Meng, Yuena; Wang, Kai; Zhang, Yajie; Wei, Zhixiang
2013-12-23
A highly flexible graphene free-standing film with hierarchical structure is prepared by a facile template method. With a porous structure, the film can be easily bent and cut, and forms a composite with another material as a scaffold. The 3D graphene film exhibits excellent rate capability and its capacitance is further improved by forming a composite with polyaniline nanowire arrays. The flexible hierarchical composite proves to be an excellent electrode material for flexible supercapacitors. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Goto, Taku; Iida, Masaki; Tan, Helen; Liu, Chang; Mayumi, Koichi; Maeda, Rina; Kitahara, Koichi; Hatakeyama, Kazuto; Ito, Tsuyohito; Shimizu, Yoshiki; Yokoyama, Hideaki; Kimura, Kaoru; Ito, Kohzo; Hakuta, Yukiya; Terashima, Kazuo
2018-03-01
We have developed a thermally conductive flexible elastomer as a composite material with slide-ring (SR) materials and boron nitride (BN) particles surface-modified via plasma in solution. This composite shows excellent properties as a flexible insulator for thermal management. Surface modification of BN particles using plasma in solution increases the tensile strength, extension ratio at break, toughness, and rubber characteristics of the composites, compared to SR and non-modified BN, while the Young's modulus values are identical. Furthermore, the thermal conductivity also improved as a result of plasma surface modification.
NASA Astrophysics Data System (ADS)
Özdemir, T.; Güngör, A.; Reyhancan, İ. A.
2017-02-01
In this study, EPDM and boron trioxide composite was produced and mechanical, thermal and neutron shielding tests were performed. EPDM rubber (Ethylene Propylene Diene Monomer) having a considerably high hydrogen content is an effective neutron shielding material. On the other hand, the materials containing boron components have effective thermal neutron absorption crossection. The composite of EPDM and boron trioxide would be an effective solution for both respects of flexibility and effectiveness for developing a neutron shielding material. Flexible nature of EPDM would be a great asset for the shielding purpose in case of intervention action to a radiation accident. The theoretical calculations and experimental neutron absorption tests have shown that the results were in parallel and an effective neutron shielding has been achieved with the use of the developed composite material.
Flexible composite material with phase change thermal storage
NASA Technical Reports Server (NTRS)
Buckley, Theresa M. (Inventor)
2001-01-01
A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.
Flexible composite material with phase change thermal storage
NASA Technical Reports Server (NTRS)
Buckley, Theresa M. (Inventor)
1999-01-01
A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.
Aerogel/polymer composite materials
NASA Technical Reports Server (NTRS)
Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)
2010-01-01
The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.
Aerogel / Polymer Composite Materials
NASA Technical Reports Server (NTRS)
Smith, Trent M. (Inventor); Clayton, LaNetra M. (Inventor); Fesmire, James E. (Inventor); Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor)
2017-01-01
The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.
A Study of Flexible Composites for Expandable Space Structures
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.
2016-01-01
Payload volume for launch vehicles is a critical constraint that impacts spacecraft design. Deployment mechanisms, such as those used for solar arrays and antennas, are approaches that have successfully accommodated this constraint, however, providing pressurized volumes that can be packaged compactly at launch and expanded in space is still a challenge. One approach that has been under development for many years is to utilize softgoods - woven fabric for straps, cloth, and with appropriate coatings, bladders - to provide this expandable pressure vessel capability. The mechanics of woven structure is complicated by a response that is nonlinear and often nonrepeatable due to the discrete nature of the woven fiber architecture. This complexity reduces engineering confidence to reliably design and certify these structures, which increases costs due to increased requirements for system testing. The present study explores flexible composite materials systems as an alternative to the heritage softgoods approach. Materials were obtained from vendors who utilize flexible composites for non-aerospace products to determine some initial physical and mechanical properties of the materials. Uniaxial mechanical testing was performed to obtain the stress-strain response of the flexible composites and the failure behavior. A failure criterion was developed from the data, and a space habitat application was used to provide an estimate of the relative performance of flexible composites compared to the heritage softgoods approach. Initial results are promising with a 25% mass savings estimated for the flexible composite solution.
Mechanical behaviour study on SBR/EVA composite for FDM feedstock fabrication
NASA Astrophysics Data System (ADS)
Raveverma, P.; Ibrahim, M.; Sa'ude, N.; Yarwindran, M.; Nasharuddin, M.
2017-04-01
This paper presents the research development of a new SBR/EVA composite flexible feedstock material by the injection moulding machine. The material consists of poly (ethylene-co-vinyl acetate) in styrene butadiene rubber cross-linked by Dicumyl Peroxide. In this study, the mechanical behaviour of injection moulded SBR/EVA composite with different blend ratio investigated experimentally. The formulations of blend ratio with several combinations of a new SBR/EVA flexible feedstock was done by volume percentage (vol. %). Based on the result obtained from the mechanical testing done which is tensile and hardness the composite of SBR/EVA has the high potency to be fabricated as the flexible filament feedstock. The ratio of 80:20 which as an average hardness and tensile strength proved to be the suitable choice to be fabricated as the flexible filament feedstock. The study has reached its goals on the fabricating and testing a new PMC which is flexible.
NASA Technical Reports Server (NTRS)
Keller, Michael W. (Inventor); White, Scott R. (Inventor); Beiermann, Brett A. (Inventor); Sottos, Nancy R. (Inventor)
2016-01-01
A laminate material may include a first flexible layer, and a self-healing composite layer in contact with the first flexible layer. The composite layer includes an elastomer matrix, a plurality of first capsules including a polymerizer, and a corresponding activator for the polymerizer. The laminate material may self-heal when subjected to a puncture or a tear.
Deployment Testing of Flexible Composite Hinges in Bi-Material Beams
NASA Technical Reports Server (NTRS)
Sauder, Jonathan F.; Trease, Brian
2016-01-01
Composites have excellent properties for strength, thermal stability, and weight. However, they are traditionally highly rigid, and when used in deployable structures require hinges bonded to the composite material, which increases complexity and opportunities for failure. Recent research in composites has found by adding an elastomeric soft matrix, often silicone instead of an epoxy, the composite becomes flexible. This work explores the deployment repeatability of silicone matrix composite hinges which join rigid composite beams. The hinges were found to have sub-millimeter deployment repeatability. Also, an interesting creep effect was discovered, that a hinges deployment error would decrease with time.
An, Hyeunhwan; Karas, Dale; Kim, Byung-Wook; Trabia, Sarah; Moon, Jaeyun
2018-07-06
Flexible thermoelectric (TE) materials, which are devices that convert thermal gradients to electrical energy, have attracted interest for practical energy-harvesting/recovery applications. However, as compared with p-type materials, the progress on the development of n-type TE flexible materials has been slow due to difficulties involved in n-type doping techniques. This study used high mobility carbon nanotubes (CNTs) to a uniformly mixed hybrid-composite, resulting in an enhanced power factor by increasing electrical conductivity. The energy filtering effect and stoichiometric composition of the material used, bismuth telluride (Bi 2 Te 3 ) correlated to a significant enhancement in TE performance, with a power factor of 225.9 μW m -1 K -2 at room temperature: a factor of 65 higher than as-fabricated composite film. This paper describes a simplified synthesis for the preparation of the composite film that eliminates time-intensive and cost-prohibitive processing, traditionally seen during extrusion and dicing inorganic manufacturing. The resulting post-annealed composite film consisting of Bi 2 Te 3 nanowire and CNTs demonstrate a promising candidate for material that can be used for an n-type TE device that has improved energy conversion efficiency.
NASA Astrophysics Data System (ADS)
An, Hyeunhwan; Karas, Dale; Kim, Byung-Wook; Trabia, Sarah; Moon, Jaeyun
2018-07-01
Flexible thermoelectric (TE) materials, which are devices that convert thermal gradients to electrical energy, have attracted interest for practical energy-harvesting/recovery applications. However, as compared with p-type materials, the progress on the development of n-type TE flexible materials has been slow due to difficulties involved in n-type doping techniques. This study used high mobility carbon nanotubes (CNTs) to a uniformly mixed hybrid-composite, resulting in an enhanced power factor by increasing electrical conductivity. The energy filtering effect and stoichiometric composition of the material used, bismuth telluride (Bi2Te3) correlated to a significant enhancement in TE performance, with a power factor of 225.9 μW m‑1K‑2 at room temperature: a factor of 65 higher than as-fabricated composite film. This paper describes a simplified synthesis for the preparation of the composite film that eliminates time-intensive and cost-prohibitive processing, traditionally seen during extrusion and dicing inorganic manufacturing. The resulting post-annealed composite film consisting of Bi2Te3 nanowire and CNTs demonstrate a promising candidate for material that can be used for an n-type TE device that has improved energy conversion efficiency.
Deployment Testing of Flexible Composite Hinges in Bi-Material Beams
NASA Technical Reports Server (NTRS)
Sauder, Jonathan F.; Trease, Brian
2016-01-01
Composites have excellent properties for strength, thermal stability, and weight. However, they are traditionally highly rigid, and when used in deployable structures require hinges bonded to the composite material, which increases complexity and opportunities for failure. Recent research in composites has found by adding an elastomeric soft matrix, often silicone instead of an epoxy, the composite becomes flexible. This work explores the deployment repeatability of silicone matrix composite hinges which join rigid composite beams. The hinges were found to have sub-millimeter linear deployment repeatability, and sub-degree angular deployment repeatability. Also, an interesting relaxation effect was discovered, as a hinges deployment error would decrease with time.
Design for a Unitary Graphite Composite Instrument Boom
NASA Technical Reports Server (NTRS)
Alexander, Wes; Carlos, Rene; Sturm, James; Rossoni, Peter
2004-01-01
This paper describes development of a Unitary graphite composite instrument boom that incorporates carpenter-tape like hinges for stowage. While light and stiff, graphite composite is not ordinarily thought of as a flexible material. This design has taken advantage of the stiffness of the composite in tubular geometry, yet leveraged its thin- section behavior to place flexibility at the required locations. Key is the proprietary layup, which results in a tough yet flexible hinge capable of rotating over 90 degrees in each direction. When the boom deploys, there is enough torque to overcome parasitic resistance from harness, etc. It will snap to the fully extended, rigid shape. The design has addressed materials issues such as out-of-plane bending, edge cracking, and interlaminar ply separation.
A lightweight scalable agarose-gel-synthesized thermoelectric composite
NASA Astrophysics Data System (ADS)
Kim, Jin Ho; Fernandes, Gustavo E.; Lee, Do-Joong; Hirst, Elizabeth S.; Osgood, Richard M., III; Xu, Jimmy
2018-03-01
Electronic devices are now advancing beyond classical, rigid systems and moving into lighweight flexible regimes, enabling new applications such as body-wearables and ‘e-textiles’. To support this new electronic platform, composite materials that are highly conductive yet scalable, flexible, and wearable are needed. Materials with high electrical conductivity often have poor thermoelectric properties because their thermal transport is made greater by the same factors as their electronic conductivity. We demonstrate, in proof-of-principle experiments, that a novel binary composite can disrupt thermal (phononic) transport, while maintaining high electrical conductivity, thus yielding promising thermoelectric properties. Highly conductive Multi-Wall Carbon Nanotube (MWCNT) composites are combined with a low-band gap semiconductor, PbS. The work functions of the two materials are closely matched, minimizing the electrical contact resistance within the composite. Disparities in the speed of sound in MWCNTs and PbS help to inhibit phonon propagation, and boundary layer scattering at interfaces between these two materials lead to large Seebeck coefficient (> 150 μV/K) (Mott N F and Davis E A 1971 Electronic Processes in Non-crystalline Materials (Oxford: Clarendon), p 47) and a power factor as high as 10 μW/(K2 m). The overall fabrication process is not only scalable but also conformal and compatible with large-area flexible hosts including metal sheets, films, coatings, possibly arrays of fibers, textiles and fabrics. We explain the behavior of this novel thermoelectric material platform in terms of differing length scales for electrical conductivity and phononic heat transfer, and explore new material configurations for potentially lightweight and flexible thermoelectric devices that could be networked in a textile.
Margin adaptation of indirect composite inlays fabricated on flexible dies.
Price, R B; Gerrow, J D
2000-03-01
Indirect composite restorations can be made in 1 appointment using a flexible die. Interactions between different impression materials and flexible die materials may affect the accuracy of fit and margin adaptation of the restoration. This study compared the margin adaptation of composite inlays made using the following 5 impression/flexible die material combinations; condensation silicone/polyvinyl siloxane (CS/PVS), wash viscosity polyvinyl siloxane/medium or heavy viscosity polyvinyl siloxane (PVS/PVS), irreversible hydrocolloid impression/medium viscosity polyvinyl siloxane (IH/PVS), wash viscosity polyvinyl siloxane impression/polyether (PVS/PE), with composite inlays made using a control system of a wash viscosity polyvinyl siloxane impression and a type IV stone die. For each test and control system, 10 impressions were made of a class II composite inlay preparation in a metal master die. One die was made from each impression and one composite inlay was made and finished on each die (a total of 60 inlays). Inlays were placed on the master die and the margin opening at the buccal, distal, and gingival sites was recorded with a measuring microscope (x40 magnification). The overall mean +/- SD margin openings of inlays made from the systems were as follows: PVS wash/PVS heavy viscosity 149.5 +/- 107. 4 microm; PVS wash/PVS medium viscosity 87.4 +/- 63.0 microm; IH/PVS medium viscosity 76.7 +/- 48.9 microm; CS/PVS 73.3 +/- 48.7 microm, PVS wash viscosity/PE 64.0 +/- 44.3 microm, PVS wash viscosity/stone 53.9 +/- 48.3 microm. Composite inlays made using the PVS wash viscosity/PVS heavy viscosity system had significantly larger distal, gingival, and overall mean margin openings than all other inlays (ANOVA and Fisher PLSD test; P =.05). The separating medium required between some impression and die materials did not work consistently. Composite inlays fabricated on dies made of material different than the impression material had mean buccal, distal, gingival, and overall margin openings < or =100 microm. Composite inlays made on the CS/PVS, IH/PVS medium viscosity, PVS wash viscosity/PE flexible dies, and control PVS wash viscosity/stone dies had statistically similar (P =.05) mean buccal, distal, gingival, and overall mean margin openings that were < or =100 microm. Composite inlays made on dies that were made of the same type of material as the impression material (PVS/PVS) had mean gingival margin openings >100 microm that were significantly larger than all other systems tested (P =.05).
Dielectric properties of novel polyurethane-PZT-graphite foam composites
NASA Astrophysics Data System (ADS)
Tolvanen, Jarkko; Hannu, Jari; Nelo, Mikko; Juuti, Jari; Jantunen, Heli
2016-09-01
Flexible foam composite materials offer multiple benefits to future electronic applications as the rapid development of the electronics industry requires smaller, more efficient, and lighter materials to further develop foldable and wearable applications. The aims of this work were to examine the electrical properties of three- and four-phase novel foam composites in different conditions, find the optimal mixture for four-phase foam composites, and study the combined effects of lead zirconate titanate (PZT) and graphite fillers. The flexible and highly compressible foams were prepared in a room-temperature mixing process using polyurethane, PZT, and graphite components as well as their combinations, in which air acted as one phase. In three-phase foams the amount of PZT varied between 20 and 80 wt% and the amount of graphite, between 1 and 15 wt%. The four-phase foams were formed by adding 40 wt% of PZT while the amount of graphite ranged between 1 and 15 wt%. The presented results and materials could be utilized to develop new flexible and soft sensor applications by means of material technology.
Flexible Composite-Material Pressure Vessel
NASA Technical Reports Server (NTRS)
Brown, Glen; Haggard, Roy; Harris, Paul A.
2003-01-01
A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.
Flexible strain sensor based on carbon nanotube rubber composites
NASA Astrophysics Data System (ADS)
Kim, Jin-Ho; Kim, Young-Ju; Baek, Woon Kyung; Lim, Kwon Taek; Kang, Inpil
2010-04-01
Electrically conducting rubber composites (CRC) with carbon nanotubes (CNTs) filler have received much attention as potential materials for sensors. In this work, Ethylene propylene diene M-class rubber (EPDM)/CNT composites as a novel nano sensory material were prepared to develop flexible strain sensors that can measure large deformation of flexible structures. The EPDM/CNT composites were prepared by using a Brabender mixer with multi-walled CNTs and organo-clay. A strain sensor made of EPDM/CNT composite was attached to the surface of a flexible beam and change of resistance of the strain sensor was measured with respect to the beam deflection. Resistance of the sensor was change quite linearly under the bending and compressive large beam deflection. Upon external forces, CRC deformation takes place with the micro scale change of inter-electrical condition in rubber matrix due to the change of contact resistance, and CRC reveals macro scale piezoresistivity. It is anticipated that the CNT/EPDM fibrous strain sensor can be eligible to develop a biomimetic artificial neuron that can continuously sense deformation, pressure and shear force.
Thermal Performance of Composite Flexible Blanket Insulations for Hypersonic Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.
1993-01-01
This paper describes the thermal performance of a Composite Flexible Blanket Insulation (C.F.B.I.) considered for potential use as a thermal protection system or thermal insulation for future hypersonic vehicles such as the National Aerospace Plane (N.A.S.P.). Thermophysical properties for these insulations were also measured including the thermal conductivity at various temperatures and pressures and the emissivity of the fabrics used in the flexible insulations. The thermal response of these materials subjected to aeroconvective heating from a plasma arc is also described. Materials tested included two surface variations of the insulations, and similar insulations coated with a Protective Ceramic Coating (P.C.C.). Surface and backface temperatures were measured in the flexible insulations and on Fibrous Refractory Composite Insulation (F.R.C.I.) used as a calibration model. The uncoated flexible insulations exhibited good thermal performance up to 35 W/sq cm. The use of a P.C.C. to protect these insulations at higher heating rates is described. The results from a computerized thermal analysis model describing thermal response of those materials subjected to the plasma arc conditions are included. Thermal and optical properties were determined including thermal conductivity for the rigid and flexible insulations and emissivity for the insulation fabrics. These properties were utilized to calculate the thermal performance of the rigid and flexible insulations at the maximum heating rate.
Cha, Ji Eun; Kim, Seong Yun; Lee, Seung Hee
2016-01-01
To investigate the effect of continuous multi-walled carbon nanotubes (MWCNTs) on the thermal and mechanical properties of composites, we propose a fabrication method for a buckypaper-filled flexible composite film prepared by a two-step process involving buckypaper fabrication using vacuum filtration of MWCNTs, and composite film fabrication using the dipping method. The thermal conductivity and tensile strength of the composite film filled with the buckypaper exhibited improved results, respectively 76% and 275% greater than those of the individual MWCNT-filled composite film. It was confirmed that forming continuous MWCNT fillers is an important factor which determines the physical characteristics of the composite film. In light of the study findings, composite films using buckypaper as a filler and polydimethylsiloxane (PDMS) as a flexible matrix have sufficient potential to be applied as a heat-dissipating material, and as a flexible film with high thermal conductivity and excellent mechanical properties. PMID:28335310
Pultruded composites using soy-based polyurethane resin.
DOT National Transportation Integrated Search
2008-07-01
Fiber Reinforced Polymer (FRP) composites offer inherent advantages over traditional materials with regard to high strength-to-weight ratio, design flexibility, corrosion resistance, low maintenance, and extended service life. FRP materials can be us...
Piezoresistance of flexible tunneling-percolation networks
NASA Astrophysics Data System (ADS)
Taylor-Harrod, Isaac; Nogaret, Alain
2017-07-01
We model changes in the conductivity of flexible composite films stressed by bending. By treating stress as a perturbation of the effective medium conductivity, we obtain an expression of the piezoresistance as a function of four material parameters. The model correctly predicts resistance spikes and their recovery under the action of viscoelastic forces, in good agreement with experimental observations over stress cycles. The theory may be used to design composite materials for high-sensitivity touch sensors.
Composite metal foil and ceramic fabric materials
Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.
1992-03-24
The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.
DEVELOPMENT OF FLEXIBLE INSULATION FOR SOLID PROPELLANT ROCKET MOTOR CASES
acrylonitrile-phenol furfural -asbestos composition. Other promising materials which are reported are based on two types of liquid butadiene/styrene cbers. The...This material was based on a butadiene/acrylonitrile-phenol furfural -asbestos composition. Other promising materials which are reported are based on two
NASA Technical Reports Server (NTRS)
1976-01-01
Babcock & Wilcox Co. under a partnership with Marshall Space Flight Center, produced composite materials, originally from the shuttle program, for improving golf clubs. Company used Marshall Space Flight Center's data summary file summarizing typical processing techniques and mechanical and physical properties of graphite and boron- reinforced composite materials. Reinforced composites provide combination of shaft rigidity and flexibility that provide maximum distance.
Development and Evaluation of High Temperature Gaskets for Hypersonic and Reentry Applications
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Shpargel, Tarah
2007-01-01
A wide variety of flexible gasket compositions were developed and tested at high temperatures. The gasket material system has high temperature capability. GRABER sealants were very effective in sealing machined ACC-4 composite surfaces. The gasket composition do not bond strongly with the ACC-4 substrate materials. The density of gasket materials can be tailored to show appropriate compressibility.
Polymer-Ceramic Composite Materials for Pyroelectric Infrared Detectors: An Overview
NASA Technical Reports Server (NTRS)
Aggarwal, M. D; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.
2007-01-01
Ferroelectrics:Polymer composites can be considered an established substitute for conventional electroceramics and ferroelectric polymers. The composites have a unique blend of polymeric properties such as mechanical flexibility, high strength, formability, and low cost, with the high electro-active properties of ceramic materials. They have attracted considerable interest because of their potential use in pyroelectric infrared detecting devices and piezoelectric transducers. These flexible sensors and transducers may eventually be useful for their health monitoring applications for NASA crew launch vehicles and crew exploration vehicles being developed. In the light of many technologically important applications in this field, it is worthwhile to present an overview of the pyroelectric infrared detector theory, models to predict dielectric behavior and pyroelectric coefficient, and the concept of connectivity and fabrication techniques of biphasic composites. An elaborate review of Pyroelectric-Polymer composite materials investigated to date for their potential use in pyroelectric infrared detectors is presented.
Thermal Performance Of Space Suit Elements With Aerogel Insulation For Moon And Mars Exploration
NASA Technical Reports Server (NTRS)
Tang, Henry H.; Orndoff, Evelyne S.; Trevino, Luis A.
2006-01-01
Flexible fiber-reinforced aerogel composites were studied for use as insulation materials of a future space suit for Moon and Mars exploration. High flexibility and good thermal insulation properties of fiber-reinforced silica aerogel composites at both high and low vacuum conditions make it a promising insulation candidate for the space suit application. This paper first presents the results of a durability (mechanical cycling) study of these aerogels composites in the context of retaining their thermal performance. The study shows that some of these Aerogels materials retained most of their insulation performance after up to 250,000 cycles of mechanical flex cycling. This paper also examines the problem of integrating these flexible aerogel composites into the current space suit elements. Thermal conductivity evaluations are proposed for different types of aerogels space suit elements to identify the lay-up concept that may have the best overall thermal performance for both Moon and Mars environments. Potential solutions in mitigating the silica dusting issue related to the application of these aerogels materials for the space suit elements are also discussed.
Experimental Investigation of Fibre Reinforced Composite Materials Under Impact Load
NASA Astrophysics Data System (ADS)
Koppula, Sravani; Kaviti, Ajay kumar; Namala, Kiran kumar
2018-03-01
Composite materials are extensively used in various engineering applications. They have very high flexibility design which allows prescribe tailoring of material properties by lamination of composite fibres with reinforcement of resin to it. Complex failure condition prevail in the composite materials under the action of impact loads, major modes of failure in composite may include matrix cracking, fibre matrix, fibre breakage, de-bonding or de- lamination between composite plies. This paper describes the mechanical properties of glass fibre reinforced composite material under impact loading conditions through experimental setup. Experimental tests are performed according to ASTM standards using impact testing machines like Charpy test, computerized universal testing machine.
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.; Lerch, Bradley A.; Wilmoth, Nathan G.; Kray, Nicholas; Gemeinhardt, Gregory
2012-01-01
Piezoelectric materials have been proposed as a means of decreasing turbomachinery blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite (PMFC) blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. Before implementation of a piezoelectric element within a PMFC blade, the effect on PMFC mechanical properties needs to be understood. This study attempts to determine how the inclusion of a packaged piezoelectric patch affects the material properties of the PMFC. Composite specimens with embedded piezoelectric patches were tested in four-point bending, short beam shear, and flatwise tension configurations. Results show that the embedded piezoelectric material does decrease the strength of the composite material, especially in flatwise tension, attributable to failure at the interface or within the piezoelectric element itself. In addition, the sensing properties of the post-cured embedded piezoelectric materials were tested, and performed as expected. The piezoelectric materials include a non-flexible patch incorporating solid piezoceramic material, and two flexible patch types incorporating piezoelectric fibers. The piezoceramic material used in these patches was Navy Type-II PZT.
NASA Astrophysics Data System (ADS)
An, Seongpil; Liou, Minho; Song, Kyo Yong; Jo, Hong Seok; Lee, Min Wook; Al-Deyab, Salem S.; Yarin, Alexander L.; Yoon, Sam S.
2015-10-01
Coaxial electrospinning was used to fabricate two types of core-shell fibers: the first type with liquid resin monomer in the core and polyacrylonitrile in the shell, and the second type with liquid curing agent in the core and polyacrylonitrile in the shell. These two types of core-shell fibers were mutually entangled and embedded into two flexible transparent matrices thus forming transparent flexible self-healing composite materials. Such materials could be formed before only using emulsion electrospinning, rather than coaxial electrospinning. The self-healing properties of such materials are associated with release of healing agents (resin monomer and cure) from nanofiber cores in damaged locations with the subsequent polymerization reaction filing the micro-crack with polydimethylsiloxane. Transparency of these materials is measured and the anti-corrosive protection provided by them is demonstrated in electrochemical experiments.
NASA Astrophysics Data System (ADS)
Baur, Cary Allen
In this work, novel approaches to the design of highly piezoelectric and flexible polymer composites were explored. Diverging from past work focused on the addition of piezoelectric particles into polymer matrices, this research explores the ability to increase the piezoelectric performance of a host polymer through the incorporation of charge via polarizable, organic particles. The ability to insert charge into polymers, known as electrets, is well documented but widely considered impractical because of the low lifetime and temperature resistance of the inserted charge. Through the addition of particles that are polarizable, charge can be inserted into a system in a stable manner that results in highly charged materials with long lifetimes. Here, carbon structures, such as Buckminsterfullerenes (C60) and single-walled nanotubes (SWNTs), were composited into poly(vinylidene difluoride) at very low loading levels (0.05-0.25 wt%), resulting in the ability to insert stable charge into the system. We show that these highly charged systems can result in a doubling of the piezoelectric response of the host polymer when optimized. The low amount of nanoparticle filler required to improve these materials allows for the advantageous properties of the polymer matrix such as flexibility and compliance to be preserved, enabling highly piezoelectric and flexible system. This dissertation outlines research efforts towards the design and fabrication of 1) polymer composites with high piezoelectric response, 2) piezoelectric composites with increased operating temperatures, 3) motion control devices that incorporate piezoelectric materials and shape memory polymers, and 4) artificial muscles with piezoelectric polymers. The piezoelectric polymer composites developed in this work have potential to be utilized as highly efficient, flexible energy harvesters that can be used to capture ambient energy from environmental vibrations and motion from the human body. As actuators, these materials may find use as rapid-response muscle replacements in legs, arms, fingers, or toes. As sensors, such devices may provide electrical impulses capable of sensing small vibrations due to structural damage or movements. There is a wide range of applications for flexible piezoelectric materials that will continue to expand as technologies in monitoring, energy harvesting, and motion control continue to develop.
Yu, Chenfei; Ma, Peipei; Zhou, Xi; Wang, Anqi; Qian, Tao; Wu, Shishan; Chen, Qiang
2014-10-22
Highly dispersed polypyrrole nanowires are decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composites exhibit high dispersibility, large effective surface area, and high electric conductivity. All-solid-state flexible supercapacitors are assembled based on the prepared composites, which show excellent electrochemical performances with a specific capacitance of 434.7 F g(-1) at a current density of 1 A g(-1). The as-fabricated supercapacitor also exhibits excellent cycling stability (88.1% capacitance retention after 5000 cycles) and exceptional mechanical flexibility. In addition, outstanding power and energy densities were obtained, demonstrating the significant potential of prepared material for flexible and portable energy storage devices.
Mates, Joseph E.; Bayer, Ilker S.; Palumbo, John M.; Carroll, Patrick J.; Megaridis, Constantine M.
2015-01-01
Rapid advances in modern electronics place ever-accelerating demands on innovation towards more robust and versatile functional components. In the flexible electronics domain, novel material solutions often involve creative uses of common materials to reduce cost, while maintaining uncompromised performance. Here we combine a commercially available paraffin wax–polyolefin thermoplastic blend (elastomer matrix binder) with bulk-produced carbon nanofibres (charge percolation network for electron transport, and for imparting nanoscale roughness) to fabricate adherent thin-film composite electrodes. The simple wet-based process produces composite films capable of sustained ultra-high strain (500%) with resilient electrical performance (resistances of the order of 101–102 Ω sq−1). The composites are also designed to be superhydrophobic for long-term corrosion protection, even maintaining extreme liquid repellency at severe strain. Comprised of inexpensive common materials applied in a single step, the present scalable approach eliminates manufacturing obstacles for commercially viable wearable electronics, flexible power storage devices and corrosion-resistant circuits. PMID:26593742
Zhang, Zhi; Chen, Ying; Debeli, Dereje Kebebew; Guo, Jian Sheng
2018-04-18
The trends toward flexible and wearable electronic devices give rise to the attention of triboelectric nanogenerators (TENGs) which can gather tiny energy from human body motions. However, to accommodate the needs, wearable electronics are still facing challenges for choosing a better dielectric material to improve their performance and practicability. As a kind of synthetic rubber, the thermoplastic elastomer (TPE) contains many advantages such as lightweight, good flexibility, high tear strength, and friction resistance, accompanied by good adhesion with fabrics, which is an optimal candidate of dielectric materials. Herein, a novel nanoparticle (NP)-doped TPE composite fabric-based TENG (TF-TENG) has been developed, which operates based on the NP-doped TPE composite fabric using a facile coating method. The performances of the TENG device are systematically investigated under various thicknesses of TPE films, NP kinds, and doping mass. After being composited with a Cu NP-doped TPE film, the TPE composite fabric exhibited superior elastic behavior and good bending property, along with excellent flexibility. Moreover, a maximum output voltage of 470 V, a current of 24 μA, and a power of 12 mW under 3 MΩ can be achieved by applying a force of 60 N on the TF-TENG. More importantly, the TF-TENG can be successfully used to harvest biomechanical energy from human body and provides much more comfort. In general, the TF-TENG has great application prospects in sustainable wearable devices owing to its lightweight, flexibility, and high mechanical properties.
Gao, Fengxian; Zhang, Ning; Fang, Xiaodong; Ma, Mingming
2017-02-22
Inspired by the dynamic network structure of animal dermis, we have designed and synthesized a series of polyol-polypyrrole (polyol-PPy) composites. Polyols and polypyrrole are cross-linked by hydrogen bonding and electrostatic interactions to form a dynamic network, which helps to dissipate destructive energy. We have found a clear correlation between the mechanical properties of polyol-PPy composites and the polyols structure. Particularly, the PEE-PPy film shows both high strength and flexibility, leading to a remarkable tensile toughness comparable to cocoon silk. The combination of outstanding strength, ductility, and conductivity enables polyol-PPy composites (especially PEE-PPy) as potential electronic materials for making flexible electronics.
Wu, Shuwen; Li, Jinhui; Zhang, Guoping; Yao, Yimin; Li, Gang; Sun, Rong; Wong, Chingping
2017-01-25
The continuous evolution toward flexible electronics with mechanical robust property and restoring structure simultaneously places high demand on a set of polymeric material substrate. Herein, we describe a composite material composed of a polyurethane based on Diels-Alder chemistry (PU-DA) covalently linked with functionalized graphene nanosheets (FGNS), which shows mechanical robust and infrared (IR) laser self-healing properties at ambient conditions and is therefore suitable for flexible substrate applications. The mechanical strength can be tuned by varying the amount of FGNS and breaking strength can reach as high as 36 MPa with only 0.5 wt % FGNS loading. On rupture, the initial mechanical properties are restored with more than 96% healing efficiency after 1 min irradiation time by 980 nm IR laser. Especially, this is the highest value of healing efficiency reported in the self-healable materials based on DA chemistry systems until now, and the composite exhibits a high volume resistivity up to 5.6 × 10 11 Ω·cm even the loading of FGNS increased to 1.0 wt %. Moreover, the conductivity of the broken electric circuit which was fabricated by silver paste drop-cast on the healable composite substrate was completely recovered via IR laser irradiating bottom substrate mimicking human skin. These results demonstrate that the FGNS-PU-DA nanocomposite can be used as self-healing flexible substrate for the next generation of intelligent flexible electronics.
Flexible Graphene Composites for Human Space Flight Applications
NASA Technical Reports Server (NTRS)
Sosa, Edward D.
2013-01-01
Graphene oxide allows for better dispersion stability in aqueous and organic solvents. Stabilizers provide dispersion of pristine graphene. Roll coating provide the best coverage of polyurethane sheets. Graphene and GO coated polyurethane used to fabricate flexible laminate composite. Permeation testing indicates that pristine graphene acts as a better gas barrier material. Continuous graphene films are expected to provide even better gas barrier properties.
NASA Astrophysics Data System (ADS)
Lu, Qiang; Liu, Li; Yang, Shuanglei; Liu, Jun; Tian, Qingyong; Yao, Weijing; Xue, Qingwen; Li, Mengxiao; Wu, Wei
2017-09-01
More convenience and intelligence life lead by flexible/wearable electronics requires innovation and hommization of power sources. Here, amorphous FeOOH/MnO2 composite as screen-printed electrode materials for supercapacitors (SCs) is synthesized by a facile method, and solid-state flexible SCs with aesthetic design are fabricated by fully screen-printed process on different substrates, including PET, paper and textile. The amorphous FeOOH/MnO2 composite shows a high specific capacitance and a good rate capability (350.2 F g-1 at a current density of 0.5 A g-1 and 159.5 F g-1 at 20 A g-1). It also possesses 95.6% capacitance retention even after 10 000 cycles. Moreover, the all-printed solid-state flexible SC device exhibits a high area specific capacitance of 5.7 mF cm-2 and 80% capacitance retention even after 2000 cycles. It also shows high mechanical flexibility. Simultaneously, these printed SCs on different substrates in series are capable to light up a 1.9 V yellow light emitting diode (LED), even after bending and stretching.
Flexible Ceramic-Metal Insulation Composite and Method of Making
NASA Technical Reports Server (NTRS)
Rasky, Daniel J. (Inventor); Sawko, Paul M. (Inventor); Kilodziej, Paul (Inventor); Kourtides, Demetrius A. (Inventor)
1998-01-01
A method for joining a woven flexible ceramic fabric and a thin metal sheet creating an integral metal surfaced flexible thermal protection article, which methods compress: placing multiple dots of high temperature metallic or fabric and the thin metal sheet in a random or organized pattern, with the proviso that the brazing material covers about 10% or less of the surface of one flat side of the metal sheet; heating the flexible ceramic fabric, brazing material and thin metal sheet for a predetermined period of time to integrally connect the same; and cooling the formed flexible article to ambient temperature. Preferably the flexible ceramic is selected from fibers comprising atoms of silicon, carbon, nitrogen, boron, oxygen or combinations thereof. The flexible thermal protection article produced is also part of the present invention. The thin metal sheet is comprised of titanium, aluminum, chromium, niobium or alloys or combinations thereof. The brazing material is selected from copper/silver or copper/gold or is a ceramic brazing or adhesive material.
Kim, Jeong Hun; Hwang, Ji-Young; Hwang, Ha Ryeon; Kim, Han Seop; Lee, Joong Hoon; Seo, Jae-Won; Shin, Ueon Sang; Lee, Sang-Hoon
2018-01-22
The development of various flexible and stretchable materials has attracted interest for promising applications in biomedical engineering and electronics industries. This interest in wearable electronics, stretchable circuits, and flexible displays has created a demand for stable, easily manufactured, and cheap materials. However, the construction of flexible and elastic electronics, on which commercial electronic components can be mounted through simple and cost-effective processing, remains challenging. We have developed a nanocomposite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) elastomer. To achieve uniform distributions of CNTs within the polymer, an optimized dispersion process was developed using isopropyl alcohol (IPA) and methyl-terminated PDMS in combination with ultrasonication. After vaporizing the IPA, various shapes and sizes can be easily created with the nanocomposite, depending on the mold. The material provides high flexibility, elasticity, and electrical conductivity without requiring a sandwich structure. It is also biocompatible and mechanically stable, as demonstrated by cytotoxicity assays and cyclic strain tests (over 10,000 times). We demonstrate the potential for the healthcare field through strain sensor, flexible electric circuits, and biopotential measurements such as EEG, ECG, and EMG. This simple and cost-effective fabrication method for CNT/PDMS composites provides a promising process and material for various applications of wearable electronics.
Flexible carbon-based ohmic contacts for organic transistors
NASA Technical Reports Server (NTRS)
Brandon, Erik (Inventor)
2007-01-01
The present invention relates to a system and method of organic thin-film transistors (OTFTs). More specifically, the present invention relates to employing a flexible, conductive particle-polymer composite material for ohmic contacts (i.e. drain and source).
NASA Astrophysics Data System (ADS)
Jung, Eui Dae; Nam, Yun Seok; Seo, Houn; Lee, Bo Ram; Yu, Jae Choul; Lee, Sang Yun; Kim, Ju-Young; Park, Jang-Ung; Song, Myoung Hoon
2015-09-01
Here, we report a comprehensive analysis of the electrical, optical, mechanical, and surface morphological properties of composite nanostrutures based on silver nanowires (AgNW) and PEDOT:PSS conducting polymer for the use as flexible and transparent electrodes. Compared to ITO or the single material of AgNW or PEDOT:PSS, the AgNW/PEDOT:PSS composite electrode showed high electrical conductivity with a low sheet resistance of 26.8 Ω/sq at 91% transmittance (at 550 nm), improves surface smoothness, and enhances mechanical properties assisted by an amphiphilic fluoro-surfactant. The polymeric light-emitting diodes (PLEDs) and organic solar cells (OSCs) using the AgNW/PEDOT:PSS composite electrode showed higher device performances than those with AgNW and PEDOT:PSS electrodes and excellent flexibility under bending test. These results indicates that the AgNW/PEDOT:PSS composite presented is a good candidate as next-generation transparent elelctrodes for applications into flexible optoelectronic devices. [Figure not available: see fulltext.
Trials of flexible pipe in sour service reveal degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Maslamani, M.J.
Field trials on flexible pipe offshore Qatar have shown that, under sour conditions, the layered, composite material can suffer severe degradation leading to failure. The failure demonstrates the significant effects of stress level, environmental aggressiveness, and localized hard zones in promoting sulfide stress cracking. Permeability of the sour gas through the composite layer of the flexible pipe resulted in varying degrees of sulfide attack and hydrogen embrittlement, depending on the susceptibility of the multilayered material. In the trials, the material was used as a gas-lift line in a sour-oil field in the Arabian Gulf. Flexible pipes have been used successfullymore » for transporting methanol, benzene, and gas condensates in wet sweet environments at temperatures of up to 80 C. Little or no information, however, has been available as to its corrosion resistance in sour-service wells containing 6% CO{sub 2} with 3% H{sub 2}S partial pressures and at moderate temperatures. The paper discusses an underwater survey to evaluate the damage, visual inspection, mechanical tests, metallographic exam, and trial results.« less
NASA Technical Reports Server (NTRS)
Stidham, Curtis R.; Rutledge, Sharon K.; Sechkar, Edward A.; Flaherty, David S.; Roig, David M.; Edwards, Jonathan L.
1994-01-01
A test program was conducted at the National Aeronautics and Space Administration's Lewis Research Center (LeRC) to evaluate the long term low Earth orbital (LEO) atomic oxygen (AO) durability of a flexible (fiberglass-epoxy composite) batten. The flexible batten is a component used to provide structural rigidity in the photovoltaic array mast on Space Station. The mast is used to support and articulate the photovoltaic array, therefore, the flexible batten must be preloaded for the 15 year lifetime of an array blanket. Development hardware and composite materials were evaluated in ground testing facilities for AO durability and dynamic retraction-deployment cyclic loading representative of expected full life in-space application. The CV1144 silicone (AO protective) coating was determined to provide adequate protection against AO degradation of the composite material and provided fiber containment, thus the structural integrity of the flexible batten was maintained. Both silicone coated and uncoated flexible battens maintained load carrying capabilities. Results of the testing did indicate that the CV1144 silicone protective coating was oxidized by AO reactions to form a brittle glassy (SiO2) skin that formed cracking patterns on all sides of the coated samples. The cracking was observed in samples that were mechanically stressed as well as samples in non-stressed conditions. The oxidized silicon was observed to randomly spall in small localized areas, on the flexible battens that underwent retraction-deployment cycling. Some darkening of the silicon, attributed to vacuum ultraviolet (VUV) radiation, was observed.
A nanostructured graphene/polyaniline hybrid material for supercapacitors
NASA Astrophysics Data System (ADS)
Wang, Hualan; Hao, Qingli; Yang, Xujie; Lu, Lude; Wang, Xin
2010-10-01
A flexible graphene/polyaniline hybrid material as a supercapacitor electrode was synthesized by an in situ polymerization-reduction/dedoping-redoping process. This product was first prepared in an ethylene glycol medium, then treated with hot sodium hydroxide solution to obtain the reduced graphene oxide/polyaniline hybrid material. Sodium hydroxide also acted as a dedoping reagent for polyaniline in the composite. After redoping in an acidic solution, the thin, uniform and flexible conducting graphene/polyaniline product was obtained with unchanged morphology. The chemical structure of the materials was characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. The composite material showed better electrochemical performances than the pure individual components. A high specific capacitance of 1126 F g-1 was obtained with a retention life of 84% after 1000 cycles for supercapacitors. The energy density and power density were also better than those of pure component materials.
A nanostructured graphene/polyaniline hybrid material for supercapacitors.
Wang, Hualan; Hao, Qingli; Yang, Xujie; Lu, Lude; Wang, Xin
2010-10-01
A flexible graphene/polyaniline hybrid material as a supercapacitor electrode was synthesized by an in situ polymerization-reduction/dedoping-redoping process. This product was first prepared in an ethylene glycol medium, then treated with hot sodium hydroxide solution to obtain the reduced graphene oxide/polyaniline hybrid material. Sodium hydroxide also acted as a dedoping reagent for polyaniline in the composite. After redoping in an acidic solution, the thin, uniform and flexible conducting graphene/polyaniline product was obtained with unchanged morphology. The chemical structure of the materials was characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. The composite material showed better electrochemical performances than the pure individual components. A high specific capacitance of 1126 F g(-1) was obtained with a retention life of 84% after 1000 cycles for supercapacitors. The energy density and power density were also better than those of pure component materials.
Bonded and Stitched Composite Structure
NASA Technical Reports Server (NTRS)
Zalewski, Bart F. (Inventor); Dial, William B. (Inventor)
2014-01-01
A method of forming a composite structure can include providing a plurality of composite panels of material, each composite panel having a plurality of holes extending through the panel. An adhesive layer is applied to each composite panel and a adjoining layer is applied over the adhesive layer. The method also includes stitching the composite panels, adhesive layer, and adjoining layer together by passing a length of a flexible connecting element into the plurality of holes in the composite panels of material. At least the adhesive layer is cured to bond the composite panels together and thereby form the composite structure.
Flexible multiply towpreg and method of production therefor
NASA Technical Reports Server (NTRS)
Muzzy, John D. (Inventor); Varughese, Babu (Inventor)
1992-01-01
This invention relates to an improved flexible towpreg and a method of production therefor. The improved flexible towpreg comprises a plurality of towpreg plies which comprise reinforcing filaments and matrix forming material; the reinforcing filaments being substantially wetout by the matrix forming material such that the towpreg plies are substantially void-free composite articles, and the towpreg plies having an average thickness less than about 100 microns. The method of production for the improved flexible towpreg comprises the steps of spreading the reinforcing filaments to expose individually substantially all of the reinforcing filaments; coating the reinforcing filaments with the matrix forming material in a manner causing interfacial adhesion of the matrix forming material to the reinforcing filaments; forming the towpreg plies by heating the matrix forming material contacting the reinforcing filaments until the matrix forming material liquefies and coats the reinforcing filaments; and cooling the towpreg plies in a manner such that substantial cohesion between neighboring towpreg plies is prevented until the matrix forming material solidifies.
NASA Technical Reports Server (NTRS)
Muzzy, John D. (Inventor); Varughese, Babu (Inventor)
1992-01-01
This invention relates to an improved flexible towpreg and a method of production therefor. The improved flexible towpreg comprises a plurality of towpreg plies which comprise reinforcing filaments and matrix forming material; the reinforcing filaments being substantially wetout by the matrix forming material such that the towpreg plies are substantially void-free composite articles, and the towpreg plies having an average thickness less than about 100 microns. The method of production for the improved flexible towpreg comprises the steps of spreading the reinforcing filaments to expose individually substantially all of the reinforcing filaments; coating the reinforcing filaments with the matrix forming material in a manner causing interfacial adhesion of the matrix forming material to the reinforcing filaments; forming the towpreg plies by heating the matrix forming material contacting the reinforcing filaments until the matrix forming material liquifies and coats the reinforcing filaments; and cooling the towpreg plies in a manner such that substantial cohesion between neighboring towpreg plies is prevented until the matrix forming material solidifies.
NASA Astrophysics Data System (ADS)
Torvinen, Katariina; Lehtimäki, Suvi; Keränen, Janne T.; Sievänen, Jenni; Vartiainen, Jari; Hellén, Erkki; Lupo, Donald; Tuukkanen, Sampo
2015-11-01
Pigment-cellulose nanofibril (PCN) composites were manufactured in a pilot line and used as a separator-substrate in printed graphene and carbon nanotube supercapacitors. The composites consisted typically of 80% pigment and 20% cellulose nanofibrils (CNF). This composition makes them a cost-effective alternative as a substrate for printed electronics at high temperatures that only very special plastic films can nowadays stand. The properties of these substrates can be varied within a relatively large range by the selection of raw materials and their relative proportions. A semi-industrial scale pilot line was successfully used to produce smooth, flexible, and nanoporous composites, and their performance was tested in a double functional separator-substrate element in supercapacitors. The nanostructural carbon films printed on the composite worked simultaneously as high surface area active electrodes and current collectors. Low-cost supercapacitors made from environmentally friendly materials have significant potential for use in flexible, wearable, and disposable low-end products. [Figure not available: see fulltext.
Flexible barrier materials for protection against electromagnetic fields and their characterization
NASA Astrophysics Data System (ADS)
Jaroszewski, Maciej
2015-10-01
Composite materials for electromagnetic shielding can be manufactured as textiles using conductive yarns and textiles with conductivity obtained by various finishing processes on textile surfaces. The EM shielding effectiveness of fabrics are improved by lowering its conductivity using different methods and materials. An alternative is the usage of new light shielding materials in the form of metallized nonwoven fabrics or textiles. Their advantages are: a general availability on the market, a low price, good mechanical properties (strength, elasticity) and resistance to the environmental conditions. The composite anisotropic materials with a sandwich structure constituting of materials with different spatial orientations of fibers allow one to achieve relatively high and constant values of the shielding effectiveness which, together with the materials' mechanical properties, leads to a wide range of applicability in various disciplines of modern technology. This article is devoted to innovative flexible materials shielding electromagnetic field. The results of the PEM shielding effectiveness obtained for the polypropylene (PP) nonwoven fabrics metallized by pulsed magnetron sputtering are presented.
Experience with flexible pipe in sour service environment: A case study (the Arabian Gulf)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Maslamani, M.J.
The suitability of a flexible pipe was evaluated on a trial basis for a lift gas line in a sour oil field in the State of Qatar, in the Arabian Gulf. Flexible pipes have been successfully used in the oil and gas industries for transportation of methanol, benzene and gas condensates in wet sweet environment at temperatures of up to 80 C. However, there is little or no information available as to its corrosion resistance in sour service wells containing 6% CO{sub 2} with 3% mole H{sub 2}S and at moderate temperatures. The present experience with a flexible pipe inmore » the gas field of Qatar has shown that under sour service conditions, the layered, composite material can suffer severe degradation leading to failure. A detailed inspection and failure analysis of the flexible pipe forms the basis of this paper. The failure demonstrates the significant effects of stress level, environmental aggressiveness, and localized hard zones in promoting Sulfide Stress Cracking (SSC). Permeability of this sour gas through the composite layer of the flexible pipe resulted in varying degree of sulfide attack and hydrogen embrittlement depending on the susceptibility of the multi layered material.« less
Effect of Sericin on Mechanical Behavior of Composite Material Reinforced by Silk Woven Fabric
NASA Astrophysics Data System (ADS)
Kimura, Teruo; Ino, Haruhiro; Hanada, Koji; Katori, Sigetaka
Recent, attention has been given to shift from glass fibers and carbon fibers to natural fibers for FRP composites for the goal of protecting the environment. This paper concerned with the application of silk fabric for composite materials. Polypropylene (PP) was used for the matrix material and the silk fabric composites were molded using a compression molding method. Especially, the effect of sericin on mechanical behaviors of composite materials was discussed. Good adhesion between silk and PP was obtained by removing the sericin existing around the fibroin. The tensile modulus of composite decreased with decreasing the sericin because of the flexibility of silk fibers without sericin. In particular, the higher Izod impact value was obtained for the composites containing the silk fibers without sericin.
Yu, Yi-Hsin; Chen, Shih-Hsun; Chang, Che-Lun; Lin, Chin-Teng; Hairston, W. David; Mrozek, Randy A.
2016-01-01
This study investigates alternative material compositions for flexible silicone-based dry electroencephalography (EEG) electrodes to improve the performance lifespan while maintaining high-fidelity transmission of EEG signals. Electrode materials were fabricated with varying concentrations of silver-coated silica and silver flakes to evaluate their electrical, mechanical, and EEG transmission performance. Scanning electron microscope (SEM) analysis of the initial electrode development identified some weak points in the sensors’ construction, including particle pull-out and ablation of the silver coating on the silica filler. The newly-developed sensor materials achieved significant improvement in EEG measurements while maintaining the advantages of previous silicone-based electrodes, including flexibility and non-toxicity. The experimental results indicated that the proposed electrodes maintained suitable performance even after exposure to temperature fluctuations, 85% relative humidity, and enhanced corrosion conditions demonstrating improvements in the environmental stability. Fabricated flat (forehead) and acicular (hairy sites) electrodes composed of the optimum identified formulation exhibited low impedance and reliable EEG measurement; some initial human experiments demonstrate the feasibility of using these silicone-based electrodes for typical lab data collection applications. PMID:27809260
Yu, Yi-Hsin; Chen, Shih-Hsun; Chang, Che-Lun; Lin, Chin-Teng; Hairston, W David; Mrozek, Randy A
2016-10-31
This study investigates alternative material compositions for flexible silicone-based dry electroencephalography (EEG) electrodes to improve the performance lifespan while maintaining high-fidelity transmission of EEG signals. Electrode materials were fabricated with varying concentrations of silver-coated silica and silver flakes to evaluate their electrical, mechanical, and EEG transmission performance. Scanning electron microscope (SEM) analysis of the initial electrode development identified some weak points in the sensors' construction, including particle pull-out and ablation of the silver coating on the silica filler. The newly-developed sensor materials achieved significant improvement in EEG measurements while maintaining the advantages of previous silicone-based electrodes, including flexibility and non-toxicity. The experimental results indicated that the proposed electrodes maintained suitable performance even after exposure to temperature fluctuations, 85% relative humidity, and enhanced corrosion conditions demonstrating improvements in the environmental stability. Fabricated flat (forehead) and acicular (hairy sites) electrodes composed of the optimum identified formulation exhibited low impedance and reliable EEG measurement; some initial human experiments demonstrate the feasibility of using these silicone-based electrodes for typical lab data collection applications.
Nanophase and Composite Optical Materials
NASA Technical Reports Server (NTRS)
2003-01-01
This talk will focus on accomplishments, current developments, and future directions of our work on composite optical materials for microgravity science and space exploration. This research spans the order parameter from quasi-fractal structures such as sol-gels and other aggregated or porous media, to statistically random cluster media such as metal colloids, to highly ordered materials such as layered media and photonic bandgap materials. The common focus is on flexible materials that can be used to produce composite or artificial materials with superior optical properties that could not be achieved with homogeneous materials. Applications of this work to NASA exploration goals such as terraforming, biosensors, solar sails, solar cells, and vehicle health monitoring, will be discussed.
Zhang, Jijun; Li, Jiawei; Tan, Guoguo; Hu, Renchao; Wang, Junqiang; Chang, Chuntao; Wang, Xinmin
2017-12-06
Thin and flexible materials that can provide efficient electromagnetic interference (EMI) shielding are urgently needed, especially if they can be easily processed and withstand harsh environments. Herein, layer-structured Fe-Si-B/Ni-Cu-P metallic glass composites have been developed by simple electroless plating Ni-Cu-P coating on commercial Fe-Si-B metallic glasses. The 0.1 mm-thick composite shows EMI shielding effectiveness of 40 dB over the X-band frequency range, which is higher than those of traditional metals, metal oxides, and their polymer composites of larger thickness. Most of the applied electromagnetic waves are proved to be absorbed rather than bounced back. This performance originates from the combination of a superior soft magnetic property, excellent electrical conductivity, and multiple internal reflections from multilayer composites. In addition, the flexible composites also exhibit good corrosion resistance, high thermal stability, and excellent tensile strength, making them suitable for EMI shielding in harsh chemical or thermal environments.
Phase change material thermal capacitor clothing
NASA Technical Reports Server (NTRS)
Buckley, Theresa M. (Inventor)
2005-01-01
An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.
Phase change thermal control materials, method and apparatus
NASA Technical Reports Server (NTRS)
Buckley, Theresa M. (Inventor)
2001-01-01
An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.
2016-10-21
grafting density is a key factor in the design of self - healing composite materials. There were two hypotheses that might help explain how the grafting...its physical properties. Herein we report several mechanisms by which autonomic material self -protection may be real ized. The incorporation of...network rapidly forms an endoskeletal structure within a flexible rubber , stiffening it up to 18x. Polymer seed particles have also been developed
Wang, Jian; Zhou, Pin; Obata, Akiko; Jones, Julian R.; Kasuga, Toshihiro
2015-01-01
In previous works, we reported the fabrication of cotton-wool-like composites consisting of siloxane-doped vaterite and poly(l-lactic acid) (SiVPCs). Various irregularly shaped bone voids can be filled with the composite, which effectively supplies calcium and silicate ions, enhancing the bone formation by stimulating the cells. The composites, however, were brittle and showed an initial burst release of ions. In the present work, to improve the mechanical flexibility and ion release, the composite fiber was coated with a soft, thin layer consisting of poly(d,l-lactic-co-glycolic acid) (PLGA). A coaxial electrospinning technique was used to prepare a cotton-wool-like material comprising “core-shell”-type fibers with a diameter of ~12 µm. The fibers, which consisted of SiVPC coated with a ~2-µm-thick PLGA layer, were mechanically flexible; even under a uniaxial compressive load of 1.5 kPa, the cotton-wool-like material did not exhibit fracture of the fibers and, after removing the load, showed a ~60% recovery. In Tris buffer solution, the initial burst release of calcium and silicate ions from the “core-shell”-type fibers was effectively controlled, and the ions were slowly released after one day. Thus, the mechanical flexibility and ion-release behavior of the composites were drastically improved by the thin PLGA coating. PMID:28793691
Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Tianyue; Jia, Zhe; Lin, Na
Flexible butyl interconnection segments are synthetically incorporated into an electronically conductive poly(pyrene methacrylate) homopolymer and its copolymer. The insertion of butyl segment makes the pyrene polymer more flexible, and can better accommodate deformation. This new class of flexible and conductive polymers can be used as a polymer binder and adhesive to facilitate the electrochemical performance of a silicon/graphene composite anode material for lithium ion battery application. They act like a “spring” to maintain the electrode mechanical and electrical integrity. High mass loading and high areal capacity, which are critical design requirements of high energy batteries, have been achieved in themore » electrodes composed of the novel binders and silicon/graphene composite material. A remarkable area capacity of over 5 mAh/cm 2 and volumetric capacity of over 1700 Ah/L have been reached at a high current rate of 333 mA/g.« less
Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries
Zheng, Tianyue; Jia, Zhe; Lin, Na; ...
2017-11-29
Flexible butyl interconnection segments are synthetically incorporated into an electronically conductive poly(pyrene methacrylate) homopolymer and its copolymer. The insertion of butyl segment makes the pyrene polymer more flexible, and can better accommodate deformation. This new class of flexible and conductive polymers can be used as a polymer binder and adhesive to facilitate the electrochemical performance of a silicon/graphene composite anode material for lithium ion battery application. They act like a “spring” to maintain the electrode mechanical and electrical integrity. High mass loading and high areal capacity, which are critical design requirements of high energy batteries, have been achieved in themore » electrodes composed of the novel binders and silicon/graphene composite material. A remarkable area capacity of over 5 mAh/cm 2 and volumetric capacity of over 1700 Ah/L have been reached at a high current rate of 333 mA/g.« less
NASA Astrophysics Data System (ADS)
Fan, Xingye; Wang, Xiaolei; Li, Ge; Yu, Aiping; Chen, Zhongwei
2016-09-01
A highly flexible electrodes based on electrodeposited MnO2 and polypyrrole composite on carbon cloth is designed and developed by a facile in-situ electrodeposition technique. Such flexible composite electrodes with multiply layered structure possess a high specific capacitance of 325 F g-1 at a current density of 0.2 A g-1, and an excellent rate capability with a capacitance retention of 70% at a high current density of 5.0 A g-1. The superior electrochemical performance is mainly due to the unique electrode with improved ion- and electron-transportation pathways as well as the efficient utilization of active materials and electrode robustness. The excellent electrochemical performance and the low cost property endow this flexible nanocomposite electrode with great promise in applications of flexible supercapacitors.
Generic composite flywheel designs
NASA Technical Reports Server (NTRS)
Steele, R. S.
1984-01-01
Fiber reinforced composites belong to a new class of materials and allow great flexibility in flywheel design. The most efficient flywheel may no longer have the classic Stodola taper and indeed, may not even be round. Some of the flywheel designs that have been developed in the past are discussed. Although choice of material, mounts and service requirements often dictate the final design choice for a particular application, the composite flywheels in this paper are classified within a geometric framework, a simple stress analysis of a circular disk is carried out.
NASA Astrophysics Data System (ADS)
Yoon, Sean J.; Kim, Jung Woong; Kim, Hyun Chan; Kang, Jinmo; Kim, Jaehwan
2017-12-01
Thermal stress in flexible interdigital transducers a reliability concern in the development of flexible devices, which may lead to interface delamination, stress voiding and plastic deformation. In this paper, a mathematical model is presented to investigate the effect of material selections on the thermal stress in interdigital transducers. We modified the linear relationships in the composite materials theory with the effect of high curvature, anisotropic substrate and small substrate thickness. We evaluated the thermal stresses of interdigital transducers, fabricated with various electrodes, insulators and substrate materials for the comparison. The results show that, among various insulators, organic polymer developed the highest stress level while oxide showed the lowest stress level. Aluminium shows a higher stress level and curvature as an electrode than gold. As substrate materials, polyimide and electroactive cellulose show similar stress levels except the opposite sign convention to each other. Polyimide shows positive curvatures while electroactive cellulose shows negative curvatures, which is attributed to the stress and thermal expansion state of the metal/insulator composite. The results show that the insulator is found to be responsible for the confinement across the metal lines while the substrate is responsible for the confinement along the metal lines.
Mu, Boyuan; Li, Min
2018-06-11
In this study, tetradecanol/graphene aerogel form-stable composite phase change materials were prepared by physical absorption. Two kinds of graphene aerogels were prepared using vitamin C and ethylenediamine to enhance the thermal conductivity of tetradecanol and prevent its leakage during phase transition. The form-stable composite phase change material exhibited excellent thermal energy storage capacity. The latent heat of the tetradecanol/graphene aerogel composite phase change materials with 5 wt.% graphene aerogel was similar to the theoretical latent heat of pure tetradecanol. The thermal conductivity of the tetradecanol/graphene aerogel composite phase change material improved gradually as the graphene aerogel content increased. The prepared tetradecanol/graphene aerogel composite phase change materials exhibited good thermal reliability and thermal stability, and no chemical reaction occurred between tetradecanol and the graphene aerogel. In addition, the latent heat and thermal conductivity of the tetradecanol/ethylenediamine-graphene aerogel composites were higher than those of tetradecanol/vitamin C-graphene aerogel composites, and the flexible shape of the ethylenediamine-graphene aerogel is suitable for application of the tetradecanol/ethylenediamine-graphene aerogel composite.
Active Interior Noise Control Studies
NASA Technical Reports Server (NTRS)
Park, J.; Veeramani, S.; Sampath, A.; Balachandran, B.; Wereley, N.
