels, and reduced luminaire wiring complexity and assembly time.« less
Real Time Coincidence Detection Engine for High Count Rate Timestamp Based PET
NASA Astrophysics Data System (ADS)
Tetrault, M.-A.; Oliver, J. F.; Bergeron, M.; Lecomte, R.; Fontaine, R.
2010-02-01
Coincidence engines follow two main implementation flows: timestamp based systems and AND-gate based systems. The latter have been more widespread in recent years because of its lower cost and high efficiency. However, they are highly dependent on the selected electronic components, they have limited flexibility once assembled and they are customized to fit a specific scanner's geometry. Timestamp based systems are gathering more attention lately, especially with high channel count fully digital systems. These new systems must however cope with important singles count rates. One option is to record every detected event and postpone coincidence detection offline. For daily use systems, a real time engine is preferable because it dramatically reduces data volume and hence image preprocessing time and raw data management. This paper presents the timestamp based coincidence engine for the LabPET¿, a small animal PET scanner with up to 4608 individual readout avalanche photodiode channels. The engine can handle up to 100 million single events per second and has extensive flexibility because it resides in programmable logic devices. It can be adapted for any detector geometry or channel count, can be ported to newer, faster programmable devices and can have extra modules added to take advantage of scanner-specific features. Finally, the user can select between full processing mode for imaging protocols and minimum processing mode to study different approaches for coincidence detection with offline software.
Performance analysis of flexible DSSC with binder addition
NASA Astrophysics Data System (ADS)
Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur
2016-04-01
Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO2 powder, butanol, and HCl were mixed for preparation of TiO2 paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO2 paste was deposited on ITO-PET plastic substrate with area of 1x1 cm2 by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyze morphology and surface area of the TiO2 photoelectrode microstructures. Dyed TiO2 photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.
Control of complex components with Smart Flexible Phased Arrays.
Casula, O; Poidevin, C; Cattiaux, G; Dumas, Ph
2006-12-22
The inspection is mainly performed in contact with ultrasonic wedge transducers; However, the shape cannot fit the changing geometries of components (butt weld, nozzle, elbow). The variable thickness of the coupling layer, between the wedge and the local surface, leads to beam distortions and losses of sensitivity. Previous studies have shown that these two phenomena contribute to reduce the inspection performances leading to shadow area, split beam.... Flexible phased arrays have been developed to fit the complex profile and improve such controls. The radiating surface is composed with independent piezoelectric elements mechanically assembled and a profilometer, embedded in the transducer, measures the local distortion. The computed shape is used by an algorithm to compute in real-time the adapted delay laws compensating the distortions of 2D or 3D profiles. Those delay laws are transferred to the real-time UT acquisition system, which applies them to the piezoelectric elements. This self-adaptive process preserves, during the scanning, the features of the focused beam (orientation and focal depth) in the specimen. To validate the concept of the Smart Flexible Phased Array Transducer, prototypes have been integrated to detect flaws machined in mock-ups with realistic irregular 2D and 3D shapes. Inspections have been carried out on samples showing the enhancement performances of the "Smart Flexible Phased Array" and validating the mechanical and acoustical behaviors of these probes.
Metal-Phenolic Carbon Nanocomposites for Robust and Flexible Energy-Storage Devices.
Oh, Jun Young; Jung, Yeonsu; Cho, Young Shik; Choi, Jaeyoo; Youk, Ji Ho; Fechler, Nina; Yang, Seung Jae; Park, Chong Rae
2017-04-22
Future electronics applications such as wearable electronics depend on the successful construction of energy-storage devices with superior flexibility and high electrochemical performance. However, these prerequisites are challenging to combine: External forces often cause performance degradation, whereas the trade-off between the required nanostructures for strength and electrochemical performance only results in diminished energy storage. Herein, a flexible supercapacitor based on tannic acid (TA) and carbon nanotubes (CNTs) with a unique nanostructure is presented. TA was self-assembled on the surface of the CNTs by metal-phenolic coordination bonds, which provides the hybrid film with both high strength and high pseudocapacitance. Besides 17-fold increased mechanical strength of the final composite, the hybrid film simultaneously exhibits excellent flexibility and volumetric capacitance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabricating 3D figurines with personalized faces.
Tena, J Rafael; Mahler, Moshe; Beeler, Thabo; Grosse, Max; Hengchin Yeh; Matthews, Iain
2013-01-01
We present a semi-automated system for fabricating figurines with faces that are personalised to the individual likeness of the customer. The efficacy of the system has been demonstrated by commercial deployments at Walt Disney World Resort and Star Wars Celebration VI in Orlando Florida. Although the system is semi automated, human intervention is limited to a few simple tasks to maintain the high throughput and consistent quality required for commercial application. In contrast to existing systems that fabricate custom heads that are assembled to pre-fabricated plastic bodies, our system seamlessly integrates 3D facial data with a predefined figurine body into a unique and continuous object that is fabricated as a single piece. The combination of state-of-the-art 3D capture, modelling, and printing that are the core of our system provide the flexibility to fabricate figurines whose complexity is only limited by the creativity of the designer.
Biomimetic assembly of polypeptide-stabilized CaCO(3) nanoparticles.
Zhang, Zhongping; Gao, Daming; Zhao, Hui; Xie, Chenggen; Guan, Guijian; Wang, Dapeng; Yu, Shu-Hong
2006-05-04
In this paper, we report a simple polypeptide-directed strategy for fabricating large spherical assembly of CaCO(3) nanoparticles. Stepwise growth and assembly of a large number of nanoparticles have been observed, from the formation of an amorphous liquidlike CaCO(3)-polypeptide precursor, to the crystallization and stabilization of polypeptide-capped nanoparticles, and eventually, the spherical assembly of nanoparticles. The "soft" poly(aspartate)-capping layer binding on a nanoparticle surface resulted in the unusual soft nature of nanoparticle assembly, providing a reservoir of primary nanoparticles with a moderate mobility, which is the basis of a new strategy for reconstructing nanoparticle assembly into complex nanoparticle architectures. Moreover, the findings of the secondary assembly of nanoparticle microspheres and the morphology transformation of nanoparticle assembly demonstrate a flexible and controllable pathway for manipulating the shapes and structures of nanoparticle assembly. In addition, the combination of the polypeptide with a double hydrophilic block copolymer (DHBC) allows it to possibly further control the shape and complexity of the nanoparticle assembly. A clear perspective is shown here that more complex nanoparticle materials could be created by using "soft" biological proteins or peptides as a mediating template at the organic-inorganic interface.
The continuous assembly and transfer of nanoelements
NASA Astrophysics Data System (ADS)
Kumar, Arun
Patterned nanoelements on flexible polymeric substrates at micro/nano scale at high rate, low cost, and commercially viable route offer an opportunity for manufacturing devices with micro/nano scale features. These micro/nano scale now made with various nanoelement can enhance the device functionality in sensing and switching due to their improved conductivity and better mechanical properties. In this research the fundamental understanding of high rate assembly and transfer of nanoelements has been developed. To achieve this objective, three sub topics were made. In the first step, the use of electrophoresis for the controlled assembly of CNT's on interdigitated templates has been shown. The time scale of assembly reported is shorter than the previously reported assembly time (60 seconds). The mass deposited was also predicted using the Hamaker's law. It is also shown that pre-patterned CNT's could be transferred from the rigid templates onto flexible polymeric substrates using a thermoforming process. The time scale of transfer is less than one minute (50 seconds) and was found to be dependent on polymer chemistry. It was found that CNT's preferentially transfer from Au electrode to non-polar polymeric substrates (polyurethane and polyethylene terephalathate glycol) in the thermoforming process. In the second step, a novel process (Pulsed Electrophoresis) has been shown for the first time to assist the assembly of conducting polyaniline on gold nanowire interdigitated templates. This technique offers dynamic control over heat build-up, which has been a main drawback in the DC electrophoresis and AC dielectrophoresis as well as the main cause of nanowire template damage. The use of this technique allowed higher voltages to be applied, resulting in shorter assembly times (e.g., 17.4 seconds, assembly resolution of 100 nm). The pre-patterned templates with PANi deposition were subsequently used to transfer the nanoscale assembled PANi from the rigid templates to thermoplastic polyurethane using the thermoforming process. In the third step, a novel integration of high rate pulsed electrophoretic assembly with thermally assisted transfer in a roll-to-roll process has been shown. This technique allowed the whole assembly and transfer process to take place in only 30 seconds. Further, a processing window is developed to control the percent area coverage of PANi with the aid of the belt speed. Also shown is the effect of different types of polymer on the quality of transfer, and it concluded that the transfer is affected by the polymer chemistry.
Compact light-emitting diode lighting ring for video-assisted thoracic surgery.
Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen
2014-01-01
In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.
Coffee-Driven Green Activation of Cellulose and Its Use for All-Paper Flexible Supercapacitors.