1996-01-01
Analytical and experimental investigations into the control of noise in the interior of a three-dimensional enclosure with a flexible boundary are presented. The rigid boundaries are constructed from acrylic material, and in the different cases considered the flexible boundary is constructed from either aluminum or composite material. Noise generated by an external speaker is transmitted into the enclosure through the flexible boundary and active control is realized by using Lead Zirconate Titanate (PZT) piezoelectric actuators bonded to the flexible boundary. Condenser microphones are used for noise measurements inside and outside the enclosure. Minimization schemes for global and local noise control in the presence of a harmonic disturbance are developed and discussed. In the experiments, analog feedforward control is implemented by using the harmonic disturbance as a reference signal.
Pratelli, Chiara; Betti, Giacomo; Giuffrè, Tullio; Marradi, Alessandro
2018-04-16
In the last forty, years semi-flexible pavements have been successfully employed, especially in those areas subjected to heavy and slow-moving loads. They usually comprise a wearing course of Grouted Macadam, a composite pavement material that provides significant advantages in comparison to both concrete and asphalt pavements. On the other hand, the laying process of this material is a two-stage operation, and the realization complexity leads to long realization times and high initial costs. Therefore, the use of semi-flexible pavements has been limited to some fields of application and areas. Recently, an innovative material has been developed to be used as an alternative to Grouted Macadam for semi-flexible pavement wearing course realization. This material should provide similar or even superior characteristics compared to traditional Grouted Macadam. This will reduce semi-flexible pavement construction time and avoid the need for dividing the laying process. This paper presents an experimental program involving the use of FastFWD, as an APT device, to evaluate in-situ properties and performance of this material. The achieved results regarding the validation of this new material by means of FastFWD appear promising both in terms of the material's properties and resistance to dynamic load repetitions.
Amir, Fatima Z.; Pham, V. H.; Mullinax, D. W.; ...
2016-06-07
Ruthenium oxide (RuO 2) nanomaterials exist as excellent materials for electrochemical capacitors. However, they tend to suffer from low mechanical flexibility when cast into films, which makes them unsuitable for flexible device applications. Herein, we report an environmentally friendly and solution-processable approach to fabricate RuO 2-based composite electrodes for flexible solid state supercapacitors. The composites were produced by anchoring RuO 2 nanoparticles onto holey reduced graphene oxide (HRGO) via a sol-gel method, followed by the electrophoretic deposition (EPD) of the material into thin films. The uniform anchoring of ultra-small RuO 2 nanoparticles on the two-dimensional HRGO sheets resulted in HRGO-RuOmore » 2 hybrid sheets with excellent mechanical flexibility of HRGO. EPD induced a layer-by-layer assembly mechanism for the HRGO-RuO 2 hybrid sheets, which resulted in a binder-free, flexible electrode. The obtained HRGO-RuO 2 flexible supercapacitors exhibited excellent electrochemical capacitive performance in a PVA-H 2SO 4 gel electrolyte with a specific capacitance of 418 F g -1 and superior cycling stability of 88.5% capacitance retention after 10,000 cycles. Additionally, these supercapacitors exhibited high rate performance with capacitance retention of 85% by increasing the current density from 1.0 to 20.0 Ag -1, and excellent mechanical flexibility with only 4.9% decay in the performance when bent 180°.« less
NASA Technical Reports Server (NTRS)
Tang, Henry H.; Orndoff, Evelyne S.; Thomas, Gretchen A.
2009-01-01
This paper discusses the effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be very robust and function in the extreme lunar thermal vacuum environment for up to one hundred Extravehicular Activity (EVA) missions. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating commercial off-the-shelf (COTS) foam protection materials. It also presents the materials properties test results and impact drop test results of the various foam materials evaluated in the study. The findings from this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam properties or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.
Flexible Tactile Sensing Based on Piezoresistive Composites: A Review
Stassi, Stefano; Cauda, Valentina; Canavese, Giancarlo; Pirri, Candido Fabrizio
2014-01-01
The large expansion of the robotic field in the last decades has created a growing interest in the research and development of tactile sensing solutions for robot hand and body integration. Piezoresistive composites are one of the most widely employed materials for this purpose, combining simple and low cost preparation with high flexibility and conformability to surfaces, low power consumption, and the use of simple read-out electronics. This work provides a review on the different type of composite materials, classified according to the conduction mechanism and analyzing the physics behind it. In particular piezoresistors, strain gauges, percolative and quantum tunnelling devices are reviewed here, with a perspective overview on the most used filler types and polymeric matrices. A description of the state-of-the-art of the tactile sensor solutions from the point of view of the architecture, the design and the performance is also reviewed, with a perspective outlook on the main promising applications. PMID:24638126
Ok, Ki-Hun; Kim, Jiwan; Park, So-Ra; Kim, Youngmin; Lee, Chan-Jae; Hong, Sung-Jei; Kwak, Min-Gi; Kim, Namsu; Han, Chul Jong; Kim, Jong-Woong
2015-01-01
A smooth, ultra-flexible, and transparent electrode was developed from silver nanowires (AgNWs) embedded in a colorless polyimide (cPI) by utilizing an inverted film-processing method. The resulting AgNW-cPI composite electrode had a transparency of >80%, a low sheet resistance of 8 Ω/□, and ultra-smooth surfaces comparable to glass. Leveraging the robust mechanical properties and flexibility of cPI, the thickness of the composite film was reduced to less than 10 μm, which is conducive to extreme flexibility. This film exhibited mechanical durability, for both outward and inward bending tests, up to a bending radius of 30 μm, while maintaining its electrical performance under cyclic bending (bending radius: 500 μm) for 100,000 iterations. Phosphorescent, blue organic light-emitting diodes (OLEDs) were fabricated using these composites as bottom electrodes (anodes). Hole-injection was poor, because AgNWs were largely buried beneath the composite's surface. Thus, we used a simple plasma treatment to remove the thin cPI layer overlaying the nanowires without introducing other conductive materials. As a result, we were able to finely control the flexible OLEDs' electroluminescent properties using the enlarged conductive pathways. The fabricated flexible devices showed only slight performance reductions of <3% even after repeated foldings with a 30 μm bending radius. PMID:25824143
Progress study of Micro Carbon Coils
NASA Astrophysics Data System (ADS)
Wang, Haiquan; Yang, Shaoming; Chen, Xiuqin
2017-12-01
As a kind of novel bio-mimetic carbon fibers, with diversities of high functions, carbon microcoils (CMC) have the outstanding properties of high specific strength, low-density, large specific surface area, heat resistance, corrosion resistance, chemical stability, conductive ability and thermal conductivity. Due to their special three-dimensional spiral structure, they have the chiral characteristics and a high flexibility. Carbon microcoils has become a research hotspot, especially the preparation of polymer-based carbon microcoils composite materials and they have wide more application such as flexible sensors, electromagnetic shielding materials, hydrogen storage materials, health care products and so on.
Composite Solid Electrolyte For Lithium Cells
NASA Technical Reports Server (NTRS)
Peled, Emmanuel; Nagasubramanian, Ganesan; Halpert, Gerald; Attia, Alan I.
1994-01-01
Composite solid electrolyte material consists of very small particles, each coated with thin layer of Lil, bonded together with polymer electrolyte or other organic binder. Material offers significant advantages over other solid electrolytes in lithium cells and batteries. Features include high ionic conductivity and strength. Composite solid electrolyte expected to exhibit flexibility of polymeric electrolytes. Polymer in composite solid electrolyte serves two purposes: used as binder alone, conduction taking place only in AI2O3 particles coated with solid Lil; or used as both binder and polymeric electrolyte, providing ionic conductivity between solid particles that it binds together.
Present State of the Art of Composite Fabric Forming: Geometrical and Mechanical Approaches
Cherouat, Abel; Borouchaki, Houman
2009-01-01
Continuous fibre reinforced composites are now firmly established engineering materials for the manufacture of components in the automotive and aerospace industries. In this respect, composite fabrics provide flexibility in the design manufacture. The ability to define the ply shapes and material orientation has allowed engineers to optimize the composite properties of the parts. The formulation of new numerical models for the simulation of the composite forming processes must allow for reduction in the delay in manufacturing and an optimization of costs in an integrated design approach. We propose two approaches to simulate the deformation of woven fabrics: geometrical and mechanical approaches.
Spaceplane Technology and Research (STAR)
1984-08-01
autonomy, flexibility , maneuverability, responsiveness, survivability and cost- effectiveness required of military aerospace operations as the result...orbit to simulate desired trajectory. Determine the ablative behavior and its effect on trajectory for various C/C composite materials. Expected... the 747-200F would potentially be the most flexible and cost- effective launch system. The associated use of stage-stations appears especially cost
Leveraging University Creativity
2012-04-01
Distinctions include: UARCs must have a university affiliation, have education as part of their mission, and tend to have more flexibility to compete...research is within five key areas, (1) Biomolecular Sensors, (2) Bio-Inspired Materials, Lightweight Portable Energy, and Flexible Energy-Dispersive...Composites, (3) Biodiscovery Tools, (4) Bio- Inspired Network Science, and (5) Cognitive Neuroscience”.23 The Institute for Soldier
Flexible Foam Protection Materials for Portable Life Support System Packaging Study
NASA Technical Reports Server (NTRS)
Tang,Henry H.; Dillon, Paul A.; Thomas, Gretchen A.
2009-01-01
This paper discusses the phase I effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be robust to consistently perform over several Extravehicular Activity (EVA) missions in the extreme lunar thermal vacuum environment. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating some commercial off-the-shelf (COTS) foam material candidates. It also presents the mechanical properties and impact drop tests results of the foam material candidates. The results of this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.
Pratelli, Chiara; Betti, Giacomo; Marradi, Alessandro
2018-01-01
In the last forty, years semi-flexible pavements have been successfully employed, especially in those areas subjected to heavy and slow-moving loads. They usually comprise a wearing course of Grouted Macadam, a composite pavement material that provides significant advantages in comparison to both concrete and asphalt pavements. On the other hand, the laying process of this material is a two-stage operation, and the realization complexity leads to long realization times and high initial costs. Therefore, the use of semi-flexible pavements has been limited to some fields of application and areas. Recently, an innovative material has been developed to be used as an alternative to Grouted Macadam for semi-flexible pavement wearing course realization. This material should provide similar or even superior characteristics compared to traditional Grouted Macadam. This will reduce semi-flexible pavement construction time and avoid the need for dividing the laying process. This paper presents an experimental program involving the use of FastFWD, as an APT device, to evaluate in-situ properties and performance of this material. The achieved results regarding the validation of this new material by means of FastFWD appear promising both in terms of the material’s properties and resistance to dynamic load repetitions. PMID:29659543
A Novel Silicone-Magnetite Composite Material Used in the Fabrication of Biomimetic Cilia
NASA Astrophysics Data System (ADS)
Carstens, B. L.; Evans, B. A.; Shields, A. R.; Su, J.; Washburn, S.; Falvo, M. R.; Superfine, R.
2008-10-01
We have developed a novel polymer-magnetite composite that we use to fabricate arrays of magnetically actuable biomimetic cilia. Biomimetic cilia are flexible nanorods 750 nm in diameter and 25 microns tall. They generate fluid flows similar to those produced by biological cilia. Polymer-magnetic nanoparticle materials such as ours are becoming increasingly useful in biomedical applications and microelectromechanical systems (MEMS). Comprised of magnetite (Fe3O4), the nanoparticles have a diameter of 5-7 nm and are complexed with a silicone copolymer and crosslinked into a flexible, magnetic solid. Amine groups make up 6-7 percent of the silicone copolymer, providing a simple means of functionalization. We present a detailed mechanical and magnetic analysis of our bulk crosslinked material. The high-aspect ratio biomimetic cilia we create with this magnetite-copolymer complex may have applications in microfluidic mixing, biofouling, and MEMS.
NASA Astrophysics Data System (ADS)
Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua
2013-07-01
A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an ``in situ growth for conductive wrapping'' and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm-3 at a discharge current density of 0.1 A cm-3 and an energy density of 6.16 × 10-3 Wh cm-3 at a power density of 0.04 W cm-3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the ``in situ growth for conductive wrapping'' method might be generalized to open up new strategies for designing next-generation energy storage devices.
In Situ-Formed Hierarchical Metal-Organic Flexible Cathode for High-Energy Sodium-Ion Batteries.
Huang, Ying; Fang, Chun; Zeng, Rui; Liu, Yaojun; Zhang, Wang; Wang, Yanjie; Liu, Qingju; Huang, Yunhui
2017-12-08
Metal-organic compounds are a family of electrode materials with structural diversity and excellent thermal stability for rechargeable batteries. Here, we fabricated a hierarchical nanocomposite with metal-organic cuprous tetracyanoquinodimethane (CuTCNQ) in a 3 D conductive carbon nanofibers (CNFs) network by in situ growth, and evaluated it as flexible cathode for sodium-ion batteries (SIBs). CuTCNQ in such flexible composite electrode is able to exhibit a high capacity of 252 mAh g -1 at 0.1 C and highly reversible stability for 1200 cycles within the voltage range of 2.5-4.1 V (vs. Na + /Na). A high specific energy of 762 Wh kg -1 was obtained with high average potential of 3.2 V (vs. Na + /Na). The in situ-formed electroactive metal-organic composites with tailored nanoarchitecture provide a promising alternative choice for high-performance cathode materials in SIBs with high energy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spartan Auxiliary Mount Panel (SPAM): A Metal Matrix Composite Honeycomb Panel for Space Flight Use
NASA Technical Reports Server (NTRS)
Segal, Kenneth N.; Stevens, Edward J.
1998-01-01
This presentation focus on the use of metal matrix composite (MMC) material option in spaceflight hardware applications. It addresses the important questions and issues such as: what is SPAM; why the use of MMC; design requirements and flexibility; qualification testing; and flight concerns.
Highly flexible, nonflammable and free-standing SiC nanowire paper
NASA Astrophysics Data System (ADS)
Chen, Jianjun; Liao, Xin; Wang, Mingming; Liu, Zhaoxiang; Zhang, Judong; Ding, Lijuan; Gao, Li; Li, Ye
2015-03-01
Flexible paper-like semiconductor nanowire materials are expected to meet the criteria for some emerging applications, such as components of flexible solar cells, electrical batteries, supercapacitors, nanocomposites, bendable or wearable electronic or optoelectronic components, and so on. As a new generation of wide-bandgap semiconductors and reinforcements in composites, SiC nanowires have advantages in power electronic applications and nanofiber reinforced ceramic composites. Herein, free-standing SiC nanowire paper consisting of ultralong single-crystalline SiC nanowires was prepared through a facile vacuum filtration approach. The ultralong SiC nanowires were synthesized by a sol-gel and carbothermal reduction method. The flexible paper composed of SiC nanowires is ~100 nm in width and up to several hundreds of micrometers in length. The nanowires are intertwisted with each other to form a three-dimensional network-like structure. SiC nanowire paper exhibits high flexibility and strong mechanical stability. The refractory performance and thermal stability of SiC nanowire paper were also investigated. The paper not only exhibits excellent nonflammability in fire, but also remains well preserved without visible damage when it is heated in an electric oven at a high temperature (1000 °C) for 3 h. With its high flexibility, excellent nonflammability, and high thermal stability, the free-standing SiC nanowire paper may have the potential to improve the ablation resistance of high temperature ceramic composites.Flexible paper-like semiconductor nanowire materials are expected to meet the criteria for some emerging applications, such as components of flexible solar cells, electrical batteries, supercapacitors, nanocomposites, bendable or wearable electronic or optoelectronic components, and so on. As a new generation of wide-bandgap semiconductors and reinforcements in composites, SiC nanowires have advantages in power electronic applications and nanofiber reinforced ceramic composites. Herein, free-standing SiC nanowire paper consisting of ultralong single-crystalline SiC nanowires was prepared through a facile vacuum filtration approach. The ultralong SiC nanowires were synthesized by a sol-gel and carbothermal reduction method. The flexible paper composed of SiC nanowires is ~100 nm in width and up to several hundreds of micrometers in length. The nanowires are intertwisted with each other to form a three-dimensional network-like structure. SiC nanowire paper exhibits high flexibility and strong mechanical stability. The refractory performance and thermal stability of SiC nanowire paper were also investigated. The paper not only exhibits excellent nonflammability in fire, but also remains well preserved without visible damage when it is heated in an electric oven at a high temperature (1000 °C) for 3 h. With its high flexibility, excellent nonflammability, and high thermal stability, the free-standing SiC nanowire paper may have the potential to improve the ablation resistance of high temperature ceramic composites. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00776c
Sol-gel derived polymer composites for energy storage and conversion
NASA Astrophysics Data System (ADS)
Han, Kuo
Sol-gel process is a simple chemistry to convert the small precursor molecules into an inorganic polymer, which could be applied to synthesize inorganic materials, modify the interface of materials, bridge the organic and inorganic materials, etc. In this dissertation, novel sol-gel derived composites have been developed for high dielectric breakdown capacitors, low high frequency loss capacitors and flexible piezoelectrics. Numerous efforts have been made in the past decades to improve the energy storage capability of composite materials by incorporating nanometer scale ceramic addictives with high dielectric permittivity into dielectric polymers with high breakdown strength. However, most composites suffer from the low breakdown strength and make the potential gain in energy density small. Here, a new chemical strategy is proposed that, through sol-gel reactions between ceramic precursors and functional groups at the end of the functionalized Poly(vinylidene fluoride -co-chlorotrifluoroethylene) chains, amorphous low permittivity ceramics was in-situ generated in the polymer matrix and cross-linked the polymer chains simultaneously. By carefully tuning precursors, the polymer/precursors feeding ratios, a series of nanocomposites were systematically designed. All the samples are comprehensively characterized and the structure-property correlations are well investigated. The optimal samples exhibit higher breakdown strength than the pristine polymer. The enhanced breakdown strength ascribed to low contrast in permittivity, great dispersion and improved electrical and mechanical properties. This newly developed approach has shown great promise for new composite capacitors. The percolative polymer composites have recently exhibited great potential in energy storage due to their high dielectric permittivities at the neighborhood of the percolation threshold. Yet high energy dissipation and poor voltage endurance of the percolative composites resulted from electrical conduction are still open issues to be addressed before full potential can be realized. Herein we report the percolative composites based on ferroelectric poly(vinylidene fluoride-co-chlorotrifluoroethylene) as the matrix and sol-gel derived SiO2 coated reduced graphene oxide nanosheets as the filler. By capitalizing on the SiO2 surface layers which have high electrical resistivity and breakdown strength, the composites exhibit superior dielectric performance as compared to the respective composites containing bare reduced graphene oxide nanosheet fillers. In addition to greatly reduced dielectric loss, little change in dielectric loss has been observed within medium frequency range (ie. 300 KHz-3 MHz) in the prepared composites even with a filler concentration beyond the percolation threshold, indicating significantly suppressed energy dissipation and the feasibility of using the conductor-insulator composites beyond the percolation threshold. Moreover, remarkable breakdown strength of 80 MV/m at the percolation threshold has been achieved in the composite, which far exceeds those of conventional percolative composites (lower than 0.1 MV/m in most cases) and thus enables the applications of the percolative composites at high electric fields. This work offers a new avenue to the percolative polymer composites exhibiting high permittivity, reduced loss and excellent breakdown strength for electrical energy storage applications. Flexible piezoelectric materials have attracted extensive attention because they can provide a practical way to scavenge energy from the environment and motions. It also provides the possibility to fabricate wearable and self-powered energy generator for powering small electronic devices. In the dissertation a new composite including BTO 3D structure and PDMS has been successfully fabricated using the sol-gel process. The structure, flexibility, dielectric and piezoelectric properties have been well studied. The new material shows a high g33 value of more than 400 mV m/N. Moreover, the durability of this composite has been confirmed by cycle tests even though the BTO structure falls apart into small pieces in the PDMS matrix. The unique morphology of the composite allows the broken piece to connect with each other to generate power under stress. This work also opens a new route toward flexible piezoelectric composites.
Shear induced alignment of short nanofibers in 3D printed polymer composites.
Yunus, Doruk Erdem; Shi, Wentao; Sohrabi, Salman; Liu, Yaling
2016-12-09
3D printing of composite materials offers an opportunity to combine the desired properties of composite materials with the flexibility of additive manufacturing in geometric shape and complexity. In this paper, the shear-induced alignment of aluminum oxide nanowires during stereolithography printing was utilized to fabricate a nanowire reinforced polymer composite. To align the fibers, a lateral oscillation mechanism was implemented and combined with wall pattern printing technique to generate shear flow in both vertical and horizontal directions. A series of specimens were fabricated for testing the composite material's tensile strength. The results showed that mechanical properties of the composite were improved by reinforcement of nanofibers through shear induced alignment. The improvement of tensile strength was approximately ∼28% by aligning the nanowires at 5 wt% (∼1.5% volume fraction) loading of aluminum oxide nanowires.
Yu, Pingping; Li, Yingzhi; Yu, Xinyi; Zhao, Xin; Wu, Lihao; Zhang, Qinghua
2013-09-24
A combination of vertical polyaniline (PANI) nanowire arrays and nitrogen plasma etched carbon fiber cloths (eCFC) was fabricated to create 3D nanostructured PANI/eCFC composites. The small size of the highly ordered PANI nanowires can greatly reduce the scale of the diffusion length, allowing for the improved utilization of electrode materials. A two-electrode flexible supercapacitor based on PANI/eCFC demonstrates a high specific capacitance (1035 F g(-1) at a current density of 1 A g(-1)), good rate capability (88% capacity retention at 8 A g(-1)), and long-term cycle life (10% capacity loss after 5000 cycles). The lightweight, low-cost, flexible composites are promising candidates for use in energy storage device applications.
NASA Astrophysics Data System (ADS)
Xu, Lianyun; Hou, Zhende; Qin, Yuwen
2002-05-01
Because some composite material, thin film material, and biomaterial, are very thin and some of them are flexible, the classical methods for measuring their Young's moduli, by mounting extensometers on specimens, are not available. A bi-image method based on image correlation for measuring Young's moduli is developed in this paper. The measuring precision achieved is one order enhanced with general digital image correlation or called single image method. By this way, the Young's modulus of a SS301 stainless steel thin tape, with thickness 0.067mm, is measured, and the moduli of polyester fiber films, a kind of flexible sheet with thickness 0.25 mm, are also measured.
Im, Hyeon-Gyun; Jung, Soo-Ho; Jin, Jungho; Lee, Dasom; Lee, Jaemin; Lee, Daewon; Lee, Jung-Yong; Kim, Il-Doo; Bae, Byeong-Soo
2014-10-28
We report a flexible high-performance conducting film using an embedded copper nanowire transparent conducting electrode; this material can be used as a transparent electrode platform for typical flexible optoelectronic devices. The monolithic composite structure of our transparent conducting film enables simultaneously an outstanding oxidation stability of the copper nanowire network (14 d at 80 °C), an exceptionally smooth surface topography (R(rms) < 2 nm), and an excellent opto-electrical performances (Rsh = 25 Ω sq(-1) and T = 82%). A flexible organic light emitting diode device is fabricated on the transparent conducting film to demonstrate its potential as a flexible copper nanowire electrode platform.
Fabrication of flexible piezoelectric PZT/fabric composite.
Chen, Caifeng; Hong, Daiwei; Wang, Andong; Ni, Chaoying
2013-01-01
Flexible piezoelectric PZT/fabric composite material is pliable and tough in nature which is in a lack of traditional PZT patches. It has great application prospect in improving the sensitivity of sensor/actuator made by piezoelectric materials especially when they are used for curved surfaces or complicated conditions. In this paper, glass fiber cloth was adopted as carrier to grow PZT piezoelectric crystal particles by hydrothermal method, and the optimum conditions were studied. The results showed that the soft glass fiber cloth was an ideal kind of carrier. A large number of cubic-shaped PZT nanocrystallines grew firmly in the carrier with a dense and uniform distribution. The best hydrothermal condition was found to be pH 13, reaction time 24 h, and reaction temperature 200°C.
Fabrication of Flexible Piezoelectric PZT/Fabric Composite
Chen, Caifeng; Hong, Daiwei; Wang, Andong; Ni, Chaoying
2013-01-01
Flexible piezoelectric PZT/fabric composite material is pliable and tough in nature which is in a lack of traditional PZT patches. It has great application prospect in improving the sensitivity of sensor/actuator made by piezoelectric materials especially when they are used for curved surfaces or complicated conditions. In this paper, glass fiber cloth was adopted as carrier to grow PZT piezoelectric crystal particles by hydrothermal method, and the optimum conditions were studied. The results showed that the soft glass fiber cloth was an ideal kind of carrier. A large number of cubic-shaped PZT nanocrystallines grew firmly in the carrier with a dense and uniform distribution. The best hydrothermal condition was found to be pH 13, reaction time 24 h, and reaction temperature 200°C. PMID:24348194
Bioinspired Transparent Laminated Composite Film for Flexible Green Optoelectronics.
Lee, Daewon; Lim, Young-Woo; Im, Hyeon-Gyun; Jeong, Seonju; Ji, Sangyoon; Kim, Yong Ho; Choi, Gwang-Mun; Park, Jang-Ung; Lee, Jung-Yong; Jin, Jungho; Bae, Byeong-Soo
2017-07-19
Herein, we report a new version of a bioinspired chitin nanofiber (ChNF) transparent laminated composite film (HCLaminate) made of siloxane hybrid materials (hybrimers) reinforced with ChNFs, which mimics the nanofiber-matrix structure of hierarchical biocomposites. Our HCLaminate is produced via vacuum bag compressing and subsequent UV-curing of the matrix resin-impregnated ChNF transparent paper (ChNF paper). It is worthwhile to note that this new type of ChNF-based transparent substrate film retains the strengths of the original ChNF paper and compensates for ChNF paper's drawbacks as a flexible transparent substrate. As a result, compared with high-performance synthetic plastic films, such as poly(ethylene terephthalate), poly(ether sulfone), poly(ethylene naphthalate), and polyimide, our HCLaminate is characterized to exhibit extremely smooth surface topography, outstanding optical clarity, high elastic modulus, high dimensional stability, etc. To prove our HCLaminate as a substrate film, we use it to fabricate flexible perovskite solar cells and a touch-screen panel. As far as we know, this work is the first to demonstrate flexible optoelectronics, such as flexible perovskite solar cells and a touch-screen panel, actually fabricated on a composite film made of ChNF. Given its desirable macroscopic properties, we envision our HCLaminate being utilized as a transparent substrate film for flexible green optoelectronics.
Dragonfly: Investigating the Surface Composition of Titan
NASA Technical Reports Server (NTRS)
Brinckerhoff, W. B.; Lawrence, D. J.; Barnes, J. W.; Lorenz, R. D.; Horst, S. M.; Zacny, K.; Freissinet, C.; Parsons, A. M.; Turtle, E. P.; Trainer, M. G.;
2018-01-01
Dragonfly is a rotorcraft lander mission, selected as a finalist in NASA's New Frontiers Program, that is designed to sample materials and determine the surface composition in different geologic settings on Titan. This revolutionary mission concept would explore diverse locations to characterize the habitability of Titan's environment, to investigate how far prebiotic chemistry has progressed, and to search for chemical signatures that could be indicative of water-based and/or hydrocarbon-based life. Here we describe Dragonfly's capabilities to determine the composition of a variety of surface units on Titan, from elemental components to complex organic molecules. The compositional investigation ncludes characterization of local surface environments and finely sampled materials. The Dragonfly flexible sampling approach can robustly accommodate materials from Titan's most intriguing surface environments.
A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.
Peng, Hong-Jie; Huang, Jia-Qi; Zhang, Qiang
2017-08-29
Flexible energy storage systems are imperative for emerging flexible devices that are revolutionizing our life. Lithium-ion batteries, the current main power sources, are gradually approaching their theoretical limitation in terms of energy density. Therefore, alternative battery chemistries are urgently required for next-generation flexible power sources with high energy densities, low cost, and inherent safety. Flexible lithium-sulfur (Li-S) batteries and analogous flexible alkali metal-chalcogen batteries are of paramount interest owing to their high energy densities endowed by multielectron chemistry. In this review, we summarized the recent progress of flexible Li-S and analogous batteries. A brief introduction to flexible energy storage systems and general Li-S batteries has been provided first. Progress in flexible materials for flexible Li-S batteries are reviewed subsequently, with a detailed classification of flexible sulfur cathodes as those based on carbonaceous (e.g., carbon nanotubes, graphene, and carbonized polymers) and composite (polymers and inorganics) materials and an overview of flexible lithium anodes and flexible solid-state electrolytes. Advancements in other flexible alkali metal-chalcogen batteries are then introduced. In the next part, we emphasize the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-type Li-S batteries are highlighted. In the end, existing challenges and future development of flexible Li-S and analogous alkali metal-chalcogen batteries are summarized and prospected.
NASA Astrophysics Data System (ADS)
Olejnik, Robert; Matyas, Jiri; Slobodian, Petr; Riha, Pavel
2018-03-01
Most portable devices, such as mobile phones or tablets, use antennas made of copper. This paper demonstrates the possible use of antenna constructed from electrically conductive polymer composite materials for use in those applications. The method of preparation and the properties of the graphene/styrene-isoprene-styrene copolymer as flexible microstrip antenna are described in this contribution. Graphene/styrene-isoprene-styrene copolymer toluene solution was prepared by means of ultrasound and the PET substrate was dip coated to reach a fine thin film. The main advantages of using PET as a substrate are low weight and flexibility. The final size of the flexible microstrip antenna was 10 × 25 mm with thickness of 0.48 mm (PET substrate 0.25 mm) with a weight of 0.110 g. The resulting antenna operates at a frequency of 1.8 GHz and gain ‑40.02 dB.
NASA Astrophysics Data System (ADS)
Matyas, J.; Olejnik, R.; Slobodian, P.
2017-12-01
A most of portable devices, such as mobile phones, tablets, uses antennas made of cupper. In this paper we demonstrate possible use of electrically conductive polymer composite material for such antenna application. Here we describe the method of preparation and properties of the carbon nanotubes (CNTs)/(ethylene-octene copolymer) as flexible microstrip antenna. Carbon nanotubes dispersion in (ethylene-octene copolymer) toluene solution was prepared by ultrasound finally coating PET substrate by method of dip-coating. Main advantages of PET substrate are low weight and also flexibility. The final size of flexible microstrip antenna was 5 x 50 mm with thickness of 0.48 mm (PET substrate 0.25 mm) with the weight of only 0.402 g. Antenna operates at three frequencies 1.66 GHz (-6.51 dB), 2.3 GHz (-13 dB) and 2.98 GHz (-33.59 dB).
Flexible energetic materials and related methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heaps, Ronald J.
Energetic compositions and methods of forming components from the compositions are provided. In one embodiment, a composition includes aluminum, molybdenum trioxide, potassium perchlorate, and a binder. In one embodiment, the binder may include a silicone material. The materials may be mixed with a solvent, such as xylene, de-aired, shaped and cured to provide a self-supporting structure. In one embodiment, one or more reinforcement members may be added to provide additional strength to the structure. For example, a weave or mat of carbon fiber material may be added to the mixture prior to curing. In one embodiment, blade casting techniques maymore » be used to form a structure. In another embodiment, a structure may be formed using 3-dimensional printing techniques.« less
NASA Astrophysics Data System (ADS)
Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.
2017-09-01
Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.
Graphene and Polymer Composites for Supercapacitor Applications: a Review
NASA Astrophysics Data System (ADS)
Gao, Yang
2017-06-01
Supercapacitors, as one of the energy storage devices, exhibit ultrahigh capacitance, high power density, and long cycle. High specific surface area, mechanical and chemical stability, and low cost are often required for supercapacitor materials. Graphene, as a new emerging carbon material, has attracted a lot of attention in energy storage field due to its intrinsic properties. Polymers are often incorporated into graphene for a number of enhanced or new properties as supercapacitors. In this paper, different polymers which are used to form composite materials for supercapacitor applications are reviewed. The functions, strategies, and the enhanced properties of graphene and polymer composites are discussed. Finally, the recent development of graphene and polymers for flexible supercapacitors are also discussed.
He, Yongmin; Chen, Wanjun; Li, Xiaodong; Zhang, Zhenxing; Fu, Jiecai; Zhao, Changhui; Xie, Erqing
2013-01-22
A lightweight, flexible, and highly efficient energy management strategy is needed for flexible energy-storage devices to meet a rapidly growing demand. Graphene-based flexible supercapacitors are one of the most promising candidates because of their intriguing features. In this report, we describe the use of freestanding, lightweight (0.75 mg/cm(2)), ultrathin (<200 μm), highly conductive (55 S/cm), and flexible three-dimensional (3D) graphene networks, loaded with MnO(2) by electrodeposition, as the electrodes of a flexible supercapacitor. It was found that the 3D graphene networks showed an ideal supporter for active materials and permitted a large MnO(2) mass loading of 9.8 mg/cm(2) (~92.9% of the mass of the entire electrode), leading to a high area capacitance of 1.42 F/cm(2) at a scan rate of 2 mV/s. With a view to practical applications, we have further optimized the MnO(2) content with respect to the entire electrode and achieved a maximum specific capacitance of 130 F/g. In addition, we have also explored the excellent electrochemical performance of a symmetrical supercapacitor (of weight less than 10 mg and thickness ~0.8 mm) consisting of a sandwich structure of two pieces of 3D graphene/MnO(2) composite network separated by a membrane and encapsulated in polyethylene terephthalate (PET) membranes. This research might provide a method for flexible, lightweight, high-performance, low-cost, and environmentally friendly materials used in energy conversion and storage systems for the effective use of renewable energy.
Jin, Yu; Chen, Hongyuan; Chen, Minghai; Liu, Ning; Li, Qingwen
2013-04-24
MnO2 has been widely studied as the pseudo-capactive electrode material of high-performance supercapacitors for its large operating voltage, low cost, and environmental friendliness. However, it suffers from low conductivity and being hardly handle as the electrodes of supercapacitors especially with flexibility, which largely limit its electrochemical performance and application. Herein, we report a novel ternary composite paper composed of reduced graphene sheet (GR)-patched carbon nanotube (CNT)/MnO2, which has controllable structures and prominent electrochemical properties for a flexible electrode of the supercapacitor. The composite paper was prepared by electrochemical deposition of MnO2 on a flexible CNT paper and further adsorption of GR on its surface to enhance the surface conductivity of the electrode and prohibit MnO2 nanospheres from detaching with the electrode. The presence of GR was found remarkably effective in enhancing the initial electrochemical capacitance of the composite paper from 280 F/g to 486.6 F/g. Furthermore, it ensures the stability of the capacitance after a long period of charge/discharge cycles. A flexible CNT/polyaniline/CNT/MnO2/GR asymmetric supercapacitor was assembled with this composite paper as an electrode and aqueous electrolyte gel as the separator. Its operating voltage reached 1.6 V, with an energy density at 24.8 Wh/kg. Such a composite structure derived from a multiscale assembly can offer not only a robust scaffold loading MnO2 nanospheres but also a conductive network for efficient ionic and electronic transport; thus, it is potentially promising as a novel electrode architecture for high-performance flexible energy storage devices.
Khosrozadeh, Ali; Darabi, Mohammad Ali; Xing, Malcolm; Wang, Quan
2016-05-11
Polyaniline (PANI) is a promising pseudocapacitance electrode material. However, its structural instability leads to low cyclic stability and limited rate capability which hinders its practical applications. In view of the limitations, flexible PANI-based composite films are developed to improve the electrochemical performance of electrode materials. We report in the research a facile and cost-effective approach for fabrication of a high-performance supercapacitor (SC) with excellent cyclic stability and tunable energy and power densities. SC electrode containing a very high mass loading of active materials is a flexible film of PANI, tissue wiper-based cellulose, graphite-based exfoliated graphite (ExG), and silver nanoparticles with potential applications in wearable electronics. The optimum preparation weight ratios of silver nitrate/aniline and ExG/aniline used in the research are estimated to be 0.18 and 0.65 (or higher), respectively. Our results show that an ultrahigh capacitance of 3.84 F/cm(2) (240.10 F/g) at a discharge rate of 5 mA can be achieved. In addition, our study shows that the power density can be increased from 1531.3 to 3000 W/kg by selecting the weight ratio of ExG/aniline to be more than 0.65, with a sacrifice in the energy density. The obtained promising electrochemical properties are found to be mainly attributed to an effective combination of PANI, ExG, cushiony cellulose scaffold, and silver as well as the porosity of the composite.
Pu, Wuli; Fu, Daihua; Wang, Zhanhua; Gan, Xinpeng; Lu, Xili; Yang, Li
2018-01-01
Abstract Combining self‐healing functions with damage diagnosing, which can achieve timely healing autonomously, is expected to improve the reliability and reduce life cycle cost of materials. Here, a flexible conductive composite composed of a dynamically crosslinked polyurethane bearing Diels–Alder bonds (PUDA) and carbon nanotubes (CNTs), which possess both crack diagnosing and self‐healing functions, is reported. The introduced dynamic Diels–Alder bonds endow the materials self‐healing function and the powder‐based preparation route based on the specially designed CNTs‐coated PUDA micropowders leads to the formation of segregated CNTs network, which makes the composite possess excellent mechanical properties and high conductivity. Because of the sufficient electrothermal and photothermal effect of CNTs, the composites can be healed rapidly and repeatedly by electricity or near‐infrared light based on the retro‐Diels–Alder reaction. An obvious color difference in the infrared thermograph resulting from the resistance difference between damaged and undamaged area can be observed when applying the voltage, which can be used for crack diagnosing. Using the same electrical circuit, the crack in the PUDA/CNTs composite can be noninvasively detected first and then be autonomously healed. The composites also exhibit a strain‐sensing function with good sensitivity and high reliability, thus will have potential applications in electronic strain sensors. PMID:29876226
NASA Astrophysics Data System (ADS)
Chen, Y. J.; Scarpa, F.; Farrow, I. R.; Liu, Y. J.; Leng, J. S.
2013-04-01
This paper describes the manufacturing, characterization and parametric modeling of a novel fiber-reinforced composite flexible skin with in-plane negative Poisson’s ratio (auxetic) behavior. The elastic mechanical performance of the auxetic skin is evaluated using a three-dimensional analytical model based on the classical laminate theory (CLT) and Sun’s thick laminate theory. Good agreement is observed between in-plane Poisson’s ratios and Young’s moduli of the composite skin obtained by the theoretical model and the experimental results. A parametric analysis carried out with the validated model shows that significant changes in the in-plane negative Poisson’s ratio can be achieved through different combinations of matrix and fiber materials and stacking sequences. It is also possible to identify fiber-reinforced composite skin configurations with the same in-plane auxeticity but different orthotropic stiffness performance, or the same orthotropic stiffness performance but different in-plane auxeticity. The analysis presented in this work provides useful guidelines to develop and manufacture flexible skins with negative Poisson’s ratio for applications focused on morphing aircraft wing designs.
Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua
2013-01-01
A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an “in situ growth for conductive wrapping” and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm−3 at a discharge current density of 0.1 A cm−3 and an energy density of 6.16 × 10−3 Wh cm−3 at a power density of 0.04 W cm−3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the “in situ growth for conductive wrapping” method might be generalized to open up new strategies for designing next-generation energy storage devices. PMID:23884478
NASA Technical Reports Server (NTRS)
Staskus, J. V.; Berkopec, F. D.
1979-01-01
Flexible solar-array substrates, graphite-fiber/epoxy - aluminum honeycomb panels, and thin dielectric films were exposed to monoenergetic electron beams ranging in energy from 2 to 20 keV in the Lewis Research Center's geomagnetic-substorm-environment simulation facility to determine surface potentials, dc currents, and surface discharges. The four solar-array substrate samples consisted of Kapton sheet reinforced with fabrics of woven glass or carbon fibers. They represented different construction techniques that might be used to reduce the charge accumulation on the array back surface. Five honeycomb-panel samples were tested, two of which were representative of Voyager antenna materials and had either conductive or nonconductive painted surfaces. A third sample was of Navstar solar-array substrate material. The other two samples were of materials proposed for use on Intelsat V. All the honeycomb-panel samples had graphite-fiber/epoxy composite face sheets. The thin dielectric films were 2.54-micrometer-thick Mylar and 7.62-micrometer-thick Kapton.
NASA Astrophysics Data System (ADS)
Hasan, Mohammed Adnan; Rashmi, S.; Esther, A. Carmel Mary; Bhavanisankar, Prudhivi Yashwantkumar; Sherikar, Baburao N.; Sridhara, N.; Dey, Arjun
2018-03-01
The feasibility of utilizing commercially available silica aerogel-based flexible composite blankets as passive thermal control element in applications such as extraterrestrial environments is investigated. Differential scanning calorimetry showed that aerogel blanket was thermally stable over - 150 to 126 °C. The outgassing behavior, e.g., total mass loss, collected volatile condensable materials, water vapor regained and recovered mass loss, was within acceptable range recommended for the space applications. ASTM tension and tear tests confirmed the material's mechanical integrity. The thermo-optical properties remained nearly unaltered in simulated space environmental tests such as relative humidity, thermal cycling and thermo-vacuum tests and confirmed the space worthiness of the aerogel. Aluminized Kapton stitched or anchored to the blanket could be used to control the optical transparency of the aerogel. These outcomes highlight the potential of commercial aerogel composite blankets as passive thermal control element in spacecraft. Structural and chemical characterization of the material was also done using scanning electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy.
NASA Astrophysics Data System (ADS)
Tripathy, Ashis; Sharma, Priyaranjan; Sahoo, Narayan
2018-03-01
At the present time, flexible and stretchable electronics has intended to use the new cutting-edge technologies for advanced electronic application. Currently, Polymers are being employed for such applications but they are not effective due to their low dielectric constant. To enhance the dielectric properties of polymer for energy storage application, it is necessary to add ceramic material of high dielectric constant to synthesize a polymer-ceramic composite. Therefore, a novel attempt has been made to enhance the dielectric properties of the Polydimethylsiloxane (PDMS) polymer by adding (CaMgFex)Fe1-xTi3O12-δ(0
Structural modeling for multicell composite rotor blades
NASA Technical Reports Server (NTRS)
Rehfield, Lawrence W.; Atilgan, Ali R.
1987-01-01
Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases.
NASA Technical Reports Server (NTRS)
Santare, Michael H.; Pipes, R. Byron; Beaussart, A. J.; Coffin, D. W.; Otoole, B. J.; Shuler, S. F.
1993-01-01
Flexible manufacturing methods are needed to reduce the cost of using advanced composites in structural applications. One method that allows for this is the stretch forming of long discontinuous fiber materials with thermoplastic matrices. In order to exploit this flexibility in an economical way, a thorough understanding of the relationship between manufacturing and component performance must be developed. This paper reviews some of the recent work geared toward establishing this understanding. Micromechanics models have been developed to predict the formability of the material during processing. The latest improvement of these models includes the viscoelastic nature of the matrix and comparison with experimental data. A finite element scheme is described which can be used to model the forming process. This model uses equivalent anisotropic viscosities from the micromechanics models and predicts the microstructure in the formed part. In addition, structural models have been built to account for the material property gradients that can result from the manufacturing procedures. Recent developments in this area include the analysis of stress concentrations and a failure model each accounting for the heterogeneous material fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.
Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and singlemore » crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.« less
Computational Design for Multifunctional Microstructural Composites
NASA Astrophysics Data System (ADS)
Chen, Yuhang; Zhou, Shiwei; Li, Qing
As an important class of natural and engineered materials, periodic microstructural composites have drawn substantial attention from the material research community for their excellent flexibility in tailoring various desirable physical behaviors. To develop periodic cellular composites for multifunctional applications, this paper presents a unified design framework for combining stiffness and a range of physical properties governed by quasi-harmonic partial differential equations. A multiphase microstructural configuration is sought within a periodic base-cell design domain using topology optimization. To deal with conflicting properties, e.g. conductivity/permeability versus bulk modulus, the optimum is sought in a Pareto sense. Illustrative examples demonstrate the capability of the presented procedure for the design of multiphysical composites and tissue scaffolds.
Polymeric composites on the basis of Martian ground for building future mars stations
NASA Astrophysics Data System (ADS)
Mukbaniani, O. V.; Aneli, J. N.; Markarashvili, E. G.; Tarasashvili, M. V.; Aleksidze, N. D.
2016-04-01
The colonization of Mars will require obtaining building materials which can be put in place and processed into buildings via various constructive technologies. We tried to use artificial Martian ground - AMG (GEO PAT 11-234 (2015)) and special resins for the preparation of building block prototypes. The composite material has been obtained based on the AMG as filler, epoxy resin (type ED-20) and tetraethoxysilane - TEOS. We have studied strengthening - softening temperatures and water absorption of the AMG polymer composites that are determined by epoxy resin and TEOS modification. Comparison of the experimental results shows that composites containing modified filler have higher values of the maximum ultimate strength, resistance and flexibility parameters than unmodified composites with definite loading. Modified composites also have a higher softening temperature and lower water absorption.
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Petko, Jeannie F.
2004-01-01
Affordable fiber-reinforced ceramic matrix composites with multifunctional properties are critically needed for high-temperature aerospace and space transportation applications. These materials have various applications in advanced high-efficiency and high-performance engines, airframe and propulsion components for next-generation launch vehicles, and components for land-based systems. A number of these applications require materials with specific functional characteristics: for example, thick component, hybrid layups for environmental durability and stress management, and self-healing and smart composite matrices. At present, with limited success and very high cost, traditional composite fabrication technologies have been utilized to manufacture some large, complex-shape components of these materials. However, many challenges still remain in developing affordable, robust, and flexible manufacturing technologies for large, complex-shape components with multifunctional properties. The prepreg and melt infiltration (PREMI) technology provides an affordable and robust manufacturing route for low-cost, large-scale production of multifunctional ceramic composite components.
Flexible free-standing TiO2/graphene/PVdF films as anode materials for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Ren, H. M.; Ding, Y. H.; Chang, F. H.; He, X.; Feng, J. Q.; Wang, C. F.; Jiang, Y.; Zhang, P.
2012-12-01
Graphene composites were prepared by hydrothermal method using titanium dioxide (TiO2) adsorbed graphene oxide (GO) sheets as precursors. Free-standing hybrid films for lithium-ion batteries were prepared by adding TiO2/graphene composites to the polyvinylidene fluoride (PVdF)/N-methyl-2-pyrrolidone (NMP) solution, followed by a solvent evaporation technique. These films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and various electrochemical techniques. Flexible films show an excellent cycling performance, which was attributed to the interconnected graphene conducting network, which depressed the increasing of electric resistance during the cycling.
Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors.
Wu, Xi-Lin; Wen, Tao; Guo, Hong-Li; Yang, Shubin; Wang, Xiangke; Xu, An-Wu
2013-04-23
As a newly developed material, carbon gels have been receiving considerable attention due to their multifunctional properties. Herein, we present a facile, green, and template-free route toward sponge-like carbonaceous hydrogels and aerogels by using crude biomass, watermelon as the carbon source. The obtained three-dimensional (3D) flexible carbonaceous gels are made of both carbonaceous nanofibers and nanospheres. The porous carbonaceous gels (CGs) are highly chemically active and show excellent mechanical flexibility which enable them to be a good scaffold for the synthesis of 3D composite materials. We synthesized the carbonaceous gel-based composite materials by incorporating Fe3O4 nanoparticles into the networks of the carbonaceous gels. The Fe3O4/CGs composites further transform into magnetite carbon aerogels (MCAs) by calcination. The MCAs keep the porous structure of the original CGs, which allows the sustained and stable transport of both electrolyte ions and electrons to the electrode surface, leading to excellent electrochemical performance. The MCAs exhibit an excellent capacitance of 333.1 F·g(-1) at a current density of 1 A·g(-1) within a potential window of -1.0 to 0 V in 6 M KOH solution. Meanwhile, the MCAs also show outstanding cycling stability with 96% of the capacitance retention after 1000 cycles of charge/discharge. These findings open up the use of low-cost elastic carbon gels for the synthesis of other 3D composite materials and show the possibility for the application in energy storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, S.
2001-01-26
Polymer composite materials have been a part of the automotive industry for several decades, with early application in the 1953 Corvette. These materials have been used for applications with low production volumes, because of their shortened lead times and lower investment costs relative to conventional steel fabrication. Important drivers of the growth of polymer composites have been the reduced weight and parts consolidation opportunities the material offers, as well as design flexibility, corrosion resistance, material anisotropy, and mechanical properties. Although these benefits are well recognized by the industry, polymer composite use has been dampened by high material costs, slow productionmore » rates, and to a lesser extent, concerns about recyclability. Also impeding large scale automotive applications is a curious mixture of concerns about material issues such as crash energy absorption, recycling challenges, competitive and cost pressures, the industry's general lack of experience and comfort with the material, and industry concerns about its own capabilities (Flynn and Belzowski 1995). Polymer composite materials are generally made of two or more material components--fibers, either glass or carbon, reinforced in the matrix of thermoset or thermoplastic polymer materials. The glass-reinforced thermoset composites are the most commonly used composite in automotive applications today, but thermoplastic composites and carbon fiber-reinforced thermosets also hold potential. It has been estimated that significant use of glass-reinforced polymers as structural components could yield a 20-35% reduction in vehicle weight. More importantly, the use of carbon fiber-reinforced materials could yield a 40-65% reduction in weight.« less
Yang, Ke; Huang, Xingyi; Fang, Lijun; He, Jinliang; Jiang, Pingkai
2014-12-21
Flexible nanodielectric materials with high dielectric constant and low dielectric loss have huge potential applications in the modern electronic and electric industry. Graphene sheets (GS) and reduced-graphene oxide (RGO) are promising fillers for preparing flexible polymer-based nanodielectric materials because of their unique two-dimensional structure and excellent electrical and mechanical properties. However, the easy aggregation of GS/RGO significantly limits the potential of graphene in enhancing the dielectric constant of polymer composites. In addition, the poor filler/matrix nanoscale interfacial adhesion also causes difficulties in suppressing the dielectric loss of the composites. In this work, using a facile and environmentally friendly approach, polydopamine coated RGO (PDA-RGO) and fluoro-polymer functionalized RGO (PF-PDA-RGO) were prepared. Compared with the RGO prepared by the conventional methods [i.e. hydrazine reduced-graphene oxide (H-RGO)] and PDA-RGO, the resulting PF-PDA-RGO nanosheets exhibit excellent dispersion in the ferroelectric polymer matrix [i.e. poly(vinylidene fluoride-co-hexafluoro propylene), P(VDF-HFP)] and strong interfacial adhesion with the matrix, leading to a low percolation threshold (fc = 1.06 vol%) and excellent flexibility for the corresponding nanocomposites. Among the three nanocomposites, the P(VDF-HFP)/PF-PDA-RGO nanocomposites exhibited the optimum performance (i.e. simultaneously having high dielectric constant and low dielectric loss). For instance, at 1000 Hz, the P(VDF-HFP) nanocomposite sample with 1.0 vol% PF-PDA-RGO has a dielectric constant of 107.9 and a dielectric loss of 0.070, showing good potential for dielectric applications. Our strategy provides a new pathway to prepare high performance flexible nanodielectric materials.
Iqbal, Nousheen; Wang, Xianfeng; Babar, Aijaz Ahmed; Zainab, Ghazala; Yu, Jianyong; Ding, Bin
2017-11-09
Increasing use of wearable electronic devices have resulted in enhanced demand for highly flexible supercapacitor electrodes with superior electrochemical performance. In this study, flexible composite membranes with electrosprayed MnO 2 particles uniformly anchored on Fe 3 O 4 doped electrospun carbon nanofibers (Fe 3 O 4 @CNF Mn ) have been prepared as flexible electrodes for high-performance supercapacitors. The interconnected porous beaded structure ensures free movement of electrolyte within the composite membranes, therefore, the developed supercapacitor electrodes not only offer high specific capacitance of ~306 F/g, but also exhibit good capacitance retention of ~85% after 2000 cycles, which certify that the synthesized electrodes offer high and stable electrochemical performance. Additionally, the supercapacitors fabricated from our developed electrodes well maintain their performance under flexural stress and exhibit a very minute change in specific capacitance even up to 180° bending angle. The developed electrode fabrication strategy integrating electrospinning and electrospray techniques paves new insights into the development of potential functional nanofibrous materials for light weight and flexible wearable supercapacitors.
Flexible overlays for rigid pavements : final report, February 2010.
DOT National Transportation Integrated Search
2010-02-01
Approximately 45% of the New Jersey Department of Transportations (NJDOT) roadways are : composite (hot mix asphalt overlying Portland cement concrete). Hot mix asphalt (HMA) is used as : the overlying material because of its inexpensive nature wh...
Ultra low friction carbon/carbon composites for extreme temperature applications
Erdemir, Ali; Busch, Donald E.; Fenske, George R.; Lee, Sam; Shepherd, Gary; Pruett, Gary J.
2001-01-01
A carbon/carbon composite in which a carbon matrix containing a controlled amount of boron or a boron compound is reinforced with carbon fiber exhibits a low coefficient of friction, i.e., on the order of 0.04 to 0.1 at temperatures up to 600.degree. C., which is one of the lowest frictional coefficients for any type of carbonaceous material, including graphite, glassy carbon, diamond, diamond-like carbon and other forms of carbon material. The high degree of slipperiness of the carbon composite renders it particularly adapted for limiting friction and wear at elevated temperatures such as in seals, bearings, shafts, and flexible joints
Hu, Xin; Tang, Changyu; He, Zhoukun; Shao, Hong; Xu, Keqin; Mei, Jun; Lau, Woon-Ming
2017-05-01
With the rapid development of stretchable electronics, functional textiles, and flexible sensors, water-proof protection materials are required to be built on various highly flexible substrates. However, maintaining the antiwetting of superhydrophobic surface under stretching is still a big challenge since the hierarchical structures at hybridized micro-nanoscales are easily damaged following large deformation of the substrates. This study reports a highly stretchable and mechanically stable superhydrophobic surface prepared by a facile spray coating of carbon black/polybutadiene elastomeric composite on a rubber substrate followed by thermal curing. The resulting composite coating can maintain its superhydrophobic property (water contact angle ≈170° and sliding angle <4°) at an extremely large stretching strain of up to 1000% and can withstand 1000 stretching-releasing cycles without losing its superhydrophobic property. Furthermore, the experimental observation and modeling analysis reveal that the stable superhydrophobic properties of the composite coating are attributed to the unique self-adaptive deformation ability of 3D hierarchical roughness of the composite coating, which delays the Cassie-Wenzel transition of surface wetting. In addition, it is first observed that the damaged coating can automatically recover its superhydrophobicity via a simple stretching treatment without incorporating additional hydrophobic materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Singh, Akanksha; Das, Sonatan; Bharathkumar, Mareddi; Revanth, D.; Karthik, ARB; Sudhakara Sastry, Bala; Ramgopal Rao, V.
2016-07-01
Flexible piezoelectric composites offer alternative and/or additional solutions to sensor, actuator and transducer applications. Here in this work, we have successfully fabricated highly flexible piezoelectric composites with poly dimethyl siloxane (PDMS) using herbal zinc oxide (h-ZnO) as filler having weight fractions up to 50 wt.% by solution casting of dispersions of h-ZnO in PDMS. Excellent piezo properties (Resonant frequency 935 Hz, d*33 29.76 pm V-1), physiochemical properties (Wurtzite structure ZnO, 380 nm absorbance) and mechanical properties (Young modulus 16.9 MPa) have been optimized with theoretical simulations and observed experimentally for h-ZnO + PDMS. As such, the demonstrated piezoelectric PDMS membranes combined with the excellent properties of these composites open new ways to ‘soft touch’ applications and could serve as a variety of soft and sensitive electromechanical transducers, which are desired for a variety of sensor and energy harvesting applications.
Flexible 2D RF Nanoelectronics based on Layered Semiconductor Transistor (NBIT III)
2016-11-11
Experimental and computational studies in multidisciplinary fields of electrical, mechanical engineering , and materials science were conducted to achieve...plan for this project. Experimental and computational studies in multidisciplinary fields of electrical, mechanical engineering , and materials...electrostatic or physisorption gating, defect engineering , and substitutional doping during the growth. These methods result in uniform doping or composition
Method of making molten carbonate fuel cell ceramic matrix tape
Maricle, Donald L.; Putnam, Gary C.; Stewart, Jr., Robert C.
1984-10-23
A method of making a thin, flexible, pliable matrix material for a molten carbonate fuel cell is described. The method comprises admixing particles inert in the molten carbonate environment with an organic polymer binder and ceramic particle. The composition is applied to a mold surface and dried, and the formed compliant matrix material removed.
NASA Astrophysics Data System (ADS)
Uke, Santosh J.; Akhare, Vijay P.; Bambole, Devidas R.; Bodade, Anjali B.; Chaudhari, Gajanan N.
2017-08-01
In this smart edge, there is an intense demand of portable electronic devices such as mobile phones, laptops, smart watches etc. That demands the use of such components which has light weight, flexible, cheap and environmental friendly. So that needs an evolution in technology. Supercapacitors are energy storage devices emerging as one of the promising energy storage devices in the future energy technology. Electrode material is the important part of supercapacitor. There is much new advancement in types of electrode materials as for supercapacitor. In this review, we focused on the recent advancements in the cobalt oxides, manganese oxides and their composites as an electrodes material for supercapacitor.
Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review
Wang, Xiaomei; Sun, Fazhe; Yin, Guangchao; Wang, Yuting; Liu, Bo
2018-01-01
The flexible tactile sensor has attracted widespread attention because of its great flexibility, high sensitivity, and large workable range. It can be integrated into clothing, electronic skin, or mounted on to human skin. Various nanostructured materials and nanocomposites with high flexibility and electrical performance have been widely utilized as functional materials in flexible tactile sensors. Polymer nanomaterials, representing the most promising materials, especially polyvinylidene fluoride (PVDF), PVDF co-polymer and their nanocomposites with ultra-sensitivity, high deformability, outstanding chemical resistance, high thermal stability and low permittivity, can meet the flexibility requirements for dynamic tactile sensing in wearable electronics. Electrospinning has been recognized as an excellent straightforward and versatile technique for preparing nanofiber materials. This review will present a brief overview of the recent advances in PVDF nanofibers by electrospinning for flexible tactile sensor applications. PVDF, PVDF co-polymers and their nanocomposites have been successfully formed as ultrafine nanofibers, even as randomly oriented PVDF nanofibers by electrospinning. These nanofibers used as the functional layers in flexible tactile sensors have been reviewed briefly in this paper. The β-phase content, which is the strongest polar moment contributing to piezoelectric properties among all the crystalline phases of PVDF, can be improved by adjusting the technical parameters in electrospun PVDF process. The piezoelectric properties and the sensibility for the pressure sensor are improved greatly when the PVDF fibers become more oriented. The tactile performance of PVDF composite nanofibers can be further promoted by doping with nanofillers and nanoclay. Electrospun P(VDF-TrFE) nanofiber mats used for the 3D pressure sensor achieved excellent sensitivity, even at 0.1 Pa. The most significant enhancement is that the aligned electrospun core-shell P(VDF-TrFE) nanofibers exhibited almost 40 times higher sensitivity than that of pressure sensor based on thin-film PVDF. PMID:29364175
Conducting polymer nanowire arrays for high performance supercapacitors.
Wang, Kai; Wu, Haiping; Meng, Yuena; Wei, Zhixiang
2014-01-15
This Review provides a brief summary of the most recent research developments in the fabrication and application of one-dimensional ordered conducting polymers nanostructure (especially nanowire arrays) and their composites as electrodes for supercapacitors. By controlling the nucleation and growth process of polymerization, aligned conducting polymer nanowire arrays and their composites with nano-carbon materials can be prepared by employing in situ chemical polymerization or electrochemical polymerization without a template. This kind of nanostructure (such as polypyrrole and polyaniline nanowire arrays) possesses high capacitance, superior rate capability ascribed to large electrochemical surface, and an optimal ion diffusion path in the ordered nanowire structure, which is proved to be an ideal electrode material for high performance supercapacitors. Furthermore, flexible, micro-scale, threadlike, and multifunctional supercapacitors are introduced based on conducting polyaniline nanowire arrays and their composites. These prototypes of supercapacitors utilize the high flexibility, good processability, and large capacitance of conducting polymers, which efficiently extend the usage of supercapacitors in various situations, and even for a complicated integration system of different electronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rial, Javier; de Vicente, Javier; Skårman, Björn; Vidarsson, Hilmar; Larsson, Per-Olof
2018-01-01
Abstract Searching for high-performance permanent magnets components with no limitation in shape and dimensions is highly desired to overcome the present design and manufacturing restrictions, which affect the efficiency of the final devices in energy, automotive and aerospace sectors. Advanced 3D-printing of composite materials and related technologies is an incipient route to achieve functional structures avoiding the limitations of traditional manufacturing. Gas-atomized MnAlC particles combined with polymer have been used in this work for fabricating scalable rare earth-free permanent magnet composites and extruded flexible filaments with continuous length exceeding 10 m. Solution casting has been used to synthesize homogeneous composites with tuned particles content, made of a polyethylene (PE) matrix embedding quasi-spherical particles of the ferromagnetic τ-MnAlC phase. A maximum filling factor of 86.5 and 72.3% has been obtained for the composite and the filament after extrusion, respectively. The magnetic measurements reveal no deterioration of the properties of the MnAlC particles after the composite synthesis and filament extrusion. The produced MnAlC/PE materials will serve as precursors for an efficient and scalable design and fabrication of end-products by different processing techniques (polymerized cold-compacted magnets and 3D-printing, respectively) in view of technological applications (from micro electromechanical systems to energy and transport applications). PMID:29887921
Palmero, Ester M; Rial, Javier; de Vicente, Javier; Camarero, Julio; Skårman, Björn; Vidarsson, Hilmar; Larsson, Per-Olof; Bollero, Alberto
2018-01-01
Searching for high-performance permanent magnets components with no limitation in shape and dimensions is highly desired to overcome the present design and manufacturing restrictions, which affect the efficiency of the final devices in energy, automotive and aerospace sectors. Advanced 3D-printing of composite materials and related technologies is an incipient route to achieve functional structures avoiding the limitations of traditional manufacturing. Gas-atomized MnAlC particles combined with polymer have been used in this work for fabricating scalable rare earth-free permanent magnet composites and extruded flexible filaments with continuous length exceeding 10 m. Solution casting has been used to synthesize homogeneous composites with tuned particles content, made of a polyethylene (PE) matrix embedding quasi-spherical particles of the ferromagnetic τ -MnAlC phase. A maximum filling factor of 86.5 and 72.3% has been obtained for the composite and the filament after extrusion, respectively. The magnetic measurements reveal no deterioration of the properties of the MnAlC particles after the composite synthesis and filament extrusion. The produced MnAlC/PE materials will serve as precursors for an efficient and scalable design and fabrication of end-products by different processing techniques (polymerized cold-compacted magnets and 3D-printing, respectively) in view of technological applications (from micro electromechanical systems to energy and transport applications).
Multifunctional Characteristics of Carbon Nanotube (CNT) Yarn Composites
NASA Technical Reports Server (NTRS)
Hernandez, Corey D.; Zhang, Mei; Fang, Shaoli; Baughman, Ray H.; Gates, Thomas S.; Kahng, Seun K.
2006-01-01
By forming composite structures with Carbon Nanotube (CNT) yarns we achieve materials capable of measuring strain and composite structures with increased mechanical strength. The CNT yarns used are of the 2-ply and 4-ply variety with the yarns having diameters of about 15-30 micrometers. The strain sensing characteristics of the yarns are investigated on test beams with the yarns arranged in a bridge configuration. Additionally, the strain sensing properties are also investigated on yarns embedded on the surface of a flexible membrane. Initial mechanical strength tests also show an increase in the modulus of elasticity of the composite materials while incurring a weight penalty of less than one-percent. Also presented are initial temperature characterizations of the yarns.
Polyurea-Based Aerogel Monoliths and Composites
NASA Technical Reports Server (NTRS)
Lee, Je Kyun
2012-01-01
aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection for government and commercial applications. The rubbery polyureabased aerogel exhibits little dustiness, good flexibility and toughness, and durability typical of the parent polyurea polymer, yet with the low density and superior insulation properties associated with aerogels. The thermal conductivity values of polyurea-based aerogels at lower temperature under vacuum pressures are very low and better than that of silica aerogels. Flexible, rubbery polyurea-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogels, including polyisocyanurate aerogels, which are generally prepared with the one similar component to polyurethane rubber aerogels. Additionally, with higher content of hydrogen in their structures, the polyurea rubber-based aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. The aerogel materials also demonstrate good hydrophobicity due to their hydrocarbon molecular structure. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven to be one promising approach, providing a conveniently fielded form factor that is relatively robust in industrial environments compared to silica aerogel monoliths. However, the flexible, silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain application environments. Although the cross - linked organic aerogels, such as resorcinol- formaldehyde (RF), polyisocyanurate, and cellulose aerogels, show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient radiation shielding materials due to their lower content of hydrogen element. The invention involves mixing at least one isocyanate resin in solvent along with a specific amount of at least one polyamine hardener. The hardener is selected from a group of polyoxyalkyleneamines, amine-based polyols, or a mixture thereof. Mixing is performed in the presence of a catalyst and reinforcing inorganic and/or organic materials, and the system is then subjected to gelation, aging, and supercritical drying. The aerogels will offer exceptional flexibility, excellent thermal and physical properties, and good hydrophobicity. The rubbery polyurea-based aerogels are very flexible with no dust and hydrophobic organics that demonstrated the following ranges of typical properties: densities of 0.08 to 0.293 g/cu cm, shrinkage factor (raerogel/rtarget) = 1.6 to 2.84, and thermal conductivity values of 15.2 to 20.3 mW/m K.
Zhao, Yadong; Moser, Carl; Henriksson, Gunnar
2018-05-25
A series of optically transparent composites were made by using tunicate cellulose membranes, in which the naturally organized cellulose microfibrillar network structure of tunicate tunics was preserved and used as the template and a solution of glycerol and citric acid at different molar ratios was used as the matrix. Polymerization through ester bond formation occurred at elevated temperatures without any catalyst, and water was released as the only byproduct. The obtained composites had a uniform and dense structure. Thus, the produced glycerol citrate polyester improved the transparency of the tunicate cellulose membrane while the cellulose membrane provided rigidity and strength to the prepared composite. The interaction between cellulose and polyester afforded the composites high thermal stability. Additionally, the composites were optically transparent and their shape, strength, and flexibility were adjustable by varying the formulation and reaction conditions. These composites of cellulose, glycerol, and citric acid are renewable and biocompatible and have many potential applications as structural materials in packaging, flexible displays, and solar cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transmutation Fuel Fabrication-Fiscal Year 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fielding, Randall Sidney; Grover, Blair Kenneth
ABSTRACT Nearly all of the metallic fuel that has been irradiated and characterized by the Advanced Fuel Campaign, and its earlier predecessors, has been arc cast. Arc casting is a very flexible method of casting lab scale quantities of materials. Although the method offers flexibility, it is an operator dependent process. Small changes in parameter space or alloy composition may affect how the material is cast. This report provides a historical insight in how the casting process has been modified over the history of the advanced fuels campaign as well as the physical parameters of the fuels cast in fiscalmore » year 2016.« less
NASA Astrophysics Data System (ADS)
Fitzpatrick, Robert; Hauer, Cole; Kyrillos, Carl; McGorty, Ryan; Robertson-Anderson, Rae
Entangled polymers have complex viscoelastic properties that are tuned by polymer lengths and flexibilities. Entangled composites of distinct polymers offer added versatility and display nonlinear mechanics, serving as a platform for multifunctional materials. To determine the role of flexibility and length in polymer composites we use optical tweezers and confocal microscopy to measure mechanical and structural properties of co-entangled actin and DNA. Actin filaments have lengths of 5-20 μm, comparable to their persistence length, while DNA of similar lengths have hundreds of persistence lengths per chain. To characterize the nonlinear mechanics of actin-DNA composites, we optically drive a microsphere through the composite and measure the induced force during and following strain. We characterize viscoelasticity and relaxation timescales; and determine the dependence of these quantities on the actin:DNA ratio (0:1-1:0) and DNA length (4-100 μm). We use confocal microscopy to image distinctly labeled co-entangled actin and DNA and characterize network homogeneity and fluctuations. Initial results show actin and DNA are well-integrated and form structurally homogenous networks that exhibit stiffness and relaxation times that increase nonlinearly with increased actin. NSF Career Award (DMR-1254340), AFOSR Young Investigator Program Award (FA95550-12-1-0315), Scialog Collaborative Innovation Award funed by Research Corp. for Scientific Advancement (24192).
NASA Astrophysics Data System (ADS)
Kang, Ning
Nanomaterials have shown increasing applications in the design and fabrication of functional devices such as energy storage devices and sensor devices. A key challenge is the ability to harness the nanostructures in terms of size, shape, composition and structure so that the unique nanoscale functional properties can be exploited. This dissertation describes our findings in design, synthesis, and characterization of nanoparticles towards applications in two important fronts. The first involves the investigation of nanoalloy catalysts and functional nanoparticles for energy storage devices, including Li-air and Li-ion batteries, aiming at increasing the capacity and cycle performance. Part of this effort focuses on design of bifunctional nanocatalysts through alloying noble metal with non-noble transition metal to improve the ORR and OER activity of Li-air batteries. By manipulating the composition and alloying structure of the catalysts, synergetic effect has been demonstrated, which is substantiated by both experimental results and theoretical calculation for the charge/discharge process. The other part of the effort focuses on modification of Si nanoparticles towards high-capacity anode materials. The modification involved dopant elements, carbon coating, and graphene composite formation to manipulate the ability of the nanoparticles in accommodating the volume expansion. The second part focuses on the design, preparation and characterization of metal nanoparticles and nanocomposite materials for the application in flexible sensing devices. The investigation focuses on fabrication of a novel class of nanoparticle-nanofibrous membranes consisting of gold nanoparticles embedded in a multi-layered fibrous membrane as a tunable interfacial scaffold for flexible sweat sensors. Sensing responses to different ionic species in aqueous solutions and relative humidity changes in the environment were demonstrated, showing promising potential as flexible sensing devices for applications in wearable sweat sensors. Moreover, printing technique was also applied in the fabrication of conductive patterns as the sensing electrodes. The results shed new lights on the understanding of the structural tuning of the nanomaterials for the ultimate applications in advanced energy storage devices and chemical sensor devices.
3D modelling of squeeze flow of unidirectional and fabric composite inserts
NASA Astrophysics Data System (ADS)
Ghnatios, Chady; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco; Keunings, Roland
2016-10-01
The enhanced design flexibility provided to the thermo-forming of thermoplastic materials arises from the use of both continuous and discontinuous thermoplastic prepregs. Discontinuous prepregs are patches used to locally strengthen the part. In this paper, we propose a new modelling approach for suspensions involving composite patches that uses theoretical concepts related to discontinuous fibres suspensions, transversally isotropic fluids and extended dumbbell models.
NASA Astrophysics Data System (ADS)
Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton
2016-01-01
In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.
A dendrite-suppressing composite ion conductor from aramid nanofibres.
Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A
2015-01-27
Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate 'weak links' where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.
Liqing Wei; Nicole M. Stark; Ronald C. Sabo; Laurent Matuana
2016-01-01
There is growing interest in developing bio-based materials for packaging. Bio-derived materials such as cellulose nanocrystals (CNCs) and poly(lactic acid) (PLA) can be used to develop sustainable packaging applications. Incorporating CNCs into PLA can increase the crystallinity and barrier properties of PLA. The challenge lies in both increasing the flexibility of...
A Comparison of Metallic, Composite and Nanocomposite Optimal Transonic Transport Wings
NASA Technical Reports Server (NTRS)
Kennedy, Graeme J.; Kenway, Gaetan K. W.; Martins, Joaquim R. R.
2014-01-01
Current and future composite material technologies have the potential to greatly improve the performance of large transport aircraft. However, the coupling between aerodynamics and structures makes it challenging to design optimal flexible wings, and the transonic flight regime requires high fidelity computational models. We address these challenges by solving a series of high-fidelity aerostructural optimization problems that explore the design space for the wing of a large transport aircraft. We consider three different materials: aluminum, carbon-fiber reinforced composites and an hypothetical composite based on carbon nanotubes. The design variables consist of both aerodynamic shape (including span), structural sizing, and ply angle fractions in the case of composites. Pareto fronts with respect to structural weight and fuel burn are generated. The wing performance in each case is optimized subject to stress and buckling constraints. We found that composite wings consistently resulted in lower fuel burn and lower structural weight, and that the carbon nanotube composite did not yield the increase in performance one would expect from a material with such outstanding properties. This indicates that there might be diminishing returns when it comes to the application of advanced materials to wing design, requiring further investigation.
Studying impact damage on carbon-fiber reinforced aircraft composite panels with sonicir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han Xiaoyan; Zhang Ding; He Qi
2011-06-23
Composites are becoming more important materials in commercial aircraft structures such as the fuselage and wings with the new B787 Dreamliner from Boeing which has the target to utilize 50% by weight of composite materials. Carbon-fiber reinforced composites are the material of choice in aircraft structures. This is due to their light weight and high strength (high strength-to-weight ratio), high specific stiffness, tailorability of properties, design flexibility etc. Especially, by reducing the aircraft's body weight by using such lighter structures, the cost of fuel can be greatly reduced with the high jet fuel price for commercial airlines. However, these compositesmore » are prone to impact damage and the damage may occur without any observable sign on the surface, yet resulting in delaminations and disbonds that may occur well within the layers. We are studying the impact problem with carbon-fiber reinforced composite panels and developing SonicIR for this application as a fast and wide-area NDE technology. In this paper, we present our results in studying composite structures including carbon-fiber reinforced composite materials, and preliminary quantitative studies on delamination type defect depth identification in the panels.« less
Dye Wastewater Cleanup by Graphene Composite Paper for Tailorable Supercapacitors.
Yu, Dandan; Wang, Hua; Yang, Jie; Niu, Zhiqiang; Lu, Huiting; Yang, Yun; Cheng, Liwei; Guo, Lin
2017-06-28
Currently, the energy crisis and environmental pollution are two critical challenges confronted by humans. The development of smart strategies to address the above-mentioned issues simultaneously is significant. As the main accomplices for water pollution, several kinds of organic dyes with intrinsic redox functional groups such as phenothiazines derivatives, anthraquinone, and indigoid dyes are potential candidates for the replacement of the conventional pseudocapacitive materials. In this work, three typical organic dyes can be efficiently removed by a facile adsorption procedure using reduced graphene oxide coated cellulose fiber (rGO@CF) paper. Flexible supercapacitors based on dye/rGO@CF electrodes exhibit excellent electrochemical performances that are superior to or comparable with those of conventional pseudocapacitive materials based devices, presenting a new type of promising electrode materials. Moreover, benefiting from the high flexibility and considerable mechanical strength of the graphene composite paper, the operating potential and capacitance of the devices can be easily adjusted by tailoring the hybrid electrodes into different specific shapes followed by rational integrating. The smart design of these dye/rGO@CF paper based electrodes shows that energy storage and environmental remediation can be achieved simultaneously.
Andrei, Virgil; Bethke, Kevin; Rademann, Klaus
2016-04-28
We present a facile alternative to other well known strategies for synthesizing flexible thermoelectric materials. Instead of printing thin active layers on flexible substrates or doping conductive polymers, we produce thermoelectric pastes, using a mixture of graphite, copper(I) oxide and polychlorotrifluoroethene. The Seebeck coefficient of the investigated pastes varies between 10 and 600 μV K(-1), while the electrical conductivity spans over an even wider range of 10(-4) to 10(2) S m(-1). Here, the influence of phenomena such as percolation on the electrical transport is revealed. The resulting power factor reaches 5.69 × 10(-4) ± 0.70 × 10(-4) μW m(-1) K(-2) for the graphite-polymer paste, with an unexpected minimum at a graphite molar fraction of approximately 0.4. The values are comparable to those of the powder mixtures, which are slightly higher, but less precisely tunable. Such compounds are further evaluated for practical applications. The graphite-polymer paste is used to exemplify, how a flexible thermoelectric sensor can be easily manufactured, step by step. Our results represent a proof of principle, that thermoelectric pastes are viable alternatives to current solutions. A further expansion of the scope for the composites can be achieved by using high performance thermoelectric materials and conductive polymers.
Paper-Thin Coating Offers Maximum Protection
NASA Technical Reports Server (NTRS)
2001-01-01
Wessex Incorporated has recently taken a technology that was originally developed for NASA as a protective coating for ceramic materials used in heatshields for space vehicles, and modified it for use in applications such as building materials, machinery, and transportation. The technology, developed at NASA Ames Research Center as a protective coating for flexible ceramic composites (PCC), is environmentally safe, water-based, and contains no solvents. Many other flame-retardant materials contain petroleum-based components, which can produce toxic smoke under flame. Wessex versions of PCC can be used to shield ceramics, wood, plasterboard, steel, plastics, fiberglass, and other materials from catastrophic fires. They are extraordinarily tough and exhibit excellent resistance to thermal shock, vibration, abrasion, and mechanical damage. One thin layer of coating provides necessary protection and allows for flexibility while avoiding excessive weight disadvantages. The coating essentially reduces the likelihood of the underlying material becoming so hot that it combusts and thus inhibits the "flashover" phenomenon from occurring.
Benson, Jim; Kovalenko, Igor; Boukhalfa, Sofiane; Lashmore, David; Sanghadasa, Mohan; Yushin, Gleb
2013-12-03
Pulsed electrodeposition of polyaniline (PANI) allows the fabrication of flexible, electrically conductive, nonwoven PANI-carbon nanotube (PANI-CNT) composite fabrics. They possess specific tensile strength and a modulus of toughness higher than that of aluminum matrix composites, titanium and aluminum alloys, steels, and many other structural materials. Electrochemical tests show that these nanocomposites additionally offer excellent cycle stability and ion electro-sorption and storage properties. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Packaging Technology Study on Smart Composite Structure Based on The Embedded FBG Sensor
NASA Astrophysics Data System (ADS)
Zhang, Youhong; Chang, Xinlong; Zhang, Xiaojun; He, Xiangyong
2018-03-01
It is convenient to carry out the health monitoring of the solid rocket engine composite shell based on the embedded FBG sensor. In this paper, the packaging technology using one-way fiber layer of prepreg fiberglass/epoxy resin was proposed. The proposed packaging process is simple, and the packaged sensor structure size is flexible and convenient to use, at the mean time, the packaged structure has little effect on the pristine composite material structure.
Flexible energy-storage devices: design consideration and recent progress.
Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen
2014-07-23
Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Du, Jun; Zhou, Gang; Zhang, Haiming; Cheng, Chao; Ma, Jianmin; Wei, Weifeng; Chen, Libao; Wang, Taihong
2013-08-14
NiCo2O4 with higher specific capacitance is an excellent pseudocapacitive material. However, the bulk NiCo2O4 material prevents the achievement of high energy desity and great rate performance due to the limited electroactive surface area. In this work, NiCo2O4 nanosheet arrays were deposited on flexible carbon fabric (CF) as a high-performance electrode for supercapacitors. The NiCo2O4 arrays were constructed by interconnected ultrathin nanosheets (10 nm) with many interparticle pores. The porous feature of NiCo2O4 nanosheets increases the amount of electroactive sites and facilitates the electrolyte penetration. Hence, the NiCo2O4/CF composites exhibited a high specific capacitance of 2658 F g(-1) (2 A g(-1)), good rate performance, and superior cycling life, suggesting the NiCo2O4/CF is a promising electrode material for flexible electrochemical capacitors.
Recent Development of Thermoelectric Polymers and Composites.
Yao, Hongyan; Fan, Zeng; Cheng, Hanlin; Guan, Xin; Wang, Chen; Sun, Kuan; Ouyang, Jianyong
2018-03-01
Thermoelectric materials can be used as the active materials in thermoelectric generators and as Peltier coolers for direct energy conversion between heat and electricity. Apart from inorganic thermoelectric materials, thermoelectric polymers have been receiving great attention due to their unique advantages including low cost, high mechanical flexibility, light weight, low or no toxicity, and intrinsically low thermal conductivity. The power factor of thermoelectric polymers has been continuously rising, and the highest ZT value is more than 0.25 at room temperature. The power factor can be further improved by forming composites with nanomaterials. This article provides a review of recent developments on thermoelectric polymers and polymer composites. It focuses on the relationship between thermoelectric properties and the materials structure, including chemical structure, microstructure, dopants, and doping levels. Their thermoelectric properties can be further improved to be comparable to inorganic counterparts in the near future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...
Coronado Mondragon, Adrian E; Coronado Mondragon, Christian E; Coronado, Etienne S
2015-01-01
Flexibility and innovation at creating shapes, adapting processes, and modifying materials characterize composites materials, a "high-tech" industry. However, the absence of standard manufacturing processes and the selection of materials with defined properties hinder the configuration of the composites materials supply chain. An interesting alternative for a "high-tech" industry such as composite materials would be to review supply chain lessons and practices in "low-tech" industries such as food. The main motivation of this study is to identify lessons and practices that comprise innovations in the supply chain of a firm in a perceived "low-tech" industry that can be used to provide guidelines in the design of the supply chain of a "high-tech" industry, in this case composite materials. This work uses the case study/site visit with analogy methodology to collect data from a Spanish leading producer of fresh fruit juice which is sold in major European markets and makes use of a cold chain. The study highlights supply base management and visibility/traceability as two elements of the supply chain in a "low-tech" industry that can provide guidelines that can be used in the configuration of the supply chain of the composite materials industry.
Conductive Carbon Nanotube Inks for Use with Desktop Inkjet Printing Technology
NASA Technical Reports Server (NTRS)
Roberson, Luke; Williams, Martha; Tate, LaNetra; Fortier, Craig; Smith, David; Davia, Kyle; Gibson, Tracy; Snyder, Sarah
2013-01-01
Inkjet printing is a common commercial process. In addition to the familiar use in printing documents from computers, it is also used in some industrial applications. For example, wire manufacturers are required by law to print the wire type, gauge, and safety information on the exterior of each foot of manufactured wire, and this is typically done with inkjet or laser printers. The goal of this work was the creation of conductive inks that can be applied to a wire or flexible substrates via inkjet printing methods. The use of inkjet printing technology to print conductive inks has been in testing for several years. While researchers have been able to get the printing system to mechanically work, the application of conductive inks on substrates has not consistently produced adequate low resistances in the kilohm range. Conductive materials can be applied using a printer in single or multiple passes onto a substrate including textiles, polymer films, and paper. The conductive materials are composed of electrical conductors such as carbon nanotubes (including functionalized carbon nanotubes and metal-coated carbon nanotubes); graphene, a polycyclic aromatic hydrocarbon (e.g., pentacene and bisperipentacene); metal nanoparticles; inherently conductive polymers (ICP); and combinations thereof. Once the conductive materials are applied, the materials are dried and sintered to form adherent conductive materials on the substrate. For certain formulations, increased conductivity can be achieved by printing on substrates supported by low levels of magnetic field alignment. The adherent conductive materials can be used in applications such as damage detection, dust particle removal, smart coating systems, and flexible electronic circuitry. By applying alternating layers of different electrical conductors to form a layered composite material, a single homogeneous layer can be produced with improved electrical properties. It is believed that patterning alternate layers of different conductors may improve electrical pathways through alignment of the conductors and band gap optimization. One feature of this innovation is that flexible conductive traces could be accomplished with a conductive ink having a surface resistivity of less than 10 ohms/square. Another result was that a composite material comprising a mixture of carbon nanotubes and metallic nanoparticles could be applied by inkjet printing to flexible substrates, and the resulting applied material was one to two orders of magnitude more conductive than a material made by printing inks containing carbon nanotubes alone.
Wu, Xiaoyu; Li, Songmei; Wang, Bo; Liu, Jianhua; Yu, Mei
2016-02-14
Binary metal sulfides, especially NiCo2S4, hold great promise as anode materials for high-performance lithium-ion batteries because of their excellent electronic conductivity and high capacity compared to mono-metal sulfides and oxides. Here, NiCo2S4 nanotube arrays are successfully grown on flexible nitrogen-doped carbon foam (NDCF) substrates with robust adhesion via a facile surfactant-assisted hydrothermal route and the subsequent sulfurization treatment. The obtained NiCo2S4/NDCF composites show unique three-dimensional architectures, in which NiCo2S4 nanotubes of ∼5 μm in length and 100 nm in width are uniformly grown on the NDCF skeletons to form arrays. When used directly as integrated anodes for lithium-ion batteries without any conductive additives and binders, the NiCo2S4/NDCF composites exhibit a high reversible capacity of 1721 mA h g(-1) at a high current density of 500 mA g(-1), enhanced cycling performance with the capacity maintained at 1182 mA h g(-1) after 100 cycles, and a remarkable rate capability. The excellent lithium storage performances of the composites could be attributed to the unique material composition, a rationally designed hollow nanostructure and an integrated smart architecture, which offer fast electron transport and ion diffusion, enhanced material/-electrolyte contact area and facile accommodation of strains during the lithium insertion and extraction process.
Multifunctional Flexible Composites Based on Continuous Carbon Nanotube Fiber
2014-07-28
fibers [1] The mechanical and electrical behavior of carbon nanotube fibers spun continuously from an aerogel is discussed. These fibers exhibit moderate...loading, demonstrates their potential for sensing applications in advanced composite materials. Insight into the failure behavior of the aerogel -spun...nanotube fibers is reported-the aerogel -spun fibers are observed to undergo mild to severe kinking due to tensile failure. This kinking is attributed to
Fully Printed Organic-Inorganic Nanocomposites for Flexible Thermoelectric Applications.
Ou, Canlin; Sangle, Abhijeet L; Datta, Anuja; Jing, Qingshen; Busolo, Tommaso; Chalklen, Thomas; Narayan, Vijay; Kar-Narayan, Sohini
2018-06-13
Thermoelectric materials, capable of interconverting heat and electricity, are attractive for applications in thermal energy harvesting as a means to power wireless sensors, wearable devices, and portable electronics. However, traditional inorganic thermoelectric materials pose significant challenges due to high cost, toxicity, scarcity, and brittleness, particularly when it comes to applications requiring flexibility. Here, we investigate organic-inorganic nanocomposites that have been developed from bespoke inks which are printed via an aerosol jet printing method onto flexible substrates. For this purpose, a novel in situ aerosol mixing method has been developed to ensure uniform distribution of Bi 2 Te 3 /Sb 2 Te 3 nanocrystals, fabricated by a scalable solvothermal synthesis method, within a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate matrix. The thermoelectric properties of the resulting printed nanocomposite structures have been evaluated as a function of composition, and the power factor was found to be maximum (∼30 μW/mK 2 ) for a nominal loading fraction of 85 wt % Sb 2 Te 3 nanoflakes. Importantly, the printed nanocomposites were found to be stable and robust upon repeated flexing to curvatures up to 300 m -1 , making these hybrid materials particularly suitable for flexible thermoelectric applications.
LARC-TPI: A multi-purpose thermoplastic polyimide
NASA Technical Reports Server (NTRS)
St.clair, A. K.; St.clair, T. L.
1982-01-01
A linear thermoplastic polyimide, LARC-TPI, was characterized and developed for a variety of high temperature applications. In its fully imidized form, this material can be used as an adhesive for bonding metals such as titanium, aluminum, copper, brass, and stainless steel. LARC-TPI was evaluated as a thermoplastic for bonding large pieces of polyimide film to produce flexible, 100 void-free laminates for flexible circuit applications. The development of LARC-TPI as a potential molding powder, composite matrix resin, high temperature film and fiber is also discussed.
Zhou, Zehang; Panatdasirisuk, Weerapha; Mathis, Tyler S; Anasori, Babak; Lu, Canhui; Zhang, Xinxing; Liao, Zhiwei; Gogotsi, Yury; Yang, Shu
2018-03-29
Free-standing, highly flexible and foldable supercapacitor electrodes were fabricated through the spray-coating assisted layer-by-layer assembly of Ti3C2Tx (MXene) nanoflakes together with multi-walled carbon nanotubes (MWCNTs) on electrospun polycaprolactone (PCL) fiber networks. The open structure of the PCL network and the use of MWCNTs as spacers not only limit the restacking of Ti3C2Tx flakes but also increase the accessible surface of the active materials, facilitating fast diffusion of electrolyte ions within the electrode. Composite electrodes have areal capacitance (30-50 mF cm-2) comparable to other templated electrodes reported in the literature, but showed significantly improved rate performance (14-16% capacitance retention at a scan rate of 100 V s-1). Furthermore, the composite electrodes are flexible and foldable, demonstrating good tolerance against repeated mechanical deformation, including twisting and folding. Therefore, these tens of micron thick fiber electrodes will be attractive for applications in energy storage, electroanalytical chemistry, brain electrodes, electrocatalysis and other fields, where flexible freestanding electrodes with an open and accessible surface are highly desired.
High Temperature, High Power Piezoelectric Composite Transducers
Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.
2014-01-01
Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242
Improved Gloves for Firefighters
NASA Technical Reports Server (NTRS)
Tschirch, R. P.; Sidman, K. R.; Arons, I. J.
1983-01-01
New firefighter's gloves are more flexible and comfortable than previous designs. Since some firefighters prefer gloves made of composite materials while others prefer dip-coated gloves, both types were developed. New gloves also find uses in foundries, steelmills, and other plants where they are substituted for asbestos gloves.
Chen, Jin; Huang, Xingyi; Sun, Bin; Wang, Yuxin; Zhu, Yingke; Jiang, Pingkai
2017-09-13
The continuous evolution toward semiconductor technology in the "more-than-Moore" era and rapidly increasing power density of modern electronic devices call for advanced thermal interface materials (TIMs). Here, we report a novel strategy to construct flexible polymer nanocomposite TIMs for advanced thermal management applications. First, aligned polyvinyl alcohol (PVA) supported and interconnected 2D boron nitride nanosheets (BNNSs) composite fiber membranes were fabricated by electrospinning. Then, the nanocomposite TIMs were constructed by rolling the PVA/BNNS composite fiber membranes to form cylinders and subsequently vacuum-assisted impregnation of polydimethylsiloxane (PDMS) into the porous cylinders. The nanocomposite TIMs not only exhibit a superhigh through-plane thermal conductivity enhancement of about 10 times at a low BNNS loading of 15.6 vol % in comparison with the pristine PDMS but also show excellent electrical insulating property (i.e., high volume electrical resistivity). The outstanding thermal management capability of the nanocomposite TIMs was practically confirmed by capturing the surface temperature variations of a working LED chip integrated with the nanocomposite TIMs.
Prospect of Thermal Insulation by Silica Aerogel: A Brief Review
NASA Astrophysics Data System (ADS)
Hasan, Mohammed Adnan; Sangashetty, Rashmi; Esther, A. Carmel Mary; Patil, Sharanabasappa B.; Sherikar, Baburao N.; Dey, Arjun
2017-10-01
Silica aerogel is a unique ultra light weight nano porous material which offers superior thermal insulation property as compared to the conventional thermal insulating materials. It can be applied not only for ground and aerospace applications but also in low and high temperatures and pressure regimes. Aerogel granules and monolith are synthesized by the sol-gel route while aerogel based composites are fabricated by the reinforcement of fibers, particle and opacifiers. Due to the characteristic brittleness (i.e., poor mechanical properties) of monolith or bulk aerogel, it is restricted in several applications. To improve the mechanical integrity and flexibility, usually different fibers are reinforced with aerogel and hence it can be used as flexible thermal insulation blankets. Further, to achieve effective thermal insulation behaviour particularly at high temperature, often opacifiers are doped with silica aerogel. In the present brief review, the prospects of bulk aerogel and aerogel based composites are discussed for the application of thermal insulation and thermal stability.
Liu, Libin; Yu, You; Yan, Casey; Li, Kan; Zheng, Zijian
2015-06-11
One-dimensional flexible supercapacitor yarns are of considerable interest for future wearable electronics. The bottleneck in this field is how to develop devices of high energy and power density, by using economically viable materials and scalable fabrication technologies. Here we report a hierarchical graphene-metallic textile composite electrode concept to address this challenge. The hierarchical composite electrodes consist of low-cost graphene sheets immobilized on the surface of Ni-coated cotton yarns, which are fabricated by highly scalable electroless deposition of Ni and electrochemical deposition of graphene on commercial cotton yarns. Remarkably, the volumetric energy density and power density of the all solid-state supercapacitor yarn made of one pair of these composite electrodes are 6.1 mWh cm(-3) and 1,400 mW cm(-3), respectively. In addition, this SC yarn is lightweight, highly flexible, strong, durable in life cycle and bending fatigue tests, and integratable into various wearable electronic devices.
Liu, Libin; Yu, You; Yan, Casey; Li, Kan; Zheng, Zijian
2015-01-01
One-dimensional flexible supercapacitor yarns are of considerable interest for future wearable electronics. The bottleneck in this field is how to develop devices of high energy and power density, by using economically viable materials and scalable fabrication technologies. Here we report a hierarchical graphene–metallic textile composite electrode concept to address this challenge. The hierarchical composite electrodes consist of low-cost graphene sheets immobilized on the surface of Ni-coated cotton yarns, which are fabricated by highly scalable electroless deposition of Ni and electrochemical deposition of graphene on commercial cotton yarns. Remarkably, the volumetric energy density and power density of the all solid-state supercapacitor yarn made of one pair of these composite electrodes are 6.1 mWh cm−3 and 1,400 mW cm−3, respectively. In addition, this SC yarn is lightweight, highly flexible, strong, durable in life cycle and bending fatigue tests, and integratable into various wearable electronic devices. PMID:26068809
NASA Astrophysics Data System (ADS)
Wang, Mei; Duong, Le Dai; Ma, Yifei; Sun, Yan; Hong, Sung Yong; Kim, Ye Chan; Suhr, Jonghwan; Nam, Jae-Do
2017-08-01
Graphene-incorporated polymer composites have been demonstrated to have excellent mechanical and electrical properties. In the field of graphene-incorporated composite material synthesis, there are two main obstacles: Non-uniform dispersion of graphene filler in the matrix and weak interface bonding between the graphene filler and polymer matrix. To overcome these problems, we develop an in-situ polymerization strategy to synthesize uniformly dispersed and covalently bonded graphene/lignin composites. Graphene oxide (GO) was chemically modified by 4,4'-methylene diphenyl diisocyanate (MDI) to introduce isocyanate groups and form the urethane bonds with lignin macromonomers. Subsequential polycondensation reactions of lignin groups with caprolactone and sebacoyl chloride bring about a covalent network of modified GO and lignin-based polymers. The flexible and robust lignin polycaprolactone polycondensate/modified GO (Lig-GOm) composite membranes are achieved after vacuum filtration, which have tunable hydrophilicity and electrical resistance according to the contents of GOm. This research transforms lignin from an abundant biomass into film-state composite materials, paving a new way for the utilization of biomass wastes.
Flexible and Hierarchical Metal-Organic Framework Composites for High-Performance Catalysis.
Huang, Ning; Drake, Hannah; Li, Jialuo; Pang, Jiangdong; Wang, Ying; Yuan, Shuai; Wang, Qi; Cai, Peiyu; Qin, Junsheng; Zhou, Hong-Cai
2018-05-18
The development of new types of porous composite materials is of great significance owing to their potentially improved performance over those of individual components and extensive applications in separation, energy storage, and heterogeneous catalysis. In this work, we integrated mesoporous metal-organic frameworks (MOFs) with macroporous melamine foam (MF) using a one-pot process, generating a series of MOF/MF composite materials with preserved crystallinity, hierarchical porosity, and increased stability over that of melamine foam. The MOF nanocrystals were threaded by the melamine foam networks, resembling a ball-and-stick model overall. As a proof-of-concept study, the resulting MOF/MF composite materials were employed as an effective heterogeneous catalyst for the epoxidation of cholesteryl esters. Combining the advantages of interpenetrative mesoporous and macroporous structures, the MOF/melamine foam composite provided higher dispersibility and more accessibility of catalytic sites, exhibiting excellent catalytic performance. This strategy constitutes an important step forward the development of other MOF composites and exploration of their high-performance catalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Bingchao; Hao, Chunxue; Wen, Fusheng; Wang, Bochong; Mu, Congpu; Xiang, Jianyong; Li, Lei; Xu, Bo; Zhao, Zhisheng; Liu, Zhongyuan; Tian, Yongjun
2017-12-27
We proposed a simple route for fabrication of the flexible BP nanoflake/carbon nanotube (CNT) composite paper as flexible electrodes in all-solid-state supercapacitors. The highly conductive CNTs not only play a role as active materials but also increase conductivity of the hybrid electrode, enhance electrolyte shuttling and prevent the restacking between BP nanoflakes. The fabricated flexible all-solid-state supercapacitor (ASSP) device at the mass proportion of BP/CNTs 1:4 was found to deliver the highest volumetric capacitance of up to 41.1 F/cm 3 at 0.005 V/s, superior to the ASSP based on the bare graphene or BP. The BP/CNTs (1:4) device delivers a rapid charging/discharging up to 500 V/s, which exhibits the characteristic of a high power density of 821.62 W/cm 3 , while having outstanding mechanical flexibility and high cycling stability over 10 000 cycles (91.5% capacitance retained). Moreover the BP/CNTs (1:4) ASSP device still retains large volumetric capacitance (35.7 F/cm 3 at the scan rate of 0.005 V/s) even after 11 months. In addition, the ASSP of BP/CNTs (1:4) exhibits high energy density of 5.71 mWh/cm 3 and high power density of 821.62 W/cm 3 . As indicated in our work, the strategy of assembling stacked-layer composites films will open up novel possibility for realizing BP and CNTs in new-concept thin-film energy storage devices.
NASA Astrophysics Data System (ADS)
Bian, Xing-Ming; Liu, Lin; Li, Hai-Bing; Wang, Chan-Yuan; Xie, Qing; Zhao, Quan-Liang; Bi, Song; Hou, Zhi-Ling
2017-01-01
Since manipulating electromagnetic waves with electromagnetic active materials for environmental and electric engineering is a significant task, here a novel prototype is reported by introducing reduced graphene oxide (RGO) interfaces in carbon fiber (CF) networks for a hierarchical carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon charaterizations of the microscopic morphologies, electrical and magnetic properties, the presence of three-dimensional RGO interfaces and bifunctional nickel nanoparticles substantially influences the related physical properties in the resulting hierarchical composite textiles. Eletromagnetic interference (EMI) shielding performance suggests that the hierarchical composite textiles hold a strong shielding effectiveness greater than 61 dB, showing greater advantages than conventional polymeric and foamy shielding composites. As a polymer-free lightweight structure, flexible CF-RGO-Ni composites of all electromagnetic active components offer unique understanding of the multi-scale and multiple mechanisms in electromagnetic energy consumption. Such a novel prototype of shielding structures along with convenient technology highlight a strategy to achieve high-performance EMI shielding, coupled with a universal approach for preparing advanced lightweight composites with graphene interfaces.
Bian, Xing-Ming; Liu, Lin; Li, Hai-Bing; Wang, Chan-Yuan; Xie, Qing; Zhao, Quan-Liang; Bi, Song; Hou, Zhi-Ling
2017-01-27
Since manipulating electromagnetic waves with electromagnetic active materials for environmental and electric engineering is a significant task, here a novel prototype is reported by introducing reduced graphene oxide (RGO) interfaces in carbon fiber (CF) networks for a hierarchical carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon charaterizations of the microscopic morphologies, electrical and magnetic properties, the presence of three-dimensional RGO interfaces and bifunctional nickel nanoparticles substantially influences the related physical properties in the resulting hierarchical composite textiles. Eletromagnetic interference (EMI) shielding performance suggests that the hierarchical composite textiles hold a strong shielding effectiveness greater than 61 dB, showing greater advantages than conventional polymeric and foamy shielding composites. As a polymer-free lightweight structure, flexible CF-RGO-Ni composites of all electromagnetic active components offer unique understanding of the multi-scale and multiple mechanisms in electromagnetic energy consumption. Such a novel prototype of shielding structures along with convenient technology highlight a strategy to achieve high-performance EMI shielding, coupled with a universal approach for preparing advanced lightweight composites with graphene interfaces.
Wang, Jinjie; Dong, Liubing; Xu, Chengjun; Ren, Danyang; Ma, Xinpei; Kang, Feiyu
2018-04-04
Polymorphous supercapacitors were constructed from flexible three-dimensional carbon network/polyaniline (PANI)/MnO 2 composite textile electrodes. The flexible textile electrodes were fabricated through a layer-by-layer construction strategy: PANI, carbon nanotubes (CNTs), and MnO 2 were deposited on activated carbon fiber cloth (ACFC) in turn through an electropolymerization process, "dipping and drying" method, and in situ chemical reaction, respectively. In the fabricated ACFC/PANI/CNTs/MnO 2 textile electrodes, the ACFC/CNT hybrid framework serves as a porous and electrically conductive 3D network for the rapid transmission of electrons and electrolyte ions, where ACFC, PANI, and MnO 2 are high-performance supercapacitor electrode materials. In the electrolyte of H 2 SO 4 solution, the textile electrode-based symmetric supercapacitor delivers superior areal capacitance, energy density, and power density of 4615 mF cm -2 (for single electrode), 157 μW h cm -2 , and 10372 μW cm -2 , respectively, whereas asymmetric supercapacitor assembled with the prepared composite textile as the positive electrode and ACFC as the negative electrode exhibits an improved energy density of 413 μW h cm -2 and a power density of 16120 μW cm -2 . On the basis of the ACFC/PANI/CNTs/MnO 2 textile electrodes, symmetric and asymmetric solid-state textile supercapacitors with a PVA/H 2 SO 4 gel electrolyte were also produced. These solid-state textile supercapacitors exhibit good electrochemical performance and high flexibility. Furthermore, flexible solid-state fiber-like supercapacitors were prepared with fiber bundle electrodes dismantled from the above composite textiles. Overall, this work makes a meaningful exploration of the versatile applications of textile electrodes to produce polymorphous supercapacitors.
Ternary Polymeric Composites Exhibiting Bulk and Surface Quadruple-Shape Memory Properties.
Buffington, Shelby Lois; Posnick, Benjamin M; Paul, Justine Elizabeth; Mather, Patrick T
2018-06-19
We report the design and characterization of a multiphase quadruple shape memory composite capable of switching between 4 programmed shapes, three temporary and one permanent. Our approach combined two previously reported fabrication methods by embedding an electrospun mat of PCL in a miscible blend of epoxy monomers and PMMA as a composite matrix. As epoxy polymerization occurred the matrix underwent phase separation between the epoxy and PMMA materials. This created a multiphase composite with PCL fibers and a two-phase matrix composed of phase-separated epoxy and PMMA. The resulting composite demonstrated three separate thermal transitions and amenability to mechanical programming of three separate temporary shapes in addition to one final, equilibrium shape. In addition, quadruple surface shape memory abilities are successfully demonstrated. The versatility of this approach offers a large degree of design flexibility for multi-shape memory materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integral Ring Carbon-Carbon Piston
NASA Technical Reports Server (NTRS)
Northam, G. Burton (Inventor)
1999-01-01
An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.
Performance analysis of advanced spacecraft TPS
NASA Technical Reports Server (NTRS)
Pitts, William C.
1991-01-01
Spacecraft entering a planetary atmosphere require a very sophisticated thermal protection system. The materials used must be tailored to each specific vehicle based on its planned mission profiles. Starting with the Space Shuttle, many types of ceramic insulation with various combinations of thermal properties have been developed by others. The development of two new materials is described: A Composite Flexible Blanket Insulation which has a significantly lower effective thermal conductivity than other ceramic blankets; and a Silicon Matrix Composite which has applications at high temperature locations such as wing leading edges. Also, a systematic study is described that considers the application of these materials for a proposed Personnel Launch System. The study shows how most of these available ceramic materials would perform during atmospheric entry of this vehicle. Other specific applications of these thermal protection materials are discussed.
Ceramic insulation/multifoil composite for thermal protection of reentry spacecraft
NASA Technical Reports Server (NTRS)
Pitts, W. C.; Kourtides, D. A.
1989-01-01
A new type of insulation blanket called Composite Flexible Blanket Insulation is proposed for thermal protection of advanced spacecraft in regions where the maximum temperature is not excessive. The blanket is a composite of two proven insulation materials: ceramic insulation blankets from Space Shuttle technology and multilayer insulation blankets from spacecraft thermal control technology. A potential heatshield weight saving of up to 500 g/sq m is predicted. The concept is described; proof of concept experimental data are presented; and a spaceflight experiment to demonstrate its actual performance is discussed.
Carbon Nanotube Reinforced Flexible Windows for Blast Protection
2010-07-01
transparent plastic composite for use as a material for window or as a laminate layer in the blast-resistant glazed window. This program focused...materials for window or as a laminate layer in the blast-resistant glazed window. It is obvious that further increasing the mechanical properties of...Dr. Ben Wang led the effort for design/fabrication of windows from the nanotube assembly and lamination experiments. 6 3. RESULTS AND
Laser direct writing of carbon/Au composite electrodes for high-performance micro-supercapacitors
NASA Astrophysics Data System (ADS)
Cai, Jinguang; Watanabe, Akira; Lv, Chao
2017-02-01
Micro-supercapacitors with small size, light weight, flexibility while maintaining high energy and power output are required for portable miniaturized electronics. The fabrication methods and materials should be cost-effective, scalable, and easily integrated to current electronic industry. Carbon materials have required properties for high-performance flexible supercapacitors, including high specific surface areas, electrochemical stability, and high electrical conductivity, as well as the high mechanical tolerance. Laser direct writing method is a non-contact, efficient, single-step fabrication technique without requirements of masks, post-processing, and complex clean room, which is a useful patterning technique, and can be easily integrated with current electronic product lines for commercial use. Previously we have reported micro-supercapacitors fabricated by laser direct writing on polyimide films in air or Ar, which showed highcapacitive performance. However, the conductivity of the carbon materials is still low for fast charge-discharge use. Here, we demonstrated the fabrication of flexible carbon/Au composite high-performance MSCs by first laser direct writing on commercial polyimide films followed by spin-coating Au nanoparticles ink and second in-situ laser direct writing using the low-cost semiconductor laser. As-prepared micro-supercapacitors show an improved conductivity and capacitance of 1.17 mF/cm2 at a high scanning rate of 10,000 mV/s, which is comparable to the reported capacitance of carbon-based micro-supercapacitors. In addition, the micro-supercapacitors have high bend tolerance and long-cycle stability.
Substrate Structures For Growth Of Highly Oriented And/Or Epitaxial Layers Thereon
Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Jia, Quanxi
2005-07-26
A composite substrate structure including a substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer is provided together with additional layers such as one or more layers of a buffer material upon the oriented cubic oxide material layer. Jc's of 2.3×106 A/cm2 have been demonstrated with projected Ic's of 320 Amperes across a sample 1 cm wide for a superconducting article including a flexible polycrystalline metallic substrate, an inert oxide material layer upon the surface of the flexible polycrystalline metallic substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the layer of the inert oxide material, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer, a layer of a buffer material upon the oriented cubic oxide material layer, and, a top-layer of a high temperature superconducting material upon the layer of a buffer material.
A dendrite-suppressing composite ion conductor from aramid nanofibres
NASA Astrophysics Data System (ADS)
Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A.
2015-01-01
Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate ‘weak links’ where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.
Coronado Mondragon, Adrian E.; Coronado, Etienne S.
2015-01-01
Flexibility and innovation at creating shapes, adapting processes, and modifying materials characterize composites materials, a “high-tech” industry. However, the absence of standard manufacturing processes and the selection of materials with defined properties hinder the configuration of the composites materials supply chain. An interesting alternative for a “high-tech” industry such as composite materials would be to review supply chain lessons and practices in “low-tech” industries such as food. The main motivation of this study is to identify lessons and practices that comprise innovations in the supply chain of a firm in a perceived “low-tech” industry that can be used to provide guidelines in the design of the supply chain of a “high-tech” industry, in this case composite materials. This work uses the case study/site visit with analogy methodology to collect data from a Spanish leading producer of fresh fruit juice which is sold in major European markets and makes use of a cold chain. The study highlights supply base management and visibility/traceability as two elements of the supply chain in a “low-tech” industry that can provide guidelines that can be used in the configuration of the supply chain of the composite materials industry. PMID:25821848
Cotton-based Cellulose Nanomaterials for Applications in Composites and Electronics
NASA Astrophysics Data System (ADS)
Farahbakhsh, Nasim
A modern society demands development of highly valued and sustainable products via innovative process technologies and utilizing bio-based alternatives for petroleum based materials. Systematic comparative study of nanocellulose particles as a biodegradable and renewable reinforcing agent can help to develop criteria for selecting an appropriate candidate to be incorporated in polymer nanocomposites. Of particular interest has been nanocellulosic materials including cellulose nanocrystal (CNC) and micro/nanofibrilated cellulose (MFC/NFC) which possess a hierarchical structure that permits an ordered structure with unique properties that has served as building blocks for the design of green and novel materials composites for applications in flexible electronics, medicine and composites. Key differences exist in nanocellulosic materials as a result the process by which the material is produced. This research demonstrates the applicability for the use of recycled cotton as promising sustainable material to be utilized as a substrate for electronic application and a reinforcing agent choice that can be produced without any intensive purification process and be applied to synthetic-based polymer nanocomposites in melt-processing. (Abstract shortened by ProQuest.).
A differential CDM model for fatigue of unidirectional metal matrix composites
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Kruch, S.
1992-01-01
A multiaxial, isothermal, continuum damage mechanics (CDM) model for fatigue of a unidirectional metal matrix composite volume element is presented. The model is phenomenological, stress based, and assumes a single scalar internal damage variable, the evolution of which is anisotropic. The development of the fatigue damage model, (i.e., evolutionary law) is based on the definition of an initially transversely isotropic fatigue limit surface, a static fracture surface, and a normalized stress amplitude function. The anisotropy of these surfaces and function, and therefore the model, is defined through physically meaningful invariants reflecting the local stress and material orientation. This transversely isotropic model is shown, when taken to it's isotropic limit, to directly simplify to a previously developed and validated isotropic fatigue continuum damage model. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation in attempting to characterize a class of composite materials, and (2) the capability of the formulation in predicting anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Also, specific material parameters representing an initial characterization of the composite system SiC/Ti 15-3 and the matrix material (Ti 15-3) are reported.
Processing and characterization of natural cellulose fibers/thermoset polymer composites.
Thakur, Vijay Kumar; Thakur, Manju Kumari
2014-08-30
Recently natural cellulose fibers from different biorenewable resources have attracted the considerable attraction of research community all around the globe owing to their unique intrinsic properties such as biodegradability, easy availability, environmental friendliness, flexibility, easy processing and impressive physico-mechanical properties. Natural cellulose fibers based materials are finding their applications in a number of fields ranging from automotive to biomedical. Natural cellulose fibers have been frequently used as the reinforcement component in polymers to add the specific properties in the final product. A variety of cellulose fibers based polymer composite materials have been developed using various synthetic strategies. Seeing the immense advantages of cellulose fibers, in this article we discuss the processing of biorenewable natural cellulose fibers; chemical functionalization of cellulose fibers; synthesis of polymer resins; different strategies to prepare cellulose based green polymer composites, and diverse applications of natural cellulose fibers/polymer composite materials. The article provides an in depth analysis and comprehensive knowledge to the beginners in the field of natural cellulose fibers/polymer composites. The prime aim of this review article is to demonstrate the recent development and emerging applications of natural cellulose fibers and their polymer materials. Copyright © 2014 Elsevier Ltd. All rights reserved.
Song, Jizhong; Li, Jianhai; Xu, Jiayue; Zeng, Haibo
2014-11-12
Low cost and high conductivity make copper (Cu) nanowire (NW) electrodes an attractive material to construct flexible and stretchable electronic skins, displays, organic light-emitting diodes (OLEDs), solar cells, and electrochromic windows. However, the vulnerabilities that Cu NW electrodes have to oxidation, bending, and stretching still present great challenges. This work demonstrates a new Cu@Cu4Ni NW conductive elastomer composite with ultrahigh stability for the first time. Cu@Cu4Ni NWs, facilely synthesized through a one-pot method, have highly crystalline alloyed shells, clear and abrupt interfaces, lengths more than 50 μm, and smooth surfaces. These virtues provide the NW-elastomer composites with a low resistance of 62.4 ohm/sq at 80% transparency, which is even better than the commercial ITO/PET flexible electrodes. In addition, the fluctuation amplitude of resistance is within 2 ohm/sq within 30 days, meaning that at ΔR/R0 = 1, the actual lifetime is estimated to be more than 1200 days. Neither the conductivity nor the performances of OLED with elastomers as conductive circuits show evident degradation during 600 cycles of bending, stretching, and twisting tests. These high-performance and extremely stable NW elastomeric electrodes could endow great chances for transparent, flexible, stretchable, and wearable electronic and optoelectronic devices.
NASA Astrophysics Data System (ADS)
Bai, Shengchi; Wang, Haifeng; Yang, Hui; Zhang, He; Guo, Xingzhong
2018-02-01
Silver nanowires (AgNWs)-polyurethane (PU) composite transparent conductive films were fabricated via transfer method using AgNWs conductive inks and polyurethane as starting materials, and the effects of post-treatments including heat treatment, NaCl solution bath and HCl solution bath for AgNWs film on the sheet resistance and transmittance of the composite films were respectively investigated in detail. AgNWs networks are uniformly embedded in the PU layer to improve the adhesion and reduce the surface roughness of AgNWs-PU composite films. Heat treatment can melt and weld the nanowires, and NaCl and HCl solution baths promote the dissolution and re-deposition of silver and the dissolving of the polymer, both which form conduction pathways and improve contact of AgNWs for reducing the sheet resistance. Smooth and flexible AgNWs-PU composite film with a transmittance of 85% and a sheet resistance of 15 Ω · sq‑1 is obtained after treated in 0.5 wt% HCl solution bath for 60 s, and the optoelectronic properties of the resultant composite film can maintain after 1000 cycles of bending and 100 days.
Composite Polymer-Garnet Solid State Electrolytes
NASA Astrophysics Data System (ADS)
Villa, Andres; Oduncu, Muhammed R.; Scofield, Gregory D.; Marinero, Ernesto E.; Forbey, Scott
Solid-state electrolytes provide a potential solution to the safety and reliability issues of Li-ion batteries. We have synthesized cubic-phase Li7-xLa3Zr2-xBixO12 compounds utilizing inexpensive, scalable Sol-gel synthesis and obtained ionic conductivities 1.2 x 10-4 S/cm at RT in not-fully densified pellets. In this work we report on the fabrication of composite polymer-garnet ceramic particle electrolytes to produce flexible membranes that can be integrated with standard battery electrodes without the need for a separator. As a first step we incorporated the ceramic particles into polyethylene oxide polymers (PEO) to form flexible membranes. Early results are encouraging yielding ionic conductivity values 1.0 x 10-5 S/cm at RT. To increment the conductivity in the membranes, we are optimizing amongst other: the ceramic particle size distribution and weight load, the polymer molecular weight and chemical composition and the solvated Li-salt composition and content. Unhindered ion transport across interfaces between the composites and the battery electrode materials is paramount for battery performance. To this end, we are investigating the effect of interface morphology, its atomic composition and exploring novel electrode structures that facilitate ionic transport.
Innovative Approaches to Space-Based Manufacturing and Rapid Prototyping of Composite Materials
NASA Technical Reports Server (NTRS)
Hill, Charles S.
2012-01-01
The ability to deploy large habitable structures, construct, and service exploration vehicles in low earth orbit will be an enabling capability for continued human exploration of the solar system. It is evident that advanced manufacturing methods to fabricate replacement parts and re-utilize launch vehicle structural mass by converting it to different uses will be necessary to minimize costs and allow flexibility to remote crews engaged in space travel. Recent conceptual developments and the combination of inter-related approaches to low-cost manufacturing of composite materials and structures are described in context leading to the possibility of on-orbit and space-based manufacturing.
Shear-flexible finite-element models of laminated composite plates and shells
NASA Technical Reports Server (NTRS)
Noor, A. K.; Mathers, M. D.
1975-01-01
Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.
Jung, Naeyoung; Kwon, Soongeun; Lee, Dongwook; Yoon, Dong-Myung; Park, Young Min; Benayad, Anass; Choi, Jae-Young; Park, Jong Se
2013-12-17
Chemically bonded graphene/carbon nanotube composites as flexible supercapacitor electrode materials are synthesized by amide bonding. Carbon nanotubes attached along the edges and onto the surface of graphene act as spacers to increase the electrolyte-accessible surface area. Our lamellar structure electrodes demonstrate the largest volumetric capacitance (165 F cm(-3) ) ever shown by carbon-based electrodes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Epstein, A.J.; Morin, B.G.
1998-10-13
The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors. 21 figs.
Epstein, Arthur J.; Morin, Brian G.
1998-01-01
The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors.
Possibility of using waste tire composites reinforced with rice straw as construction materials.
Yang, Han-Seung; Kim, Dae-Jun; Lee, Young-Kyu; Kim, Hyun-Joong; Jeon, Jin-Yong; Kang, Chun-Won
2004-10-01
Agricultural lignocellulosic fiber (rice straw)-waste tire particle composite boards were manufactured for use as insulation boards in construction, using the same method as that used in the wood-based panel industry. The manufacturing parameters were: a specific gravity of 0.8 and a rice straw content (10/90, 20/80 and 30/70 by wt.% of rice straw/waste tire particle). A commercial polyurethane adhesive for rubber was used as the composite binder. The water proof, water absorption and thickness swelling properties of the composite boards were better than those of wood particleboard. Furthermore, the flexibility and flexural properties of the composite boards were superior to those of other wood-based panel products. The composite boards also demonstrated good acoustical insulation, electrical insulation, anti-caustic and anti-rot properties. These boards can be used to prevent impact damage, are easily modifiable and are inexpensive. They are able to be used as a substitute for insulation boards and other flexural materials in construction.
Novel folding device for manufacturing aerospace composite structures
NASA Astrophysics Data System (ADS)
Tewfic, Tarik; Sarhadi, M.
2000-10-01
A new manufacturing methodology, termed shape-inclusive lay-up has been applied that allows the generation of three-dimensional preforms for the resin transfer molding (RTM) process. A flexible novel folding device for forming dry fabrics including non-crimp fabric (NCF) preform is designed and integrated with a Material Delivery System (MDS) into a robotic cell for manufacturing dry fiber composite aerospace components. The paper describes detailed design, implementation and operational performance of a prototype device. The proposed folding device has been implemented and tested by manufacturing a range of reinforcement structure preforms (C,T,J and I reinforcement preforms), normally used in aerostructure applications. A key advantage of the proposed device is its flexibility. The system is capable of manufacturing a wide range of components of various sizes without the need for reconfiguration.
Core design for use with precision composite reflectors
NASA Technical Reports Server (NTRS)
Porter, Christopher C. (Inventor); Jacoy, Paul J. (Inventor); Schmitigal, Wesley P. (Inventor)
1992-01-01
A uniformly flexible core, and method for manufacturing the same, is disclosed for use between the face plates of a sandwich structure. The core is made of a plurality of thin corrugated strips, the corrugations being defined by a plurality of peaks and valleys connected to one another by a plurality of diagonal risers. The corrugated strips are orthogonally criss-crossed to form the core. The core is particularly suitable for use with high accuracy spherically curved sandwich structures because undesirable stresses in the curved face plates are minimized due to the uniform flexibility characteristics of the core in both the X and Y directions. The core is self venting because of the open geometry of the corrugations. The core can be made from any suitable composite, metal, or polymer. Thermal expansion problems in sandwich structures may be minimized by making the core from the same composite materials that are selected in the manufacture of the curved face plates because of their low coefficients of thermal expansion. Where the strips are made of a composite material, the core may be constructed by first cutting an already cured corrugated sheet into a plurality of corrugated strips and then secondarily bonding the strips to one another or, alternatively, by lying a plurality of uncured strips orthogonally over one another in a suitable jig and then curing and bonding the entire plurality of strips to one another in a single operation.
ZnO and MgZnO Nanocrystalline Flexible Films: Optical and Material Properties
Huso, Jesse; Morrison, John L.; Che, Hui; ...
2011-01-01
An emore » merging material for flexible UV applications is Mg x Zn 1 − x O which is capable of tunable bandgap and luminescence in the UV range of ~3.4 eV–7.4 eV depending on the composition x . Studies on the optical and material characteristics of ZnO and Mg 0.3 Zn 0.7 O nanocrystalline flexible films are presented. The analysis indicates that the ZnO and Mg 0.3 Zn 0.7 O have bandgaps of 3.34 eV and 4.02 eV, respectively. The photoluminescence (PL) of the ZnO film was found to exhibit a structural defect-related emission at ~3.316 eV inherent to the nanocrystalline morphology. The PL of the Mg 0.3 Zn 0.7 O film exhibits two broad peaks at 3.38 eV and at 3.95 eV that are discussed in terms of the solubility limit of the ZnO-MgO alloy system. Additionally, external deformation of the film did not have a significant impact on its properties as indicated by the Raman LO-mode behavior, making these films attractive for UV flexible applications.« less
High temperature insulation barrier composite
NASA Technical Reports Server (NTRS)
Onstott, Joseph W. (Inventor)
1989-01-01
A composite material suitable for providing insulation for the nozzle structure of the Space Shuttle and other similar surfaces is disclosed. The composite layer is comprised of an outer skin layer of nickel chromium and an interleaved inner region comprising a top layer of nickel chromium foil which acts as a primary convective shield. There are at least two layers of alumina batting adjacent to the layers of silicon carbide fabric. An additional layer of nickel chromium foil is used as a secondary convective shield. The composite is particularly advantageous for use as nozzle insulation because of its ability to withstand high reentry temperatures, its flexibility, oxidation resistance, low conductivity, and light weight.
Optimal Design of Grid-Stiffened Composite Panels Using Global and Local Buckling Analysis
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Jaunky, Navin; Knight, Norman F., Jr.
1996-01-01
A design strategy for optimal design of composite grid-stiffened panels subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. The design optimization process is adapted to identify the lightest-weight stiffening configuration and pattern for grid stiffened composite panels given the overall panel dimensions, design in-plane loads, material properties, and boundary conditions of the grid-stiffened panel.
Development of Flexible Multilayer Circuits and Cables
NASA Technical Reports Server (NTRS)
Barnes, Kevin N.; Bryant, Robert; Holloway, Nancy; Draughon, Fred
2005-01-01
A continuing program addresses the development of flexible multilayer electronic circuits and associated flexible cables. This development is undertaken to help satisfy aerospace-system-engineering requirements for efficient, lightweight electrical and electronic subsystems that can fit within confined spaces, adhere to complexly shaped surfaces, and can be embedded within composite materials. Heretofore, substrate layers for commercial flexible circuitry have been made from sheets of Kapton (or equivalent) polyimide and have been bonded to copper conductors and to other substrate layers by means of adhesives. The substrates for the present developmental flexible circuitry are made from thin films of a polyimide known as LaRC(TM)-SI. This polyimide is thermoplastic and, therefore, offers the potential to eliminate delamination and the need for adhesives. The development work undertaken thus far includes experiments in the use of several techniques of design and fabrication (including computer-aided design and fabrication) of representative flexible circuits. Anticipated future efforts would focus on multilayer bonding, fabrication of prototypes, and overcoming limitations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontainha, C.C.P.; Baptista Neto, A.T.; Santos, A.P.