Lee, Donggue; Cho, Yoon-Gyo; Song, Hyun-Kon; Chun, Sang-Jin; Park, Sang-Bum; Choi, Don-Ha; Lee, Sun-Young; Yoo, JongTae; Lee, Sang-Young
2017-07-12
Cellulose, which is one of the most-abundant and -renewable natural resources, has been extensively explored as an alternative substance for electrode materials such as activated carbons. Here, we demonstrate a new class of coffee-mediated green activation of cellulose as a new environmentally benign chemical-activation strategy and its potential use for all-paper flexible supercapacitors. A piece of paper towel is soaked in espresso coffee (acting as a natural activating agent) and then pyrolyzed to yield paper-derived activated carbons (denoted as "EK-ACs"). Potassium ions (K + ), a core ingredient of espresso, play a viable role in facilitating pyrolysis kinetics and also in achieving a well-developed microporous structure in the EK-ACs. As a result, the EK-ACs show significant improvement in specific capacitance (131 F g -1 at a scan rate of 1.0 mV s -1 ) over control ACs (64 F g -1 ) obtained from the carbonization of a pristine paper towel. All-paper flexible supercapacitors are fabricated by assembling EK-ACs/carbon nanotube mixture-embedded paper towels (as electrodes), poly(vinyl alcohol)/KOH mixture-impregnated paper towels (as electrolytes), and polydimethylsiloxane-infiltrated paper towels (as packaging substances). The introduction of the EK-ACs (as an electrode material) and the paper towel (as a deformable and compliant substrate) enables the resulting all-paper supercapacitor to provide reliable and sustainable cell performance as well as exceptional mechanical flexibility. Notably, no appreciable loss in the cell capacitance is observed after repeated bending (over 5000 cycles) or multiple folding. The coffee-mediated green activation of cellulose and the resultant all-paper flexible supercapacitors open new material and system opportunities for eco-friendly high-performance flexible power sources.
Making a mixed-model line more efficient and flexible by introducing a bypass line
NASA Astrophysics Data System (ADS)
Matsuura, Sho; Matsuura, Haruki; Asada, Akiko
2017-04-01
This paper provides a design procedure for the bypass subline in a mixed-model assembly line. The bypass subline is installed to reduce the effect of the large difference in operation times among products assembled together in a mixed-model line. The importance of the bypass subline has been increasing in association with the rising necessity for efficiency and flexibility in modern manufacturing. The main topics of this paper are as follows: 1) the conditions in which the bypass subline effectively functions, and 2) how the load should be distributed between the main line and the bypass subline, depending on production conditions such as degree of difference in operation times among products and the mixing ratio of products. To address these issues, we analyzed the lower and the upper bounds of the line length. Based on the results, a design procedure and a numerical example are demonstrated.
Li, Na; Huang, Xuankai; Zhang, Haiyan; Li, Yunyong; Wang, Chengxin
2017-03-22
Improving mass loading while maintaining high transparency and large surface area in one self-supporting graphene film is still a challenge. Unfortunately, all of these factors are absolutely essential for enhancing the energy storage performance of transparent supercapacitors for practical applications. To solve the above bottleneck problem, we produce a novel self-supporting flexible and transparent graphene film (STF-GF) with wrinkled-wall-assembled opened-hollow polyhedron building units. Taking advantage of the microscopic morphology, the STF-GF exhibits improved mass loading with high transmittance (70.2% at 550 nm), a large surface area (1105.6 m 2 /g), and good electrochemical performance: high energy (552.3 μWh/cm 3 ), power densities (561.9 mW/cm 3 ), a superlong cycle life, and good cycling stability (the capacitance retention is ∼94.8% after 20,000 cycles).
NASA Astrophysics Data System (ADS)
Pandit, Bidhan; Dubal, Deepak P.; Gómez-Romero, Pedro; Kale, Bharat B.; Sankapal, Babasaheb R.
2017-03-01
A simple and scalable approach has been reported for V2O5 encapsulation over interconnected multi-walled carbon nanotubes (MWCNTs) network using chemical bath deposition method. Chemically synthesized V2O5/MWCNTs electrode exhibited excellent charge-discharge capability with extraordinary cycling retention of 93% over 4000 cycles in liquid-electrolyte. Electrochemical investigations have been performed to evaluate the origin of capacitive behavior from dual contribution of surface-controlled and diffusion-controlled charge components. Furthermore, a complete flexible solid-state, flexible symmetric supercapacitor (FSS-SSC) device was assembled with V2O5/MWCNTs electrodes which yield remarkable values of specific power and energy densities along with enhanced cyclic stability over liquid configuration. As a practical demonstration, the constructed device was used to lit the ‘VNIT’ acronym assembled using 21 LED’s.