Exposure to high radiation dose in medical diagnostic imaging procedures can lead patients to suffer tissue damaging. However, there are several studies that identify significant dose reduction with the use of radiation protective attenuators, minimizing the delivered dose in the region that covers the main beam, while preserving the diagnostic quality of the generated image. Most radiation attenuator materials are produced from shielding metal containing composites, whose efficiency is the goal of investigations around the world. In this context, polymeric materials were chosen for this investigation in order to provide light-weighted and flexible protective composites, a must in personal protectivemore » shielding. Therefore, this work is concerned to the investigation of poly(vinylidene fluoride - try-fluor-ethylene) [P(VDF-TrFE)] copolymers mixed with zirconia nanoparticles. The resulting polymer composites, prepared with 1, 2, 3, 5 and 10 at.% of ZrO{sub 2} nanoparticles, were investigated for application as protective shielding in some interventional radiology procedures. Two variety of composites were produced, one using pure ZrO{sub 2} nanoparticles and the other using sol-gel route with zirconium butoxide as the precursor for zirconium oxide nano-clusters. The P(VDFTrFE)/ ZrO2-MMA polymer composites produced by sol-gel route have provided a much better dispersion of the pure ZrO{sub 2} material into the P(VDF-TrFE) host matrix. UV-Vis and FTIR spectrometry and differential scanning calorimetry (DSC) were used to characterize the composite samples. FTIR data reveal a possible link between the MMA monomers with the P(VDF-TrFE) chain through shared C=O bonds. The radiation shielding characterization was conducted by using a 70 kV x-rays beam which is applicable, for instances, in catheter angiography. The results demonstrate that composites with 10% of ZrO{sub 2}, and only 1.0 mm thick, can attenuate 60% of the x-rays beam. The composite density was evaluated to be 2.20 g/cm{sup 3}. The results indicate that P(VDF-TrFE)/ZrO{sub 2}-MMA polymer composites have potential to be investigated as light-weighted and flexible protective shielding for application in some radiological procedures that uses low kilovoltage x-ray beams. (authors)« less
NASA Astrophysics Data System (ADS)
Yoon, K. J.; Park, K. H.; Lee, S. K.; Goo, N. S.; Park, H. C.
2004-06-01
This paper describes an analytical design model for a layered piezo-composite unimorph actuator and its numerical and experimental verification using a LIPCA (lightweight piezo-composite curved actuator) that is lighter than other conventional piezo-composite type actuators. The LIPCA is composed of top fiber composite layers with high modulus and low CTE (coefficient of thermal expansion), a middle PZT ceramic wafer, and base layers with low modulus and high CTE. The advantages of the LIPCA design are to replace the heavy metal layer of THUNDER by lightweight fiber-reinforced plastic layers without compromising the generation of high force and large displacement and to have design flexibility by selecting the fiber direction and the number of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use a resin prepreg system. A piezo-actuation model for a laminate with piezo-electric material layers and fiber composite layers is proposed to predict the curvature and residual stress of the LIPCA. To predict the actuation displacement of the LIPCA with curvature, a finite element analysis method using the proposed piezo-actuation model is introduced. The predicted deformations are in good agreement with the experimental ones.
Microstructural and mechanical characterization of laser deposited advanced materials
NASA Astrophysics Data System (ADS)
Sistla, Harihar Rakshit
Additive manufacturing in the form of laser deposition is a unique way to manufacture near net shape metallic components from advanced materials. Rapid solidification facilitates the extension of solid solubility, compositional flexibility and decrease in micro-segregation in the melt among other advantages. The current work investigates the employment of laser deposition to fabricate the following: 1. Functionally gradient materials: This allows grading dissimilar materials compositionally to tailor specific properties of both these materials into a single component. Specific compositions of the candidate materials (SS 316, Inconel 625 and Ti64) were blended and deposited to study the brittle intermetallics reported in these systems. 2. High entropy alloys: These are multi- component alloys with equiatomic compositions of 5 or more elements. The ratio of Al to Ni was decreased to observe the transition of solid solution from a BCC to an FCC crystal structure in the AlFeCoCrNi system. 3. Structurally amorphous alloys: Zr-based metallic glasses have been reported to have high glass forming ability. These alloys have been laser deposited so as to rapidly cool them from the melt into an amorphous state. Microstructural analysis and X-ray diffraction were used to study the phase formation, and hardness was measured to estimate the mechanical properties.
NASA Astrophysics Data System (ADS)
Yang, In-Young; Kim, Ji-Hoon; Cha, Cheon-Seok; Lee, Kil-Sung; Hsu, David K.; Im, Kwang-Hee
2007-07-01
In particular, CFRP (carbon fiber reinforced plastics) composite materials have found wide applicability because of their inherent design flexibility and improved material properties. CFRP composites were manufactured from uni-direction prepreg sheet in this paper. It is important to assess fiber orientation, material properties and part defect in order to ensure product quality and structural integrity of CFRP because strength and stiffness of composites depend on fiber orientation. It is desirable to perform nondestructive evaluation which is very beneficial. An new method for nondestructively determining the fiber orientation in a composite laminate is presented. A one-sided pitch-catch setup was used in the detection and evaluation of flaws and material anomalies in the unidirectional CFRP composite laminates. Two Rayleigh wave transducers were joined head-to-head and used in the pitch-catch mode on the surface of the composites. The pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composite. Especially, ultrasonic waves were extensively characterized in the CFRP composite laminates both normal to fiber and along to fiber with using a one-sided direction of Rayleigh wave transducers. Also, one-sided ultrasonic measurement was made with using a Rayleigh wave transducers and a conventional scanner was used in an immersion tank for extracting fiber orientation information from the ultrasonic reflection in the unidirectional laminate. Therefore, it is thought that the proposed method is useful to evaluate integrity of CFRP laminates.
NASA Astrophysics Data System (ADS)
Yoo, Byungwook; Kim, Youngmin; Han, Chul Jong; Oh, Min Suk; Kim, Jong-Woong
2018-01-01
Recent studies have revealed that silver nanowires (AgNWs) are a promising material for highly flexible transparent electrodes. Here we introduce a novel photoinduced recyclable approach to AgNW patterning to overcome the issue of loss of material during fabrication of AgNW patterns, which is a leading factor in the high fabrication costs of AgNW-based electrodes. Our patterning scheme involves the selective irradiation of an AgNW/polymer composite with high-intensity pulsed light, followed by immersion of the sample in a liquid and an ultrasonication treatment. The nanowires that detach during sonication could be recycled, and the recycled AgNWs achieved comparable performance to that of pristine AgNWs. The recycled AgNWs were also superior to commercial indium tin oxide films and other competing materials. We successfully demonstrated a high performance transparent heater by employing the recyclable patterning method and recycled AgNWs.
High-performance supercapacitors using flexible and freestanding MnOx/carbamide carbon nanofibers
NASA Astrophysics Data System (ADS)
Samuel, Edmund; Jo, Hong Seok; Joshi, Bhavana; Park, Hyun Goo; Kim, Yong Il; An, Seongpil; Swihart, Mark T.; Yun, Je Moon; Kim, Kwang Ho; Yoon, Sam S.
2017-11-01
We demonstrate the fabrication of a MnOx/carbamide carbon nanofiber (CCNF) composite consisting of MnO particles embedded in CCNFs as a highly flexible and freestanding electrode material for supercapacitors. A sacrificial polymer component, polymethylmethacrylate, included in the precursor solution, pyrolyzes during heating, resulting in pores in the fibers, some of which are filled by the MnO nanocrystals. Carbamide is added to control the size of the MnOx particles as well as to increase the carbon content of the composite and hence its conductivity. The X-ray diffraction and Raman spectra of the composite show that the MnO particles formed have low crystallinity. Transmission electron microscopy confirms that the MnO particles are distributed very uniformly over the CCNFs. Symmetric supercapacitors constructed using electrodes of this composite exhibit specific capacitances of 498 F•g-1 at a scan rate of 10 mV•s-1 and 271 F•g-1 at a current density of 1 A•g-1. They also exhibit excellent long-term cycling performance, retaining 93% of their initial capacity after 5000 cycles of galvanostatic charging/discharging.
NASA Astrophysics Data System (ADS)
Hassoon, O. H.; Tarfaoui, M.; El Moumen, A.; Benyahia, H.; Nachtane, M.
2018-06-01
The deformable composite structures subjected to water-entry impact can be caused a phenomenon called hydroelastic effect, which can modified the fluid flow and estimated hydrodynamic loads comparing with rigid body. This is considered very important for ship design engineers to predict the global and the local hydrodynamic loads. This paper presents a numerical model to simulate the slamming water impact of flexible composite panels using an explicit finite element method. In order to better describe the hydroelastic influence and mechanical properties, composite materials panels with different stiffness and under different impact velocities with deadrise angle of 100 have been studied. In the other hand, the inertia effect was observed in the early stage of the impact that relative to the loading rate. Simulation results have been indicated that the lower stiffness panel has a higher hydroelastic effect and becomes more important when decreasing of the deadrise angle and increasing the impact velocity. Finally, the simulation results were compared with the experimental data and the analytical approaches of the rigid body to describe the behavior of the hydroelastic influence.
NASA Astrophysics Data System (ADS)
Hassoon, O. H.; Tarfaoui, M.; El Moumen, A.; Benyahia, H.; Nachtane, M.
2017-10-01
The deformable composite structures subjected to water-entry impact can be caused a phenomenon called hydroelastic effect, which can modified the fluid flow and estimated hydrodynamic loads comparing with rigid body. This is considered very important for ship design engineers to predict the global and the local hydrodynamic loads. This paper presents a numerical model to simulate the slamming water impact of flexible composite panels using an explicit finite element method. In order to better describe the hydroelastic influence and mechanical properties, composite materials panels with different stiffness and under different impact velocities with deadrise angle of 100 have been studied. In the other hand, the inertia effect was observed in the early stage of the impact that relative to the loading rate. Simulation results have been indicated that the lower stiffness panel has a higher hydroelastic effect and becomes more important when decreasing of the deadrise angle and increasing the impact velocity. Finally, the simulation results were compared with the experimental data and the analytical approaches of the rigid body to describe the behavior of the hydroelastic influence.
Fire Resistant Composite Closed Cell Foam and Nonwoven Textiles for Tents and Shelters
2006-01-01
when heated. The heat causes the plasticizer to dissolve in the PVC to form a flexible, plasticized PVC film . The foam and/or fabric surfaces were...PVC/NBR AF-U9D foam formed a char and only the edge of the material was damaged. These data suggested that burn-through resistance , in addition to...AFRL-ML-TY-TR-2006-4571 FIRE RESISTANT COMPOSITE CLOSED CELL FOAM AND NONWOVEN TEXTILES FOR TENTS AND SHELTERS Stephen C. Davis
NASA Astrophysics Data System (ADS)
Polskoy, Petr; Mailyan, Dmitry; Georgiev, Sergey; Muradyan, Viktor
2018-03-01
The increase of high-rise construction volume or «High-Rise Construction» requires the use of high-strength concrete and that leads to the reduction in section size of structures and to the decrease in material consumption. First of all, it refers to the compressed elements for which, when the transverse dimensions are reduced, their flexibility and deformation increase but the load bearing capacity decreases. Growth in construction also leads to the increase of repair and restoration works or to the strengthening of structures. The most effective method of their strengthening in buildings of «High-Rise Construction» is the use of composite materials which reduces the weight of reinforcement elements and labour costs on execution of works. In this article the results of experimental research on strength and deformation of short compressed reinforced concrete structures, reinforced with external carbon fiber reinforcement, are presented. Their flexibility is λh=10, and the cross-section dimensions ratio b/h is 2, that is 1,5 times more, than recommended by standards in Russia. The following research was being done for three kinds of strained and deformed conditions with different variants of composite reinforcement. The results of the experiment proved the real efficiency of composite reinforcement of the compressed elements with sides ratio equal to 2, increasing the bearing capacity of pillars till 1,5 times. These results can be used for designing the buildings of different number of storeys.
Graphite Composite Booms with Integral Hinges
NASA Technical Reports Server (NTRS)
Alexander, Wes; Carlos, Rene; Rossoni, Peter; Sturm, James
2006-01-01
A document discusses lightweight instrument booms under development for use aboard spacecraft. A boom of this type comprises a thin-walled graphite fiber/ matrix composite tube with an integral hinge that can be bent for stowage and later allowed to spring back to straighten the boom for deployment in outer space. The boom design takes advantage of both the stiffness of the composite in tubular geometry and the flexibility of thin sections of the composite. The hinge is formed by machining windows in the tube at diametrically opposite locations so that there remain two opposing cylindrical strips resembling measuring tapes. Essential to the design is a proprietary composite layup that renders the hinge tough yet flexible enough to be bendable as much as 90 in either of two opposite directions. When the boom is released for deployment, the torque exerted by the bent hinge suffices to overcome parasitic resistance from harnesses and other equipment, so that the two sections of the hinge snap to a straight, rigid condition in the same manner as that of measuring tapes. Issues addressed in development thus far include selection of materials, out-of-plane bending, edge cracking, and separation of plies.
Thermal Insulation Performance of Flexible Piping for Use in HTS Power Cables
NASA Technical Reports Server (NTRS)
Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)
2001-01-01
High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 K are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.
Schuchardt, Arnim; Braniste, Tudor; Mishra, Yogendra K.; Deng, Mao; Mecklenburg, Matthias; Stevens-Kalceff, Marion A.; Raevschi, Simion; Schulte, Karl; Kienle, Lorenz; Adelung, Rainer; Tiginyanu, Ion
2015-01-01
Three dimensional (3D) elastic hybrid networks built from interconnected nano- and microstructure building units, in the form of semiconducting-carbonaceous materials, are potential candidates for advanced technological applications. However, fabrication of these 3D hybrid networks by simple and versatile methods is a challenging task due to the involvement of complex and multiple synthesis processes. In this paper, we demonstrate the growth of Aerographite-GaN 3D hybrid networks using ultralight and extremely porous carbon based Aerographite material as templates by a single step hydride vapor phase epitaxy process. The GaN nano- and microstructures grow on the surface of Aerographite tubes and follow the network architecture of the Aerographite template without agglomeration. The synthesized 3D networks are integrated with the properties from both, i.e., nanoscale GaN structures and Aerographite in the form of flexible and semiconducting composites which could be exploited as next generation materials for electronic, photonic, and sensors applications. PMID:25744694
Material, process, and product design of thermoplastic composite materials
NASA Astrophysics Data System (ADS)
Dai, Heming
Thermoplastic composites made of polypropylene (PP) and E-glass fibers were investigated experimentally as well as theoretically for two new classes of product designs. The first application was for reinforcement of wood. Commingled PP/glass yarn was consolidated and bonded on wood panel using a tie layer. The processing parameters, including temperature, pressure, heating time, cooling time, bonding strength, and bending strength were tested experimentally and evaluated analytically. The thermoplastic adhesive interface was investigated with environmental scanning electron microscopy. The wood/composite structural design was optimized and evaluated using a Graphic Method. In the second application, we evaluated use of thermoplastic composites for explosion containment in an arrester. PP/glass yarn was fabricated in a sleeve form and wrapped around the arrester. After consolidation, the flexible composite sleeve forms a solid composite shell. The composite shell acts as a protection layer in a surge test to contain the fragments of the arrester. The manufacturing process for forming the composite shell was designed. Woven, knitted, and braided textile composite shells made of commingled PP/glass yarn were tested and evaluated. Mechanical performance of the woven, knitted, and braided composite shells was examined analytically. The theoretical predictions were used to verify the experimental results.
Micro-tube biotemplate synthesis of Fe3O4/C composite as anode material for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Du, Jun; Ding, Yu; Guo, Liangui; Wang, Li; Fu, Zhengbing; Qin, Caiqin; Wang, Feng; Tao, Xinyong
2017-12-01
Kapok fibres were used as micro-tube biotemplate and bio-carbon source to synthesise Fe3O4/C composites, which were then utilised as anode materials. Fe3O4 nanoparticles were grown uniformly onto the external surface and internal channel of kapok carbon fibres. The flexibility, high specific surface area and electronic conduction of kapok fibres can buffer the volume expansion as well as inhibit the aggregation of Fe3O4 nanoparticles. Thus, the electrical integrity and structural of the Fe3O4/C composites electrode during lithiation/delithiation processes. The Fe3O4/C composites electrode delivers a high reversible capacity of 596 mA h g-1 after 100 cycles and an ultra-high coulombic efficiency approaching 100%. The high electrochemical performance of the Fe3O4/C composites can be caused by the synergistic effect of the Fe3O4 nanoparticles and the structure of kapok carbon fibres.
Densification of a-IGZO with low-temperature annealing for flexible electronics applications
NASA Astrophysics Data System (ADS)
Troughton, J. G.; Downs, P.; Price, R.; Atkinson, D.
2017-01-01
Amorphous InGaZnO (a-IGZO) thin-film transistors are a leading contender for active channel materials in next generation flat panel displays and flexible electronics. Improved electronic functionality has been linked to the increased density of a-IGZO, and while much work has looked at high-temperature processes, studies at temperatures compatible with flexible substrates are needed. Here, compositional and structural analyses show that short term, low-temperature annealing (<6 h) can increase the density of sputtered a-IGZO by up to 5.6% for temperatures below 300 °C, which is expected to improve the transistor performance, while annealing for longer times leads to a subsequent decrease in density due to oxygen absorption.
Transition to high rate aerospace NDI processes
NASA Astrophysics Data System (ADS)
Vanderheiden, Bert; Thomson, Clint; Ivakhnenko, Igor; Garner, Chuck
2018-04-01
With the rapidly expanding use of carbon fiber composite materials in military and commercial aircraft, processes to manufacture and inspect the structural components must evolve to ensure economic viability. Inspection techniques which were developed to inspect products produced at a rate of one or two structures a month are not fast or flexible enough to inspect more than 8500 parts per month. This presentation describes the evolution of phased array ultrasonic inspection systems to provide the increased rate capacity, the flexibility to accommodate multiple unique designs, and the ability to rapidly adjust to product design changes. The paper will describe how system developments were made in response to new programs resulting in a much less expensive, higher degree of accuracy, increased flexibility, and lower cycle time inspections.
2012-08-01
e.g. large volume changes during insertion/extraction of ions and/or low electrical and ionic conductivity) Rational design of carbon -containing...to ~ 200 mAh/g, particularly for high power cells • If graphite is replaced with Carbon fibers or CNTs, the mechanical properties of the CNT will...rigid spherical granules Annealed carbon black (CB) 100 nm Si Magasinski, A. et. al, Nature Materials, 2010, 9, 353 • Uniformity of the
Printable semiconductor structures and related methods of making and assembling
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang; , Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn
2013-03-12
The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.
Printable semiconductor structures and related methods of making and assembling
Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Durham, NC; Lee, Keon Jae [Tokyo, JP; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Westmont, IL; Meitl, Matthew [Raleigh, NC; Zhu, Zhengtao [Rapid City, SD; Ko, Heung Cho [Urbana, IL; Mack, Shawn [Goleta, CA
2011-10-18
The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.
Printable semiconductor structures and related methods of making and assembling
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn
2010-09-21
The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.
Orbital Debris Impact Damage to Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Robinson, Jennifer H.
1998-01-01
In an effort by the National Aeronautics and Space Administration (NASA), hypervelocity impact tests were performed on thermal protection systems (TPS) applied on the external surfaces of reusable launch vehicles (RLV) to determine the potential damage from orbital debris impacts. Three TPS types were tested, bonded to composite structures representing RLV fuel tank walls. The three heat shield materials tested were Alumina-Enhanced Thermal Barrier-12 (AETB-12), Flexible Reusable Surface Insulation (FRSI), and Advanced Flexible Reusable Surface Insulation (AFRSI). Using this test data, predictor equations were developed for the entry hole diameters in the three TPS materials, with correlation coefficients ranging from 0.69 to 0.86. Possible methods are proposed for approximating damage occurring at expected orbital impact velocities higher than tested, with references to other published work.
NASA Astrophysics Data System (ADS)
Yankovskii, A. P.
2017-09-01
The creep of homogenous and hybrid composite beams of an irregular laminar fibrous structure is investigated. The beams consist of thin walls and flanges (load-carrying layers). The walls may be reinforced longitudinally or crosswise in the plane, and the load-carrying layers are reinforced in the longitudinal direction. The mechanical behavior of phase materials is described by the Rabotnov nonlinear hereditary theory of creep taking into account their possible different resistance to tension and compression. On the basis of hypotheses of the Timoshenko theory, with using the method of time steps, a problem is formulated for the inelastic bending deformation of such beams with account of the weakened resistance of their walls to the transverse shear. It is shown that, at discrete instants of time, the mechanical behavior of such structures can formally be described by the governing relations for composite beams made of nonlinear elastic anisotropic materials with a known initial stress state. The method of successive iterations, similar to the method of variable parameters of elasticity, is used to linearize the boundary-value problem at each instant of time. The bending deformation is investigated for homogeneous and reinforced cantilever and simply supported beams in creep under the action of a uniformly distributed transverse load. The cross sections of the beams considered are I-shaped. It is found that the use of the classical theory for such beams leads to the prediction of indefensibly underestimated flexibility, especially in long-term loading. It is shown that, in beams with reinforced load-carrying layers, the creep mainly develops due to the shear strains of walls. It is found that, in short- and long-term loadings of composite beams, the reinforcement structures rational by the criterion of minimum flexibility are different.
NASA Astrophysics Data System (ADS)
Moloney, Padraig G.
An investigation was conducted towards the development and optimization of low electrical resistivity carbon nanotube (CNT) and thermoplastic composites as potential materials for future wire and cable applications in aerospace and energy exploration. Fundamental properties of the polymer, medium density polyethylene (MDPE), such as crystallinity were studied and improved for composite use. A parallel effort was undertaken on a broad selection of CNT, including single wall, double wall and multi wall carbon nanotubes, and included research of material aspects relevant to composite application and low resistivity such as purity, diameter and chirality. With an emphasis on scalability, manufacturing and purification methods were developed, and a solvent-based composite fabrication method was optimized. CNT MDPE composites were characterized via thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Raman spectroscopy, and multiple routes of electron microscopy. Techniques including annealing and pressure treatments were used to further improve the composites' resulting electrical performance. Enhancement of conductivity was explored via exposure to a focused microwave beam. A novel doping method was developed using antimony pentafluoride (SbF5) to reduce the resistivity of the bulk CNT. Flexible composites, malleable under heat and pressure, were produced with exceptional electrical resistivities reaching as low as 2*10-6O·m (5*105S/m). A unique gas sensor application utilizing the unique electrical resistivities of the produced CNT-MDPE composites was developed. The materials proved suitable as a low weight and low energy sensing material for dimethyl methylphosphonate (DMMP), a nerve gas simulant.
Fabrication and testing of SMA composite beam with shape control
NASA Astrophysics Data System (ADS)
Noolvi, Basavaraj; S, Raja; Nagaraj, Shanmukha; Mudradi, Varada Raj
2017-07-01
Smart materials are the advanced materials that have characteristics of sensing and actuation in response to the external stimuli like pressure, heat or electric charge etc. These materials can be integrated in to any structure to make it smart. From the different types of smart materials available, Shape Memory Alloy (SMA) is found to be more useful in designing new applications, which can offer more actuating speed, reduce the overall weight of the structure. The unique property of SMA is the ability to remember and recover from large strains of upto 8% without permanent deformation. Embedding the SMA wire/sheet in fiber-epoxy/flexible resin systems has many potential applications in Aerospace, Automobile, Medical, Robotics and various other fields. In this work the design, fabrication, and testing of smart SMA composite beam has been carried out. Two types of epoxy based resin systems namely LY 5210 resin system and EPOLAM 2063 resin system are used in fabricating the SMA composite specimens. An appropriate mould is designed and fabricated to retain the pre-strain of SMA wire during high temperature post curing of composite specimens. The specimens are fabricated using vacuum bag technique.
Bae, Eun Jin; Kang, Young Hun; Jang, Kwang-Suk; Cho, Song Yun
2016-01-05
The thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) and tellurium- PSS (Te- PSS) hybrid composites were enhanced via simple chemical treatment. The performance of thermoelectric materials is determined by their electrical conductivity, thermal conductivity, and Seebeck coefficient. Significant enhancement of the electrical conductivity of PSS and Te- PSS hybrid composites from 787.99 and 11.01 to 4839.92 and 334.68 S cm(-1), respectively was achieved by simple chemical treatment with H2SO4. The power factor of the developed materials could be effectively tuned over a very wide range depending on the concentration of the H2SO4 solution used in the chemical treatment. The power factors of the developed thermoelectric materials were optimized to 51.85 and 284 μW m(-1) K(-2), respectively, which represent an increase of four orders of magnitude relative to the corresponding parameters of the untreated thermoelectric materials. Using the Te- PSS hybrid composites, a flexible thermoelectric generator that could be embedded in textiles was fabricated by a printing process. This thermoelectric array generates a thermoelectric voltage of 2 mV using human body heat.
Engineered Nanomaterials for Energy Harvesting and Storage Applications
NASA Astrophysics Data System (ADS)
Gullapalli, Hemtej
Energy harvesting and storage are independent mechanisms, each having their own significance in the energy cycle. Energy is generally harvested from temperature variations, mechanical vibrations and other phenomena which are inherently sporadic in nature, harvested energy stands a better chance of efficient utilization if it can be stored and used later, depending on the demand. In essence a comprehensive device that can harness power from surrounding environment and provide a steady and reliable source of energy would be ideal. Towards realizing such a system, for the harvesting component, a piezoelectric nano-composite material consisting of ZnO nanostructures embedded into the matrix of 'Paper' has been developed. Providing a flexible backbone to a brittle material makes it a robust architecture. Energy harvesting by scavenging both mechanical and thermal fluctuations using this flexible nano-composite is discussed in this thesis. On the energy storage front, Graphene based materials developed with a focus towards realizing ultra-thin lithium ion batteries and supercapacitors are introduced. Efforts for enhancing the energy storage performance of such graphitic carbon are detailed. Increasing the rate capability by direct CVD synthesis of graphene on current collectors, enhancing its electrochemical capacity through doping and engineering 3D metallic structures to increase the areal energy density have been studied.
Flexible barrier film, method of forming same, and organic electronic device including same
Blizzard, John; Tonge, James Steven; Weidner, William Kenneth
2013-03-26
A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.
NASA Astrophysics Data System (ADS)
Zhou, Shuai; Zhou, Yu; Jiang, Wei; Guo, Huajun; Wang, Zhixing; Li, Xinhai
2018-05-01
Iron oxides are considered as attractive electrode materials because of their capability of lithium storage, but their poor conductivity and large volume expansion lead to unsatisfactory cycling stability. We designed and synthesized a novel Fe3O4 cluster microspheres/Graphene aerogels composite (Fe3O4/GAs), where Fe3O4 nanoparticles were assembled into cluster microspheres and then embedded in 3D graphene aerogels framework. In the spheres, the sufficient free space between Fe3O4 nanoparticles could accommodate the volume change during cycling process. Graphene aerogel works as flexible and conductive matrix, which can not only significantly increase the mechanical stress, but also further improve the storage properties. The Fe3O4/GAs composite as an anode material exhibits high reversible capability and excellent cyclic capacity for lithium ion batteries (LIBs). A reversible capability of 650 mAh g-1 after 500 cycles at a current density of 1 A g-1 can be maintained. The superior storage capabilities of the composites make them potential anode materials for LIBs.
Polymer-composite materials for radiation protection.
Nambiar, Shruti; Yeow, John T W
2012-11-01
Unwanted exposures to high-energy or ionizing radiation can be hazardous to health. Prolonged or accumulated radiation dosage from either particle-emissions such as alpha/beta, proton, electron, neutron emissions, or high-energy electromagnetic waves such as X-rays/γ rays, may result in carcinogenesis, cell mutations, organ failure, etc. To avoid occupational hazards from these kinds of exposures, researchers have traditionally used heavy metals or their composites to attenuate the radiation. However, protective gear made of heavy metals are not only cumbersome but also are capable of producing more penetrative secondary radiations which requires additional shielding, increasing the cost and the weight factor. Consequently, significant research efforts have been focused toward designing efficient, lightweight, cost-effective, and flexible shielding materials for protection against radiation encountered in various industries (aerospace, hospitals, and nuclear reactors). In this regard, polymer composites have become attractive candidates for developing materials that can be designed to effectively attenuate photon or particle radiation. In this paper, we review the state-of-the-art of polymer composites reinforced with micro/nanomaterials, for their use as radiation shields.
Protective coating for ceramic materials
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A. (Inventor); Churchward, Rex A. (Inventor); Lowe, David M. (Inventor)
1994-01-01
A protective coating for ceramic materials such as those made of silicon carbide, aluminum oxide, zirconium oxide, aluminoborosilicate and silicon dioxide, and a thermal control structure comprising a ceramic material having coated thereon the protective coating. The protective coating contains, in admixture, silicon dioxide powder, colloidal silicon dioxide, water, and one or more emittance agents selected from silicon tetraboride, silicon hexaboride, silicon carbide, molybdenum disilicide, tungsten disilicide and zirconium diboride. In another aspect, the protective coating is coated on a flexible ceramic fabric which is the outer cover of a composite insulation. In yet another aspect, a metallic foil is bonded to the outer surface of a ceramic fabric outer cover of a composite insulation via the protective coating. A primary application of this invention is as a protective coating for ceramic materials used in a heat shield for space vehicles subjected to very high aero-convective heating environments.
NASA Technical Reports Server (NTRS)
Lee, Je Kyun; Gould, George
2012-01-01
An organic polybutadiene (PB) rubberbased aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection, exhibiting the flexibility, resiliency, toughness, and durability typical of the parent polymer, yet with the low density and superior insulation properties associated with the aerogels. The rubbery behaviors of the PB rubber-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogel insulation materials. Additionally, with higher content of hydrogen in their structure, the PB rubber aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. Since PB rubber aerogels also exhibit good hydrophobicity due to their hydrocarbon molecular structure, they will provide better performance reliability and durability as well as simpler, more economic, and environmentally friendly production over the conventional silica or other inorganic-based aerogels, which require chemical treatment to make them hydrophobic. Inorganic aerogels such as silica aerogels demonstrate many unusual and useful properties. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven one promising approach, providing a conveniently fielded form factor that is relatively robust toward handling in industrial environments compared to silica aerogel monoliths. However, the flexible silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain applications. Although the cross-linked organic aerogels such as resorcinol-formaldehyde (RF), polyisocyanurate, and cellulose aerogels show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient radiation shielding materials due to their lower content of hydrogen element. The present invention relates to maleinized polybutadiene (or polybutadiene adducted with maleic anhydride)- based aerogel monoliths and composites, and the methods for preparation. Hereafter, they are collectively referred to as polybutadiene aerogels. Specifically, the polybutadiene aerogels of the present invention are prepared by mixing a maleinized polybutadiene resin, a hardener containing a maleic anhydride reactive group, and a catalyst in a suitable solvent, and maintaining the mixture in a quiescent state for a sufficient period of time to form a polymeric gel. After aging at elevated temperatures for a period of time to provide uniformly stronger wet gels, the micro porous maleinized polybutadiene- based aerogel is then obtained by removing interstitial solvent by supercritical drying. The mesoporous maleinized polybutadiene-based aerogels contain an open-pore structure, which provides inherently hydrophobic, flexible, nearly unbreakable, less dusty aerogels with excellent thermal and physical properties. The materials can be used as thermal and acoustic insulation, radiation shielding, and vibration-damping materials. The organic PB-based rubber aerogels are very flexible, no-dust, and hydrophobic organics that demonstrated the following ranges of typical properties: densities of 0.08 to 0.255 grams per cubic centimeters, shrinkage factor (raerogel/rtarget) = 1.2 to 2.84, and thermal conductivity values of 20.0 to 35.0 mW/m-K.
Engineering of oriented carbon nanotubes in composite materials
Beigmoradi, Razieh; Mohebbi-Kalhori, Davod
2018-01-01
The orientation and arrangement engineering of carbon nanotubes (CNTs) in composite structures is considered a challenging issue. In this regard, two groups of in situ and ex situ techniques have been developed. In the first, the arrangement is achieved during CNT growth, while in the latter, the CNTs are initially grown in random orientation and the arrangement is then achieved during the device integration process. As the ex situ techniques are free from growth restrictions and more flexible in terms of controlling the alignment and sorting of the CNTs, they are considered by some as the preferred technique for engineering of oriented CNTs. This review focuses on recent progress in the improvement of the orientation and alignment of CNTs in composite materials. Moreover, the advantages and disadvantages of the processes are discussed as well as their future outlook. PMID:29515955
Prabhudev, Amithash Marulaiah; Chogtu, Bharti; Magazine, Rahul
2017-01-01
BACKGROUND: Sedation during flexible bronchoscopy is desirable, but the drugs and the dosage protocols that are used vary. OBJECTIVE: To study and compare the effects of midazolam with fentanyl-midazolam combination during flexible bronchoscopy. MATERIALS AND METHODS: The study was conducted on 144 patients, from October 2013 to July 2015. They answered Hospital Anxiety and Depression Scale-Anxiety subscale and a prebronchoscopy questionnaire to assess their expectation toward flexible bronchoscopy. The patients were randomized into three groups: placebo, midazolam, and fentanyl-midazolam. Vitals signs including heart rate, respiratory rate, blood pressure, and oxygen saturation (SpO2) were recorded. Furthermore, Ramsay Sedation Scale was assessed during the procedure. Primary outcome measure was the composite score of patient-reported tolerance and satisfaction (assessed after the procedure). Secondary outcome measures were composite score of physician-reported feasibility of the procedure, hemodynamic changes during bronchoscopy, and side effects. RESULTS: Patient-reported tolerance and satisfaction composite scores (median, interquartile range) for placebo, midazolam, and fentanyl-midazolam groups were 54 (52, 57), 59 (57, 61.5), 62 (58.5, 66), respectively; P < 0.001. Physician-reported feasibility composite scores (median, interquartile range) for the respective groups were 24.5 (20.5, 28), 25 (21, 27), 26 (25, 29); P = 0.004. There was no significant difference between the groups so far as mean heart rate (P = 0.305), mean systolic blood pressure (P = 0.532), mean diastolic blood pressure (P = 0.516), mean respiratory rate (P = 0.131), and mean SpO2 (P = 0.968) were concerned. CONCLUSION: Conscious sedation with fentanyl and midazolam combination can result in better patient and operator satisfaction when compared with midazolam alone. PMID:29326491
Integrated analysis of engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1981-01-01
The need for light, durable, fuel efficient, cost effective aircraft requires the development of engine structures which are flexible, made from advaced materials (including composites), resist higher temperatures, maintain tighter clearances and have lower maintenance costs. The formal quantification of any or several of these requires integrated computer programs (multilevel and/or interdisciplinary analysis programs interconnected) for engine structural analysis/design. Several integrated analysis computer prorams are under development at Lewis Reseach Center. These programs include: (1) COBSTRAN-Composite Blade Structural Analysis, (2) CODSTRAN-Composite Durability Structural Analysis, (3) CISTRAN-Composite Impact Structural Analysis, (4) STAEBL-StruTailoring of Engine Blades, and (5) ESMOSS-Engine Structures Modeling Software System. Three other related programs, developed under Lewis sponsorship, are described.
Yamamoto, Yuki; Yamamoto, Daisuke; Takada, Makoto; Naito, Hiroyoshi; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2017-09-01
Wearable, flexible healthcare devices, which can monitor health data to predict and diagnose disease in advance, benefit society. Toward this future, various flexible and stretchable sensors as well as other components are demonstrated by arranging materials, structures, and processes. Although there are many sensor demonstrations, the fundamental characteristics such as the dependence of a temperature sensor on film thickness and the impact of adhesive for an electrocardiogram (ECG) sensor are yet to be explored in detail. In this study, the effect of film thickness for skin temperature measurements, adhesive force, and reliability of gel-less ECG sensors as well as an integrated real-time demonstration is reported. Depending on the ambient conditions, film thickness strongly affects the precision of skin temperature measurements, resulting in a thin flexible film suitable for a temperature sensor in wearable device applications. Furthermore, by arranging the material composition, stable gel-less sticky ECG electrodes are realized. Finally, real-time simultaneous skin temperature and ECG signal recordings are demonstrated by attaching an optimized device onto a volunteer's chest. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lv, Lili; Han, Xiangsheng; Zong, Lu; Li, Mingjie; You, Jun; Wu, Xiaochen; Li, Chaoxu
2017-08-22
Silk, one of the strongest natural biopolymers, was hybridized with Kevlar, one of the strongest synthetic polymers, through a biomimetic nanofibrous strategy. Regenerated silk materials have outstanding properties in transparency, biocompatibility, biodegradability and sustainability, and promising applications as diverse as in pharmaceutics, electronics, photonic devices and membranes. To compete with super mechanic properties of their natural counterpart, regenerated silk materials have been hybridized with inorganic fillers such as graphene and carbon nanotubes, but frequently lose essential mechanic flexibility. Inspired by the nanofibrous strategy of natural biomaterials (e.g., silk fibers, hemp and byssal threads of mussels) for fantastic mechanic properties, Kevlar was integrated in regenerated silk materials by combining nanometric fibrillation with proper hydrothermal treatments. The resultant hybrid films showed an ultimate stress and Young's modulus two times as high as those of pure regenerated SF films. This is not only because of the reinforcing effect of Kevlar nanofibrils, but also because of the increasing content of silk β-sheets. When introducing Kevlar nanofibrils into the membranes of silk nanofibrils assembled by regenerated silk fibroin, the improved mechanic properties further enabled potential applications as pressure-driven nanofiltration membranes and flexible substrates of electronic devices.
Ultrathin (<1 μm) Substrate-Free Flexible Photodetector on Quantum Dot-Nanocellulose Paper
Wu, Jingda; Lin, Lih Y.
2017-01-01
Conventional approaches to flexible optoelectronic devices typically require depositing the active materials on external substrates. This is mostly due to the weak bonding between individual molecules or nanocrystals in the active materials, which prevents sustaining a freestanding thin film. Herein we demonstrate an ultrathin freestanding ZnO quantum dot (QD) active layer with nanocellulose structuring, and its corresponding device fabrication method to achieve substrate-free flexible optoelectronic devices. The ultrathin ZnO QD-nanocellulose composite is obtained by hydrogel transfer printing and solvent-exchange processes to overcome the water capillary force which is detrimental to achieving freestanding thin films. We achieved an active nanocellulose paper with ~550 nm thickness, and >91% transparency in the visible wavelength range. The film retains the photoconductive and photoluminescent properties of ZnO QDs and is applied towards substrate-free Schottky photodetector applications. The device has an overall thickness of ~670 nm, which is the thinnest freestanding optoelectronic device to date, to the best of our knowledge, and functions as a self-powered visible-blind ultraviolet photodetector. This platform can be readily applied to other nano materials as well as other optoelectronic device applications. PMID:28266651
Sol-gel derived porous bioactive nanocomposites: Synthesis and in vitro bioactivity
NASA Astrophysics Data System (ADS)
Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.
2013-06-01
Porous bioactive composites consisting of SiO2-CaO-Na2O-P2O5 bioactive glass-ceramic and synthetic water soluble polymer Polyvinylpyrrolidone [PVP (C6H9NO)n, MW˜40000 g/mol] have been synthesized by sol-gel route. As-prepared polymeric composites were characterized by X-ray diffraction (XRD) technique. Two major bone mineral phases, viz., hydroxyapatite [Ca10(PO4)6(OH)2] and wollastonite [calcium silicate (CaSiO3)] have been identified in the XRD patterns of the composites. Presence of these bone minerals indicates the bioactive nature of the composites. In vitro bioactivity tests confirm bioactivity in the porous composites. The flexibility offered by these bioactive polymer composites is advantageous for its application as implant material.
Blade Assessment for Ice Impact (BLASIM). User's manual, version 1.0
NASA Technical Reports Server (NTRS)
Reddy, E. S.; Abumeri, G. H.
1993-01-01
The Blade Assessment Ice Impact (BLASIM) computer code can analyze solid, hollow, composite, and super hybrid blades. The solid blade is made up of a single material where hollow, composite, and super hybrid blades are constructed with prescribed composite layup. The properties of a composite blade can be specified by inputting one of two options: (1) individual ply properties, or (2) fiber/matrix combinations. When the second option is selected, BLASIM utilizes ICAN (Integrated Composite ANalyzer) to generate the temperature/moisture dependent ply properties of the composite blade. Two types of geometry input can be given: airfoil coordinates or NASTRAN type finite element model. These features increase the flexibility of the program. The user's manual provides sample cases to facilitate efficient use of the code while gaining familiarity.
Structural performance of notch damaged steel beams repaired with composite materials
NASA Astrophysics Data System (ADS)
El-Taly, Boshra
2016-06-01
An experimental program and an analytical model using ANSYS program were employed to estimate the structural performance of repaired damaged steel beams using fiber reinforced polymer (FRP) composite materials. The beams were artificially notched in the tension flanges at mid-spans and retrofitted by FRP flexible sheets on the tension flanges and the sheets were extended to cover parts of the beams webs with different heights. Eleven box steel beams, including one intact beam, one notch damaged beam and nine notches damaged beam and retrofitted with composite materials, were tested in two-point loading up to failure. The parameters considered were the FRP type (GFRP and CFRP) and number of layers. The results indicated that bonding CFRP sheets to both of the tension steel flange and part of the webs, instead of the tension flange only, enhances the ultimate load of the retrofitted beams, avoids the occurrence of the debonding and increases the beam ductility. Also the numerical models give acceptable results in comparison with the experimental results.
1975-02-01
alkyl lauryl sulfate added as a wet^ng agent. Routine sterilization of air locks and material entering the isolators was done with 2.OX peracetic...flexible plastic isolators of the Trexler type (19). The isolators were sterilized with 4.0% peracetic acid in water with a small amount of sodium
DOT National Transportation Integrated Search
2010-09-01
The overall purpose of this research project as described in : the Executive Summary Report for Volume 1 : (FHWA/OH-2010/04A) is to identify flexible, rigid and : composite pavements that have not received any structural : maintenance since construct...
NASA Astrophysics Data System (ADS)
Ušák, Elemír; Ušáková, Mariana; Dosoudil, Rastislav; Šoka, Martin; Dobročka, Edmund
2018-04-01
Nickel-zinc ferrites are very important soft magnetic materials from the point of view of diverse technical applications (such as, e.g., various electronic devices and components) for their high magnetic permeability and permittivity, low core loss, high resistivity, high Curie temperature as well as mechanical strength and chemical stability. Due to their good absorbing properties, they can be used as microwave absorbing and shielding materials with the aim of decreasing the environmental pollution caused by non-ionizing microwave radiation. The ferrite material incorporated into the polymer matrix creates qualitatively new magneto-polymer composite material taking benefits from both components. The properties typical for polymers (elasticity, mouldability, etc.) are combined with good high-frequency magnetic parameters, thus allowing to utilize these materials, e.g., in high-frequency applications where especially flexibility of composite materials plays a key role. Small amounts of selected rare-earth (RE) ions, in particular Y3+, La3+, Eu3+ and Gd3+ have been embedded into the nickel-zinc ferrite that has been used as the magnetic filler in magnetic polymer composites with polyvinylchloride (PVC) acting as the polymeric matrix. The effect of various types of rare-earth ions on the structural as well as quasi-static and dynamic (electro)magnetic properties of the ferrite fillers as well as ferrite/PVC composites, in particular the frequency dispersion of the complex permeability, has been studied.
Biphasic Synergistic Gel Materials with Switchable Mechanics and Self-Healing Capacity.
Zhao, Ziguang; Liu, Yuxia; Zhang, Kangjun; Zhuo, Shuyun; Fang, Ruochen; Zhang, Jianqi; Jiang, Lei; Liu, Mingjie
2017-10-16
A fabrication strategy for biphasic gels is reported, which incorporates high-internal-phase emulsions. Closely packed micro-inclusions within the elastic hydrogel matrix greatly improve the mechanical properties of the materials. The materials exhibit excellent switchable mechanics and shape-memory performance because of the switchable micro- inclusions that are incorporated into the hydrogel matrix. The produced materials demonstrated a self-healing capacity that originates from the noncovalent effect of the biphasic heteronetwork. The aforementioned characteristics suggest that the biphasic gels may serve as ideal composite gel materials with validity in a variety of applications, such as soft actuators, flexible devices, and biological materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible and conductive MXene films and nanocomposites with high capacitance
Ling, Zheng; Ren, Chang E.; Zhao, Meng-Qiang; ...
2014-11-11
MXenes, a new family of 2D materials, combine hydrophilic surfaces with metallic conductivity. Delamination of MXene produces single-layer nanosheets with thickness of about a nanometer and lateral size of the order of micrometers. The high aspect ratio of delaminated MXene renders it promising nanofiller in multifunctional polymer nanocomposites. In this study, Ti 3C 2T x MXene was mixed with either a charged polydiallyldimethylammonium chloride (PDDA) or an electrically neutral polyvinyl alcohol (PVA) to produce Ti 3C 2T x/polymer composites. The as-fabricated composites are flexible and have electrical conductivities as high as 2.2 × 10 4 S/m in the case ofmore » the Ti 3C 2T x/PVA composite film and 2.4 × 10 5 S/m for pure Ti 3C 2T x films. The tensile strength of the Ti 3C 2T x/PVA composites was significantly enhanced compared with pure Ti 3C 2T x or PVA films. The intercalation and confinement of the polymer between the MXene flakes not only increased flexibility but also enhanced cationic intercalation, offering an impressive volumetric capacitance of ~530 F/cm 3 for MXene/PVA-KOH composite film at 2 mV/s. Finally, to our knowledge, this study is a first, but crucial, step in exploring the potential of using MXenes in polymer-based multifunctional nanocomposites for a host of applications, such as structural components, energy storage devices, wearable electronics, electrochemical actuators, and radiofrequency shielding, to name a few.« less
Texture analysis at neutron diffractometer STRESS-SPEC
NASA Astrophysics Data System (ADS)
Brokmeier, H.-G.; Gan, W. M.; Randau, C.; Völler, M.; Rebelo-Kornmeier, J.; Hofmann, M.
2011-06-01
In response to the development of new materials and the application of materials and components in advanced technologies, non-destructive measurement methods of textures and residual stresses have gained worldwide significance in recent years. The materials science neutron diffractometer STRESS-SPEC at FRM II (Garching, Germany) is designed to be applied equally to texture and residual stress analyses by virtue of its very flexible configuration. Due to the high penetration capabilities of neutrons and the high neutron flux of STRESS-SPEC it allows a combined analysis of global texture, local texture, strain pole figure and FWHM pole figure in a wide variety of materials including metals, alloys, composites, ceramics and geological materials. Especially, the analysis of texture gradients in bulk materials using neutron diffraction has advantages over laboratory X-rays and EBSD for many scientific cases. Moreover, neutron diffraction is favourable for coarse-grained materials, where bulk information averaged over texture inhomogeneities is needed, and also stands out due to easy sample preparation. In future, the newly developed robot system for STRESS-SPEC will allow much more flexibility than an Eulerian cradle as on standard instruments. Five recent measurements are shown to demonstrate the wide range of possible texture applications at STRESS-SPEC diffractometer.
Structures Technology for Future Aerospace Systems
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Venneri, Samuel L.; Paul, Donald B.; Hopkins, Mark A.
2000-01-01
An overview of structures technology for future aerospace systems is given. Discussion focuses on developments in component technologies that will improve the vehicle performance, advance the technology exploitation process, and reduce system life-cycle costs. The component technologies described are smart materials and structures, multifunctional materials and structures, affordable composite structures, extreme environment structures, flexible load bearing structures, and computational methods and simulation-based design. The trends in each of the component technologies are discussed and the applicability of these technologies to future aerospace vehicles is described.
Anti-static coat for solar arrays
NASA Astrophysics Data System (ADS)
Fellas, C. N.
1982-06-01
A Kapton based composite material, suitable as a substrate for flexible solar arrays, was designed, constructed and tested under electron energies ranging from 5 to 30 keV. The rear of the array under adverse eclipse conditions (-197 C) produced voltages well below the discharge threshold. An antistatic coat suitable as a front cover for solar arrays is also described. The thermal and optical transmission characteristics were tested and are satisfactory, but the UV and particle degradation of the Tedlar material needs to be evaluated.
Flexible Wing Base Micro Aerial Vehicles: Composite Materials for Micro Air Vehicles
NASA Technical Reports Server (NTRS)
Ifju, Peter G.; Ettinger, Scott; Jenkins, David; Martinez, Luis
2002-01-01
This paper will discuss the development of the University of Florida's Micro Air Vehicle concept. A series of flexible wing based aircraft that possess highly desirable flight characteristics were developed. Since computational methods to accurately model flight at the low Reynolds numbers associated with this scale are still under development, our effort has relied heavily on trial and error. Hence a time efficient method was developed to rapidly produce prototype designs. The airframe and wings are fabricated using a unique process that incorporates carbon fiber composite construction. Prototypes can be fabricated in around five man-hours, allowing many design revisions to be tested in a short period of time. The resulting aircraft are far more durable, yet lighter, than their conventional counterparts. This process allows for thorough testing of each design in order to determine what changes were required on the next prototype. The use of carbon fiber allows for wing flexibility without sacrificing durability. The construction methods developed for this project were the enabling technology that allowed us to implement our designs. The resulting aircraft were the winning entries in the International Micro Air Vehicle Competition for the past two years. Details of the construction method are provided in this paper along with a background on our flexible wing concept.
Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Azrin Shah, Nabila Farhana; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan
2016-01-01
Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx), their chemical reactions and bonding with polydimethylsiloxane (PDMS) were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz) was obtained for the ceramic sintered at 1050 °C (S1050) and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz) film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%), viscoelastic property (tanδ = E″/E′: 0.225) and glass transition temperature (Tg: −58.5 °C) were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000%) and its flexible S1050/PDMS composite film (306%) based humidity sensors was found to be at 100 Hz, better than conventional materials. PMID:26927116
Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Shah, Nabila Farhana Azrin; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan
2016-02-27
Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx), their chemical reactions and bonding with polydimethylsiloxane (PDMS) were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz) was obtained for the ceramic sintered at 1050 °C (S1050) and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz) film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%), viscoelastic property (tanδ = E″/E': 0.225) and glass transition temperature (Tg: -58.5 °C) were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000%) and its flexible S1050/PDMS composite film (306%) based humidity sensors was found to be at 100 Hz, better than conventional materials.
Manganese oxides-based composite electrodes for supercapacitors
NASA Astrophysics Data System (ADS)
Su, Dongyun; Ma, Jun; Huang, Mingyu; Liu, Feng; Chen, Taizhou; Liu, Chao; Ni, Hongjun
2017-06-01
In recent, nanostructured transition metal oxides as a new class of energy storage materials have widely attracted attention due to its excellent electrochemical performance for supercapacitors. The MnO2 based transition metal oxides and their composite electrode materials were focused in the review for supercapacitor applications. The researches on different nanostructures of manganese oxides such as Nano rods, Nano sheets, nanowires, nanotubes and so on have been discovered in recent years, together with brief explanations of their properties. Research on enhancing materials’ properties by designing combination of different materials on the micron or Nano scale is too limited, and therefore we discuss the effects of different components’ sizes and their synergy on the performance. Moreover, the low-cost and large-scale fabrication of flexible supercapacitors with high performance (high energy density and cycle stability) have been pointed out and studied.
Adhesive flexible barrier film, method of forming same, and organic electronic device including same
Blizzard, John Donald; Weidner, William Kenneth
2013-02-05
An adhesive flexible barrier film comprises a substrate and a barrier layer disposed on the substrate. The barrier layer is formed from a barrier composition comprising an organosilicon compound. The adhesive flexible barrier film also comprises an adhesive layer disposed on the barrier layer and formed from an adhesive composition. A method of forming the adhesive flexible barrier film comprises the steps of disposing the barrier composition on the substrate to form the barrier layer, disposing the adhesive composition on the barrier layer to form the adhesive layer, and curing the barrier layer and the adhesive layer. The adhesive flexible barrier film may be utilized in organic electronic devices.
Ceramic composites for rocket engine turbines
NASA Technical Reports Server (NTRS)
Herbell, Thomas P.; Eckel, Andrew J.
1991-01-01
The use of ceramic materials in the hot section of the fuel turbopump of advanced reusable rocket engines promises increased performance and payload capability, improved component life and economics, and greater design flexibility. Severe thermal transients present during operation of the Space Shuttle Main Engine (SSME), push metallic components to the limit of their capabilities. Future engine requirements might be even more severe. In phase one of this two-phase program, performance benefits were quantified and continuous fiber reinforced ceramic matrix composite components demonstrated a potential to survive the hostile environment of an advanced rocket engine turbopump.
Ceramic composites for rocket engine turbines
NASA Technical Reports Server (NTRS)
Herbell, Thomas P.; Eckel, Andrew J.
1991-01-01
The use of ceramic materials in the hot section of the fuel turbopump of advanced reusable rocket engines promises increased performance and payload capability, improved component life and economics, and greater design flexibility. Severe thermal transients present during operation of the Space Shuttle Main Engine (SSME), push metallic components to the limit of their capabilities. Future engine requirements might be even more severe. In phase one of this two-phase program, performance benefits were quantified and continuous fiber reinforced ceramic matrix composite components demonstrated a potential to survive the hostile environment of an advaced rocket engine turbopump.
NASA Technical Reports Server (NTRS)
Chakar, A.
1984-01-01
A study of the properties and manufacturing techniques for long-fiber reinforced elastomeric composites for flexible and damping structural materials is presented. Attention is given to the usage of polyurethane in the matrix to obtain plastic elastomeric matrices and vitreous transition temperatures which vary from -80 C to 10 C, as well as assure good fiber adhesion. Various polyurethane formulations synthesized from diisocyanate prepolymers are examined in terms of mechanical and thermal properties. The principal reinforcing fiber selected is a unidirectional glass cloth.
Peterson, Kenneth A [Albuquerque, NM; Rohde, Steven B [Corrales, NM; Pfeifer, Kent B [Los Lunas, NM; Turner, Timothy S [Rio Rancho, NM
2007-01-02
A method is described for producing tubular substrates having parallel spaced concentric rings of electrical conductors that can be used as the drift tube of an Ion Mobility Spectrometer (IMS). The invention comprises providing electrodes on the inside of a tube that are electrically connected to the outside of the tube through conductors that extend between adjacent plies of substrate that are combined to form the tube. Tubular substrates are formed from flexible polymeric printed wiring board materials, ceramic materials and material compositions of glass and ceramic, commonly known as Low Temperature Co-Fired Ceramic (LTCC). The adjacent plies are sealed together around the electrode.
Advanced Electrode Materials for High Energy Next Generation Li ion Batteries
NASA Astrophysics Data System (ADS)
Hayner, Cary Michael
Lithium ion batteries are becoming an increasingly ubiquitous part of modern society. Since their commercial introduction by Sony in 1991, lithium-ion batteries have grown to be the most popular form of electrical energy storage for portable applications. Today, lithium-ion batteries power everything from cellphones and electric vehicles to e-cigarettes, satellites, and electric aircraft. Despite the commercialization of lithium-ion batteries over twenty years ago, it remains the most active field of energy storage research for its potential improvement over current technology. In order to capitalize on these opportunities, new materials with higher energy density and storage capacities must be developed. Unfortunately, most next-generation materials suffer from rapid capacity degradation or severe loss of capacity when rapidly discharged. In this dissertation, the development of novel anode and cathode materials for advanced high-energy and high-power lithium-ion batteries is reported. In particular, the application of graphene-based materials to stabilize active material is emphasized. Graphene, a unique two-dimensional material composed of atomically thin carbon sheets, has shown potential to address unsatisfactory rate capability, limited cycling performance and abrupt failure of these next-generation materials. This dissertation covers four major subjects: development of silicon-graphene composites, impact of carbon vacancies on graphene high-rate performance, iron fluoride-graphene composites, and ternary iron-manganese fluoride synthesis. Silicon is considered the most likely material to replace graphite as the anode active material for lithium-ion batteries due to its ability to alloy with large amounts of lithium, leading to significantly higher specific capacities than the graphite standard. However, Si also expands in size over 300% upon lithiation, leading to particle fracture and isolation from conductive support, resulting in cell failure within a few charge-discharge cycles. To stabilize silicon materials, composites of silicon nanoparticles were dispersed between graphene sheets and supported by a 3-D network of graphite formed by reconstituted regions of graphene stacks. These free-standing, self-supported composites exhibited excellent Li-ion storage capacities higher than 2200 mAh/g and good cycling stability. In order to improve the advantages graphene can provide as a 3-D scaffold, carbon vacancies were introduced into the basal planes via an acid-oxidation treatment. These vacancies markedly enhance the rate performance of graphene materials as well as silicon-graphene composites. Silicon-graphene composites containing carbon vacancies achieved high accessible storage capacities at fast charge/discharge rates that rival supercapacitor performance while maintaining good cycling stability. Optimal carbon vacancy size and density were determined. Graphene composites were also formed with iron trifluoride (FeF 3), a high-energy cathode material with ability to store up to 712 mAh/g capacity, over 3X more than current state-of-the-art cathode materials. A facile route that combines co-assembly and photothermal reduction was developed to synthesize free-standing, flexible FeF3/graphene papers. The papers contained a uniform dispersion of FeF3 nanoparticles (< 40 nm) and open ion diffusion channels in the porous, conducting network of graphene sheets that resulted in a flexible paper cathode with high charge storage capacity, rate, and cycling performance, without the need for other carbon additives or binder. Free-standing FeF3/graphene composites showed a high storage capacity of >400 mAh/g and improved cycling performance compared to bare FeF3 particles. Lastly, novel ternary iron-manganese fluoride (FexMn 1-xF2) cathode materials were synthesized via a convenient, bottom-up solution-phase synthesis which allowed control of particle size, shape, and surface morphology. The synthesized materials exhibited nanoscale features with average particle size of 20-40 nm. These ternary metal composites exhibited key, desirable properties for next-generation Li-ion battery cathode materials. The described process constituted a translatable route to large-scale production of ternary metal fluoride nanoparticles.
Development of lightweight THUNDER with fiber composite layers
NASA Astrophysics Data System (ADS)
Yoon, Kwang J.; Shin, Sukjoon; Kim, Jusik; Park, Hoon C.; Kwak, Moon K.
2000-06-01
This paper is concerned with design, manufacturing and performance test of lightweight THUNDER using a top fiber composite layer with near-zero CTE, a PZT ceramic wafer and a bottom glass/epoxy layer with high CTE. The main point of this design is to replace the heavy metal layers of THUNDER by the lightweight fiber reinforced plastic layers without losing capabilities to generate high force and displacement. It is possible to save weight up to about 30 percent if we replace the metallic backing materials by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a graphite/epoxy prepreg were simply stacked and cured at an elevated temperature by following autoclave bagging process. It was found that the manufactured composite laminate device had a sufficient curvature after detaching form a flat mold. From experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDER.
Progress on Developing Sonic Infrared Imaging for Defect Detection in Composite Structures
NASA Astrophysics Data System (ADS)
Han, Xiaoyan; He, Qi; Li, Wei; Newaz, Golam; Favro, Lawrence D.; Thomas, Robert L.
2010-02-01
At last year's QNDE conference, we presented our development of Sonic IR imaging technology in metal structures, with results from both experimental studies and theoretical computing. In the latest aircraft designs, such as the B787 from Boeing, composites have become the major materials in structures such as the fuselage and wings. This is in contrast to composites' use only in auxiliary components such as flaps and spoilers in the past. With today's advanced technology of fabrication, it is expected the new materials can be put in use in even more aircraft structures due to its light weight and high strength (high strength-to-weight ratio), high specific stiffness, tailorability of properties, design flexibility etc. Especially, with increases in fuel cost, reducing the aircraft's body weight becomes more and more appealing. In this presentation, we describe the progress on our development of Sonic IR imaging for aircraft composite structures. In particular, we describe the some unexpected results discovered while modeling delaminations. These results were later experimentally verified with an engineered delamination.
Design of biocomposite materials for bone tissue regeneration.
Yunus Basha, Rubaiya; Sampath Kumar, T S; Doble, Mukesh
2015-12-01
Several synthetic scaffolds are being developed using polymers, ceramics and their composites to overcome the limitations of auto- and allografts. Polymer-ceramic composites appear to be the most promising bone graft substitute since the natural bone itself is a composite of collagen and hydroxyapatite. Ceramics provide strength and osteoconductivity to the scaffold while polymers impart flexibility and resorbability. Natural polymers have an edge over synthetic polymers because of their biocompatibility and biological recognition property. But, very few natural polymer-ceramic composites are available as commercial products, and those few are predominantly based on type I collagen. Disadvantages of using collagen include allergic reactions and pathogen transmission. The commercial products also lack sufficient mechanical properties. This review summarizes the recent developments of biocomposite materials as bone scaffolds to overcome these drawbacks. Their characteristics, in vitro and in vivo performance are discussed with emphasis on their mechanical properties and ways to improve their performance. Copyright © 2015 Elsevier B.V. All rights reserved.
The analysis of composite laminated beams using a 2D interpolating meshless technique
NASA Astrophysics Data System (ADS)
Sadek, S. H. M.; Belinha, J.; Parente, M. P. L.; Natal Jorge, R. M.; de Sá, J. M. A. César; Ferreira, A. J. M.
2018-02-01
Laminated composite materials are widely implemented in several engineering constructions. For its relative light weight, these materials are suitable for aerospace, military, marine, and automotive structural applications. To obtain safe and economical structures, the modelling analysis accuracy is highly relevant. Since meshless methods in the recent years achieved a remarkable progress in computational mechanics, the present work uses one of the most flexible and stable interpolation meshless technique available in the literature—the Radial Point Interpolation Method (RPIM). Here, a 2D approach is considered to numerically analyse composite laminated beams. Both the meshless formulation and the equilibrium equations ruling the studied physical phenomenon are presented with detail. Several benchmark beam examples are studied and the results are compared with exact solutions available in the literature and the results obtained from a commercial finite element software. The results show the efficiency and accuracy of the proposed numeric technique.
Thermally Conductive Metal-Tube/Carbon-Composite Joints
NASA Technical Reports Server (NTRS)
Copeland, Robert J.
2004-01-01
An improved method of fabricating joints between metal and carbon-fiber-based composite materials in lightweight radiators and heat sinks has been devised. Carbon-fiber-based composite materials have been used in such heat-transfer devices because they offer a combination of high thermal conductivity and low mass density. Metal tubes are typically used to carry heat-transfer fluids to and from such heat-transfer devices. The present fabrication method helps to ensure that the joints between the metal tubes and the composite-material parts in such heat-transfer devices have both (1) the relatively high thermal conductances needed for efficient transfer of heat and (2) the flexibility needed to accommodate differences among thermal expansions of dissimilar materials in operation over wide temperature ranges. Techniques used previously to join metal tubes with carbon-fiber-based composite parts have included press fitting and bonding with epoxy. Both of these prior techniques have been found to yield joints characterized by relatively high thermal resistances. The present method involves the use of a solder (63 percent Sn, 37 percent Pb) to form a highly thermally conductive joint between a metal tube and a carbon-fiber-based composite structure. Ordinarily, the large differences among the coefficients of thermal expansion of the metal tube, solder, and carbon-fiber-based composite would cause the solder to pull away from the composite upon post-fabrication cooldown from the molten state. In the present method, the structure of the solder is modified (see figure) to enable it to deform readily to accommodate the differential thermal expansion.
Stimuli-responsive cellulose-based nematogels
NASA Astrophysics Data System (ADS)
Liu, Qingkun; Smalyukh, Ivan
Physical properties of composite materials can be pre-engineered by controlling their structure and composition at the mesoscale. Yet, approaches for achieving this are limited and rarely scalable. We introduce a new breed of self-assembled nematogels formed by an orientationally ordered network of thin cellulose nanofibers infiltrated with a thermotropic nematic fluid. The interplay of orientational ordering within the nematic network and that of the small-molecule liquid crystal around it yields a composite with highly tunable optical properties. By means of combining experimental characterization and analytical modeling, we demonstrate sub-milisecond electric switching of transparency and also facile response of the composite to temperature changes and light illumination. Finally, we discuss a host of potential technological uses of these self-assembled nematogel composites, ranging from smart and privacy windows to novel flexible display modes.
Liquid crystalline cellulose-based nematogels
Liu, Qingkun; Smalyukh, Ivan I.
2017-08-18
Physical properties of composite materials can be pre-engineered by controlling their structure and composition at the mesoscale. However, approaches to achieving this are limited and rarely scalable. We introduce a new breed of self-assembled nematogels formed by an orientationally ordered network of thin cellulose nanofibers infiltrated with a thermotropic nematic fluid. The interplay between orientational ordering within the nematic network and that of the small-molecule liquid crystal around it yields a composite with highly tunable optical properties. By means of combining experimental characterization and modeling, we demonstrate submillisecond electric switching of transparency and facile responses of the composite to temperaturemore » changes. Finally, we discuss a host of potential technological uses of these self-assembled nematogel composites, ranging from smart and privacy windows to novel flexible displays.« less
Choi, Bong Gill; Huh, Yun Suk; Hong, Won Hi; Erickson, David; Park, Ho Seok
2013-05-07
Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR microspheres consisting of the aggregates of CMG/Nafion (CMGN) nanosheets and RuO2 NPs provided large surface area and facile ion accessibility to storage sites, while the interconnected nanosheets offered continuous electron pathways and mechanical integrity. The synergistic effect of CMGNR hybrids on the supercapacitor (SC) performance was derived from the hybrid composition of pseudocapacitive RuO2 NPs with the conductive CMGNs as well as from structural features. Consequently, the CMGNR-SCs showed a specific capacitance as high as 160 F g(-1), three-fold higher than that of conventional graphene SCs, and a capacitance retention of >95% of the maximum value even after severe bending and 1000 charge-discharge tests due to the structural and compositional features.
Chiellini, E; Cinelli, P; Imam, S H; Mao, L
2001-01-01
As a part of an ongoing project on the production of composite materials based on poly(vinyl alcohol) (PVA) and polymeric materials from renewable resources, the present paper reports on the incorporation of agricultural waste materials as organic fillers in a film matrix based on PVA as continuous phase. In this study lignocellulosic fibers byproducts, derived from sugar cane (SC) and apple (AP) and orange (OR) fruit juice extraction, were cast from PVA aqueous solutions. The effect of fiber type and composition on the relative properties of cast films was evaluated and compared. OR resulted to be suitable for blending in higher amounts by weight than SC and AP. Glycerol and urea were added as plasticizing agents and were observed to be effective in giving flexible films. Additionally, cornstarch was added to further increase the composition of polymers from renewable resources in cost-effective and ecoefficient composite film formulations. The prepared films resulted sensitive to moisture and water. To reduce water sensitivity, hexamethoxymethylmelamine (HMMM) was tested as a cross-linking agent for the present composite formulations. Cross-linked films exhibited significant improvement in water-resistance that can be taken as a tuneable structural feature for customized applications. The mechanical properties of the prepared composite films (elongation at break, tensile strength, Young modulus) were found to be dependent upon the nature and content of the filler and on environmental conditions.
Alfa, M J; Olson, N
2016-05-01
To determine which simulated-use test soils met the worst-case organic levels and viscosity of clinical secretions, and had the best adhesive characteristics. Levels of protein, carbohydrate and haemoglobin, and vibrational viscosity of clinical endoscope secretions were compared with test soils including ATS, ATS2015, Edinburgh, Edinburgh-M (modified), Miles, 10% serum and coagulated whole blood. ASTM D3359 was used for adhesion testing. Cleaning of a single-channel flexible intubation endoscope was tested after simulated use. The worst-case levels of protein, carbohydrate and haemoglobin, and viscosity of clinical material were 219,828μg/mL, 9296μg/mL, 9562μg/mL and 6cP, respectively. Whole blood, ATS2015 and Edinburgh-M were pipettable with viscosities of 3.4cP, 9.0cP and 11.9cP, respectively. ATS2015 and Edinburgh-M best matched the worst-case clinical parameters, but ATS had the best adhesion with 7% removal (36.7% for Edinburgh-M). Edinburgh-M and ATS2015 showed similar soiling and removal characteristics from the surface and lumen of a flexible intubation endoscope. Of the test soils evaluated, ATS2015 and Edinburgh-M were found to be good choices for the simulated use of endoscopes, as their composition and viscosity most closely matched worst-case clinical material. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamid, N. A.; Wennig, S.; Hardt, S.; Heinzel, A.; Schulz, C.; Wiggers, H.
2012-10-01
Olivine, LiFePO4 is a promising cathode material for lithium-ion batteries due to its low cost, environmental acceptability and high stability. Its low electric conductivity prevented it for a long time from being used in large-scale applications. Decreasing its particle size along with carbon coating significantly improves electronic conductivity and lithium diffusion. With respect to the controlled formation of very small particles with large specific surface, gas-phase synthesis opens an economic and flexible route towards high-quality battery materials. Amorphous FePO4 was synthesized as precursor material for LiFePO4 by flame spray pyrolysis of a solution of iron acetylacetonate and tributyl phosphate in toluene. The pristine FePO4 with a specific surface from 126-218 m2 g-1 was post-processed to LiFePO4/C composite material via a solid-state reaction using Li2CO3 and glucose. The final olivine LiFePO4/C particles still showed a large specific surface of 24 m2 g-1 and were characterized using X-ray diffraction (XRD), electron microscopy, X-ray photoelectron spectrocopy (XPS) and elemental analysis. Electrochemical investigations of the final LiFePO4/C composites show reversible capacities of more than 145 mAh g-1 (about 115 mAh g-1 with respect to the total coating mass). The material supports high drain rates at 16 C while delivering 40 mAh g-1 and causes excellent cycle stability.
Zhang, Baoping; Xia, Guanglin; Sun, Dalin; Fang, Fang; Yu, Xuebin
2018-04-24
MgH 2 nanoparticles (NPs) uniformly anchored on graphene (GR) are fabricated based on a bottom-up self-assembly strategy as anode materials for lithium-ion batteries (LIBs). Monodisperse MgH 2 NPs with an average particle size of ∼13.8 nm are self-assembled on the flexible GR, forming interleaved MgH 2 /GR (GMH) composite architectures. Such nanoarchitecture could effectively constrain the aggregation of active materials, buffer the strain of volume changes, and facilitate the electron/lithium ion transfer of the whole electrode, leading to a significant enhancement of the lithium storage capacity of the GMH composite. Furthermore, the performances of GMH composite as anode materials for LIBs are enabled largely through robust interfacial interactions with poly(methyl methacrylate) (PMMA) binder, which plays multifunctional roles in forming a favorable solid-electrolyte interphase (SEI) film, alleviating the volume expansion and detachment of active materials, and maintaining the structural integrity of the whole electrode. As a result, these synergistic effects endow the obtained GMH composite with a significantly enhanced reversible capacity and cyclability as well as a good rate capability. The GMH composite with 50 wt % MgH 2 delivers a high reversible capacity of 946 mA h g -1 at 100 mA g -1 after 100 cycles and a capacity of 395 mAh g -1 at a high current density of 2000 mA g -1 after 1000 cycles.
NASA Astrophysics Data System (ADS)
He, Shuijian; Chen, Wei
2014-09-01
The syntheses and capacitance performances of ultralight and flexible MnO2/carbon foam (MnO2/CF) hybrids are systematically studied. Flexible carbon foam with a low mass density of 6.2 mg cm-3 and high porosity of 99.66% is simply obtained by carbonization of commercially available and low-cost melamine resin foam. With the high porous carbon foam as framework, ultrathin MnO2 nanosheets are grown through in situ redox reaction between KMnO4 and carbon foam. The three-dimensional (3D) MnO2/CF networks exhibit highly ordered hierarchical pore structure. Attributed to the good flexibility and ultralight weight, the MnO2/CF nanomaterials can be directly fabricated into supercapacitor electrodes without any binder and conductive agents. Moreover, the pseudocapacitance of the MnO2 nanosheets is enhanced by the fast ion diffusion in the three-dimensional porous architecture and by the conductive carbon foam skeleton as well as good contact of carbon/oxide interfaces. Supercapacitor based on the MnO2/CF composite with 3.4% weight percent of MnO2 shows a high specific capacitance of 1270.5 F g-1 (92.7% of the theoretical specific capacitance of MnO2) and high energy density of 86.2 Wh kg-1. The excellent capacitance performance of the present 3D ultralight and flexible nanomaterials make them promising candidates as electrode materials for supercapacitors.
De, Bibekananda; Yadav, Amit; Khan, Salman; Kar, Kamal K
2017-06-14
Development of printable and flexible energy storage devices is one of the most promising technologies for wearable electronics in textile industry. The present work involves the design of a printable and flexible all-solid-state rechargeable battery for wearable electronics in textile applications. Copper-coated carbon fiber is used to make a poly(ethylene oxide) (PEO)-based polymer nanocomposite for a flexible and conductive current collector layer. Lithium iron phosphate (LiFePO 4 ) and titanium dioxide (TiO 2 ) are utilized to prepare the cathode and anode layers, respectively, with PEO and carbon black composites. The PEO- and Li salt-based solid composite separator layer is utilized for the solid-state and safe electrolyte. Fabrication of all these layers and assembly of them through coating on fabrics are performed in the open atmosphere without using any complex processing, as PEO prevents the degradation of the materials in the open atmosphere. The performance of the battery is evaluated through charge-discharge and open-circuit voltage analyses. The battery shows an open-circuit voltage of ∼2.67 V and discharge time ∼2000 s. It shows similar performance at different repeated bending angles (0° to 180°) and continuous bending along with long cycle life. The application of the battery is also investigated for printable and wearable textile applications. Therefore, this printable, flexible, easily processable, and nontoxic battery with this performance has great potential to be used in portable and wearable textile electronics.
Zhou, Huanyu; Cheong, Hahn-Gil; Park, Jin-Woo
2016-05-01
We investigated the electronic properties of composite-type hybrid transparent conductive electrodes (h-TCEs) based on Ag nanowire networks (AgNWs) and indium tin oxide (ITO). These h-TCEs were developed to replace ITO, and their mechanical flexibility is superior to that of ITO. However, the characteristics of charge carriers and the mechanism of charge-carrier transport through the interface between the h-TCE and an organic material are not well understood when the h-TCE is used as the anode in a flexible organic light-emitting diode (f-OLED). AgNWs were spin coated onto polymer substrates, and ITO was sputtered atop the AgNWs. The electronic energy structures of h-TCEs were investigated by ultraviolet photoelectron spectroscopy. f-OLEDs were fabricated on both h-TCEs and ITO for comparison. The chemical bond formation at the interface between the h-TCE and the organic layer in f-OLEDs was investigated by X-ray photoelectron spectroscopy. The performances of f-OLEDs were compared based on the analysis results.
Du, Bo-Wei; Hu, Shao-Ying; Singh, Ranjodh; Tsai, Tsung-Tso; Lin, Ching-Chang; Ko, Fu-Hsiang
2017-09-03
The waste from semiconductor manufacturing processes causes serious pollution to the environment. In this work, a non-toxic material was developed under room temperature conditions for the fabrication of green electronics. Flexible organic thin-film transistors (OTFTs) on plastic substrates are increasingly in demand due to their high visible transmission and small size for use as displays and wearable devices. This work investigates and analyzes the structured formation of aqueous solutions of the non-toxic and biodegradable biopolymer, chitosan, blended with high-k-value, non-toxic, and biocompatible Y₂O₃ nanoparticles. Chitosan thin films blended with Y₂O₃ nanoparticles were adopted as the gate dielectric thin film in OTFTs, and an improvement in the dielectric properties and pinholes was observed. Meanwhile, the on/off current ratio was increased by 100 times, and a low leakage current was observed. In general, the blended chitosan/Y₂O₃ thin films used as the gate dielectric of OTFTs are non-toxic, environmentally friendly, and operate at low voltages. These OTFTs can be used on surfaces with different curvature radii because of their flexibility.
Funk, Natasha; Vera, Marc; Szewciw, Lawrence J; Barthelat, Francois; Stoykovich, Mark P; Vernerey, Franck J
2015-03-18
The scaled skin of fish is a high-performance natural armor that represents a source of inspiration for novel engineering designs. In this paper, we present a biomimetic fish skin material, fabricated with a design and components that are simple, that achieves many of the advantageous attributes of natural materials, including the unique combination of flexibility and mechanical robustness. The bioinspired fish skin material is designed to replicate the structural, mechanical, and functional aspects of a natural teleost fish skin comprised of leptoid-like scales, similar to that of the striped red mullet Mullus surmuletus. The man-made fish skin material consists of a low-modulus elastic mesh or "dermis" layer that holds rigid, plastic scales. The mechanics of the synthetic material is characterized under in-plane, bending, and indentation modes of deformation and is successfully described by theoretical deformation models that have been developed. This combined experimental and modeling approach elucidates the critical mechanisms by which the composite material achieves its unique properties and provides design rules that allow for the engineering of scaled skins. Such artificial scaled skins that are flexible, lightweight, transparent, and robust under mechanical deformation may thus have potential as thin protective coatings for soft materials.
Jin Bae, Eun; Hun Kang, Young; Jang, Kwang-Suk; Yun Cho, Song
2016-01-01
The thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and tellurium-PEDOT:PSS (Te-PEDOT:PSS) hybrid composites were enhanced via simple chemical treatment. The performance of thermoelectric materials is determined by their electrical conductivity, thermal conductivity, and Seebeck coefficient. Significant enhancement of the electrical conductivity of PEDOT:PSS and Te-PEDOT:PSS hybrid composites from 787.99 and 11.01 to 4839.92 and 334.68 S cm−1, respectively was achieved by simple chemical treatment with H2SO4. The power factor of the developed materials could be effectively tuned over a very wide range depending on the concentration of the H2SO4 solution used in the chemical treatment. The power factors of the developed thermoelectric materials were optimized to 51.85 and 284 μW m−1 K−2, respectively, which represent an increase of four orders of magnitude relative to the corresponding parameters of the untreated thermoelectric materials. Using the Te-PEDOT:PSS hybrid composites, a flexible thermoelectric generator that could be embedded in textiles was fabricated by a printing process. This thermoelectric array generates a thermoelectric voltage of 2 mV using human body heat. PMID:26728992
NASA Astrophysics Data System (ADS)
Topics addressed include the prediction of helicopter component loads using neural networks, spacecraft on-orbit coupled loads analysis, hypersonic flutter of a curved shallow panel with aerodynamic heating, thermal-acoustic fatigue of ceramic matrix composite materials, transition elements based on transfinite interpolation, damage progression in stiffened composite panels, a direct treatment of min-max dynamic response optimization problems, and sources of helicopter rotor hub inplane shears. Also discussed are dynamics of a layered elastic system, confidence bounds on structural reliability, mixed triangular space-time finite elements, advanced transparency development for USAF aircraft, a low-velocity impact on a graphite/PEEK, an automated mode-tracking strategy, transonic flutter suppression by a passive flap, a nonlinear response of composite panels to random excitation, an optimal placement of elastic supports on a simply supported plate, a probabilistic assessment of composite structures, a model for mode I failure of laminated composites, a residual flexibility approach to multibody dynamics,and multilayer piezoelectric actuators.
Biswas, Subir K; Sano, Hironari; Shams, Md Iftekhar; Yano, Hiroyuki
2017-09-06
Achieving a structural hierarchy and a uniform nanofiller dispersion simultaneously remains highly challenging for obtaining a robust polymer nanocomposite of immiscible components. In this study, a remarkably facile Pickering emulsification approach is developed to fabricate hierarchical composites of immiscible acrylic polymer and native cellulose nanofibers by taking advantage of the dual role of the nanofibers as both emulsion stabilizer and polymer reinforcement. The composites feature a unique "reverse" nacre-like microstructure reinforced with a well-dispersed two-tier hierarchical nanofiber network, leading to a synergistic high strength, modulus, and toughness (20, 50, and 53 times that of neat polymer, respectively), high optical transparency (89%), high flexibility, and a drastically low thermal expansion (13 ppm K -1 , 1/15th of the neat polymer). The nanocomposites have a three-dimensional-shape moldability, also their surface can be patterned with micro/nanoscale features with high fidelity by in situ compression molding, making them attractive as the substrate for flexible displays, smart contact lens devices, and photovoltaics. The Pickering emulsification approach should be broadly applicable for the fabrication of novel functional materials of various immiscible components.
2015-01-01
Microsupercapacitors (MSCs) are promising energy storage devices to power miniaturized portable electronics and microelectromechanical systems. With the increasing attention on all-solid-state flexible supercapacitors, new strategies for high-performance flexible MSCs are highly desired. Here, we demonstrate all-solid-state, flexible micropseudocapacitors via direct laser patterning on crack-free, flexible WO3/polyvinylidene fluoride (PVDF)/multiwalled carbon nanotubes (MWCNTs) composites containing high levels of porous hierarchically structured WO3 nanomaterials (up to 50 wt %) and limited binder (PVDF, <25 wt %). The work leads to an areal capacitance of 62.4 mF·cm–2 and a volumetric capacitance of 10.4 F·cm–3, exceeding that of graphene based flexible MSCs by a factor of 26 and 3, respectively. As a noncarbon based flexible MSC, hierarchically nanostructured WO3 in the narrow finger electrode is essential to such enhancement in energy density due to its pseudocapacitive property. The effects of WO3/PVDF/MWCNTs composite composition and the dimensions of interdigital structure on the performance of the flexible MSCs are investigated. PMID:26618406
Huang, Xuezhen; Liu, Hewei; Zhang, Xi; Jiang, Hongrui
2015-12-23
Microsupercapacitors (MSCs) are promising energy storage devices to power miniaturized portable electronics and microelectromechanical systems. With the increasing attention on all-solid-state flexible supercapacitors, new strategies for high-performance flexible MSCs are highly desired. Here, we demonstrate all-solid-state, flexible micropseudocapacitors via direct laser patterning on crack-free, flexible WO3/polyvinylidene fluoride (PVDF)/multiwalled carbon nanotubes (MWCNTs) composites containing high levels of porous hierarchically structured WO3 nanomaterials (up to 50 wt %) and limited binder (PVDF, <25 wt %). The work leads to an areal capacitance of 62.4 mF·cm(-2) and a volumetric capacitance of 10.4 F·cm(-3), exceeding that of graphene based flexible MSCs by a factor of 26 and 3, respectively. As a noncarbon based flexible MSC, hierarchically nanostructured WO3 in the narrow finger electrode is essential to such enhancement in energy density due to its pseudocapacitive property. The effects of WO3/PVDF/MWCNTs composite composition and the dimensions of interdigital structure on the performance of the flexible MSCs are investigated.
Fu, Kun (Kelvin); Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing
2016-01-01
Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium’s highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion–conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10−4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium–sulfur batteries. PMID:27307440
NASA Astrophysics Data System (ADS)
Kun, Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing
2016-06-01
Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (˜3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10-4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.
Materials for Heated Head Automated Thermoplastic Tape Placement
NASA Technical Reports Server (NTRS)
Jensen, Brian J.; Kinney, Megan C.; Cano, Roberto J.; Grimsley, Brian W.
2012-01-01
NASA Langley Research Center (LaRC) is currently pursuing multiple paths to develop out of autoclave (OOA) polymeric composite materials and processes. Polymeric composite materials development includes the synthesis of new and/or modified thermosetting and thermoplastic matrix resins designed for specific OOA processes. OOA processes currently under investigation include vacuum bag only (VBO) prepreg/composite fabrication, resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM) and heated head automated thermoplastic tape placement (HHATP). This paper will discuss the NASA Langley HHATP facility and capabilities and recent work on characterizing thermoplastic tape quality and requirements for quality part production. Samples of three distinct versions of APC-2 (AS4/PEEK) thermoplastic dry tape were obtained from two materials vendors, TENCATE, Inc. and CYTEC Engineered Materials** (standard grade and an experimental batch). Random specimens were taken from each of these samples and subjected to photo-microscopy and surface profilometry. The CYTEC standard grade of APC-2 tape had the most voids and splits and the highest surface roughness and/or waviness. Since the APC-2 tape is composed of a thermoplastic matrix, it offers the flexibility of reprocessing to improve quality, and thereby improve final quality of HHATP laminates. Discussions will also include potential research areas and future work that is required to advance the state of the art in the HHATP process for composite fabrication.
Sun, Li; Wang, Datao; Luo, Yufeng; Wang, Ke; Kong, Weibang; Wu, Yang; Zhang, Lina; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan
2016-01-26
Sulfur-porous carbon nanotube (S-PCNT) composites are proposed as cathode materials for advanced lithium-sulfur (Li-S) batteries. Abundant mesopores are introduced to superaligned carbon nanotubes (SACNTs) through controlled oxidation in air to obtain porous carbon nanotubes (PCNTs). Compared to original SACNTs, improved dispersive behavior, enhanced conductivity, and higher mechanical strength are demonstrated in PCNTs. Meanwhile, high flexibility and sufficient intertube interaction are preserved in PCNTs to support binder-free and flexible electrodes. Additionally, several attractive features, including high surface area and abundant adsorption points on tubes, are introduced, which allow high sulfur loading, provide dual protection to sulfur cathode materials, and consequently alleviate the capacity fade especially during slow charge/discharge processes. When used as cathodes for Li-S batteries, a high sulfur loading of 60 wt % is achieved, with excellent reversible capacities of 866 and 526 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at a slow charge/discharge rate of 0.1C, revealing efficient suppression of polysulfide dissolution. Even with a high sulfur loading of 70 wt %, the S-PCNT composite maintains capacities of 760 and 528 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at 0.1C, outperforming the current state-of-the-art sulfur cathodes. Improved high-rate capability is also delivered by the S-PCNT composites, revealing their potentials as high-performance carbon-sulfur composite cathodes for Li-S batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Sumohan
The binary, ternary and multicomponent intermetallic compounds of rare-earth metals (RE) with group 14 elements (Tt) at the RE 5Tt 4 stoichiometry have been known for over 30 years, but only in the past decade have these materials become a gold mine for solid-state chemistry, materials science and condensed matter physics. It all started with the discovery of a giant magnetocaloric effect in Gd 5Si 2Ge 2, along with other extraordinary magnetic properties, such as a colossal magnetostriction and giant magnetoresistance. The distinctiveness of this series is in the remarkable flexibility of the chemical bonding between well-defined, subnanometer-thick slabs andmore » the resultant magnetic, transport, and thermodynamic properties of these materials. This can be controlled by varying either or both RE and Tt elements, including mixed rare-earth elements on the RE sites and different group 14 (or T = group 13 or 15) elements occupying the Tt sites. In addition to chemical means, the interslab interactions are also tunable by temperature, pressure, and magnetic field. Thus, this system provides a splendid 'playground' to investigate the interrelationships among composition, structure, physical properties, and chemical bonding. The work presented in this dissertation involving RE 5T 4 materials has resulted in the successful synthesis, characterization, property measurements, and theoretical analyses of various new intermetallic compounds. The results provide significant insight into the fundamental magnetic and structural behavior of these materials and help us better understand the complex link between a compound's composition, its observed structure, and its properties.« less
An all-organic composite actuator material with a high dielectric constant.
Zhang, Q M; Li, Hengfeng; Poh, Martin; Xia, Feng; Cheng, Z-Y; Xu, Haisheng; Huang, Cheng
2002-09-19
Electroactive polymers (EAPs) can behave as actuators, changing their shape in response to electrical stimulation. EAPs that are controlled by external electric fields--referred to here as field-type EAPs--include ferroelectric polymers, electrostrictive polymers, dielectric elastomers and liquid crystal polymers. Field-type EAPs can exhibit fast response speeds, low hysteresis and strain levels far above those of traditional piezoelectric materials, with elastic energy densities even higher than those of piezoceramics. However, these polymers also require a high field (>70 V micro m(-1)) to generate such high elastic energy densities (>0.1 J cm(-3); refs 4, 5, 9, 10). Here we report a new class of all-organic field-type EAP composites, which can exhibit high elastic energy densities induced by an electric field of only 13 V micro m(-1). The composites are fabricated from an organic filler material possessing very high dielectric constant dispersed in an electrostrictive polymer matrix. The composites can exhibit high net dielectric constants while retaining the flexibility of the matrix. These all-organic actuators could find applications as artificial muscles, 'smart skins' for drag reduction, and in microfluidic systems for drug delivery.
Luo, Ningqi; Huang, Yan; Liu, Jing; Chen, Shih-Chi; Wong, Ching Ping; Zhao, Ni
2017-10-01
A versatile flexible piezoresistive sensor should maintain high sensitivity in a wide linear range, and provide a stable and repeatable pressure reading under bending. These properties are often difficult to achieve simultaneously with conventional filler-matrix composite active materials, as tuning of one material component often results in change of multiple sensor properties. Here, a material strategy is developed to realize a 3D graphene-poly(dimethylsiloxane) hollow structure, where the electrical conductivity and mechanical elasticity of the composite can be tuned separately by varying the graphene layer number and the poly(dimethylsiloxane) composition ratio, respectively. As a result, the sensor sensitivity and linear range can be easily improved through a decoupled tuning process, reaching a sensitivity of 15.9 kPa -1 in a 60 kPa linear region, and the sensor also exhibits fast response (1.2 ms rising time) and high stability. Furthermore, by optimizing the density of the graphene percolation network and thickness of the composite, the stability and repeatability of the sensor output under bending are improved, achieving a measurement error below 6% under bending radius variations from -25 to +25 mm. Finally, the potential applications of these sensors in wearable medical devices and robotic vision are explored. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Q; Shao, L Q; Xiang, H F; Zhen, D; Zhao, N; Yang, S G; Zhang, X L; Xu, J
2013-01-01
An ideal material for maxillofacial prostheses has not been found. We created a novel material: silicone elastomer filled with hollow microspheres and characterized its biomechanical properties. Expancel hollow microspheres were mixed with MDX4-4210 silicone elastomer using Q7-9180 silicone fluid as diluent. The volume fractions of microspheres were 0, 5, 15, and 30% v/v (volume ratio to the total volume of MDX4-4210 and microspheres). The microspheres dispersed well in the matrix. The physical properties and biocompatibility of the composites were examined. Shock absorption was the greatest by the 5% v/v composite, and decreased with increasing concentrations of microspheres. The density, thermal conductivity, Shore A hardness, tear and tensile strength decreased with increasing concentrations of microspheres, while elongation at break increased. Importantly, the tear strength of all composites was markedly lower than that of pure silicone elastomer. Cell viability assays indicated that the composite was of good biocompatibility. The composite with a volume fraction of 5% exhibited the optimal properties for use as a maxillofacial prosthesis, though its tear strength was markedly lower than that of silicone elastomer. In conclusion, we developed a novel light and soft material with good flexibility and biocompatibility, which holds a promising prospect for clinical application as maxillofacial prosthesis.
Root, Samuel E; Savagatrup, Suchol; Printz, Adam D; Rodriquez, Daniel; Lipomi, Darren J
2017-05-10
Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors. Particular attention is paid to ways in which mechanical deformability and electronic performance can coexist. The review begins with a discussion of flexible and stretchable devices of all types, and in particular the unique characteristics of organic semiconductors. It then discusses the mechanical properties most relevant to deformable devices. In particular, it describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical "imperceptibility" if worn on the skin. A description of techniques of metrology precedes a discussion of the mechanical properties of three classes of organic semiconductors: π-conjugated polymers, small molecules, and composites. The discussion of each class of materials focuses on molecular structure and how this structure (and postdeposition processing) influences the solid-state packing structure and thus the mechanical properties. The review concludes with applications of organic semiconductor devices in which every component is intrinsically stretchable or highly flexible.
Metallization and Biopatterning on Ultra-Flexible Substrates via Dextran Sacrificial Layers
Tseng, Peter; Pushkarsky, Ivan; Di Carlo, Dino
2014-01-01
Micro-patterning tools adopted from the semiconductor industry have mostly been optimized to pattern features onto rigid silicon and glass substrates, however, recently the need to pattern on soft substrates has been identified in simulating cellular environments or developing flexible biosensors. We present a simple method of introducing a variety of patterned materials and structures into ultra-flexible polydimethylsiloxane (PDMS) layers (elastic moduli down to 3 kPa) utilizing water-soluble dextran sacrificial thin films. Dextran films provided a stable template for photolithography, metal deposition, particle adsorption, and protein stamping. These materials and structures (including dextran itself) were then readily transferrable to an elastomer surface following PDMS (10 to 70∶1 base to crosslinker ratios) curing over the patterned dextran layer and after sacrificial etch of the dextran in water. We demonstrate that this simple and straightforward approach can controllably manipulate surface wetting and protein adsorption characteristics of PDMS, covalently link protein patterns for stable cell patterning, generate composite structures of epoxy or particles for study of cell mechanical response, and stably integrate certain metals with use of vinyl molecular adhesives. This method is compatible over the complete moduli range of PDMS, and potentially generalizable over a host of additional micro- and nano-structures and materials. PMID:25153326
A Triple-Mode Flexible E-Skin Sensor Interface for Multi-Purpose Wearable Applications
Kim, Sung-Woo; Lee, Youngoh; Park, Jonghwa; Kim, Seungmok; Chae, Heeyoung; Ko, Hyunhyub
2017-01-01
This study presents a flexible wireless electronic skin (e-skin) sensor system that includes a multi-functional sensor device, a triple-mode reconfigurable readout integrated circuit (ROIC), and a mobile monitoring interface. The e-skin device’s multi-functionality is achieved by an interlocked micro-dome array structure that uses a polyvinylidene fluoride and reduced graphene oxide (PVDF/RGO) composite material that is inspired by the structure and functions of the human fingertip. For multi-functional implementation, the proposed triple-mode ROIC is reconfigured to support piezoelectric, piezoresistance, and pyroelectric interfaces through single-type e-skin sensor devices. A flexible system prototype was developed and experimentally verified to provide various wireless wearable sensing functions—including pulse wave, voice, chewing/swallowing, breathing, knee movements, and temperature—while their real-time sensed data are displayed on a smartphone. PMID:29286312
NASA Astrophysics Data System (ADS)
Yoon, Jong Moon; Shin, Dong Ok; Yin, You; Seo, Hyeon Kook; Kim, Daewoon; In Kim, Yong; Jin, Jung Ho; Kim, Yong Tae; Bae, Byeong-Soo; Ouk Kim, Sang; Lee, Jeong Yong
2012-06-01
Mushroom-shaped phase change memory (PCM) consisting of a Cr/In3Sb1Te2 (IST)/TiN (bottom electrode) nanoarray was fabricated via block copolymer lithography and single-step dry etching with a gas mixture of Ar/Cl2. The process was performed on a high performance transparent glass-fabric reinforced composite film (GFR Hybrimer) suitable for use as a novel substrate for flexible devices. The use of GFR Hybrimer with low thermal expansion and flat surfaces enabled successful nanoscale patterning of functional phase change materials on flexible substrates. Block copolymer lithography employing asymmetrical block copolymer blends with hexagonal cylindrical self-assembled morphologies resulted in the creation of hexagonal nanoscale PCM cell arrays with an areal density of approximately 176 Gb/in2.
Preparation and Characterization of Graphene Oxide Paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dikin,D.; Stankovich, S.; Zimney, E.
2007-01-01
Free-standing paper-like or foil-like materials are an integral part of our technological society. Their uses include protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and molecular storage. Inorganic 'paper-like' materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high-temperature binders, dielectric barriers and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite have long been used in packing and gasketing applications because of their chemical resistivity against most media, superior sealability over a wide temperature range,more » and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications. Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets. This new material outperforms many other paper-like materials in stiffness and strength. Its combination of macroscopic flexibility and stiffness is a result of a unique interlocking-tile arrangement of the nanoscale graphene oxide sheets.« less
Preparation and characterization of graphene oxide paper.
Dikin, Dmitriy A; Stankovich, Sasha; Zimney, Eric J; Piner, Richard D; Dommett, Geoffrey H B; Evmenenko, Guennadi; Nguyen, SonBinh T; Ruoff, Rodney S
2007-07-26
Free-standing paper-like or foil-like materials are an integral part of our technological society. Their uses include protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and molecular storage. Inorganic 'paper-like' materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high-temperature binders, dielectric barriers and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite have long been used in packing and gasketing applications because of their chemical resistivity against most media, superior sealability over a wide temperature range, and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications. Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets. This new material outperforms many other paper-like materials in stiffness and strength. Its combination of macroscopic flexibility and stiffness is a result of a unique interlocking-tile arrangement of the nanoscale graphene oxide sheets.
Han, Jin Kyu; Jeon, Do Hyun; Cho, Sam Yeon; Kang, Sin Wook; Lim, Jongsun; Bu, Sang Don
2017-10-07
Recently, composite-type nanogenerators (NGs) formed from piezoelectric nanostructures and multi-walled carbon nanotubes (CNTs), have become one of the excellent candidates for future energy harvesting because of their ability to apply the excellent electrical and mechanical properties of CNTs. However, the synthesis of NG devices with a high proportion of piezoelectric materials and a low polymer content, such as of polydimethylsiloxane (PDMS), continues to be problematic. In this work, high-piezoelectric-material-content flexible films produced from Pb(Zr,Ti)O₃ (PZT)-atomically-interconnected CNTs and polytetrafluoroethylene (PTFE) are presented. Various physical and chemical characterization techniques are employed to examine the morphology and structure of the materials. The direct growth of the piezoelectric material on the CNTs, by stirring the PZT and CNT mixed solution, results in various positive effects, such as a high-quality dispersion in the polymer matrix and addition of flexoelectricity to piezoelectricity, resulting in the enhancement of the output voltage by an external mechanical force. The NGs repeatedly generate an output voltage of 0.15 V. These results present a significant step toward the application of NGs using piezoelectric nanocomposite materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Stuart S; Samulski, Edward; Lopez, Renee
2010-01-01
ABSTRACT. Described herein is the development and investigation of PFPE-based elastomers for high resolution replica molding applications. The modulus of the elastomeric materials was increased through synthetic and additive approaches while maintaining relatively low surface energies (<25 mN/m). Using practically relevant large area master templates, we show that the resolution of the molds is strongly dependant upon the elastomeric mold modulus. A composite mold approach was used to form flexible molds out of stiff, high modulus materials that allow for replication of sub-20 nm post structures. Sub-100 nm line grating master templates, formed using e-beam lithography, were used to determinemore » the experimental stability of the molding materials. It was observed that as the feature spacing decreased, high modulus composite molds were able to effectively replicate the nano-grating structures without cracking or tear-out defects that typically occur with high modulus elastomers.« less
Radon diffusion coefficients in 360 waterproof materials of different chemical composition.
Jiránek, M; Kotrbatá, M
2011-05-01
This paper summarises the results of radon diffusion coefficient measurements in 360 common waterproof materials available throughout Europe. The materials were grouped into 26 categories according to their chemical composition. It was found that the diffusion coefficients of materials used for protecting houses against radon vary within eight orders from 10(-15) to 10(-8) m(2) s(-1). The lowest values were obtained for bitumen membranes with an Al carrier film and for ethylene vinyl acetate membranes. The highest radon diffusion coefficient values were discovered for sodium bentonite membranes, rubber membranes made of ethylene propylene diene monomer and polymer cement coatings. The radon diffusion coefficients for waterproofings widely used for protecting houses, i.e. flexible polyvinyl chloride, high-, low-density polyethylene, polypropylene and bitumen membranes, vary in the range from 3 × 10(-12) to 3 × 10(-11) m(2) s(-1). Tests were performed which confirmed that the radon diffusion coefficient is also an effective tool for verifying the air-tightness of joints.
Influence of material anisotropy on the hydroelastic response of composite plates in water
NASA Astrophysics Data System (ADS)
Akcabay, Deniz Tolga; Young, Yin Lu
2018-03-01
Flexible lightweight plate-like lifting surfaces in external flows have a diverse range of use from propelling and controlling marine and aerospace vehicles to converting wind and ocean energy to electrical energy. Design and analysis of such structures are complex for underwater applications where the water density is much higher than air. The hydrodynamic loads, which vary with the inflow speed, can significantly alter the dynamic response and stability. This paper focuses on the hydroelastic response of composite plates in water. The results show that the dynamics and stability of the structure can be significantly modified by taking advantage of the material anisotropic; on the contrary, careless composite material designs may lead to unwanted dynamic instability failures. The resonance frequencies, divergence speeds, and fluid loss coefficients change with material anisotropy and hydrodynamic loads. The resonance frequencies are much lower in water than in air. The critical divergence speed increases, if the principal fiber direction is oriented towards the inflow. Hydrodynamic damping is shown to be much higher than the material damping, and tend to increase with flow speed and to decrease with increasing modal frequency. The paper derives Response Amplitude Operators (RAOs) for sample composite plates in water and use them to predict the motion response when subject to stochastic flow excitations. We show how material anisotropy can be used to passively tailor the plate vibration response spectrum to limit or enhance flow-induced vibrations of the plate depending on the desired applications.
2013-02-01
supplement the main power supply. Here we report on the use of flexible carbon nanotube (CNT)-based composites for multifunctional structural energy storage...TERMS Micro vehicle, Supercapacitor, Carbon Nanotubes , CNTs, Energy Storage, Multifunctional Materials 16. SECURITY CLASSIFICATION OF: 17...consists of a current collector, a porous electrode layer ( carbon nanotubes [CNTs], in this case) infiltrated with an electrolyte (i.e., a liquid
Electrodeposited Ni nanowires-track etched P.E.T. composites as selective solar absorbers
NASA Astrophysics Data System (ADS)
Lukhwa, R.; Sone, B.; Kotsedi, L.; Madjoe, R.; Maaza, M.
2018-05-01
This contribution reports on the structural, optical and morphological properties of nanostructured flexible solar-thermal selective absorber composites for low temperature applications. The candidate material in the system is consisting of electrodeposited nickel nano-cylinders embedded in track-etched polyethylene terephthalate (PET) host membrane of pore sizes ranging between 0.3-0.8µm supported by conductive nickel thin film of about 0.5µm. PET were irradiated with 11MeV/u high charged xenon (Xe) ions at normal incidence. The tubular and metallic structure of the nickel nano-cylinders within the insulator polymeric host forms a typical ceramic-metal nano-composite "Cermet". The produced material was characterized by the following techniques: X-ray diffraction (XRD) for structural characterization to determine preferred crystallographic structure, and grain size of the materials; Scanning electron microscopy (SEM) to determine surface morphology, particle size, and visual imaging of distribution of structures on the surface of the substrate; Atomic force microscopy (AFM) to characterize surface roughness, surface morphology, and film thickness, and UV-Vis-NIR spectrophotometer to measure the reflectance, then to determine solar absorption
NASA Astrophysics Data System (ADS)
Sharifah, I. S. S.; Adnan, M. D. A.; Nor Khairusshima, M. K.; Shaffiar, N. M.; Buys, Y. F.
2018-01-01
Polylactic acid (PLA) is known to be brittle by nature and thus limits the flexibility of the polymer. A possible solution to enhance the flexibility of PLA is to add a flexible polymeric based material such as thermoplastic polyurethane (TPU). In this study, 30-50 wt% of TPU was added into PLA/curcumin blends to improve its flexibility. Thermal analysis using differential scanning calorimetry shows that further additions of TPU at the expense of PLA did not affect the glass transition temperature, crystallisation temperature and melting temperature of the blends. Fibers of PLA/curcumin/TPU were successfully drawn and Single Fiber Tensile Test (SFTT) showed vast improvement in elongation at break. The initial addition of 30 wt% of TPU to the brittle PLA/curcumin composition causes a significant increase in elongation at break by 39 times and further additions at 50 wt %, the elongation at break increases by 105 times. However, with the increase in elongation, a decrease in strength and Young’s modulus was observed.
NASA Astrophysics Data System (ADS)
Ghoneim, M. T.; Hussain, M. M.
2015-08-01
Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ˜260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygen and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.
Polyimide-Epoxy Composites with Superior Bendable Properties for Application in Flexible Electronics
NASA Astrophysics Data System (ADS)
Lee, Sangyoup; Yoo, Taewon; Han, Youngyu; Kim, Hanglim; Han, Haksoo
2017-08-01
The need for flexible electronics with outstanding bending properties is increasing due to the demand for wearable devices and next-generation flexible or rollable smartphones. In addition, the requirements for flexible or rigid-flexible electronics are sharply increasing to achieve the design of space-saving electronic devices. In this regard, coverlay (CL) film is a key material used in the bending area of flexible electronics, albeit infrequently. Because flexible electronics undergo folding and unfolding numerous times, CL films with superior mechanical and bending properties are required so that the bending area can endure such severe stress. However, because current CL films are only used for a designated bending area in the flexible electronics panel, their highly complicated and expensive manufacturing procedure is a disadvantage. In addition, the thickness of CL films must be decreased to satisfy the ongoing requirement for increasingly thin products. However, due to the limitations of the two-layer structure of existing CL films, the manufacturing process cannot be made more cost effective by simply applying more thin film onto the board. To address this problem, we have developed liquid coverlay inks (LCIs) with superior bendable properties, in comparison with CL films, when applied onto flexible electronics using a screen-printing method. The results show that LCIs have the potential to become one of the leading candidates to replace existing CL films because of their lower cost and faster manufacturing process.
Inorganic-organic separators for alkaline batteries
NASA Technical Reports Server (NTRS)
Sheibley, D. W. (Inventor)
1978-01-01
A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.
Porous textile antenna designs for improved wearability
NASA Astrophysics Data System (ADS)
Shahariar, Hasan; Soewardiman, Henry; Muchler, Clifford A.; Adams, Jacob J.; Jur, Jesse S.
2018-04-01
Textile antennas are an integral part of the next generation personalized wearable electronics system. However, the durability of textile antennas are rarely discussed in the literature. Typical textile antennas are prone to damage during normal wearable user scenarios, washing, and heat cycling over time. Fabricating a durable, washable, flexible, and breathable (like textile materials) antenna is challenging due to the incompatibility of the mechanical properties of conductive materials and soft textile materials. This paper describes a scalable screen printing process on an engineered nonwoven substrate to fabricate microstrip patch antennas with enhanced durability. This work used an Evolon® nonwoven substrate with low surface roughness (˜Ra = 18 μm) and high surface area (˜2.05 mm2 mm-2 of fabric area) compared to traditional textile materials, which allows the ink to penetrate evenly in the fiber bulk with its strong capillary wicking force and enhances print resolution. The composite layer of ink and fiber is conductive and enables the antennas to maintain high mechanical flexibility without varying its RF (Radio Frequency) properties. Additionally, the antennas are packaged by laminating porous polyurethane web to make the device durable and washable. The fully packaged antennas maintain the structural flexibility and RF functionality after 15 cycles of washing and drying. To improve the air permeability and enhance flexibility the antenna is also modified by incorporating holes in the both patch and ground layer of the antenna. The antennas were analyzed before and after submerging in water to observe the effect of wetting and drying with respect to frequency response. The porous antenna with holes recovered 3x times faster than the one without holes (solid) from fully wet state (saturated with water) to the dry state, demonstrating its potential use as a moisture sensor system.
Novel composite piezoelectric material for energy harvesting applications
NASA Astrophysics Data System (ADS)
Janusas, Giedrius; Guobiene, Asta; Palevicius, Arvydas; Prosycevas, Igoris; Ponelyte, Sigita; Baltrusaitis, Valentinas; Sakalys, Rokas
2015-04-01
Past few decades were concentrated on researches related to effective energy harvesting applied in modern technologies, MEMS or MOEMS systems. There are many methods for harvesting energy as, for example, usage of electromagnetic devices, but most dramatic changes were noticed in the usage of piezoelectric materials in small scale devices. Major limitation faced was too small generated power by piezoelectric materials or high resonant frequencies of such smallscale harvesters. In this research, novel composite piezoelectric material was created by mixing PZT powder with 20% solution of polyvinyl butyral in benzyl alcohol. Obtained paste was screen printed on copper foil using 325 mesh stainless steel screen and dried for 30 min at 100 °C. Polyvinyl butyral ensures good adhesion and flexibility of a new material at the conditions that requires strong binding. Five types of a composite piezoelectric material with different concentrations of PZT (40%, 50%, 60%, 70% and 80 %) were produced. As the results showed, these harvesters were able to transform mechanical strain energy into electric potential and, v.v. In experimental setup, electromagnetic shaker was used to excite energy harvester that is fixed in the custom-built clamp, while generated electric potential were registered with USB oscilloscope PICO 3424. The designed devices generate up to 80 μV at 50 Hz excitation. This property can be applied to power microsystem devices or to use them in portable electronics and wireless sensors. However, the main advantage of the created composite piezoelectric material is possibility to apply it on any uniform or nonuniform vibrating surface and to transform low frequency vibrations into electricity.
Sun, Chao; Zhang, Jie; Gao, Shanglin; Zhang, Nan; Zhang, Yijun; Zhuang, Jian; Liu, Ming; Zhang, Xiaohui; Ren, Wei; Wu, Hua; Ye, Zuo-Guang
2018-06-18
The interphase between fiber and matrix plays an essential role in the performance of composites. Therefore, the ability to design or modify the interphase is a key technology needed to manufacture stronger and smarter composite. Recently, depositing nano-materials onto the surface of the fiber has become a promising approach to optimize the interphase and composites. But, the modified composites have not reached the highest strength yet, because the determining parameters, such as thickness of the nano-layer, are hardly controlled by the mentioned methods in reported works. Here, we deposit conformal ZnO nano-layer with various thicknesses onto the surfaces of glass fibers via the atomic layer deposition (ALD) method and a tremendous enhancement of interfacial shear strength of composites is achieved. Importantly, a critical thickness of ZnO nano-layer is obtained for the first time, giving rise to a maximal relative enhancement in the interfacial strength, which is more than 200% of the control fiber. In addition, the single modified fiber exhibits a potential application as a flexible, transparent, in-situ UV detector in composites. And, we find the UV-sensitivity also shows a strong correlation with the thickness of ZnO. To reveal the dependence of UV-sensitivity on thickness, a depletion thickness is estimated by a proposed model which is an essential guide to design the detectors with higher sensitivity. Consequently, such precise tailoring of the interphase offers an advanced way to improve and to flexibly control various macroscopic properties of multifunctional composites of the next generation.
Chen, Ru-Jun; Zhang, Yi-Bo; Liu, Ting; Xu, Bing-Qing; Lin, Yuan-Hua; Nan, Ce-Wen; Shen, Yang
2017-03-22
All-solid-state bulk-type lithium ion batteries (LIBs) are considered ultimate solutions to the safety issues associated with conventional LIBs using flammable liquid electrolyte. The development of bulk-type all-solid-state LIBs has been hindered by the low loading of active cathode materials, hence low specific surface capacity, and by the high interface resistance, which results in low rate and cyclic performance. In this contribution, we propose and demonstrate a synergistic all-composite approach to fabricating flexible all-solid-state LIBs. PEO-based composite cathode layers (filled with LiFePO 4 particles) of ∼300 μm in thickness and composite electrolyte layers (filled with Al-LLZTO particles) are stacked layer-by-layer with lithium foils as negative layer and hot-pressed into a monolithic all-solid-state LIB. The flexible LIB delivers a high specific discharge capacity of 155 mAh/g, which corresponds to an ultrahigh surface capacity of 10.8 mAh/cm 2 , exhibits excellent capacity retention up to at least 10 cycles and could work properly under harsh operating conditions such as bending or being sectioned into pieces. The all-composite approach is favorable for improving both mesoscopic and microscopic interfaces inside the all-solid-state LIB and may provide a new toolbox for design and fabrication of all-solid-state LIBs.
NASA Astrophysics Data System (ADS)
Choi, Bong Gill; Huh, Yun Suk; Hong, Won Hi; Erickson, David; Park, Ho Seok
2013-04-01
Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR microspheres consisting of the aggregates of CMG/Nafion (CMGN) nanosheets and RuO2 NPs provided large surface area and facile ion accessibility to storage sites, while the interconnected nanosheets offered continuous electron pathways and mechanical integrity. The synergistic effect of CMGNR hybrids on the supercapacitor (SC) performance was derived from the hybrid composition of pseudocapacitive RuO2 NPs with the conductive CMGNs as well as from structural features. Consequently, the CMGNR-SCs showed a specific capacitance as high as 160 F g-1, three-fold higher than that of conventional graphene SCs, and a capacitance retention of >95% of the maximum value even after severe bending and 1000 charge-discharge tests due to the structural and compositional features.Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR microspheres consisting of the aggregates of CMG/Nafion (CMGN) nanosheets and RuO2 NPs provided large surface area and facile ion accessibility to storage sites, while the interconnected nanosheets offered continuous electron pathways and mechanical integrity. The synergistic effect of CMGNR hybrids on the supercapacitor (SC) performance was derived from the hybrid composition of pseudocapacitive RuO2 NPs with the conductive CMGNs as well as from structural features. Consequently, the CMGNR-SCs showed a specific capacitance as high as 160 F g-1, three-fold higher than that of conventional graphene SCs, and a capacitance retention of >95% of the maximum value even after severe bending and 1000 charge-discharge tests due to the structural and compositional features. Electronic supplementary information (ESI) available: Electrodeposition procedure, TEM, SEM, and AFM images, XPS, FT-IR, and XRD spectra, mechanical strain-stress curve, textural and conductive properties, and impedance spectroscopy. See DOI: 10.1039/c3nr33674c
NASA Astrophysics Data System (ADS)
Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan
2013-10-01
Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications. Electronic supplementary information (ESI) available: Chemical structures of functional groups on cellulose fibers, the surface water wettability of rice paper, CV curves of supercapacitors at different scan rates, galvanostatic charge-discharge curves of supercapacitors at different current densities, TGA profiles of the SWCNT-MnO2-paper composites synthesized at different temperatures, TEM images of MnO2 particles deposited on rice paper at different temperatures, photographs of supercapacitors under different bending test conditions, and a video of bending and folding the SWCNT-MnO2-paper composites. See DOI: 10.1039/c3nr03010e
Samiezadeh, Saeid; Fawaz, Zouheir; Bougherara, Habiba
2016-03-01
Intramedullary nails are the golden treatment option for diaphyseal fractures. However, their high stiffness can shield the surrounding bone from the natural physiologic load resulting in subsequent bone loss. Their stiff structure can also delay union by reducing compressive loads at the fracture site, thereby inhibiting secondary bone healing. Composite intramedullary nails have recently been introduced to address these drawbacks. The purpose of this study is to evaluate the mechanical properties of a previously developed composite IM nail made of carbon-fibre/epoxy whose structure was optimized based on fracture healing requirements using the selective stress shielding approach. Following manufacturing, the cross-section of the composite nail was examined under an optical microscope to find the porosity of the structure. Mechanical properties of the proposed composite intramedullary nail were determined using standard tension, compression, bending, and torsion tests. The failed specimens were then examined to obtain the modes of failure. The material showed high strength in tension (403.9±7.8MPa), compression (316.9±10.9MPa), bending (405.3±8.1MPa), and torsion (328.5±7.3MPa). Comparing the flexural modulus (41.1±0.9GPa) with the compressive modulus (10.0±0.2GPa) yielded that the material was significantly more flexible in compression than in bending. This customized flexibility along with the high torsional stiffness of the nail (70.7±2.0Nm(2)) has made it ideal as a fracture fixation device since this unique structure can stabilize the fracture while allowing for compression of fracture ends. Negligible moisture absorption (~0.5%) and low porosity of the laminate structure (< 3%) are other advantages of the proposed structure. The findings suggested that the carbon-fibre/epoxy intramedullary nail is flexible axially while being relatively rigid in bending and torsion and is strong enough in all types of physiologic loading, making it a potential candidate for use as an alternative to the conventional titanium-alloy intramedullary nails. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haridas, Aswin; Crivoi, Alexandru; Prabhathan, P.; Chan, Kelvin; Murukeshan, V. M.
2017-06-01
The use of carbon fiber-reinforced polymer (CFRP) composite materials in the aerospace industry have far improved the load carrying properties and the design flexibility of aircraft structures. A high strength to weight ratio, low thermal conductivity, and a low thermal expansion coefficient gives it an edge for applications demanding stringent loading conditions. Specifically, this paper focuses on the behavior of CFRP composites under stringent thermal loads. The properties of composites are largely affected by external thermal loads, especially when the loads are beyond the glass temperature, Tg, of the composite. Beyond this, the composites are subject to prominent changes in mechanical and thermal properties which may further lead to material decomposition. Furthermore, thermal damage formation being chaotic, a strict dimension cannot be associated with the formed damage. In this context, this paper focuses on comparing multiple speckle image analysis algorithms to effectively characterize the formed thermal damages on the CFRP specimen. This would provide us with a fast method for quantifying the extent of heat damage in carbon composites, thus reducing the required time for inspection. The image analysis methods used for the comparison include fractal dimensional analysis of the formed speckle pattern and analysis of number and size of various connecting elements in the binary image.
Characterization of the Effect of Fiber Undulation on Strength and Stiffness of Composite Laminates
2015-03-01
helicopter drivelines with flexible matrix composite shafting. Proceedings of the 61st American Helicopter Society Annual Forum; 2005 Jun 1–3...Grapevine, TX. Alexandria (VA): American Helicopter Society. p. 1582–1595. 2. Hannibal AJ, Gupta BP, Avila JA, Parr CH. Flexible matrix composites applied...to bearingless rotor system. Journal of the American Helicopter Society. 1985;30(1):21–27. 3. Ocalan M. High flexibility rotorcraft driveshafts
Park, Juyoung; Hyun, Byung Gwan; An, Byeong Wan; Im, Hyeon-Gyun; Park, Young-Geun; Jang, Junho; Park, Jang-Ung; Bae, Byeong-Soo
2017-06-21
We report an Ag nanofiber-embedded glass-fabric reinforced hybrimer (AgNF-GFRHybrimer) composite film as a reliable and high-performance flexible transparent conducting film. The continuous AgNF network provides superior optoelectronic properties of the composite film by minimizing transmission loss and junction resistance. In addition, the excellent thermal/chemical stability and mechanical durability of the GFRHybrimer matrix provides enhanced mechanical durability and reliability of the final AgNF-GFRHybrimer composite film. To demonstrate the availability of our AgNF-GFRHybrimer composite as a transparent conducting film, we fabricated a flexible organic light-emitting diode (OLED) device on the AgNF-GFRHybrimer film; the OLED showed stable operation during a flexing.
Metal{Polymer Hybrid Materials For Flexible Transparent Conductors
NASA Astrophysics Data System (ADS)
Narayanan, Sudarshan
The field of organic electronics, till recently a mere research topic, is currently making rapid strides and tremendous progress into entering the mainstream electronics industry with several applications and products such as OLED televisions, curved displays, wearable devices, flexible solar cells, etc. already having been commercialized. A major component in these devices, especially for photovoltaic applications, is a transparent conductor used as one of the electrodes, which in most commercial applications are highly doped wide bandgap semiconducting oxides also called Transparent Conducting Oxides (TCOs). However, TCOs exhibit inherent disadvantages such as limited supply, brittle mechanical properties, expensive processing that present major barriers for the more widespread economic use in applications such as exible transparent conductors, owing to which suitable alternative materials are being sought. In this context we present two approaches in realizing alternative TCs using metal-polymer hybrid materials, with high figures of merit that are easily processable, reasonably inexpensive and mechanically robust as well. In this context, our first approach employs laminated metal-polymer photonic bandgap structures to effectively tune optical and electrical properties by an appropriate design of the material stack, factoring in the effect of the materials involved, the number of layers and layer properties. We have found that in the case of a four-bilayer Au/polystyrene (AujPS) laminate structure, an enhancement in optical transmittance of ˜ 500% in comparison to a monolithic A film of equivalent thickness, can be achieved. The high conductivity (˜ 106 O--1cm--1) of the metallic component, Au in this case, also ensures planar conductivity; metallic inclusions in the dielectric polymer layer can in principle give rise to out-of-plane conductivity as well enabling a fully functional TC. Such materials also have immense potential for several other applications owing to the sensitivity of this resonant tunneling effect, such as optical filters, optical power limiters, antireflection coatings, electrochromic devices, to name a few. Our second approach to realizing an alternative flexible TC is based on random networks of Ag-NWs and their composites with various polymers that are electrically conducting or insulating. While considered a highly promising material system with a potential to replace commercially used TCOs like ITO, the high variability in films of Ag-NWs fabricated from solutions is however a major issue for scalability and reproducibility. This variability can in turn be attributed partly to NW dispersion instability, which can be addressed by the use of polymer additives and modified solution chemistries. In preparing such composites, considerable attention has been given to the use of conducting polymers like PEDOT:PSS which can contribute to charge transport as well. We present here a systematic approach to obtaining quantifiably uniform, highly transparent and conducting films in a reproducible manner, with composites of Ag-NWs with both conducting (PEDOT:PSS) and nonconducting polymers (like PSS and PVA), demonstrating the effectiveness of such an approach. While Ag-NW films spun cast from solution show good electrical conductivity (˜2-50 = O/□) and high transparency (˜ 70-90%), they also show high variability (˜15-20% in RSheet and NW coverage) and poor reproducibility. Ag- NW/polymer composites, on the other hand, show similar electrical and optical properties with high figures of merit but with lower variability and greater uniformity (<5% variation in R Sheet and NW coverage). The composite films also show remarkable retention of electrical conductivity even after several cycles of mechanical flexing, further justifying the use of polymer-stabilized networks and paving the way for greater control and ease in processing transparent, conducting and flexible films for novel devices. The Ag-NWs based TCs were also incorporated in organic solar cell devices to test for their efficacy in an application and their performances were compared to that of control cell devices having ITO as the TC electrode. We found that performances of Ag-NW/polymer composites, particularly those of PEDOT:PSS were comparable to ITO-based solar cells, with power conversion efficiencies ˜ 3%, thus demonstrating the effectiveness in using these TCs in potential commercial applications such as solar cells, OLEDs, displays, etc.
Limited access: gender, occupational composition, and flexible work scheduling.
Glauber, Rebecca
2011-01-01
The current study draws on national data to explore differences in access to flexible work scheduling by the gender composition of women's and men's occupations. Results show that those who work in integrated occupations are more likely to have access to flexible scheduling. Women and men do not take jobs with lower pay in return for greater access to flexibility. Instead, jobs with higher pay offer greater flexibility. Integrated occupations tend to offer the greatest access to flexible scheduling because of their structural locations. Part-time work is negatively associated with men's access to flexible scheduling but positively associated with women's access. Women have greater flexibility when they work for large establishments, whereas men have greater flexibility when they work for small establishments.
Ren, Jian-Guo; Wang, Chundong; Wu, Qi-Hui; Liu, Xiang; Yang, Yang; He, Lifang; Zhang, Wenjun
2014-03-21
Toward the increasing demands of portable energy storage and electric vehicle applications, silicon has been emerging as a promising anode material for lithium-ion batteries (LIBs) owing to its high specific capacity. However, serious pulverization of bulk silicon during cycling limits its cycle life. Herein, we report a novel hierarchical Si nanowire (Si NW)-reduced graphene oxide (rGO) composite fabricated using a solvothermal method followed by a chemical vapor deposition process. In the composite, the uniform-sized [111]-oriented Si NWs are well dispersed on the rGO surface and in between rGO sheets. The flexible rGO enables us to maintain the structural integrity and to provide a continuous conductive network of the electrode, which results in over 100 cycles serving as an anode in half cells at a high lithium storage capacity of 2300 mA h g(-1). Due to its [111] growth direction and the large contact area with rGO, the Si NWs in the composite show substantially enhanced reaction kinetics compared with other Si NWs or Si particles.