Ahmadi, Mahdi; Rajamani, Rajesh; Sezen, Serdar
2017-10-01
Capacitive micro-sensors such as accelerometers, gyroscopes and pressure sensors are increasingly used in the modern electronic world. However, the in vivo use of capacitive sensing for measurement of pressure or other variables inside a human body suffers from significant errors due to stray capacitance. This paper proposes a solution consisting of a transparent thin flexible Faraday cage that surrounds the sensor. By supplying the active sensing voltage simultaneously to the deformable electrode of the capacitive sensor and to the Faraday cage, the stray capacitance during in vivo measurements can be largely eliminated. Due to the transparency of the Faraday cage, the top and bottom portions of a capacitive sensor can be accurately aligned and assembled together. Experimental results presented in the paper show that stray capacitance is reduced by a factor of 10 by the Faraday cage, when the sensor is subjected to a full immersion in water.
RPAP3 provides a flexible scaffold for coupling HSP90 to the human R2TP co-chaperone complex.
Martino, Fabrizio; Pal, Mohinder; Muñoz-Hernández, Hugo; Rodríguez, Carlos F; Núñez-Ramírez, Rafael; Gil-Carton, David; Degliesposti, Gianluca; Skehel, J Mark; Roe, S Mark; Prodromou, Chrisostomos; Pearl, Laurence H; Llorca, Oscar
2018-04-16
The R2TP/Prefoldin-like co-chaperone, in concert with HSP90, facilitates assembly and cellular stability of RNA polymerase II, and complexes of PI3-kinase-like kinases such as mTOR. However, the mechanism by which this occurs is poorly understood. Here we use cryo-EM and biochemical studies on the human R2TP core (RUVBL1-RUVBL2-RPAP3-PIH1D1) which reveal the distinctive role of RPAP3, distinguishing metazoan R2TP from the smaller yeast equivalent. RPAP3 spans both faces of a single RUVBL ring, providing an extended scaffold that recruits clients and provides a flexible tether for HSP90. A 3.6 Å cryo-EM structure reveals direct interaction of a C-terminal domain of RPAP3 and the ATPase domain of RUVBL2, necessary for human R2TP assembly but absent from yeast. The mobile TPR domains of RPAP3 map to the opposite face of the ring, associating with PIH1D1, which mediates client protein recruitment. Thus, RPAP3 provides a flexible platform for bringing HSP90 into proximity with diverse client proteins.
2015-01-01
Periderms present in plant barks are essential protective barriers to water diffusion, mechanical breakdown, and pathogenic invasion. They consist of densely packed layers of dead cells with cell walls that are embedded with suberin. Understanding the interplay of molecular structure, dynamics, and biomechanics in these cell wall-associated insoluble amorphous polymeric assemblies presents substantial investigative challenges. We report solid-state NMR coordinated with FT-IR and tensile strength measurements for periderms from native and wound-healing potatoes and from potatoes with genetically modified suberins. The analyses include the intact suberin aromatic–aliphatic polymer and cell-wall polysaccharides, previously reported soluble depolymerized transmethylation products, and undegraded residues including suberan. Wound-healing suberized potato cell walls, which are 2 orders of magnitude more permeable to water than native periderms, display a strikingly enhanced hydrophilic–hydrophobic balance, a degradation-resistant aromatic domain, and flexibility suggestive of an altered supramolecular organization in the periderm. Suppression of ferulate ester formation in suberin and associated wax remodels the periderm with more flexible aliphatic chains and abundant aromatic constituents that can resist transesterification, attenuates cooperative hydroxyfatty acid motions, and produces a mechanically compromised and highly water-permeable periderm. PMID:24502663
Xiao, Fei; Song, Jibin; Gao, Hongcai; Zan, Xiaoli; Xu, Rong; Duan, Hongwei
2012-01-24
The development of flexible electrodes is of considerable current interest because of the increasing demand for modern electronics, portable medical products, and compact energy devices. We report a modular approach to fabricating high-performance flexible electrodes by structurally integrating 2D-assemblies of nanoparticles with freestanding graphene paper. We have shown that the 2D array of gold nanoparticles at oil-water interfaces can be transferred on freestanding graphene oxide paper, leading to a monolayer of densely packed gold nanoparticles of uniform sizes loaded on graphene oxide paper. One major finding is that the postassembly electrochemical reduction of graphene oxide paper restores the ordered structure and electron-transport properties of graphene, and gives rise to robust and biocompatible freestanding electrodes with outstanding electrocatalytic activities, which have been manifested by the sensitive and selective detection of two model analytes: glucose and hydrogen peroxide (H(2)O(2)) secreted by live cells. The modular nature of this approach coupled with recent progress in nanocrystal synthesis and surface engineering opens new possibilities to systematically study the dependence of catalytic performance on the structural parameters and chemical compositions of the nanocrystals. © 2011 American Chemical Society