NASA Astrophysics Data System (ADS)
Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana
2016-10-01
A polymer fabric reinforced composite is a high performance material, which combines strength of the fibres with the flexibility and ductility of the matrix. For a better drapeability, the tows of fibres are interleaved, resulting the woven fabric, used as reinforcement. The complex geometric shape of the fabric is of paramount importance in establishing the deformability of the textile reinforced composite laminates. In this paper, an approach based on Classical Lamination Theory ( CLT), combined with Finite Element Methods ( FEM), using Failure Analysis and Internal Load Redistribution, is utilised, in order to compare the behaviour of the material under specific loads. The main goal is to analyse the deformability of certain types of textile reinforced composite laminates, using carbon fibre satin as reinforcement and epoxy resin as matrix. This is accomplished by studying the variation of the in-plane strains, given the fluctuation of several geometric parameters, namely the width of the reinforcing tow, the gap between two consecutive tows, the angle of laminae in a multi-layered configuration and the tows fibre volume fraction.
High-performance flexible hydrogen sensor made of WS2 nanosheet-Pd nanoparticle composite film
NASA Astrophysics Data System (ADS)
Kuru, Cihan; Choi, Duyoung; Kargar, Alireza; Liu, Chin Hung; Yavuz, Serdar; Choi, Chulmin; Jin, Sungho; Bandaru, Prabhakar R.
2016-05-01
We report a flexible hydrogen sensor, composed of WS2 nanosheet-Pd nanoparticle composite film, fabricated on a flexible polyimide substrate. The sensor offers the advantages of light-weight, mechanical durability, room temperature operation, and high sensitivity. The WS2-Pd composite film exhibits sensitivity (R 1/R 2, the ratio of the initial resistance to final resistance of the sensor) of 7.8 to 50 000 ppm hydrogen. Moreover, the WS2-Pd composite film distinctly outperforms the graphene-Pd composite, whose sensitivity is only 1.14. Furthermore, the ease of fabrication holds great potential for scalable and low-cost manufacturing of hydrogen sensors.
NASA Astrophysics Data System (ADS)
Wu, Nan; Wan, Lynn Yuqin; Wang, Yingde; Ko, Frank
2017-12-01
Hydrophobic ceramic nanofibrous membranes have wide applications in the fields of high-temperature filters, oil/water separators, catalyst supports and membrane reactors, for their water repellency property, self-cleaning capability, good environmental stability and long life span. In this work, we fabricated an inherently hydrophobic ceramic nanofiber membrane without any surface modification through pyrolysis of electrospun polycarbosilane nanofibers. The hydrophobicity was introduced by the hierarchical microstructure formed on the surface of the nanofibers and the special surface composition by the addition of trace amounts of palladium. Furthermore, the flexible ceramic mats demonstrated robust chemical resistance properties with consistent hydrophobicity over the entire pH value range and effective water-in-oil emulsion separation performance. Interestingly, a highly cohesive force was found between water droplet and the ceramic membranes, suggesting their great potentials in micro-liquid transportation. This work provides a new route for adjusting the composition of ceramic surface and flexible, recyclable and multifunctional ceramic fibrous membranes for utilization in harsh environments.
Expansive soil stabilization with coir waste and lime for flexible pavement subgrade
NASA Astrophysics Data System (ADS)
Narendra Goud, G.; Hyma, A.; Shiva Chandra, V.; Sandhya Rani, R.
2018-03-01
Expansive soil properties can be improved by various methods to make it suitable for construction of flexible pavement. The coir pith is the by-product (bio-waste) generated from coir industry during extraction of coir fiber from coconut husk. Openly disposed coir pith can make the surrounding areas unhygienic. This bio-waste can be one of the potential materials to stabilize the expansive soils. In the present study coir pith and lime are used as stabilizers. Different combinations of coir pith contents (1%, 2% and 3%) and lime contents (2%, 3% and 4%)are used to study the behavior of expansive soil. Unconfined compressive strength (UCS) of unstabilized and stabilized soils was determined. Optimum content of coir pith and lime are determined based on UCS of the soil. California bearing ratio of soil determined at optimum contents of coir pith and lime. Flexible pavement layer compositions for two levels of traffic using stabilized soil subgrade.
Neutron Shielding Effectiveness of Multifunctional Composite Materials
2013-03-01
greater degree of flexibility in design and engineering of specialized space vehicle shielding applications compared to aluminum. A new design for...photon/electron transport. Specific areas of application include, but are not limited to, radiation protection and dosimetry, radiation shielding...of 37.8%. The reaction of interest is 64Zn(n,p)64Cu, where 64Cu has a half-life of 12.7 hours [5]. When this reaction occurs a positron
Huang, Xiaodan; Sun, Bing; Chen, Shuangqiang; Wang, Guoxiu
2014-01-01
The synthesis of nanoporous graphene by a convenient carbon nanofiber assisted self-assembly approach is reported. Porous structures with large pore volumes, high surface areas, and well-controlled pore sizes were achieved by employing spherical silica as hard templates with different diameters. Through a general wet-immersion method, transition-metal oxide (Fe3O4, Co3O4, NiO) nanocrystals can be easily loaded into nanoporous graphene papers to form three-dimensional flexible nanoarchitectures. When directly applied as electrodes in lithium-ion batteries and supercapacitors, the materials exhibited superior electrochemical performances, including an ultra-high specific capacity, an extended long cycle life, and a high rate capability. In particular, nanoporous Fe3O4-graphene composites can deliver a reversible specific capacity of 1427.5 mAh g(-1) at a high current density of 1000 mA g(-1) as anode materials in lithium-ion batteries. Furthermore, nanoporous Co3O4-graphene composites achieved a high supercapacitance of 424.2 F g(-1) . This work demonstrated that the as-developed freestanding nanoporous graphene papers could have significant potential for energy storage and conversion applications. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engineering a clinically-useful matrix for cell therapy.
Prestwich, Glenn D
2008-01-01
The design criteria for matrices for encapsulation of cells for cell therapy include chemical, biological, engineering, marketing, regulatory, and financial constraints. What is required is a biocompatible material for culture of cells in three-dimensions (3-D) that offers ease of use, experimental flexibility to alter composition and compliance, and a composition that would permit a seamless transition from in vitro to in vivo use. The challenge is to replicate the complexity of the native extracellular matrix (ECM) environment with the minimum number of components necessary to allow cells to rebuild a given tissue. Our approach is to deconstruct the ECM to a few modular components that can be reassembled into biomimetic materials that meet these criteria. These semi-synthetic ECMs (sECMs) employ thiol-modified derivatives of hyaluronic acid (HA) that can form covalently crosslinked, biodegradable hydrogels. These sECMs are "living" biopolymers, meaning that they can be crosslinked in the presence of cells or tissues to enable cell therapy and tissue engineering. Moreover, the sECMs allow inclusion of the appropriate biological cues needed to simulate the complexity of the ECM of a given tissue. Taken together, the sECM technology offers a manufacturable, highly reproducible, flexible, FDA-approvable, and affordable vehicle for cell expansion and differentiation in 3-D.
NASA Astrophysics Data System (ADS)
Mahmoud, Mohamed E.; El-Khatib, Ahmed M.; Badawi, Mohamed S.; Rashad, Amal R.; El-Sharkawy, Rehab M.; Thabet, Abouzeid A.
2018-04-01
Polymer composites of high-density polyethylene (HD-PE) filled with powdered lead oxide nanoparticles (PbO NPs) and bulk lead oxide (PbO Blk) were prepared with filler weight fraction [10% and 50%]. These polymer composites were investigated for radiation-shielding of gamma-rays emitted from radioactive point sources [241Am, 133Ba, 137Cs, and 60Co]. The polymer was found to decrease the heaviness of the shielding material and increase the flexibility while the metal oxide fillers acted as principle radiation attenuators in the polymer composite. The prepared composites were characterized by Fourier transform infrared spectrophotometer (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), Brunauer-Emmett-Teller surface area (BET) and field emission transmission electron microscope (FE-TEM). The morphological analysis of the assembled composites showed that, PbO NPs and PbO Blk materials exhibited homogenous dispersion in the polymer-matrix. Thermogravimetric analysis (TGA) demonstrated that the thermal-stability of HD-PE was enhanced in the presence of both PbO Blk and PbO NPs. The results declared that, the density of polymer composites was increase with the percentage of filler contents. The highest density value was identified as 1.652 g cm-3 for 50 wt% of PbO NPs. Linear attenuation coefficients (μ) have been estimated from the use of XCOM code and measured results. Reasonable agreement was attended between theoretical and experimental results. These composites were also found to display excellent percentage of heaviness with respect to other conventional materials.
Structural singularities in Ge(x)Te(100-x) films.
Piarristeguy, A A; Micoulaut, M; Escalier, R; Jóvári, P; Kaban, I; van Eijk, J; Luckas, J; Ravindren, S; Boolchand, P; Pradel, A
2015-08-21
Structural and calorimetric investigation of Ge(x)Te(100-x) films over wide range of concentration 10 < x < 50 led to evidence two structural singularities at x ∼ 22 at. % and x ∼ 33-35 at. %. Analysis of bond distribution, bond variability, and glass thermal stability led to conclude to the origin of the first singularity being the flexible/rigid transition proposed in the framework of rigidity model and the origin of the second one being the disappearance of the undercooled region resulting in amorphous materials with statistical distributions of bonds. While the first singularity signs the onset of the Ge-Ge homopolar bonds, the second is related to compositions where enhanced Ge-Ge correlations at intermediate lengthscales (7.7 Å) are observed. These two threshold compositions correspond to recently reported resistance drift threshold compositions, an important support for models pointing the breaking of homopolar Ge-Ge bonds as the main phenomenon behind the ageing of phase change materials.
PEDOT-based composites as electrode materials for supercapacitors.
Zhao, Zhiheng; Richardson, Georgia F; Meng, Qingshi; Zhu, Shenmin; Kuan, Hsu-Chiang; Ma, Jun
2016-01-29
Poly (3, 4-ethylenedioxythiophene) (denoted PEDOT) already has a brief history of being used as an active material in supercapacitors. It has many advantages such as low-cost, flexibility, and good electrical conductivity and pseudocapacitance. However, the major drawback is low stability, which means an obvious capacitance drop after a certain number of charge-discharge cycles. Another disadvantage is its limited capacitance and this becomes an issue for industrial applications. To solve these problems, there are several approaches including the addition of conducting nanofillers to increase conductivity, and mixing or depositing metal oxide to enhance capacitance. Furthermore, expanding the surface area of PEDOT is one of the main methods to improve its performance in energy storage applications through special processes; for example using a three-dimensional substrate or preparing PEDOT aerogel through freeze drying. This paper reviews recent techniques and outcomes of PEDOT based composites for supercapacitors, as well as detailed calculations about capacitances. Finally, this paper outlines the new direction and recent challenges of PEDOT based composites for supercapacitor applications.
NASA Technical Reports Server (NTRS)
Noor, A. K. (Editor); Hayduk, R. J. (Editor)
1985-01-01
Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.
Multilayer Composite Pressure Vessels
NASA Technical Reports Server (NTRS)
DeLay, Tom
2005-01-01
A method has been devised to enable the fabrication of lightweight pressure vessels from multilayer composite materials. This method is related to, but not the same as, the method described in gMaking a Metal- Lined Composite-Overwrapped Pressure Vessel h (MFS-31814), NASA Tech Briefs, Vol. 29, No. 3 (March 2005), page 59. The method is flexible in that it poses no major impediment to changes in tank design and is applicable to a wide range of tank sizes. The figure depicts a finished tank fabricated by this method, showing layers added at various stages of the fabrication process. In the first step of the process, a mandrel that defines the size and shape of the interior of the tank is machined from a polyurethane foam or other suitable lightweight tooling material. The mandrel is outfitted with metallic end fittings on a shaft. Each end fitting includes an outer flange that has a small step to accommodate a thin layer of graphite/epoxy or other suitable composite material. The outer surface of the mandrel (but not the fittings) is covered with a suitable release material. The composite material is filament- wound so as to cover the entire surface of the mandrel from the step on one end fitting to the step on the other end fitting. The composite material is then cured in place. The entire workpiece is cut in half in a plane perpendicular to the axis of symmetry at its mid-length point, yielding two composite-material half shells, each containing half of the foam mandrel. The halves of the mandrel are removed from within the composite shells, then the shells are reassembled and bonded together with a belly band of cured composite material. The resulting composite shell becomes a mandrel for the subsequent steps of the fabrication process and remains inside the final tank. The outer surface of the composite shell is covered with a layer of material designed to be impermeable by the pressurized fluid to be contained in the tank. A second step on the outer flange of each end fitting accommodates this layer. Depending on the application, this layer could be, for example, a layer of rubber, a polymer film, or an electrodeposited layer of metal. If the fluid to be contained in the tank is a gas, then the best permeation barrier is electrodeposited metal (typically copper or nickel), which can be effective at a thickness of as little as 0.005 in (.0.13 mm). The electrodeposited metal becomes molecularly bonded to the second step on each metallic end fitting. The permeation-barrier layer is covered with many layers of filament-wound composite material, which could be the same as, or different from, the composite material of the inner shell. Finally, the filament-wound composite material is cured in an ov
Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation
NASA Technical Reports Server (NTRS)
Smith, Joseph G., Jr.; Delozier, Donavon M.; Connell, John W.; Watson, Kent A.
2004-01-01
Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have potential applications on large, deployable, ultra-light weight Gossamer spacecraft as thin film membranes on antennas, solar sails, thermal/optical coatings, multi-layer insulation blankets, etc.. The challenge has been to develop a method to impart robust electrical conductivity into these materials without increasing solar absorptivity (alpha ) or decreasing optical transparency or film flexibility. Since these spacecraft will require significant compaction prior to launch, the film portion of the spacecraft will require folding. The state-of-the-art clear, conductive coating (e.g. indium-tin-oxide, ITO) is brittle and cannot tolerate folding. In this report, doping a polymer with single-walled carbon nanotubes (SWNTs) using two different methods afforded materials with good flexibility and surface conductivities in the range sufficient for ESC mitigation. A coating method afforded materials with minimal effects on the mechanical, optical, and thermo-optical properties as compared to dispersal of SWNTs in the matrix. The chemistry and physical properties of these nanocomposites are discussed.
NASA Astrophysics Data System (ADS)
Secco, Henrique de L.; Ferreira, Fabio F.; Péres, Laura O.
2018-03-01
The combination of materials to form hybrids with unique properties, different from those of the isolated components, is a strategy used to prepare functional materials with improved properties aiming to allow their application in specific fields. The doping of lanthanum fluoride with other rare earth elements is used to obtain luminescent particles, which may be useful to the manufacturing of electronic devices' displays and biological markers, for instance. The application of the powder of nanoparticles has limitations in some fields; to overcome this, the powder may be incorporated in a suitable polymeric matrix. In this work, lanthanum fluoride nanoparticles, undoped and doped with cerium and europium, were synthesized through the co-precipitation method in aqueous solution. Aiming the formation of solid state films, composites of nanoparticles in an elastomeric matrix, the nitrile rubber (NBR), were prepared. The flexibility and the transparency of the matrix in the regions of interest are advantages for the application of the luminescent composites. The composites were applied as films using the casting and the spin coating techniques and luminescent materials were obtained in the samples doped with europium and cerium. Scanning electron microscopy images showed an adequate dispersion of the particles in the matrix in both film formation techniques. Aggregates of the particles were detected in the samples which may affect the uniformity of the emission of the composites.
Mechanism Design and Testing of a Self-Deploying Structure Using Flexible Composite Tape Springs
NASA Technical Reports Server (NTRS)
Footdale, Joseph N.; Murphey, Thomas W.
2014-01-01
The detailed mechanical design of a novel deployable support structure that positions and tensions a membrane optic for space imagining applications is presented. This is a complex three-dimensional deployment using freely deploying rollable composite tape spring booms that become load bearing structural members at full deployment. The deployment tests successfully demonstrate a new architecture based on rolled and freely deployed composite tape spring members that achieve simultaneous deployment without mechanical synchronization. Proper design of the flexible component mounting interface and constraint systems, which were critical in achieving a functioning unit, are described. These flexible composite components have much potential for advancing the state of the art in deployable structures, but have yet to be widely adopted. This paper demonstrates the feasibility and advantages of implementing flexible composite components, including the design details on how to integrate with required traditional mechanisms.
Flexible wire-shaped strain sensor from cotton thread for human health and motion detection.
Li, Yuan-Qing; Huang, Pei; Zhu, Wei-Bin; Fu, Shao-Yun; Hu, Ning; Liao, Kin
2017-03-21
In this work, a wire-shaped flexible strain sensor was fabricated by encapsulating conductive carbon thread (CT) with polydimethylsiloxane (PDMS) elastomer. The key strain sensitive material, CT, was prepared by pyrolysing cotton thread in N 2 atmosphere. The CT/PDMS composite wire shows a typical piezo-resistive behavior with high strain sensitivity. The gauge factors (GF) calculated at low strain of 0-4% and high strain of 8-10% are 8.7 and 18.5, respectively, which are much higher than that of the traditional metallic strain sensor (GF around 2). The wire-shaped CT/PDMS composite sensor shows excellent response to cyclic tensile loading within the strain range of 0-10%, the frequency range of 0.01-10 Hz, to up to 2000 cycles. The potential of the wire senor as wearable strain sensor is demonstrated by the finger motion and blood pulse monitoring. Featured by the low costs of cotton wire and PDMS resin, the simple structure and fabrication technique, as well as high performance with miniaturized size, the wire-shaped sensor based on CT/PDMS composite is believed to have a great potential for application in wearable electronics for human health and motion monitoring.
Zeng, Xiaoliang; Yu, Shuhui; Lai, Maobai; Sun, Rong; Wong, Ching-Ping
2013-01-01
We demonstrate a new method that can simultaneously improve the strength and toughness of the glass fiber-reinforced bismaleimide–triazine (BT) resin composites by using polyethylene glycol (PEG) to construct a flexible bridge at the interface. The mechanical properties, including the elongation, ultimate tensile stress, Young’s modulus, toughness and dynamical mechanical properties were studied as a function of the length of PEG molecular chain. It was found that the PEG molecule acts as a bridge to link BT resin and glass fiber through covalent and non-covalent bondings, respectively, resulting in improved interfacial bonding. The incorporation of PEG produces an increase in elongation, ultimate tensile stress and toughness. The Young’s modulus and Tg were slightly reduced when the length of the PEG molecular chain was high. The elongation of the PEG-modified glass fiber-reinforced composites containing 5 wt% PEG-8000 increased by 67.1%, the ultimate tensile stress by 17.9% and the toughness by 78.2% compared to the unmodified one. This approach provides an efficient way to develop substrate material with improved strength and toughness for integrated circuit packaging applications. PMID:27877621
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Scheiman, Daniel A; Kohlmman, Lee W.
2009-01-01
Many epoxy systems under consideration for composite pressure vessels are composed of toughened epoxy resins. In this work, epoxy blends containing both rigid aromatic and flexible aliphatic components were prepared, to model toughened systems, and determine the optimum route of silicate addition. Compositions were chosen such that both glassy and rubbery resins were obtained at room temperature. The physical properties of the nanocomposites varied with T(g) and silicate placement, however, nanocomposite T(g)s were observed which exceeded that of the base resin by greater than 10 C. The tensile strength of the glassy resin remained constant or decreased on the dispersion of clay while that of the rubbery material doubled. Selectively placing the clay in the aliphatic component of the rubbery blend resulted in a greater than 100% increase in material toughness.
A comparative study of graphene and graphite-based field effect transistor on flexible substrate
NASA Astrophysics Data System (ADS)
Bhatt, Kapil; Rani, Cheenu; Vaid, Monika; Kapoor, Ankit; Kumar, Pramod; Kumar, Sandeep; Shriwastawa, Shilpi; Sharma, Sandeep; Singh, Randhir; Tripathi, C. C.
2018-06-01
In the present era, there has been a great demand of cost-effective, biodegradable, flexible and wearable electronics which may open the gate to many applications like flexible displays, RFID tags, health monitoring devices, etc. Due to the versatile nature of plastic substrates, they have been extensively used in packaging, printing, etc. However, the fabrication of electronic devices requires specially prepared substrates with high quality surfaces, chemical compositions and solutions to the related fabrication issues along with its non-biodegradable nature. Therefore, in this report, a cost-effective, biodegradable cellulose paper as an alternative dielectric substrate material for the fabrication of flexible field effect transistor (FET) is presented. The graphite and liquid phase exfoliated graphene have been used as the material for the realisation of source, drain and channel on cellulose paper substrate for its comparative analysis. The mobility of fabricated FETs was calculated to be 83 cm2/V s (holes) and 33 cm2/V s (electrons) for graphite FET and 100 cm2/V s (holes) and 52 cm2/V s (electrons) for graphene FET, respectively. The output characteristic of the device demonstrates the linear behaviour and a comprehensive increase in conductance as a function of gate voltages. The fabricated FETs may be used for strain sensing, health care monitoring devices, human motion detection, etc.
1-dimension nano-material-based flexible device
NASA Astrophysics Data System (ADS)
Yang, Xing; Zhou, Zhaoying; Zheng, Fuzhong
2009-11-01
1D nano-material-based flexible devices has attracted considerable attention owing to the growing need of the high-sensitivity flexible sensor, portable consumer electronics etc.. In this paper, the 1D nano-materials-based flexible device on polyimide substrate was proposed. The bottom-up and top-down combined process were used for constructing the ZnO nanowire and the CNT-based flexible devices. Their electrical characteristics were also investigated. The measurement results demonstrate that the flexible device covered with a layer of Al2O3 has good ohm electrical contact behavior between the nano-material and micro-electrodes. The proposed 1D nano-material-based flexible device shows the application potential in the sensing fields.
Examination of Body Composition, Flexibility, Balance, and Concentration Related to Dance Exercise
ERIC Educational Resources Information Center
Bastug, Gulsum
2018-01-01
In this study was to examine the body composition, flexibility, balance and concentration characteristics of dance exercise. Total of 268 university students whose average age was 20.59 ± 1.59 years were included. Height measurements, body weight measurements, flexibility measurements, balance test, concentration test of the students who had dance…
Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
Liu, Lili; Niu, Zhiqiang; Chen, Jun
2016-07-25
As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at a 180° folding state. The progress made so far will guide further developments in the structural design of nanocarbon-based electrode materials and the configurational diversity of supercapacitor devices. Future developments and prospects in the controllable assembly of macroscopic nanostructured electrodes and the innovation of unconventional supercapacitor configurations are also discussed. This should shed light on the R&D of supercapacitors.
Vibration and damping of laminated, composite-material plates including thickness-shear effects
NASA Technical Reports Server (NTRS)
Bert, C. W.; Siu, C. C.
1972-01-01
An analytical investigation of sinusoidally forced vibration of laminated, anisotropic plates including bending-stretching coupling, thickness-shear flexibility, all three types of inertia effects, and material damping is presented. In the analysis the effects of thickness-shear deformation are considered by the use of a shear correction factor K, analogous to that used by Mindlin for homogeneous plates. Two entirely different approaches for calculating the thickness-shear factor for a laminate are presented. Numerical examples indicate that the value of K depends on the layer properties and the stacking sequence of the laminate.
NASA Technical Reports Server (NTRS)
St. Clair, Anne K.; St. Clair, Terry L.; Winfree, William P.; Emerson, Bert R., Jr.
1989-01-01
New process developed to produce aromatic condensation polyimide films and coatings having dielectric constants in range of 2.4 to 3.2. Materials better electrical insulators than state-of-the-art commercial polyimides. Several low-dielectric-constant polyimides have excellent resistance to moisture. Useful as film and coating materials for both industrial and aerospace applications where high electrical insulation, resistance to moisture, mechanical strength, and thermal stability required. Applicable to production of high-temperature and moisture-resistance adhesives, films, photoresists, and coatings. Electronic applications include printed-circuit boards, both of composite and flexible-film types and potential use in automotive, aerospace, and electronic industries.
Sustainable polymers from renewable resources
NASA Astrophysics Data System (ADS)
Zhu, Yunqing; Romain, Charles; Williams, Charlotte K.
2016-12-01
Renewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials. There are opportunities to use such sustainable polymers in both high-value areas and in basic applications such as packaging. Life-cycle assessment can be used to quantify the environmental benefits of sustainable polymers.
Sustainable polymers from renewable resources.
Zhu, Yunqing; Romain, Charles; Williams, Charlotte K
2016-12-14
Renewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials. There are opportunities to use such sustainable polymers in both high-value areas and in basic applications such as packaging. Life-cycle assessment can be used to quantify the environmental benefits of sustainable polymers.
NASA Astrophysics Data System (ADS)
Liao, Wei-Hsin
2010-12-01
The 20th International Conference on Adaptive Structures and Technologies (ICAST) was held on 20-22 October 2009 in Hong Kong. This special section of Smart Materials and Structures is derived from the research papers presented at the conference. Of the 106 papers presented at the conference, 11 papers were reviewed and accepted for this special section, following the regular review procedures of the journal. This special section is focused on smart materials, multifunctional composites, and applications on morphing structures. Smart materials. Smart materials are the foundation of adaptive structures and intelligent systems. The development of new materials will lead to significant improvement in various applications. Three articles are focused on the fabrication of new materials and investigation of their behaviors: Barium strontium zirconate titanate ((Ba1-xSrx)(ZrxTi1-x)O3; BSZT, x = 0.25 and 0.75) ceramics with a highly crystalline structure were fabricated using the combustion technique. The microstructure of BSZT powders exhibited an almost-spherical morphology and had a porous agglomerated form. Polyaniline (PANI)/clay nanoparticles with unique core-shell structure were synthesized via Pickering emulsion polymerization. By dispersing PANI/clay nanoparticles in silicone oil, the ER fluid was made. Magnetic field effects were investigated on the deposition rate and surface morphology of chromium nitride coatings deposited by magnetron sputtering for superior hardness, excellent wear and oxidation resistance. The surface morphology of chromium nitride films was also examined by a scanning electron microscope (SEM). Multifunctional composites. Composites are made from two or more constituent materials so they can combine the best properties of different materials. Five papers deal with fabrication, testing, and modeling of various multifunctional composites: A new active structural fiber (ASF) was fabricated by coating a single carbon fiber with a concentric PZT (PbZr0.52Ti0.48O3) shell using electrolytic deposition. This new ASF is expected to have broader applications due to the higher piezoelectric coupling effect with the use of carbon fiber and PZT. The sol-gel technique was employed to deposit lead zirconium titanium (PZT) and silica composite film onto a copper (Cu)/polyimide (PI) flexible structure. The fabricated PZT-silica composite films were then used for flexible actuator and sensor applications. Interfacial properties and hydrophobicity of multifunctional Ni-nanopowder/epoxy composites were evaluated for self-sensing and actuation. The effects of water content on the actuation performance of ionic polymer-metal composites (IPMCs) were investigated experimentally. Multiscale modelling of a composite electroactive polymer structure was developed, in particular for tubular actuators. The models were validated with experimental data. Morphing structures. Three papers relate to morphing skins and structures. Several issues including stiffness and energy consumption were explored: Composite corrugated structures were used as morphing skin panels (MSPs) in the trailing edge region of a scaled morphing aerofoil section. Wind tunnel testing was carried out to demonstrate the MSP concept. Optimization of a variable-stiffness skin was performed for morphing high-lift devices. The objective is to design the structure to have high enough stiffness to withstand aerodynamic loading and yet low enough stiffness to enable morphing. The aerodynamic and actuation loads were taken into consideration during the optimization. Two adaptive and morphing structures were proposed for low-energy consumption or even energy-harvesting green buildings with the use of an optimization process. Searching for optimal solutions was done by means of an evolutionary technique while the compatibility of the resulting configurations of the adaptive envelope was ensured by the virtual force density method. We would like to thank all of the authors for their significant contributions to this special section for Smart Materials and Structures. We are also grateful to all of the reviewers and associate editors who handled the reviews for their time and effort. I would like to express my sincere appreciation to Professor E Garcia, Editor-in-Chief, for his encouragement by providing the opportunity to make this special section. I am indebted to IOP Publishing for their strong support and the staff, in particular publisher Natasha Leeper, for their special attention and excellent service.
NASA Astrophysics Data System (ADS)
Konka, Hari P.; Wahab, M. A.; Lian, K.
2012-01-01
Piezoelectric fiber composite sensors (PFCSs) made from micro-sized lead zirconate titanate (PZT) fibers have many advantages over the traditional bulk PZT sensors for embedded sensor applications. PFCSs as embedded sensors will be an ideal choice to continuously monitor the stress/strain levels and health conditions of composite structures. PFCSs are highly flexible, easily embeddable, have high compatibility with composite structures, and also provides manufacturing flexibility. This research is focused on examining the effects of embedding PFCS sensors (macro-fiber composite (MFC) and piezoelectric fiber composite (PFC)) on the structural integrity of glass-fiber-epoxy composite laminates. The strengths of composite materials with embedded PFCSs and conventional PZT sensors were compared, and the advantages of PFCS sensors over PZTs were demonstrated. Initially a numerical simulation study is performed to understand the local stress/strain field near the embedded sensor region inside a composite specimen. High stress concentration regions were observed near the embedded sensor corner edge. Using PFCS leads to a reduction of 56% in longitudinal stress concentration and 38% in transverse stress concentration, when compared to using the conventional PZTs as embedded sensors. In-plane tensile, in-plane tension-tension fatigue, and short beam strength tests are performed to evaluate the strengths/behavior of the composite specimens containing embedded PFCS. From the tensile test it is observed that embedding PFCS and PZT sensors in the composite structures leads to a reduction in ultimate strength by 3 and 6% respectively. From the fatigue test results it is concluded that both embedded PFCS and PZT sensors do not have a significant effect on the fatigue behavior of the composite specimens. From the short beam strength test it is found that embedding PFCS and PZT sensors leads to a reduction in shear strength by 7 and 15% respectively. Overall the pure PZT sensors seem to have low compatibility with composites when compared to PFCSs.
Analysis of knitted fabric reinforced flexible composites and applications in thermoforming
NASA Astrophysics Data System (ADS)
Bekisli, Burak
In this study, large deformation behavior of knitted fabric reinforced composites is investigated. In order to fully utilize the unique stretchability of knitted fabric reinforcements, elastomeric materials are used as the matrix material, resulting in "flexible composites" capable of reaching several hundred percent stretch before failing. These non-traditional composites are ideal candidates for many engineering applications where large deformation is desired, including energy/impact absorption and novel forming processes. A multi-level nonlinear finite element (FE) procedure is developed to analyze the deformation behavior of plain weft-knitted fabrics and the composites derived from these materials. The hierarchy of the model is composed of a 3D unit cell analysis (micro/meso-scale) and a 2D global analysis (macro scale). Using results from different numerical experiments performed in the micro/meso scale, a mechanical behavior database of knit fabric geometries is constructed, both for the uniaxial and biaxial stretch cases. Through an optimization procedure, these results are used to determine the mechanical properties of nonlinear truss elements needed for modeling in the macro scale. A hexagonal honeycomb structure, which closely resembles the knit fabric architecture, is formed using these nonlinear trusses. This truss structure is then used to efficiently model a large number of loops generally found in a fabric. Results from uniaxial experimental measurements are presented for knitted fabrics to validate the FE model. Appropriate hyperelastic material models are determined for the elastomeric matrix, using a curve fit to experimental data. Examples of raw fabric and composite deformation simulations in the global scale are presented in this study. Two types of composites are studied experimentally and numerically: (1) knitted fabric embedded in an elastomeric medium, and (2) the sandwich type composites with elastomeric skins and fabric core. The strain energy dissipation is found to be superior in the latter case, since yarns are not restricted by the elastomer. In addition, yarns used in this type of composite move to effectively align along the load direction, yielding a better utilization of the fibers' high axial stiffness. Fabrication methods, including novel techniques involving twin-sheet thermoforming, for both types of composites are discussed. Tensile test results for glassfiber reinforced, TPE/polyurea based specimens are also presented. Innovative concepts related to the thermoforming process are also investigated using the developed numerical model. It is shown that some of the most critical problems in this forming process, such as non-uniform thickness distribution in the final part and the sensitivity of part quality to minor thermal variations, can be beneficially addressed using carefully "tailored" knit fabrics. Common thermoformed part geometries, such as a 3D box corner and a long U-shaped channel, are studied in numerical simulations to illustrate the effects of knitted fabric reinforcements on the stabilization of the forming process.
Innovation Meets Performance Demands of Advanced Lithium-ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advancements in high capacity and low density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and molecular layer MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using MLD to examine how surface modification could stabilize silicon anode material in Li-ion batteries, researchers discovered a new reaction precursor that leads to a flexible surface coating that accommodatesmore » volumetric expansion of silicon electrodes.« less
Nature-Inspired Structural Materials for Flexible Electronic Devices.
Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong
2017-10-25
Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.
Wang, Yan; He, Zhen-Yu; Wang, Yao-Xuan; Fan, Cong; Liu, Chen-Ren-Lang; Peng, Qi-Ling; Chen, Jin-Ju; Feng, Zhe-Sheng
2018-02-15
In this work, a free-standing flexible composite electrode was prepared by vacuum filtration method with LiFePO 4 , graphene and nanofibrillated cellulose (NFC). Compared with the pure LiFePO 4 electrode, the resulting flexible composite (LiFePO 4 /graphene/NFC) electrode showed excellent mechanical flexibility, and possessed an enhanced initial discharge capacity of 151 mA h/g (0.1 C) and a good capacity retention rate with only 5% loss after 60 cycles due to suitable electrolyte wettability at the interface. Furthermore, the NFC and graphene formed a three-dimensional conductive framework, which provided high-speed electron conduction in the composite and reduced electrode polarization during charging-discharging processes. Moreover, the composite electrode could endure bending tests up to 1000 times, highlighting preferable mechanical strength and durability. These results demonstrated that the as-fabricated electrodes could be applied as flexible electrodes with an embedded power supply. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Xia; Zhao, Bote; Cai, Yong; Tadé, Moses O.; Shao, Zongping
2013-11-01
Flexible V-O-C composite nanofibers were fabricated from solution precursors via electrospinning and were investigated as free-standing and additive-free film electrodes for supercapacitors. Specifically, composite nanofibers (V0, V5, V10 and V20) with different vanadyl acetylacetonate (VO(acac)2) contents of 0, 5, 10 and 20 wt% with respect to polyacrylonitrile (PAN) were prepared. The composite nanofibers were comparatively studied using XRD, Raman spectroscopy, XPS, N2 adsorption-desorption, FE-SEM, TEM and S-TEM. The vanadium element was found to be well-dispersed in the carbon nanofibers, free from the formation of an aggregated crystalline phase, even in the case of V20. A specific surface area of 587.9 m2 g-1 was reached for V10 after calcination, which is approximately twice that of the vanadium-free carbon nanofibers (V0, 300.9 m2 g-1). To perform as an electrode for supercapacitors in an aqueous electrolyte, the V10 film delivered a specific capacitance of 463 F g-1 at 1 A g-1. V10 was also able to retain a specific capacitance of 380 F g-1, even at a current density of 10 A g-1. Additionally, very stable cycling stability was achieved, maintaining an outstanding specific capacitance of 400 F g-1 at 5 A g-1 after charge-discharge cycling 5000 times. Thus, V-O-C composite nanofibers are highly attractive electrode materials for flexible, high-power, thin film energy storage devices and applications.Flexible V-O-C composite nanofibers were fabricated from solution precursors via electrospinning and were investigated as free-standing and additive-free film electrodes for supercapacitors. Specifically, composite nanofibers (V0, V5, V10 and V20) with different vanadyl acetylacetonate (VO(acac)2) contents of 0, 5, 10 and 20 wt% with respect to polyacrylonitrile (PAN) were prepared. The composite nanofibers were comparatively studied using XRD, Raman spectroscopy, XPS, N2 adsorption-desorption, FE-SEM, TEM and S-TEM. The vanadium element was found to be well-dispersed in the carbon nanofibers, free from the formation of an aggregated crystalline phase, even in the case of V20. A specific surface area of 587.9 m2 g-1 was reached for V10 after calcination, which is approximately twice that of the vanadium-free carbon nanofibers (V0, 300.9 m2 g-1). To perform as an electrode for supercapacitors in an aqueous electrolyte, the V10 film delivered a specific capacitance of 463 F g-1 at 1 A g-1. V10 was also able to retain a specific capacitance of 380 F g-1, even at a current density of 10 A g-1. Additionally, very stable cycling stability was achieved, maintaining an outstanding specific capacitance of 400 F g-1 at 5 A g-1 after charge-discharge cycling 5000 times. Thus, V-O-C composite nanofibers are highly attractive electrode materials for flexible, high-power, thin film energy storage devices and applications. Electronic supplementary information (ESI) available: FE-SEM image. See DOI: 10.1039/c3nr04484j
Rotor blade construction for circulation control aircraft
NASA Technical Reports Server (NTRS)
Carter, Sr., Donald R. (Inventor); Sedlak, Matthew (Inventor); Krauss, Timothy A. (Inventor)
1986-01-01
A circulation control aircraft rotor blade having a spanwise Coanda surface 16 and a plurality of spanwise extending flexible composite material panels 18 cooperating with the surface to define slots for the discharge of compressed air from within the blade with each panel having first flexure means 60 associated with screw adjustments 36 for establishing a slot opening preload and second flexure means 62 associated with screw adjustments 38 for establishing a slot maximum opening.
NASA Astrophysics Data System (ADS)
Huang, Cheng; Zhang, Qiming
2004-07-01
The development of high dielectric constant polymers as active materials in high-performance devices is one of the challenges in polymeric electronics and opto-electronics such as flexible thin-film capacitors, memory devices and microactuators for deformable micromirror technology. A group of poly(vinylidene fluoridetrifluoroethylene) P(VDF-TrFE) based high-dielectric-constant fluoroterpolymers have been developed, which have high room-temperature dielectric constant (K>60) and very high strain level and high energy density. The longitudinal and transverse strain of these materials can reach about -7% and 4.5%, respectively, and the elastic energy density is around 1.1 J/cm^3 under a high electric field of 150 MV/m. The influence on the electromechanical properties of copolymerizing poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) with a third monomer, chlorofluoroethylene (CFE), was investigated. It was found that increasing the CFE content from 0 to 8.5% slowly converts the ferroelectric structure of the copolymer to a relaxor ferroelectric system. This allows for a greatly decreased polarization and dielectric hysteresis and a much higher strain. Above 8.5%, increased CFE content substantially degrades the bulk crystallinity and the Young's modulus. These terpolymers have the potential to achieve above 10 J/cm^3 whole capacity energy density, which makes them good candidates for applications in pulse power capacitors. An all-polymer percolative composite by the combination of conductive polyaniline particles (K>10^5) within a fluoroterpolymer matrix, is introduced which exhibits very high dielectric constant (>7,000). The experimental results show that the dielectric behavior of this new class of percolative composites follows the prediction of the percolation theory and the analysis of the conductive percolation phenomena. The very high dielectric constant of the all-polymer composites which are also very flexible and possess elastic modulus not very much different from that of the insulation polymer matrix makes it possible to induce a high electromechanical response under a much reduced electric field (a strain of 2.65% with an elastic energy density of 0.18 J/cm^3 can be achieved under a low field of 16 MV/m). Data analysis also suggests that in these composites, the non-uniform local field distribution as well as interface effects can significantly enhance the strain responses. Furthermore, the experimental data as well as the data analysis indicate that the conduction loss in these composites will not affect the strain hysteresis. Flexible high dielectric constant electroactive polymers provide potential applications in high-energy-density (HED) energy storage and conversion systems such as lightweight field effect actuators and capacitors.
Liu, Yongchuan; Miao, Xiaofei; Fang, Jianhui; Zhang, Xiangxin; Chen, Sujing; Li, Wei; Feng, Wendou; Chen, Yuanqiang; Wang, Wei; Zhang, Yining
2016-03-02
Flexible solid-state supercapacitors provide a promising energy-storage alternative for the rapidly growing flexible and wearable electronic industry. Further improving device energy density and developing a cheap flexible current collector are two major challenges in pushing the technology forward. In this work, we synthesize a nitrogen-doped graphene/MnO2 nanosheet (NGMn) composite by a simple hydrothermal method. Nitrogen-doped graphene acts as a template to induce the growth of layered δ-MnO2 and improves the electronic conductivity of the composite. The NGMn composite exhibits a large specific capacitance of about 305 F g(-1) at a scan rate of 5 mV s(-1). We also create a cheap and highly conductive flexible current collector using Scotch tape. Flexible solid-state asymmetric supercapacitors are fabricated with NGMn cathode, activated carbon anode, and PVA-LiCl gel electrolyte. The device can achieve a high operation voltage of 1.8 V and exhibits a maximum energy density of 3.5 mWh cm(-3) at a power density of 0.019 W cm(-3). Moreover, it retains >90% of its initial capacitance after 1500 cycles. Because of its flexibility, high energy density, and good cycle life, NGMn-based flexible solid state asymmetric supercapacitors have great potential for application in next-generation portable and wearable electronics.
Nano-material aspects of shock absorption in bone joints.
Tributsch, H; Copf, F; Copf, P; Hindenlang, U; Niethard, F U; Schneider, R
2010-01-01
This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three-dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones.
Carbon nanotube network evolution during deformation of PVDF-MWNT nanocomposites
NASA Astrophysics Data System (ADS)
Rizvi, Reza; Naguib, Hani E.
2013-04-01
The emergence of novel electronic systems and their requirements have necessitated the evolution of new material classes. The traditional electronic semiconductors and components are shifting from silicon based substrates to polymers and other organic compounds. Sensor components are no exceptions, where compliant polymeric materials offer the possibility of flexible electronics. This paper examines the fabrication and characterization of piezoresistive nanocomposites for pressure sensing applications. The matrix material employed was Polyvinylidene Fluoride (PVDF). The PVDF phase was reinforced with conductive particles, in order to form a conductive filler network throughout the nanocomposite. Multiwall carbon nanotubes (MWNT) were selected as conductive particles to form the networks. The composites were prepared by melt mixing the PVDF and conductive particles in compositions ranging from 0.25 to 10 wt% conductive particle in PVDF. The dielectric permittivity and electrical conductivity of the composites was characterized and the electrical percolation behavior of PVDF nanocomposites fitted to the statistical percolation model. Scanning electron was employed to understand the morphology of the filler networks in the PVDF nanocomposites. Quasi-static piezoresistance of the nanocomposites was characterized using a custom-built force-resistance measurement setup under compressive loading conditions.
Energy absorption characteristics of lightweight structural member by stacking conditions
NASA Astrophysics Data System (ADS)
Choi, Juho; Yang, Yongjun; Hwang, Woochae; Pyeon, Seokbeom; Min, Hanki; Yeo, Ingoo; Yang, Inyoung
2011-11-01
The recent trend in vehicle design is aimed at improving crash safety and environmental-friendliness. To solve these issues, the needs for lighter vehicle to limit exhaust gas and improve fuel economy has been requested for environmental-friendliness. Automobile design should be made for reduced weight once the safety of vehicle is maintained. In this study, composite structural members were manufactured using carbon fiber reinforced plastic (CFRP) which are representative lightweight structural materials. Carbon fiber has been researched as alternative to metals for lightweight vehicle and better fuel economy. CFRP is an anisotropic material which is the most widely adapted lightweight structural member because of their inherent design flexibility and high specific strength and stiffness. Also, variation of CFRP interface number is important to increase the energy absorption capacity. In this study, one type of circular shaped composite tube was used, combined with reinforcing foam. The stacking condition was selected to investigate the effect of the fiber orientation angle and interface number. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported. The axial static collapse tests were carried out for each section member. The collapse modes and the energy absorption capability of the members were analyzed.
Energy absorption characteristics of lightweight structural member by stacking conditions
NASA Astrophysics Data System (ADS)
Choi, Juho; Yang, Yongjun; Hwang, Woochae; Pyeon, Seokbeom; Min, Hanki; Yeo, Ingoo; Yang, Inyoung
2012-04-01
The recent trend in vehicle design is aimed at improving crash safety and environmental-friendliness. To solve these issues, the needs for lighter vehicle to limit exhaust gas and improve fuel economy has been requested for environmental-friendliness. Automobile design should be made for reduced weight once the safety of vehicle is maintained. In this study, composite structural members were manufactured using carbon fiber reinforced plastic (CFRP) which are representative lightweight structural materials. Carbon fiber has been researched as alternative to metals for lightweight vehicle and better fuel economy. CFRP is an anisotropic material which is the most widely adapted lightweight structural member because of their inherent design flexibility and high specific strength and stiffness. Also, variation of CFRP interface number is important to increase the energy absorption capacity. In this study, one type of circular shaped composite tube was used, combined with reinforcing foam. The stacking condition was selected to investigate the effect of the fiber orientation angle and interface number. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported. The axial static collapse tests were carried out for each section member. The collapse modes and the energy absorption capability of the members were analyzed.
Challenges and Opportunities in Reactive Processing and Applications of Advanced Ceramic Materials
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2003-01-01
Recently, there has been a great deal of interest in the research, development, and commercialization of innovative synthesis and processing technologies for advanced ceramics and composite materials. Reactive processing approaches have been actively considered due to their robustness, flexibility, and affordability. A wide variety of silicon carbide-based advanced ceramics and composites are currently being fabricated using the processing approaches involving reactive infiltration of liquid and gaseous species into engineered fibrous or microporous carbon performs. The microporous carbon performs have been fabricated using the temperature induced phase separation and pyrolysis of two phase organic (resin-pore former) mixtures and fiber reinforcement of carbon and ceramic particulate bodies. In addition, pyrolyzed native plant cellulose tissues also provide unique carbon templates for manufacturing of non-oxide and oxide ceramics. In spite of great interest in this technology due to their affordability and robustness, there is a lack of scientific basis for process understanding and many technical challenges still remain. The influence of perform properties and other parameters on the resulting microstructure and properties of final material is not well understood. In this presentation, mechanism of silicon-carbon reaction in various systems and the effect of perform microstructure on the mechanical properties of advanced silicon carbide based materials will be discussed. Various examples of applications of reactively processed advanced silicon carbide ceramics and composite materials will be presented.
NASA Astrophysics Data System (ADS)
Kim, Dae Kyom; Kim, Nam Dong; Park, Seung-Keun; Seong, Kwang-dong; Hwang, Minsik; You, Nam-Ho; Piao, Yuanzhe
2018-03-01
Flexible all-solid-state supercapacitors are desirable as potential energy storage systems for wearable technologies. Herein, we synthesize aminophenyl multiwall carbon nanotube (AP-MWCNT) grafted polyimide precursor by in situ polymerization method as a nitrogen-doped carbon precursor. Flexible supercapacitor electrodes are fabricated via a coating of carbon precursor on carbon cloth surface and carbonization at high temperature directly. The as-obtained electrodes, which can be directly used without any binders or additives, can deliver a high specific capacitance of 333.4 F g-1 at 1 A g-1 (based on active material mass) and excellent cycle stability with 103% capacitance retention after 10,000 cycles in a three-electrode system. The flexible all-solid-state supercapacitor device exhibits a high volumetric capacitance of 3.88 F cm-3 at a current density of 0.02 mA cm-3. And also the device can deliver a maximum volumetric energy density of 0.50 mWh cm-3 and presents good cycling stability with 85.3% capacitance retention after 10,000 cycles. This device cell can not only show extraordinary mechanical flexibilities allowing folding, twisting, and rolling but also demonstrate remarkable stable electrochemical performances under their forms. This work provides a novel approach to obtain carbon textile-based flexible supercapacitors with high electrochemical performance and mechanical flexibility.
An overview of carbon materials for flexible electrochemical capacitors.
He, Yongmin; Chen, Wanjun; Gao, Caitian; Zhou, Jinyuan; Li, Xiaodong; Xie, Erqing
2013-10-07
Under the background of the quick development of lightweight, flexible, and wearable electronic devices in our society, a flexible and highly efficient energy management strategy is needed for their counterpart energy-storage systems. Among them, flexible electrochemical capacitors (ECs) have been considered as one of the most promising candidates because of their significant advantages in power and energy densities, and unique properties of being flexible, lightweight, low-cost, and environmentally friendly compared with current energy storage devices. In a common EC, carbon materials play an irreplaceable and principal role in its energy-storage performance. Up till now, most progress towards flexible ECs technologies has mostly benefited from the continuous development of carbon materials. As a result, in view of the dual remarkable highlights of ECs and carbon materials, a summary of recent research progress on carbon-based flexible EC electrode materials is presented in this review, including carbon fiber (CF, consisting of carbon microfiber-CMF and carbon nanofiber-CNF) networks, carbon nanotube (CNT) and graphene coatings, CNT and/or graphene papers (or films), and freestanding three-dimensional (3D) flexible carbon-based macroscopic architectures. Furthermore, some promising carbon materials for great potential applications in flexible ECs are introduced. Finally, the trends and challenges in the development of carbon-based electrode materials for flexible ECs and their smart applications are analyzed.
Loeblein, Manuela; Bolker, Asaf; Tsang, Siu Hon; Atar, Nurit; Uzan-Saguy, Cecile; Verker, Ronen; Gouzman, Irina; Grossman, Eitan; Teo, Edwin Hang Tong
2015-12-22
Polyimides (PIs) have been praised for their high thermal stability, high modulus of elasticity and tensile strength, ease of fabrication, and moldability. They are currently the standard choice for both substrates for flexible electronics and space shielding, as they render high temperature and UV stability and toughness. However, their poor thermal conductivity and completely electrically insulating characteristics have caused other limitations, such as thermal management challenges for flexible high-power electronics and spacecraft electrostatic charging. In order to target these issues, a hybrid of PI with 3D-graphene (3D-C), 3D-C/PI, is developed here. This composite renders extraordinary enhancements of thermal conductivity (one order of magnitude) and electrical conductivity (10 orders of magnitude). It withstands and keeps a stable performance throughout various bending and thermal cycles, as well as the oxidative and aggressive environment of ground-based, simulated space environments. This makes this new hybrid film a suitable material for flexible space applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Joseph, Sherin; Kumar, A. V. Ramesh; John, Reji
2017-11-01
Lead zirconate titanate (PZT) is one of the most important piezoelectric materials widely used for underwater sensors. However, PZTs are hard and non-compliant and hence there is an overwhelming attention devoted toward making it flexible by preparing films on flexible substrates by different routes. In this work, the electrochemical deposition of composition controlled PZT films over flexible stainless steel (SS) foil substrates using non-aqueous electrolyte dimethyl sulphoxide (DMSO) was carried out. Effects of various key parameters involved in electrochemical deposition process such as current density and time of deposition were studied. It was found that a current density of 25 mA/cm2 for 5 min gave a good film. The morphology and topography evaluation of the films was carried out by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively, which showed a uniform morphology with a surface roughness of 2 nm. The PZT phase formation was studied using X-ray diffraction (XRD) and corroborated with Raman spectroscopic studies. The dielectric constant, dielectric loss, hysteresis and I-V characteristics of the film was evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoneim, M. T.; Hussain, M. M., E-mail: muhammadmustafa.hussain@kaust.edu.sa
Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ∼260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygenmore » and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.« less
Composite flexible blanket insulation
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A. (Inventor); Lowe, David M. (Inventor)
1994-01-01
An improved composite flexible blanket insulation is presented comprising top silicon carbide having an interlock design, wherein the reflective shield is composed of single or double aluminized polyimide and wherein the polyimide film has a honeycomb pattern.
Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K Kirk
2014-07-01
In this paper, we report the use of micromachined PbIn1/2Nb1/2O3-PbMg1/3Nb2/3O3-PbTiO 3 (PIN-PMNPT) single crystal 1-3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at the center frequency of 41 MHz, which resulted in a 43 μm axial resolution. Ex vivo IVUS imaging was conducted to demonstrate the improvement of axial resolution. The composite transducer was capable of identifying the three layers of a cadaver coronary artery specimen with high resolution. The PIN-PMN-PT-based composite has superior piezoelectric properties comparable to PMN-PT-based composite and its thermal stability is higher than PMN-PT. PIN-PMN-PT crystal can be an alternative approach for fabricating high-frequency composite, instead of using PMN-PT.
Evanoff, Kara; Benson, Jim; Schauer, Mark; Kovalenko, Igor; Lashmore, David; Ready, W Jud; Yushin, Gleb
2012-11-27
Materials that can perform simultaneous functions allow for reductions in the total system mass and volume. Developing technologies to produce flexible batteries with good performance in combination with high specific strength is strongly desired for weight- and power-sensitive applications such as unmanned or aerospace vehicles, high-performance ground vehicles, robotics, and smart textiles. State of the art battery electrode fabrication techniques are not conducive to the development of multifunctional materials due to their inherently low strength and conductivities. Here, we present a scalable method utilizing carbon nanotube (CNT) nonwoven fabric-based technology to develop flexible, electrochemically stable (∼494 mAh·g(-1) for 150 cycles) battery anodes that can be produced on an industrial scale and demonstrate specific strength higher than that of titanium, copper, and even a structural steel. Similar methods can be utilized for the formation of various cathode and anode composites with tunable strength and energy and power densities.
NASA Technical Reports Server (NTRS)
Watson, Kent A.; Connell, John W.; Delozier, Donavon M.; Smith, Joseph G., Jr.
2004-01-01
Space environmentally durable polymeric films with low color and sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have been under investigation as part of a materials development activity. These materials have potential applications on advanced spacecraft, particularly on large, deployable, ultra-light weight Gossamer spacecraft. The approach taken to impart sufficient electrical conductivity into the polymer film while maintaining flexibility is to use single wall carbon nanotubes (SWNTs) as conductive additives. Approaches investigated in our lab involved an in-situ polymerization method, addition of SWNTs to a polymer containing reactive end-groups, and spray coating of polymer surfaces. The work described herein is a summary of the current status of this project. Surface conductivities (measured as surface resistance) in the range sufficient for ESC mitigation were achieved with minimal effects on the physical, thermal, mechanical and optical properties of the films. Additionally, the electrical conductivity was not affected by harsh mechanical manipulation of the films. The chemistry and physical properties of these nanocomposites will be discussed.
Heredia-Guerrero, José A; Ceseracciu, Luca; Guzman-Puyol, Susana; Paul, Uttam C; Alfaro-Pulido, Alejandro; Grande, Chiara; Vezzulli, Luigi; Bandiera, Tiziano; Bertorelli, Rosalia; Russo, Debora; Athanassiou, Athanassia; Bayer, Ilker S
2018-07-15
Ethyl cellulose (EC)/polydimethylsiloxane (PDMS) composite films were prepared at various concentrations of PDMS in the films (0, 5, 10, 15, and 20 wt.%). Morphological and chemical analysis by EDX-SEM and ATR-FTIR showed that EC-rich matrices and PDMS-rich particles were formed, with the two polymers interacting through Hbonds. The number and diameter of particles in the composite depended on the PDMS content and allowed a fine tuning of several properties such as opacity, hydrophobicity, water uptake, and water permeability. Relative low amounts of clove essential oil were also added to the most waterproof composite material (80 wt.% ethyl cellulose and 20 wt.% PDMS). The essential oil increased the flexibility and the antioxidant capacity of the composite. Finally, the antimicrobial properties were tested against common pathogens such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The presence of clove essential oil reduced the biofilm formation on the composites. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindocha, Sheena A.; McIntyre, Laura J.; Fogg, Andrew M., E-mail: afogg@liverpool.ac.u
2009-05-15
Layered lanthanide hydroxynitrate anion exchange host lattices have been prepared via a room temperature precipitation synthesis. These materials have the composition Ln{sub 2}(OH){sub 5}NO{sub 3}.H{sub 2}O and are formed for Y and the lanthanides from Eu to Er and as such include the first Eu containing nitrate anion exchange host lattice. The interlayer separation of these materials, approximately 8.5 A, is lower than in the related phases Ln{sub 2}(OH){sub 5}NO{sub 3}.1.5H{sub 2}O which have a corresponding value of 9.1 A and is consistent with the reduction in the co-intercalated water content of these materials. These new intercalation hosts have beenmore » shown to undergo facile anion exchange reactions with a wide range of organic carboxylate and sulfonate anions. These reactions produce phases with up to three times the interlayer separation of the host lattice demonstrating the flexibility of these materials. - Graphical abstract: New anion exchangeable layered hydroxynitrates, Ln{sub 2}(OH){sub 5}NO{sub 3}.H{sub 2}O (Ln=Y, Eu - Er) have been synthesized via a precipitation route. These materials have been shown to be very flexible intercalation hosts undergoing facile exchange reactions with organic carboxylate and sulfonate anions.« less
NASA Astrophysics Data System (ADS)
He, Zijian; Chen, Long; Zhang, Bochen; Liu, Yongchang; Fan, Li-Zhen
2018-07-01
Solid-state electrolytes with high ionic conductivities, great flexibility, and easy processability are needed for high-performance solid-state rechargeable lithium batteries. In this work, we synthesize nanosized cubic Li6.25Al0.25La3Zr2O12 (LLZO) by solution combustion method and develop a flexible garnet-based composite solid electrolyte composed of LLZO, poly(ethylene carbonate) (PEC), poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP) and lithium bis(fluorosulfonyl)imide (LiFSI)). In the flexible composite solid electrolytes, LLZO nanoparticles, as ceramic matrix, have a positive effect on ionic conductivities and lithium ion transference number (tLi+). PEC, as a fast ion-conducting polymer, possesses high tLi+ inherently. P(VdF-HFP), as a binder, can strengthen mechanical properties. Consequently, the as-prepared composite solid electrolyte demonstrates high tLi+ (0.82) and superb thermal stability (remaining LLZO matrix after burning). All-solid-state LiFePO4|Li cells assembled with the flexible composite solid electrolyte deliver a high initial discharge specific capacity of 121.4 mAh g-1 and good cycling stability at 55 °C.
Gaikwad, Abhinav M; Arias, Ana Claudia
2017-02-22
Flexible lithium-ion batteries are necessary for powering the next generation of wearable electronic devices. In most designs, the mechanical flexibility of the battery is improved by reducing the thickness of the active layers, which in turn reduces the areal capacity and energy density of the battery. The performance of a battery depends on the electrode composition, and in most flexible batteries, standard electrode formulation is used, which is not suitable for flexing. Even with considerable efforts made toward the development of flexible lithium-ion batteries, the formulation of the electrodes has received very little attention. In this study, we investigate the relation between the electrode formulation and the mechanical strength of the electrodes. Peel and drag tests are used to compare the adhesion and cohesion strength of the electrodes. The strength of an electrode is sensitive to the particle size and the choice of polymeric binder. By optimizing the electrode composition, we were able to fabricate a high areal capacity (∼2 mAh/cm 2 ) flexible lithium-ion battery with conventional metal-based current collectors that shows superior electrochemical and mechanical performance in comparison to that of batteries with standard composition.
Composite flexible insulation for thermal protection of space vehicles
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda
1991-01-01
A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the aeroassist space transfer vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.
Challenges and advances in the field of self-assembled membranes.
van Rijn, Patrick; Tutus, Murat; Kathrein, Christine; Zhu, Leilei; Wessling, Matthias; Schwaneberg, Ulrich; Böker, Alexander
2013-08-21
Self-assembled membranes are of vital importance in biological systems e.g. cellular and organelle membranes, however, more focus is being put on synthetic self-assembled membranes not only as an alternative for lipid membranes but also as an alternative for lithographic methods. More investigations move towards self-assembly processes because of the low-cost preparations, structural self-regulation and the ease of creating composite materials and tunable properties. The fabrication of new smart membrane materials via self-assembly is of interest for delivery vessels, size selective separation and purification, controlled-release materials, sensors and catalysts, scaffolds for tissue engineering, low dielectric constant materials for microelectronic devices, antireflective coatings and proton exchange membranes for polymer electrolyte membrane fuel cells. Polymers and nanoparticles offer the most straightforward approaches to create membrane structures. However, alternative approaches using small molecules or composite materials offer novel ultra-thin membranes or multi-functional membranes, respectively. Especially, the composite material membranes are regarded as highly promising since they offer the possibility to combine properties of different systems. The advantages of polymers which provide elastic and flexible yet stable matrices can be combined with nanoparticles being either inorganic, organic or even protein-based which offers pore-size control, catalytic activity or permeation regulation. It is therefore believed that at the interface of different disciplines with each offering different materials or approaches, the most novel and interesting membrane structures are going to be produced. The combinations and approaches presented in this review offer non-conventional self-assembled membrane materials which exhibit a high potential to advance membrane science and find more practical applications.
Evaluation of Rosin Gum and Eudragit® RS PO as a Functional Film Coating Material.
Pomin, Suélen Plaza; de Lima, Isabela Angeli; Pezarini, Rogério Ribeiro; Cavalcanti, Osvaldo Albuquerque
2017-11-01
Polymers are essential tools in the research and development of new therapeutic devices. The diversity and flexibility of these materials have generated high expectations in the composition of new materials with extraordinary abilities, especially in the design of new systems for the modified release of pharmaceutically active ingredients. The natural polymer rosin features moisture protection and pH-dependent behavior (i.e., it is sensitive to pH > 7.0), suggesting its possible use in pharmaceutical systems. The synthetic polymer Eudragit® RS PO is a low-permeability material, the disintegration of which depends on the time of residence in the gastrointestinal tract. The present study developed a polymeric material with desirable physicochemical characteristics and synergistic effects that resulted from the inherent properties of the associated polymers. Isolated films were obtained by solvent evaporation and subjected to a water vapor transmission test, scanning electron microscopy, calorimetry, Fourier transform-infrared (FT-IR) spectroscopy, micro-Raman spectroscopy, and mechanical analysis. The new polymeric material was macroscopically continuous and homogeneous, was appropriately flexible, had low water permeability, was vulnerable in alkaline environments, and was thermally stable, maintaining an unchanged structure up to temperatures of ∼400°C. The new material also presented potentially suitable characteristics for application in film coatings for oral solids, suggesting that it is capable of carrying therapeutic substances to distal regions of the gastrointestinal tract. These findings indicate that this new material may be added to the list of functional excipients.
Optimal Design of Grid-Stiffened Panels and Shells With Variable Curvature
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Jaunky, Navin
2001-01-01
A design strategy for optimal design of composite grid-stiffened structures with variable curvature subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. Stiffening configuration is herein defined as a design variable that indicates the combination of axial, transverse and diagonal stiffeners in the stiffened panel. The design optimization process is adapted to identify the lightest-weight stiffening configuration and stiffener spacing for grid-stiffened composite panels given the overall panel dimensions. in-plane design loads, material properties. and boundary conditions of the grid-stiffened panel or shell.
Biomaterials for intervertebral disc regeneration and repair.
Bowles, Robert D; Setton, Lori A
2017-06-01
The intervertebral disc contributes to motion, weight bearing, and flexibility of the spine, but is susceptible to damage and morphological changes that contribute to pathology with age and injury. Engineering strategies that rely upon synthetic materials or composite implants that do not interface with the biological components of the disc have not met with widespread use or desirable outcomes in the treatment of intervertebral disc pathology. Here we review bioengineering advances to treat disc disorders, using cell-supplemented materials, or acellular, biologically based materials, that provide opportunity for cell-material interactions and remodeling in the treatment of intervertebral disc disorders. While a field still in early development, bioengineering-based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disc disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Deng, Lingjuan; Gao, Yihong; Ma, Zhanying; Fan, Guang
2017-11-01
Preparation of free-standing electrode materials with three-dimensional network architecture has emerged as an effective strategy for acquiring advanced portable and wearable power sources. Herein, graphene/vanadium oxide (GR/V 2 O 5 ) free-standing monolith composite has been prepared via a simple hydrothermal process. Flexible GR sheets acted as binder to connect the belt-like V 2 O 5 for assembling three-dimensional network architecture. The obtained GR/V 2 O 5 composite can be reshaped into GR/V 2 O 5 flexible film which exhibits more compact structure by ultrasonication and vacuum filtration. A high specific capacitance of 358Fg -1 for GR/V 2 O 5 monolith compared with that of GR/V 2 O 5 flexible film (272Fg -1 ) has been achieved in 0.5molL -1 K 2 SO 4 solution when used as binder free electrodes in three-electrode system. An asymmetrical supercapacitor has been assembled using GR/V 2 O 5 monolith as positive electrode and GR monolith as negative electrode, and it can be reversibly charged-discharged at a cell voltage of 1.7V in 0.5molL -1 K 2 SO 4 electrolyte. The asymmetrical capacitor can deliver an energy density of 26.22Whkg -1 at a power density of 425Wkg -1 , much higher than that of the symmetrical supercapacitor based on GR/V 2 O 5 monolith electrode. Moreover, the asymmetrical supercapacitor preserves 90% of its initial capacitance over 1000 cycles at a current density of 5Ag -1 . Copyright © 2017 Elsevier Inc. All rights reserved.
Magnetic assembly of transparent and conducting graphene-based functional composites
NASA Astrophysics Data System (ADS)
Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele
2016-06-01
Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol-gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices.
Graphene supported heterogeneous catalysts for Li-O2 batteries
NASA Astrophysics Data System (ADS)
Alaf, M.; Tocoglu, U.; Kartal, M.; Akbulut, H.
2016-09-01
In this study production and characterization of free-standing and flexible (i) graphene, (ii) α-MnO2/graphene, (iii) Pt/graphene (iv) α-MnO2/Pt/graphene composite cathodes for Li-air batteries were reported. Graphene supported heterogeneous catalysts were produced by a facile method. In order to prevent aggregation of graphene sheets and increase not only interlayer distance but also surface area, a trace amount multi-wall carbon nano tube (MWCNT) was introduced to the composite structure. The obtained composite catalysts were characterized by SEM, X-ray diffraction, N2 adsorption-desorption analyze and Raman spectroscopy. The electrochemical characterization tests including galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurement of catalyst were carried out by using an ECC-Air test cell. These highly active graphene supported heterogeneous composite catalysts provide competitive properties relative to other catalyst materials for Li-air batteries.
Bismuth pyrochlore-based thin films for dielectric energy storage
NASA Astrophysics Data System (ADS)
Michael, Elizabeth K.
The drive towards the miniaturization of electronic devices has created a need for dielectric materials with large energy storage densities. These materials, which are used in capacitors, are a critical component in many electrical systems. Here, the development of dielectric energy storage materials for pulsed power applications, which require materials with the ability to accumulate a large amount of energy and then deliver it to the system rapidly, is explored. The amount of electrostatic energy that can be stored by a material is a function of the induced polarization and the dielectric breakdown strength of the material. An ideal energy storage dielectric would possess a high relative permittivity, high dielectric breakdown strength, and low loss tangent under high applied electric fields. The bismuth pyrochlores are a compositionally tunable family of materials that meet these requirements. Thin films of cubic pyrochlore bismuth zinc niobate, bismuth zinc tantalate, and bismuth zinc niobate tantalate, were fabricated using a novel solution chemistry based upon the Pechini method. This solution preparation is advantageous because it avoids the use of teratogenic solvents, such as 2-methoxyethanol. Crystalline films fabricated using this solution chemistry had very small grains that were approximately 27 nm in lateral size and 35 nm through the film thickness. Impedance measurements found that the resistivity of the grain boundaries was two orders of magnitude higher than the resistivity of the grain interior. The presence of many resistive grain boundaries impeded conduction through the films, resulting in high breakdown strengths for these materials. In addition to high breakdown strengths, this family of materials exhibited moderate relative permittivities of between 55 +/- 2 and 145 +/- 5, for bismuth zinc tantalate and bismuth zinc niobate, respectively, and low loss tangents on the order of 0.0008 +/- 0.0001. Increases in the concentration of the tantalum end member increased the dielectric breakdown strength. This combination of a high breakdown strength and a moderate permittivity led to a high discharged energy storage density for all film compositions. For example, at a measurement frequency of 10 kHz, bismuth zinc niobate exhibited a maximum recoverable energy storage density of 60.8 +/- 2.0 J/cm 3, while bismuth zinc tantalate exhibited a recoverable energy storage density of 60.7 +/- 2.0 J/cm3. Intermediate compositions of bismuth zinc niobate tantalate were explored to maximize the energy storage density of the substitutional solid solution. At an optimized concentration of ten mole percent tantalum, the maximum recoverable 10 kHz energy storage density was ˜66.9 +/- 2.4 J/cm3. These films of bismuth zinc niobate tantalate (Bi1.5Zn0.9Nb1.35Ta0.15O 6.9) sustained a maximum field of 5.5 MV/cm at 10 kHz, and demonstrated a relative permittivity of 122 +/- 4. The films maintained a high energy storage density above 20 J/cm3 though temperatures of 200°C. The second major objective of this work was to integrate complex oxides processed at temperatures below 350°C onto flexible polyimide substrates for potential use in flexible energy storage applications. Nanocomposite films consisting of a nanocrystalline fluorite related to delta-bismuth oxide in an amorphous matrix were prepared by reducing the citric acid concentration of the precursor solution, relative to the crystalline films. These solutions were batched with the composition Bi1.5Zn0.9Nb 1.35Ta0.15O6.9. The nanocomposite had a relative permittivity of 50 +/- 2 and dielectric losses on the order of 0.03 +/- 0.01. For measurement frequencies of 1 kHz and 10 kHz, the nanocomposite demonstrated a breakdown strength of 3.8 MV/cm, and a room-temperature energy storage density of approximately 40.2 +/- 1.7 J/cm3. To determine the suitability of the nanocomposite films for use in flexible applications, free-standing flexible nanocomposite films underwent repetitive compressive and tensile bending around a minimum bend diameter of 7 mm, which corresponded to a strain of 0.10%. After bending the films 30,000 times, the energy storage density of the films was unchanged, indicating that nanocomposite bismuth zinc niobate tantalate films may be suitable for flexible energy storage applications. To demonstrate the broader applicability of the nanocomposite approach to developing energy storage dielectrics at low processing temperatures, films of nanocomposite lead titanate, Pb1.1TiO3.1, were deposited using an inverted mixing order solution preparation, and annealed at a maximum temperature of 400°C. X-ray diffraction indicated the presence of nanocrystalline ordering, and transmission electron microscopy confirmed the nucleation of isolated nanocrystals of lead oxide in an amorphous lead titanate matrix. (Abstract shortened by UMI.).
Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications.
Xia, Zhiguo; Meijerink, Andries
2017-01-03
Garnets have the general formula of A 3 B 2 C 3 O 12 and form a wide range of inorganic compounds, occurring both naturally (gemstones) and synthetically. Their physical and chemical properties are closely related to the structure and composition. In particular, Ce 3+ -doped garnet phosphors have a long history and are widely applied, ranging from flying spot cameras, lasers and phosphors in fluorescent tubes to more recent applications in white light LEDs, as afterglow materials and scintillators for medical imaging. Garnet phosphors are unique in their tunability of the luminescence properties through variations in the {A}, [B] and (C) cation sublattice. The flexibility in phosphor composition and the tunable luminescence properties rely on design and synthesis strategies for new garnet compositions with tailor-made luminescence properties. It is the aim of this review to discuss the variation in luminescence properties of Ce 3+ -doped garnet materials in relation to the applications. This review will provide insight into the relation between crystal chemistry and luminescence for the important class of Ce 3+ -doped garnet phosphors. It will summarize previous research on the structural design and optical properties of garnet phosphors and also discuss future research opportunities in this field.
System Applies Polymer Powder To Filament Tow
NASA Technical Reports Server (NTRS)
Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.
1993-01-01
Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.
Sample Return Missions Where Contamination Issues are Critical: Genesis Mission Approach
NASA Technical Reports Server (NTRS)
Allton, Judith H.; Stansbery E. K.
2011-01-01
The Genesis Mission, sought the challenging analytical goals of accurately and precisely measuring the elemental and isotopic composition of the Sun to levels useful for planetary science, requiring sensitivities of ppm to ppt in the outer 100 nm of collector materials. Analytical capabilities were further challenged when the hard landing in 2004 broke open the canister containing the super-clean collectors. Genesis illustrates that returned samples allow flexibility and creativity to recover from setbacks.
Enhanced discharge energy density of rGO/PVDF nanocomposites: The role of the heterointerface
NASA Astrophysics Data System (ADS)
Zhang, Ye; Wang, Yaqiong; Qi, Shaojun; Dunn, Steve; Dong, Hanshan; Button, Tim
2018-05-01
Recent reports of conductive-filler/polymer composites with large dielectric permittivity (K) make them potential candidates for flexible capacitors. Hence, an interesting question is how these high K composites behave under a strong electric field strength. In this letter, we use in-situ-reduced graphite oxide (rGO)/poly(vinylidene fluoride) (PVDF) nanocomposites as an example to study the energy storage behaviour of high K materials. We show the dielectric behaviour contrasts between weak and strong fields. High K materials inevitably become more lossy with increasing field strength. Simultaneously, we reveal that the in-situ reduction temperature can affect the energy storage performance. Improved energy storage performance is achieved for a nanocomposite reduced at a moderate temperature. When reduced at 160 °C, a device with an rGO volume fraction of 1.5 vol. % displayed a discharge energy density of 0.67 J/cm3 at 50 MV/m. This was 2.9 times greater than pure PVDF. We develop a model to explain this behaviour that proposes a reduced electrical contrast of the rGO/PVDF heterointerface minimising the recombination of localized charge carriers. Our results indicate, simultaneously, the potential and limitation of high K nanocomposites and shed light on the optimisation of the design and fabrication of high discharge energy density flexible capacitors for microelectronic devices.
NASA Technical Reports Server (NTRS)
Stackpoole, Margaret M. (Inventor); Ghandehari, Ehson M. (Inventor); Thornton, Jeremy J. (Inventor); Covington, Melmoth Alan (Inventor)
2017-01-01
A low-density article comprising a flexible substrate and a pyrolizable material impregnated therein, methods of preparing, and devices using the article are disclosed. The pyrolizable material pyrolizes above 350 C and does not flow at temperatures below the pyrolysis temperature. The low-density article remains flexible after impregnation and continues to remain flexible when the pyrolizable material is fully pyrolized.
Flexible, wearable, and functional graphene-textile composites
NASA Astrophysics Data System (ADS)
Liu, Ying; Zhang, Kun-Ning; Zhang, Ying; Tao, Lu-Qi; Li, Yu-Xing; Wang, Dan-Yang; Yang, Yi; Ren, Tian-Ling
2017-06-01
In this paper, a flexible, wearable, and functional graphene-textile composite is demonstrated. Laser scribing technology is applied to fabricate a graphene film. The thin layer of polydimethylsiloxane is covered on the surface of the graphene-textile film evenly, which would improve the abrasive resistance of the film, enhance the ability to adapt to environmental changes, and extend the service life, while maintaining the device's excellent flexibility and comfort. The graphene-textile composite can achieve constant temperature heating by controlling the input voltage, detect the human movement, and perceive the human pulse signal. The composite presents great commercial prospects and a large value in the medical, daily wear, and other areas that are closely related to human lives.
Core-Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes.
Lu, Xiaoyan; Shen, Chen; Zhang, Zeyang; Barrios, Elizabeth; Zhai, Lei
2018-01-31
Core-shell nanofibers containing poly(acrylic acid) (PAA) and manganese oxide nanoparticles as the core and polypyrrole (PPy) as the shell were fabricated through electrospinning the solution of PAA and manganese ions (PAA/Mn 2+ ). The obtained nanofibers were stabilized by Fe 3+ through the interaction between Fe 3+ ions and carboxylate groups. Subsequent oxidation of Mn 2+ by KMnO 4 produced uniform manganese dioxide (MnO 2 ) nanoparticles in the fibers. A PPy shell was created on the fibers by immersing the fibers in a pyrrole solution where the Fe 3+ ions in the fiber polymerized the pyrrole on the fiber surfaces. In the MnO 2 @PAA/PPy core-shell composite fibers, MnO 2 nanoparticles function as high-capacity materials, while the PPy shell prevents the loss of MnO 2 during the charge/discharge process. Such a unique structure makes the composite fibers efficient electrode materials for supercapacitors. The gravimetric specific capacity of the MnO 2 @PAA/PPy core-shell composite fibers was 564 F/g based on cyclic voltammetry curves at 10 mV/s and 580 F/g based on galvanostatic charge/discharge studies at 5 A/g. The MnO 2 @PAA/PPy core-shell composite fibers also present stable cycling performance with 100% capacitance retention after 5000 cycles.
LQG/LTR optimal attitude control of small flexible spacecraft using free-free boundary conditions
NASA Astrophysics Data System (ADS)
Fulton, Joseph M.
Due to the volume and power limitations of a small satellite, careful consideration must be taken while designing an attitude control system for 3-axis stabilization. Placing redundancy in the system proves difficult and utilizing power hungry, high accuracy, active actuators is not a viable option. Thus, it is customary to find dependable, passive actuators used in conjunction with small scale active control components. This document describes the application of Elastic Memory Composite materials in the construction of a flexible spacecraft appendage, such as a gravity gradient boom. Assumed modes methods are used with Finite Element Modeling information to obtain the equations of motion for the system while assuming free-free boundary conditions. A discussion is provided to illustrate how cantilever mode shapes are not always the best assumption when modeling small flexible spacecraft. A key point of interest is first resonant modes may be needed in the system design plant in spite of these modes being greater than one order of magnitude in frequency when compared to the crossover frequency of the controller. LQG/LTR optimal control techniques are implemented to compute attitude control gains while controller robustness considerations determine appropriate reduced order controllers and which flexible modes to include in the design model. Key satellite designer concerns in the areas of computer processor sizing, material uncertainty impacts on the system model, and system performance variations resulting from appendage length modifications are addressed.
NASA Astrophysics Data System (ADS)
Ge, Jun; Cheng, Guanghui; Chen, Liwei
2011-08-01
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.
Ge, Jun; Cheng, Guanghui; Chen, Liwei
2011-08-01
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm(-2) and 59 wt% PANI gives a specific capacitance of 55.0 F g(-1) at a current density of 2.6 A g(-1), showing its possibility for transparent and flexible energy storage. This journal is © The Royal Society of Chemistry 2011
Supercapacitors based on flexible graphene/polyaniline nanofiber composite films.
Wu, Qiong; Xu, Yuxi; Yao, Zhiyi; Liu, Anran; Shi, Gaoquan
2010-04-27
Composite films of chemically converted graphene (CCG) and polyaniline nanofibers (PANI-NFs) were prepared by vacuum filtration the mixed dispersions of both components. The composite film has a layered structure, and PANI-NFs are sandwiched between CCG layers. Furthermore, it is mechanically stable and has a high flexibility; thus, it can be bent into large angles or be shaped into various desired structures. The conductivity of the composite film containing 44% CCG (5.5 x 10(2) S m(-1)) is about 10 times that of a PANI-NF film. Supercapacitor devices based on this conductive flexible composite film showed large electrochemical capacitance (210 F g(-1)) at a discharge rate of 0.3 A g(-1). They also exhibited greatly improved electrochemical stability and rate performances.
Traore, Boubacar; Pedesseau, Laurent; Assam, Linda; Che, Xiaoyang; Blancon, Jean-Christophe; Tsai, Hsinhan; Nie, Wanyi; Stoumpos, Constantinos C; Kanatzidis, Mercouri G; Tretiak, Sergei; Mohite, Aditya D; Even, Jacky; Kepenekian, Mikaël; Katan, Claudine
2018-04-24
Layered hybrid organic-inorganic perovskites (HOPs) have re-emerged as potential technological solutions for next-generation photovoltaic and optoelectronic applications. Their two-dimensional (2D) nature confers them a significant flexibility and results in the appearance of quantum and dielectric confinements. Such confinements are at the origin of their fascinating properties, and understanding them from a fundamental level is of paramount importance for optimization. Here, we provide an in-depth investigation of band alignments of 2D HOP allowing access to carriers' confinement potentials. 2D HOPs are conceptualized as composite materials in which pseudoinorganic and -organic components are defined. In this way, computational modeling of band alignments becomes affordable using first-principles methods. First, we show that the composite approach is suitable to study the position-dependent dielectric profiles and enables clear differentiation of the respective contributions of inorganic and organic components. Then we apply the composite approach to a variety of 2D HOPs, assessing the impact on the confinement potentials of well and barrier thickness, of the nature of the inorganic well, and of structural transitions. Using the deduced potentials, we further discuss the limitations of the effective mass approximation, scrutinizing the electronic properties of this family of composite materials. Our simulations demonstrate type-I dominant band alignment in 2D HOPs. Finally, we outline design principles on band alignment toward achieving specific optoelectronic properties. Thus, we present alternative theoretical methods to inspect the properties of 2D hybrid perovskites and expect that the composite approach will be applicable to other classes of layered materials.
Self-standing elastomeric composites based on lithium ferrites and their dielectric behavior
NASA Astrophysics Data System (ADS)
Soreto Teixeira, S.; Graça, M. P. F.; Dionisio, M.; Ilcíkova, M.; Mosnacek, J.; Spitalsky, Z.; Krupa, I.; Costa, L. C.
2014-12-01
Lithium ferrite (LiFe5O8) is an attractive material for technological applications due to its physical properties, which are significantly dependent on the preparation method and raw materials. In this work, LiFe5O8 crystallites were obtained by controlled heat-treatment process at 1100 °C, of a homogeneous mixture of Li2O-Fe2O3 powders, prepared by wet ball-milling and using lithium and iron nitrates as raw materials. The main goal was the preparation of a flexible and self-standing tick composite film by embedding lithium ferrite particles in a polymeric matrix, taking advantage of the good mechanical properties of the polymer and of the electrical and dielectric properties of the ferrite. The selected polymer matrix was styrene-b-isoprene-b-styrene copolymer. To prepare the composites, the lithium ferrite particles were chemically modified in order to functionalize their surface. To analyse the influence of the particles surface modification, different composites were made, with modified and unmodified particles. The structure of the obtained composites was studied by FTIR, XRD, TGA, and DSC techniques. The dielectric properties were analysed, in the frequency range between 10 Hz and 1 MHz and in function of temperature in the range between -73 °C and 127 °C. These properties were related with the structure and concentration of the particles in the matrix network. The composites with the modified particles present higher dielectric constant, maintaining values of loss tangent sufficiently low (<10-2) that can be considered interesting for technological applications.
Traore, Boubacar; Pedesseau, Laurent; Assam, Linda; ...
2018-02-26
Layered hybrid organic–inorganic perovskites (HOPs) have re-emerged as potential technological solutions for next-generation photovoltaic and optoelectronic applications. Their two-dimensional (2D) nature confers them a significant flexibility and results in the appearance of quantum and dielectric confinements. Such confinements are at the origin of their fascinating properties, and understanding them from a fundamental level is of paramount importance for optimization. Here, we provide an in-depth investigation of band alignments of 2D HOP allowing access to carriers’ confinement potentials. 2D HOPs are conceptualized as composite materials in which pseudoinorganic and -organic components are defined. In this way, computational modeling of band alignmentsmore » becomes affordable using first-principles methods. First, we show that the composite approach is suitable to study the position-dependent dielectric profiles and enables clear differentiation of the respective contributions of inorganic and organic components. Then we apply the composite approach to a variety of 2D HOPs, assessing the impact on the confinement potentials of well and barrier thickness, of the nature of the inorganic well, and of structural transitions. Using the deduced potentials, we further discuss the limitations of the effective mass approximation, scrutinizing the electronic properties of this family of composite materials. Our simulations demonstrate type-I dominant band alignment in 2D HOPs. Finally, we outline design principles on band alignment toward achieving specific optoelectronic properties. Furthermore, we present alternative theoretical methods to inspect the properties of 2D hybrid perovskites and expect that the composite approach will be applicable to other classes of layered materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traore, Boubacar; Pedesseau, Laurent; Assam, Linda
Layered hybrid organic–inorganic perovskites (HOPs) have re-emerged as potential technological solutions for next-generation photovoltaic and optoelectronic applications. Their two-dimensional (2D) nature confers them a significant flexibility and results in the appearance of quantum and dielectric confinements. Such confinements are at the origin of their fascinating properties, and understanding them from a fundamental level is of paramount importance for optimization. Here, we provide an in-depth investigation of band alignments of 2D HOP allowing access to carriers’ confinement potentials. 2D HOPs are conceptualized as composite materials in which pseudoinorganic and -organic components are defined. In this way, computational modeling of band alignmentsmore » becomes affordable using first-principles methods. First, we show that the composite approach is suitable to study the position-dependent dielectric profiles and enables clear differentiation of the respective contributions of inorganic and organic components. Then we apply the composite approach to a variety of 2D HOPs, assessing the impact on the confinement potentials of well and barrier thickness, of the nature of the inorganic well, and of structural transitions. Using the deduced potentials, we further discuss the limitations of the effective mass approximation, scrutinizing the electronic properties of this family of composite materials. Our simulations demonstrate type-I dominant band alignment in 2D HOPs. Finally, we outline design principles on band alignment toward achieving specific optoelectronic properties. Furthermore, we present alternative theoretical methods to inspect the properties of 2D hybrid perovskites and expect that the composite approach will be applicable to other classes of layered materials.« less
A novel design for a wearable thermoelectric generator based on 3D fabric structure
NASA Astrophysics Data System (ADS)
Wu, Qian; Hu, Jinlian
2017-04-01
A flexible and wearable thermoelectric generator (TEG) could enable the conversion of human body heat into electrical power, which would help to realize a self-powered wearable electronic system. To overcome the difficulty of wearing existing flexible film TEGs, a novel 3D fabric TEG structure is designed in this study. By using a 3D fabric as the substrate and yarns coated with thermoelectric materials as legs, a wearable and flexible TEG can be realized. The designed generator has a sandwich structure, similar to the classical inorganic generator, which allows the generation of a temperature difference in the fabric thickness direction, thus making it wearable and showing promising application in body heat conversion. To verify the effectiveness of the designed generator structure, a prototype was fabricated, using a locknit spacer fabric as the substrate and yarns coated with waterborne polyurethane/carbon nanotube thermoelectric composites as legs. The results suggest that the fabricated spacer fabric TEG prototype could work successfully, although the performance of this prototype is of a low level. To further improve the efficiency of the 3D fabric generator and apply it in wearable electronics in the future, highly efficient inorganic thermoelectric materials can be applied, and modifications on the conductive connections can be made.
Self-Deploying Trusses Containing Shape-Memory Polymers
NASA Technical Reports Server (NTRS)
Schueler, Robert M.
2008-01-01
Composite truss structures are being developed that can be compacted for stowage and later deploy themselves to full size and shape. In the target applications, these smart structures will precisely self-deploy and support a large, lightweight space-based antenna. Self-deploying trusses offer a simple, light, and affordable alternative to articulated mechanisms or inflatable structures. The trusses may also be useful in such terrestrial applications as variable-geometry aircraft components or shelters that can be compacted, transported, and deployed quickly in hostile environments. The truss technology uses high-performance shape-memory-polymer (SMP) thermoset resin reinforced with fibers to form a helical composite structure. At normal operating temperatures, the truss material has the structural properties of a conventional composite. This enables truss designs with required torsion, bending, and compression stiffness. However, when heated to its designed glass transition temperature (Tg), the SMP matrix acquires the flexibility of an elastomer. In this state, the truss can be compressed telescopically to a configuration encompassing a fraction of its original volume. When cooled below Tg, the SMP reverts to a rigid state and holds the truss in the stowed configuration without external constraint. Heating the materials above Tg activates truss deployment as the composite material releases strain energy, driving the truss to its original memorized configuration without the need for further actuation. Laboratory prototype trusses have demonstrated repeatable self-deployment cycles following linear compaction exceeding an 11:1 ratio (see figure).
Flexible and composite structures for premium pavements. Volume 2, Design manual
DOT National Transportation Integrated Search
1980-11-01
This design manual presents the results of a detailed study to identify and design flexible and composite pavement configurations which will perform as premium or "zero-maintenance" pavements. This manual includes identification and classification of...
Smart and functional polymer materials for smart and functional microfluidic instruments
NASA Astrophysics Data System (ADS)
Gray, Bonnie L.
2014-04-01
As microfluidic systems evolve from "chip-in-the-lab" to true portable lab-on-a-chip (LoC) or lab-in-a-package (LiP) microinstrumentation, there is a need for increasingly miniaturized sensors, actuators, and integration/interconnect technologies with high levels of functionality and self-direction. Furthermore, as microfluidic instruments are increasingly realized in polymer-based rather than glass- or silicon- based platforms, there is a need to realize these highly functional components in materials that are polymer-compatible. Polymers that are altered to possess basic functionality, and even higher-functioning "smart" polymer materials, may help to realize high-functioning and selfdirecting portable microinstrumentation. Stimuli-responsive hydrogels have been recognized for over a decade as beneficial to the development of smart microfluidics systems and instrumentation. In addition, functional materials such as conductive and magnetic composite polymers are being increasingly employed to push microfluidics systems to greater degrees of functionality, portability, and/or flexibility for wearable/implantable systems. Functional and smart polymer materials can be employed to realize electrodes, electronic routing, heaters, mixers, valves, pumps, sensors, and interconnect structures in polymer-based microfluidic systems. Stimuli for such materials can be located on-chip or in a small package, thus greatly increasing the degree of portability and the potential for mechanical flexibility of such systems. This paper will examine the application of functional polymer materials to the development of high-functioning microfluidics instruments with a goal towards self-direction.
NASA Astrophysics Data System (ADS)
Yue, Xinyang; Sun, Wang; Zhang, Jing; Wang, Fang; Sun, Kening
2016-10-01
Carbon nanotubes have attracted widespread attention as ideal materials for Lithium-ion batteries (LIBs) due to their excellent conductivity, mechanical flexibility, chemical stability and extremely large surface area. Here, three-dimensional (3D) silicon/carbon nanotube capsule composites (Si/CNCs) are firstly prepared via water-in-oil (W/O) emulsion technique with more than 75 wt% loading amount of silicon. CNCs with unique hollow sphere structure act as a 3D interconnected conductive network skeleton, and the cross-linked carbon nanotubes (CNTs) of CNCs can effectively enhance the strength, flexibility and conductivity of the electrode. This Si/CNCs can not only alleviate the volume expansion, but also effectively improve the electrochemical performance of the LIBs. Such Si/CNCs electrode with the unique structure achieves a high initial discharge specific capacity of 2950 mAh g-1 and retains 1226 mAh g-1 after 100 cycles at 0.5 A g-1, as well as outstanding rate performance of 547 mAh g-1 at 10 A g-1.
Xia, Jing; Zhao, Yun-Xuan; Wang, Lei; Li, Xuan-Ze; Gu, Yi-Yi; Cheng, Hua-Qiu; Meng, Xiang-Min
2017-09-21
Despite the substantial progress in the development of two-dimensional (2D) materials from conventional layered crystals, it still remains particularly challenging to produce high-quality 2D non-layered semiconductor alloys which may bring in some unique properties and new functions. In this work, the synthesis of well-oriented 2D non-layered CdS x Se (1-x) semiconductor alloy flakes with tunable compositions and optical properties is established. Structural analysis reveals that the 2D non-layered alloys follow an incommensurate van der Waals epitaxial growth pattern. Photoluminescence measurements show that the 2D alloys have composition-dependent direct bandgaps with the emission peak varying from 1.8 eV to 2.3 eV, coinciding well with the density functional theory calculations. Furthermore, photodetectors based on the CdS x Se (1-x) flakes exhibit a high photoresponsivity of 703 A W -1 with an external quantum efficiency of 1.94 × 10 3 and a response time of 39 ms. Flexible devices fabricated on a thin mica substrate display good mechanical stability upon repeated bending. This work suggests a facile and general method to produce high-quality 2D non-layered semiconductor alloys for next-generation optoelectronic devices.
Tian, Huafeng; Yan, Jiaan; Rajulu, A Varada; Xiang, Aimin; Luo, Xiaogang
2017-03-01
In this work, starch/polyvinyl alcohol (PVA) blend films with different compositions were prepared by melt processing. The effect of the composition and relative humidity (RH) on the structure and properties of the resulting blends were investigated. OH groups on starch and PVA formed hydrogen bonding interactions, which could improve the compatibility of the two components. With the increase of starch, the degree of crystallinity of PVA component decreased. The fracture surface of the blend films exhibited rough surface, suggesting the tough fracture. With the increase of starch, the water uptake at equilibrium decreased. With the increase of RH, the water uptake at equilibrium of the resulting blends increased. The tensile strength, elongation at break and Young's modulus decreased with increasing content of starch. However, at 50% starch content, the flexibility of the blend films was still high, with the elongation at break more than 1000% and tensile strength of 9MPa, which was superior to the commonly LDPE package films. The tensile strength and Young's modulus decreased with the increase of RH, while the elongation at break was enhanced dramatically, indicating the improved flexibility. Therefore, these kinds of blend films exhibited wide application potentials as packaging materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Fiber optic shape sensing for monitoring of flexible structures
NASA Astrophysics Data System (ADS)
Lally, Evan M.; Reaves, Matt; Horrell, Emily; Klute, Sandra; Froggatt, Mark E.
2012-04-01
Recent advances in materials science have resulted in a proliferation of flexible structures for high-performance civil, mechanical, and aerospace applications. Large aspect-ratio aircraft wings, composite wind turbine blades, and suspension bridges are all designed to meet critical performance targets while adapting to dynamic loading conditions. By monitoring the distributed shape of a flexible component, fiber optic shape sensing technology has the potential to provide valuable data during design, testing, and operation of these smart structures. This work presents a demonstration of such an extended-range fiber optic shape sensing technology. Three-dimensional distributed shape and position sensing is demonstrated over a 30m length using a monolithic silica fiber with multiple optical cores. A novel, helicallywound geometry endows the fiber with the capability to convert distributed strain measurements, made using Optical Frequency-Domain Reflectometry (OFDR), to a measurement of curvature, twist, and 3D shape along its entire length. Laboratory testing of the extended-range shape sensing technology shows
Fabricate BC/Fe3O4@PPy 3D nanofiber film as flexible electrode for supercapacitor application
NASA Astrophysics Data System (ADS)
Lv, Xvdan; Li, Guohui; Pang, Zengyuan; Li, Dawei; Lei, Luo; Lv, Pengfei; Mushtaq, Muhammad; Wei, Qufu
2018-05-01
For flexible film supercapacitor, high areal capacitance is a main evaluating indicator. In this paper, bacterial cellulose (BC) with special three-dimensional structure was used as the natural flexible base material. Fe3O4 nanoparticles with average diameter of 20 nm were synthesized on the surface of BC fibers. The conductive path polypyrrole (PPy) was introduced as shell of BC/Fe3O4 fibers to further improve the pseudo capacitance in 1 mol/L H2SO4 solution. Besides, the BC/Fe3O4@PPy was used for supercapacitor application in acid electrolyte, and delivered higher areal capacitance compared to other Fe3O4 composites in previous reports. The obtained BC/Fe3O4@PPy film showed excellent mechanical strength (tensile strength reached 11 MPa), high areal specific capacitance (5.4 F cm-2 at active mass of 8.4 mg cm-2), and long cycle life (1.95 F cm-2 over 3500 cycles).
Aluminum phosphate microcapsule flame retardants for flexible polyurethane foams
NASA Astrophysics Data System (ADS)
Zhang, Bin; Liu, Hong; Han, Jian
2018-04-01
In this study, highly efficient flame-retardant aluminum phosphate (ALP) microcapsules were synthesized from ALP and ammonium phosphomolybdate trihydrate. The chemical structure of the ALP microcapsules was characterized by scanning electron microscopy and elemental analysis, and the thermal degradation behavior was investigated by thermogravimetric analysis (TGA). Subsequently, flexible polyurethane (PU) foams were prepared with the ALP microcapsules. Limiting oxygen index (LOI) tests, vertical burning tests, smoke density rating (SDR), and cone calorimetric tests were employed to investigate the combustion of the materials. The results showed that the flexible PU foams with 15 parts per hundred polyol by weight (pphp) ALP microcapsules passed the vertical burning test and they had an increased LOI value of 28.5%. The SDR value for PU/20 pphp ALP microcapsule composites was about 16.0% and the SDR value for the pure PU was about 29.0%. The corresponding flame-retardant mechanism was investigated by Fourier transform infrared spectroscopy, TGA, Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC/MS) tests, and energy-dispersive X-ray spectrometry.
Integration of colloids into a semi-flexible network of fibrin.
Bharadwaj, N Ashwin K; Kang, Jin Gu; Hatzell, Marta C; Schweizer, Kenneth S; Braun, Paul V; Ewoldt, Randy H
2017-02-15
Typical colloid-polymer composites have particle diameters much larger than the polymer mesh size, but successful integration of smaller colloids into a large-mesh network could allow for the realization of new colloidal states of spatial organization and faster colloid motion which can allow the possibility of switchable re-configuration of colloids or more dramatic stimuli-responsive property changes. Experimental realization of such composites requires solving non-trivial materials selection and fabrication challenges; key questions include composition regime maps of successful composites, the resulting structure and colloidal contact network, and the mechanical properties, in particular the ability to form a network and retain strain stiffening in the presence of colloids. Here, we study these fundamental questions by formulating composites with fluorescent (though not stimuli-responsive) carboxylate modified polystyrene/latex (CML) colloidal particles (diameters 200 nm and 1000 nm) in bovine fibrin networks (a semi-flexible biopolymer network with mesh size 1-5 μm). We describe and characterize two methods of composite preparation: adding colloids before fibrinogen polymerization (Method I), and electrophoretically driving colloids into a network already formed by fibrinogen polymerization (Method II). We directly image the morphology of colloidal and fibrous components with two-color fluorescent confocal microscopy under wet conditions and SEM of fixed dry samples. Mechanical properties are studied with shear and extensional rheology. Both fabrication methods are successful, though with trade-offs. Method I retains the nonlinear strain-stiffening and extensibility of the native fibrin network, but some colloid clustering is observed and fibrin network integrity is lost above a critical colloid concentration that depends on fibrinogen and thrombin concentration. Larger colloids can be included at higher volume fractions before massive aggregation occurs, indicating surface interactions as a limiting factor. Method II results in a loss of measurable strain-stiffening, but colloids are well dispersed and template along the fibrous scaffold. The results here, with insight into both structure and rheology, form a foundational understanding for the integration of other colloids, e.g. with stimuli-responsive functionalities, into semi-flexible networks.
Electron Beam Cured Epoxy Resin Composites for High Temperature Applications
NASA Technical Reports Server (NTRS)
Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.; Meador, Michael A.
1997-01-01
Electron beam curing of Polymer Matrix Composites (PMC's) is a nonthermal, nonautoclave curing process that has been demonstrated to be a cost effective and advantageous alternative to conventional thermal curing. Advantages of electron beam curing include: reduced manufacturing costs; significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvement in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance the electron beam curing of PMC technology. Over the last several years a significant amount of effort within the CRADA has been devoted to the development and optimization of resin systems and PMCs that match the performance of thermal cured composites. This highly successful materials development effort has resulted in a board family of high performance, electron beam curable cationic epoxy resin systems possessing a wide range of excellent processing and property profiles. Hundreds of resin systems, both toughened and untoughened, offering unlimited formulation and processing flexibility have been developed and evaluated in the CRADA program.
Modeling and Design Analysis Methodology for Tailoring of Aircraft Structures with Composites
NASA Technical Reports Server (NTRS)
Rehfield, Lawrence W.
2004-01-01
Composite materials provide design flexibility in that fiber placement and orientation can be specified and a variety of material forms and manufacturing processes are available. It is possible, therefore, to 'tailor' the structure to a high degree in order to meet specific design requirements in an optimum manner. Common industrial practices, however, have limited the choices designers make. One of the reasons for this is that there is a dearth of conceptual/preliminary design analysis tools specifically devoted to identifying structural concepts for composite airframe structures. Large scale finite element simulations are not suitable for such purposes. The present project has been devoted to creating modeling and design analysis methodology for use in the tailoring process of aircraft structures. Emphasis has been given to creating bend-twist elastic coupling in high aspect ratio wings or other lifting surfaces. The direction of our work was in concert with the overall NASA effort Twenty- First Century Aircraft Technology (TCAT). A multi-disciplinary team was assembled by Dr. Damodar Ambur to work on wing technology, which included our project.
Simulating the Response of a Composite Honeycomb Energy Absorber. Part 2; Full-Scale Impact Testing
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Annett, Martin S.; Jackson, Karen E.; Polanco, Michael A.
2012-01-01
NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test.
Iglesias, Daniel; Senokos, Evgeny; Alemán, Belén; Cabana, Laura; Navío, Cristina; Marcilla, Rebeca; Prato, Maurizio; Vilatela, Juan J; Marchesan, Silvia
2018-02-14
The assembly of aligned carbon nanotubes (CNTs) into fibers (CNTFs) is a convenient approach to exploit and apply the unique physico-chemical properties of CNTs in many fields. CNT functionalization has been extensively used for its implementation into composites and devices. However, CNTF functionalization is still in its infancy because of the challenges associated with preservation of CNTF morphology. Here, we report a thorough study of the gas-phase functionalization of CNTF assemblies using ozone which was generated in situ from a UV source. In contrast with liquid-based oxidation methods, this gas-phase approach preserves CNTF morphology, while notably increasing its hydrophilicity. The functionalized material is thoroughly characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Its newly acquired hydrophilicity enables CNTF electrochemical characterization in aqueous media, which was not possible for the pristine material. Through comparison of electrochemical measurements in aqueous electrolytes and ionic liquids, we decouple the effects of functionalization on pseudocapacitive reactions and quantum capacitance. The functionalized CNTF assembly is successfully used as an active material and a current collector in all-solid supercapacitor flexible devices with an ionic liquid-based polymer electrolyte.
NASA Astrophysics Data System (ADS)
Thirugnanam, Lavanya; Sundara, Ramaprabhu
2018-06-01
A combination of favorable composition and optimized anatase/rutile mixed-phase TiO2 (MPTNF)/Hydrogen exfoliated graphene (HEG) composite nanofibers (MPTNF/HEG) and anatase/rutile mixed-phase TiO2/reduced graphene oxide (rGO) composite nanofibers (MPTNF/rGO) have been reported to enhance the electrochemical properties for supercapacitor applications. These composite nanofibers have been synthesized by an efficient route of electrospinning together with the help of easy chemical methods. Both the composites exhibit good charge storage capability with enhanced pseudocapacitance and electric double-layer capacitance (EDLC) as confirmed by cyclic voltammetry studies. MPTNF/HEG composite showed maximum specific capacitance of 210.5 F/g at the current density of 1 A/g, which was mainly due to its availability of the more active sites for ions adsorption on a few layers of graphene wrapped TiO2 nanofiber surface. The synergistic effect of anatase/rutile mixed phase with one dimensional nanostructure and the electronic interaction between TiO2 and few layer graphene provided the subsequent improvement of ion adsorption capacity. Also exhibit excellent electrochemical performance to improve the capacitive properties of TiO2 electrode materials which is required for the development of flexible electrodes in energy storage devices and open up new opportunities for high performance supercapacitors.
Gd2O3:Eu3+/PPO/POPOP/PS composites for digital imaging radiation detectors
NASA Astrophysics Data System (ADS)
Oliveira, J.; Martins, P. M.; Martins, P.; Correia, V.; Rocha, J. G.; Lanceros-Mendez, S.
2015-11-01
Polymer-based scintillator composites have been produced by combining polystyrene (PS) and Gd2O3:Eu3+ scintillator nanoparticles. Polystyrene has been used since it is a flexible and stable binder matrix, resistant to thermal and light deterioration and with suitable optical properties. Gd2O3:Eu3+ has been selected as scintillator material due to its wide band gap, high density and visible light yield. The optical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. Additionally 1 wt.% of 2,5-diphenyloxazole (PPO) and 0.01 wt.% of 1,4 di[2-(5phenyloxazolyl)]benzene (POPOP) were introduced in the polymer matrix in order to strongly improve light yield, i.e., the measured intensity of the output visible radiation, under X-ray irradiation. Increasing scintillator filler concentration (from 0.25 to 7.5 wt.%) increases scintillator light yield and decreases the optical transparency of the composite. The addition of PPO and POPOP strongly increased the overall transduction performance of the composite due to specific absorption and re-emission processes. It is thus shown that Gd2O3:Eu3+/PPO/POPOP/PS composites with 0.25 wt.% of scintillator content with fluorescence molecules are suitable for the development of innovative large-area X-ray radiation detectors with huge demand from the industries.
Damage accumulation in closed cross-section, laminated, composite structures
NASA Technical Reports Server (NTRS)
Bucinell, Ronald B.
1996-01-01
The need for safe, lightweight, less expensive, and more reliable launch vehicle components is being driven by the competitiveness of the commercial launch market. The United States has lost 2/3 of the commercial lunch market to Europe. As low cost Russian and Chinese vehicles become available, the US market share could be reduced even further. This international climate is driving the Single Stage To Orbit (SSTO) program at NASA. The goal of the SSTO program is to radically reduce the cost of safe, routine transportation to and from space with a totally reusable launch vehicle designed for low-cost aircraft-like operations. Achieving this goal will require more efficient uses of materials. Composite materials can provide this program with the material and structural efficiencies needed to stay competitive in the international launch market place. In satellite systems the high specific properties, design flexibility, improved corrosion and wear resistance, increased fatigue life, and low coefficient of thermal expansion that are characteristic of composite materials can all be used to improve the overall satellite performance. Some of the satellites that may be able to take advantage of these performance characteristics are the Tethered Satellite Systems (TOSCIFER, AIRSEDS, TSS2, SEDS1, and SEDS2), AXAF, GRO, and the next generation Hubble Space Telescope. These materials can also be utilized in projects at the NASAIMSFC Space Optics Technology and System Center of Excellence. The successful implementation of composite materials requires accurate performance characterization. Materials characterization data for composite materials is typically generated using flat coupons of finite width. At the free edge of these coupons the stress state is exacerbated by the presence of stiffness and geometric discontinuities. The exacerbated stress state has been shown to dominate the damage accumulation in these materials and to have a profound affect on the material constants. Space structures typically have closed cross-sections, absent of free edges. As a result, composite material characterization data generated using finite width flat specimens does not accurately reflect the performance of the composite materials used in a closed cross-section structural configuration. Several investigators have recognized the need to develop characterization techniques for composite materials in closed cross-sectioned structures. In these investigations test methods were developed and cylindrical specimens were evaluated. The behavior of the cylindrical specimens were observed to depart from behavior typical of flat coupons. However, no attempts were made to identify and monitor the progression of damage in these cylindrical specimens during loading. The identification and monitoring of damage is fundamental to the characterization of composite materials in closed cross-section configurations. In the study reported here, a closed cross-sectioned test method was developed to monitor damage progression in 2 in. diameter cylindrical specimens and 1.5 in. finite width flat coupons subjected to quasi-static, tensile loading conditions. Damage in these specimen configurations was monitored using pulse echo ultrasonic, acoustic emission, and X-ray techniques.
NASA Astrophysics Data System (ADS)
Alotaibi, Sattam; Nama Manjunatha, Krishna; Paul, Shashi
2017-12-01
Flexible Semi-Transparent electronic memory would be useful in coming years for integrated flexible transparent electronic devices. However, attaining such flexibility and semi-transparency leads to the boundaries in material composition. Thus, impeding processing speed and device performance. In this work, we present the use of inorganic stable selenium nanoparticles (Se-NPs) as a storage element and hydrogenated amorphous carbon (a-C:H) as an insulating layer in two terminal non-volatile physically flexible and semi-transparent capacitive memory devices (2T-NMDs). Furthermore, a-C:H films can be deposited at very low temperature (<40° C) on a variety of substrates (including many kinds of plastic substrates) by an industrial technique called Plasma Enhanced Chemical Vapour Deposition (PECVD) which is available in many existing fabrication labs. Self-assembled Se-NPs has several unique features including deposition at room temperature by simple vacuum thermal evaporation process without the need for further optimisation. This facilitates the fabrication of memory on a flexible substrate. Moreover, the memory behaviour of the Se-NPs was found to be more distinct than those of the semiconductor and metal nanostructures due to higher work function compared to the commonly used semiconductor and metal species. The memory behaviour was observed from the hysteresis of current-voltage (I-V) measurements while the two distinguishable electrical conductivity states (;0; and "1") were studied by current-time (I-t) measurements.
Flexible Textile-Based Organic Transistors Using Graphene/Ag Nanoparticle Electrode
Kim, Youn; Kwon, Yeon Ju; Lee, Kang Eun; Oh, Youngseok; Um, Moon-Kwang; Seong, Dong Gi; Lee, Jea Uk
2016-01-01
Highly flexible and electrically-conductive multifunctional textiles are desirable for use in wearable electronic applications. In this study, we fabricated multifunctional textile composites by vacuum filtration and wet-transfer of graphene oxide films on a flexible polyethylene terephthalate (PET) textile in association with embedding Ag nanoparticles (AgNPs) to improve the electrical conductivity. A flexible organic transistor can be developed by direct transfer of a dielectric/semiconducting double layer on the graphene/AgNP textile composite, where the textile composite was used as both flexible substrate and conductive gate electrode. The thermal treatment of a textile-based transistor enhanced the electrical performance (mobility = 7.2 cm2·V−1·s−1, on/off current ratio = 4 × 105, and threshold voltage = −1.1 V) due to the improvement of interfacial properties between the conductive textile electrode and the ion-gel dielectric layer. Furthermore, the textile transistors exhibited highly stable device performance under extended bending conditions (with a bending radius down to 3 mm and repeated tests over 1000 cycles). We believe that our simple methods for the fabrication of graphene/AgNP textile composite for use in textile-type transistors can potentially be applied to the development of flexible large-area electronic clothes. PMID:28335276
Optimization of flexible wing structures subject to strength and induced drag constraints
NASA Technical Reports Server (NTRS)
Haftka, R. T.
1977-01-01
An optimization procedure for designing wing structures subject to stress, strain, and drag constraints is presented. The optimization method utilizes an extended penalty function formulation for converting the constrained problem into a series of unconstrained ones. Newton's method is used to solve the unconstrained problems. An iterative analysis procedure is used to obtain the displacements of the wing structure including the effects of load redistribution due to the flexibility of the structure. The induced drag is calculated from the lift distribution. Approximate expressions for the constraints used during major portions of the optimization process enhance the efficiency of the procedure. A typical fighter wing is used to demonstrate the procedure. Aluminum and composite material designs are obtained. The tradeoff between weight savings and drag reduction is investigated.
Tao, Jiayou; Liu, Nishuang; Li, Luying; Su, Jun; Gao, Yihua
2014-03-07
A solid-state high performance flexible asymmetric supercapacitor (ASC) was fabricated. Its anode is based on organic-inorganic materials, where polypyrrole (PPy) is uniformly wrapped on MnO2 nanoflowers grown on carbon cloth (CC), and its cathode is made of activated carbon (AC) on CC. The ASC has an areal capacitance of 1.41 F cm(-2) and an energy density of 0.63 mW h cm(-2) at a power density of 0.9 mW cm(-2). An energy storage unit fabricated using multiple ASCs can drive a light-emitting diode (LED) segment display, a mini motor and even a toy car after full charging. The high-performance ASCs have significant potential applications in flexible electronics and electrical vehicles.
Nanostructured graphene composite papers for highly flexible and foldable supercapacitors.
Liu, Lili; Niu, Zhiqiang; Zhang, Li; Zhou, Weiya; Chen, Xiaodong; Xie, Sishen
2014-07-23
Reduced graphene oxide (rGO) and polyaniline (PANI) assemble onto the surface of cellulose fibers (CFs) and into the pores of CF paper, to form a hierarchical nanostructured PANI-rGO/CF composite paper. Based on these composite papers, flexible and foldable all-solid-state supercapacitors are achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CardioOp: an integrated approach to teleteaching in cardiac surgery.
Friedl, R; Preisack, M; Schefer, M; Klas, W; Tremper, J; Rose, T; Bay, J; Albers, J; Engels, P; Guilliard, P; Vahl, C F; Hannekum, A
2000-01-01
The complexity of cardiac surgery requires continuous training, education and information addressing different individuals: physicians (cardiac surgeons, residents, anaesthesiologists, cardiologists), medical students, perfusionists and patients. Efficacy and efficiency of education and training will likely be improved by the use of multimedia information systems. Nevertheless, computer-based education is facing some serious disadvantages: 1) multimedia productions require tremendous financial and time resources; 2) the obtained multimedia data are only usable for one specific target user group in one specific instructional context; 3) computer based learning programs often show deficiencies in the support of individual learning styles and in providing individual information adjusted to the learner's individual needs. In this paper we describe a computer-system, providing multiple re-use of multimedia-data in different instructional sceneries and providing flexible composition of content to different target user groups. The ZYX document model has been developed, allowing the modelling and flexible on-the-fly composition of multimedia fragments. It has been implemented as a DataBlade module into the object-relational database system Informix Dynamic Server and allows for presentation-neutral storage of multimedia content from the application domain, delivery and presentation of multimedia material, content based retrieval, re-use and composition of multimedia material for different instructional settings. Multimedia data stored in the repository, that can be processed and authored in terms of our identified needs is created by using a next generation authoring environment called CardioOP-Wizard. High-quality intra-operative video is recorded using a video-robot. Difficult surgical procedures are visualized with generic and CT-based 3D-animations. An on-line architecture for multiple re-use and flexible composition of media data has been established. The system contains the following instructional applications (prototypically implemented): a multimedia textbook on operative techniques, an interactive module for problem based-training, a module for creation and presentation of lectures and a module for patient information. Principles of cognitive psychology and knowledge management have been employed in the program. These instructional applications provide information ranging from basic knowledge at the beginner's level, procedural knowledge for the advanced level to implicit knowledge for the professional level. For media-annotation with meta-data a metainformation system, the CardioOP-Clas has been developed. The prototype focuses on aortocoronary bypass grafting and heart transplantation. The demonstrated system reflects an integrated approach in terms of information technology and teaching by means of multiple re-use and composition of stored media-items to the individual user and the chosen educational setting on different instructional levels.
Thin-film composite materials as a dielectric layer for flexible metal-insulator-metal capacitors.
Tiwari, Jitendra N; Meena, Jagan Singh; Wu, Chung-Shu; Tiwari, Rajanish N; Chu, Min-Ching; Chang, Feng-Chih; Ko, Fu-Hsiang
2010-09-24
A new organic-organic nanoscale composite thin-film (NCTF) dielectric has been synthesized by solution deposition of 1-bromoadamantane and triblock copolymer (Pluronic P123, BASF, EO20-PO70-EO20), in which the precursor solution has been achieved with organic additives. We have used a sol-gel process to make a metal-insulator-metal capacitor (MIM) comprising a nanoscale (10 nm-thick) thin-film on a flexible polyimide (PI) substrate at room temperature. Scanning electron microscope and atomic force microscope revealed that the deposited NCTFs were crack-free, uniform, highly resistant to moisture absorption, and well adhered on the Au-Cr/PI. The electrical properties of 1-bromoadamantane-P123 NCTF were characterized by dielectric constant, capacitance, and leakage current measurements. The 1-bromoadamantane-P123 NCTF on the PI substrate showed a low leakage current density of 5.5 x 10(-11) A cm(-2) and good capacitance of 2.4 fF at 1 MHz. In addition, the calculated dielectric constant of 1-bromoadamantane-P123 NCTF was 1.9, making them suitable candidates for use in future flexible electronic devices as a stable intermetal dielectric. The electrical insulating properties of 1-bromoadamantane-P123 NCTF have been improved due to the optimized dipole moments of the van der Waals interactions.
Composite flexible insulation for thermal protection of space vehicles
NASA Astrophysics Data System (ADS)
Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda
1992-09-01
A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the Aeroassist Space Transfer Vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this system are also described. Analytical modeling describing the thermal performance of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.
CCARES: A computer algorithm for the reliability analysis of laminated CMC components
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Gyekenyesi, John P.
1993-01-01
Structural components produced from laminated CMC (ceramic matrix composite) materials are being considered for a broad range of aerospace applications that include various structural components for the national aerospace plane, the space shuttle main engine, and advanced gas turbines. Specifically, these applications include segmented engine liners, small missile engine turbine rotors, and exhaust nozzles. Use of these materials allows for improvements in fuel efficiency due to increased engine temperatures and pressures, which in turn generate more power and thrust. Furthermore, this class of materials offers significant potential for raising the thrust-to-weight ratio of gas turbine engines by tailoring directions of high specific reliability. The emerging composite systems, particularly those with silicon nitride or silicon carbide matrix, can compete with metals in many demanding applications. Laminated CMC prototypes have already demonstrated functional capabilities at temperatures approaching 1400 C, which is well beyond the operational limits of most metallic materials. Laminated CMC material systems have several mechanical characteristics which must be carefully considered in the design process. Test bed software programs are needed that incorporate stochastic design concepts that are user friendly, computationally efficient, and have flexible architectures that readily incorporate changes in design philosophy. The CCARES (Composite Ceramics Analysis and Reliability Evaluation of Structures) program is representative of an effort to fill this need. CCARES is a public domain computer algorithm, coupled to a general purpose finite element program, which predicts the fast fracture reliability of a structural component under multiaxial loading conditions.
Flexible and composite structures for premium pavements. Volume 1, Development of design procedure
DOT National Transportation Integrated Search
1980-11-01
This document provides results of a detailed study to identify flexible and composite structures which will perform as zero-maintenance pavements. To accomplish this, the report identifies the major distress types which have seriously limited the mai...
NASA Astrophysics Data System (ADS)
Luo, Xiangcheng
Material contacts, including thermal, electrical, seating (fluid sealing and electromagnetic sealing) and mechanical (pressure) contacts, together with their interface materials, were, evaluated, and in some cases, improved beyond the state of the art. The evaluation involved the use of thermal, electrical and mechanical methods. For thermal contacts, this work evaluated and improved the heat transfer efficiency between two contacting components by developing various thermal interface pastes. Sodium silicate based thermal pastes (with boron nitride particles as the thermally conductive filler) as well as polyethylene glycol (PEG) based thermal pastes were developed and evaluated. The optimum volume fractions of BN in sodium silicate based pastes and PEG based pastes were 16% and 18% respectively. The contribution of Li+ ions to the thermal contact conductance in the PEG-based paste was confirmed. For electrical contacts, the relationship between the mechanical reliability and electrical reliability of solder/copper and silver-epoxy/copper joints was addressed. Mechanical pull-out testing was conducted on solder/copper and silver-epoxy/copper joints, while the contact electrical resistivity was measured. Cleansing of the copper surface was more effective for the reliability of silver-epoxy/copper joint than that of solder/copper joint. For sealing contacts, this work evaluated flexible graphite as an electromagnetic shielding gasket material. Flexible graphite was found to be at least comparable to conductive filled silicone (the state of the art) in terms of the shielding effectiveness. The conformability of flexible graphite with its mating metal surface under repeated compression was characterized by monitoring the contact electrical resistance, as the conformability is important to both electromagnetic scaling and fluid waling using flexible graphite. For mechanical contacts, this work focused on the correlation of the interface structure (such as elastic/plastic deformation, oxidation, strain hardening, passive layer damage, fracture, etc.) with the electrical contact resistance, which was measured in real time for contacts under dynamic compression, thus allowing both reversible and irreversible changes to be observed. The materials studied included metals (carbon steel, stainless steel, aluminum and copper), carbon fiber reinforced polymer-matrix composite (nylon-6), ceramic (mortar) and graphite, due to their relevance to fastening, concrete structures, electric brushes and electrical pressure contacts.
Work Loop and Ashby Charts of Active Materials
2013-10-17
constructed to show performance metrics (e.g., actuation stress, actuation strain, self - healing ) of iron-loaded compositions compared to other active...24,000 cycles at 80 Hz without change in strain characteristics. Self - healing of Magpol prepared using ferrite nanoparticles of different Curie...silicone) was selected as the polymer matrix due to its good flexibility and reasonable environmental stability. Self healing Magpol was synthesized by
Chen, Xia; Zhao, Bote; Cai, Yong; Tadé, Moses O; Shao, Zongping
2013-12-21
Flexible V-O-C composite nanofibers were fabricated from solution precursors via electrospinning and were investigated as free-standing and additive-free film electrodes for supercapacitors. Specifically, composite nanofibers (V0, V5, V10 and V20) with different vanadyl acetylacetonate (VO(acac)2) contents of 0, 5, 10 and 20 wt% with respect to polyacrylonitrile (PAN) were prepared. The composite nanofibers were comparatively studied using XRD, Raman spectroscopy, XPS, N2 adsorption-desorption, FE-SEM, TEM and S-TEM. The vanadium element was found to be well-dispersed in the carbon nanofibers, free from the formation of an aggregated crystalline phase, even in the case of V20. A specific surface area of 587.9 m(2) g(-1) was reached for V10 after calcination, which is approximately twice that of the vanadium-free carbon nanofibers (V0, 300.9 m(2) g(-1)). To perform as an electrode for supercapacitors in an aqueous electrolyte, the V10 film delivered a specific capacitance of 463 F g(-1) at 1 A g(-1). V10 was also able to retain a specific capacitance of 380 F g(-1), even at a current density of 10 A g(-1). Additionally, very stable cycling stability was achieved, maintaining an outstanding specific capacitance of 400 F g(-1) at 5 A g(-1) after charge-discharge cycling 5000 times. Thus, V-O-C composite nanofibers are highly attractive electrode materials for flexible, high-power, thin film energy storage devices and applications.
Wang, Feifei; Wang, Ting; Sun, Shiguo; Xu, Yongqian; Yu, Ruijin; Li, Hongjuan
2018-06-11
A novel NiFe-LDH/RGO/CNFs composite was produced by using a facile one-step hydrothermal method as electrode for supercapacitor. Compared with NiFe-LDH/CNFs, NiFe-LDH/CNTs and NiFe-LDH/RGO, NiFe-LDH/RGO/CNFs demonstrated a high specific capacitance of 1330.2 F g -1 at 1 A g -1 and a super rate capability of 64.2% from 1 to 20 A g -1 , indicating great potential for supercapacitor application. Additionally, an asymmetric supercapacitor using NiFe-LDH/RGO/CNFs composite as positive electrode material and activated carbon as negative electrode material was assembled. The asymmetric supercapacitor can work in the voltage range of 0-1.57 V. It displayed high energy density of 33.7 W h kg -1 at power density of 785.8 W kg -1 and excellent cycling stability with 97.1% of the initial capacitance after 2500 cycles at 8 A g -1 . Two flexible AC//LDH-RGO-CNFs ASC devices connected in series were able to light up a red LED indicator after being fully charged. The results demonstrate that the AC//LDH-RGO-CNFs ASC has a promising potential in commercial application.
NASA Astrophysics Data System (ADS)
Sukmaji, I. C.; Wijang, W. R.; Andri, S.; Bambang, K.; Teguh, T.