Jana, Achintya; Bhowmick, Sourav; Kaur, Supreet; Kashyap, Hemant K; Das, Neeladri
2017-02-14
The synthesis and characterization of a new pyrazine-based "flexible" and ditopic platinum(ii) organometallic molecule (3) is being reported. Flexibility in this molecule is due to the presence of ether functional groups that bridge the rigid core and periphery. Due to the presence of square planar Pt(ii) centers at the two ends, the molecule's potential to act as an acceptor building block in the construction of metallamacrocycles was tested. Upon reaction of 3 with various dicarboxylates in a 1 : 1 stoichiometric ratio, [2 + 2] self-assembled neutral metallacycles (M1-M3) were obtained in high yields. M1-M3 were characterized using multinuclear NMR, high resolution mass spectrometry and elemental analyses. The shape and dimensions of these supramolecular structures were also confirmed by optimizing the geometry using the density functional theory (DFT) approach. Computational studies suggest that M1-M3 are nanoscalar macrocyles. Furthermore, using isothermal titration calorimetry (ITC), it was shown that 3 can bind with picric acid (PA) to yield a 3·(PA) 2 host-guest complex. The magnitude of the binding constant indicates that 3 has significant affinity for PA.
Flexible integration of free-standing nanowires into silicon photonics.
Chen, Bigeng; Wu, Hao; Xin, Chenguang; Dai, Daoxin; Tong, Limin
2017-06-14
Silicon photonics has been developed successfully with a top-down fabrication technique to enable large-scale photonic integrated circuits with high reproducibility, but is limited intrinsically by the material capability for active or nonlinear applications. On the other hand, free-standing nanowires synthesized via a bottom-up growth present great material diversity and structural uniformity, but precisely assembling free-standing nanowires for on-demand photonic functionality remains a great challenge. Here we report hybrid integration of free-standing nanowires into silicon photonics with high flexibility by coupling free-standing nanowires onto target silicon waveguides that are simultaneously used for precise positioning. Coupling efficiency between a free-standing nanowire and a silicon waveguide is up to ~97% in the telecommunication band. A hybrid nonlinear-free-standing nanowires-silicon waveguides Mach-Zehnder interferometer and a racetrack resonator for significantly enhanced optical modulation are experimentally demonstrated, as well as hybrid active-free-standing nanowires-silicon waveguides circuits for light generation. These results suggest an alternative approach to flexible multifunctional on-chip nanophotonic devices.Precisely assembling free-standing nanowires for on-demand photonic functionality remains a challenge. Here, Chen et al. integrate free-standing nanowires into silicon waveguides and show all-optical modulation and light generation on silicon photonic chips.
Serra, Olga; Chatterjee, Subhasish; Figueras, Mercè; Molinas, Marisa; Stark, Ruth E
2014-03-10
Periderms present in plant barks are essential protective barriers to water diffusion, mechanical breakdown, and pathogenic invasion. They consist of densely packed layers of dead cells with cell walls that are embedded with suberin. Understanding the interplay of molecular structure, dynamics, and biomechanics in these cell wall-associated insoluble amorphous polymeric assemblies presents substantial investigative challenges. We report solid-state NMR coordinated with FT-IR and tensile strength measurements for periderms from native and wound-healing potatoes and from potatoes with genetically modified suberins. The analyses include the intact suberin aromatic-aliphatic polymer and cell-wall polysaccharides, previously reported soluble depolymerized transmethylation products, and undegraded residues including suberan. Wound-healing suberized potato cell walls, which are 2 orders of magnitude more permeable to water than native periderms, display a strikingly enhanced hydrophilic-hydrophobic balance, a degradation-resistant aromatic domain, and flexibility suggestive of an altered supramolecular organization in the periderm. Suppression of ferulate ester formation in suberin and associated wax remodels the periderm with more flexible aliphatic chains and abundant aromatic constituents that can resist transesterification, attenuates cooperative hydroxyfatty acid motions, and produces a mechanically compromised and highly water-permeable periderm.