2017-01-01
Nowadays composite is a superior material used in automotive component due to its outstanding mechanical behavior. The sandwich polypropylene honeycomb core with carbon/glass fiber composite skin (SHCG) as based material in a floor component of electric car application is investigated in the present research. In sandwich structure form, it can absorb noise better compare with the conventional material [1]. Also in present paper, Finite Element Analysis (FEA) of SHCG as based material for floor component of the electric car is analyzed. The composite sandwich is contained with a layer uniform carbon fiber and mixing non-uniform carbon-glass fiber in upper and lower skin. Between skins of SHCG are core polypropylene honeycomb that it have good flexibility to form following dies profile. The variables of volume fraction ratio of carbon/glass fiber in SHCG skin are 20/80%, 30/70%, and 50/50%. The specimen of SHCG is tested using the universal testing machine by three points bending method refers to ASTM C393 and ASTM C365. The cross point between tensile strength to the volume fraction the mixing carbon/glass line and ratio cost line are the searched material with good mechanical performance and reasonable cost. The point is 30/70 volume fraction of carbon/glass fiber. The result of the testing experiment is become input properties of model structure sandwich in FEA simulation. FEA simulation approach is conducted to find critical strength and factor of complex safety geometry against varied distributed passenger loads of a floor component the electric car. The passenger loads variable are 80, 100, 150, 200, 250 and 300 kg.
Xu, Lu-Hai; Ou, Qing-Dong; Li, Yan-Qing; Zhang, Yi-Bo; Zhao, Xin-Dong; Xiang, Heng-Yang; Chen, Jing-De; Zhou, Lei; Lee, Shuit-Tong; Tang, Jian-Xin
2016-01-26
Flexible organic light-emitting diodes (OLEDs) hold great promise for future bendable display and curved lighting applications. One key challenge of high-performance flexible OLEDs is to develop new flexible transparent conductive electrodes with superior mechanical, electrical, and optical properties. Herein, an effective nanostructured metal/dielectric composite electrode on a plastic substrate is reported by combining a quasi-random outcoupling structure for broadband and angle-independent light outcoupling of white emission with an ultrathin metal alloy film for optimum optical transparency, electrical conduction, and mechanical flexibility. The microcavity effect and surface plasmonic loss can be remarkably reduced in white flexible OLEDs, resulting in a substantial increase in the external quantum efficiency and power efficiency to 47.2% and 112.4 lm W(-1).
Rao, B V Bhaskara; Yadav, Prasad; Aepuru, Radhamanohar; Panda, H S; Ogale, Satishchandra; Kale, S N
2015-07-28
In this study, a novel composite of Fe3O4 nanofiller-decorated single-layer graphene-assembled porous carbon (SLGAPC) with polyvinyl alcohol (PVA) having flexibility and a density of 0.75 g cm(-3) is explored for its dielectric and electromagnetic interference (EMI) response properties. The composite is prepared by the solution casting method and its constituents are optimized as 15 wt% SLGAPC and 20 wt% Fe3O4 through a novel solvent relaxation nuclear magnetic resonance experiment. The PVA-SLGAPC-Fe3O4 composite shows high dielectric permittivity in the range of 1 Hz-10 MHz, enhanced by a factor of 4 as compared to that of the PVA-SLGAPC composite, with a reduced loss by a factor of 2. The temperature dependent dielectric properties reveal the activation energy behaviour with reference to the glass transition temperature (80 °C) of PVA. The dielectric hysteresis with the temperature cycle reveals a remnant polarization. The enhanced dielectric properties are suggested to be the result of improvement in the localized polarization of the integrated interface system (Maxwell-Wagner-Sillars (MWS) polarization) formed by the uniform adsorption of Fe3O4 on the surface of SLGAPC conjugated with PVA. The EMI shielding property of the composite with a low thickness of 0.3 mm in the X-band (8.2-12.4 GHz) shows a very impressive shielding efficiency of ∼15 dB and a specific shielding effectiveness of 20 dB (g cm(-3))(-1), indicating the promising character of this material for flexible EMI shielding applications.
Catalyst design with atomic layer deposition
O'Neill, Brandon J.; Jackson, David H. K.; Lee, Jechan; ...
2015-02-06
Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriadmore » catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO 2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Lastly, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts.« less
Catalyst design with atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neill, Brandon J.; Jackson, David H. K.; Lee, Jechan
Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriadmore » catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO 2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Lastly, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts.« less
Nano-Material Aspects of Shock Absorption in Bone Joints
Tributsch, H; Copf, F; Copf, p; Hindenlang, U; Niethard, F.U; Schneider, R
2010-01-01
This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three–dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones. PMID:21625375
Materials Testing on the DC-X and DC-XA
NASA Technical Reports Server (NTRS)
Smith, Dane; Carroll, Carol; Marschall, Jochen; Pallix, Joan
1997-01-01
Flight testing of thermal protection materials has been carried out over a two year period on the base heat shield of the Delta Clipper (DC-X and DC-XA), as well on a body flap. The purpose was to use the vehicle as a test bed for materials and more efficient repair or maintenance processes which would be potentially useful for application on new entry vehicles (i.e., X-33, RLV, planetary probes), as well as on the existing space shuttle orbiters. Panels containing Thermal Protection Systems (TPS) and/or structural materials were constructed either at NASA Ames Research Center or at McDonnell Douglas Aerospace (MDA) and attached between two of the four thrusters in the base heat shield of the DC-X or DC-XA. Three different panels were flown on DC-X flights 6, 7, and 8. A total of 7 panels were flown on DC-XA flights 1, 2, and 3. The panels constructed at Ames contained a variety of ceramic TPS including flexible blankets, tiles with high emissivity coatings, lightweight ceramic ablators and other ceramic composites. The MDS test panels consisted primarily of a variety of metallic composites. This report focuses on the ceramic TPS test results.
Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K. Kirk
2015-01-01
In this paper, we report the use of micromachined PbIn1/2Nb1/2O3–PbMg1/3Nb2/3O3–PbTiO3 (PIN-PMN-PT) single crystal 1–3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at the center frequency of 41 MHz, which resulted in a 43 μm axial resolution. Ex vivo IVUS imaging was conducted to demonstrate the improvement of axial resolution. The composite transducer was capable of identifying the three layers of a cadaver coronary artery specimen with high resolution. The PIN-PMN-PT-based composite has superior piezoelectric properties comparable to PMN-PT-based composite and its thermal stability is higher than PMN-PT. PIN-PMN-PT crystal can be an alternative approach for fabricating high-frequency composite, instead of using PMN-PT. PMID:24960706
Denny, Mark W; King, Felicia A
2016-06-15
By incorporating joints into their otherwise rigid fronds, erect coralline algae have evolved to be as flexible as other seaweeds, which allows them to thrive - and even dominate space - on wave-washed shores around the globe. However, to provide the required flexibility, the joint tissue of Calliarthron cheilosporioides, a representative articulated coralline alga, relies on an extraordinary tissue that is stronger, more extensible and more fatigue resistant than that of other algae. Here, we used the results from recent experiments to parameterize a conceptual model that links the microscale architecture of cell walls to the adaptive mechanical properties of joint tissue. Our analysis suggests that the theory of discontinuous fiber-wound composite materials (with cellulose fibrils as the fibers and galactan gel as the matrix) can explain key aspects of the material's mechanics. In particular, its adaptive viscoelastic behavior can be characterized by two, widely separated time constants. We speculate that the short time constant (∼14 s) results from the viscous response of the matrix to the change in cell-wall shape as a joint is stretched, a response that allows the material both to remain flexible and to dissipate energy as a frond is lashed by waves. We propose that the long time constant (∼35 h), is governed by the shearing of the matrix between cellulose fibrils. The resulting high apparent viscosity ensures that joints avoid accumulating lethal deformation in the course of a frond's lifetime. Our synthesis of experimental measurements allows us to draw a chain of mechanistic inference from molecules to cell walls to fronds and community ecology. © 2016. Published by The Company of Biologists Ltd.
Lee, Youngoh; Park, Jonghwa; Cho, Soowon; Shin, Young-Eun; Lee, Hochan; Kim, Jinyoung; Myoung, Jinyoung; Cho, Seungse; Kang, Saewon; Baig, Chunggi; Ko, Hyunhyub
2018-04-24
Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa -1 , 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device.
Irani, Yazad D; Tian, Yuan; Wang, Mengjia; Klebe, Sonja; McInnes, Steven J; Voelcker, Nicolas H; Coffer, Jeffery L; Williams, Keryn A
2015-10-01
Dysfunction of corneal epithelial stem cells can result in painful and blinding disease of the ocular surface. In such cases, treatment may involve transfer of growth factor and normal adult stem cells to the ocular surface. Our purpose was to develop an implantable scaffold for the delivery of drugs and cells to the ocular surface. We examined the potential of novel composite biomaterials fabricated from electrospun polycaprolactone (PCL) fibres into which nanostructured porous silicon (pSi) microparticles of varying sizes (150-250 μm or <40 μm) had been pressed. The PCL fabric provided a flexible support for mammalian cells, whereas the embedded pSi provided a substantial surface area for efficient delivery of adsorbed drugs and growth factors. Measurements of tensile strength of these composites revealed that the pSi did not strongly influence the mechanical properties of the polymer microfiber component for the Si loadings evaluated. Human lens epithelial cells (SRA01/04) attached to the composite materials, and exhibited enhanced attachment and growth when the materials were coated with foetal bovine serum. To examine the ability of the materials to deliver a small-drug payload, pSi microparticles were loaded with fluorescein diacetate prior to cell attachment. After 6 hours (h), cells exhibited intracellular fluorescence, indicative of transfer of the fluorescein diacetate into viable cells and its subsequent enzymatic conversion to fluorescein. To investigate loading of large-molecule biologics, murine BALB/c 3T3 cells, responsive to epidermal growth factor, insulin and transferrin, were seeded on composite materials. The cells showed significantly more proliferation at 48 h when seeded on composites loaded with these biologics, than on unloaded composites. No cell proliferation was observed on PCL alone, indicating the biologics had loaded into the pSi microparticles. Drug release, measured by ELISA for insulin, indicated a burst followed by a slower, continuous release over six days. When implanted under the rat conjunctiva, the most promising composite material did not cause significant neovascularization but did elicit a macrophage and mild foreign body response. These novel pressed pSi-PCL materials have potential for delivery of both small and large drugs that can be released in active form, and can support the growth of mammalian cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Gangyong; Xiong, Tianrou; He, Shuijian; Li, Yonghong; Zhu, Yongmei; Hou, Haoqing
2016-06-01
Nanostructured nickel-cobalt binary hydroxide (NiCosbnd BH) is widely investigated as supercapacitor electrode material. However, the aggregation and poor electrical conductivity of NiCosbnd BH limit its practical application as a supercapacitor. In this work, a flexible free-standing hierarchical porous composite composed of NiCosbnd BH nanosheets and titanium carbide-carbon nanofiber (NiCosbnd BH@TiC/CNF) is fabricated through electrospinning and microwave assisted method. The as-prepared composites exhibit desirable electrochemical performances, including high specific capacitance, cycling stability, and rate capability. In particular, the NiCosbnd BH41@TiC/CNF composite electrode exhibits a maximum specific capacitance of 2224 F g-1 at the current density of 0.5 A g-1 and excellent cyclic stability of 91% capacity retention after 3000 cycles at 5.0 A g-1. To expand its practical application, an asymmetric supercapacitor (ASC) is fabricated using the NiCosbnd BH41@TiC/CNF composite as the positive electrode and active carbon as the negative electrode. The ASC exhibits a prominent energy density of 55.93 Wh kg-1 and a high power density of 18,300 W kg-1 at 5.0 A g-1. The superior electrochemical property is attributed to the uniform dispersion of NiCosbnd BH nanosheets on the TiC/CNF felt matrix. The TiC/CNF felt with uniformed TiC nanoparticles makes the fiber surface more suitable for growing NiCosbnd BH nanosheets and simultaneously enhances the conductivity of electrode.
Flexible devices: from materials, architectures to applications
NASA Astrophysics Data System (ADS)
Zou, Mingzhi; Ma, Yue; Yuan, Xin; Hu, Yi; Liu, Jie; Jin, Zhong
2018-01-01
Flexible devices, such as flexible electronic devices and flexible energy storage devices, have attracted a significant amount of attention in recent years for their potential applications in modern human lives. The development of flexible devices is moving forward rapidly, as the innovation of methods and manufacturing processes has greatly encouraged the research of flexible devices. This review focuses on advanced materials, architecture designs and abundant applications of flexible devices, and discusses the problems and challenges in current situations of flexible devices. We summarize the discovery of novel materials and the design of new architectures for improving the performance of flexible devices. Finally, we introduce the applications of flexible devices as key components in real life. Project supported by the National Key R&D Program of China (Nos. 2017YFA0208200, 2016YFB0700600, 2015CB659300), the National Natural Science Foundation of China (Nos. 21403105, 21573108), and the Fundamental Research Funds for the Central Universities (No. 020514380107).
Flexible composite radiation detector
Cooke, D Wayne [Santa Fe, NM; Bennett, Bryan L [Los Alamos, NM; Muenchausen, Ross E [Los Alamos, NM; Wrobleski, Debra A [Los Alamos, NM; Orler, Edward B [Los Alamos, NM
2006-12-05
A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.
Waterproof stretchable optoelectronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, John A.; Kim, Rak-Hwan; Kim, Dae-Hyeong
Described herein are flexible and stretchable LED arrays and methods utilizing flexible and stretchable LED arrays. Assembly of flexible LED arrays alongside flexible plasmonic crystals is useful for construction of fluid monitors, permitting sensitive detection of fluid refractive index and composition. Co-integration of flexible LED arrays with flexible photodetector arrays is useful for construction of flexible proximity sensors. Application of stretchable LED arrays onto flexible threads as light emitting sutures provides novel means for performing radiation therapy on wounds.
He, Xin; Duan, Feng; Liu, Junyan; Lan, Qiuming; Wu, Jianhao; Yang, Chengyan; Yang, Weijia; Zeng, Qingguang; Wang, Huafang
2017-01-01
Transparent, conductive, and flexible Ag nanowire (NW)-polyimide (PI) composite films were fabricated by a facile solution method. Well-dispersed Ag NWs result in percolation networks on the PI supporting layer. A series of films with transmittance values of 53–80% and sheet resistances of 2.8–16.5 Ω/sq were investigated. To further verify the practicability of the Ag NWs-PI film in optoelectronic devices, we utilized it in a film heater and a flexible solar cell. The film heater was able to generate a temperature of 58 °C at a driving voltage of 3.5 V within 20 s, indicating its potential application in heating devices that require low power consumption and fast response. The flexible solar cell based on the composite film with a transmittance value of 71% presented a power conversion efficiency of 3.53%. These successful applications proved that the fabricated Ag NWs-PI composite film is a good candidate for application in flexible optoelectronic devices. PMID:29186012
He, Xin; Duan, Feng; Liu, Junyan; Lan, Qiuming; Wu, Jianhao; Yang, Chengyan; Yang, Weijia; Zeng, Qingguang; Wang, Huafang
2017-11-29
Transparent, conductive, and flexible Ag nanowire (NW)-polyimide (PI) composite films were fabricated by a facile solution method. Well-dispersed Ag NWs result in percolation networks on the PI supporting layer. A series of films with transmittance values of 53-80% and sheet resistances of 2.8-16.5 Ω/sq were investigated. To further verify the practicability of the Ag NWs-PI film in optoelectronic devices, we utilized it in a film heater and a flexible solar cell. The film heater was able to generate a temperature of 58 °C at a driving voltage of 3.5 V within 20 s, indicating its potential application in heating devices that require low power consumption and fast response. The flexible solar cell based on the composite film with a transmittance value of 71% presented a power conversion efficiency of 3.53%. These successful applications proved that the fabricated Ag NWs-PI composite film is a good candidate for application in flexible optoelectronic devices.
Xie, Hao; Tang, Shaochun; Li, Dongdong; Vongehr, Sascha; Meng, Xiangkang
2017-05-22
To push the energy density limit of supercapacitors (SCs), new electrode materials with hierarchical nano-micron pore architectures are strongly desired. Graphene hydrogels that consist of 3 D porous frameworks have received particular attention but their capacitance is limited by electrical double layer capacitance. In this work, we report the rational design and fabrication of a composite hydrogel of N-doped graphene (NG) that contains embedded Ni(OH) 2 nanoplates that is cut conveniently into films to serve as positive electrodes for flexible asymmetric solid-state SCs with NG hydrogel films as negative electrodes. The use of high-power ultrasound leads to hierarchically porous micron-scale sheets that consist of a highly interconnected 3 D NG network in which Ni(OH) 2 nanoplates are well dispersed, which avoids the stacking of NG, Ni(OH) 2 , and their composites. The optimal SC device benefits from the compositional features and 3 D electrode architecture and has a high specific areal capacitance of 255 mF cm -2 at 1.0 mA cm -2 and a very stable, high output cell voltage of 1.45 V, which leads to an energy density of 80 μW h cm -2 even at a high power of 944 μW cm -2 , considerably higher than that reported for similar devices. The devices exhibit a high rate capability and only 8 % capacitance loss over 10 000 charging cycles as well as excellent flexibility with no clear performance degradation under strong bending. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials
Witman, Matthew; Ling, Sanliang; Jawahery, Sudi; ...
2017-03-30
For applications of metal–organic frameworks (MOFs) such as gas storage and separation, flexibility is often seen as a parameter that can tune material performance. In this work we aim to determine the optimal flexibility for the shape selective separation of similarly sized molecules (e.g., Xe/Kr mixtures). To obtain systematic insight into how the flexibility impacts this type of separation, we develop a simple analytical model that predicts a material’s Henry regime adsorption and selectivity as a function of flexibility. We elucidate the complex dependence of selectivity on a framework’s intrinsic flexibility whereby performance is either improved or reduced with increasingmore » flexibility, depending on the material’s pore size characteristics. However, the selectivity of a material with the pore size and chemistry that already maximizes selectivity in the rigid approximation is continuously diminished with increasing flexibility, demonstrating that the globally optimal separation exists within an entirely rigid pore. Molecular simulations show that our simple model predicts performance trends that are observed when screening the adsorption behavior of flexible MOFs. These flexible simulations provide better agreement with experimental adsorption data in a high-performance material that is not captured when modeling this framework as rigid, an approximation typically made in high-throughput screening studies. We conclude that, for shape selective adsorption applications, the globally optimal material will have the optimal pore size/chemistry and minimal intrinsic flexibility even though other nonoptimal materials’ selectivity can actually be improved by flexibility. In conclusion, equally important, we find that flexible simulations can be critical for correctly modeling adsorption in these types of systems.« less
The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witman, Matthew; Ling, Sanliang; Jawahery, Sudi
For applications of metal–organic frameworks (MOFs) such as gas storage and separation, flexibility is often seen as a parameter that can tune material performance. In this work we aim to determine the optimal flexibility for the shape selective separation of similarly sized molecules (e.g., Xe/Kr mixtures). To obtain systematic insight into how the flexibility impacts this type of separation, we develop a simple analytical model that predicts a material’s Henry regime adsorption and selectivity as a function of flexibility. We elucidate the complex dependence of selectivity on a framework’s intrinsic flexibility whereby performance is either improved or reduced with increasingmore » flexibility, depending on the material’s pore size characteristics. However, the selectivity of a material with the pore size and chemistry that already maximizes selectivity in the rigid approximation is continuously diminished with increasing flexibility, demonstrating that the globally optimal separation exists within an entirely rigid pore. Molecular simulations show that our simple model predicts performance trends that are observed when screening the adsorption behavior of flexible MOFs. These flexible simulations provide better agreement with experimental adsorption data in a high-performance material that is not captured when modeling this framework as rigid, an approximation typically made in high-throughput screening studies. We conclude that, for shape selective adsorption applications, the globally optimal material will have the optimal pore size/chemistry and minimal intrinsic flexibility even though other nonoptimal materials’ selectivity can actually be improved by flexibility. In conclusion, equally important, we find that flexible simulations can be critical for correctly modeling adsorption in these types of systems.« less
Detection of defects in multi-layered aramid composites by ultrasonic IR thermography
NASA Astrophysics Data System (ADS)
Pracht, Monika; Swiderski, Waldemar
2017-10-01
In military applications, laminates reinforced with aramid, carbon, and glass fibers are used for the construction of protection products against light ballistics. Material layers can be very different by their physical properties. Therefore, such materials represent a difficult inspection task for many traditional techniques of non-destructive testing (NDT). Defects which can appear in this type of many-layered composite materials usually are inaccuracies in gluing composite layers and stratifications or delaminations occurring under hits of fragments and bullets. IR thermographic NDT is considered as a candidate technique to detect such defects. One of the active IR thermography methods used in nondestructive testing is vibrothermography. The term vibrothermography was created in the 1990s to determine the thermal test procedures designed to assess the hidden heterogeneity of structural materials based on surface temperature fields at cyclical mechanical loads. A similar procedure can be done with sound and ultrasonic stimulation of the material, because the cause of an increase in temperature is internal friction between the wall defect and the stimulation mechanical waves. If the cyclic loading does not exceed the flexibility of the material and the rate of change is not large, the heat loss due to thermal conductivity is small, and the test object returns to its original shape and temperature. The most commonly used method is ultrasonic stimulation, and the testing technique is ultrasonic infrared thermography. Ultrasonic IR thermography is based on two basic phenomena. First, the elastic properties of defects differ from the surroundings, and acoustic damping and heating are always larger in the damaged regions than in the undamaged or homogeneous areas. Second, the heat transfer in the sample is dependent on its thermal properties. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting multi-layered aramide composite materials will be presented.
46 CFR 182.720 - Nonmetallic piping materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...
46 CFR 182.720 - Nonmetallic piping materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...
46 CFR 182.720 - Nonmetallic piping materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...
46 CFR 182.720 - Nonmetallic piping materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...
46 CFR 182.720 - Nonmetallic piping materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...
A Highly Tunable Silicone-Based Magnetic Elastomer with Nanoscale Homogeneity
Evans, Benjamin A.; Fiser, Briana L.; Prins, Willem J.; Rapp, Daniel J.; Shields, Adam R.; Glass, Daniel R.; Superfine, R.
2011-01-01
Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-based magnetic elastomers have a number of advantages over other materials such as hydrogels, but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation inherently limits the minimum size of fabricated structures and leads to non-uniform response from structure to structure. We have developed a novel material which is a complex of a silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface of magnetite (γ-Fe203) nanoparticles 7–10 nm in diameter. The material is homogenous at very small length scales (< 100 nm) and can be crosslinked to form a flexible, magnetic material which is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction of magnetic nanoparticles in the composite can be varied smoothly from 0 – 50% wt. without loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate the material properties of the composite across a range of nanoparticle loading, and demonstrate a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation applications, and show that our predictions correlate well with experimental findings. PMID:22184482
A Highly Tunable Silicone-Based Magnetic Elastomer with Nanoscale Homogeneity.
Evans, Benjamin A; Fiser, Briana L; Prins, Willem J; Rapp, Daniel J; Shields, Adam R; Glass, Daniel R; Superfine, R
2012-02-01
Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-based magnetic elastomers have a number of advantages over other materials such as hydrogels, but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation inherently limits the minimum size of fabricated structures and leads to non-uniform response from structure to structure. We have developed a novel material which is a complex of a silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface of magnetite (γ-Fe(2)0(3)) nanoparticles 7-10 nm in diameter. The material is homogenous at very small length scales (< 100 nm) and can be crosslinked to form a flexible, magnetic material which is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction of magnetic nanoparticles in the composite can be varied smoothly from 0 - 50% wt. without loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate the material properties of the composite across a range of nanoparticle loading, and demonstrate a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation applications, and show that our predictions correlate well with experimental findings.
Self-standing elastomeric composites based on lithium ferrites and their dielectric behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soreto Teixeira, S.; Graça, M. P. F.; Costa, L. C.
2014-12-14
Lithium ferrite (LiFe{sub 5}O{sub 8}) is an attractive material for technological applications due to its physical properties, which are significantly dependent on the preparation method and raw materials. In this work, LiFe{sub 5}O{sub 8} crystallites were obtained by controlled heat-treatment process at 1100 °C, of a homogeneous mixture of Li{sub 2}O-Fe{sub 2}O{sub 3} powders, prepared by wet ball-milling and using lithium and iron nitrates as raw materials. The main goal was the preparation of a flexible and self-standing tick composite film by embedding lithium ferrite particles in a polymeric matrix, taking advantage of the good mechanical properties of the polymer andmore » of the electrical and dielectric properties of the ferrite. The selected polymer matrix was styrene-b-isoprene-b-styrene copolymer. To prepare the composites, the lithium ferrite particles were chemically modified in order to functionalize their surface. To analyse the influence of the particles surface modification, different composites were made, with modified and unmodified particles. The structure of the obtained composites was studied by FTIR, XRD, TGA, and DSC techniques. The dielectric properties were analysed, in the frequency range between 10 Hz and 1 MHz and in function of temperature in the range between −73 °C and 127 °C. These properties were related with the structure and concentration of the particles in the matrix network. The composites with the modified particles present higher dielectric constant, maintaining values of loss tangent sufficiently low (<10{sup −2}) that can be considered interesting for technological applications.« less
Casting of superconducting composite materials (M-4)
NASA Technical Reports Server (NTRS)
Togano, Kazumasa
1993-01-01
An aluminum-lead-bismuth alloy is a flexible alloy and is promising for easily workable embedded-type, filament-dispersed superconducting wire material. It is difficult to produce homogeneous ingots of this material because it is easily separated into elements when melted on Earth due to the large specific gravity differences. In this experiment, a homogeneous alloy will first be produced in molten state in microgravity. It will then be returned to Earth and processed into a wire or tape form. It will then be dispersed as the second phase in micro texture form into the primary phase of aluminum. Superconducting wire material with high-critical-magnetic-field characteristics will be produced. The texture of the material will be observed, and its performance will be evaluated. In addition to the above alloy, a four-element alloy will be produced from silver, a rare Earth element, barium, and copper. The alloys will be oxidized and drawn into wire after being returned to Earth. The materials are expected to be forerunners in obtaining superconducting wire materials from oxide superconductors.
NASA Astrophysics Data System (ADS)
Kumar, Sushil; Datt, Gopal; Santhosh Kumar, A.; Abhyankar, A. C.
2016-10-01
Flexible microwave absorber composite films of carbon black (CB)/barium hexaferrite nano-discs (BaF) in polyvinyl alcohol (PVA) matrix, fabricated by gel casting, exhibit ˜99.5% attenuation of electromagnetic waves in the entire 8-18 GHz (X and Ku-band) range. The X-ray diffraction and Raman spectroscopy studies confirm the formation of CB-BaF-PVA composite films. The electromagnetic absorption properties of composite films are found to be enhanced with CB content due to the synergetic effect of multiple dielectric and magnetic losses. The 25 wt. % CB grafted PVA-BaF flexible composite films with a thickness of ˜ 2 mm exhibit effective electromagnetic shielding of 23.6 dB with a dominant contribution from absorption mechanism (SEA ˜ 21 dB). The dielectric properties of composite films are further discussed by using the Debye model. The detailed analysis reveals that major contribution to dielectric losses is from dipolar and interfacial polarizations, whereas magnetic losses are predominantly from domain wall displacement.
Appel, Esther; Heepe, Lars; Lin, Chung-Ping; Gorb, Stanislav N
2015-01-01
Dragonflies count among the most skilful of the flying insects. Their exceptional aerodynamic performance has been the subject of various studies. Morphological and kinematic investigations have showed that dragonfly wings, though being rather stiff, are able to undergo passive deformation during flight, thereby improving the aerodynamic performance. Resilin, a rubber-like protein, has been suggested to be a key component in insect wing flexibility and deformation in response to aerodynamic loads, and has been reported in various arthropod locomotor systems. It has already been found in wing vein joints, connecting longitudinal veins to cross veins, and was shown to endow the dragonfly wing with chordwise flexibility, thereby most likely influencing the dragonfly’s flight performance. The present study revealed that resilin is not only present in wing vein joints, but also in the internal cuticle layers of veins in wings of Sympetrum vulgatum (SV) and Matrona basilaris basilaris (MBB). Combined with other structural features of wing veins, such as number and thickness of cuticle layers, material composition, and cross-sectional shape, resilin most probably has an effect on the vein′s material properties and the degree of elastic deformations. In order to elucidate the wing vein ultrastructure and the exact localisation of resilin in the internal layers of the vein cuticle, the approaches of bright-field light microscopy, wide-field fluorescence microscopy, confocal laser-scanning microscopy, scanning electron microscopy and transmission electron microscopy were combined. Wing veins were shown to consist of up to six different cuticle layers and a single row of underlying epidermal cells. In wing veins of MBB, the latter are densely packed with light-scattering spheres, previously shown to produce structural colours in the form of quasiordered arrays. Longitudinal and cross veins differ significantly in relative thickness of exo- and endocuticle, with cross veins showing a much thicker exocuticle. The presence of resilin in the unsclerotised endocuticle suggests its contribution to an increased energy storage and material flexibility, thus to the prevention of vein damage. This is especially important in the highly stressed longitudinal veins, which have much lower possibility to yield to applied loads with the aid of vein joints, as the cross veins do. These results may be relevant not only for biologists, but may also contribute to optimise the design of micro-air vehicles. PMID:26352411
NASA Astrophysics Data System (ADS)
Sebastian, Tutu; Lusiola, Tony; Clemens, Frank
2017-04-01
Piezoelectric fibers are widely used in composites for actuator and sensor applications due to its ability to convert electrical pulses into mechanical vibrations and transform the returned mechanical vibrations back into electrical signal. They are beneficial for the fabrication of composites especially 1-3 composites, active fiber composites (unidirectional axially aligned PZT fibers sandwiched between interdigitated electrodes and embedded in a polymer matrix) etc, with potential applications in medical imaging, structural health monitoring, energy harvesting, vibration and noise control. However, due to the brittle nature of PZT fibers, maximum strain is limited to 0.2% and cannot be integrated into flexible sensor applications. In this contribution, a new approach to develop flexible ferroelectric hybrid fibers for soft body shape sensing is investigated. Piezoelectric particles incorporated in a polymer matrix and extruded as fiber, 0-3 composite in fibrous form is studied. Commercially obtained calcined PZT and calcined BaTiO3 powders were used in the unsintered form to obtain flexible soft condensed matter ferroelectric hybrid fibers. The extruded fibers were subjected to investigation for their electromechanical behavior as a function of electric field. The hybrid fibers reached 10% of the maximum polarization of their sintered counterpart.
NASA Astrophysics Data System (ADS)
Kelnar, Ivan; Kratochvíl, Jaroslav
2016-05-01
Blending of ductile poly(ɛ-caprolactone) (PCL) and rigid polylactic acid (PLA) is a promising way to tailor biodegradable materials with broad range of properties. But the mutual incompatibility of both polyesters leads to compromised behaviour only. Alternative to PCL/PLA blends is application of PLA in the form of short fibres, however, difficult dispergation of flexible fibres including their poor adhesion and limited processing is a significant restriction. More effective is in situ formation of polymeric fibre-reinforced materials using microfibrillar composites (MFC) concept based on melt- or cold-drawing of a polymer blend. Important advantage of MFC is efficient dispersion and bonding of in-situ formed reinforcing fibres This work deals with combination of structure-directing and reinforcing effects of montmorillonite (oMMT) and halloysite nanotubes (HNT) in the PCL/PLA 80/20 blend with in-situ formation of PLA fibrils in the PCL matrix. In the resulting microfibrillar composite, reinforcement by rigid PLA fibrils is combined with strengthening of both components by the nanofiller (NF). Moreover, PLA fibrils formation via melt-drawing is only possible after nanofiller addition due to favourable affecting of rheological parameters of the polymer components. The structure-properties relationship and complex effect of NF on microfibrillar composite performance, causing e.g., quite comparable parameters of both microfibrillar composites in spite of lower reinforcing effect of halloysite nanotubes on components, are discussed.
Reed, H; Leckey, Cara A C; Dick, A; Harvey, G; Dobson, J
2018-01-01
Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sennewald, C.; Vorhof, M.; Schegner, P.; Hoffmann, G.; Cherif, C.; Boblenz, J.; Sinapius, M.; Hühne, C.
2018-05-01
Flexible cellular 3D structures with structure-inherent compliance made of fiber-reinforced composites have repeatedly aroused the interest of international research groups. Such structures offer the possibility to meet the increasing demand for flexible and adaptive structures. The aim of this paper is the development of cellular 3D structures based on weaving technology. Considering the desired geometry of the 3D structure, algorithms are developed for the formation of geometry through tissue sub-areas. Subsequently, these sub-areas are unwound into the weaving level and appropriate weave patterns are developed. A particular challenge is the realization of compliant mechanisms in the woven fabric. This can be achieved either by combining different materials or, in particular, by implementing large stiffness gradients by means of varying the woven fabrics thickness, whereas differences in wall thickness have to be realized with a factor of 1:10. A manufacturing technology based on the weaving process is developed for the realization of the developed 3D cellular structures. To this end, solutions for the processing of hybrid thermoplastic materials (e.g. tapes), solutions for the integration of inlays in the weaving process (thickening of partial areas), and solutions for tissue retraction, as well as for the fabric pull-off (linear pull-off system) are being developed. In this way, woven cellular 3D structures with woven outer layers and woven joint areas (compliance) can be realized in a single process step and are subsequently characterized.
Tu, Zhiming; Yang, Gongzheng; Song, Huawei; Wang, Chengxin
2017-01-11
Due to its high theoretical capacity (978 mA h g -1 ), natural abundance, environmental friendliness, and low cost, zinc oxide is regarded as one of the most promising anode materials for lithium-ion batteries (LIBs). A lot of research has been done in the past few years on this topic. However, hardly any research on amorphous ZnO for LIB anodes has been reported despite the fact that the amorphous type could have superior electrochemical performance due to its isotropic nature, abundant active sites, better buffer effect, and different electrochemical reaction details. In this work, we develop a simple route to prepare an amorphous ZnO quantum dot (QDs)/mesoporous carbon bubble composite. The composite consists of two parts: mesoporous carbon bubbles as a flexible skeleton and monodisperse amorphous zinc oxide QDs (smaller than 3 nm) encapsulated in an amorphous carbon matrix as a continuous coating tightly anchored on the surface of mesoporous carbon bubbles. With the benefits of abundant active sites, amorphous nature, high specific surface area, buffer effect, hierarchical pores, stable interconnected conductive network, and multidimensional electron transport pathways, the amorphous ZnO QD/mesoporous carbon bubble composite delivers a high reversible capacity of nearly 930 mA h g -1 (at current density of 100 mA g -1 ) with almost 90% retention for 85 cycles and possesses a good rate performance. This work opens the possibility to fabricate high-performance electrode materials for LIBs, especially for amorphous metal oxide-based materials.
Kawamoto, Naoyuki; Kakefuda, Yohei; Mori, Takao; Hirose, Kenji; Mitome, Masanori; Bando, Yoshio; Golberg, Dmitri
2015-11-20
We developed an original method of in situ nanoscale characterization of thermal resistance utilizing a high-resolution transmission electron microscope (HRTEM). The focused electron beam of the HRTEM was used as a contact-free heat source and a piezo-movable nanothermocouple was developed as a thermal detector. This method has a high flexibility of supplying thermal-flux directions for nano/microscale thermal conductivity analysis, and is a powerful way to probe the thermal properties of complex or composite materials. Using this method we performed reproducible measurements of electron beam-induced temperature changes in pre-selected sections of a heat-sink α-Al(2)O(3)/epoxy-based resin composite. Observed linear behavior of the temperature change in a filler reveals that Fourier's law holds even at such a mesoscopic scale. In addition, we successfully determined the thermal resistance of the nanoscale interfaces between neighboring α-Al(2)O(3) fillers to be 1.16 × 10(-8) m(2)K W(-1), which is 35 times larger than that of the fillers themselves. This method that we have discovered enables evaluation of thermal resistivity of composites on the nanoscale, combined with the ultimate spatial localization and resolution sample analysis capabilities that TEM entails.
Polyimide Resins Resist Extreme Temperatures
NASA Technical Reports Server (NTRS)
2009-01-01
Spacecraft and aerospace engines share a common threat: high temperature. The temperatures experienced during atmospheric reentry can reach over 2,000 F, and the temperatures in rocket engines can reach well over 5,000 F. To combat the high temperatures in aerospace applications, Dr. Ruth Pater of Langley Research Center developed RP-46, a polyimide resin capable of withstanding the most brutal temperatures. The composite material can push the service temperature to the limits of organic materials. Designed as an environmentally friendly alternative to other high-temperature resins, the RP-46 polyimide resin system was awarded a 1992 "R&D 100" award, named a "2001 NASA Technology of the Year," and later, due to its success as a spinoff technology, "2004 NASA Commercial Invention of the Year." The technology s commercial success also led to its winning the Langley s "Paul F. Holloway Technology Transfer Award" as well as "Richard T. Whitcom Aerospace Technology Transfer Award" both for 2004. RP-46 is relatively inexpensive and it can be readily processed for use as an adhesive, composite, resin molding, coating, foam, or film. Its composite materials can be used in temperatures ranging from minus 150 F to 2,300 F. No other organic materials are known to be capable of such wide range and extreme high-temperature applications. In addition to answering the call for environmentally conscious high-temperature materials, RP-46 provides a slew of additional advantages: It is extremely lightweight (less than half the weight of aluminum), chemical and moisture resistant, strong, and flexible. Pater also developed a similar technology, RP-50, using many of the same methods she used with RP-46, and very similar in composition to RP-46 in terms of its thermal capacity and chemical construction, but it has different applications, as this material is a coating as opposed to a buildable composite. A NASA license for use of this material outside of the Space Agency as well as additional government-funded testing proved that RP-46 is even more exceptional than originally thought.
Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Xue, Xin; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi
2015-05-27
A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm(-1). The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g(-1) even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.
Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S.; Katman, Herdayati; Husain, Nadiah Md
2014-01-01
Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout. PMID:24526911
Building devices from colloidal quantum dots.
Kagan, Cherie R; Lifshitz, Efrat; Sargent, Edward H; Talapin, Dmitri V
2016-08-26
The continued growth of mobile and interactive computing requires devices manufactured with low-cost processes, compatible with large-area and flexible form factors, and with additional functionality. We review recent advances in the design of electronic and optoelectronic devices that use colloidal semiconductor quantum dots (QDs). The properties of materials assembled of QDs may be tailored not only by the atomic composition but also by the size, shape, and surface functionalization of the individual QDs and by the communication among these QDs. The chemical and physical properties of QD surfaces and the interfaces in QD devices are of particular importance, and these enable the solution-based fabrication of low-cost, large-area, flexible, and functional devices. We discuss challenges that must be addressed in the move to solution-processed functional optoelectronic nanomaterials. Copyright © 2016, American Association for the Advancement of Science.
Koting, Suhana; Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S; Ibrahim, Mohd Rasdan; Katman, Herdayati; Husain, Nadiah Md
2014-01-01
Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout.
49 CFR 173.37 - Hazardous Materials in Flexible Bulk Containers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... an external visual inspection by the person filling the Flexible Bulk Container to ensure: (1) The... transported in cargo transport units when offered for transportation by vessel. (7) Flexible Bulk Containers... 49 Transportation 2 2013-10-01 2013-10-01 false Hazardous Materials in Flexible Bulk Containers...
49 CFR 173.37 - Hazardous Materials in Flexible Bulk Containers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... an external visual inspection by the person filling the Flexible Bulk Container to ensure: (1) The... transported in cargo transport units when offered for transportation by vessel. (7) Flexible Bulk Containers... 49 Transportation 2 2014-10-01 2014-10-01 false Hazardous Materials in Flexible Bulk Containers...
Shelton, Zachary R.; Braga, Roberto R.; Windmoller, Dario; Machado, José C.
2011-01-01
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by 1H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/1H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60–40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. PMID:21499538
Pfeifer, Carmem S; Shelton, Zachary R; Braga, Roberto R; Windmoller, Dario; Machado, José C; Stansbury, Jeffrey W
2011-02-01
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials.
2001 Defence Attitude Survey Report
2001-09-01
Plan on a Page and Best Way to Advance Career............................14 Flexible Working Hours and Gender/Service Unit Composition ....15 Equity...2283 100 3179 100 10488 100 2 0 0 1 D e f e n c e A t t i t u d e S u r v e y R e p o r t 15 Flexible Working Hours and Gender/Service Unit Composition...Civilians reported the highest availability of flexible working hours , with 89% of Civilian respondents stating they were available in their workplace
Xi, Shuang; Zhu, Yinlong; Yang, Yutu; Jiang, Shulan; Tang, Zirong
2017-12-01
Free-standing NiO/MnO 2 core-shell nanoflake structure was deposited on flexible carbon cloth (CC) used as electrode for high-performance supercapacitor (SC). The NiO core was grown directly on CC by hydrothermal process and the following annealing treatment. MnO 2 thin film was then covered on NiO structures via a self-limiting process in aqueous solution of 0.5 M KMnO 4 and 0.5 M Na 2 SO 4 with a carbon layer serving as the sacrificial layer. Both the core and shell materials are good pseudocapacitive materials, the compounds of binary metal oxides can provide the synergistic effect of all individual constituents, and thus enhance the performance of SC electrode. The obtained CC/NiO/MnO 2 heterostructure was directly used as SC electrodes, showing an enhanced electrochemical performance including areal capacitance of 316.37 mF/cm 2 and special gravimetric capacitance of 204.3 F/g at the scan rate of 50 mV/s. The electrode also shows excellent cycling stability, which retains 89% of its initial discharge capacitance after 2200 cycles with >97% Coulombic efficiency. The synthesized binder-free hierarchical composite electrode with superior electrochemical properties demonstrates enormous potential in the application of flexible SCs.
3D printing of highly elastic strain sensors using polyurethane/multiwall carbon nanotube composites
NASA Astrophysics Data System (ADS)
Christ, Josef F.; Hohimer, Cameron J.; Aliheidari, Nahal; Ameli, Amir; Mo, Changki; Pötschke, Petra
2017-04-01
As the desire for wearable electronics increases and the soft robotics industry advances, the need for novel sensing materials has also increased. Recently, there have been many attempts at producing novel materials, which exhibit piezoresistive behavior. However, one of the major shortcomings in strain sensing technologies is in the fabrication of such sensors. While there is significant research and literature covering the various methods for developing piezoresistive materials, fabricating complex sensor platforms is still a manufacturing challenge. Here, we report a facile method to fabricate multidirectional embedded strain sensors using additive manufacturing technology. Pure thermoplastic polyurethane (TPU) and TPU/multiwall carbon nanotubes (MWCNT) nanocomposites were 3D printed in tandem using a low-cost multi-material FDM printer to fabricate uniaxial and biaxial strain sensors with conductive paths embedded within the insulative TPU platform. The sensors were then subjected to a series of cyclic strain loads. The results revealed excellent piezoresistive responses of the sensors with cyclic repeatability in both the axial and transverse directions and in response to strains as high as 50%. Further, while strain-softening did occur in the embedded printed strain sensors, it was predictable and similar to the results found in the literature for bulk polymer nanocomposites. This works demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics and flexible electronics and health monitoring.
Fiber-optic technologies in laser-based therapeutics: threads for a cure.
Wang, Zheng; Chocat, Noémie
2010-06-01
In the past decade, novel fiber structures and material compositions have led to the introduction of new diagnostic and therapeutic tools. We review the structure, the material composition and the fabrication processes behind these novel fiber systems. Because of their structural flexibility, their compatibility with endoscopic appliances and their efficiency in laser delivery, these fiber systems have greatly extended the reach of a wide range of surgical lasers in minimally invasive procedures. Much research in novel fiber-optics delivery systems has been focused on the accommodation of higher optical powers and the extension to a broader wavelength range. Until recently, CO2 laser surgery, renowned for its precision and efficiency, was limited to open surgeries by the lack of delivery fibers. Hollow-core photonic bandgap fibers are assessed for their ability to transmit CO2 laser at surgical power level and for their applications in a range of clinical areas. Current fiber-delivery technologies for a number of laser surgery modalities and wavelengths are compared.
Lopez-Sanchez, Patricia; Martinez-Sanz, Marta; Bonilla, Mauricio R; Wang, Dongjie; Gilbert, Elliot P; Stokes, Jason R; Gidley, Michael J
2017-04-15
Plant cell walls have a unique combination of strength and flexibility however, further investigations are required to understand how those properties arise from the assembly of the relevant biopolymers. Recent studies indicate that Ca 2+ -pectates can act as load-bearing components in cell walls. To investigate this proposed role of pectins, bioinspired wall models were synthesised based on bacterial cellulose containing pectin-calcium gels by varying the order of assembly of cellulose/pectin networks, pectin degree of methylesterification and calcium concentration. Hydrogels in which pectin-calcium assembly occurred prior to cellulose synthesis showed evidence for direct cellulose/pectin interactions from small-angle scattering (SAXS and SANS), had the densest networks and the lowest normal stress. The strength of the pectin-calcium gel affected cellulose structure, crystallinity and material properties. The results highlight the importance of the order of assembly on the properties of cellulose composite networks and support the role of pectin in the mechanics of cell walls. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biocomposites from co-polypropylene and distillers' grains
NASA Astrophysics Data System (ADS)
Zarrinbakhsh, Nima; Mohanty, Amar K.; Misra, Manjusri
2015-05-01
In the present work, we have explored the polymeric composites of distillers' grains with co-polypropylene (co-PP). The effect of maleated-PP compatibilizer on mechanical, thermomechanical and physical properties was evaluated. The composite materials were produced by melt extrusion in a micro-compounder followed by injection molding in a micro-injection machine. The composites were characterized for their tensile, flexural and impact properties. Also, melt flow index and heat deflection temperature were measured. The results showed more than 30 % improvement in modulus when comparing the compatibilized biocomposite with neat co-PP. Also, the strength of the compatibilized biocomposite measured in tensile and flexural tests was comparable to or even better than that of the neat matrix. On the other hand, the reduced flexibility and toughness as a result of compatibilization were in an acceptable range. The biocomposites showed more rigidity at elevated temperatures. The produced distillers' grain biocomposites showed promises for industrial applications.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Polanco, Michael A.
2012-01-01
This paper describes the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar (Registered Trademark) honeycomb to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed until needed for deployment. Experimental evaluation of the DEA included dynamic crush tests of multi-cell components and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto multi-terrain. Finite element models of the test articles were developed and simulations were performed using the transient dynamic code, LSDYNA (Registered Trademark). In each simulation, the DEA was represented using shell elements assigned two different material properties: Mat 24, an isotropic piecewise linear plasticity model, and Mat 58, a continuum damage mechanics model used to represent laminated composite fabrics. DEA model development and test-analysis comparisons are presented.
Magnetic assembly of transparent and conducting graphene-based functional composites
Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele
2016-01-01
Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol–gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices. PMID:27354243
Cellulose Nanofiber Composite Substrates for Flexible Electronics
Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma
2012-01-01
Flexible electronics have a large number of potential applications including malleable displays and wearable computers. The current research into high-speed, flexible electronic substrates employs the use of plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from...
Chapter 2.3 Cellulose Nanofibril Composite Substrates for Flexible Electronics
Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma
2013-01-01
Flexible electronics have a large number of potential applications, including malleable displays and wearable computers. Current research into high-speed, flexible electronic substrates uses plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from cellulose...
An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes
Zhao, Chen-Zi; Zhang, Xue-Qiang; Cheng, Xin-Bing; Zhang, Rui; Xu, Rui; Chen, Peng-Yu; Peng, Hong-Jie; Huang, Jia-Qi
2017-01-01
Lithium metal is strongly regarded as a promising electrode material in next-generation rechargeable batteries due to its extremely high theoretical specific capacity and lowest reduction potential. However, the safety issue and short lifespan induced by uncontrolled dendrite growth have hindered the practical applications of lithium metal anodes. Hence, we propose a flexible anion-immobilized ceramic–polymer composite electrolyte to inhibit lithium dendrites and construct safe batteries. Anions in the composite electrolyte are tethered by a polymer matrix and ceramic fillers, inducing a uniform distribution of space charges and lithium ions that contributes to a dendrite-free lithium deposition. The dissociation of anions and lithium ions also helps to reduce the polymer crystallinity, rendering stable and fast transportation of lithium ions. Ceramic fillers in the electrolyte extend the electrochemically stable window to as wide as 5.5 V and provide a barrier to short circuiting for realizing safe batteries at elevated temperature. The anion-immobilized electrolyte can be applied in all–solid-state batteries and exhibits a small polarization of 15 mV. Cooperated with LiFePO4 and LiNi0.5Co0.2Mn0.3O2 cathodes, the all–solid-state lithium metal batteries render excellent specific capacities of above 150 mAh⋅g−1 and well withstand mechanical bending. These results reveal a promising opportunity for safe and flexible next-generation lithium metal batteries. PMID:28973945
Lee, Kyoung Soon; Lee, Jae Koo; Yeun, Young Ran
2017-01-01
Background A lifestyle characterized by poor eating habits and physical inactivity is a risk factor for multiple lifestyle diseases in young adults. This study assessed the effects of implementing an intensive 10-day health promotion program combining diet and physical activities on body composition, physical fitness, and biochemical parameters of young adults. Material/Methods In this randomized pilot study, 30 female undergraduate students were randomly allocated to an intervention and a control group. The health promotion program consisted of unlimited amounts of vegetarian food; aerobic, flexibility, and strength exercises (3 hours/day); lectures on health (3 hours/day); massage practice (2 hours/day); and healthy cooking practice (1 hour/day). The effects of the intervention were analyzed using the Mann-Whitney U test and the Wilcoxon signed-rank test. Results The intensive 10-day health promotion program significantly reduced body weight, body mass index, triglyceride, total cholesterol, low-density lipoprotein cholesterol, blood glucose, and the homeostasis model assessment of insulin resistance. At the same time, participants demonstrated increased back muscle, leg muscle, and grip strength; waist and shoulder flexibility; balance; and cardiorespiratory endurance. Conclusions The intensive 10-day health promotion program is a viable intervention for improving body composition, physical fitness, glycemic control, and blood lipid levels in young adults. PMID:28399076
Acoustic metamaterials with circular sector cavities and programmable densities.
Akl, W; Elsabbagh, A; Baz, A
2012-10-01
Considerable interest has been devoted to the development of various classes of acoustic metamaterials that can control the propagation of acoustical wave energy throughout fluid domains. However, all the currently exerted efforts are focused on studying passive metamaterials with fixed material properties. In this paper, the emphasis is placed on the development of a class of composite one-dimensional acoustic metamaterials with effective densities that are programmed to adapt to any prescribed pattern along the metamaterial. The proposed acoustic metamaterial is composed of a periodic arrangement of cell structures, in which each cell consists of a circular sector cavity bounded by actively controlled flexible panels to provide the capability for manipulating the overall effective dynamic density. The theoretical analysis of this class of multilayered composite active acoustic metamaterials (CAAMM) is presented and the theoretical predictions are determined for a cascading array of fluid cavities coupled to flexible piezoelectric active boundaries forming the metamaterial domain with programmable dynamic density. The stiffness of the piezoelectric boundaries is electrically manipulated to control the overall density of the individual cells utilizing the strong coupling with the fluid domain and using direct acoustic pressure feedback. The interaction between the neighboring cells of the composite metamaterial is modeled using a lumped-parameter approach. Numerical examples are presented to demonstrate the performance characteristics of the proposed CAAMM and its potential for generating prescribed spatial and spectral patterns of density variation.
Knitted radar absorbing materials (RAM) based on nickel-cobalt magnetic materials
NASA Astrophysics Data System (ADS)
Teber, Ahmet; Unver, Ibrahim; Kavas, Huseyin; Aktas, Bekir; Bansal, Rajeev
2016-05-01
There has been a long-standing interest in the development of flexible, lightweight, thin, and reconfigurable radar absorbing materials (RAM) for military applications such as camouflaging ground-based hardware against airborne radar observation. The use of polymeric Polyacrylonitrile (PAN) fabrics as a host matrix for magnetic metal nano-particles (either at the yarn-stage or after weaving the fabric) for shielding and absorbing applications has been described in the literature. In our experimental investigation, the relative concentrations of Nickel and Cobalt as well as the coating time are varied with a view to optimizing the microwave absorption characteristics of the resulting PAN-based composite material in the radar-frequency bands (X, Ku, and K). It is found that the PAN samples with the shortest coating time have the best return losses (under -20 dB return loss over a moderate bandwidth).
Thin film transistors for flexible electronics: contacts, dielectrics and semiconductors.
Quevedo-Lopez, M A; Wondmagegn, W T; Alshareef, H N; Ramirez-Bon, R; Gnade, B E
2011-06-01
The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed.
Moon, In Kyu; Yoon, Seonno; Oh, Jungwoo
2017-01-12
To achieve high energy storage on three-dimensional (3D) structures at low cost, materials with high power and long cycle life characteristics have to be developed. We synthesized ZnCo 2 O 4 /reduced graphene oxide (rGO) binary composites in commercial sponges. ZnCo 2 O 4 nanosheets were grown on the surface of GO/sponge through a hydrothermal reaction. The resulting flexible, free-standing ZnCo 2 O 4 /rGO/sponge electrodes were used as the electrodes in a symmetric supercapacitor. ZnCo 2 O 4 /rGO/sponge electrodes have a large specific capacitance of 1116.6 F g -1 at a scan rate of 2 mV s -1 in aqueous electrolyte. The all-solid-state flexible supercapacitor is assembled based on ZnCo 2 O 4 /rGO/sponge electrodes, which show excellent electrochemical performances with a specific capacitance of 143 F g -1 at a current density of 1 A g -1 . The as-fabricated supercapacitor also exhibits excellent cycling stability (93.4 % capacitance retention after 5000 cycles) and exceptional mechanical flexibility. These results demonstrate the potential of ZnCo 2 O 4 /rGO/sponge as an electrode in flexible, high-performance supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Robust and Flexible Aramid Nanofiber/Graphene Layer-by-Layer Electrodes.
Kwon, Se Ra; Elinski, Meagan B; Batteas, James D; Lutkenhaus, Jodie L
2017-05-24
Aramid nanofibers (ANFs), or nanoscale Kevlar fibers, are of interest for their high mechanical performance and functional nanostructure. The dispersible nature of ANFs opens up processing opportunities for creating mechanically robust and flexible nanocomposites, particularly for energy and power applications. The challenge is to manipulate ANFs into an electrode structure that balances mechanical and electrochemical performance to yield a robust and flexible electrode. Here, ANFs and graphene oxide (GO) sheets are blended using layer-by-layer (LbL) assembly to achieve mechanically flexible supercapacitor electrodes. After reduction, the resulting electrodes exhibit an ANF-rich structure where ANFs act as a polymer matrix that interfacially interacts with reduced graphene oxide sheets. It is shown that ANF/GO deposition proceeds by hydrogen bonding and π-π interactions, leading to linear growth (1.2 nm/layer pairs) and a composition of 75 wt % ANFs and 25 wt % GO sheets. Chemical reduction leads to a high areal capacitance of 221 μF/cm 2 , corresponding to 78 F/cm 3 . Nanomechanical testing shows that the electrodes have a modulus intermediate between those of the two native materials. No cracks or defects are observed upon flexing ANF/GO films 1000 times at a radius of 5 mm, whereas a GO control shows extensive cracking. These results demonstrate that electrodes containing ANFs and reduced GO sheets are promising for flexible, mechanically robust energy and power.
Organic-Inorganic Hybrid Halide Perovskites for Memories, Transistors, and Artificial Synapses.
Choi, Jaeho; Han, Ji Su; Hong, Kootak; Kim, Soo Young; Jang, Ho Won
2018-05-30
Fascinating characteristics of halide perovskites (HPs), which cannot be seen in conventional semiconductors and metal oxides, have boosted the application of HPs in electronic devices beyond optoelectronics such as solar cells, photodetectors, and light-emitting diodes. Here, recent advances in HP-based memory and logic devices such as resistive-switching memories (i.e., resistive random access memory (RRAM) or memristors), transistors, and artificial synapses are reviewed, focusing on inherently exotic properties of HPs: i) tunable bandgap, ii) facile majority carrier control, iii) fast ion migration, and iv) superflexibility. Various fabrication techniques of HP thin films from solution-based methods to vacuum processes are introduced. Up-to-date work in the field, emphasizing the compositional flexibility of HPs, suggest that HPs are promising candidates for next-generation electronic devices. Taking advantages of their unique electrical properties, low-cost and low-temperature synthesis, and compositional and mechanical flexibility, HPs have enormous potential to provide a new platform for future electronic devices and explosively intensive studies will pave the way in finding new HP materials beyond conventional silicon-based semiconductors to keep up with "More-than-Moore" times. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Troncoso, Omar P.; Gigos, Florian; Torres, Fernando G.
2017-11-01
Arapaima gigas scales are natural laminated composite materials made of individual layers with different degrees of mineralization, accompanied of varying mechanical properties. This natural design provides scales with hardness and flexibility, and can serve as a source of inspiration for the development of new layered composites with a hard surface and flexible base. In this paper, we have carried out cyclic micro-indentation tests on both; the internal and the highly mineralized external surface of air dried and wet scales, in order to assess the variation of their local micromechanical properties with regard to the mineral and water content. The load-penetration (P-h) curves showed that creep takes place throughout the application of a constant force during the micro-indentation tests, confirming the time dependent response of A. gigas scales. A model that accounted for the elastic, plastic and viscous responses of the samples was used to fit the experimental results. The penetration depth during loading and creep, as well as the energy dissipated are dependent on the water content. The used model suggests that the viscous response of the internal layer increases with the water content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiubianu, George, E-mail: george.stiubianu@icmpp.ro; Bele, Adrian; Cazacu, Maria
Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles rangedmore » between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles.« less
Glue-free assembly of glass fiber reinforced thermoplastics using laser light
NASA Astrophysics Data System (ADS)
Binetruy, C.; Clement, S.; Deleglise, M.; Franz, C.; Knapp, W.; Oumarou, M.; Renard, J.; Roesner, A.
2011-05-01
The use of laser light for bonding of continuous fiber reinforced thermoplastic composites (CFTPC) offers new possibilities to overcome the constraints of conventional joining technologies. Laser bonding is environmentally friendly as no chemical additive or glue is necessary. Accuracy and flexibility of the laser process as well as the quality of the weld seams provide benefits which are already used in many industrial applications. Laser transmission welding has already been introduced in manufacturing of short fiber thermoplastic composites. The laser replaces hot air in tapelaying systems for pre-preg carbon fiber placement. The paper provides an overview concerning the technical basics of the joining process and outline some material inherent characteristics to be considered when using continuous glass fiber reinforced composites The technical feasibility and the mechanical characterization of laser bonded CFTPC are demonstrated. The influence of the different layer configurations on the laser interaction with the material is investigated and the dependency on the mechanical strength of the weld seem is analyzed. The results show that the laser provides an alternative joining technique and offers new perspectives to assemble structural components emerging in automotive or aeronautical manufacturing. It overcomes the environmental and technical difficulties related to existing gluing processes.
Structural analysis of Aircraft fuselage splice joint
NASA Astrophysics Data System (ADS)
Udaya Prakash, R.; Kumar, G. Raj; Vijayanandh, R.; Senthil Kumar, M.; Ramganesh, T.
2016-09-01
In Aviation sector, composite materials and its application to each component are one of the prime factors of consideration due to the high strength to weight ratio, design flexibility and non-corrosive so that the composite materials are widely used in the low weight constructions and also it can be treated as a suitable alternative to metals. The objective of this paper is to estimate and compare the suitability of a composite skin joint in an aircraft fuselage with different joints by simulating the displacement, normal stress, vonmises stress and shear stress with the help of numerical solution methods. The reference Z-stringer component of this paper is modeled by CATIA and numerical simulation is carried out by ANSYS has been used for splice joint presents in the aircraft fuselage with three combinations of joints such as riveted joint, bonded joint and hybrid joint. Nowadays the stringers are using to avoid buckling of fuselage skin, it has joined together by rivets and they are connected end to end by splice joint. Design and static analysis of three-dimensional models of joints such as bonded, riveted and hybrid are carried out and results are compared.
Oxide-based thin film transistors for flexible electronics
NASA Astrophysics Data System (ADS)
He, Yongli; Wang, Xiangyu; Gao, Ya; Hou, Yahui; Wan, Qing
2018-01-01
The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors (TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends. Project supported in part by the National Science Foundation for Distinguished Young Scholars of China (No. 61425020), in part by the National Natural Science Foundation of China (No. 11674162).
Design and manufacture of a lightweight piezo-composite curved actuator
NASA Astrophysics Data System (ADS)
Yoon, K. Joon; Shin, Seokjun; Park, Hoon C.; Goo, Nam Seo
2002-02-01
In this paper we are concerned with the design, manufacture and performance test of a lightweight piezo-composite curved actuator (called LIPCA) using a top carbon fiber composite layer with near-zero coefficient of thermal expansion (CTE), a middle PZT ceramic wafer, and a bottom glass/epoxy layer with a high CTE. The main point of the design for LIPCA is to replace the heavy metal layers of THUNDERTM by lightweight fiber reinforced plastic layers without losing the capabilities for generating high force and large displacement. It is possible to save up to about 40% of the weight if we replace the metallic backing material by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use an epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a carbon prepreg were simply stacked and cured at an elevated temperature (177 °C) after following an autoclave bagging process. We found that the manufactured composite laminate device had a sufficient curvature after being detached from a flat mould. An analysis method using the classical lamination theory is presented to predict the curvature of LIPCA after curing at an elevated temperature. The predicted curvatures are in quite good agreement with the experimental values. In order to investigate the merits of LIPCA, performance tests of both LIPCA and THUNDERTM have been conducted under the same boundary conditions. From the experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDERTM.