Liquid-phase tuning of porous PVDF-TrFE film on flexible substrate for energy harvesting
NASA Astrophysics Data System (ADS)
Chen, Dajing; Chen, Kaina; Brown, Kristopher; Hang, Annie; Zhang, John X. J.
2017-04-01
Emerging wearable and implantable biomedical energy harvesting devices demand efficient power conversion, flexible structures, and lightweight construction. This paper presents Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) micro-porous structures, which can be tuned to specific mechanical flexibilities and optimized for piezoelectric power conversion. Specifically, the water vapor phase separation method was developed to control microstructure formation, pore diameter, porosity, and mechanical flexibility. Furthermore, we investigated the effects of the piezoelectric layer to supporting layer Young's modulus ratio, through using both analytical calculation and experimentation. Both structure flexibility and stress-induced voltage were considered in the analyses. Specification of electromechanical coupling efficiency, made possible by carefully designed three-dimensional porous structures, was shown to increase the power output by five-fold relative to uncoupled structures. Therefore, flexible PVDF-TrFE films with tunable microstructures, paired with substrates of different rigidities, provide highly efficient designs of compact piezoelectric energy generating devices.
Simulation analysis of resource flexibility on healthcare processes
Simwita, Yusta W; Helgheim, Berit I
2016-01-01
Purpose This paper uses discrete event simulation to explore the best resource flexibility scenario and examine the effect of implementing resource flexibility on different stages of patient treatment process. Specifically we investigate the effect of resource flexibility on patient waiting time and throughput in an orthopedic care process. We further seek to explore on how implementation of resource flexibility on patient treatment processes affects patient access to healthcare services. We focus on two resources, namely, orthopedic surgeon and operating room. Methods The observational approach was used to collect process data. The developed model was validated by comparing the simulation output with actual patient data collected from the studied orthopedic care process. We developed different scenarios to identify the best resource flexibility scenario and explore the effect of resource flexibility on patient waiting time, throughput, and future changes in demand. The developed scenarios focused on creating flexibility on service capacity of this care process by altering the amount of additional human resource capacity at different stages of patient care process and extending the use of operating room capacity. Results The study found that resource flexibility can improve responsiveness to patient demand in the treatment process. Testing different scenarios showed that the introduction of resource flexibility reduces patient waiting time and improves throughput. The simulation results show that patient access to health services can be improved by implementing resource flexibility at different stages of the patient treatment process. Conclusion This study contributes to the current health care literature by explaining how implementing resource flexibility at different stages of patient care processes can improve ability to respond to increasing patients demands. This study was limited to a single patient process; studies focusing on additional processes are recommended. PMID:27785046
Simulation analysis of resource flexibility on healthcare processes.
Simwita, Yusta W; Helgheim, Berit I
2016-01-01
This paper uses discrete event simulation to explore the best resource flexibility scenario and examine the effect of implementing resource flexibility on different stages of patient treatment process. Specifically we investigate the effect of resource flexibility on patient waiting time and throughput in an orthopedic care process. We further seek to explore on how implementation of resource flexibility on patient treatment processes affects patient access to healthcare services. We focus on two resources, namely, orthopedic surgeon and operating room. The observational approach was used to collect process data. The developed model was validated by comparing the simulation output with actual patient data collected from the studied orthopedic care process. We developed different scenarios to identify the best resource flexibility scenario and explore the effect of resource flexibility on patient waiting time, throughput, and future changes in demand. The developed scenarios focused on creating flexibility on service capacity of this care process by altering the amount of additional human resource capacity at different stages of patient care process and extending the use of operating room capacity. The study found that resource flexibility can improve responsiveness to patient demand in the treatment process. Testing different scenarios showed that the introduction of resource flexibility reduces patient waiting time and improves throughput. The simulation results show that patient access to health services can be improved by implementing resource flexibility at different stages of the patient treatment process. This study contributes to the current health care literature by explaining how implementing resource flexibility at different stages of patient care processes can improve ability to respond to increasing patients demands. This study was limited to a single patient process; studies focusing on additional processes are recommended.
Conceptual approach study of a 200 watt per kilogram solar array
NASA Technical Reports Server (NTRS)
Stanhouse, R. W.; Fox, D.; Wilson, W.
1976-01-01
Solar array candidate configurations (flexible rollup, flexible flat-pact, semi-rigid panel, semi-rigid flat-pack) were analyzed with particular attention to the specific power (W/kg) requirement. Two of these configurations (flexible rollup and flexible flat-pack) are capable of delivering specific powers equal to or exceeding the baseline requirement of 200 W/kg. Only the flexible rollup is capable of in-flight retraction and subsequent redeployment. The wrap-around contact photovoltaic cell configuration has been chosen over the conventional cell. The demand for ultra high specific power forces the selection of ultra-thin cells and cover material. Based on density and mass range considerations, it was concluded that 13 micrometers of FEP Teflon is sufficient to protect the cell from a total proton fluency of 2(10 to the 12th power) particles/sq cm over a three-year interplanetary mission. The V-stiffened, lattice boom deployed, flexible substrate rollup array holds the greatest promise of meeting the baseline requirements set for this study.
7 CFR 1924.105 - Planning/performing development.
Code of Federal Regulations, 2014 CFR
2014-01-01
... specific site. Planning must take into consideration topography, soils, climate, adjacent land use... services, housing and social conditions, and a degree of flexibility to accommodate changing demands. All...
ERIC Educational Resources Information Center
Koper, Rob; Manderveld, Jocelyn
2004-01-01
Nowadays there is a huge demand for flexible, independent learning without the constraints of time and place. Various trends in the field of education and training are the bases for the development of new technologies for education. This article describes the development of a learning technology specification, which supports these new demands for…
Baker, Phillip M.; Oh, Sujean E.; Kidder, Kevan S.; Mizumori, Sheri J. Y.
2015-01-01
The lateral habenula (LHb) plays a role in a wide variety of behaviors ranging from maternal care, to sleep, to various forms of cognition. One prominent theory with ample supporting evidence is that the LHb serves to relay basal ganglia and limbic signals about negative outcomes to midbrain monoaminergic systems. This makes it likely that the LHb is critically involved in behavioral flexibility as all of these systems have been shown to contribute when flexible behavior is required. Behavioral flexibility is commonly examined across species and is impaired in various neuropsychiatric conditions including autism, depression, addiction, and schizophrenia; conditions in which the LHb is thought to play a role. Therefore, a thorough examination of the role of the LHb in behavioral flexibility serves multiple functions including understanding possible connections with neuropsychiatric illnesses and additional insight into its role in cognition in general. Here, we assess the LHb’s role in behavioral flexibility through comparisons of the roles its afferent and efferent pathways are known to play. Additionally, we provide new evidence supporting the LHb contributions to behavioral flexibility through organization of specific goal directed actions under cognitively demanding conditions. Specifically, in the first experiment, a majority of neurons recorded from the LHb were found to correlate with velocity on a spatial navigation task and did not change significantly when reward outcomes were manipulated. Additionally, measurements of local field potential (LFP) in the theta band revealed significant changes in power relative to velocity and reward location. In a second set of experiments, inactivation of the LHb with the gamma-aminobutyric acid (GABA) agonists baclofen and muscimol led to an impairment in a spatial/response based repeated probabilistic reversal learning task. Control experiments revealed that this impairment was likely due to the demands of repeated switching behaviors as rats were unimpaired on initial discrimination acquisition or retention of probabilistic learning. Taken together, these novel findings compliment other work discussed supporting a role for the LHb in action selection when cognitive or emotional demands are increased. Finally, we discuss future mechanisms by which a superior understanding of the LHb can be obtained through additional examination of behavioral flexibility tasks. PMID:26582981
Integration of Fixed and Flexible Route Public Transportation Systems, Phase II
DOT National Transportation Integrated Search
2012-01-01
Conventional bus service (with fixed routes and schedules) has lower average cost than flexible bus service (with : demand-responsive routes) at high demand densities. At low demand densities flexible bus service has lower : average costs and provide...
Context-specific adjustment of cognitive control: Transfer of adaptive control sets.
Surrey, Caroline; Dreisbach, Gesine; Fischer, Rico
2017-11-01
Cognitive control protects processing of relevant information from interference by irrelevant information. The level of this processing selectivity can be flexibly adjusted to different control demands (e.g., frequency of conflict) associated with a certain context, leading to the formation of specific context-control associations. In the present study we investigated the robustness and transferability of the acquired context-control demands to new situations. In three experiments, we used a version of the context-specific proportion congruence (CSPC) paradigm, in which each context (e.g., location) is associated with a specific conflict frequency, determining high and low control demands. In a learning phase, associations between context and control demands were established. In a subsequent transfer block, stimulus-response mappings, whole task sets, or context-control demands changed. Results showed an impressive robustness of context-control associations, as context-specific adjustments of control from the learning phase were virtually unaffected by new stimuli and tasks in the transfer block. Only a change of the context-control demand eliminated the context-specific adjustment of control. These findings suggest that context-control associations that have proven to be adaptive in the past are continuously applied despite major changes in the task structure as long as the context-control associations remain the same.
Mauky, Eric; Weinrich, Sören; Jacobi, Hans-Fabian; Nägele, Hans-Joachim; Liebetrau, Jan; Nelles, Michael
2017-08-01
For future energy supply systems with high proportions from renewable energy sources, biogas plants are a promising option to supply demand-driven electricity to compensate the divergence between energy demand and energy supply by uncontrolled sources like wind and solar. Apart expanding gas storage capacity a demand-oriented feeding with the aim of flexible gas production can be an effective alternative. The presented study demonstrated a high degree of intraday flexibility (up to 50% compared to the average) and a potential for an electricity shutdown of up to 3 days (decreasing gas production by more than 60%) by flexible feeding in full-scale. Furthermore, the long-term process stability was not affected negatively due to the flexible feeding. The flexible feeding resulted in a variable rate of gas production and a dynamic progression of individual acids and the respective pH-value. In consequence, a demand-driven biogas production may enable significant savings in terms of the required gas storage volume (up to 65%) and permit far greater plant flexibility compared to constant gas production. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Honan, Cynthia A; McDonald, Skye; Gowland, Alison; Fisher, Alana; Randall, Rebekah K
2015-11-01
Theory of mind (ToM) is critical to effective communication following traumatic brain injury (TBI) however, whether impairments are specific to social cognition, or reflective of executive demands is unclear. This study examined whether ToM impairments are predicted by executive function difficulties using everyday conversation tasks. Twenty-five individuals with severe-TBI were compared to 25 healthy controls on low- and high-ToM tasks across four conditions: (1) low cognitive load, (2) high flexibility, (3) high working memory (WM) and (4) high inhibition. TBI individuals were impaired on high-ToM tasks in the WM condition. When the WM demands of the task were controlled, the impairments were no longer apparent. TBI individuals were not impaired on high-ToM tasks in the inhibition and flexibility conditions, suggesting these tasks may not have been sufficiently demanding of ToM abilities. The results suggest that ToM impairments in everyday communication may arise due to WM demands, in individuals with TBI. Copyright © 2015 Elsevier Inc. All rights reserved.
Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids.
Pop, Claudia; Cioara, Tudor; Antal, Marcel; Anghel, Ionut; Salomie, Ioan; Bertoncini, Massimo
2018-01-09
In this paper, we investigate the use of decentralized blockchain mechanisms for delivering transparent, secure, reliable, and timely energy flexibility, under the form of adaptation of energy demand profiles of Distributed Energy Prosumers, to all the stakeholders involved in the flexibility markets (Distribution System Operators primarily, retailers, aggregators, etc.). In our approach, a blockchain based distributed ledger stores in a tamper proof manner the energy prosumption information collected from Internet of Things smart metering devices, while self-enforcing smart contracts programmatically define the expected energy flexibility at the level of each prosumer, the associated rewards or penalties, and the rules for balancing the energy demand with the energy production at grid level. Consensus based validation will be used for demand response programs validation and to activate the appropriate financial settlement for the flexibility providers. The approach was validated using a prototype implemented in an Ethereum platform using energy consumption and production traces of several buildings from literature data sets. The results show that our blockchain based distributed demand side management can be used for matching energy demand and production at smart grid level, the demand response signal being followed with high accuracy, while the amount of energy flexibility needed for convergence is reduced.
Iqbal, Nousheen; Wang, Xianfeng; Babar, Aijaz Ahmed; Zainab, Ghazala; Yu, Jianyong; Ding, Bin
2017-11-09
Increasing use of wearable electronic devices have resulted in enhanced demand for highly flexible supercapacitor electrodes with superior electrochemical performance. In this study, flexible composite membranes with electrosprayed MnO 2 particles uniformly anchored on Fe 3 O 4 doped electrospun carbon nanofibers (Fe 3 O 4 @CNF Mn ) have been prepared as flexible electrodes for high-performance supercapacitors. The interconnected porous beaded structure ensures free movement of electrolyte within the composite membranes, therefore, the developed supercapacitor electrodes not only offer high specific capacitance of ~306 F/g, but also exhibit good capacitance retention of ~85% after 2000 cycles, which certify that the synthesized electrodes offer high and stable electrochemical performance. Additionally, the supercapacitors fabricated from our developed electrodes well maintain their performance under flexural stress and exhibit a very minute change in specific capacitance even up to 180° bending angle. The developed electrode fabrication strategy integrating electrospinning and electrospray techniques paves new insights into the development of potential functional nanofibrous materials for light weight and flexible wearable supercapacitors.
Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids
Pop, Claudia; Cioara, Tudor; Antal, Marcel; Anghel, Ionut; Salomie, Ioan; Bertoncini, Massimo
2018-01-01
In this paper, we investigate the use of decentralized blockchain mechanisms for delivering transparent, secure, reliable, and timely energy flexibility, under the form of adaptation of energy demand profiles of Distributed Energy Prosumers, to all the stakeholders involved in the flexibility markets (Distribution System Operators primarily, retailers, aggregators, etc.). In our approach, a blockchain based distributed ledger stores in a tamper proof manner the energy prosumption information collected from Internet of Things smart metering devices, while self-enforcing smart contracts programmatically define the expected energy flexibility at the level of each prosumer, the associated rewards or penalties, and the rules for balancing the energy demand with the energy production at grid level. Consensus based validation will be used for demand response programs validation and to activate the appropriate financial settlement for the flexibility providers. The approach was validated using a prototype implemented in an Ethereum platform using energy consumption and production traces of several buildings from literature data sets. The results show that our blockchain based distributed demand side management can be used for matching energy demand and production at smart grid level, the demand response signal being followed with high accuracy, while the amount of energy flexibility needed for convergence is reduced. PMID:29315250
Jiang, Jiefeng; Beck, Jeffrey; Heller, Katherine; Egner, Tobias
2015-01-01
The anterior cingulate and lateral prefrontal cortices have been implicated in implementing context-appropriate attentional control, but the learning mechanisms underlying our ability to flexibly adapt the control settings to changing environments remain poorly understood. Here we show that human adjustments to varying control demands are captured by a reinforcement learner with a flexible, volatility-driven learning rate. Using model-based functional magnetic resonance imaging, we demonstrate that volatility of control demand is estimated by the anterior insula, which in turn optimizes the prediction of forthcoming demand in the caudate nucleus. The caudate's prediction of control demand subsequently guides the implementation of proactive and reactive attentional control in dorsal anterior cingulate and dorsolateral prefrontal cortices. These data enhance our understanding of the neuro-computational mechanisms of adaptive behaviour by connecting the classic cingulate-prefrontal cognitive control network to a subcortical control-learning mechanism that infers future demands by flexibly integrating remote and recent past experiences. PMID:26391305
Mărcuş, Oana; Stanciu, Oana; MacLeod, Colin; Liebregts, Heather; Visu-Petra, Laura
2016-10-01
Cognitive-affective flexibility represents the ability to switch between alternative ways of processing emotional stimuli according to situational demands and individual goals. Although reduced flexibility has been implicated as a mechanism for the development of anxiety, there is very limited data on this relationship in children and adolescents. The aim of the current study was to investigate cognitive-affective flexibility in preadolescents (N = 112, 50 girls, 11-12 and 13-14 years old) and to examine if this ability is related to individual differences in trait anxiety. Their interplay was assessed using the modified version of the Flexible Item Selection Task (FIST; Jacques and Zelazo 2001) with non-emotional stimuli (geometrical shapes) and the Emotional FIST (EM-FIST) with emotional stimuli (emotional facial expressions). Performance on the EM-FIST indicated that across the whole age range, trials requiring greater cognitive flexibility were more demanding than nonflexible ones, as revealed by both response time and accuracy performance. Moreover, flexibility demands were higher for younger children than for older ones but only in terms of response speed. Individual differences in trait anxiety moderated the impact of flexibility only on the EM-FIST. Being flexible on the EM-FIST was more demanding for high trait anxious children than for their low trait anxious peers. Lastly, overall girls responded faster than boys, but only in the EM-FIST. These findings extend the presently limited literature concerning variability in cognitive-affective flexibility during this sensitive developmental window.
Cost analysis of concepts for a demand oriented biogas supply for flexible power generation.
Hahn, Henning; Ganagin, Waldemar; Hartmann, Kilian; Wachendorf, Michael
2014-10-01
With the share of intermittent renewable energies within the electricity system rising, balancing services from dispatchable power plants are of increasing importance. Highlighting the importance of the need to keeping fuel costs for flexible power generation to a minimum, the study aims to identify favourable biogas plant configurations, supplying biogas on demand. A cost analysis of five configurations based on biogas storing and flexible biogas production concepts has been carried out. Results show that additional flexibility costs for a biogas supply of 8h per day range between 2€ and 11€MWh(-1) and for a 72h period without biogas demand from 9€ to 19€MWh(-1). While biogas storage concepts were identified as favourable short term supply configurations, flexible biogas production concepts profit from reduced storage requirements at plants with large biogas production capacities or for periods of several hours without biogas demand. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Contextual Specificity of Masculinity and Femininity in Early Adolescence
ERIC Educational Resources Information Center
Leszczynski, Jennifer Pickard; Strough, JoNell
2008-01-01
Using a social constructionist perspective, we investigated the flexibility of early adolescents' (N = 80, 40 boys, 40 girls; M age = 13.14; SD = 0.65) masculinity and femininity as a function of the interpersonal context (same- or other-sex partner) and situational demands (co-operation or competition). Participants played a block-building game…
How to introduce demand side resources in the design of low-carbon power systems in China
NASA Astrophysics Data System (ADS)
Zhou, Pengcheng; Liu, Yiqun; Zeng, Ming; Sun, Chenjun
2018-04-01
Nowadays, China's energy demand sustained rapid growth, and the coal-based energy structure has adverse effects on the environment. The flexibility of demand side resource (DSR) will be greatly improved, and DSR can reduce electricity consumption actively and temporarily, and realize energy saving and emission reduction. But there are still some problems to introduce DSR in China. This paper proposes three practices for introducing demand side resources to improve the flexibility of power systems through demand resources.
Flexible Demand Management under Time-Varying Prices
NASA Astrophysics Data System (ADS)
Liang, Yong
In this dissertation, the problem of flexible demand management under time-varying prices is studied. This generic problem has many applications, which usually have multiple periods in which decisions on satisfying demand need to be made, and prices in these periods are time-varying. Examples of such applications include multi-period procurement problem, operating room scheduling, and user-end demand scheduling in the Smart Grid, where the last application is used as the main motivating story throughout the dissertation. The current grid is experiencing an upgrade with lots of new designs. What is of particular interest is the idea of passing time-varying prices that reflect electricity market conditions to end users as incentives for load shifting. One key component, consequently, is the demand management system at the user-end. The objective of the system is to find the optimal trade-off between cost saving and discomfort increment resulted from load shifting. In this dissertation, we approach this problem from the following aspects: (1) construct a generic model, solve for Pareto optimal solutions, and analyze the robust solution that optimizes the worst-case payoffs, (2) extend to a distribution-free model for multiple types of demand (appliances), for which an approximate dynamic programming (ADP) approach is developed, and (3) design other efficient algorithms for practical purposes of the flexible demand management system. We first construct a novel multi-objective flexible demand management model, in which there are a finite number of periods with time-varying prices, and demand arrives in each period. In each period, the decision maker chooses to either satisfy or defer outstanding demand to minimize costs and discomfort over a certain number of periods. We consider both the deterministic model, models with stochastic demand or prices, and when only partial information about the stochastic demand or prices is known. We first analyze the stochastic optimization problem when the objective is to minimize the expected total cost and discomfort, then since the decision maker is likely to be risk-averse, and she wants to protect herself from price spikes, we study the robust optimization problem to address the risk-aversion of the decision maker. We conduct numerical studies to evaluate the price of robustness. Next, we present a detailed model that manages multiple types of flexible demand in the absence of knowledge regarding the distributions of related stochastic processes. Specifically, we consider the case in which time-varying prices with general structures are offered to users, and an energy management system for each household makes optimal energy usage, storage, and trading decisions according to the preferences of users. Because of the uncertainties associated with electricity prices, local generation, and the arrival processes of demand, we formulate a stochastic dynamic programming model, and outline a novel and tractable ADP approach to overcome the curses of dimensionality. Then, we perform numerical studies, whose results demonstrate the effectiveness of the ADP approach. At last, we propose another approximation approach based on Q-learning. In addition, we also develop another decentralization-based heuristic. Both the Q-learning approach and the heuristic make necessary assumptions on the knowledge of information, and each of them has unique advantages. We conduct numerical studies on a testing problem. The simulation results show that both the Q-learning and the decentralization based heuristic approaches work well. Lastly, we conclude the paper with some discussions on future extension directions.
Novel metamaterial based antennas for flexible wireless systems
NASA Astrophysics Data System (ADS)
Khaleel, Haider Raad
Recent years have witnessed a great deal of interest from both academia and industry in the field of flexible electronic systems. This research topic tops the pyramid of research priorities requested by many national research agencies. Consistently, flexible electronic systems require the integration of flexible antennas operating in specific frequency bands to provide wireless connectivity which is highly demanded by today's information oriented society. On the other hand, metamaterials have become very popular in the design of contemporary antenna and microwave devices due to their wide range of applications derived from their unique properties which significantly enhances the performance of antennas and RF systems. Accordingly, the integration of metamaterial structures within flexible wireless systems is very beneficial in this growing field of research. A systematic approach to the analysis and design of flexible and conformal antennas and metamaterials is ultimately needed. The research reported in this thesis focuses on developing flexible low profile antennas and metamaterial structures in addition to characterizing their performance when integrated within flexible wireless systems. Three flexible, compact, and extremely low profile (50.8 microm) antennas intended for WLAN, Bluetooth and Ultra Wide Band (UWB) applications are presented. Next, a novel miniaturized Artificial Magnetic Conductor (AMC) and a new technique to enhance the bandwidth of micro-Negative (MNG) metamaterial are reported. Furthermore, the effect of bending on the AMC and MNG metamaterial is investigated in this thesis for the first time. Finally, the findings of this research are utilized in practical applications with specific design constraints including mutual coupling reduction between radiating elements in antenna arrays and MIMO systems and Specific Absorption Rate (SAR) reduction in telemedicine systems.
Functional cortical network in alpha band correlates with social bargaining.
Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco
2014-01-01
Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals' alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts.
Functional Cortical Network in Alpha Band Correlates with Social Bargaining
Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco
2014-01-01
Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals’ alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts. PMID:25286240
McWilliams, Scott R.; Karasov, William H.
2014-01-01
Flexible phenotypes enable animals to live in environments that change over space and time, and knowing the limits to and the required time scale for this flexibility provides insights into constraints on energy and nutrient intake, diet diversity and niche width. We quantified the level of immediate and ultimate spare capacity, and thus the extent of phenotypic flexibility, in the digestive system of a migratory bird in response to increased energy demand, and identified the digestive constraints responsible for the limits on sustained energy intake. Immediate spare capacity decreased from approximately 50% for birds acclimated to relatively benign temperatures to less than 20% as birds approached their maximum sustainable energy intake. Ultimate spare capacity enabled an increase in feeding rate of approximately 126% as measured in birds acclimated for weeks at −29°C compared with +21°C. Increased gut size and not tissue-specific differences in nutrient uptake or changes in digestive efficiency or retention time were primarily responsible for this increase in capacity with energy demand, and this change required more than 1–2 days. Thus, the pace of change in digestive organ size may often constrain energy intake and, for birds, retard the pace of their migration. PMID:24718764
McWilliams, Scott R; Karasov, William H
2014-05-22
Flexible phenotypes enable animals to live in environments that change over space and time, and knowing the limits to and the required time scale for this flexibility provides insights into constraints on energy and nutrient intake, diet diversity and niche width. We quantified the level of immediate and ultimate spare capacity, and thus the extent of phenotypic flexibility, in the digestive system of a migratory bird in response to increased energy demand, and identified the digestive constraints responsible for the limits on sustained energy intake. Immediate spare capacity decreased from approximately 50% for birds acclimated to relatively benign temperatures to less than 20% as birds approached their maximum sustainable energy intake. Ultimate spare capacity enabled an increase in feeding rate of approximately 126% as measured in birds acclimated for weeks at -29°C compared with +21°C. Increased gut size and not tissue-specific differences in nutrient uptake or changes in digestive efficiency or retention time were primarily responsible for this increase in capacity with energy demand, and this change required more than 1-2 days. Thus, the pace of change in digestive organ size may often constrain energy intake and, for birds, retard the pace of their migration.
A supply chain contract with flexibility as a risk-sharing mechanism for demand forecasting
NASA Astrophysics Data System (ADS)
Kim, Whan-Seon
2013-06-01
Demand forecasting is one of the main causes of the bullwhip effect in a supply chain. As a countermeasure for demand uncertainty as well as a risk-sharing mechanism for demand forecasting in a supply chain, this article studies a bilateral contract with order quantity flexibility. Under the contract, the buyer places orders in advance for the predetermined horizons and makes minimum purchase commitments. The supplier, in return, provides the buyer with the flexibility to adjust the order quantities later, according to the most updated demand information. To conduct comparative simulations, four-echelon supply chain models, that employ the contracts and different forecasting techniques under dynamic market demands, are developed. The simulation outcomes show that demand fluctuation can be effectively absorbed by the contract scheme, which enables better inventory management and customer service. Furthermore, it has been verified that the contract scheme under study plays a role as an effective coordination mechanism in a decentralised supply chain.
ERIC Educational Resources Information Center
Xu, Zeyu
Lifelong learning and skill flexibility are especially important for workers in China, where structural economic adjustment has generated 22 million layoffs from state-owned enterprises since 1997. Skills that were in huge demand in previous years, such as accounting, international trade, and language translation, are now facing serious oversupply…
Hearne, Luke J; Cocchi, Luca; Zalesky, Andrew; Mattingley, Jason B
2017-08-30
Our capacity for higher cognitive reasoning has a measurable limit. This limit is thought to arise from the brain's capacity to flexibly reconfigure interactions between spatially distributed networks. Recent work, however, has suggested that reconfigurations of task-related networks are modest when compared with intrinsic "resting-state" network architecture. Here we combined resting-state and task-driven functional magnetic resonance imaging to examine how flexible, task-specific reconfigurations associated with increasing reasoning demands are integrated within a stable intrinsic brain topology. Human participants (21 males and 28 females) underwent an initial resting-state scan, followed by a cognitive reasoning task involving different levels of complexity, followed by a second resting-state scan. The reasoning task required participants to deduce the identity of a missing element in a 4 × 4 matrix, and item difficulty was scaled parametrically as determined by relational complexity theory. Analyses revealed that external task engagement was characterized by a significant change in functional brain modules. Specifically, resting-state and null-task demand conditions were associated with more segregated brain-network topology, whereas increases in reasoning complexity resulted in merging of resting-state modules. Further increments in task complexity did not change the established modular architecture, but affected selective patterns of connectivity between frontoparietal, subcortical, cingulo-opercular, and default-mode networks. Larger increases in network efficiency within the newly established task modules were associated with higher reasoning accuracy. Our results shed light on the network architectures that underlie external task engagement, and highlight selective changes in brain connectivity supporting increases in task complexity. SIGNIFICANCE STATEMENT Humans have clear limits in their ability to solve complex reasoning problems. It is thought that such limitations arise from flexible, moment-to-moment reconfigurations of functional brain networks. It is less clear how such task-driven adaptive changes in connectivity relate to stable, intrinsic networks of the brain and behavioral performance. We found that increased reasoning demands rely on selective patterns of connectivity within cortical networks that emerged in addition to a more general, task-induced modular architecture. This task-driven architecture reverted to a more segregated resting-state architecture both immediately before and after the task. These findings reveal how flexibility in human brain networks is integral to achieving successful reasoning performance across different levels of cognitive demand. Copyright © 2017 the authors 0270-6474/17/378399-13$15.00/0.
Yin, Yan-Bin; Yang, Xiao-Yang; Chang, Zhi-Wen; Zhu, Yun-Hai; Liu, Tong; Yan, Jun-Min; Jiang, Qing
2018-01-01
To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy-storage systems. Flexible lithium-oxygen batteries with high theoretical specific energy density are promising candidates; however, the conventional half-open structure design prevents it from working properly under water or fire conditions. Herein, as a proof-of-concept experiment, a highly safe flexible lithium-oxygen battery achieved by the synergy of a vital multifunctional structure design and a unique composite separator is proposed and fabricated. The structure can effectively prevent the invasion of water from the environment and combustion, which is further significantly consolidated with the help of a polyimide and poly(vinylidene fluoride-co-hexafluoropropylene) composite separator, which holds good water resistance, thermal stability, and ionic conductivity. Unexpectedly, the obtained lithium-oxygen battery exhibits superior flexibility, water resistance, thermal resistance, and cycling stability (up to 218 cycles; at a high current of 1 mA and capacity of 4 mA h). This novel water/fireproof, flexible lithium-oxygen battery is a promising candidate to power underwater flexible electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of aging and job demands on cognitive flexibility assessed by task switching.
Gajewski, Patrick D; Wild-Wall, Nele; Schapkin, Sergei A; Erdmann, Udo; Freude, Gabriele; Falkenstein, Michael
2010-10-01
In a cross-sectional, electrophysiological study 91 workers of a big car factory performed a series of switch tasks to assess their cognitive control functions. Four groups of workers participated in the study: 23 young and 23 middle aged assembly line employees and 22 young and 23 middle aged employees with flexible job demands like service and maintenance. Participants performed three digit categorisation tasks. In addition to single task blocks, a cue-based (externally guided) and a memory-based (internally guided) task switch block was administered. Compared to young participants, older ones showed the typical RT-decline. No differences between younger and older participants regarding the local switch costs could be detected despite the source of the current task information. In contrast, whereas the groups did not differ in mixing costs in the cued condition, clear performance decrements in the memory-based mixing block were observed in the group of older employees with repetitive work demands. These findings were corroborated by a number of electrophysiological results showing a reduced CNV suggesting an impairment of task specific preparation, an attenuated P3b suggesting reduced working memory capacity and a decreased Ne suggesting deficits in error monitoring in older participants with repetitive job demands. The results are compatible with the assumption that long lasting, unchallenging job demands may induce several neurocognitive impairments which are already evident in the early fifties. Longitudinal studies are needed to confirm this assumption. Copyright © 2010 Elsevier B.V. All rights reserved.
The value of demand response in Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoll, Brady; Buechler, Elizabeth; Hale, Elaine
Many electrical loads may be operated flexibly to provide grid services, including peaking capacity, reserves, and load shifting. The authors model 14 demand end uses in Florida and analyze their operational impacts and overall value for a wide range of solar penetrations and grid flexibility options. They find demand response is able to reduce production costs, reduce the number of low-load hours for traditional generators, reduce starting of gas generators, and reduce curtailment.
The value of demand response in Florida
Stoll, Brady; Buechler, Elizabeth; Hale, Elaine
2017-11-10
Many electrical loads may be operated flexibly to provide grid services, including peaking capacity, reserves, and load shifting. The authors model 14 demand end uses in Florida and analyze their operational impacts and overall value for a wide range of solar penetrations and grid flexibility options. They find demand response is able to reduce production costs, reduce the number of low-load hours for traditional generators, reduce starting of gas generators, and reduce curtailment.
Body side-specific control of motor activity during turning in a walking animal
Gruhn, Matthias; Rosenbaum, Philipp; Bockemühl, Till; Büschges, Ansgar
2016-01-01
Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the differences between the leg movements of the two body sides in the stick insect Carausius morosus. We present data to show that the generation of turning kinematics in an insect are the combined result of descending unilateral commands that change the leg motor output via task-specific modifications in the processing of local sensory feedback as well as modification of the activity of local central pattern generating networks in a body-side-specific way. To our knowledge, this is the first study to demonstrate the specificity of such modifications in a defined motor task. DOI: http://dx.doi.org/10.7554/eLife.13799.001 PMID:27130731
Application-specific coarse-grained reconfigurable array: architecture and design methodology
NASA Astrophysics Data System (ADS)
Zhou, Li; Liu, Dongpei; Zhang, Jianfeng; Liu, Hengzhu
2015-06-01
Coarse-grained reconfigurable arrays (CGRAs) have shown potential for application in embedded systems in recent years. Numerous reconfigurable processing elements (PEs) in CGRAs provide flexibility while maintaining high performance by exploring different levels of parallelism. However, a difference remains between the CGRA and the application-specific integrated circuit (ASIC). Some application domains, such as software-defined radios (SDRs), require flexibility with performance demand increases. More effective CGRA architectures are expected to be developed. Customisation of a CGRA according to its application can improve performance and efficiency. This study proposes an application-specific CGRA architecture template composed of generic PEs (GPEs) and special PEs (SPEs). The hardware of the SPE can be customised to accelerate specific computational patterns. An automatic design methodology that includes pattern identification and application-specific function unit generation is also presented. A mapping algorithm based on ant colony optimisation is provided. Experimental results on the SDR target domain show that compared with other ordinary and application-specific reconfigurable architectures, the CGRA generated by the proposed method performs more efficiently for given applications.
Essays in energy economics: The electricity industry
NASA Astrophysics Data System (ADS)
Martinez-Chombo, Eduardo
Electricity demand analysis using cointegration and error-correction models with time varying parameters: The Mexican case. In this essay we show how some flexibility can be allowed in modeling the parameters of the electricity demand function by employing the time varying coefficient (TVC) cointegrating model developed by Park and Hahn (1999). With the income elasticity of electricity demand modeled as a TVC, we perform tests to examine the adequacy of the proposed model against the cointegrating regression with fixed coefficients, as well as against the spuriousness of the regression with TVC. The results reject the specification of the model with fixed coefficients and favor the proposed model. We also show how some flexibility is gained in the specification of the error correction model based on the proposed TVC cointegrating model, by including more lags of the error correction term as predetermined variables. Finally, we present the results of some out-of-sample forecast comparison among competing models. Electricity demand and supply in Mexico. In this essay we present a simplified model of the Mexican electricity transmission network. We use the model to approximate the marginal cost of supplying electricity to consumers in different locations and at different times of the year. We examine how costs and system operations will be affected by proposed investments in generation and transmission capacity given a forecast of growth in regional electricity demands. Decomposing electricity prices with jumps. In this essay we propose a model that decomposes electricity prices into two independent stochastic processes: one that represents the "normal" pattern of electricity prices and the other that captures temporary shocks, or "jumps", with non-lasting effects in the market. Each contains specific mean reverting parameters to estimate. In order to identify such components we specify a state-space model with regime switching. Using Kim's (1994) filtering algorithm we estimate the parameters of the model, the transition probabilities and the unobservable components for the mean adjusted series of New South Wales' electricity prices. Finally, bootstrap simulations were performed to estimate the expected contribution of each of the components in the overall electricity prices.
The development of consistency and flexibility in manual pointing during middle childhood.
Golenia, Laura; Schoemaker, Marina M; Otten, Egbert; Tuitert, Inge; Bongers, Raoul M
2018-05-21
Goal-directed actions become truly functional and skilled when they are consistent yet flexible. In manual pointing, end-effector consistency is characterized by the end position of the index fingertip, whereas flexibility in movement execution is captured by the use of abundant arm-joint configurations not affecting the index finger end position. Because adults have been shown to exploit their system's flexibility in challenging conditions, we wondered whether during middle childhood children are already able to exploit motor flexibility when demanded by the situation. We had children aged 5-10 years and adults perform pointing movements in a nonchallenging and challenging condition. Results showed that end-effector errors and flexibility in movement execution decreased with age. Importantly, only the 9-10-year-olds and adults showed increased flexibility in the challenging condition. Thus, while consistency increases and flexibility decreases during mid-childhood development, from the age of nine children appear able to employ more flexibility with increasing task demands. © 2018 Wiley Periodicals, Inc.
Landkammer, Florian; Sassenberg, Kai
2016-12-01
Numerous studies comparing the effects of competition and cooperation demonstrated that competition is detrimental on the social level. However, instead of purely competing, many social contexts require competing while cooperating with the same social target. The current work examined the consequences of such "co-opetition" situations between individuals. Because having to compete and to cooperate with the same social target constitutes conflicting demands, co-opetition should lead to more flexibility, such as (a) less rigid transfer effects of competitive behavior and (b) less rigidity/more flexibility in general. Supporting these predictions, Studies 1a and 1b demonstrated that co-opetition did not elicit competitive behavior in a subsequent task (here: enhanced deceiving of uninvolved others). Study 2 showed that adding conflicting demands (independent of social interdependence) to competition likewise elicits less competitive transfer than competition without such conflicting demands. Beyond that, co-opetition reduced rigid response tendencies during a classification task in Studies 3a and 3b and enhanced flexibility during brainstorming in Study 4, compared with other forms of interdependence. Together, these results suggest that co-opetition leads to more flexible behavior when individuals have to reconcile conflicting demands. Implications for research on social priming, interdependence and competition in everyday life are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli
2017-10-01
Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g-1 at 0.128 A g-1, which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g-1) and pure CF (0.6 F g-1) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.
Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli
2017-10-27
Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g -1 at 0.128 A g -1 , which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g -1 ) and pure CF (0.6 F g -1 ) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.
Increased Coal Plant Flexibility Can Improve Renewables Integration |
practices that enable lower turndowns, faster starts and stops, and faster ramping between load set-points faster ramp rates and faster and less expensive starts. Flexible Load - Demand Response Resources Demand response (DR) is a load management practice of deliberately reducing or adding load to balance the system
ERIC Educational Resources Information Center
Schellekens, Ad; Paas, Fred; Verbraeck, Alexander; van Merrienboer, Jeroen J. G.
2010-01-01
In a preceding case study, a process-focused demand-driven approach for organising flexible educational programmes in higher professional education (HPE) was developed. Operations management and instructional design contributed to designing a flexible educational model by means of discrete-event simulation. Educational experts validated the model…
ERIC Educational Resources Information Center
Technology & Learning, 2008
2008-01-01
When it comes to IT, there has always been an important link between data center control and client flexibility. As computing power increases, so do the potentially crippling threats to security, productivity and financial stability. This article talks about Dell's On-Demand Desktop Streaming solution which is designed to centralize complete…
Flexible diodes for radio frequency (RF) electronics: a materials perspective
NASA Astrophysics Data System (ADS)
Semple, James; Georgiadou, Dimitra G.; Wyatt-Moon, Gwenhivir; Gelinck, Gerwin; Anthopoulos, Thomas D.
2017-12-01
Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.
Stochastic Dynamics Underlying Cognitive Stability and Flexibility
Ueltzhöffer, Kai; Armbruster-Genç, Diana J. N.; Fiebach, Christian J.
2015-01-01
Cognitive stability and flexibility are core functions in the successful pursuit of behavioral goals. While there is evidence for a common frontoparietal network underlying both functions and for a key role of dopamine in the modulation of flexible versus stable behavior, the exact neurocomputational mechanisms underlying those executive functions and their adaptation to environmental demands are still unclear. In this work we study the neurocomputational mechanisms underlying cue based task switching (flexibility) and distractor inhibition (stability) in a paradigm specifically designed to probe both functions. We develop a physiologically plausible, explicit model of neural networks that maintain the currently active task rule in working memory and implement the decision process. We simplify the four-choice decision network to a nonlinear drift-diffusion process that we canonically derive from a generic winner-take-all network model. By fitting our model to the behavioral data of individual subjects, we can reproduce their full behavior in terms of decisions and reaction time distributions in baseline as well as distractor inhibition and switch conditions. Furthermore, we predict the individual hemodynamic response timecourse of the rule-representing network and localize it to a frontoparietal network including the inferior frontal junction area and the intraparietal sulcus, using functional magnetic resonance imaging. This refines the understanding of task-switch-related frontoparietal brain activity as reflecting attractor-like working memory representations of task rules. Finally, we estimate the subject-specific stability of the rule-representing attractor states in terms of the minimal action associated with a transition between different rule states in the phase-space of the fitted models. This stability measure correlates with switching-specific thalamocorticostriatal activation, i.e., with a system associated with flexible working memory updating and dopaminergic modulation of cognitive flexibility. These results show that stochastic dynamical systems can implement the basic computations underlying cognitive stability and flexibility and explain neurobiological bases of individual differences. PMID:26068119
Vagal Flexibility: A Physiological Predictor of Social Sensitivity
Muhtadie, Luma; Akinola, Modupe; Koslov, Katrina; Mendes, Wendy Berry
2015-01-01
This research explores vagal flexibility— dynamic modulation of cardiac vagal control—as an individual-level physiological index of social sensitivity. In 4 studies, we test the hypothesis that individuals with greater cardiac vagal flexibility, operationalized as higher cardiac vagal tone at rest and greater cardiac vagal withdrawal (indexed by a decrease in respiratory sinus arrhythmia) during cognitive or attentional demand, perceive social-emotional information more accurately and show greater sensitivity to their social context. Study 1 sets the foundation for this investigation by establishing that vagal flexibility can be elicited consistently in the laboratory and reliably over time. Study 2 demonstrates that vagal flexibility has different associations with psychological characteristics than does vagal tone, and that these characteristics are primarily social in nature. Study 3 links individual differences in vagal flexibility with accurate detection of social and emotional cues depicted in still facial images. Study 4 demonstrates that individuals with greater vagal flexibility respond to dynamic social feedback in a more context-sensitive manner than do individuals with less vagal flexibility. Specifically, compared with their less flexible counterparts, individuals with greater vagal flexibility, when assigned to receive negative social feedback, report more shame, show more pronounced blood pressure responses, and display less sociable behavior, but when receiving positive social feedback display more sociable behavior. Taken together, these findings suggest that vagal flexibility is a useful individual difference physiological predictor of social sensitivity, which may have implications for clinical, developmental, and health psychologists. PMID:25545841
Diede, Nathaniel T; Bugg, Julie M
2017-05-01
Classic theories of cognitive control conceptualized controlled processes as slow, strategic, and willful, with automatic processes being fast and effortless. The context-specific proportion compatibility (CSPC) effect, the reduction in the compatibility effect in a context (e.g., location) associated with a high relative to low likelihood of conflict, challenged classic theories by demonstrating fast and flexible control that appears to operate outside of conscious awareness. Two theoretical questions yet to be addressed are whether the CSPC effect is accompanied by context-dependent variation in effort, and whether the exertion of effort depends on explicit awareness of context-specific task demands. To address these questions, pupil diameter was measured during a CSPC paradigm. Stimuli were randomly presented in either a mostly compatible location or a mostly incompatible location. Replicating prior research, the CSPC effect was found. The novel finding was that pupil diameter was greater in the mostly incompatible location compared to the mostly compatible location, despite participants' lack of awareness of context-specific task demands. Additionally, this difference occurred regardless of trial type or a preceding switch in location. These patterns support the view that context (location) dictates selection of optimal attentional settings in the CSPC paradigm, and varying levels of effort and performance accompany these settings. Theoretically, these patterns imply that cognitive control may operate fast, flexibly, and outside of awareness, but not effortlessly. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Hahn, Henning; Hartmann, Kilian; Bühle, Lutz; Wachendorf, Michael
2015-03-01
The environmental performance of biogas plant configurations for a demand - oriented biogas supply for flexible power generation is comparatively assessed in this study. Those configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54-65 g CO(2-eq) MJ(-1) and primary energy by about 1.17 MJ MJ(-1). In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production. Using thicker biogas storage sheeting material reduces the methane permeability of up to 6m(3) d(-1) which equals a reduction of 8% of the configuration's total methane emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ertem, Funda Cansu; Martínez-Blanco, Julia; Finkbeiner, Matthias; Neubauer, Peter; Junne, Stefan
2016-11-01
This paper analyses concepts to facilitate a demand oriented biogas supply at an agricultural biogas plant of a capacity of 500kWhel, operated with the co-digestion of maize, grass, rye silage and chicken manure. In contrast to previous studies, environmental impacts of flexible and the traditional baseload operation are compared. Life Cycle Assessment (LCA) was performed to detect the environmental impacts of: (i) variety of feedstock co-digestion scenarios by substitution of maize and (ii) loading rate scenarios with a focus on flexible feedstock utilization. Demand-driven biogas production is critical for an overall balanced power supply to the electrical grid. It results in lower amounts of emissions; feedstock loading rate scenarios resulted in 48%, 20%, 11% lower global warming (GWP), acidification (AP) and eutrophication potentials, and a 16% higher cumulative energy demand. Substitution of maize with biogenic-waste regarding to feedstock substitution scenarios could create 10% lower GWP and AP. Copyright © 2016 Elsevier Ltd. All rights reserved.
Graphene-based materials for flexible supercapacitors.
Shao, Yuanlong; El-Kady, Maher F; Wang, Lisa J; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Mousavi, Mir F; Kaner, Richard B
2015-06-07
The demand for flexible/wearable electronic devices that have aesthetic appeal and multi-functionality has stimulated the rapid development of flexible supercapacitors with enhanced electrochemical performance and mechanical flexibility. After a brief introduction to flexible supercapacitors, we summarize current progress made with graphene-based electrodes. Two recently proposed prototypes for flexible supercapacitors, known as micro-supercapacitors and fiber-type supercapacitors, are then discussed. We also present our perspective on the development of graphene-based electrodes for flexible supercapacitors.
Rofoee, Bijan Rahimzadeh; Zervas, Georgios; Yan, Yan; Amaya, Norberto; Qin, Yixuan; Simeonidou, Dimitra
2013-03-11
The paper presents a novel network architecture on demand approach using on-chip and-off chip implementations, enabling programmable, highly efficient and transparent networking, well suited for intra-datacenter communications. The implemented FPGA-based adaptable line-card with on-chip design along with an architecture on demand (AoD) based off-chip flexible switching node, deliver single chip dual L2-Packet/L1-time shared optical network (TSON) server Network Interface Cards (NIC) interconnected through transparent AoD based switch. It enables hitless adaptation between Ethernet over wavelength switched network (EoWSON), and TSON based sub-wavelength switching, providing flexible bitrates, while meeting strict bandwidth, QoS requirements. The on and off-chip performance results show high throughput (9.86Ethernet, 8.68Gbps TSON), high QoS, as well as hitless switch-over.
Sami, Syed Kamran; Siddiqui, Saqib; Shrivastava, Sajal; Lee, Nae-Eung; Chung, Chan-Hwa
2017-12-01
Flexible supercapacitors with high electrochemical performance and stability along with mechanical robustness have gained immense attraction due to the substantial advancements and rampant requirements of storage devices. To meet the exponentially growing demand of microsized energy storage device, a cost-effective and durable supercapacitor is mandatory to realize their practical applications. Here, in this work, the fabrication route of novel electrode materials with high flexibility and charge-storage capability is reported using the hybrid structure of 1D zinc oxide (ZnO) nanorods and conductive polyvinylidene fluoride-tetrafluoroethylene (P(VDF-TrFE)) electrospun nanofibers. The ZnO nanorods are conformably grown on conductive P(VDF-TrFE) nanofibers to fabricate the light-weighted porous electrodes for supercapacitors. The conductive nanofibers acts as a high surface area scaffold with significant electrochemical performance, while the addition of ZnO nanorods further enhances the specific capacitance by 59%. The symmetric cell with the fabricated electrodes presents high areal capacitance of 1.22 mF cm -2 at a current density of 0.1 mA cm -2 with a power density of more than 1600 W kg -1 . Furthermore, these electrodes show outstanding flexibility and high stability with 96% and 78% retention in specific capacitance after 1000 and 5000 cycles, respectively. The notable mechanical durability and robustness of the cell acquire both good flexibility and high performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Opportunities for Automated Demand Response in California’s Dairy Processing Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homan, Gregory K.; Aghajanzadeh, Arian; McKane, Aimee
During periods of peak electrical demand on the energy grid or when there is a shortage of supply, the stability of the grid may be compromised or the cost of supplying electricity may rise dramatically, respectively. Demand response programs are designed to mitigate the severity of these problems and improve reliability by reducing the demand on the grid during such critical times. In 2010, the Demand Response Research Center convened a group of industry experts to suggest potential industries that would be good demand response program candidates for further review. The dairy industry was suggested due to the perception thatmore » the industry had suitable flexibility and automatic controls in place. The purpose of this report is to provide an initial description of the industry with regard to demand response potential, specifically automated demand response. This report qualitatively describes the potential for participation in demand response and automated demand response by dairy processing facilities in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use. Typical process equipment and controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Two case studies of demand response at dairy facilities in California and across the country are reviewed. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.« less
NASA Astrophysics Data System (ADS)
Kefayati, Mahdi; Baldick, Ross
2015-07-01
Flexible loads, i.e. the loads whose power trajectory is not bound to a specific one, constitute a sizable portion of current and future electric demand. This flexibility can be used to improve the performance of the grid, should the right incentives be in place. In this paper, we consider the optimal decision making problem faced by a flexible load, demanding a certain amount of energy over its availability period, subject to rate constraints. The load is also capable of providing ancillary services (AS) by decreasing or increasing its consumption in response to signals from the independent system operator (ISO). Under arbitrarily distributed and correlated Markovian energy and AS prices, we obtain the optimal policy for minimising expected total cost, which includes cost of energy and benefits from AS provision, assuming no capacity reservation requirement for AS provision. We also prove that the optimal policy has a multi-threshold form and can be computed, stored and operated efficiently. We further study the effectiveness of our proposed optimal policy and its impact on the grid. We show that, while optimal simultaneous consumption and AS provision under real-time stochastic prices are achievable with acceptable computational burden, the impact of adopting such real-time pricing schemes on the network might not be as good as suggested by the majority of the existing literature. In fact, we show that such price responsive loads are likely to induce peak-to-average ratios much more than what is observed in the current distribution networks and adversely affect the grid.
A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals.
Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin
2015-12-22
To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g(-1) with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.
A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals
Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin
2015-01-01
To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g−1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics. PMID:26689375
A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals
NASA Astrophysics Data System (ADS)
Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin
2015-12-01
To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g-1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.
NASA Technical Reports Server (NTRS)
Steurer, W. H.
1980-01-01
A survey of all presently defined or proposed large space systems indicated an ever increasing demand for flexible components and materials, primarily as a result of the widening disparity between the stowage space of launch vehicles and the size of advanced systems. Typical flexible components and material requirements were identified on the basis of recurrence and/or functional commonality. This was followed by the evaluation of candidate materials and the search for material capabilities which promise to satisfy the postulated requirements. Particular attention was placed on thin films, and on the requirements of deployable antennas. The assessment of the performance of specific materials was based primarily on the failure mode, derived from a detailed failure analysis. In view of extensive on going work on thermal and environmental degradation effects, prime emphasis was placed on the assessment of the performance loss by meteoroid damage. Quantitative data were generated for tension members and antenna reflector materials. A methodology was developed for the representation of the overall materials performance as related to systems service life. A number of promising new concepts for flexible materials were identified.
Liang, Junfei; Cai, Zhi; Tian, Yu; Li, Lidong; Geng, Jianxin; Guo, Lin
2013-11-27
It is currently very urgent to develop flexible energy storage devices because of the growing academic interest in and strong technical demand of flexible electronics. Exploration of high-performance electrode materials and a corresponding assembly method for fabrication of flexible energy storage devices plays a critical role in fulfilling this demand. Here, we have developed a facile, economic, and green hydrothermal process to synthesize ultrasmall SnO2 nanocrystallites/nitrogen-doped graphene nanocomposites (USNGs) as a high-performance electrode material for Li-ion batteries (LIBs). Furthermore, using the glass microfiber filters (GMFs) as supporting substrate, the novel flexible USNG-GMF bilayered films have been prepared by depositing the as-prepared USNG on GMF through a simple vacuum filtration. Significantly, for the first time, the flexible USNG-GMF bilayered films have directly been used for assembling LIBs, where the GMF further functions as a separator. The obtained highly robust, binder-free, conducting agent-free, and current collector-free new type of flexible electrodes show excellent LIB performance.
Galileo battery testing and the impact of test automation
NASA Technical Reports Server (NTRS)
Pertuch, W. T.; Dils, C. T.
1985-01-01
Test complexity, changes of test specifications, and the demand for tight control of tests led to the development of automated testing used for Galileo and other projects. The use of standardized interfacing, i.e., IEEE-488, with desktop computers and test instruments, resulted in greater reliability, repeatability, and accuracy of both control and data reporting. Increased flexibility of test programming has reduced costs by permitting a wide spectrum of test requirements at one station rather than many stations.
Early Visual Word Processing Is Flexible: Evidence from Spatiotemporal Brain Dynamics.
Chen, Yuanyuan; Davis, Matthew H; Pulvermüller, Friedemann; Hauk, Olaf
2015-09-01
Visual word recognition is often described as automatic, but the functional locus of top-down effects is still a matter of debate. Do task demands modulate how information is retrieved, or only how it is used? We used EEG/MEG recordings to assess whether, when, and how task contexts modify early retrieval of specific psycholinguistic information in occipitotemporal cortex, an area likely to contribute to early stages of visual word processing. Using a parametric approach, we analyzed the spatiotemporal response patterns of occipitotemporal cortex for orthographic, lexical, and semantic variables in three psycholinguistic tasks: silent reading, lexical decision, and semantic decision. Task modulation of word frequency and imageability effects occurred simultaneously in ventral occipitotemporal regions-in the vicinity of the putative visual word form area-around 160 msec, following task effects on orthographic typicality around 100 msec. Frequency and typicality also produced task-independent effects in anterior temporal lobe regions after 200 msec. The early task modulation for several specific psycholinguistic variables indicates that occipitotemporal areas integrate perceptual input with prior knowledge in a task-dependent manner. Still, later task-independent effects in anterior temporal lobes suggest that word recognition eventually leads to retrieval of semantic information irrespective of task demands. We conclude that even a highly overlearned visual task like word recognition should be described as flexible rather than automatic.
Zhang, Chunyan; Cai, Xiaoyi; Qian, Yao; Jiang, Haifeng; Zhou, Lijun; Li, Baosheng; Shen, Zexiang; Huang, Wei
2017-01-01
Abstract A lightweight, flexible, and highly efficient energy management strategy is highly desirable for flexible electronic devices to meet a rapidly growing demand. Herein, Ni–Co–S nanosheet array is successfully deposited on graphene foam (Ni–Co–S/GF) by a one‐step electrochemical method. The Ni–Co–S/GF composed of Ni–Co–S nanosheet array which is vertically aligned to GF and provides a large interfacial area for redox reactions with optimum interstitials facilitates the ions diffusion. The Ni–Co–S/GF electrodes have high specific capacitance values of 2918 and 2364 F g−1 at current densities of 1 and 20 A g−1, respectively. Using such hierarchical Ni–Co–S/GF as the cathode, a flexible asymmetric supercapacitor (ASC) is further fabricated with polypyrrple(PPy)/GF as the anode. The flexible asymmetric supercapacitors have maximum operation potential window of 1.65 V, and energy densities of 79.3 and 37.7 Wh kg−1 when the power densities are 825.0 and 16100 W kg−1, respectively. It's worth nothing that the ASC cells have robust flexibility with performance well maintained when the devices were bent to different angles from 180° to 15° at a duration of 5 min. The efficient electrochemical deposition method of Ni–Co–S with a preferred orientation of nanosheet arrays is applicable for the flexible energy storage devices. PMID:29610721
Zhang, Chunyan; Cai, Xiaoyi; Qian, Yao; Jiang, Haifeng; Zhou, Lijun; Li, Baosheng; Lai, Linfei; Shen, Zexiang; Huang, Wei
2018-02-01
A lightweight, flexible, and highly efficient energy management strategy is highly desirable for flexible electronic devices to meet a rapidly growing demand. Herein, Ni-Co-S nanosheet array is successfully deposited on graphene foam (Ni-Co-S/GF) by a one-step electrochemical method. The Ni-Co-S/GF composed of Ni-Co-S nanosheet array which is vertically aligned to GF and provides a large interfacial area for redox reactions with optimum interstitials facilitates the ions diffusion. The Ni-Co-S/GF electrodes have high specific capacitance values of 2918 and 2364 F g -1 at current densities of 1 and 20 A g -1 , respectively. Using such hierarchical Ni-Co-S/GF as the cathode, a flexible asymmetric supercapacitor (ASC) is further fabricated with polypyrrple(PPy)/GF as the anode. The flexible asymmetric supercapacitors have maximum operation potential window of 1.65 V, and energy densities of 79.3 and 37.7 Wh kg -1 when the power densities are 825.0 and 16100 W kg -1 , respectively. It's worth nothing that the ASC cells have robust flexibility with performance well maintained when the devices were bent to different angles from 180° to 15° at a duration of 5 min. The efficient electrochemical deposition method of Ni-Co-S with a preferred orientation of nanosheet arrays is applicable for the flexible energy storage devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattarai, Bishnu; Kouzelis, Konstantinos; Mendaza, Iker
The gradual active load penetration in low voltage distribution grids is expected to challenge their network capacity in the near future. Distribution system operators should for this reason resort to either costly grid reinforcements or to demand side management mechanisms. Since demand side management implementation is usually cheaper, it is also the favorable solution. To this end, this article presents a framework for handling grid limit violations, both voltage and current, to ensure a secure and qualitative operation of the distribution grid. This framework consists of two steps, namely a proactive centralized and subsequently a reactive decentralized control scheme. Themore » former is employed to balance the one hour ahead load while the latter aims at regulating the consumption in real-time. In both cases, the importance of fair use of electricity demand flexibility is emphasized. Thus, it is demonstrated that this methodology aids in keeping the grid status within preset limits while utilizing flexibility from all flexibility participants.« less
Optimal Coordination of Building Loads and Energy Storage for Power Grid and End User Services
Hao, He; Wu, Di; Lian, Jianming; ...
2017-01-18
Demand response and energy storage play a profound role in the smart grid. The focus of this study is to evaluate benefits of coordinating flexible loads and energy storage to provide power grid and end user services. We present a Generalized Battery Model (GBM) to describe the flexibility of building loads and energy storage. An optimization-based approach is proposed to characterize the parameters (power and energy limits) of the GBM for flexible building loads. We then develop optimal coordination algorithms to provide power grid and end user services such as energy arbitrage, frequency regulation, spinning reserve, as well as energymore » cost and demand charge reduction. Several case studies have been performed to demonstrate the efficacy of the GBM and coordination algorithms, and evaluate the benefits of using their flexibility for power grid and end user services. We show that optimal coordination yields significant cost savings and revenue. Moreover, the best option for power grid services is to provide energy arbitrage and frequency regulation. Finally and furthermore, when coordinating flexible loads with energy storage to provide end user services, it is recommended to consider demand charge in addition to time-of-use price in order to flatten the aggregate power profile.« less
Electric System Flexibility and Storage | Energy Analysis | NREL
. Featured Studies India Renewable Integration Study Grid Flexibility and Storage Required To Achieve Very demand-in Texas. Key findings from this study include: A highly flexible system with must-run baseload . Publications Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage
NASA Astrophysics Data System (ADS)
Mathias, Jean-Denis; Bonté, Bruno; Cordonnier, Thomas; de Morogues, Francis
2015-11-01
Greater demand for wood material has converged with greater demand for biodiversity conservation to make balancing forest ecosystem services a key societal issue. Forest managers, owners, or policymakers need new approaches and methods to evaluate their ability to adapt to this dual objective. We analyze the ability of forest owners to define sustainable forest management options based on viability theory and a new flexibility index. This new indicator gauges the adaptive capacity of forest owners based on the number of sustainable actions available to them at a given time. Here we study a public forest owner who regulates harvest intensity and frequency in order to meet demand for timber wood at forest scale and to meet a biodiversity recommendation via a minimum permanently maintained volume of deadwood per hectare at stand scale. Dynamical systems theory was used to model uneven-aged forest dynamics—including deadwood dynamics—and the dynamics of timber wood demand and tree removals. Uneven-aged silver fir forest management in the "Quatre Montagnes region" (Vercors, France) is used as an illustrative example. The results explain situations where a joint increase in wood production and deadwood retention does not reduce the flexibility index more than increasing either one dimension alone, thus opening up ecological intensification options. To conclude, we discuss the value of the new flexibility index for addressing environmental management and ecological intensification issues.
Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits
NASA Astrophysics Data System (ADS)
Machnes, Shai; Assémat, Elie; Tannor, David; Wilhelm, Frank K.
2018-04-01
Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific constraints. Superconducting qubits present the additional requirement that pulses must have simple parameterizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system parameters. Other quantum technologies, such as sensing, require extremely high fidelities. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control technique named gradient optimization of analytic controls (GOAT), which satisfies all the above requirements, unlike previous approaches. To demonstrate GOAT's capabilities, with emphasis on flexibility and ease of subsequent calibration, we optimize fast coherence-limited pulses for two leading superconducting qubits architectures—flux-tunable transmons and fixed-frequency transmons with tunable couplers.
Barriers to Learners' Successful Completion of VET Flexible Delivery Programs.
ERIC Educational Resources Information Center
Grace, Lauri
In the early 1990s, Australian policymakers began explicitly promoting increased use of flexible delivery in vocational education and training (VET). Some researchers argued that many students lack the learning skills required to deal with the unique demands of flexible delivery. Concerns were also raised about the VET sector's capacity to help…
Abma, Femke I; Bültmann, Ute; Amick Iii, Benjamin C; Arends, Iris; Dorland, Heleen F; Flach, Peter A; van der Klink, Jac J L; van de Ven, Hardy A; Bjørner, Jakob Bue
2017-09-09
Objective The Work Role Functioning Questionnaire v2.0 (WRFQ) is an outcome measure linking a persons' health to the ability to meet work demands in the twenty-first century. We aimed to examine the construct validity of the WRFQ in a heterogeneous set of working samples in the Netherlands with mixed clinical conditions and job types to evaluate the comparability of the scale structure. Methods Confirmatory factor and multi-group analyses were conducted in six cross-sectional working samples (total N = 2433) to evaluate and compare a five-factor model structure of the WRFQ (work scheduling demands, output demands, physical demands, mental and social demands, and flexibility demands). Model fit indices were calculated based on RMSEA ≤ 0.08 and CFI ≥ 0.95. After fitting the five-factor model, the multidimensional structure of the instrument was evaluated across samples using a second order factor model. Results The factor structure was robust across samples and a multi-group model had adequate fit (RMSEA = 0.63, CFI = 0.972). In sample specific analyses, minor modifications were necessary in three samples (final RMSEA 0.055-0.080, final CFI between 0.955 and 0.989). Applying the previous first order specifications, a second order factor model had adequate fit in all samples. Conclusion A five-factor model of the WRFQ showed consistent structural validity across samples. A second order factor model showed adequate fit, but the second order factor loadings varied across samples. Therefore subscale scores are recommended to compare across different clinical and working samples.
Integration of multimodal transportation services : final report.
DOT National Transportation Integrated Search
2016-03-08
Flexible route paratransit services may complement as well as compete with conventional public transportation services (that : have fixed routes and schedules). Flexible routes are especially suitable for service areas or time periods with low demand...
Impact of pulse thermal processing on the properties of inkjet printed metal and flexible sensors
Joshi, Pooran C.; Kuruganti, Teja; Killough, Stephen M.
2015-03-11
In this paper, we report on the low temperature processing of environmental sensors employing pulse thermal processing (PTP) technique to define a path toward flexible sensor technology on plastic, paper, and fabric substrates. Inkjet printing and pulse thermal processing technique were used to realize mask-less, additive integration of low-cost sensors on polymeric substrates with specific focus on temperature, humidity, and strain sensors. The printed metal line performance was evaluated in terms of the electrical conductivity characteristics as a function of post-deposition thermal processing conditions. The PTP processed Ag metal lines exhibited high conductivity with metal sheet resistance values below 100more » mΩ/{whitesquare} using a pulse width as short as 250 μs. The flexible temperature and relative humidity sensors were defined on flexible polyimide substrates by direct printing of Ag metal structures. The printed resistive temperature sensor and capacitive humidity sensor were characterized for their sensitivity with focus on future smart-building applications. Strain gauges were printed on polyimide substrate to determine the mechanical properties of the silver nanoparticle films. Finally, the observed electrical properties of the printed metal lines and the sensitivity of the flexible sensors show promise for the realization of a high performance print-on-demand technology exploiting low thermal-budget PTP technique.« less
Alkoby, Alon; Pliskin, Ruthie; Halperin, Eran; Levit-Binnun, Nava
2018-06-28
Individuals encounter a variety of emotional challenges daily, with optimal emotion modulation requiring adaptive choice among available means of regulation. However, individuals differ in the ability to flexibly and adaptively move between engaging and disengaging emotion regulation (ER) strategies as per contextual demands, referred to as regulatory choice flexibility. Greater regulatory choice flexibility is associated with greater mental health, well-being and resilience, warranting the development of interventions to increase such flexibility. We hypothesized that a mindfulness-based stress reduction (MBSR) program would fulfill this goal. To test our hypothesis, we recruited college students to either participate in an 8-week MBSR workshop or join a waiting list for a later workshop (i.e., control participants). After the workshop's completion, all participants were invited to the laboratory and completed several computerized tasks examining their regulatory choice flexibility when exposed to universally emotion-laden stimuli as well as stimuli specifically related to the students' social and political environment. The regulatory choice patterns of participants who underwent MBSR training were found to be more flexible than those of participants who had not yet completed the workshop, with the former more likely than the latter to favor an engaging ER strategy (i.e., reappraisal) when faced with low-intensity stimuli and a disengaging strategy (i.e., distraction) when faced with high-intensity stimuli. The findings' importance is discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Task relevance induces momentary changes in the functional visual field during reading.
Kaakinen, Johanna K; Hyönä, Jukka
2014-02-01
In the research reported here, we examined whether task demands can induce momentary tunnel vision during reading. More specifically, we examined whether the size of the functional visual field depends on task relevance. Forty participants read an expository text with a specific task in mind while their eye movements were recorded. A display-change paradigm with random-letter strings as preview masks was used to study the size of the functional visual field within sentences that contained task-relevant and task-irrelevant information. The results showed that orthographic parafoveal-on-foveal effects and preview benefits were observed for words within task-irrelevant but not task-relevant sentences. The results indicate that the size of the functional visual field is flexible and depends on the momentary processing demands of a reading task. The higher cognitive processing requirements experienced when reading task-relevant text rather than task-irrelevant text induce momentary tunnel vision, which narrows the functional visual field.
Chen, Yen-Lin; Chiang, Hsin-Han; Yu, Chao-Wei; Chiang, Chuan-Yen; Liu, Chuan-Ming; Wang, Jenq-Haur
2012-01-01
This study develops and integrates an efficient knowledge-based system and a component-based framework to design an intelligent and flexible home health care system. The proposed knowledge-based system integrates an efficient rule-based reasoning model and flexible knowledge rules for determining efficiently and rapidly the necessary physiological and medication treatment procedures based on software modules, video camera sensors, communication devices, and physiological sensor information. This knowledge-based system offers high flexibility for improving and extending the system further to meet the monitoring demands of new patient and caregiver health care by updating the knowledge rules in the inference mechanism. All of the proposed functional components in this study are reusable, configurable, and extensible for system developers. Based on the experimental results, the proposed intelligent homecare system demonstrates that it can accomplish the extensible, customizable, and configurable demands of the ubiquitous healthcare systems to meet the different demands of patients and caregivers under various rehabilitation and nursing conditions.
Smart Grid Constraint Violation Management for Balancing and Regulating Purposes
Bhattarai, Bishnu; Kouzelis, Konstantinos; Mendaza, Iker; ...
2017-03-29
The gradual active load penetration in low voltage distribution grids is expected to challenge their network capacity in the near future. Distribution system operators should for this reason resort to either costly grid reinforcements or to demand side management mechanisms. Since demand side management implementation is usually cheaper, it is also the favorable solution. To this end, this article presents a framework for handling grid limit violations, both voltage and current, to ensure a secure and qualitative operation of the distribution grid. This framework consists of two steps, namely a proactive centralized and subsequently a reactive decentralized control scheme. Themore » former is employed to balance the one hour ahead load while the latter aims at regulating the consumption in real-time. In both cases, the importance of fair use of electricity demand flexibility is emphasized. Thus, it is demonstrated that this methodology aids in keeping the grid status within preset limits while utilizing flexibility from all flexibility participants.« less
Chen, Yen-Lin; Chiang, Hsin-Han; Yu, Chao-Wei; Chiang, Chuan-Yen; Liu, Chuan-Ming; Wang, Jenq-Haur
2012-01-01
This study develops and integrates an efficient knowledge-based system and a component-based framework to design an intelligent and flexible home health care system. The proposed knowledge-based system integrates an efficient rule-based reasoning model and flexible knowledge rules for determining efficiently and rapidly the necessary physiological and medication treatment procedures based on software modules, video camera sensors, communication devices, and physiological sensor information. This knowledge-based system offers high flexibility for improving and extending the system further to meet the monitoring demands of new patient and caregiver health care by updating the knowledge rules in the inference mechanism. All of the proposed functional components in this study are reusable, configurable, and extensible for system developers. Based on the experimental results, the proposed intelligent homecare system demonstrates that it can accomplish the extensible, customizable, and configurable demands of the ubiquitous healthcare systems to meet the different demands of patients and caregivers under various rehabilitation and nursing conditions. PMID:23112650
Integration of Fixed and Flexible Route Public Transportation Systems, Phase I
DOT National Transportation Integrated Search
2012-01-01
To provide efficient public transportation services in areas with high demand variability over time, it may be desirable : to switch vehicles between conventional services (with fixed routes and schedules) during peak periods and flexible : route ser...
NASA Astrophysics Data System (ADS)
Rumbaugh, Roy N.; Grealish, Kevin; Kacir, Tom; Arsenault, Barry; Murphy, Robert H.; Miller, Scott
2003-09-01
A new 4th generation MicroIR architecture is introduced as the latest in the highly successful Standard Camera Core (SCC) series by BAE SYSTEMS to offer an infrared imaging engine with greatly reduced size, weight, power, and cost. The advanced SCC500 architecture provides great flexibility in configuration to include multiple resolutions, an industry standard Real Time Operating System (RTOS) for customer specific software application plug-ins, and a highly modular construction for unique physical and interface options. These microbolometer based camera cores offer outstanding and reliable performance over an extended operating temperature range to meet the demanding requirements of real-world environments. A highly integrated lens and shutter is included in the new SCC500 product enabling easy, drop-in camera designs for quick time-to-market product introductions.
Bauer, Jessie-Raye; Martinez, Joel E.; Roe, Mary Abbe; Church, Jessica A.
2017-01-01
Two behavioral experiments assessed the plasticity and short-term improvement of task switching in 215 children and adults. Specifically, we studied manipulations of cued attention to different features of a target stimulus as a way to assess the development of cognitive flexibility. Each experiment had multiple levels of difficulty via manipulation of number of cued features (2–4) and number of response options (2 or 4). Working memory demand was manipulated across the two experiments. Impact of memory demand and task level manipulations on task accuracy and response times were measured. There were three overall goals: First, these task manipulations (number of cued features, response choices, and working memory load) were tested to assess the stability of group differences in performance between children ages 6–16 years and adults 18–27 years, with the goal of reducing age group differences. Second, age-related transitions to adult-level performance were examined within subgroups of the child sample. Third, short-term improvement from the beginning to the end of the study session was measured to probe whether children can improve with task experience. Attempts to use task manipulations to reduce age differences in cued task switching performance were unsuccessful: children performed consistently worse and were more susceptible to task manipulations than adults. However, across both studies, adult-like performance was observed around mid-adolescence, by ages 13-16 years. Certain task manipulations, especially increasing number of response options when working memory demand was low, produced differences from adults even in the oldest children. Interestingly, there was similar performance improvement with practice for both child and adult groups. The higher memory demand version of the task (Experiment 2) prompted greater short-term improvement in accuracy and response times than the lower memory demand version (Experiment 1). These results reveal stable differences in cued switching performance over development, but also relative flexibility within a given individual over time. PMID:28824489
ERIC Educational Resources Information Center
Williams, Kathryn E.; Ciarrochi, Joseph; Heaven, Patrick C. L.
2012-01-01
Parenting behaviors have been linked to children's self regulation, but it is less clear how they relate to adolescent psychological flexibility. Psychological flexibility is a broad construct that describes an individual's ability to respond appropriately to environmental demands and internal experiences in the service of their goals. We examined…
Calibrating Physical Parameters in House Models Using Aggregate AC Power Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yannan; Stevens, Andrew J.; Lian, Jianming
For residential houses, the air conditioning (AC) units are one of the major resources that can provide significant flexibility in energy use for the purpose of demand response. To quantify the flexibility, the characteristics of all the houses need to be accurately estimated, so that certain house models can be used to predict the dynamics of the house temperatures in order to adjust the setpoints accordingly to provide demand response while maintaining the same comfort levels. In this paper, we propose an approach using the Reverse Monte Carlo modeling method and aggregate house models to calibrate the distribution parameters ofmore » the house models for a population of residential houses. Given the aggregate AC power demand for the population, the approach can successfully estimate the distribution parameters for the sensitive physical parameters based on our previous uncertainty quantification study, such as the mean of the floor areas of the houses.« less
Schooreel, Tess; Verbruggen, Marijke
2016-01-01
This study uses a dyadic approach to examine how an employee's work-family conflict is affected when his or her partner makes use of family-friendly work arrangements. We focused on 2 types of family-friendly practices, that is, reduced work hours and schedule or workplace flexibility. Hypotheses were tested with multilevel structural equation modeling using information of 186 dual-earner couples. In line with our hypotheses, we found support for both a positive and a negative crossover effect, though the results showed differences between the 2 types of family-friendly work arrangements. First, a positive crossover effect was found for both reduced work hours and schedule or workplace flexibility; however, the specific mechanisms explaining this effect differed per type of arrangements. In particular, employees whose partner made use of reduced work hours were found to experience less home demands, which was in turn associated with lower family-to-work conflict, whereas employees whose partner made use of schedule or workplace flexibility experienced a similar positive crossover effect but through an increase in the social support they perceived. Second, a negative crossover effect was found only for reduced work hours and not for schedule or workplace flexibility. Specifically, employees whose partner made use of reduced work hours were found to work on average more hours a week, which was in turn related with more work-to-family conflict, whereas employees whose partner made use of schedule or workplace flexibility worked on average fewer hours a week and consequently experienced lower work-to-family conflict. Implications for literature and practice are discussed. (c) 2016 APA, all rights reserved).
Fundamentals of cancer metabolism
DeBerardinis, Ralph J.; Chandel, Navdeep S.
2016-01-01
Tumors reprogram pathways of nutrient acquisition and metabolism to meet the bioenergetic, biosynthetic, and redox demands of malignant cells. These reprogrammed activities are now recognized as hallmarks of cancer, and recent work has uncovered remarkable flexibility in the specific pathways activated by tumor cells to support these key functions. In this perspective, we provide a conceptual framework to understand how and why metabolic reprogramming occurs in tumor cells, and the mechanisms linking altered metabolism to tumorigenesis and metastasis. Understanding these concepts will progressively support the development of new strategies to treat human cancer. PMID:27386546
Accounting for ethnicity in recreation demand: a flexible count data approach
J. Michael Bowker; V.R. Leeworthy
1998-01-01
The authors examine ethnicity and individual trip-taking behavior associated with natural resource based recreation in the Florida Keys. Bowker and Leeworthy estimate trip demand using the travel cost method. They then extend this model with a varying parameter adaptation to test the congruency of' demand and economic value across white and Hispanic user subgroups...
Flexible stocking strategies for adapting to climatic variability
USDA-ARS?s Scientific Manuscript database
As a result of precipitation-induced variability on forage production, ranchers have difficulty matching animal demand with forage availability in their operations. Flexible stocking strategies could more effectively use extra forage in highly productive years and limit risk of overgrazing during dr...
He, Yongmin; Chen, Wanjun; Li, Xiaodong; Zhang, Zhenxing; Fu, Jiecai; Zhao, Changhui; Xie, Erqing
2013-01-22
A lightweight, flexible, and highly efficient energy management strategy is needed for flexible energy-storage devices to meet a rapidly growing demand. Graphene-based flexible supercapacitors are one of the most promising candidates because of their intriguing features. In this report, we describe the use of freestanding, lightweight (0.75 mg/cm(2)), ultrathin (<200 μm), highly conductive (55 S/cm), and flexible three-dimensional (3D) graphene networks, loaded with MnO(2) by electrodeposition, as the electrodes of a flexible supercapacitor. It was found that the 3D graphene networks showed an ideal supporter for active materials and permitted a large MnO(2) mass loading of 9.8 mg/cm(2) (~92.9% of the mass of the entire electrode), leading to a high area capacitance of 1.42 F/cm(2) at a scan rate of 2 mV/s. With a view to practical applications, we have further optimized the MnO(2) content with respect to the entire electrode and achieved a maximum specific capacitance of 130 F/g. In addition, we have also explored the excellent electrochemical performance of a symmetrical supercapacitor (of weight less than 10 mg and thickness ~0.8 mm) consisting of a sandwich structure of two pieces of 3D graphene/MnO(2) composite network separated by a membrane and encapsulated in polyethylene terephthalate (PET) membranes. This research might provide a method for flexible, lightweight, high-performance, low-cost, and environmentally friendly materials used in energy conversion and storage systems for the effective use of renewable energy.
Pc-Based Floating Point Imaging Workstation
NASA Astrophysics Data System (ADS)
Guzak, Chris J.; Pier, Richard M.; Chinn, Patty; Kim, Yongmin
1989-07-01
The medical, military, scientific and industrial communities have come to rely on imaging and computer graphics for solutions to many types of problems. Systems based on imaging technology are used to acquire and process images, and analyze and extract data from images that would otherwise be of little use. Images can be transformed and enhanced to reveal detail and meaning that would go undetected without imaging techniques. The success of imaging has increased the demand for faster and less expensive imaging systems and as these systems become available, more and more applications are discovered and more demands are made. From the designer's perspective the challenge to meet these demands forces him to attack the problem of imaging from a different perspective. The computing demands of imaging algorithms must be balanced against the desire for affordability and flexibility. Systems must be flexible and easy to use, ready for current applications but at the same time anticipating new, unthought of uses. Here at the University of Washington Image Processing Systems Lab (IPSL) we are focusing our attention on imaging and graphics systems that implement imaging algorithms for use in an interactive environment. We have developed a PC-based imaging workstation with the goal to provide powerful and flexible, floating point processing capabilities, along with graphics functions in an affordable package suitable for diverse environments and many applications.
The Effect of Executive Function on Science Achievement Among Normally Developing 10-Year Olds
NASA Astrophysics Data System (ADS)
Lederman, Sheri G.
Executive function (EF) is an umbrella term used to identify a set of discrete but interrelated cognitive abilities that enable individuals to engage in goal-directed, future-oriented action in response to a novel context. Developmental studies indicate that EF is predictive of reading and math achievement in middle childhood. The purpose of this study was to identify the association between EF and science achievement among normally developing 10 year olds. A sample of fifth grade students from a Northeastern suburban community participated in tests of EF, science, and intelligence. Consistent with adult models of EF, principal components analysis identified a three-factor model of EF organization in middle childhood, including cognitive flexibility, working memory, and inhibition. Multiple regression analyses revealed that executive function processes of cognitive flexibility, working memory, and inhibition were all predictive of science performance. Post hoc analyses revealed that high-performing science students differed significantly from low-performing students in both cognitive flexibility and working memory. These findings suggest that complex academic demands specific to science achievement rely on the emergence and maturation of EF components.
Greve, Christian; Hortobàgyi, Tibor; Bongers, Raoul M.
2015-01-01
Healthy humans are able to place light and heavy objects in small and large target locations with remarkable accuracy. Here we examine how dexterity demand and physical demand affect flexibility in joint coordination and end-effector kinematics when healthy young adults perform an upper extremity reaching task. We manipulated dexterity demand by changing target size and physical demand by increasing external resistance to reaching. Uncontrolled manifold analysis was used to decompose variability in joint coordination patterns into variability stabilizing the end-effector and variability de-stabilizing the end-effector during reaching. Our results demonstrate a proportional increase in stabilizing and de-stabilizing variability without a change in the ratio of the two variability components as physical demands increase. We interpret this finding in the context of previous studies showing that sensorimotor noise increases with increasing physical demands. We propose that the larger de-stabilizing variability as a function of physical demand originated from larger sensorimotor noise in the neuromuscular system. The larger stabilizing variability with larger physical demands is a strategy employed by the neuromuscular system to counter the de-stabilizing variability so that performance stability is maintained. Our findings have practical implications for improving the effectiveness of movement therapy in a wide range of patient groups, maintaining upper extremity function in old adults, and for maximizing athletic performance. PMID:25970465
Rummel, Jan; Boywitt, C Dennis
2014-10-01
Although engaging in task-unrelated thoughts can be enjoyable and functional under certain circumstances, allowing one's mind to wander off-task will come at a cost to performance in many situations. Given that task-unrelated thoughts need to be blocked out when the current task requires full attention, it has been argued that cognitive control is necessary to prevent mind-wandering from becoming maladaptive. Extending this idea, we exposed participants to tasks of different demands and assessed mind-wandering via thought probes. Employing a latent-change model, we found mind-wandering to be adjusted to current task demands. As hypothesized, the degree of adjustment was predicted by working memory capacity, indicating that participants with higher working memory capacity were more flexible in their coordination of on- and off-task thoughts. Notably, the better the adjustment, the smaller performance decrements due to increased task demands were. On the basis of these findings, we argue that cognitive control does not simply allow blocking out task-unrelated thoughts but, rather, allows one to flexibly adjust mind-wandering to situational demands.
NASA Technical Reports Server (NTRS)
Lee, Paul U.; Smith, Nancy M.; Prevot, Thomas; Homola, Jeffrey R.
2010-01-01
When demand for an airspace sector exceeds capacity, the balance can be re-established by reducing the demand, increasing the capacity, or both. The Multi-Sector Planner (MSP) concept has been proposed to better manage traffic demand by modifying trajectories across multiple sectors. A complementary approach to MSP, called Flexible Airspace Management (FAM), reconfigures the airspace such that capacity can be reallocated dynamically to balance the traffic demand across multiple sectors, resulting in fewer traffic management initiatives. The two concepts have been evaluated with a series of human-in-the-loop simulations at the Airspace Operations Laboratory to examine and refine the roles of the human operators in these concepts, as well as their tools and procedural requirements. So far MSP and FAM functions have been evaluated individually but the integration of the two functions is desirable since there are significant overlaps in their goals, geographic/temporal scope of the problem space, and the implementation timeframe. Ongoing research is planned to refine the humans roles in the integrated concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, Paul; Clark, Kara; O'Connell, Matt
Increasing the use of grid-flexibility options (improved grid management, demand response, and energy storage) could enable 25% or higher penetration of PV at low costs (see Denholm et al. 2016). Considering the large-scale integration of solar into electric-power systems complicates the calculation of the value of solar. In fact a comprehensive examination reveals that the value of solar technologies—or any other power-system technology or operating strategy—can only be understood in the context of the generation system as a whole. This is well illustrated by analysis of curtailment at high PV penetrations within the bulk power and transmission systems. As themore » deployment of PV increases, it is possible that during some sunny midday periods due to limited flexibility of conventional generators, system operators would need to reduce (curtail) PV output in order to maintain the crucial balance between electric supply and demand. As a result, PV’s value and cost competitiveness would degrade. For example, for utility-scale PV with a baseline SunShot LCOE of 6¢/kWh, increasing the annual energy demand met by solar energy from 10% to 20% would increase the marginal LCOE of PV from 6¢/kWh to almost 11¢/kWh in a California grid system with limited flexibility. However, this loss of value could be stemmed by increasing system flexibility via enhanced control of variable-generation resources, added energy storage, and the ability to motivate more electricity consumers to shift consumption to lower-demand periods. The combination of these measures would minimize solar curtailment and keep PV cost-competitive at penetrations at least as high as 25%. Efficient deployment of the grid-flexibility options needed to maintain solar’s value will require various innovations, from the development of communication, control, and energy storage technologies to the implementation of new market rules and operating procedures.« less
The role of the hippocampus in flexible cognition and social behavior
Rubin, Rachael D.; Watson, Patrick D.; Duff, Melissa C.; Cohen, Neal J.
2014-01-01
Successful behavior requires actively acquiring and representing information about the environment and people, and manipulating and using those acquired representations flexibly to optimally act in and on the world. The frontal lobes have figured prominently in most accounts of flexible or goal-directed behavior, as evidenced by often-reported behavioral inflexibility in individuals with frontal lobe dysfunction. Here, we propose that the hippocampus also plays a critical role by forming and reconstructing relational memory representations that underlie flexible cognition and social behavior. There is mounting evidence that damage to the hippocampus can produce inflexible and maladaptive behavior when such behavior places high demands on the generation, recombination, and flexible use of information. This is seen in abilities as diverse as memory, navigation, exploration, imagination, creativity, decision-making, character judgments, establishing and maintaining social bonds, empathy, social discourse, and language use. Thus, the hippocampus, together with its extensive interconnections with other neural systems, supports the flexible use of information in general. Further, we suggest that this understanding has important clinical implications. Hippocampal abnormalities can produce profound deficits in real-world situations, which typically place high demands on the flexible use of information, but are not always obvious on diagnostic tools tuned to frontal lobe function. This review documents the role of the hippocampus in supporting flexible representations and aims to expand our understanding of the dynamic networks that operate as we move through and create meaning of our world. PMID:25324753
The role of the hippocampus in flexible cognition and social behavior.
Rubin, Rachael D; Watson, Patrick D; Duff, Melissa C; Cohen, Neal J
2014-01-01
Successful behavior requires actively acquiring and representing information about the environment and people, and manipulating and using those acquired representations flexibly to optimally act in and on the world. The frontal lobes have figured prominently in most accounts of flexible or goal-directed behavior, as evidenced by often-reported behavioral inflexibility in individuals with frontal lobe dysfunction. Here, we propose that the hippocampus also plays a critical role by forming and reconstructing relational memory representations that underlie flexible cognition and social behavior. There is mounting evidence that damage to the hippocampus can produce inflexible and maladaptive behavior when such behavior places high demands on the generation, recombination, and flexible use of information. This is seen in abilities as diverse as memory, navigation, exploration, imagination, creativity, decision-making, character judgments, establishing and maintaining social bonds, empathy, social discourse, and language use. Thus, the hippocampus, together with its extensive interconnections with other neural systems, supports the flexible use of information in general. Further, we suggest that this understanding has important clinical implications. Hippocampal abnormalities can produce profound deficits in real-world situations, which typically place high demands on the flexible use of information, but are not always obvious on diagnostic tools tuned to frontal lobe function. This review documents the role of the hippocampus in supporting flexible representations and aims to expand our understanding of the dynamic networks that operate as we move through and create meaning of our world.
Wolff, Nicole; Chmielewski, Witold X; Beste, Christian; Roessner, Veit
2017-03-16
Autism spectrum disorder (ASD) is associated with repetitive and stereotyped behaviour, suggesting that cognitive flexibility may be deficient in ASD. A central, yet not examined aspect to understand possible deficits in flexible behaviour in ASD relates (i) to the role of working memory and (ii) to neurophysiological mechanisms underlying behavioural modulations. We analysed behavioural and neurophysiological (EEG) correlates of cognitive flexibility using a task-switching paradigm with and without working memory load in adolescents with ASD and typically developing controls (TD). Adolescents with ASD versus TD show similar performance in task switching with no memory load, indicating that 'pure' cognitive flexibility is not in deficit in adolescent ASD. However performance during task repetition decreases with increasing memory load. Neurophysiological data reflect the pattern of behavioural effects, showing modulations in P2 and P3 event-related potentials. Working memory demands affect repetitive behaviour while processes of cognitive flexibility are unaffected. Effects emerge due to deficits in preparatory attentional processes and deficits in task rule activation, organisation and implementation of task sets when repetitive behaviour is concerned. It may be speculated that the habitual response mode in ASD (i.e. repetitive behaviour) is particularly vulnerable to additional demands on executive control processes.
Supply and demand mismatch for flexible (part-time) surgical training in Australasia.
McDonald, Rachel E; Jeeves, Amy E; Vasey, Carolyn E; Wright, Deborah M; O'Grady, Gregory
2013-05-06
To define current patterns of flexible (part-time) surgical training in Australasia, determine supply and demand for part-time positions, and identify work-related factors motivating interest in flexible training. All Royal Australasian College of Surgeons trainees (n = 1191) were surveyed in 2010. Questions assessed demographic characteristics and working patterns, interest in flexible training, work-related fatigue and work-life balance preferences. Interest in part-time training, and work-related factors motivating this interest. Of the 1191 trainees, 659 responded (response rate, 55.3%). Respondents were representative of all trainees in terms of specialty and sex. The median age of respondents was 32 2013s, and 187 (28.4%) were female. Most of the 659 respondents (627, 95.1%) were in full-time clinical training; only two (0.3%) were in part-time clinical training, and 30 (4.6%) were not in active clinical training. An interest in part-time training was reported by 208 respondents (31.6%; 54.3% of women v 25.9% of men; P < 0.001). Trainees expressing an interest in part-time training were more likely to report that fatigue impaired their performance at work and limited their social or family life, and that they had insufficient time in life for things outside surgical training, including study or research (P < 0.05). There is a striking mismatch between demand for flexible surgical training and the number of trainees currently in part-time training positions in Australia and New Zealand. Efforts are needed to facilitate part-time surgical training.
Moseley, Amanda; Jeffers, Lesley; Paterson, Jan
2008-08-01
In an era of nursing shortages and increased health care demands, it is important to explore factors which contribute to the retention of nursing staff, especially older nurses who contribute a wealth of knowledge and experience to their employing organization. This literature review explored the factors that influence older nurses to leave an organization or to retire early and identified a number of key issues which can influence this decision. These included the need to respect and recognise the achievements of older staff, specific managerial characteristics which influence staff retention, the importance of empowerment and autonomy, the valuing of expertise, the provision of challenges, creating a sense of community within an organization, the importance of education and peer development, the impact of work demands and environment, the influence of flexible working and shift options and the issue of adequate financial reimbursement. From this review, a variety of recommendations have been generated which it is hoped will help to inform the creation of policies and practices that specifically address the issue of retention of older nursing staff.
SYSTEM LEVEL IMPLICATIONS OF FLEXIBLE CO2 CAPTURE OPERATION
In ERCOT, turning flexible CO2 capture systems off during infrequent periods of peak electricity demand can avoid hundreds of millions to billions of dollars in capital costs to replace the power output lost to CO2 capture energy requirements. When CO...
Manipulation strategies for massive space payloads
NASA Technical Reports Server (NTRS)
Book, Wayne J.
1991-01-01
The industrial and environmental applications for robots with a relatively large workspace has increased significantly in the last few years. To accommodate the demands, the manipulator is usually designed with long, lightweight links that are inherently flexible. Ongoing research at Georgia Tech into the behavior and design of these flexible links is discussed.
DOT National Transportation Integrated Search
1975-03-01
parametric variation of demand density was used to compare service level and cost of two alternative systems for providing low density feeder service. Supply models for fixed route and flexible route service were developed and applied to determine ra...
Westlake, P
1995-10-01
Health care facility design must incorporate four key elements: Strategy, Assessment, Flexibility, and Efficiency. These SAFE elements will offer the organization the greatest return on investment, because they encompass both present needs and future demand. They respect the integrated nature of functional operations by clustering them in ways that permit growth or consolidation. In the rapidly changing health care environment, flexibility is fundamental to successful design.
Fuel/engine/airframe tradeoff study, phase 1
NASA Technical Reports Server (NTRS)
Peacock, A. T.
1980-01-01
The effects of broadening the specifications for JP-4 and JP-8 fueled on the performance and cost of all USAF aircraft presently using JP-4 as well as those expected to be introduced into the force structure by 1983 are investigated. Test results indicated that there was no impact on engine performance, turbine durability, and coking, however there was a small maintenance cost increase as a result of a small combustor life decrease. Using JP-4 as standard fuel will avoid the use of high demand middle distillate fuels and give producers flexibility. Extensive use of JP-8 in the United States will increase middle distillate demand and cause a slight increase in engine hot-section maintenance. It is also concluded that the maximum allowable freeze point of JP-4 or JP-8 cannot be increased without degrading system performance and safety as critical conditions are approached.
The effect of alternative work arrangements on women's well-being: a demand-control model.
Kelloway, E K; Gottlieb, B H
1998-01-01
The growth of women's participation in the labor force and evidence of the conflict they experience between job and family demands have spurred many employers to introduce alternative work arrangements such as flextime, job sharing, and telecommuting. Drawing on data gained from a sample of women (N = 998) in two large Canadian organizations, this study evaluates two mediational models of the impact of alternative work arrangements on women's stress and family role competence. Specifically, it tests and finds support for the hypotheses that (a) work arrangements involving scheduling flexibility (telecommuting and flextime) promote these aspects of women's well-being by increasing their perceived control over their time, and (b) arrangements involving reduced hours of employment (part-time employment and job sharing) promote well-being by reducing perceived job overload. Discussion of these findings centers on their implications for employed women, their employers, and future research.
3D-printed biological organs: medical potential and patenting opportunity.
Yoo, Seung-Schik
2015-05-01
Three-dimensional (3D) bioprinting has emerged as a new disruptive technology that may address the ever-increasing demand for organ transplants. 3D bioprinting offers many technical features that allow for building functional biological tissue constructs by dispensing the individual or group of cells into specific locations along with various types of bio-scaffold materials and extracellular matrices, and thus, may provide flexibility needed for on-demand individualized construction of biological organs. Several key classes of 3D bioprinting techniques are reviewed, including potential medical and industrial applications. Several unanswered engineering components for the ultimate creation of printed biological organs are also discussed. The complicated nature of the human organs, in addition to the legal and ethical requirements for safe implantation into the human body, would require significant research and development to produce marketable bioprinted organs. This also suggests the possibility for further patenting and licensing opportunities from different sectors of the economy.
Flexible scintillator autoradiography for tumor margin inspection using 18F-FDG
NASA Astrophysics Data System (ADS)
Vyas, K. N.; Grootendorst, M.; Mertzanidou, T.; Macholl, S.; Stoyanov, D.; Arridge, S. R.; Tuch, D. S.
2018-03-01
Autoradiography potentially offers high molecular sensitivity and spatial resolution for tumor margin estimation. However, conventional autoradiography requires sectioning the sample which is destructive and labor-intensive. Here we describe a novel autoradiography technique that uses a flexible ultra-thin scintillator which conforms to the sample surface. Imaging with the flexible scintillator enables direct, high-resolution and high-sensitivity imaging of beta particle emissions from targeted radiotracers. The technique has the potential to identify positive tumor margins in fresh unsectioned samples during surgery, eliminating the processing time demands of conventional autoradiography. We demonstrate the feasibility of the flexible autoradiography approach to directly image the beta emissions from radiopharmaceuticals using lab experiments and GEANT-4 simulations to determine i) the specificity for 18F compared to 99mTc-labeled tracers ii) the sensitivity to detect signal from various depths within the tissue. We found that an image resolution of 1.5 mm was achievable with a scattering background and we estimate a minimum detectable activity concentration of 0.9 kBq/ml for 18F. We show that the flexible autoradiography approach has high potential as a technique for molecular imaging of tumor margins using 18F-FDG in a tumor xenograft mouse model imaged with a radiation-shielded EMCCD camera. Due to the advantage of conforming to the specimen, the flexible scintillator showed significantly better image quality in terms of tumor signal to whole-body background noise compared to rigid and optimally thick CaF2:Eu and BC400. The sensitivity of the technique means it is suitable for clinical translation.
Demonstration of the Health Literacy Universal Precautions Toolkit
Mabachi, Natabhona M.; Cifuentes, Maribel; Barnard, Juliana; Brega, Angela G.; Albright, Karen; Weiss, Barry D.; Brach, Cindy; West, David
2016-01-01
The Agency for Healthcare Research and Quality Health Literacy Universal Precautions Toolkit was developed to help primary care practices assess and make changes to improve communication with and support for patients. Twelve diverse primary care practices implemented assigned tools over a 6-month period. Qualitative results revealed challenges practices experienced during implementation, including competing demands, bureaucratic hurdles, technological challenges, limited quality improvement experience, and limited leadership support. Practices used the Toolkit flexibly and recognized the efficiencies of implementing tools in tandem and in coordination with other quality improvement initiatives. Practices recommended reducing Toolkit density and making specific refinements. PMID:27232681
Demonstration of the Health Literacy Universal Precautions Toolkit: Lessons for Quality Improvement.
Mabachi, Natabhona M; Cifuentes, Maribel; Barnard, Juliana; Brega, Angela G; Albright, Karen; Weiss, Barry D; Brach, Cindy; West, David
2016-01-01
The Agency for Healthcare Research and Quality Health Literacy Universal Precautions Toolkit was developed to help primary care practices assess and make changes to improve communication with and support for patients. Twelve diverse primary care practices implemented assigned tools over a 6-month period. Qualitative results revealed challenges practices experienced during implementation, including competing demands, bureaucratic hurdles, technological challenges, limited quality improvement experience, and limited leadership support. Practices used the Toolkit flexibly and recognized the efficiencies of implementing tools in tandem and in coordination with other quality improvement initiatives. Practices recommended reducing Toolkit density and making specific refinements.
Harding, Ian H; Yücel, Murat; Harrison, Ben J; Pantelis, Christos; Breakspear, Michael
2015-02-01
Cognitive control and working memory rely upon a common fronto-parietal network that includes the inferior frontal junction (IFJ), dorsolateral prefrontal cortex (dlPFC), pre-supplementary motor area/dorsal anterior cingulate cortex (pSMA/dACC), and intraparietal sulcus (IPS). This network is able to flexibly adapt its function in response to changing behavioral goals, mediating a wide range of cognitive demands. Here we apply dynamic causal modeling to functional magnetic resonance imaging data to characterize task-related alterations in the strength of network interactions across distinct cognitive processes. Evidence in favor of task-related connectivity dynamics was accrued across a very large space of possible network structures. Cognitive control and working memory demands were manipulated using a factorial combination of the multi-source interference task and a verbal 2-back working memory task, respectively. Both were found to alter the sensitivity of the IFJ to perceptual information, and to increase IFJ-to-pSMA/dACC connectivity. In contrast, increased connectivity from the pSMA/dACC to the IPS, as well as from the dlPFC to the IFJ, was uniquely driven by cognitive control demands; a task-induced negative influence of the dlPFC on the pSMA/dACC was specific to working memory demands. These results reflect a system of both shared and unique context-dependent dynamics within the fronto-parietal network. Mechanisms supporting cognitive engagement, response selection, and action evaluation may be shared across cognitive domains, while dynamic updating of task and context representations within this network are potentially specific to changing demands on cognitive control. Copyright © 2014 Elsevier Inc. All rights reserved.
A scheduling model for the aerial relay system
NASA Technical Reports Server (NTRS)
Ausrotas, R. A.; Liu, E. W.
1980-01-01
The ability of the Aerial Relay System to handle the U.S. transcontinental large hub passenger flow was analyzed with a flexible, interactive computer model. The model incorporated city pair time of day demand and a demand allocation function which assigned passengers to their preferred flights.
Energy storage inherent in large tidal turbine farms
Vennell, Ross; Adcock, Thomas A. A.
2014-01-01
While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels. PMID:24910516
Energy storage inherent in large tidal turbine farms.
Vennell, Ross; Adcock, Thomas A A
2014-06-08
While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels.
Examining Experienced Teachers' Noticing of and Responses to Students' Engineering
ERIC Educational Resources Information Center
Johnson, Aaron W.; Wendell, Kristen B.; Watkins, Jessica
2017-01-01
Engineering design places unique demands on teachers, as students are coming up with new, unanticipated ideas to problems along often unpredictable trajectories. These demands motivate a responsive approach to teaching, in which teachers attend their students' thinking and flexibly adapt their instructional plans and objectives. A great deal of…
Flexible Studies as Strategy for Lifelong Learning
ERIC Educational Resources Information Center
Bugge, Liv Susanne; Wikan, Gerd
2016-01-01
Many countries face a challenge in recruiting teachers. At the same time, the labour market is changing and the demand for re-education is increasing. In this situation, lifelong learning is seen as relevant and higher education institutions are asked to offer flexible and decentralised study programmes in order to accommodate the need for formal…
Optical beamforming based on microwave photonic signal processing
NASA Astrophysics Data System (ADS)
Anzalchi, J.; Perrott, R.; Latunde-Dada, K.; Oldenbeuving, R. M.; Roeloffzen, C. G. H.; Van Dijk, P. W. L.; Hoekman, M.; Leeuwis, H.; Leinse, A.
2017-09-01
Over the past few years considerable attention has been focussed on the inclusion of flexibility in communication satellite payloads. The purpose of this flexibility is to enable a given satellite on command to support different frequency plans, re-configure coverage in response to changing traffic demands and re-configure interconnectivity between coverages.
NASA Astrophysics Data System (ADS)
Jin, L.; Borgeson, S.; Fredman, D.; Hans, L.; Spurlock, A.; Todd, A.
2015-12-01
California's renewable portfolio standard (2012) requires the state to get 33% of its electricity from renewable sources by 2020. Increased share of variable renewable sources such as solar and wind in the California electricity system may require more grid flexibility to insure reliable power services. Such grid flexibility can be potentially provided by changes in end use electricity consumptions in response to grid conditions (demand-response). In the solar case, residential consumption in the late afternoon can be used as reserve capacity to balance the drop in solar generation. This study presents our initial attempt to identify, from a behavior perspective, residential demand response potentials in relation to solar ramp events using a data-driven approach. Based on hourly residential energy consumption data, we derive representative daily load shapes focusing on discretionary consumption with an innovative clustering analysis technique. We aggregate the representative load shapes into behavior groups in terms of the timing and rhythm of energy use in the context of solar ramp events. Households of different behavior groups that are active during hours with high solar ramp rates are identified for capturing demand response potential. Insights into the nature and predictability of response to demand-response programs are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Elaine
Demand response may be a valuable flexible resource for low-carbon electric power grids. However, there are as many types of possible demand response as there are ways to use electricity, making demand response difficult to study at scale in realistic settings. This talk reviews our state of knowledge regarding the potential value of demand response in several example systems as a function of increasing levels of wind and solar power, sometimes drawing on the analogy between demand response and storage. Overall, we find demand response to be promising, but its potential value is very system dependent. Furthermore, demand response, likemore » storage, can easily saturate ancillary service markets.« less
Software defined multi-OLT passive optical network for flexible traffic allocation
NASA Astrophysics Data System (ADS)
Zhang, Shizong; Gu, Rentao; Ji, Yuefeng; Zhang, Jiawei; Li, Hui
2016-10-01
With the rapid growth of 4G mobile network and vehicular network services mobile terminal users have increasing demand on data sharing among different radio remote units (RRUs) and roadside units (RSUs). Meanwhile, commercial video-streaming, video/voice conference applications delivered through peer-to-peer (P2P) technology are still keep on stimulating the sharp increment of bandwidth demand in both business and residential subscribers. However, a significant issue is that, although wavelength division multiplexing (WDM) and orthogonal frequency division multiplexing (OFDM) technology have been proposed to fulfil the ever-increasing bandwidth demand in access network, the bandwidth of optical fiber is not unlimited due to the restriction of optical component properties and modulation/demodulation technology, and blindly increase the wavelength cannot meet the cost-sensitive characteristic of the access network. In this paper, we propose a software defined multi-OLT PON architecture to support efficient scheduling of access network traffic. By introducing software defined networking technology and wavelength selective switch into TWDM PON system in central office, multiple OLTs can be considered as a bandwidth resource pool and support flexible traffic allocation for optical network units (ONUs). Moreover, under the configuration of the control plane, ONUs have the capability of changing affiliation between different OLTs under different traffic situations, thus the inter-OLT traffic can be localized and the data exchange pressure of the core network can be released. Considering this architecture is designed to be maximum following the TWDM PON specification, the existing optical distribution network (ODN) investment can be saved and conventional EPON/GPON equipment can be compatible with the proposed architecture. What's more, based on this architecture, we propose a dynamic wavelength scheduling algorithm, which can be deployed as an application on control plane and achieve effective scheduling OLT wavelength resources between different OLTs based on various traffic situation. Simulation results show that, by using the scheduling algorithm, network traffic between different OLTs can be optimized effectively, and the wavelength utilization of the multi-OLT system can be improved due to the flexible wavelength scheduling.
Langner, Robert; Cieslik, Edna C.; Rottschy, Claudia; Eickhoff, Simon B.
2016-01-01
Cognitive flexibility, a core aspect of executive functioning, is required for the speeded shifting between different tasks and sets. Using an interindividual differences approach, we examined whether cognitive flexibility, as assessed by the Delis–Kaplan card-sorting test, is associated with gray matter volume (GMV) and functional connectivity (FC) of regions of a core network of multiple cognitive demands as well as with different facets of trait impulsivity. The core multiple-demand network was derived from three large-scale neuroimaging meta-analyses and only included regions that showed consistent associations with sustained attention, working memory as well as inhibitory control. We tested to what extent self-reported impulsivity as well as GMV and resting-state FC in this core network predicted cognitive flexibility independently and incrementally. Our analyses revealed that card-sorting performance correlated positively with GMV of the right anterior insula, FC between bilateral anterior insula and midcingulate cortex/supplementary motor area as well as the impulsivity dimension “Premeditation.” Importantly, GMV, FC and impulsivity together accounted for more variance of card-sorting performance than every parameter alone. Our results therefore indicate that various factors contribute individually to cognitive flexibility, underlining the need to search across multiple modalities when aiming to unveil the mechanisms behind executive functioning. PMID:24878823
Sinden, Kathryn; MacDermid, Joy C
2014-03-01
Employers are tasked with developing injury management and return-to-work (RTW) programs in response to occupational health and safety policies. Physical demands analyses (PDAs) are the cornerstone of injury management and RTW development. Synthesizing and contextualizing policy knowledge for use in occupational program development, including PDAs, is challenging due to multiple stakeholder involvement. Few studies have used a knowledge translation theoretical framework to facilitate policy-based interventions in occupational contexts. The primary aim of this case study was to identify how constructs of the knowledge-to-action (KTA) framework were reflected in employer stakeholder-researcher collaborations during development of a firefighter PDA. Four stakeholder meetings were conducted with employee participants who had experience using PDAs in their occupational role. Directed content analysis informed analyses of meeting minutes, stakeholder views and personal reflections recorded throughout the case. Existing knowledge sources including local data, stakeholder experiences, policies and priorities were synthesized and tailored to develop a PDA in response to the barriers and facilitators identified by the firefighters. The flexibility of the KTA framework and synthesis of multiple knowledge sources were identified strengths. The KTA Action cycle was useful in directing the overall process but insufficient for directing the specific aspects of PDA development. Integration of specific PDA guidelines into the process provided explicit direction on best practices in tailoring the PDA and knowledge synthesis. Although the themes of the KTA framework were confirmed in our analysis, order modification of the KTA components was required. Despite a complex context with divergent perspectives successful implementation of a draft PDA was achieved. The KTA framework facilitated knowledge synthesis and PDA development but specific standards and modifications to the KTA framework were needed to enhance process structure. Flexibility for modification and integration of PDA practice guidelines were identified as assets of the KTA framework during its application.
NASA Astrophysics Data System (ADS)
Pendashteh, Afshin; Senokos, Evgeny; Palma, Jesus; Anderson, Marc; Vilatela, Juan J.; Marcilla, Rebeca
2017-12-01
Supercapacitors capable of providing high voltage, energy and power density but yet light, low volume occupying, flexible and mechanically robust are highly interesting and demanded for portable applications. Herein, freestanding flexible hybrid electrodes based on MnO2 nanoparticles grown on macroscopic carbon nanotube fibers (CNTf-MnO2) were fabricated, without the need of any metallic current collector. The CNTf, a support with excellent electrical conductivity, mechanical stability, and appropriate pore structure, was homogeneously decorated with porous akhtenskite ɛ-MnO2 nanoparticles produced via electrodeposition in an optimized organic-aqueous mixture. Electrochemical properties of these decorated fibers were evaluated in different electrolytes including a neutral aqueous solution and a pure 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid (PYR14TFSI). This comparison helps discriminate the various contributions to the total capacitance: (surface) Faradaic and non-Faradaic processes, improved wetting by aqueous electrolytes. Accordingly, symmetric supercapacitors with PYR14TFSI led to a high specific energy of 36 Wh· kgMnO2-1 (16 Wh·kg-1 including the weight of CNTf) and real specific power of 17 kW· kgMnO2-1 (7.5 kW kg-1) at 3.0 V with excellent cycling stability. Moreover, flexible all solid-state supercapacitors were fabricated using PYR14TFSI-based polymer electrolyte, exhibiting maximum energy density of 21 Wh·kg-1 and maximum power density of 8 kW kg-1 normalized by total active material.
Chu, Xiakun; Wang, Jin
2014-01-01
Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition. PMID:25144525
Chu, Xiakun; Wang, Jin
2014-08-01
Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition.
Program Retrieval/Dissemination: A Solid State Random Access System.
ERIC Educational Resources Information Center
Weeks, Walter O., Jr.
The trend toward greater flexibility in educational methods has led to a need for better and more rapid access to a variety of aural and audiovisual resource materials. This in turn has demanded the development of a flexible, reliable system of hardware designed to aid existing distribution methods in providing such access. The system must be…
The Opposites Task: Using General Rules to Test Cognitive Flexibility in Preschoolers
ERIC Educational Resources Information Center
Baker, Sara T.; Friedman, Ori; Leslie, Alan M.
2010-01-01
Executive functions play an important role in cognitive development, and during the preschool years especially, children's performance is limited in tasks that demand flexibility in their behavior. We asked whether preschoolers would exhibit limitations when they are required to apply a general rule in the context of novel stimuli on every trial…
ERIC Educational Resources Information Center
Hofmeyer, Anne; Toffoli, Luisa; Vernon, Rachael; Taylor, Ruth; Fontaine, Dorrie; Klopper, Hester C.; Coetzee, Siedine Knobloch
2016-01-01
Background: There is an increasing global demand for higher education to incorporate flexible delivery. Nursing education has been at the forefront of developing flexible online education and offering programs "anywhere and anytime". In response to calls to teach compassion in nursing education, there is an abundance of literature…
Online English Language Learning: Theory-Based Course Design and Pedagogy
ERIC Educational Resources Information Center
Andrade, Maureen Snow
2017-01-01
The demand for higher education is increasing worldwide. To meet this demand, and to provide increased access, flexible forms of delivery are needed. Although online courses are criticized for a lack of interaction, when intentionally designed, they can provide learners with opportunities for collaboration that supports the achievement of desired…
An older worker's decision to "push or protect self" following a work-related injury.
Stikeleather, Jill
2004-01-01
This study highlights the return-to-work experience of older workers on worker's compensation as there is a dearth of research in this area. Qualitative research methods delineated the experience of four older workers who had sustained work-related musculoskeletal injuries. "Push or Protect Self" emerged as the core category with three themes, including the level of employer support and degree of flexibility in work; continued health problems; and financial distress. These themes influenced each worker's decision to either "push self" to meet their pre-injury work demands, or "protect self" and accept a job post-injury that was less physically demanding, but was at a lower pay level. The four workers sustained financial difficulties subsequent to being off work, and reported continued health problems related to their injuries after being discharged from the worker's compensation system. Degree of employer support in providing flexibility in work demands varied, where low support and inflexibility in job tasks contributed to difficulty in returning to work or in sustaining the work demands of the job.
NASA Astrophysics Data System (ADS)
Yang, Wei; Hall, Trevor
2012-12-01
The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users and the nature of the Internet traffic will undertake a fundamental transformation. Consequently, the current Internet will no longer suffice for serving cloud traffic in metro areas. This work proposes an infrastructure with a unified control plane that integrates simple packet aggregation technology with optical express through the interoperation between IP routers and electrical traffic controllers in optical metro networks. The proposed infrastructure provides flexible, intelligent, and eco-friendly bandwidth on demand for cloud computing in metro areas.
NASA Astrophysics Data System (ADS)
Jia, Heping; Jin, Wende; Ding, Yi; Song, Yonghua; Yu, Dezhao
2017-01-01
With the expanding proportion of renewable energy generation and development of smart grid technologies, flexible demand resources (FDRs) have been utilized as an approach to accommodating renewable energies. However, multiple uncertainties of FDRs may influence reliable and secure operation of smart grid. Multi-state reliability models for a single FDR and aggregating FDRs have been proposed in this paper with regard to responsive abilities for FDRs and random failures for both FDR devices and information system. The proposed reliability evaluation technique is based on Lz transform method which can formulate time-varying reliability indices. A modified IEEE-RTS has been utilized as an illustration of the proposed technique.
Autonomous Agents for Dynamic Process Planning in the Flexible Manufacturing System
NASA Astrophysics Data System (ADS)
Nik Nejad, Hossein Tehrani; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka
Rapid changes of market demands and pressures of competition require manufacturers to maintain highly flexible manufacturing systems to cope with a complex manufacturing environment. This paper deals with development of an agent-based architecture of dynamic systems for incremental process planning in the manufacturing systems. In consideration of alternative manufacturing processes and machine tools, the process plans and the schedules of the manufacturing resources are generated incrementally and dynamically. A negotiation protocol is discussed, in this paper, to generate suitable process plans for the target products real-timely and dynamically, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans are searched and generated to cope with both the dynamic changes of the product specifications and the disturbances of the manufacturing resources. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans in the dynamic manufacturing environment.
Point-of-Care Test Equipment for Flexible Laboratory Automation.
You, Won Suk; Park, Jae Jun; Jin, Sung Moon; Ryew, Sung Moo; Choi, Hyouk Ryeol
2014-08-01
Blood tests are some of the core clinical laboratory tests for diagnosing patients. In hospitals, an automated process called total laboratory automation, which relies on a set of sophisticated equipment, is normally adopted for blood tests. Noting that the total laboratory automation system typically requires a large footprint and significant amount of power, slim and easy-to-move blood test equipment is necessary for specific demands such as emergency departments or small-size local clinics. In this article, we present a point-of-care test system that can provide flexibility and portability with low cost. First, the system components, including a reagent tray, dispensing module, microfluidic disk rotor, and photometry scanner, and their functions are explained. Then, a scheduler algorithm to provide a point-of-care test platform with an efficient test schedule to reduce test time is introduced. Finally, the results of diagnostic tests are presented to evaluate the system. © 2014 Society for Laboratory Automation and Screening.
Stretchable, porous, and conductive energy textiles.
Hu, Liangbing; Pasta, Mauro; Mantia, Fabio La; Cui, Lifeng; Jeong, Sangmoo; Deshazer, Heather Dawn; Choi, Jang Wook; Han, Seung Min; Cui, Yi
2010-02-10
Recently there is strong interest in lightweight, flexible, and wearable electronics to meet the technological demands of modern society. Integrated energy storage devices of this type are a key area that is still significantly underdeveloped. Here, we describe wearable power devices using everyday textiles as the platform. With an extremely simple "dipping and drying" process using single-walled carbon nanotube (SWNT) ink, we produced highly conductive textiles with conductivity of 125 S cm(-1) and sheet resistance less than 1 Omega/sq. Such conductive textiles show outstanding flexibility and stretchability and demonstrate strong adhesion between the SWNTs and the textiles of interest. Supercapacitors made from these conductive textiles show high areal capacitance, up to 0.48F/cm(2), and high specific energy. We demonstrate the loading of pseudocapacitor materials into these conductive textiles that leads to a 24-fold increase of the areal capacitance of the device. These highly conductive textiles can provide new design opportunities for wearable electronics and energy storage applications.
1984-02-01
measurable impact if changed. The following items were included in the sample: * Mark Zero Items -Low demand insurance items which represent about three...R&D efforts reviewed. The resulting assessment highlighted the generic enabling technologies and cross- cutting R&D projects required to focus current...supplied by spot buys, and which may generate Navy Inventory Control Numbers (NICN). Random samples of data were extracted from the Master Data File ( MDF
Angrisani, Marco; Hurd, Michael D.; Meijer, Erik; Parker, Andrew M.; Rohwedder, Susann
2017-01-01
We study whether individuals with different personality traits systematically exhibit different retirement trajectories. We find weak direct associations between personality and employment transitions. On the other hand, personality does contribute indirectly to these transitions by moderating the effects of non-monetary job characteristics. Specifically, workers with different traits are observed to follow different retirement paths when faced with similar physical demands, computer skills requirements, job flexibility and age discrimination in the workplace. Contrary to other economic domains, conscientiousness does not have the strongest association with retirement; the other components of the Big Five personality traits show more salient patterns. PMID:28890652
Demand for temporary agency nurses and nursing shortages.
Seo, Sukyong; Spetz, Joanne
2013-08-01
There is an ongoing debate about the reasons for the growth of temporary employment of registered nurses (RNs). Some argue that efficiency incentives to increase flexibility and reduce labor costs are the principal cause, while others point to shortages of RNs as the stronger determinant. Using hospital-level data from California's Office of Statewide Health Planning and Development, we find a significant trend of increasing demand for agency nurses during the years of RN shortage. Demand rose with inpatient days, patient demand fluctuation, and the level of fringe benefits. Competition between hospitals and unionization, however, did not affect hospitals' demand for temporary RNs. © The Author(s) 2014.
Flexibility of working hours in the 24-hour society.
Costa, G
2006-01-01
The 24-hour Society undergoes an ineluctable process towards a social organisation where time constraints are no more restricting human life. The borders between working and social times are no more fixed and rigidly determined, and the value of working time changes according to the different economic and social effects you may consider. Shift and night work, irregular and flexible working hours, together with new technologies, are the milestone of this epochal passage. What are the advantages and disadvantages for the individual, the companies, and the society? What is the cost/benefit ratio in terms of health and social well-being? Coping properly with this process means avoiding a passive acceptance of it with consequent maladjustments at both individual and social level, but adopting effective preventive and compensative strategies aimed at building up a more sustainable society. Flexible working times now appear to be one of the best ways to cope with the demands of the modern life, but there are different points of view about labour and temporal 'flexibility" between employers and employees. For the former it means a prompt adaptation to market demands and technological innovations; for the latter it is a way to improve working and social life, by decreasing work constraints and increasing control and autonomy. Although it can be easily speculated that individual-based 'flexibility" should improve health and well-being, and especially satisfaction, whereas company-based flexibility" might interfere negatively, the effective consequences on health and well-being have still to be analysed properly.
Novaes, Vladimir Pinto; Ferreira, Maria Cristina; Valentini, Felipe
2018-05-15
The aim of this study was to identify the relations of job demands (work overload) and job resources (social support and autonomy) with subjective job well-being (job satisfaction, positive affects, negative affects), as well as the moderating role of personal resources (psychological flexibility at work) in such relationships. The sample consisted of 4,867 Brazilian workers, of both sexes, with ages ranging from 18 to 67 years. Structural equation modelling showed that the work overload was negatively associated with job satisfaction (β = -.06; p < .001) and positively with negative affects (β = .24; p < .001); autonomy was positively associated with satisfaction (β = .08; p < .001) and negative affects (β = .08; p < .001); social support was positively associated with satisfaction (β = .17; p < .001) and positive affects (β = .20; p < .001), and negatively with negative affects (β = -.21; p < .001); psychological flexibility moderated the relationships of overload with satisfaction (β = .04; p < .05) and negative affects (β = .08; p < .001); autonomy with positive affects (β = -.06; p < .001) and social support with negative affects (β = .08; p < .001). These results are discussed from perspective of a job demands-resources theory, especially with respect to the relevance of personal resources for the promotion of occupational well-being.
Ion channel electrophysiology via integrated planar patch-clamp chip with on-demand drug exchange.
Chen, Chang-Yu; Tu, Ting-Yuan; Jong, De-Shien; Wo, Andrew M
2011-06-01
Planar patch clamp has revolutionized characterization of ion channel behavior in drug discovery primarily via advancement in high throughput. Lab use of planar technology, however, addresses different requirements and suffers from inflexibility to enable wide range of interrogation via a single cell. This work presents integration of planar patch clamp with microfluidics, achieving multiple solution exchanges for tailor-specific measurement and allowing rapid replacement of the cell-contacting aperture. Studies via endogenously expressed ion channels in HEK 293T cells were commenced to characterize the device. Results reveal the microfluidic concentration generator produces distinct solution/drug combination/concentrations on-demand. Volume-regulated chloride channel and voltage-gated potassium channels in HEK 293T cells immersed in generated solutions under various osmolarities or drug concentrations show unique channel signature under specific condition. Excitation and blockage of ion channels in a single cell was demonstrated via serial solution exchange. Robustness of the reversible bonding and ease of glass substrate replacement were proven via repeated usage of the integrated device. The present approach reveals the capability and flexibility of integrated microfluidic planar patch-clamp system for ion channel assays. Copyright © 2011 Wiley Periodicals, Inc.
Shauman, Kimberlee; Howell, Lydia P; Paterniti, Debora A; Beckett, Laurel A; Villablanca, Amparo C
2018-02-01
Academic medical and biomedical professionals need workplace flexibility to manage the demands of work and family roles and meet their commitments to both, but often fail to use the very programs and benefits that provide flexibility. This study investigated the reasons for faculty underutilization of work-life programs. As part of a National Institutes of Health-funded study, in 2010 the authors investigated attitudes of clinical and/or research biomedical faculty at the University of California, Davis, toward work-life policies, and the rationale behind their individual decisions regarding use of flexibility policies. The analysis used verbatim responses from 213 of 472 faculty (448 unstructured comments) to a series of open-ended survey questions. Questions elicited faculty members' self-reports of policy use, attitudes, and evaluations of the policies, and their perceptions of barriers that limited full benefit utilization. Data were coded and analyzed using a grounded theory approach. Faculty described how their utilization of workplace flexibility benefits was inhibited by organizational influences: the absence of reliable information about program eligibility and benefits, workplace norms and cultures that stigmatized program participation, influence of uninformed/unsupportive department heads, and concerns about how participation might burden coworkers, damage collegial relationships, or adversely affect workflow and grant funding. Understanding underuse of work-life programs is essential to maximize employee productivity and satisfaction, minimize turnover, and provide equal opportunities for career advancement to all faculty. The findings are discussed in relation to specific policy recommendations, implications for institutional change, and department chair leadership.
ERIC Educational Resources Information Center
Peat, Mary; Taylor, Charlotte; Fernandez, Anne
2002-01-01
Discusses undergraduate students' demand for a greater flexibility in the way that they receive their instruction, and introduces instructional changes from a teacher-centered focus to a student-centered focus at the University of Sydney. Uses a virtual learning environment (VLE) to encourage independence and increased flexibility of access.…
Striatal volume predicts level of video game skill acquisition.
Erickson, Kirk I; Boot, Walter R; Basak, Chandramallika; Neider, Mark B; Prakash, Ruchika S; Voss, Michelle W; Graybiel, Ann M; Simons, Daniel J; Fabiani, Monica; Gratton, Gabriele; Kramer, Arthur F
2010-11-01
Video game skills transfer to other tasks, but individual differences in performance and in learning and transfer rates make it difficult to identify the source of transfer benefits. We asked whether variability in initial acquisition and of improvement in performance on a demanding video game, the Space Fortress game, could be predicted by variations in the pretraining volume of either of 2 key brain regions implicated in learning and memory: the striatum, implicated in procedural learning and cognitive flexibility, and the hippocampus, implicated in declarative memory. We found that hippocampal volumes did not predict learning improvement but that striatal volumes did. Moreover, for the striatum, the volumes of the dorsal striatum predicted improvement in performance but the volumes of the ventral striatum did not. Both ventral and dorsal striatal volumes predicted early acquisition rates. Furthermore, this early-stage correlation between striatal volumes and learning held regardless of the cognitive flexibility demands of the game versions, whereas the predictive power of the dorsal striatal volumes held selectively for performance improvements in a game version emphasizing cognitive flexibility. These findings suggest a neuroanatomical basis for the superiority of training strategies that promote cognitive flexibility and transfer to untrained tasks.
An integrated eVoucher mechanism for flexible loads in real-time retail electricity market
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tao; Pourbabak, Hajir; Liang, Zheming
This study proposes an innovative economic and engineering coupled framework to encourage typical flexible loads or load aggregators, such as parking lots with high penetration of electric vehicles, to participate directly in the real-time retail electricity market based on an integrated eVoucher program. The integrated eVoucher program entails demand side management, either in the positive or negative direction, following a popular customer-centric design principle. It provides the extra economic benefit to end-users and reduces the risk associated with the wholesale electricity market for electric distribution companies (EDCs), meanwhile improving the potential resilience of the distribution networks with consideration for frequencymore » deviations. When implemented, the eVoucher program allows typical flexible loads, such as electric vehicle parking lots, to adjust their demand and consumption behavior according to financial incentives from an EDC. A distribution system operator (DSO) works as a third party to hasten negotiations between such parking lots and EDCs, as well as the price clearing process. Eventually, both electricity retailers and power system operators will benefit from the active participation of the flexible loads and energy customers.« less
An integrated eVoucher mechanism for flexible loads in real-time retail electricity market
Chen, Tao; Pourbabak, Hajir; Liang, Zheming; ...
2017-01-26
This study proposes an innovative economic and engineering coupled framework to encourage typical flexible loads or load aggregators, such as parking lots with high penetration of electric vehicles, to participate directly in the real-time retail electricity market based on an integrated eVoucher program. The integrated eVoucher program entails demand side management, either in the positive or negative direction, following a popular customer-centric design principle. It provides the extra economic benefit to end-users and reduces the risk associated with the wholesale electricity market for electric distribution companies (EDCs), meanwhile improving the potential resilience of the distribution networks with consideration for frequencymore » deviations. When implemented, the eVoucher program allows typical flexible loads, such as electric vehicle parking lots, to adjust their demand and consumption behavior according to financial incentives from an EDC. A distribution system operator (DSO) works as a third party to hasten negotiations between such parking lots and EDCs, as well as the price clearing process. Eventually, both electricity retailers and power system operators will benefit from the active participation of the flexible loads and energy customers.« less
USDA-ARS?s Scientific Manuscript database
Consumers demand a safe food supply and are increasingly demanding natural options. Packaging is one of the most important technologies for preserving the quality of food and food products and for ensuring their safety. Food packaging, either rigid or flexible, functions as a barrier to light, humid...
Building Capability in Small Businesses: Tales from the Training Front
ERIC Educational Resources Information Center
Holden, Rick; Nabi, Ghulam; Gold, Jeff; Robertson, Martyn
2006-01-01
Purpose: The UK Government policy for the training and development of its workforce reflects a desire to move towards a more flexible, "demand-led" system. The purpose of this paper is to evaluate the outcomes and impact of two, publicly funded initiatives, designed to stimulate and enhance "demand-led" training within the UK's…
ERIC Educational Resources Information Center
Turnbull, Wayne; Burton, Diana; Mullins, Pat
2008-01-01
The UK higher education sector is grounded in an academic culture protective of its autonomy in the exercise of academic judgement within a flexible and internally validated tradition. However, the socio-political demands placed upon this sector articulate an outcomes-based, transparent and consistent model of higher education provision, as…
Yang, Qu; Zhou, Ziyao; Wang, Liqian; Zhang, Hongjia; Cheng, Yuxin; Hu, Zhongqiang; Peng, Bin; Liu, Ming
2018-05-01
To meet the demand of developing compatible and energy-efficient flexible spintronics, voltage manipulation of magnetism on soft substrates is in demand. Here, a voltage tunable flexible field-effect transistor structure by ionic gel (IG) gating in perpendicular synthetic anti-ferromagnetic nanostructure is demonstrated. As a result, the interlayer Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction can be tuned electrically at room temperature. With a circuit gating voltage, anti-ferromagnetic (AFM) ordering is enhanced or converted into an AFM-ferromagnetic (FM) intermediate state, accompanying with the dynamic domain switching. This IG gating process can be repeated stably at different curvatures, confirming an excellent mechanical property. The IG-induced modification of interlayer exchange coupling is related to the change of Fermi level aroused by the disturbance of itinerant electrons. The voltage modulation of RKKY interaction with excellent flexibility proposes an application potential for wearable spintronic devices with energy efficiency and ultralow operation voltage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multi-time scale control of demand flexibility in smart distribution networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte
This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less
Multi-time scale control of demand flexibility in smart distribution networks
Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte; ...
2017-01-01
This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less
[Flexibility competencies: emotional organization management].
Caballero Muñoz, Domingo; Blanco Prieto, Antonio
2007-11-01
The aim of this article is to analyse the transferral of flexibility from contemporary organizations to workers. Through the approach of management by competencies, organizations try to develop in their workers behaviours that are related to efficient job performance. In order to appraise the importance of this approach, we used a critical-rational perspective to discuss the productivity demands that are characteristic of advanced industrial societies. The article shows how the link between workers' flexibility management and their emotional competencies affects their lives, which, like the organizations, should be versatile and adaptable to change.
Information Switching Processor (ISP) contention analysis and control
NASA Technical Reports Server (NTRS)
Shyy, D.; Inukai, T.
1993-01-01
Future satellite communications, as a viable means of communications and an alternative to terrestrial networks, demand flexibility and low end-user cost. On-board switching/processing satellites potentially provide these features, allowing flexible interconnection among multiple spot beams, direct to the user communications services using very small aperture terminals (VSAT's), independent uplink and downlink access/transmission system designs optimized to user's traffic requirements, efficient TDM downlink transmission, and better link performance. A flexible switching system on the satellite in conjunction with low-cost user terminals will likely benefit future satellite network users.
Effects of high-dose ethanol intoxication and hangover on cognitive flexibility.
Wolff, Nicole; Gussek, Philipp; Stock, Ann-Kathrin; Beste, Christian
2018-01-01
The effects of high-dose ethanol intoxication on cognitive flexibility processes are not well understood, and processes related to hangover after intoxication have remained even more elusive. Similarly, it is unknown in how far the complexity of cognitive flexibility processes is affected by intoxication and hangover effects. We performed a neurophysiological study applying high density electroencephalography (EEG) recording to analyze event-related potentials (ERPs) and perform source localization in a task switching paradigm which varied the complexity of task switching by means of memory demands. The results show that high-dose ethanol intoxication only affects task switching (i.e. cognitive flexibility processes) when memory processes are required to control task switching mechanisms, suggesting that even high doses of ethanol compromise cognitive processes when they are highly demanding. The EEG and source localization data show that these effects unfold by modulating response selection processes in the anterior cingulate cortex. Perceptual and attentional selection processes as well as working memory processes were only unspecifically modulated. In all subprocesses examined, there were no differences between the sober and hangover states, thus suggesting a fast recovery of cognitive flexibility after high-dose ethanol intoxication. We assume that the gamma-aminobutyric acid (GABAergic) system accounts for the observed effects, while they can hardly be explained by the dopaminergic system. © 2016 Society for the Study of Addiction.
Flexible manufacturing system handbook. Volume 1: Executive summary
NASA Astrophysics Data System (ADS)
1983-02-01
Flexible Manufacturing Systems (FMSs) represent a relatively new strategy to increase productivity. The technology is especially attractive for manufacturers who produce in the middle ranges of production volumes, neither mass production nor one of a kind. Today's unpredictable market environment demands low-cost solutions that provide quick product start-up, adaptability and responsiveness to changes in demand, and the capacity to easily resurrect out-of-production designs. In many instances, FMSs provide a direct hardware/software solution to this threefold management challenge. The adoption of FMS technology requires that one address many questions beforehand. This handbook provides a methodical approach to answering these questions. But it is not a cookbook; it cannot be. Each application of FMS technology is unique, therefore, the guidelines presented are fairly general.
On-demand transfer of trapped photons on a chip.
Konoike, Ryotaro; Nakagawa, Haruyuki; Nakadai, Masahiro; Asano, Takashi; Tanaka, Yoshinori; Noda, Susumu
2016-05-01
Photonic crystal nanocavities, which have modal volumes of the order of a cubic wavelength in the material, are of great interest as flexible platforms for manipulating photons. Recent developments in ultra-high quality factor nanocavities with long photon lifetimes have encouraged us to develop an ultra-compact and flexible photon manipulation technology where photons are trapped in networks of such nanocavities. The most fundamental requirement is the on-demand transfer of photons to and from the trapped states of arbitrary nanocavities. We experimentally demonstrate photon transfer between two nearly resonant nanocavities at arbitrary positions on a chip, triggered by the irradiation of a third nonresonant nanocavity using an optical control pulse. We obtain a high transfer efficiency of ~90% with a photon lifetime of ~200 ps.
Estimating Impacts of Diesel Fuel Reformulation with Vector-based Blending
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadder, G.R.
2003-01-23
The Oak Ridge National Laboratory Refinery Yield Model has been used to study the refining cost, investment, and operating impacts of specifications for reformulated diesel fuel (RFD) produced in refineries of the U.S. Midwest in summer of year 2010. The study evaluates different diesel fuel reformulation investment pathways. The study also determines whether there are refinery economic benefits for producing an emissions reduction RFD (with flexibility for individual property values) compared to a vehicle performance RFD (with inflexible recipe values for individual properties). Results show that refining costs are lower with early notice of requirements for RFD. While advanced desulfurizationmore » technologies (with low hydrogen consumption and little effect on cetane quality and aromatics content) reduce the cost of ultra low sulfur diesel fuel, these technologies contribute to the increased costs of a delayed notice investment pathway compared to an early notice investment pathway for diesel fuel reformulation. With challenging RFD specifications, there is little refining benefit from producing emissions reduction RFD compared to vehicle performance RFD. As specifications become tighter, processing becomes more difficult, blendstock choices become more limited, and refinery benefits vanish for emissions reduction relative to vehicle performance specifications. Conversely, the emissions reduction specifications show increasing refinery benefits over vehicle performance specifications as specifications are relaxed, and alternative processing routes and blendstocks become available. In sensitivity cases, the refinery model is also used to examine the impact of RFD specifications on the economics of using Canadian synthetic crude oil. There is a sizeable increase in synthetic crude demand as ultra low sulfur diesel fuel displaces low sulfur diesel fuel, but this demand increase would be reversed by requirements for diesel fuel reformulation.« less
Mueller, Evelyn A; Bengel, Juergen; Wirtz, Markus A
2013-12-01
This study aimed to develop a self-description assessment instrument to measure work performance in patients with musculoskeletal diseases. In terms of the International Classification of Functioning, Disability and Health (ICF), work performance is defined as the degree of meeting the work demands (activities) at the actual workplace (environment). To account for the fact that work performance depends on the work demands of the job, we strived to develop item banks that allow a flexible use of item subgroups depending on the specific work demands of the patients' jobs. Item development included the collection of work tasks from literature and content validation through expert surveys and patient interviews. The resulting 122 items were answered by 621 patients with musculoskeletal diseases. Exploratory factor analysis to ascertain dimensionality and Rasch analysis (partial credit model) for each of the resulting dimensions were performed. Exploratory factor analysis resulted in four dimensions, and subsequent Rasch analysis led to the following item banks: 'impaired productivity' (15 items), 'impaired cognitive performance' (18), 'impaired coping with stress' (13) and 'impaired physical performance' (low physical workload 20 items, high physical workload 10 items). The item banks exhibited person separation indices (reliability) between 0.89 and 0.96. The assessment of work performance adds the activities component to the more commonly employed participation component of the ICF-model. The four item banks can be adapted to specific jobs where necessary without losing comparability of person measures, as the item banks are based on Rasch analysis.
Advanced Networks in Dental Rich Online MEDiA (ANDROMEDA)
NASA Astrophysics Data System (ADS)
Elson, Bruce; Reynolds, Patricia; Amini, Ardavan; Burke, Ezra; Chapman, Craig
There is growing demand for dental education and training not only in terms of knowledge but also skills. This demand is driven by continuing professional development requirements in the more developed economies, personnel shortages and skills differences across the European Union (EU) accession states and more generally in the developing world. There is an excellent opportunity for the EU to meet this demand by developing an innovative online flexible learning platform (FLP). Current clinical online systems are restricted to the delivery of general, knowledge-based training with no easy method of personalization or delivery of skill-based training. The PHANTOM project, headed by Kings College London is developing haptic-based virtual reality training systems for clinical dental training. ANDROMEDA seeks to build on this and establish a Flexible Learning Platform that can integrate the haptic and sensor based training with rich media knowledge transfer, whilst using sophisticated technologies such as including service-orientated architecture (SOA), Semantic Web technologies, knowledge-based engineering, business intelligence (BI) and virtual worlds for personalization.
Expeditionary Operations in the Fourth Industrial Revolution
2017-06-21
may radically change it. AM is inherently flexible, since the product produced depends only on the materials the printer can use, the design of...strengths: adaptability, flexibility, and responsiveness to the demands of war. Keywords: artificial intelligence, 3D manufacturing , robotics, drones...grow and process their products .13 Thus, criminal organizations can have an impact on the security of the United States, and our response may well
ERIC Educational Resources Information Center
Bagnasco, Andrea; Chirico, Marco; Parodi, Giancarlo; Scapolla, A. Marina
2003-01-01
Distance education is an answer to the demand for flexibility in training. The aim is to build a virtual learning community on the basis of a knowledge model that meets different learning needs. This article analyzes possible innovations in corporate training, and proposes a framework that integrates all information sources and offers practice…
ERIC Educational Resources Information Center
Peat, Mary; Taylor, Charlotte; Fernandez, Anne
Today university students are demanding a greater say in their tertiary education. In particular they are demanding a greater flexibility in the way they receive their instruction, and it is imperative that course delivery strategies that fulfil these expectations are investigated. On-line delivery of learning materials offers teacher and students…
Flexible Learning as New Learning Design in Classroom Process to Promote Quality Education
ERIC Educational Resources Information Center
Joan, D. R. Robert
2013-01-01
Educators in the 21st century realize that students entering the classroom today are much different from those who have come before. Today's students are demanding a change in the classroom because of their ability to gather information faster than any other generation. It gives users on-demand access to the content, tools, training, information,…
Internal Drivers of External Flexibility: A Detailed Analysis
2007-08-14
example, order processing within a supplier’s firm is a competence. Meeting customer demand by providing a consistent delivery schedule is a capability...Focus interview on the following logistics areas: a. order processing b. inventory c. transportation d. warehousing, materials handling...demands. In logistics, superior service depends upon order processing (Byrne and Markham 1991); quality of contact personnel (Innis and LaLonde 1994
Simulation of demand management and grid balancing with electric vehicles
NASA Astrophysics Data System (ADS)
Druitt, James; Früh, Wolf-Gerrit
2012-10-01
This study investigates the potential role of electric vehicles in an electricity network with a high contribution from variable generation such as wind power. Electric vehicles are modelled to provide demand management through flexible charging requirements and energy balancing for the network. Balancing applications include both demand balancing and vehicle-to-grid discharging. This study is configured to represent the UK grid with balancing requirements derived from wind generation calculated from weather station wind speeds on the supply side and National Grid data from on the demand side. The simulation models 1000 individual vehicle entities to represent the behaviour of larger numbers of vehicles. A stochastic trip generation profile is used to generate realistic journey characteristics, whilst a market pricing model allows charging and balancing decisions to be based on realistic market price conditions. The simulation has been tested with wind generation capacities representing up to 30% of UK consumption. Results show significant improvements to load following conditions with the introduction of electric vehicles, suggesting that they could substantially facilitate the uptake of intermittent renewable generation. Electric vehicle owners would benefit from flexible charging and selling tariffs, with the majority of revenue derived from vehicle-to-grid participation in balancing markets.
Cyber-workstation for computational neuroscience.
Digiovanna, Jack; Rattanatamrong, Prapaporn; Zhao, Ming; Mahmoudi, Babak; Hermer, Linda; Figueiredo, Renato; Principe, Jose C; Fortes, Jose; Sanchez, Justin C
2010-01-01
A Cyber-Workstation (CW) to study in vivo, real-time interactions between computational models and large-scale brain subsystems during behavioral experiments has been designed and implemented. The design philosophy seeks to directly link the in vivo neurophysiology laboratory with scalable computing resources to enable more sophisticated computational neuroscience investigation. The architecture designed here allows scientists to develop new models and integrate them with existing models (e.g. recursive least-squares regressor) by specifying appropriate connections in a block-diagram. Then, adaptive middleware transparently implements these user specifications using the full power of remote grid-computing hardware. In effect, the middleware deploys an on-demand and flexible neuroscience research test-bed to provide the neurophysiology laboratory extensive computational power from an outside source. The CW consolidates distributed software and hardware resources to support time-critical and/or resource-demanding computing during data collection from behaving animals. This power and flexibility is important as experimental and theoretical neuroscience evolves based on insights gained from data-intensive experiments, new technologies and engineering methodologies. This paper describes briefly the computational infrastructure and its most relevant components. Each component is discussed within a systematic process of setting up an in vivo, neuroscience experiment. Furthermore, a co-adaptive brain machine interface is implemented on the CW to illustrate how this integrated computational and experimental platform can be used to study systems neurophysiology and learning in a behavior task. We believe this implementation is also the first remote execution and adaptation of a brain-machine interface.
Cyber-Workstation for Computational Neuroscience
DiGiovanna, Jack; Rattanatamrong, Prapaporn; Zhao, Ming; Mahmoudi, Babak; Hermer, Linda; Figueiredo, Renato; Principe, Jose C.; Fortes, Jose; Sanchez, Justin C.
2009-01-01
A Cyber-Workstation (CW) to study in vivo, real-time interactions between computational models and large-scale brain subsystems during behavioral experiments has been designed and implemented. The design philosophy seeks to directly link the in vivo neurophysiology laboratory with scalable computing resources to enable more sophisticated computational neuroscience investigation. The architecture designed here allows scientists to develop new models and integrate them with existing models (e.g. recursive least-squares regressor) by specifying appropriate connections in a block-diagram. Then, adaptive middleware transparently implements these user specifications using the full power of remote grid-computing hardware. In effect, the middleware deploys an on-demand and flexible neuroscience research test-bed to provide the neurophysiology laboratory extensive computational power from an outside source. The CW consolidates distributed software and hardware resources to support time-critical and/or resource-demanding computing during data collection from behaving animals. This power and flexibility is important as experimental and theoretical neuroscience evolves based on insights gained from data-intensive experiments, new technologies and engineering methodologies. This paper describes briefly the computational infrastructure and its most relevant components. Each component is discussed within a systematic process of setting up an in vivo, neuroscience experiment. Furthermore, a co-adaptive brain machine interface is implemented on the CW to illustrate how this integrated computational and experimental platform can be used to study systems neurophysiology and learning in a behavior task. We believe this implementation is also the first remote execution and adaptation of a brain-machine interface. PMID:20126436
Flexible services for the support of research.
Turilli, Matteo; Wallom, David; Williams, Chris; Gough, Steve; Curran, Neal; Tarrant, Richard; Bretherton, Dan; Powell, Andy; Johnson, Matt; Harmer, Terry; Wright, Peter; Gordon, John
2013-01-28
Cloud computing has been increasingly adopted by users and providers to promote a flexible, scalable and tailored access to computing resources. Nonetheless, the consolidation of this paradigm has uncovered some of its limitations. Initially devised by corporations with direct control over large amounts of computational resources, cloud computing is now being endorsed by organizations with limited resources or with a more articulated, less direct control over these resources. The challenge for these organizations is to leverage the benefits of cloud computing while dealing with limited and often widely distributed computing resources. This study focuses on the adoption of cloud computing by higher education institutions and addresses two main issues: flexible and on-demand access to a large amount of storage resources, and scalability across a heterogeneous set of cloud infrastructures. The proposed solutions leverage a federated approach to cloud resources in which users access multiple and largely independent cloud infrastructures through a highly customizable broker layer. This approach allows for a uniform authentication and authorization infrastructure, a fine-grained policy specification and the aggregation of accounting and monitoring. Within a loosely coupled federation of cloud infrastructures, users can access vast amount of data without copying them across cloud infrastructures and can scale their resource provisions when the local cloud resources become insufficient.
NASA Astrophysics Data System (ADS)
Berthier, Florent; Beigne, Edith; Heitzmann, Frédéric; Debicki, Olivier; Christmann, Jean-Frédéric; Valentian, Alexandre; Billoint, Olivier; Amat, Esteve; Morche, Dominique; Chairat, Soundous; Sentieys, Olivier
2016-11-01
In this paper, we propose to analyze Ultra Thin Body and Box FDSOI technology suitability and architectural solutions for IoT applications and more specifically for autonomous Wireless Sensor Nodes (WSNs). As IoT applications are extremely diversified there is a strong need for flexible solutions at design, architectural level but also at technological level. Moreover, as most of those systems are recovering their energy from the environment, they are challenged by low voltage supplies and low leakage functionalities. We detail in this paper some Ultra Thin Body and Box FDSOI 28 nm characteristics and results demonstrating that this technology could be a perfect option for multidisciplinary IoT devices. Back biasing capabilities and low voltage features are investigated demonstrating efficient high speed/low leakage flexibility. In addition, architectural solutions for WSNs microcontroller are also proposed taking advantage of Ultra Thin Body and Box FDSOI characteristics for full user applicative flexibility. A partitioned architecture between an Always Responsive part with an asynchronous Wake Up Controller (WUC) managing WSN current tasks and an On Demand part with a main processor for application maintenance is presented. First results of the Always Responsive part implemented in Ultra Thin Body and Box FDSOI 28 nm are also exposed.
The Origins of Transmembrane Ion Channels
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.
2012-01-01
Even though membrane proteins that mediate transport of ions and small molecules across cell walls are among the largest and least understood biopolymers in contemporary cells, it is still possible to shed light on their origins and early evolution. The central observation is that transmembrane portions of most ion channels are simply bundles of -helices. By combining results of experimental and computer simulation studies on synthetic models and natural channels, mostly of non-genomic origin, we show that the emergence of -helical channels was protobiologically plausible, and did not require highly specific amino acid sequences. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. Specifically, we explain how the antiamoebin channels, which are made of identical helices, 16 amino acids in length, achieve efficiency comparable to that of highly evolved channels. We further show that antiamoebin channels are extremely flexible, compared to modern, genetically coded channels. On the basis of our results, we propose that channels evolved further towards high structural complexity because they needed to acquire stable rigid structures and mechanisms for precise regulation rather than improve efficiency. In general, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.
Chen, I-chun; Ma, Hwong-wen
2013-02-01
Brownfield redevelopment involves numerous uncertain financial risks associated with market demand and land value. To reduce the uncertainty of the specific impact of land value and social costs, this study develops small-scale risk maps to determine the relationship between population risk (PR) and damaged land value (DLV) to facilitate flexible land reutilisation plans. This study used the spatial variability of exposure parameters in each village to develop the contaminated site-specific risk maps. In view of the combination of risk and cost, risk level that most affected land use was mainly 1.00×10(-6) to 1.00×10(-5) in this study area. Village 2 showed the potential for cost-effective conversion with contaminated land development. If the risk of remediation target was set at 5.00×10(-6), the DLV could be reduced by NT$15,005 million for the land developer. The land developer will consider the net benefit by quantifying the trade-off between the changes of land value and the cost of human health. In this study, small-scale risk maps can illuminate the economic incentive potential for contaminated site redevelopment through the adjustment of land value damage and human health risk. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tomkos, I.; Zakynthinos, P.; Klonidis, D.; Marom, D.; Sygletos, S.; Ellis, A.; Salvadori, E.; Siracusa, D.; Angelou, M.; Papastergiou, G.; Psaila, N.; Ferran, J. F.; Ben-Ezra, S.; Jimenez, F.; Fernández-Palacios, J. P.
2013-12-01
The traffic carried by core optical networks grows at a steady but remarkable pace of 30-40% year-over-year. Optical transmissions and networking advancements continue to satisfy the traffic requirements by delivering the content over the network infrastructure in a cost and energy efficient manner. Such core optical networks serve the information traffic demands in a dynamic way, in response to requirements for shifting of traffics demands, both temporally (day/night) and spatially (business district/residential). However as we are approaching fundamental spectral efficiency limits of singlemode fibers, the scientific community is pursuing recently the development of an innovative, all-optical network architecture introducing the spatial degree of freedom when designing/operating future transport networks. Spacedivision- multiplexing through the use of bundled single mode fibers, and/or multi-core fibers and/or few-mode fibers can offer up to 100-fold capacity increase in future optical networks. The EU INSPACE project is working on the development of a complete spatial-spectral flexible optical networking solution, offering the network ultra-high capacity, flexibility and energy efficiency required to meet the challenges of delivering exponentially growing traffic demands in the internet over the next twenty years. In this paper we will present the motivation and main research activities of the INSPACE consortium towards the realization of the overall project solution.
Development of S-ARIMA Model for Forecasting Demand in a Beverage Supply Chain
NASA Astrophysics Data System (ADS)
Mircetic, Dejan; Nikolicic, Svetlana; Maslaric, Marinko; Ralevic, Nebojsa; Debelic, Borna
2016-11-01
Demand forecasting is one of the key activities in planning the freight flows in supply chains, and accordingly it is essential for planning and scheduling of logistic activities within observed supply chain. Accurate demand forecasting models directly influence the decrease of logistics costs, since they provide an assessment of customer demand. Customer demand is a key component for planning all logistic processes in supply chain, and therefore determining levels of customer demand is of great interest for supply chain managers. In this paper we deal with exactly this kind of problem, and we develop the seasonal Autoregressive IntegratedMoving Average (SARIMA) model for forecasting demand patterns of a major product of an observed beverage company. The model is easy to understand, flexible to use and appropriate for assisting the expert in decision making process about consumer demand in particular periods.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., demand flexibility in applying the standards. The Food and Drug Administration (FDA) has determined that... treat less serious illnesses. These procedures also reflect the recognition that the benefits of the...
How coupling affects closely packed rectenna arrays used for wireless power transmission
NASA Astrophysics Data System (ADS)
Walls, Deidra; Choi, Sang H.; Yoon, Hargsoon; Geddis, Demetris; Song, Kyo D.
2017-04-01
The development of power transmission by microwave beam power harvesting attracts manufactures for use of wireless power transmission. Optimizing maximum conversion efficiency is affected by many design parameters, and has been mainly focused previously. Combining several rectennas in one array potentially aides in the amount of microwave energy that can be harvested for energy conversion. Closely packed rectenna arrays is the result of the demand to minimize size and weight for flexibility. This paper specifically focuses on the coupling effects on power; mutual coupling, comparing sparameters and gain total while varying effective parameters. This paper investigates how coupling between each dipole positively and negatively affects the microwave energy, harvesting, and the design limitations.
Coherent active polarization control without loss
NASA Astrophysics Data System (ADS)
Ye, Yuqian; Hay, Darrick; Shi, Zhimin
2017-11-01
We propose a lossless active polarization control mechanism utilizing an anisotropic dielectric medium with two coherent inputs. Using scattering matrix analysis, we derive analytically the required optical properties of the anisotropic medium that can behave as a switchable polarizing beam splitter. We also show that such a designed anisotropic medium can produce linearly polarized light at any azimuthal direction through coherent control of two inputs with a specific polarization state. Furthermore, we present a straightforward design-on-demand procedure of a subwavelength-thick metastructure that can possess the desired optical anisotropy at a flexible working wavelength. Our lossless coherent polarization control technique may lead to fast, broadband and integrated polarization control elements for applications in imaging, spectroscopy, and telecommunication.
Molecular docking performance evaluated on the D3R Grand Challenge 2015 drug-like ligand datasets
NASA Astrophysics Data System (ADS)
Selwa, Edithe; Martiny, Virginie Y.; Iorga, Bogdan I.
2016-09-01
The D3R Grand Challenge 2015 was focused on two protein targets: Heat Shock Protein 90 (HSP90) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4). We used a protocol involving a preliminary analysis of the available data in PDB and PubChem BioAssay, and then a docking/scoring step using more computationally demanding parameters that were required to provide more reliable predictions. We could evidence that different docking software and scoring functions can behave differently on individual ligand datasets, and that the flexibility of specific binding site residues is a crucial element to provide good predictions.
NASA Astrophysics Data System (ADS)
Donhefner, Daniel
The mobile market evolves from commodity voice and simple messaging services to value-added data and multimedia services. This not only implies to move from pure telecom to IT/IP- environment, but to exploit their markets with innovative and differentiated offerings to keep the churn rate low and attract new customers. Communication Service Providers (CSP) must focus increasingly on meeting individual needs and higher expectations of their subscribers. They expect service packages that can be tailored to meet the specific demands of their personal situation, preferences and lifestyle. This requires a flexible customer-centric approach instead of the legacy historical grown and diversed system architecture and organizations of CSPs.
NASA Astrophysics Data System (ADS)
Machnes, Shai; AsséMat, Elie; Tannor, David; Wilhelm, Frank
Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific ansatzes and constraints. Superconducting qubits present the additional requirement that pulses have simple parametrizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system characterization. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control algorithm, GOAT, which satisfies all the above requirements. In part II we shall demonstrate the algorithm's capabilities, by using GOAT to optimize fast high-accuracy pulses for two leading superconducting qubits architectures - Xmons and IBM's flux-tunable couplers.
Flexible training under threat.
Houghton, Anita; Eaton, Jennifer
2002-10-01
As the number of women in medicine and the general demand for a better work-life balance rises, flexible training is an increasingly important mechanism for maintaining the medical workforce. The new pay deal, together with entrenched cultural attitudes, are potential threats. Ways forward include more substantive part-time posts, more part-time opportunities at consultant level, and using positive experiences as a way of tackling attitudes in the less accepting specialties.
Integrating Solar into Florida's Power System: Potential Roles for Flexibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Elaine T; Stoll, Brady; Novacheck, Joshua E
Although Florida has very little photovoltaic (PV) generation to date, it is reasonable to expect significant deployment in the 2020s under a variety of future policy and cost scenarios. To understand these potential futures, we model Florida Reliability Coordinating Council operations in 2026 over a wide range of PV penetrations with various combinations of battery storage capacity, demand response, and increased operational flexibility. By calculating the value of PV under a wide range of conditions, we find that at least 5%, and more likely 10-24%, PV penetration is cost competitive in Florida within the next decade with baseline flexibility andmore » all but the most pessimistic of assumptions. For high PV penetrations, we demonstrate Florida's electrical net-load variability (duck curve) challenges, the associated reduction of PV's value to the system, and the ability of flexibility options-in particular energy-shifting resources-to preserve value and increase the economic carrying capacity of PV. A high level of demand response boosts the economic carrying capacity of PV by up to 0.5-2 percentage points, which is comparable to the impact of deploying 1 GW of battery storage. Adding 4 GW of battery storage expands the economic carrying capacity of PV by up to 6 percentage points.« less
Fisher, Anita; Baumann, Andrea; Blythe, Jennifer
2007-01-01
Social and economic changes in industrial societies during the past quarter-century encouraged organizations to develop greater flexibility in their employment systems in order to adapt to organizational restructuring and labour market shifts (Kallenberg 2003). During the 1990s this trend became evident in healthcare organizations. Before healthcare restructuring, employment in the acute hospital sector was more stable, with higher levels of full-time staff. However, in the downsizing era, employers favoured more flexible, contingent workforces (Zeytinoglu 1999). As healthcare systems evolved, staffing patterns became more chaotic and predicting staffing requirements more complex. Increased use of casual and part-time staff, overtime and agency nurses, as well as alterations in skills mix, masked vacancy counts and thus rendered this measurement of nursing demand increasingly difficult. This study explores flexible nurse staffing practices and demonstrates how data such as nurse vacancy statistics, considered in isolation from nurse utilization information, are inaccurate indicators of nursing demand and nurse shortage. It develops an algorithm that provides a standard methodology for improved monitoring and management of nurse utilization data and better quantification of vacancy statistics. Use of standard methodology promotes more accurate measurement of nurse utilization and shortage. Furthermore, it provides a solid base for improved nursing workforce planning, production and management.
NASA Astrophysics Data System (ADS)
Venet, N.; Sotom, M.; Gachon, H.; Foucal, V.; Pez, M.; Heikkinen, V.; Tuominen, T.; Pantoja, S.
2017-11-01
The satellite telecommunication sector is continuously facing new challenges. Operators turn towards increasing capacity payloads with higher number of beams and broader bandwidth, in order to cope with exhausting orbital positions and to lower the cost of in-orbit delivery of bit. Only satellites able to provide high data rate connections to numerous users are expected to achieve affordable communication prices. On the other hand, as the telecom market grows and the range of offered services (HDTV, Video On Demand, Triple Play), operators call for more versatile solutions to quickly grasp new markets and to adapt to these evolutions over the average 15 years of a satellite lifetime. Flexible payloads have found an increasing interest for a number of years. Flexibility is considered as a means for a better commercial exploitation of a satellite fleet and a better allocation of resource in response to traffic evolution and/or changing business plans, with potential advantages such as a wider range of applications, less customization for specific missions, increased production runs of equipment, enhancement of reliability, reduction of equipment cost, reduction of program schedules [1]. Flexibility is expected to be offered in spectrum management and frequency plan, in coverage, or in the repeater power allocation. The industry is taking up the challenge both by improving current telecom satellites and offering new payload technology, more flexible and able to address the new markets. From a system integrator perspective, flexibility is as an opportunity to design more generic payloads, that can be customized during or after fabrication only, thus shortening the design-to-manufacturing cycle, and improving the industry competitiveness.
NASA Technical Reports Server (NTRS)
Lee, Paul U.; Bender, Kim; Pagan, Danielle
2011-01-01
Flexible Airspace Management (FAM) is a mid- term Next Generation Air Transportation System (NextGen) concept that allows dynamic changes to airspace configurations to meet the changes in the traffic demand. A series of human-in-the-loop (HITL) studies have identified procedures and decision support requirements needed to implement FAM. This paper outlines a suggested FAM procedure and associated decision support functionality based on these HITL studies. A description of both the tools used to support the HITLs and the planned NextGen technologies available in the mid-term are presented and compared. The mid-term implementation of several NextGen capabilities, specifically, upgrades to the Traffic Management Unit (TMU), the initial release of an en route automation system, the deployment of a digital data communication system, a more flexible voice communications network, and the introduction of a tool envisioned to manage and coordinate networked ground systems can support the implementation of the FAM concept. Because of the variability in the overall deployment schedule of the mid-term NextGen capabilities, the dependency of the individual NextGen capabilities are examined to determine their impact on a mid-term implementation of FAM. A cursory review of the different technologies suggests that new functionality slated for the new en route automation system is a critical enabling technology for FAM, as well as the functionality to manage and coordinate networked ground systems. Upgrades to the TMU are less critical but important nonetheless for FAM to be fully realized. Flexible voice communications network and digital data communication system could allow more flexible FAM operations but they are not as essential.
Oxide Heteroepitaxy for Flexible Optoelectronics.
Bitla, Yugandhar; Chen, Ching; Lee, Hsien-Chang; Do, Thi Hien; Ma, Chun-Hao; Qui, Le Van; Huang, Chun-Wei; Wu, Wen-Wei; Chang, Li; Chiu, Po-Wen; Chu, Ying-Hao
2016-11-30
The emerging technological demands for flexible and transparent electronic devices have compelled researchers to look beyond the current silicon-based electronics. However, fabrication of devices on conventional flexible substrates with superior performance are constrained by the trade-off between processing temperature and device performance. Here, we propose an alternative strategy to circumvent this issue via the heteroepitaxial growth of transparent conducting oxides (TCO) on the flexible mica substrate with performance comparable to that of their rigid counterparts. With the examples of ITO and AZO as a case study, a strong emphasis is laid upon the growth of flexible yet epitaxial TCO relying muscovite's superior properties compared to those of conventional flexible substrates and its compatibility with the present fabrication methods. Besides excellent optoelectro-mechanical properties, an additional functionality of high-temperature stability, normally lacking in the current state-of-the-art transparent flexitronics, is provided by these heterostructures. These epitaxial TCO electrodes with good chemical and thermal stabilities as well as mechanical durability can significantly contribute to the field of flexible, light-weight, and portable smart electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligan, Michael; Bloom, Aaron P; Townsend, Aaron
Defining flexibility has been a challenge that a number of industry members and researchers have attempted to address in recent years. With increased variability and uncertainty of variable generation (VG), the resources on the system will have to be more flexible to adjust output, so that power output ranges, power ramp rates, and energy duration sustainability are sufficient to meet the needs of balancing supply with demand at various operational timescales. This chapter discusses whether existing market designs provide adequate incentives for resources to offer their flexibility into the market to meet the increased levels of variability and uncertainty introducedmore » by VG in the short-term operational time frame. It presents a definition of flexibility and discusses how increased levels of VG require increased needs for flexibility on power systems. Following this introductory material, the chapter examines how existing market designs ensure that resources have the right incentives to provide increased flexibility, and then discusses a number of emerging market design elements that impact flexibility incentives.« less
Metabolic flexibility in health and disease
Goodpaster, Bret H.; Sparks, Lauren M.
2017-01-01
Summary Metabolic flexibility is the ability to respond or adapt to conditional changes in metabolic demand. This broad concept has been propagated to explain insulin resistance and mechanisms governing fuel selection between glucose and fatty acids, highlighting the metabolic inflexibility of obesity and type 2 diabetes. In parallel, contemporary exercise physiology research has helped to identify potential mechanisms underlying altered fuel metabolism in obesity and diabetes. Advances in ‘omics’ technologies have further stimulated additional basic and clinical-translational research to further interrogate mechanisms for improved metabolic flexibility in skeletal muscle and adipose tissue with the goal to prevent and treat metabolic disease. PMID:28467922
1984-02-01
of Cost Analysis Worksheets * POD Program-Economic Analysis & Methodology - Economic Evaluation Procedures for POD Investment Program - System...Approval Considerations - POD Investment Program - Potential Improvement Areas for POD - Example Cost Categories and Determinants Appendix E Long Range R&D...Funding Profiles * Investment Strategy for Integrated Circuits Diminishing Sources of Supply - Problem Scope - Approach - Alternatives - Proposed
Microcomputer-Based Organizational Survey Assessment: Applications to Training.
1987-08-01
organizations, a growing need for efficient, flexible and cost effective training programs becomes paramount. To cope with these increased training demands, many...and cost effective training programs becomes paramount. To cnpe with these increased training demands, many orga- nizations have turned to Computer...organizational setings the need for better training will .,, For continue to increase (Wexley & Latham, 1981). Recent surveys of the literature document
Generalized Aggregation and Coordination of Residential Loads in a Smart Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, He; Somani, Abhishek; Lian, Jianming
2015-11-02
Flexibility from residential loads presents an enormous potential to provide various services to the smart grid. In this paper, we propose a unified hierarchical framework for aggregation and coordination of various residential loads in a smart community, such as Thermostatically Controlled Loads (TCLs), Distributed Energy Storages (DESs), residential Pool Pumps (PPs), and Electric Vehicles (EVs). A central idea of this framework is a virtual battery model, which provides a simple and intuitive tool to aggregate the flexibility of distributed loads. Moreover, a multi-stage Nash-bargainingbased coordination strategy is proposed to coordinate different aggregations of residential loads for demand response. Case studiesmore » are provided to demonstrate the efficacy of our proposed framework and coordination strategy in managing peak power demand in a smart residential community.« less
Sausset, Solen; Lambert, Eric; Olive, Thierry
2013-01-01
The coordination of the various processes involved in language production is a subject of keen debate in writing research. Some authors hold that writing processes can be flexibly coordinated according to task demands, whereas others claim that process coordination is entirely inflexible. For instance, orthographic planning has been shown to be resource-dependent during handwriting, but inflexible in typing, even under time pressure. The present study therefore went one step further in studying flexibility in the coordination of orthographic processing and graphomotor execution, by measuring the impact of time pressure during a handwritten copy task. Orthographic and graphomotor processes were observed via syllable processing. Writers copied out two- and three-syllable words three times in a row, with and without time pressure. Latencies and letter measures at syllable boundaries were analyzed. We hypothesized that if coordination is flexible and varies according to task demands, it should be modified by time pressure, affecting both latency before execution and duration of execution. We therefore predicted that the extent of syllable processing before execution would be reduced under time pressure and, as a consequence, syllable effects during execution would be more salient. Results showed, however, that time pressure interacted neither with syllable number nor with syllable structure. Accordingly, syllable processing appears to remain the same regardless of time pressure. The flexibility of process coordination during handwriting is discussed, as is the operationalization of time pressure constraints. PMID:24319435
Time limits during visual foraging reveal flexible working memory templates.
Kristjánsson, Tómas; Thornton, Ian M; Kristjánsson, Árni
2018-06-01
During difficult foraging tasks, humans rarely switch between target categories, but switch frequently during easier foraging. Does this reflect fundamental limits on visual working memory (VWM) capacity or simply strategic choice due to effort? Our participants performed time-limited or unlimited foraging tasks where they tapped stimuli from 2 target categories while avoiding items from 2 distractor categories. These time limits should have no effect if capacity imposes limits on VWM representations but more flexible VWM could allow observers to use VWM according to task demands in each case. We found that with time limits, participants switched more frequently and switch-costs became much smaller than during unlimited foraging. Observers can therefore switch between complex (conjunction) target categories when needed. We propose that while maintaining many complex templates in working memory is effortful and observers avoid this, they can do so if this fits task demands, showing the flexibility of working memory representations used for visual exploration. This is in contrast with recent proposals, and we discuss the implications of these findings for theoretical accounts of working memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starke, Michael R; Onar, Omer C; DeVault, Robert C
2011-09-01
Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The powermore » system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems, sensors, and communication technologies for demand response and load factor control applications for the residential sector. The purpose is to cover the gaps that exist in the information captured by the sensors for energy management system to be able to provide demand response and load factor control. The vision is the development of an energy management system or other controlling enterprise hardware and software that is not only able to control loads, PHEVs, and renewable generation for demand response and load factor control, but also to do so with consumer comforts in mind and in an optimal fashion.« less
NASA Astrophysics Data System (ADS)
Yan, Hailong; Zhang, Deyang; Xu, Jinyou; Lu, Yang; Liu, Yunxin; Qiu, Kangwen; Zhang, Yihe; Luo, Yongsong
2014-08-01
Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g-1 at current densities of 5, 10, 15, 20, and 25 A g-1, respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.
Yan, Hailong; Zhang, Deyang; Xu, Jinyou; Lu, Yang; Liu, Yunxin; Qiu, Kangwen; Zhang, Yihe; Luo, Yongsong
2014-01-01
Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g(-1) at current densities of 5, 10, 15, 20, and 25 A g(-1), respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.
Implicit Memory in Korsakoff’s Syndrome: A Review of Procedural Learning and Priming Studies
Hayes, Scott M.; Fortier, Catherine B.; Levine, Andrea; Milberg, William P.; McGlinchey, Regina
2013-01-01
Korsakoff’s syndrome (KS) is characterized by dense anterograde amnesia resulting from damage to the diencephalon region, typically resulting from chronic alcohol abuse and thiamine deficiency. This review assesses the integrity of the implicit memory system in KS, focusing on studies of procedural learning and priming. KS patients are impaired on several measures of procedural memory, most likely due to impairment in cognitive functions associated with alcohol-related neural damage outside of the diencephalon. The pattern of performance on tasks of implicit priming suggests reliance on a residual, non-flexible memory operating more or less in an automatic fashion. Our review concludes that whether measures of implicit memory reveal intact or impaired performance in individuals with KS depends heavily on specific task parameters and demands, including timing between stimuli, the specific nature of the stimuli used in a task, and the integrity of supportive cognitive functions necessary for performance. PMID:22592661
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akyol, Bora A.; Allwardt, Craig H.; Beech, Zachary W.
VOLTTRON is a flexible, reliable, and scalable platform for distributed control and sensing. VOLTTRON serves in four primary roles: •A reference platform for researchers to quickly develop control applications for transactive energy. •A reference platform with flexible data store support for energy analytics applications either in academia or in commercial enterprise. •A platform from which commercial enterprise can develop products without license issues and easily integrate into their product line. •An accelerator to drive industry adoption of transactive energy and advanced building energy analytics. Pacific Northwest National Laboratory, with funding from the U.S. Department of Energy’s Building Technologies Office, developedmore » and maintains VOLTTRON as an open-source community project. VOLTTRON source code includes agent execution software; agents that perform critical services that enable and enhance VOLTTRON functionality; and numerous agents that utilize the platform to perform a specific function (fault detection, demand response, etc.). The platform supports energy, operational, and financial transactions between networked entities (equipment, organizations, buildings, grid, etc.) and enhance the control infrastructure of existing buildings through the use of open-source device communication, control protocols, and integrated analytics.« less
A New Drill Weekend for the Information Age
2013-04-01
Blackberry , and the Droid.”28 Military and Mobile Devices As mobile device usage grows , Soldiers demand to use mobile devices as part of their... Blackberry from Research in Motion (RIM), and the Treo from Palm. 12 Then, in 2007, Apple entered the Smartphone market with the iPhone. The iPhone...for flexible work schedules continues to grow and affects employee retention. “If mobile employees aren’t getting enough flexibility at work, 33
Charge Management Optimization for Future TOU Rates: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiucai; Markel, Tony
2016-07-01
The effectiveness of future time of use (TOU) rates to enable managed charging for providing demand response depends on the vehicle's flexibility and the benefits to owners. This paper adopts opportunity, delayed, and smart charging methods to quantify these impacts, flexibilities, and benefits. Simulation results show that delayed and smart charging methods can shift most charging events to lower TOU rate periods without compromising the charged energy and individual driver mobility needs.
Adventures in Private Cloud: Balancing Cost and Capability at the CloudSat Data Processing Center
NASA Astrophysics Data System (ADS)
Partain, P.; Finley, S.; Fluke, J.; Haynes, J. M.; Cronk, H. Q.; Miller, S. D.
2016-12-01
Since the beginning of the CloudSat Mission in 2006, The CloudSat Data Processing Center (DPC) at the Cooperative Institute for Research in the Atmosphere (CIRA) has been ingesting data from the satellite and other A-Train sensors, producing data products, and distributing them to researchers around the world. The computing infrastructure was specifically designed to fulfill the requirements as specified at the beginning of what nominally was a two-year mission. The environment consisted of servers dedicated to specific processing tasks in a rigid workflow to generate the required products. To the benefit of science and with credit to the mission engineers, CloudSat has lasted well beyond its planned lifetime and is still collecting data ten years later. Over that period requirements of the data processing system have greatly expanded and opportunities for providing value-added services have presented themselves. But while demands on the system have increased, the initial design allowed for very little expansion in terms of scalability and flexibility. The design did change to include virtual machine processing nodes and distributed workflows but infrastructure management was still a time consuming task when system modification was required to run new tests or implement new processes. To address the scalability, flexibility, and manageability of the system Cloud computing methods and technologies are now being employed. The use of a public cloud like Amazon Elastic Compute Cloud or Google Compute Engine was considered but, among other issues, data transfer and storage cost becomes a problem especially when demand fluctuates as a result of reprocessing and the introduction of new products and services. Instead, the existing system was converted to an on premises private Cloud using the OpenStack computing platform and Ceph software defined storage to reap the benefits of the Cloud computing paradigm. This work details the decisions that were made, the benefits that have been realized, the difficulties that were encountered and issues that still exist.
Price elasticity matrix of demand in power system considering demand response programs
NASA Astrophysics Data System (ADS)
Qu, Xinyao; Hui, Hongxun; Yang, Shengchun; Li, Yaping; Ding, Yi
2018-02-01
The increasing renewable energy power generations have brought more intermittency and volatility to the electric power system. Demand-side resources can improve the consumption of renewable energy by demand response (DR), which becomes one of the important means to improve the reliability of power system. In price-based DR, the sensitivity analysis of customer’s power demand to the changing electricity prices is pivotal for setting reasonable prices and forecasting loads of power system. This paper studies the price elasticity matrix of demand (PEMD). An improved PEMD model is proposed based on elasticity effect weight, which can unify the rigid loads and flexible loads. Moreover, the structure of PEMD, which is decided by price policies and load types, and the calculation method of PEMD are also proposed. Several cases are studied to prove the effectiveness of this method.
Andreassen, Cecilie S.; Bakker, Arnold B.; Bjorvatn, Bjørn; Moen, Bente E.; Magerøy, Nils; Shimazu, Akihito; Hetland, Jørn; Pallesen, Ståle
2017-01-01
This study focuses on individual differences and the demand-support-control model in relation to workaholism. We hypothesized that unfavorable working conditions (high job demands, low job control/decision latitude, and low social support at work) and individual differences concerning sleep/wake-related variables (high flexibility, high morningness, and low languidity) would be related to workaholism measured 2–3 years later. Survey data stemmed from a prospective cohort of shift-working nurses (N = 1,308). The results showed that social support at work was negatively related to workaholism, whereas job demands were positively related to workaholism. Flexibility in terms of time for working/sleeping was also positively related to workaholism. The analyses further revealed that workaholism was inversely associated with age as well as having a child or having a child move in. Conjointly, the independent variables explained 6.4% of the variance in workaholism, while their relative importance was small overall. After controlling for all other independent variables, high job demands had the strongest relationship (small-to-medium) with workaholism. This implies that less pressure from the external environment to work excessively hard may prevent an increase in workaholic behaviors. Overall, the study adds to our understanding of the relationships between working conditions, individual differences, and workaholism. PMID:29209265
Drought and the water-energy nexus in Texas
NASA Astrophysics Data System (ADS)
Scanlon, Bridget R.; Duncan, Ian; Reedy, Robert C.
2013-12-01
Texas experienced the most extreme drought on record in 2011 with up to 100 days of triple digit temperatures resulting in record electricity demand and historically low reservoir levels. We quantified water and electricity demand and supply for each power plant during the drought relative to 2010 (baseline). Drought raised electricity demands/generation by 6%, increasing water demands/consumption for electricity by 9%. Reductions in monitored reservoir storage <50% of capacity in 2011 would suggest drought vulnerability, but data show that the power plants were flexible enough at the plant level to adapt by switching to less water-intensive technologies. Natural gas, now ˜50% of power generation in Texas, enhances drought resilience by increasing the flexibility of power plant generators, including gas combustion turbines to complement increasing wind generation and combined cycle generators with ˜30% of cooling water requirements of traditional steam turbine plants. These reductions in water use are projected to continue to 2030 with increased use of natural gas and renewables. Although water use for gas production is controversial, these data show that water saved by using natural gas combined cycle plants relative to coal steam turbine plants is 25-50 times greater than the amount of water used in hydraulic fracturing to extract the gas.
Williams, Kathryn E; Ciarrochi, Joseph; Heaven, Patrick C L
2012-08-01
Parenting behaviors have been linked to children's self regulation, but it is less clear how they relate to adolescent psychological flexibility. Psychological flexibility is a broad construct that describes an individual's ability to respond appropriately to environmental demands and internal experiences in the service of their goals. We examined the longitudinal relationships between perceived parenting style and psychological flexibility among students at five Australian schools (N= 749) over 6 years, beginning in Grade 7 (50.3% female, mean age 12.39 years). Parenting style was measured in Grades 7 and 12, and psychological flexibility from Grade 9 through 12. Psychological flexibility decreased, on average, with age. Multi-level modelling indicated that authoritarian parenting (low warmth, high control) in Grade 7 predicted later (low) psychological flexibility. Moreover, increases in authoritarian parenting and decreases in authoritative parenting (high warmth and control) were associated with adolescent psychological flexibility across the high school years. Change in parenting predicted future psychological flexibility but did not predict change over time. Structural Equation Modelling revealed that adolescent psychological flexibility in Grade 9 predicted later decreases in authoritarian and increases in authoritative parenting. We discuss the implications of these findings for understanding how parenting changes and the consequences of such change for the development of psychological flexibility.
Flexible Lithium-Ion Batteries with High Areal Capacity Enabled by Smart Conductive Textiles.
Ha, Sung Hoon; Shin, Kyu Hang; Park, Hae Won; Lee, Yun Jung
2018-02-05
Increasing demand for flexible devices in various applications, such as smart watches, healthcare, and military applications, requires the development of flexible energy-storage devices, such as lithium-ion batteries (LIBs) with high flexibility and capacity. However, it is difficult to ensure high capacity and high flexibility simultaneously through conventional electrode preparation processes. Herein, smart conductive textiles are employed as current collectors for flexible LIBs owing to their inherent flexibility, fibrous network, rough surface for better adhesion, and electrical conductivity. Conductivity and flexibility are further enhanced by nanosizing lithium titanate oxide (LTO) and lithium iron phosphate (LFP) active materials, and hybridizing them with a flexible 2D graphene template. The resulting LTO/LFP full cells demonstrate high areal capacity and flexibility with tolerance to mechanical fatigue. The battery achieves a capacity of 1.2 mA h cm -2 while showing excellent flexibility. The cells demonstrate stable open circuit voltage retention under repeated flexing for 1000 times at a bending radius of 10 mm. The discharge capacity of the unflexed battery is retained in cells subjected to bending for 100 times at bending radii of 30, 20, and 10 mm, respectively, confirming that the suggested electrode configuration successfully prevents structural damage (delamination or cracking) upon repeated deformation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Opportunities for Automated Demand Response in California Agricultural Irrigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Daniel; Aghajanzadeh, Arian; McKane, Aimee
Pumping water for agricultural irrigation represents a significant share of California’s annual electricity use and peak demand. It also represents a large source of potential flexibility, as farms possess a form of storage in their wetted soil. By carefully modifying their irrigation schedules, growers can participate in demand response without adverse effects on their crops. This report describes the potential for participation in demand response and automated demand response by agricultural irrigators in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use in California. Typical on-farm controlsmore » are discussed, as well as common impediments to participation in demand response and automated demand response programs. Case studies of demand response programs in California and across the country are reviewed, and their results along with overall California demand estimates are used to estimate statewide demand response potential. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.« less
A Concept for Flexible Operations and Optimized Traffic into Metroplex Regions
NASA Technical Reports Server (NTRS)
DeLaurentis, Daniel; Landry, Steve; Sun, Dengfeng; Wieland, Fred; Tyagi, Ankit
2011-01-01
A "Flexible Flight Operations" concept for airport metroplexes was studied. A flexible flight is one whose destination airport is not assigned until a threshold is reached near the arrival area at which time the runway which reduces overall delay is assigned. The concept seeks to increase throughput by exploiting flexibility. The quantification of best-case benefits from the concept was pursued to establish whether concept research is warranted. Findings indicate that indeed the concept has potential for significant reductions in delay (and cost due to delay) in the N90 (NY/NJ) and SCT (Southern California) metroplexes. Delay reductions of nearly 26% are possible in N90 when 30% of the commercial airline flights are flexible (smartly selected by their low probability of connecting passengers); nearly 40% delay reduction is found when 50% of the flights are flexible. In the SCT metroplex, delay reductions estimates are greater. Greater reductions result at SCT since it is less constrained currently than N90, providing "more room" to take advantage of flexibility. Using the flexible operations concept for on-demand/air taxi and General Aviation flights were found to be beneficial at NY/NJ, indicating the flexible operations concepts may be useful to wide variety of users..
Metabolic flexibility as an adaptation to energy resources and requirements in health and disease.
Smith, Reuben L; Soeters, Maarten R; Wüst, Rob C I; Houtkooper, Riekelt H
2018-04-24
The ability to efficiently adapt metabolism by substrate sensing, trafficking, storage and utilization, dependent on availability and requirement is known as metabolic flexibility. In this review, we discuss the breadth and depth of metabolic flexibility and its impact on health and disease. Metabolic flexibility is essential to maintain energy homeostasis in times of either caloric excess or caloric restriction, and in times of either low or high energy demand, such as during exercise. The liver, adipose tissue and muscle govern systemic metabolic flexibility and manage nutrient sensing, uptake, transport, storage and expenditure by communication via endocrine cues. At a molecular level, metabolic flexibility relies on the configuration of metabolic pathways which is regulated by key metabolic enzymes and transcription factors, many of which interact closely with the mitochondria. Disrupted metabolic flexibility, or metabolic inflexibility, however, is associated with many pathological conditions including metabolic syndrome, type 2 diabetes mellitus, and cancer. Multiple factors like dietary composition and feeding frequency, exercise training, and use of pharmacological compounds influence metabolic flexibility and will be discussed here. Lastly, we outline important advances in metabolic flexibility research and discuss medical horizons and translational aspects.
ERIC Educational Resources Information Center
Kennedy, Mike
2000-01-01
Discusses school furniture flexibility that can accommodate changing instructional styles, a diverse student characteristics, and classroom technology demands. Characteristics to look for that can enhance a chair's ergonomics are highlighted along with tips for better furniture budgeting.(GR)
ERIC Educational Resources Information Center
Lee, Chris
1991-01-01
Describes the responses of some companies to increasing demands for family-work balance in terms of flexibility in working hours and leave policies, child care, and fringe benefits. Identifies some of the effects on the "bottom line." (SK)
NASA Astrophysics Data System (ADS)
Cobb, Brian
2015-09-01
For decades, the electronics industry has been accurately described by Moore's Law, where the march towards increasing density and smaller feature sizes has enabled continuous cost reductions and performance improvements. With flexible electronics, this perpetual scaling is not foreseen to occur. Instead, the industry will be dominated by Wright's Law, first proposed in 1936, where increasing demand for high volumes of product will drive costs down. We have demonstrated thin film based circuitry compatible with flexible substrates with high levels of functionality designed for such a high volume industry. This includes a generic 8-bit microprocessor totaling more than 3.5k TFTs operating at 2.1 kHz. We have also developed a post fabrication programming technique via inkjet printing of conductive spots to form a one-time programmable instruction generator, allowing customization of the processor for a specific task. The combination demonstrates the possibility to achieve the high volume production of identical products necessary to reap the benefits promised by Wright's Law, while still retaining the individualization necessary for application differentiation. This is of particular importance in the area of item level identification via RFID, where low cost and individualized identification are necessary. Remotely powered RFID tags have been fabricated using an oxide semiconductor based TFT process. This process is compatible with the post-fabrication printing process to detail individual identification codes, with the goal of producing low cost, high volume flexible tags. The goal is to produce tags compatible with existing NFC communication protocols in order to communicate with readers that are already ubiquitous in the market.
Flexible LNG supply, storage and price formation in a global natural gas market
NASA Astrophysics Data System (ADS)
Hayes, Mark Hanley
The body of work included in this dissertation explores the interaction of the growing, flexible liquefied natural gas (LNG) trade with the fundamentals of pipeline gas supply, gas storage, and gas consumption. By nature of its uses---largely for residential heating and electric power generation---the consumption of natural gas is highly variable both seasonally and on less predictable daily and weekly timescales. Flexible LNG trade will interconnect previously isolated regional gas markets, each with non-correlated variability in gas demand, differing gas storage costs, and heterogeneous institutional structures. The dissertation employs a series of analytical models to address key issues that will affect the expansion of the LNG trade and the implications for gas prices, investment and energy policy. First, I employ an optimization model to evaluate the fundamentals of seasonal LNG swing between markets with non-correlated gas demand (the U.S. and Europe). The model provides insights about the interaction of LNG trade with gas storage and price formation in interconnected regional markets. I then explore how random (stochastic) variability in gas demand will drive spot cargo movements and covariation in regional gas prices. Finally, I analyze the different institutional structures of the gas markets in the U.S. and Europe and consider how managed gas markets in Europe---without a competitive wholesale gas market---may effectively "export" supply and price volatility to countries with more competitive gas markets, such as the U.S.
Knedlitschek, G; Schneider, F; Gottwald, E; Schaller, T; Eschbach, E; Weibezahn, K F
1999-02-01
Special microenvironmental conditions are required to induce and/or maintain specific qualities of differentiated cells. An important parameter is the three-dimensional tissue architecture that cannot be reproduced in conventional monolayer systems. Advanced tissue culture systems will meet many of these demands, but may reach their limits, especially when gradients of specific substances over distinct tissue layers must be established for long-term culture. These limitations may be overcome by incorporating microstructures into tissue-like culture systems. The microstructured cell support presented consists of a flat array of 625 cubic microcontainers with porous bottoms, in which cells can be supplied with specific media from both sides of the tissue layer. Permanent cell lines and primary rat hepatocytes have been used to test the culture system. In order to define reproducible conditions for tissue formation and for cell adherence to the structure, several ECM (extracellular matrix) components were tested for coating of microstructured substrata. The described tissue culture system offers great flexibility in adapting the cell support to specific needs.
Recent progress of flexible and wearable strain sensors for human-motion monitoring
NASA Astrophysics Data System (ADS)
Ge, Gang; Huang, Wei; Shao, Jinjun; Dong, Xiaochen
2018-01-01
With the rapid development of human artificial intelligence and the inevitably expanding markets, the past two decades have witnessed an urgent demand for the flexible and wearable devices, especially the flexible strain sensors. Flexible strain sensors, incorporated the merits of stretchability, high sensitivity and skin-mountable, are emerging as an extremely charming domain in virtue of their promising applications in artificial intelligent realms, human-machine systems and health-care devices. In this review, we concentrate on the transduction mechanisms, building blocks of flexible physical sensors, subsequently property optimization in terms of device structures and sensing materials in the direction of practical applications. Perspectives on the existing challenges are also highlighted in the end. Project supported by the NNSF of China (Nos. 61525402, 61604071), the Key University Science Research Project of Jiangsu Province (No. 15KJA430006), and the Natural Science Foundation of Jiangsu Province (No. BK20161012).
Zou, Yuqin; Wang, Shuangyin
2015-07-07
Flexible energy storage devices are highly demanded for various applications. Carbon cloth (CC) woven by carbon fibers (CFs) is typically used as electrode or current collector for flexible devices. The low surface area of CC and the presence of big gaps (ca. micro-size) between individual CFs lead to poor performance. Herein, we interconnect individual CFs through the in-situ exfoliated graphene with high surface area by the electrochemical intercalation method. The interconnected CFs are used as both current collector and electrode materials for flexible supercapacitors, in which the in-situ exfoliated graphene act as active materials and conductive "binders". The in-situ electrochemical intercalation technique ensures the low contact resistance between electrode (graphene) and current collector (carbon cloth) with enhanced conductivity. The as-prepared electrode materials show significantly improved performance for flexible supercapacitors.
Metabolic Flexibility in Health and Disease.
Goodpaster, Bret H; Sparks, Lauren M
2017-05-02
Metabolic flexibility is the ability to respond or adapt to conditional changes in metabolic demand. This broad concept has been propagated to explain insulin resistance and mechanisms governing fuel selection between glucose and fatty acids, highlighting the metabolic inflexibility of obesity and type 2 diabetes. In parallel, contemporary exercise physiology research has helped to identify potential mechanisms underlying altered fuel metabolism in obesity and diabetes. Advances in "omics" technologies have further stimulated additional basic and clinical-translational research to further interrogate mechanisms for improved metabolic flexibility in skeletal muscle and adipose tissue with the goal of preventing and treating metabolic disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Core networks and their reconfiguration patterns across cognitive loads.
Zuo, Nianming; Yang, Zhengyi; Liu, Yong; Li, Jin; Jiang, Tianzi
2018-04-20
Different cognitively demanding tasks recruit globally distributed but functionally specific networks. However, the configuration of core networks and their reconfiguration patterns across cognitive loads remain unclear, as does whether these patterns are indicators for the performance of cognitive tasks. In this study, we analyzed functional magnetic resonance imaging data of a large cohort of 448 subjects, acquired with the brain at resting state and executing N-back working memory (WM) tasks. We discriminated core networks by functional interaction strength and connection flexibility. Results demonstrated that the frontoparietal network (FPN) and default mode network (DMN) were core networks, but each exhibited different patterns across cognitive loads. The FPN and DMN both showed strengthened internal connections at the low demand state (0-back) compared with the resting state (control level); whereas, from the low (0-back) to high demand state (2-back), some connections to the FPN weakened and were rewired to the DMN (whose connections all remained strong). Of note, more intensive reconfiguration of both the whole brain and core networks (but no other networks) across load levels indicated relatively poor cognitive performance. Collectively these findings indicate that the FPN and DMN have distinct roles and reconfiguration patterns across cognitively demanding loads. This study advances our understanding of the core networks and their reconfiguration patterns across cognitive loads and provides a new feature to evaluate and predict cognitive capability (e.g., WM performance) based on brain networks. © 2018 Wiley Periodicals, Inc.
Impact of anxiety on prefrontal cortex encoding of cognitive flexibility
Park, Junchol; Moghaddam, Bita
2016-01-01
Anxiety often is studied as a stand-alone construct in laboratory models. But in the context of coping with real-life anxiety, its negative impacts extend beyond aversive feelings and involve disruptions in ongoing goal-directed behaviors and cognitive functioning. Critical examples of cognitive constructs affected by anxiety are cognitive flexibility and decision making. In particular, anxiety impedes the ability to shift flexibly between strategies in response to changes in task demands, as well as the ability to maintain a strategy in the presence of distractors. The brain region most critically involved in behavioral flexibility is the prefrontal cortex (PFC), but little is known about how anxiety impacts PFC encoding of internal and external events that are critical for flexible behavior. Here we review animal and human neurophysiological and neuroimaging studies implicating PFC neural processing in anxiety-induced deficits in cognitive flexibility. We then suggest experimental and analytical approaches for future studies to gain a better mechanistic understanding of impaired cognitive inflexibility in anxiety and related disorders. PMID:27316551
Study of heterogeneous and reconfigurable architectures in the communication domain
NASA Astrophysics Data System (ADS)
Feldkaemper, H. T.; Blume, H.; Noll, T. G.
2003-05-01
One of the most challenging design issues for next generations of (mobile) communication systems is fulfilling the computational demands while finding an appropriate trade-off between flexibility and implementation aspects, especially power consumption. Flexibility of modern architectures is desirable, e.g. concerning adaptation to new standards and reduction of time-to-market of a new product. Typical target architectures for future communication systems include embedded FPGAs, dedicated macros as well as programmable digital signal and control oriented processor cores as each of these has its specific advantages. These will be integrated as a System-on-Chip (SoC). For such a heterogeneous architecture a design space exploration and an appropriate partitioning plays a crucial role. On the exemplary vehicle of a Viterbi decoder as frequently used in communication systems we show which costs in terms of ATE complexity arise implementing typical components on different types of architecture blocks. A factor of about seven orders of magnitude spans between a physically optimised implementation and an implementation on a programmable DSP kernel. An implementation on an embedded FPGA kernel is in between these two representing an attractive compromise with high flexibility and low power consumption. Extending this comparison to further components, it is shown quantitatively that the cost ratio between different implementation alternatives is closely related to the operation to be performed. This information is essential for the appropriate partitioning of heterogeneous systems.
Mahjani, Behrang; Toor, Salman; Nettelblad, Carl; Holmgren, Sverker
2017-01-01
In quantitative trait locus (QTL) mapping significance of putative QTL is often determined using permutation testing. The computational needs to calculate the significance level are immense, 10 4 up to 10 8 or even more permutations can be needed. We have previously introduced the PruneDIRECT algorithm for multiple QTL scan with epistatic interactions. This algorithm has specific strengths for permutation testing. Here, we present a flexible, parallel computing framework for identifying multiple interacting QTL using the PruneDIRECT algorithm which uses the map-reduce model as implemented in Hadoop. The framework is implemented in R, a widely used software tool among geneticists. This enables users to rearrange algorithmic steps to adapt genetic models, search algorithms, and parallelization steps to their needs in a flexible way. Our work underlines the maturity of accessing distributed parallel computing for computationally demanding bioinformatics applications through building workflows within existing scientific environments. We investigate the PruneDIRECT algorithm, comparing its performance to exhaustive search and DIRECT algorithm using our framework on a public cloud resource. We find that PruneDIRECT is vastly superior for permutation testing, and perform 2 ×10 5 permutations for a 2D QTL problem in 15 hours, using 100 cloud processes. We show that our framework scales out almost linearly for a 3D QTL search.
A flexible environmental reuse/recycle policy based on economic strength.
Tsiliyannis, C A
2007-01-01
Environmental policies based on fixed recycling rates may lead to increased environmental impacts (e.g., landfilled wastes) during economic expansion. A rate policy is proposed, which is adjusted according to the overall strength or weakness of the economy, as reflected by overall packaging demand and consumption, production and imports-exports. During economic expansion featuring rising consumption, production or exports, the proposed flexible policy suggests a higher reuse/recycle rate. During economic slowdown a lower rate results in lower impacts. The flexible target rates are determined in terms of annual data, including consumption, imports-exports and production. Higher environmental gains can be achieved at lower cost if the flexible policy is applied to widely consumed packaging products and materials associated with low rates, or if cleaner recycling technology is adopted.
Theta, mental flexibility, and post-traumatic stress disorder: connecting in the parietal cortex.
Dunkley, Benjamin T; Sedge, Paul A; Doesburg, Sam M; Grodecki, Richard J; Jetly, Rakesh; Shek, Pang N; Taylor, Margot J; Pang, Elizabeth W
2015-01-01
Post-traumatic stress disorder (PTSD) is a mental health injury characterised by re-experiencing, avoidance, numbing and hyperarousal. Whilst the aetiology of the disorder is relatively well understood, there is debate about the prevalence of cognitive sequelae that manifest in PTSD. In particular, there are conflicting reports about deficits in executive function and mental flexibility. Even less is known about the neural changes that underlie such deficits. Here, we used magnetoencephalography to study differences in functional connectivity during a mental flexibility task in combat-related PTSD (all males, mean age = 37.4, n = 18) versus a military control (all males, mean age = 33.05, n = 19) group. We observed large-scale increases in theta connectivity in the PTSD group compared to controls. The PTSD group performance was compromised in the more attentionally-demanding task and this was characterised by 'late-stage' theta hyperconnectivity, concentrated in network connections involving right parietal cortex. Furthermore, we observed significant correlations with the connectivity strength in this region with a number of cognitive-behavioural outcomes, including measures of attention, depression and anxiety. These findings suggest atypical coordination of neural synchronisation in large scale networks contributes to deficits in mental flexibility for PTSD populations in timed, attentionally-demanding tasks, and this propensity toward network hyperconnectivity may play a more general role in the cognitive sequelae evident in this disorder.
NASA Astrophysics Data System (ADS)
Mao, Xiling; Xu, Jianhua; He, Xin; Yang, Wenyao; Yang, Yajie; Xu, Lu; Zhao, Yuetao; Zhou, Yujiu
2018-03-01
All-solid-state flexible microsupercapacitors have been intensely investigated in order to meet the rapidly growing demands for portable microelectronic devices. Herein, we demonstrate a facile, readily scalable and cost-effective laser induction process for preparing reduced graphene oxide/multi-walled carbon nanotube composite, which can be used as the interdigital electrodes in microsupercapacitors. The obtained composite exhibits high volumetric capacitance about 49.35 F cm-3, which is nearly 5 times higher than that of the pristine reduced graphene oxide film in aqueous 1.0 M H2SO4 solution (measured at a current density of 5 A cm-3 in a three-electrode testing). Additionally, an all-solid-state flexible microsupercapacitor employing these composite electrodes with PVA/H3PO4 gel electrolyte delivers high volumetric energy density of 6.47 mWh cm-3 at 10 mW cm-3 under the current density of 20 mA cm-3 as well as achieve excellent cycling stability retaining 88.6% of its initial value and outstanding coulombic efficiency after 10,000 cycles. Furthermore, the microsupercapacitors array connected in series/parallel can be easily adjusted to achieve the demands in practical applications. Therefore, this work brings a promising new candidate of prepare technologies for all-solid-state flexible microsupercapacitors as miniaturized power sources used in the portable and wearable electronics.
Ino, Shuichi; Sato, Mitsuru; Hosono, Minako; Nakajima, Sawako; Yamashita, Kazuhiko; Izumi, Takashi
2010-01-01
In an aging society, social demands for home-based rehabilitation and assistive technologies by healthcare and welfare services are globally increasing. The progress of quality-of-life technologies and rehabilitation science is a very important and urgent issue for elderly and disabled individuals as well as for their caregivers. Thus, there is a substantial need to develop simple bedside apparatuses for both continuous exercise of joints and for power assistance for standing to prevent and manage disuse syndromes (e.g., pressure ulcers, joint contractures and muscular atrophy). Unfortunately, there are currently no commercially-available actuators compatible with the human requirements of flexibility, quietness, lightness and a high power-to-weight ratio. To fulfill the above demands, we have developed a novel actuation device using a metal hydride (MH) alloy and a laminate film, called the flexible MH actuator, as a human-friendly force generator for healthcare and welfare services. In this paper, we show the basic structure and characteristics of the flexible MH actuator used to create a passive exercise system for preventing disuse syndromes. To evaluate the efficiency of passive exercise for bedsore prevention, subcutaneous blood flow during passive exercise at common pressure-ulcer sites is measured by a laser blood flow meter. The force and range-of-motion angle required for a passive exercise apparatus is also examined with the help of a professional physical therapist. Based on these findings, a prototype of a passive exercise apparatus is fabricated using the flexible MH actuator technology, and its operation characteristics are preliminarily verified using a thermoelectric control system.
MER : from landing to six wheels on Mars ... twice
NASA Technical Reports Server (NTRS)
Krajewski, Joel; Burke, Kevin; Lewicki, Chris; Limonadi, Daniel; Trebi-Ollennu, Ashitey; Voorhees, Chris
2005-01-01
Application of the Pathfinder landing system design to enclose the much larger Mars Exploration Rover required a variety of Rover deployments to achieve the surface driving configuration. The project schedule demanded that software design, engineering model test, and flight hardware build to be accomplished in parallel. This challenge was met through (a) bounding unknown environments against which to design and test, (b) early mechanical prototype testing, (c) constraining the scope of on-board autonomy to survival-critical deployments, (d) executing a balance of nominal and off-nominal test cases, (e) developing off-nominal event mitigation techniques before landing, (f) flexible replanning in response to surprises during operations. Here is discussed several specific events encountered during initial MER surface operations.
Tuning polarity and improving charge transport in organic semiconductors
NASA Astrophysics Data System (ADS)
Oh, Joon Hak; Han, A.-Reum; Yu, Hojeong; Lee, Eun Kwang; Jang, Moon Jeong
2013-09-01
Although state-of-the-art ambipolar polymer semiconductors have been extensively reported in recent years, highperformance ambipolar polymers with tunable dominant polarity are still required to realize on-demand, target-specific, high-performance organic circuitry. Herein, dithienyl-diketopyrrolopyrrole (TDPP)-based polymer semiconductors with engineered side-chains have been synthesized, characterized and employed in ambipolar organic field-effect transistors, in order to achieve controllable and improved electrical properties. Thermally removable tert-butoxycarbonyl (t-BOC) groups and hybrid siloxane-solubilizing groups are introduced as the solubilizing groups, and they are found to enable the tunable dominant polarity and the enhanced ambipolar performance, respectively. Such outstanding performance based on our molecular design strategies makes these ambipolar polymer semiconductors highly promising for low-cost, large-area, and flexible electronics.
Residential load management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhr, C.W.
1986-03-01
The MAX load management system marketed by the UHR Corporation is described. The system completely replaces conventional heating, cooling, and hot water equipment. It is designed to reduce significantly the home's peak demand during the electric utility's system-wide peak load periods while at the same time maintain the homeowner's comfort. The integration of microprocessor, thermal storage, and heat pump technologies allows for broad flexibility in terms of tailoring the system to a specific electric utility's needs. Twelve pilot systems installed in Northern Virginia outside of Washington, DC have been operational since early 1985. The test results to date have confirmedmore » both the system's load management capability and its comfort improvement characteristics. The fundamental characteristics and hardware for the system are described. 9 figures.« less
Brigl, B; Ammenwerth, E; Dujat, C; Gräber, S; Grosse, A; Häber, A; Jostes, C; Winter, A
2005-01-01
Systematic information management in hospitals demands for a strategic information management plan (SIM plan). As preparing a SIM plan is a considerable challenge we provide a practical guideline that is directly applicable when a SIM plan is going to be prepared. The guideline recommends a detailed structure of a SIM plan and gives advice about its content and the preparation process. It may be used as template, which can be adapted to the individual demands of any hospital. The guideline was used in several hospitals preparing a SIM plan. Experiences showed that the SIM plans could be prepared very efficiently and timely using the guideline, that the proposed SIM plan structure suited well, that the guideline offers enough flexibility to meet the requirements of the individual hospitals and that the specific recommendations of the guideline were very helpful. Nevertheless, we must strive for a more comprehensive theory of strategic information management planning which -- in the sense of enterprise architecture planning -- represents the intrinsic correlations of the different parts of a SIM plan to a greater extent.
An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications.
Xiaoyu Zhang; Hanjun Jiang; Lingwei Zhang; Chun Zhang; Zhihua Wang; Xinkai Chen
2010-02-01
An energy-efficient application-specific integrated circuit (ASIC) featured with a work-on-demand protocol is designed for wireless body sensor networks (WBSNs) in medical applications. Dedicated for ultra-low-power wireless sensor nodes, the ASIC consists of a low-power microcontroller unit (MCU), a power-management unit (PMU), reconfigurable sensor interfaces, communication ports controlling a wireless transceiver, and an integrated passive radio-frequency (RF) receiver with energy harvesting ability. The MCU, together with the PMU, provides quite flexible communication and power-control modes for energy-efficient operations. The always-on passive RF receiver with an RF energy harvesting block offers the sensor nodes the capability of work-on-demand with zero standby power. Fabricated in standard 0.18-¿m complementary metal-oxide semiconductor technology, the ASIC occupies a die area of 2 mm × 2.5 mm. A wireless body sensor network sensor-node prototype using this ASIC only consumes < 10-nA current under the passive standby mode, and < 10 ¿A under the active standby mode, when supplied by a 3-V battery.
Analysis of Agility Performance of Supply Chain: A Case Study on Indian Automotive Manufacturer
NASA Astrophysics Data System (ADS)
Routroy, S.; Sharma, S.; Bhardwaj, A.
2018-04-01
Manufacturing companies should understand the changing customer needs and expectations, access and defend the competitive pressure, anticipate and manage the uncertain demand and supply chain risk, and implement the appropriate technology to survive and excel in today’s marketplace. Therefore, they are moving away from mass production (i.e. lean supply chain) to one based on fast-responsiveness and flexibility, capitalizing on the rapid advancement in internet technologies and factory-on-demand mode of production (i.e. agile supply chain). It is observed that manufacturing companies in India in general and automotive supply chain in specific are compelled to cultivate supply chain agility for enhancing its performance level on continuous basis and comparing its supply chain agility performance with competitors to survive and sustain in the competitive business environment. Therefore, a methodology is proposed to evaluate the supply chain agility of a manufacturing supply chain and compare its performance level with competitors using Fuzzy Analytic Hierarchy Process and Taguchi Loss Function. A case study is developed and the proposed methodology is applied to Indian automotive supply chain for explaining the salient features of it.
Cuzick, Jack; Cafferty, Fay H; Edwards, Robert; Møller, Henrik; Duffy, Stephen W
2007-01-01
Cancer screening is aimed primarily at reducing deaths. Thus, site-specific cancer mortality is the appropriate endpoint for evaluating screening interventions. However, it is also the most demanding endpoint, requiring follow-up and a large numbers of patients order to have adequate power. Therefore, it is highly desirable to have surrogate endpoints that can reliably predict mortality reductions many years earlier. We here review a range of surrogate markers in terms of their potential advantages and pitfalls, and argue that a measure which weights incident cancers according to their predicted mortality has many advantages over other measures and should be used more routinely. Application to the UK Flexible Sigmoidoscopy Screening Trial data suggests that predicted colorectal cancer mortality, based on stage-specific incidence, is a more powerful endpoint than actual mortality and could advance the analysis time by about three years. Total colorectal cancer incidence as a surrogate endpoint provides little advance in the analysis time over actual mortality. The approach requires reliable prognostic data, (e.g. stage), for both the study cohort and a representative sample of the whole population. The routine collection of such data should be a priority for cancer registries. Surrogate endpoints should not replace a long-term analysis based directly on mortality, but can provide reliable early indicators which can be useful both for monitoring ongoing screening programmes and for making policy decisions.
Parallel satellite orbital situational problems solver for space missions design and control
NASA Astrophysics Data System (ADS)
Atanassov, Atanas Marinov
2016-11-01
Solving different scientific problems for space applications demands implementation of observations, measurements or realization of active experiments during time intervals in which specific geometric and physical conditions are fulfilled. The solving of situational problems for determination of these time intervals when the satellite instruments work optimally is a very important part of all activities on every stage of preparation and realization of space missions. The elaboration of universal, flexible and robust approach for situation analysis, which is easily portable toward new satellite missions, is significant for reduction of missions' preparation times and costs. Every situation problem could be based on one or more situation conditions. Simultaneously solving different kinds of situation problems based on different number and types of situational conditions, each one of them satisfied on different segments of satellite orbit requires irregular calculations. Three formal approaches are presented. First one is related to situation problems description that allows achieving flexibility in situation problem assembling and presentation in computer memory. The second formal approach is connected with developing of situation problem solver organized as processor that executes specific code for every particular situational condition. The third formal approach is related to solver parallelization utilizing threads and dynamic scheduling based on "pool of threads" abstraction and ensures a good load balance. The developed situation problems solver is intended for incorporation in the frames of multi-physics multi-satellite space mission's design and simulation tools.
Integration of multi-modal public transportation systems.
DOT National Transportation Integrated Search
2013-05-01
Transit ridership may be sensitive to fares, travel times, waiting times, and access times, among other factors. Thus, : elastic demands are considered in formulations for maximizing the system welfare for conventional and flexible bus : services. Tw...
Optical interconnects for satellite payloads: overview of the state-of-the-art
NASA Astrophysics Data System (ADS)
Vervaeke, Michael; Debaes, Christof; Van Erps, Jürgen; Karppinen, Mikko; Tanskanen, Antti; Aalto, Timo; Harjanne, Mikko; Thienpont, Hugo
2010-05-01
The increased demand of broadband communication services like High Definition Television, Video On Demand, Triple Play, fuels the technologies to enhance the bandwidth of individual users towards service providers and hence the increase of aggregate bandwidths on terrestial networks. Optical solutions clearly leverage the bandwidth appetite easily whereas electrical interconnection schemes require an ever-increasing effort to counteract signal distortions at higher bitrates. Dense wavelength division multiplexing and all-optical signal regeneration and switching solve the bandwidth demands of network trunks. Fiber-to-the-home, and fiber-to-the-desk are trends towards providing individual users with greatly increased bandwidth. Operators in the satellite telecommunication sector face similar challenges fuelled by the same demands as for their terrestial counterparts. Moreover, the limited number of orbital positions for new satellites set the trend for an increase in payload datacommunication capacity using an ever-increasing number of complex multi-beam active antennas and a larger aggregate bandwidth. Only satellites with very large capacity, high computational density and flexible, transparent fully digital payload solutions achieve affordable communication prices. To keep pace with the bandwidth and flexibility requirements, designers have to come up with systems requiring a total digital througput of a few Tb/s resulting in a high power consuming satellite payload. An estimated 90 % of the total power consumption per chip is used for the off-chip communication lines. We have undertaken a study to assess the viability of optical datacommunication solutions to alleviate the demands regarding power consumption and aggregate bandwidth imposed on future satellite communication payloads. The review on optical interconnects given here is especially focussed on the demands of the satellite communication business and the particular environment in which the optics have to perform their functionality: space.
Flexible integration of free-standing nanowires into silicon photonics.
Chen, Bigeng; Wu, Hao; Xin, Chenguang; Dai, Daoxin; Tong, Limin
2017-06-14
Silicon photonics has been developed successfully with a top-down fabrication technique to enable large-scale photonic integrated circuits with high reproducibility, but is limited intrinsically by the material capability for active or nonlinear applications. On the other hand, free-standing nanowires synthesized via a bottom-up growth present great material diversity and structural uniformity, but precisely assembling free-standing nanowires for on-demand photonic functionality remains a great challenge. Here we report hybrid integration of free-standing nanowires into silicon photonics with high flexibility by coupling free-standing nanowires onto target silicon waveguides that are simultaneously used for precise positioning. Coupling efficiency between a free-standing nanowire and a silicon waveguide is up to ~97% in the telecommunication band. A hybrid nonlinear-free-standing nanowires-silicon waveguides Mach-Zehnder interferometer and a racetrack resonator for significantly enhanced optical modulation are experimentally demonstrated, as well as hybrid active-free-standing nanowires-silicon waveguides circuits for light generation. These results suggest an alternative approach to flexible multifunctional on-chip nanophotonic devices.Precisely assembling free-standing nanowires for on-demand photonic functionality remains a challenge. Here, Chen et al. integrate free-standing nanowires into silicon waveguides and show all-optical modulation and light generation on silicon photonic chips.
Optimal Multi-scale Demand-side Management for Continuous Power-Intensive Processes
NASA Astrophysics Data System (ADS)
Mitra, Sumit
With the advent of deregulation in electricity markets and an increasing share of intermittent power generation sources, the profitability of industrial consumers that operate power-intensive processes has become directly linked to the variability in energy prices. Thus, for industrial consumers that are able to adjust to the fluctuations, time-sensitive electricity prices (as part of so-called Demand-Side Management (DSM) in the smart grid) offer potential economical incentives. In this thesis, we introduce optimization models and decomposition strategies for the multi-scale Demand-Side Management of continuous power-intensive processes. On an operational level, we derive a mode formulation for scheduling under time-sensitive electricity prices. The formulation is applied to air separation plants and cement plants to minimize the operating cost. We also describe how a mode formulation can be used for industrial combined heat and power plants that are co-located at integrated chemical sites to increase operating profit by adjusting their steam and electricity production according to their inherent flexibility. Furthermore, a robust optimization formulation is developed to address the uncertainty in electricity prices by accounting for correlations and multiple ranges in the realization of the random variables. On a strategic level, we introduce a multi-scale model that provides an understanding of the value of flexibility of the current plant configuration and the value of additional flexibility in terms of retrofits for Demand-Side Management under product demand uncertainty. The integration of multiple time scales leads to large-scale two-stage stochastic programming problems, for which we need to apply decomposition strategies in order to obtain a good solution within a reasonable amount of time. Hence, we describe two decomposition schemes that can be applied to solve two-stage stochastic programming problems: First, a hybrid bi-level decomposition scheme with novel Lagrangean-type and subset-type cuts to strengthen the relaxation. Second, an enhanced cross-decomposition scheme that integrates Benders decomposition and Lagrangean decomposition on a scenario basis. To demonstrate the effectiveness of our developed methodology, we provide several industrial case studies throughout the thesis.
MacEachen, Ellen; Polzer, Jessica; Clarke, Judy
2008-03-01
Flexible work is now endemic in modern economies. A growing literature both praises work flexibility for accommodating employees' needs and criticizes it for fueling contingency and job insecurity. Although studies have identified varied effects of flexible work, questions remain about the workplace dimensions of flexibility and how occupational workplace health is managed in these workplaces. This paper presents findings from a qualitative study of how managers in the computer software industry situate workplace flexibility and approach worker health. In-depth interviews were conducted with managers (and some workers) at 30 firms in Ontario, Canada. Using a critical discourse analysis approach, we examine managers' optimistic descriptions of flexibility which emphasize how flexible work contributes to workers' life balance. We then contrast this with managers' depictions of flexibility work practices as intense and inescapable. We suggest that the discourse of flexibility, and the work practices they foster, make possible and reinforce an increased intensity of work that is driven by the demands of technological pace and change that characterize the global information technology and computer software industries. Finally, we propose that flexible knowledge work has led to a re-framing of occupational health management involving a focus on what we call "strategies of resilience" that aim to buttress workers' capacities to withstand intensive and uncertain working conditions.
NASA Astrophysics Data System (ADS)
Yang, Wei; Hall, Trevor J.
2013-12-01
The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.
MEMS-Based Communications Systems for Space-Based Applications
NASA Technical Reports Server (NTRS)
DeLosSantos, Hector J.; Brunner, Robert A.; Lam, Juan F.; Hackett, Le Roy H.; Lohr, Ross F., Jr.; Larson, Lawrence E.; Loo, Robert Y.; Matloubian, Mehran; Tangonan, Gregory L.
1995-01-01
As user demand for higher capacity and flexibility in communications satellites increases, new ways to cope with the inherent limitations posed by the prohibitive mass and power consumption, needed to satisfy those requirements, are under investigation. Recent studies suggest that while new satellite architectures are necessary to enable multi-user, multi-data rate, multi-location satellite links, these new architectures will inevitably increase power consumption, and in turn, spacecraft mass, to such an extent that their successful implementation will demand novel lightweight/low power hardware approaches. In this paper, following a brief introduction to the fundamentals of communications satellites, we address the impact of micro-electro-mechanical systems (MEMS) technology, in particular micro-electro-mechanical (MEM) switches to mitigate the above mentioned problems and show that low-loss/wide bandwidth MEM switches will go a long way towards enabling higher capacity and flexibility space-based communications systems.
An electron microscope for the aberration-corrected era.
Krivanek, O L; Corbin, G J; Dellby, N; Elston, B F; Keyse, R J; Murfitt, M F; Own, C S; Szilagyi, Z S; Woodruff, J W
2008-02-01
Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown.
Demand-specific work ability, poor health and working conditions in middle-aged full-time employees.
Nabe-Nielsen, Kirsten; Thielen, Karsten; Nygaard, Else; Thorsen, Sannie Vester; Diderichsen, Finn
2014-07-01
We investigated the prevalence of reduced demand-specific work ability, its association with age, gender, education, poor health, and working conditions, and the interaction between poor health and working conditions regarding reduced demand-specific work ability. We used cross-sectional questionnaire data from 3381 full-time employees responding to questions about vocational education, job demands and social support (working conditions), musculoskeletal pain (MSP) and major depression (MD) (poor health) and seven questions about difficulty managing different job demands (reduced demand-specific work ability). Reduced demand-specific work ability varied from 9% to 19% among the 46-year old and from 11% to 21% among the 56-year old. Age was associated with two, gender with four, and education with all measures of reduced demand-specific work ability. MSP was associated with four and MD was associated with six measures of reduced demand-specific work ability. We found no interaction between working conditions and poor health regarding reduced demand-specific work ability. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
2015-04-30
procedures to retain control over strategic decisions (Hatch & Cunliffe, 2013). Large U.S. corporations such as McDonalds, with its 33,000 restaurants and...1.7 million workers across 119 nations, understand that their 68 million customers per day are demanding changes that their famously consistent and...providing business units greater flexibility and autonomy to meet local customer demands (Hatch & Cunliffe, 2013). So why not build a layered system of
NASA Astrophysics Data System (ADS)
Liu, Yueming; Tian, Weijian; Zhang, Shaojun
2009-05-01
Soft and flexible grating sensing waveguides is urgently demanded in application of micro-bending sensing and surface distortion sensing in medical catheter and smart skin sensing unit etc. Based on Nano-imprint Lithography and micro-replication process, polymer grating waveguides with core size 4μm×20μm and pitch 0.75μm are fabricated successfully in this paper. This novel grating waveguides is soft and flexible enough for related application and with the bio-medical safe feature when used in human body catheter. Fabricated processes are presented including the fabrication of micro mould and UV-replication process, and relative skills are discussed also in this paper.
Path connectivity based spectral defragmentation in flexible bandwidth networks.
Wang, Ying; Zhang, Jie; Zhao, Yongli; Zhang, Jiawei; Zhao, Jie; Wang, Xinbo; Gu, Wanyi
2013-01-28
Optical networks with flexible bandwidth provisioning have become a very promising networking architecture. It enables efficient resource utilization and supports heterogeneous bandwidth demands. In this paper, two novel spectrum defragmentation approaches, i.e. Maximum Path Connectivity (MPC) algorithm and Path Connectivity Triggering (PCT) algorithm, are proposed based on the notion of Path Connectivity, which is defined to represent the maximum variation of node switching ability along the path in flexible bandwidth networks. A cost-performance-ratio based profitability model is given to denote the prons and cons of spectrum defragmentation. We compare these two proposed algorithms with non-defragmentation algorithm in terms of blocking probability. Then we analyze the differences of defragmentation profitability between MPC and PCT algorithms.
Plasma jet printing for flexible substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandhiraman, Ram P.; Singh, Eric; Diaz-Cartagena, Diana C.
2016-03-21
Recent interest in flexible electronics and wearable devices has created a demand for fast and highly repeatable printing processes suitable for device manufacturing. Robust printing technology is critical for the integration of sensors and other devices on flexible substrates such as paper and textile. An atmospheric pressure plasma-based printing process has been developed to deposit different types of nanomaterials on flexible substrates. Multiwalled carbon nanotubes were deposited on paper to demonstrate site-selective deposition as well as direct printing without any type of patterning. Plasma-printed nanotubes were compared with non-plasma-printed samples under similar gas flow and other experimental conditions and foundmore » to be denser with higher conductivity. The utility of the nanotubes on the paper substrate as a biosensor and chemical sensor was demonstrated by the detection of dopamine, a neurotransmitter, and ammonia, respectively.« less
NASA Astrophysics Data System (ADS)
Xu, Boyi; Xu, Li Da; Fei, Xiang; Jiang, Lihong; Cai, Hongming; Wang, Shuai
2017-08-01
Facing the rapidly changing business environments, implementation of flexible business process is crucial, but difficult especially in data-intensive application areas. This study aims to provide scalable and easily accessible information resources to leverage business process management. In this article, with a resource-oriented approach, enterprise data resources are represented as data-centric Web services, grouped on-demand of business requirement and configured dynamically to adapt to changing business processes. First, a configurable architecture CIRPA involving information resource pool is proposed to act as a scalable and dynamic platform to virtualise enterprise information resources as data-centric Web services. By exposing data-centric resources as REST services in larger granularities, tenant-isolated information resources could be accessed in business process execution. Second, dynamic information resource pool is designed to fulfil configurable and on-demand data accessing in business process execution. CIRPA also isolates transaction data from business process while supporting diverse business processes composition. Finally, a case study of using our method in logistics application shows that CIRPA provides an enhanced performance both in static service encapsulation and dynamic service execution in cloud computing environment.
Feng, S. F.; Schwemmer, M.; Gershman, S. J.; Cohen, J. D.
2014-01-01
Why is it that behaviors that rely on control, so striking in their diversity and flexibility, are also subject to such striking limitations? Typically, people cannot engage in more than a few — and usually only a single — control-demanding task at a time. This limitation was a defining element in the earliest conceptualizations of controlled processing, it remains one of the most widely accepted axioms of cognitive psychology, and is even the basis for some laws (e.g., against the use of mobile devices while driving). Remarkably, however, the source of this limitation is still not understood. Here, we examine one potential source of this limitation, in terms of a tradeoff between the flexibility and efficiency of representation (“multiplexing”) and the simultaneous engagement of different processing pathways (“multitasking”). We show that even a modest amount of multiplexing rapidly introduces cross-talk among processing pathways, thereby constraining the number that can be productively engaged at once. We propose that, given the large number of advantages of efficient coding, the human brain has favored this over the capacity for multitasking of control-demanding processes. PMID:24481850
Feng, S F; Schwemmer, M; Gershman, S J; Cohen, J D
2014-03-01
Why is it that behaviors that rely on control, so striking in their diversity and flexibility, are also subject to such striking limitations? Typically, people cannot engage in more than a few-and usually only a single-control-demanding task at a time. This limitation was a defining element in the earliest conceptualizations of controlled processing; it remains one of the most widely accepted axioms of cognitive psychology, and is even the basis for some laws (e.g., against the use of mobile devices while driving). Remarkably, however, the source of this limitation is still not understood. Here, we examine one potential source of this limitation, in terms of a trade-off between the flexibility and efficiency of representation ("multiplexing") and the simultaneous engagement of different processing pathways ("multitasking"). We show that even a modest amount of multiplexing rapidly introduces cross-talk among processing pathways, thereby constraining the number that can be productively engaged at once. We propose that, given the large number of advantages of efficient coding, the human brain has favored this over the capacity for multitasking of control-demanding processes.
Embedding an evolving agricultural system within a water resources planning model
NASA Astrophysics Data System (ADS)
Young, C.; Joyce, B.; Purkey, D.; Dale, L.; Mehta, V.
2008-12-01
The Water Evaluation and Planning (WEAP) system is a comprehensive, fully integrated water basin analysis tool. It is a simulation model that includes a robust and flexible representation of water demands from all sectors and flexible, programmable operating rules for infrastructure elements such as reservoirs, canals, and hydropower projects. Additionally, it has watershed rainfall-runoff modeling capabilities that allow all portions of the water infrastructure and demand to be dynamically nested within the underlying hydrological processes. WEAP also allows for linking with other models to provide feedback mechanisms whereby the management regime can be altered to respond to changing water supply conditions. This study presents an application wherein the year-to-year cropping decisions of farmers in California's Central Valley are reactive to changes in water supply conditions. To capture this dynamic, we have included in WEAP a link to an agricultural economics model (the Central Valley Production Model) that relates cropping decisions to water supply conditions (surface water allocations and depth to groundwater) and economic considerations (cost of electricity) at the time of planting. This linked model was used to evaluate changes in water supply and demand in the context of projected climate change over the next century.
Dynamic management of integrated residential energy systems
NASA Astrophysics Data System (ADS)
Muratori, Matteo
This study combines principles of energy systems engineering and statistics to develop integrated models of residential energy use in the United States, to include residential recharging of electric vehicles. These models can be used by government, policymakers, and the utility industry to provide answers and guidance regarding the future of the U.S. energy system. Currently, electric power generation must match the total demand at each instant, following seasonal patterns and instantaneous fluctuations. Thus, one of the biggest drivers of costs and capacity requirement is the electricity demand that occurs during peak periods. These peak periods require utility companies to maintain operational capacity that often is underutilized, outdated, expensive, and inefficient. In light of this, flattening the demand curve has long been recognized as an effective way of cutting the cost of producing electricity and increasing overall efficiency. The problem is exacerbated by expected widespread adoption of non-dispatchable renewable power generation. The intermittent nature of renewable resources and their non-dispatchability substantially limit the ability of electric power generation of adapting to the fluctuating demand. Smart grid technologies and demand response programs are proposed as a technical solution to make the electric power demand more flexible and able to adapt to power generation. Residential demand response programs offer different incentives and benefits to consumers in response to their flexibility in the timing of their electricity consumption. Understanding interactions between new and existing energy technologies, and policy impacts therein, is key to driving sustainable energy use and economic growth. Comprehensive and accurate models of the next-generation power system allow for understanding the effects of new energy technologies on the power system infrastructure, and can be used to guide policy, technology, and economic decisions. This dissertation presents a bottom-up highly resolved model of a generic residential energy eco-system in the United States. The model is able to capture the entire energy footprint of an individual household, to include all appliances, space conditioning systems, in-home charging of plug-in electric vehicles, and any other energy needs, viewing residential and transportation energy needs as an integrated continuum. The residential energy eco-system model is based on a novel bottom-up approach that quantifies consumer energy use behavior. The incorporation of stochastic consumer behaviors allows capturing the electricity consumption of each residential specific end-use, providing an accurate estimation of the actual amount of available controllable resources, and for a better understanding of the potential of residential demand response programs. A dynamic energy management framework is then proposed to manage electricity consumption inside each residential energy eco-system. Objective of the dynamic energy management framework is to optimize the scheduling of all the controllable appliances and in-home charging of plug-in electric vehicles to minimize cost. Such an automated energy management framework is used to simulate residential demand response programs, and evaluate their impact on the electric power infrastructure. For instance, time-varying electricity pricing might lead to synchronization of the individual residential demands, creating pronounced rebound peaks in the aggregate demand that are higher and steeper than the original demand peaks that the time-varying electricity pricing structure intended to eliminate. The modeling tools developed in this study can serve as a virtual laboratory for investigating fundamental economic and policy-related questions regarding the interplay of individual consumers with energy use. The models developed allow for evaluating the impact of different energy policies, technology adoption, and electricity price structures on the total residential electricity demand. In particular, two case studies are reported in this dissertation to illustrate application of the tools developed. The first considers the impact of market penetration of plug-in electric vehicles on the electric power infrastructure. The second provides a quantitative comparison of the impact of different electricity price structures on residential demand response. Simulation results and an electricity price structure, called Multi-TOU, aimed at solving the rebound peak issue, are presented.
The role of physiology in the development of golf performance.
Smith, Mark F
2010-08-01
The attainment of consistent high performance in golf requires effective physical conditioning that is carefully designed and monitored in accordance with the on-course demands the player will encounter. Appreciating the role that physiology plays in the attainment of consistent performance, and how a player's physicality can inhibit performance progression, supports the notion that the application of physiology is fundamental for any player wishing to excel in golf. With cardiorespiratory, metabolic, hormonal, musculoskeletal and nutritional demands acting on the golfer within and between rounds, effective physical screening of a player will ensure physiological and anatomical deficiencies that may influence performance are highlighted. The application of appropriate golf-specific assessment methods will ensure that physical attributes that have a direct effect on golf performance can be measured reliably and accurately. With the physical development of golf performance being achieved through a process of conditioning with the purpose of inducing changes in structural and metabolic functions, training must focus on foundation whole-body fitness and golf-specific functional strength and flexibility activities. For long-term player improvement to be effective, comprehensive monitoring will ensure the player reaches an optimal physical state at predetermined times in the competitive season. Through continual assessment of a player's physical attributes, training effectiveness and suitability, and the associated adaptive responses, key physical factors that may impact most on performance success can be determined.
ERIC Educational Resources Information Center
Fullerton, Jon
2004-01-01
Examines the politics of school budgeting. School managers operate with primitive accounting systems that can mask financial problems for years and are trapped by state, federal, and union mandates. Reforms include allowing districts flexibility to reallocate money; demanding both instructional leadership and financial expertise from…
The Nature and Necessity of Operational Flexibility in the Emergency Department
Ferrand, Yann B.; Laker, Lauren F.; Froehle, Craig M.; Vogus, Timothy J.; Dittus, Robert S.; Kripalani, Sunil; Pines, Jesse M.
2014-01-01
Hospital-based emergency departments (ED), given their high cost and major role in allocating care resources,are at the center of the debate regarding how to maximize value in delivering healthcare in the United States. In order to operate effectively and create value, EDs must be flexible: the ability to rapidly adapt to the highly variable needs of patients. The concept of flexibility has not been well described in the ED literature. We introduce the concept,outline its potential benefits, and provide some illustrative examples to facilitate incorporating flexibility into ED management. We draw upon operations research and organizational theory to identify and describe five forms of flexibility: physical, human resource, volume, behavioral, and conceptual. Each form of flexibility may be individually or in combination with others useful in improving ED performance and enhancing value. We also offer suggestions for measuring operational flexibility in the ED. A better understanding of operational flexibility and its application to the ED may help us move away from reactive approaches of managing variable demand to a more systematic approach. We also address the tension between cost and flexibility and outline how “partial flexibility” may potentially help resolve some challenges. Applying concepts of flexibility from other disciplines may help clinicians and administrators think differently about their workflow and provide new insights into managing issues of cost, flow, and quality in the ED. PMID:25233811
Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate
NASA Astrophysics Data System (ADS)
Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan
2015-10-01
Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.
Income distribution trends and future food demand.
Cirera, Xavier; Masset, Edoardo
2010-09-27
This paper surveys the theoretical literature on the relationship between income distribution and food demand, and identifies main gaps of current food modelling techniques that affect the accuracy of food demand projections. At the heart of the relationship between income distribution and food demand is Engel's law. Engel's law establishes that as income increases, households' demand for food increases less than proportionally. A consequence of this law is that the particular shape of the distribution of income across individuals and countries affects the rate of growth of food demand. Our review of the literature suggests that existing models of food demand fail to incorporate the required Engel flexibility when (i) aggregating different food budget shares among households; and (ii) changing budget shares as income grows. We perform simple simulations to predict growth in food demand under alternative income distribution scenarios taking into account nonlinearity of food demand. Results suggest that (i) distributional effects are to be expected from changes in between-countries inequality, rather than within-country inequality; and (ii) simulations of an optimistic and a pessimistic scenario of income inequality suggest that world food demand in 2050 would be 2.7 per cent higher and 5.4 per cent lower than distributional-neutral growth, respectively.
Guo, Xiaoyang; Liu, Xingyuan; Lin, Fengyuan; Li, Hailing; Fan, Yi; Zhang, Nan
2015-05-27
Transparent electrodes are essential components for optoelectronic devices, such as touch panels, organic light-emitting diodes, and solar cells. Indium tin oxide (ITO) is widely used as transparent electrode in optoelectronic devices. ITO has high transparency and low resistance but contains expensive rare elements, and ITO-based devices have poor mechanical flexibility. Therefore, alternative transparent electrodes with excellent opto-electrical performance and mechanical flexibility will be greatly demanded. Here, organics are introduced into dielectric-metal-dielectric structures to construct the transparent electrodes on rigid and flexible substrates. We show that organic-metal-organic (OMO) electrodes have excellent opto-electrical properties (sheet resistance of below 10 Ω sq(-1) at 85% transmission), mechanical flexibility, thermal and environmental stabilities. The OMO-based polymer photovoltaic cells show performance comparable to that of devices based on ITO electrodes. This OMO multilayer structure can therefore be used to produce transparent electrodes suitable for use in a wide range of optoelectronic devices.
Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz.
Zhang, Jiawei; Li, Yunpeng; Zhang, Binglei; Wang, Hanbin; Xin, Qian; Song, Aimin
2015-07-03
Mechanically flexible mobile phones have been long anticipated due to the rapid development of thin-film electronics in the last couple of decades. However, to date, no such phone has been developed, largely due to a lack of flexible electronic components that are fast enough for the required wireless communications, in particular the speed-demanding front-end rectifiers. Here Schottky diodes based on amorphous indium-gallium-zinc-oxide (IGZO) are fabricated on flexible plastic substrates. Using suitable radio-frequency mesa structures, a range of IGZO thicknesses and diode sizes have been studied. The results have revealed an unexpected dependence of the diode speed on the IGZO thickness. The findings enable the best optimized flexible diodes to reach 6.3 GHz at zero bias, which is beyond the critical benchmark speed of 2.45 GHz to satisfy the principal frequency bands of smart phones such as those for cellular communication, Bluetooth, Wi-Fi and global satellite positioning.
Wearable Large-Scale Perovskite Solar-Power Source via Nanocellular Scaffold.
Hu, Xiaotian; Huang, Zengqi; Zhou, Xue; Li, Pengwei; Wang, Yang; Huang, Zhandong; Su, Meng; Ren, Wanjie; Li, Fengyu; Li, Mingzhu; Chen, Yiwang; Song, Yanlin
2017-11-01
Dramatic advances in perovskite solar cells (PSCs) and the blossoming of wearable electronics have triggered tremendous demands for flexible solar-power sources. However, the fracturing of functional crystalline films and transmittance wastage from flexible substrates are critical challenges to approaching the high-performance PSCs with flexural endurance. In this work, a nanocellular scaffold is introduced to architect a mechanics buffer layer and optics resonant cavity. The nanocellular scaffold releases mechanical stresses during flexural experiences and significantly improves the crystalline quality of the perovskite films. The nanocellular optics resonant cavity optimizes light harvesting and charge transportation of devices. More importantly, these flexible PSCs, which demonstrate excellent performance and mechanical stability, are practically fabricated in modules as a wearable solar-power source. A power conversion efficiency of 12.32% for a flexible large-scale device (polyethylene terephthalate substrate, indium tin oxide-free, 1.01 cm 2 ) is achieved. This ingenious flexible structure will enable a new approach for development of wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexibility evaluation of multiechelon supply chains.
Almeida, João Flávio de Freitas; Conceição, Samuel Vieira; Pinto, Luiz Ricardo; de Camargo, Ricardo Saraiva; Júnior, Gilberto de Miranda
2018-01-01
Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution.
Flexibility evaluation of multiechelon supply chains
Conceição, Samuel Vieira; Pinto, Luiz Ricardo; de Camargo, Ricardo Saraiva; Júnior, Gilberto de Miranda
2018-01-01
Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution. PMID:29584755
Comparative Transcriptomics of Seasonal Phenotypic Flexibility in Two North American Songbirds.
Cheviron, Z A; Swanson, D L
2017-11-01
Phenotypic flexibility allows organisms to reversibly alter their phenotypes to match the changing demands of seasonal environments. Because phenotypic flexibility is mediated, at least in part, by changes in gene regulation, comparative transcriptomic studies can provide insights into the mechanistic underpinnings of seasonal phenotypic flexibility, and the extent to which regulatory responses to changing seasons are conserved across species. To begin to address these questions, we sampled individuals of two resident North American songbird species, American goldfinch (Spinus tristis) and black-capped chickadee (Poecile atricapillus) in summer and winter to measure seasonal variation in pectoralis transcriptomic profiles and to identify conserved and species-specific elements of these seasonal profiles. We found that very few genes exhibited divergent responses to changes in season between species, and instead, a core set of over 1200 genes responded to season concordantly in both species. Moreover, several key metabolic pathways, regulatory networks, and gene functional classes were commonly recruited to induce seasonal phenotypic shifts in these species. The seasonal transcriptomic responses mirror winter increases in pectoralis mass and cellular metabolic intensity documented in previous studies of both species, suggesting that these seasonal phenotypic responses are due in part to changes in gene expression. Despite growing evidence of muscle nonshivering thermogenesis (NST) in young precocial birds, we did not find strong evidence of upregulation of genes putatively involved in NST during winter in either species, suggesting that seasonal modification of muscular NST is not a prominent contributor to winter increases in thermogenic capacity for adult passerine birds. Together, these results provide the first comprehensive overview of potential common regulatory mechanisms underlying seasonally flexible phenotypes in wild, free-ranging birds. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Dorval, A D; Christini, D J; White, J A
2001-10-01
We describe a system for real-time control of biological and other experiments. This device, based around the Real-Time Linux operating system, was tested specifically in the context of dynamic clamping, a demanding real-time task in which a computational system mimics the effects of nonlinear membrane conductances in living cells. The system is fast enough to represent dozens of nonlinear conductances in real time at clock rates well above 10 kHz. Conductances can be represented in deterministic form, or more accurately as discrete collections of stochastically gating ion channels. Tests were performed using a variety of complex models of nonlinear membrane mechanisms in excitable cells, including simulations of spatially extended excitable structures, and multiple interacting cells. Only in extreme cases does the computational load interfere with high-speed "hard" real-time processing (i.e., real-time processing that never falters). Freely available on the worldwide web, this experimental control system combines good performance. immense flexibility, low cost, and reasonable ease of use. It is easily adapted to any task involving real-time control, and excels in particular for applications requiring complex control algorithms that must operate at speeds over 1 kHz.
Providing Goal-Based Autonomy for Commanding a Spacecraft
NASA Technical Reports Server (NTRS)
Rabideau, Gregg; Chien, Steve; Liu, Ning
2008-01-01
A computer program for use aboard a scientific-exploration spacecraft autonomously selects among goals specified in high-level requests and generates corresponding sequences of low-level commands, understandable by spacecraft systems. (As used here, 'goals' signifies specific scientific observations.) From a dynamic, onboard set of goals that could oversubscribe spacecraft resources, the program selects a non-oversubscribing subset that maximizes a quality metric. In an early version of the program, the requested goals are assumed to have fixed starting times and durations. Goals can conflict by exceeding a limit on either the number of separate goals or the number of overlapping goals making demands on the same resource. The quality metric used in this version is chosen to ensure that a goal will never be replaced by another having lower priority. At any time, goals can be added or removed, or their priorities can be changed, and the 'best' goal will be selected. Once a goal has been selected, the program implements a robust, flexible approach to generation of low-level commands: Rather than generate rigid sequences with fixed starting times, the program specifies flexible sequences that can be altered to accommodate run time variations.
Efficient traffic grooming with dynamic ONU grouping for multiple-OLT-based access network
NASA Astrophysics Data System (ADS)
Zhang, Shizong; Gu, Rentao; Ji, Yuefeng; Wang, Hongxiang
2015-12-01
Fast bandwidth growth urges large-scale high-density access scenarios, where the multiple Passive Optical Networking (PON) system clustered deployment can be adopted as an appropriate solution to fulfill the huge bandwidth demands, especially for a future 5G mobile network. However, the lack of interaction between different optical line terminals (OLTs) results in part of the bandwidth resources waste. To increase the bandwidth efficiency, as well as reduce bandwidth pressure at the edge of a network, we propose a centralized flexible PON architecture based on Time- and Wavelength-Division Multiplexing PON (TWDM PON). It can provide flexible affiliation for optical network units (ONUs) and different OLTs to support access network traffic localization. Specifically, a dynamic ONU grouping algorithm (DGA) is provided to obtain the minimal OLT outbound traffic. Simulation results show that DGA obtains an average 25.23% traffic gain increment under different OLT numbers within a small ONU number situation, and the traffic gain will increase dramatically with the increment of the ONU number. As the DGA can be deployed easily as an application running above the centralized control plane, the proposed architecture can be helpful to improve the network efficiency for future traffic-intensive access scenarios.
Model-based setup assistant for progressive tools
NASA Astrophysics Data System (ADS)
Springer, Robert; Gräler, Manuel; Homberg, Werner; Henke, Christian; Trächtler, Ansgar
2018-05-01
In the field of production systems, globalization and technological progress lead to increasing requirements regarding part quality, delivery time and costs. Hence, today's production is challenged much more than a few years ago: it has to be very flexible and produce economically small batch sizes to satisfy consumer's demands and avoid unnecessary stock. Furthermore, a trend towards increasing functional integration continues to lead to an ongoing miniaturization of sheet metal components. In the industry of electric connectivity for example, the miniaturized connectors are manufactured by progressive tools, which are usually used for very large batches. These tools are installed in mechanical presses and then set up by a technician, who has to manually adjust a wide range of punch-bending operations. Disturbances like material thickness, temperatures, lubrication or tool wear complicate the setup procedure. In prospect of the increasing demand of production flexibility, this time-consuming process has to be handled more and more often. In this paper, a new approach for a model-based setup assistant is proposed as a solution, which is exemplarily applied in combination with a progressive tool. First, progressive tools, more specifically, their setup process is described and based on that, the challenges are pointed out. As a result, a systematic process to set up the machines is introduced. Following, the process is investigated with an FE-Analysis regarding the effects of the disturbances. In the next step, design of experiments is used to systematically develop a regression model of the system's behaviour. This model is integrated within an optimization in order to calculate optimal machine parameters and the following necessary adjustment of the progressive tool due to the disturbances. Finally, the assistant is tested in a production environment and the results are discussed.
Optical sensor array platform based on polymer electronic devices
NASA Astrophysics Data System (ADS)
Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.
2007-10-01
Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, April M; McManamay, Ryan A; Nagle, Nicholas N
Abstract As urban areas continue to grow and evolve in a world of increasing environmental awareness, the need for high resolution spatially explicit estimates for energy and water demand has become increasingly important. Though current modeling efforts mark significant progress in the effort to better understand the spatial distribution of energy and water consumption, many are provided at a course spatial resolution or rely on techniques which depend on detailed region-specific data sources that are not publicly available for many parts of the U.S. Furthermore, many existing methods do not account for errors in input data sources and may thereforemore » not accurately reflect inherent uncertainties in model outputs. We propose an alternative and more flexible Monte-Carlo simulation approach to high-resolution residential and commercial electricity and water consumption modeling that relies primarily on publicly available data sources. The method s flexible data requirement and statistical framework ensure that the model is both applicable to a wide range of regions and reflective of uncertainties in model results. Key words: Energy Modeling, Water Modeling, Monte-Carlo Simulation, Uncertainty Quantification Acknowledgment This manuscript has been authored by employees of UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.« less
PRIMA Platform capability for satellite missions in LEO and MEO (SAR, Optical, GNSS, TLC, etc.)
NASA Astrophysics Data System (ADS)
Logue, T.; L'Abbate, M.
2016-12-01
PRIMA (Piattaforma Riconfigurabile Italiana Multi Applicativa) is a multi-mission 3-axis stabilized Platform developed by Thales Alenia Space Italia under ASI contract.PRIMA is designed to operate for a wide variety of applications from LEO, MEO up to GEO and for different classes of satellites Platform Family. It has an extensive heritage in flight heritage (LEO and MEO Satellites already fully operational) in which it has successfully demonstrated the flexibility of use, low management costs and the ability to adapt to changing operational conditions.The flexibility and modularity of PRIMA provides unique capability to satisfy different Payload design and mission requirements, thanks to the utilization of recurrent adaptable modules (Service Module-SVM, Propulsion Module-PPM, Payload Module-PLM) to obtain mission dependent configuration. PRIMA product line development is continuously progressing, and is based on state of art technology, modular architecture and an Integrated Avionics. The aim is to maintain and extent multi-mission capabilities to operate in different environments (LEO to GEO) with different payloads (SAR, Optical, GNSS, TLC, etc.). The design is compatible with a wide range of European and US equipment suppliers, thus maximising cooperation opportunity. Evolution activities are mainly focused on the following areas: Structure: to enable Spacecraft configurations for multiple launch; Thermal Control: to guarantee thermal limits for new missions, more demanding in terms of environment and payload; Electrical: to cope with higher power demand (e.g. electrical propulsion, wide range of payloads, etc.) considering orbital environment (e.g. lighting condition); Avionics : AOCS solutions optimized on mission (LEO observation driven by agility and pointing, agility not a driver for GEO). Use of sensors and actuators tailored for specific mission and related environments. Optimised Propulsion control. Data Handling, SW and FDIR mission customization, ensuring robust storage and downlink capability, long lasting autonomy and flexible operations in all mission phases, nominal and non-nominal conditions. This paper starting from PRIMA flight achievements will then outline PRIMA family multi-purpose features addressed to meet multi mission requirements.
Method and apparatus for transmutation of atomic nuclei
Maenchen, John Eric; Ruiz, Carlos Leon
1998-01-01
Insuring a constant supply of radioisotopes is of great importance to medicine and industry. This invention addresses this problem, and helps to solve it by introducing a new apparatus for transmutation of isotopes which enables swift and flexible production on demand.
Xu, Zijie; Li, Teng; Zhang, Fayin; Hong, Xiaodan; Xie, Shuyao; Ye, Meidan; Guo, Wenxi; Liu, Xiangyang
2017-03-17
The rapid development of modern electronics has given rise to a higher demand for flexible and wearable energy sources. Flexible transparent conducting electrodes (TCEs) are one of the essential components of flexible/wearable thin-film solar cells (SCs). In this regard, we present highly transparent and conducting CuS-nanosheet (NS) networks with an optimized sheet resistance (R s ) as low as 50 Ω sq -1 at 85% transmittance as a counter electrode (CE) for flexible quantum-dot solar cells (QDSCs). The CuS NS network electrode exhibits remarkable mechanical flexibility under bending tests compared to traditional ITO/plastic substrates and sputtered CuS films. Herein, CuS NS networks not only served as conducting films for collecting electrons from the external circuit, but also served as superior catalysts for reducing polysulfide (S 2- /S x 2- ) electrolytes. A power conversion efficiency (PCE) up to 3.25% was achieved for the QDSCs employing CuS NS networks as CEs, which was much higher than those of the devices based on Pt networks and sputtered CuS films. We believe that such CuS network TCEs with high flexibility, transparency, conductivity and catalytic activity could be widely used in making wearable electronic products.
The nature and necessity of operational flexibility in the emergency department.
Ward, Michael J; Ferrand, Yann B; Laker, Lauren F; Froehle, Craig M; Vogus, Timothy J; Dittus, Robert S; Kripalani, Sunil; Pines, Jesse M
2015-02-01
Hospital-based emergency departments (EDs), given their high cost and major role in allocating care resources, are at the center of the debate about how to maximize value in delivering health care in the United States. To operate effectively and create value, EDs must be flexible, having the ability to rapidly adapt to the highly variable needs of patients. The concept of flexibility has not been well described in the ED literature. We introduce the concept, outline its potential benefits, and provide some illustrative examples to facilitate incorporating flexibility into ED management. We draw on operations research and organizational theory to identify and describe 5 forms of flexibility: physical, human resource, volume, behavioral, and conceptual. Each form of flexibility may be useful individually or in combination with other forms in improving ED performance and enhancing value. We also offer suggestions for measuring operational flexibility in the ED. A better understanding of operational flexibility and its application to the ED may help us move away from reactive approaches of managing variable demand to a more systematic approach. We also address the tension between cost and flexibility and outline how "partial flexibility" may help resolve some challenges. Applying concepts of flexibility from other disciplines may help clinicians and administrators think differently about their workflow and provide new insights into managing issues of cost, flow, and quality in the ED. Copyright © 2014 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Electrophysiological evidence for flexible goal-directed cue processing during episodic retrieval.
Herron, Jane E; Evans, Lisa H; Wilding, Edward L
2016-05-15
A widely held assumption is that memory retrieval is aided by cognitive control processes that are engaged flexibly in service of memory retrieval and memory decisions. While there is some empirical support for this view, a notable exception is the absence of evidence for the flexible use of retrieval control in functional neuroimaging experiments requiring frequent switches between tasks with different cognitive demands. This absence is troublesome in so far as frequent switches between tasks mimic some of the challenges that are typically placed on memory outside the laboratory. In this experiment we instructed participants to alternate frequently between three episodic memory tasks requiring item recognition or retrieval of one of two different kinds of contextual information encoded in a prior study phase (screen location or encoding task). Event-related potentials (ERPs) elicited by unstudied items in the two tasks requiring retrieval of study context were reliably different, demonstrating for the first time that ERPs index task-specific processing of retrieval cues when retrieval goals change frequently. The inclusion of the item recognition task was a novel and important addition in this study, because only the ERPs elicited by unstudied items in one of the two context conditions diverged from those in the item recognition condition. This outcome constrains functional interpretations of the differences that emerged between the two context conditions and emphasises the utility of this baseline in functional imaging studies of retrieval processing operations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Electrophysiological evidence for flexible goal-directed cue processing during episodic retrieval
Herron, Jane E.; Evans, Lisa H.; Wilding, Edward L.
2016-01-01
A widely held assumption is that memory retrieval is aided by cognitive control processes that are engaged flexibly in service of memory retrieval and memory decisions. While there is some empirical support for this view, a notable exception is the absence of evidence for the flexible use of retrieval control in functional neuroimaging experiments requiring frequent switches between tasks with different cognitive demands. This absence is troublesome in so far as frequent switches between tasks mimic some of the challenges that are typically placed on memory outside the laboratory. In this experiment we instructed participants to alternate frequently between three episodic memory tasks requiring item recognition or retrieval of one of two different kinds of contextual information encoded in a prior study phase (screen location or encoding task). Event-related potentials (ERPs) elicited by unstudied items in the two tasks requiring retrieval of study context were reliably different, demonstrating for the first time that ERPs index task-specific processing of retrieval cues when retrieval goals change frequently. The inclusion of the item recognition task was a novel and important addition in this study, because only the ERPs elicited by unstudied items in one of the two context conditions diverged from those in the item recognition condition. This outcome constrains functional interpretations of the differences that emerged between the two context conditions and emphasises the utility of this baseline in functional imaging studies of retrieval processing operations. PMID:26892854
Optimized maritime emergency resource allocation under dynamic demand.
Zhang, Wenfen; Yan, Xinping; Yang, Jiaqi
2017-01-01
Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand.
Scheduling Non-Preemptible Jobs to Minimize Peak Demand
Yaw, Sean; Mumey, Brendan
2017-10-28
Our paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We then focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown tomore » be NP-hard. These results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.« less
Scheduling Non-Preemptible Jobs to Minimize Peak Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaw, Sean; Mumey, Brendan
Our paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We then focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown tomore » be NP-hard. These results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.« less
Optimized maritime emergency resource allocation under dynamic demand
Yan, Xinping; Yang, Jiaqi
2017-01-01
Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand. PMID:29240792
Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Liu, Yuan; Huang, Yu; Duan, Xiangfeng
2013-05-28
Flexible solid-state supercapacitors are of considerable interest as mobile power supply for future flexible electronics. Graphene or carbon nanotubes based thin films have been used to fabricate flexible solid-state supercapacitors with high gravimetric specific capacitances (80-200 F/g), but usually with a rather low overall or areal specific capacitance (3-50 mF/cm(2)) due to the ultrasmall electrode thickness (typically a few micrometers) and ultralow mass loading, which is not desirable for practical applications. Here we report the exploration of a three-dimensional (3D) graphene hydrogel for the fabrication of high-performance solid-state flexible supercapacitors. With a highly interconnected 3D network structure, graphene hydrogel exhibits exceptional electrical conductivity and mechanical robustness to make it an excellent material for flexible energy storage devices. Our studies demonstrate that flexible supercapacitors with a 120 μm thick graphene hydrogel thin film can exhibit excellent capacitive characteristics, including a high gravimetric specific capacitance of 186 F/g (up to 196 F/g for a 42 μm thick electrode), an unprecedented areal specific capacitance of 372 mF/cm(2) (up to 402 mF/cm(2) for a 185 μm thick electrode), low leakage current (10.6 μA), excellent cycling stability, and extraordinary mechanical flexibility. This study demonstrates the exciting potential of 3D graphene macrostructures for high-performance flexible energy storage devices.
MATLAB/Simulink Pulse-Echo Ultrasound System Simulator Based on Experimentally Validated Models.
Kim, Taehoon; Shin, Sangmin; Lee, Hyongmin; Lee, Hyunsook; Kim, Heewon; Shin, Eunhee; Kim, Suhwan
2016-02-01
A flexible clinical ultrasound system must operate with different transducers, which have characteristic impulse responses and widely varying impedances. The impulse response determines the shape of the high-voltage pulse that is transmitted and the specifications of the front-end electronics that receive the echo; the impedance determines the specification of the matching network through which the transducer is connected. System-level optimization of these subsystems requires accurate modeling of pulse-echo (two-way) response, which in turn demands a unified simulation of the ultrasonics and electronics. In this paper, this is realized by combining MATLAB/Simulink models of the high-voltage transmitter, the transmission interface, the acoustic subsystem which includes wave propagation and reflection, the receiving interface, and the front-end receiver. To demonstrate the effectiveness of our simulator, the models are experimentally validated by comparing the simulation results with the measured data from a commercial ultrasound system. This simulator could be used to quickly provide system-level feedback for an optimized tuning of electronic design parameters.
2014-01-01
Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g-1 at current densities of 5, 10, 15, 20, and 25 A g-1, respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands. PMID:25276099
NASA Technical Reports Server (NTRS)
Benavente, Javier E.; Luce, Norris R.
1989-01-01
Demands for nonlinear time history simulations of large, flexible multibody dynamic systems has created a need for efficient interfaces between finite-element modeling programs and time-history simulations. One such interface, TREEFLX, an interface between NASTRAN and TREETOPS, a nonlinear dynamics and controls time history simulation for multibody structures, is presented and demonstrated via example using the proposed Space Station Mobile Remote Manipulator System (MRMS). The ability to run all three programs (NASTRAN, TREEFLX and TREETOPS), in addition to other programs used for controller design and model reduction (such as DMATLAB and TREESEL, both described), under a UNIX Workstation environment demonstrates the flexibility engineers now have in designing, developing and testing control systems for dynamically complex systems.
Averaging business cycles vs. myopia: Do we need a long term vision when developing IRP?
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, C.; Gupta, P.C.
1995-05-01
Utility demand forecasting is inherently imprecise due to the number of uncertainties resulting from business cycles, policy making, technology breakthroughs, national and international political upheavals and the limitations of the forecasting tools. This implies that revisions based primarily on recent experience could lead to unstable forecasts. Moreover, new planning tools are required that provide an explicit consideration of uncertainty and lead to flexible and robust planning tools are required that provide an explicit consideration of uncertainty and lead to flexible and robust planning decisions.
Polyimide-Epoxy Composites with Superior Bendable Properties for Application in Flexible Electronics
NASA Astrophysics Data System (ADS)
Lee, Sangyoup; Yoo, Taewon; Han, Youngyu; Kim, Hanglim; Han, Haksoo
2017-08-01
The need for flexible electronics with outstanding bending properties is increasing due to the demand for wearable devices and next-generation flexible or rollable smartphones. In addition, the requirements for flexible or rigid-flexible electronics are sharply increasing to achieve the design of space-saving electronic devices. In this regard, coverlay (CL) film is a key material used in the bending area of flexible electronics, albeit infrequently. Because flexible electronics undergo folding and unfolding numerous times, CL films with superior mechanical and bending properties are required so that the bending area can endure such severe stress. However, because current CL films are only used for a designated bending area in the flexible electronics panel, their highly complicated and expensive manufacturing procedure is a disadvantage. In addition, the thickness of CL films must be decreased to satisfy the ongoing requirement for increasingly thin products. However, due to the limitations of the two-layer structure of existing CL films, the manufacturing process cannot be made more cost effective by simply applying more thin film onto the board. To address this problem, we have developed liquid coverlay inks (LCIs) with superior bendable properties, in comparison with CL films, when applied onto flexible electronics using a screen-printing method. The results show that LCIs have the potential to become one of the leading candidates to replace existing CL films because of their lower cost and faster manufacturing process.
Musculoskeletal, biomechanical, and physiological gender differences in the US military.
Allison, Katelyn F; Keenan, Karen A; Sell, Timothy C; Abt, John P; Nagai, Takashi; Deluzio, Jennifer; McGrail, Mark; Lephart, Scott M
2015-01-01
The repeal of the Direct Ground Combat Assignment Rule has renewed focus on examining performance capabilities of female military personnel and their ability to occupy previously restricted military occupational specialties. Previous research has revealed female Soldiers suffer a greater proportion of musculoskeletal injuries compared to males, including a significantly higher proportion of lower extremity, knee, and overuse injuries. Potential differences may also exist in musculoskeletal, biomechanical, and physiological characteristics between male and female Soldiers requiring implementation of gender-specific training in order to mitigate injury risk and enhance performance. To examine differences in musculoskeletal, biomechanical, and physiological characteristics in male and female Soldiers. A total of 406 101st Airborne Division (Air Assault) Soldiers (348 male; 58 female) participated. Subjects underwent testing for flexibility, isokinetic and isometric strength (percent body weight), single-leg balance, lower body biomechanics during a stop jump and drop landing, body composition, anaerobic power/capacity, and aerobic capacity. Independent t tests assessed between-group comparisons. Women demonstrated significantly greater flexibility (P<.01-P<.001) and better balance (P≤.001) than men. Men demonstrated significantly greater strength (P≤.001), aerobic capacity (47.5±7.6 vs 40.3±5.4 ml/kg/min, P<.001), anaerobic power (13.3±2.1 vs 9.5±1.7 W/kg, P<.001), and anaerobic capacity (7.8±1.0 vs 6.1±0.8 W/kg, P<.001) and lower body fat (20.1±7.5 vs 26.7±5.7 (%BF), P<.001). Women demonstrated significantly greater hip flexion and knee valgus at initial contact during both the stop jump and drop landing tasks and greater knee flexion at initial contact during the drop landing task (P<.05-P<.001). Gender differences exist in biomechanical, musculoskeletal, and physiological characteristics. Sex-specific interventions may aid in improving such characteristics to optimize physical readiness and decrease the injury risk during gender-neutral training, and decreasing between-sex variability in performance characteristics may result in enhanced overall unit readiness. Identification of sex-specific differences in injury patterns and characteristics should facilitate adjustments in training in order for both sexes to meet the gender-neutral occupational demands for physically demanding military occupational specialties.
Method and apparatus for transmutation of atomic nuclei
Maenchen, J.E.; Ruiz, C.L.
1998-12-08
Insuring a constant supply of radioisotopes is of great importance to medicine and industry. This invention addresses this problem, and helps to solve it by introducing a new apparatus for transmutation of isotopes which enables swift and flexible production on demand. 9 figs.
Method and apparatus for transmutation of atomic nuclei
Maenchen, J.E.; Ruiz, C.L.
1998-06-09
Insuring a constant supply of radioisotopes is of great importance to medicine and industry. This invention addresses this problem, and helps to solve it by introducing a new apparatus for transmutation of isotopes which enables swift and flexible production on demand. 9 figs.
Word Recognition Reflects Dimension-Based Statistical Learning
ERIC Educational Resources Information Center
Idemaru, Kaori; Holt, Lori L.
2011-01-01
Speech processing requires sensitivity to long-term regularities of the native language yet demands listeners to flexibly adapt to perturbations that arise from talker idiosyncrasies such as nonnative accent. The present experiments investigate whether listeners exhibit "dimension-based statistical learning" of correlations between acoustic…
ERIC Educational Resources Information Center
Goens, George A.; Clover, Sharon I. R.
School organizations must become responsive and flexible to address rapidly changing social, economic, and demographic conditions. Reform attempts to date have not worked because they were layered on old structures and perceptions in a fragmented, piecemeal fashion. The fundamental transformation of education that is required demands a paradigm…
DOT National Transportation Integrated Search
2009-02-01
To help meet increasing transportation demands, the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU) created three programs to invest federal funds in national and regional transportation infrastructur...
Bhattarai, Bishnu P.; Myers, Kurt S.; Bak-Jensen, Brigitte; ...
2017-05-17
This paper determines optimum aggregation areas for a given distribution network considering spatial distribution of loads and costs of aggregation. An elitist genetic algorithm combined with a hierarchical clustering and a Thevenin network reduction is implemented to compute strategic locations and aggregate demand within each area. The aggregation reduces large distribution networks having thousands of nodes to an equivalent network with few aggregated loads, thereby significantly reducing the computational burden. Furthermore, it not only helps distribution system operators in making faster operational decisions by understanding during which time of the day will be in need of flexibility, from which specificmore » area, and in which amount, but also enables the flexibilities stemming from small distributed resources to be traded in various power/energy markets. A combination of central and local aggregation scheme where a central aggregator enables market participation, while local aggregators materialize the accepted bids, is implemented to realize this concept. The effectiveness of the proposed method is evaluated by comparing network performances with and without aggregation. Finally, for a given network configuration, steady-state performance of aggregated network is significantly accurate (≈ ±1.5% error) compared to very high errors associated with forecast of individual consumer demand.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattarai, Bishnu P.; Myers, Kurt S.; Bak-Jensen, Brigitte
This paper determines optimum aggregation areas for a given distribution network considering spatial distribution of loads and costs of aggregation. An elitist genetic algorithm combined with a hierarchical clustering and a Thevenin network reduction is implemented to compute strategic locations and aggregate demand within each area. The aggregation reduces large distribution networks having thousands of nodes to an equivalent network with few aggregated loads, thereby significantly reducing the computational burden. Furthermore, it not only helps distribution system operators in making faster operational decisions by understanding during which time of the day will be in need of flexibility, from which specificmore » area, and in which amount, but also enables the flexibilities stemming from small distributed resources to be traded in various power/energy markets. A combination of central and local aggregation scheme where a central aggregator enables market participation, while local aggregators materialize the accepted bids, is implemented to realize this concept. The effectiveness of the proposed method is evaluated by comparing network performances with and without aggregation. Finally, for a given network configuration, steady-state performance of aggregated network is significantly accurate (≈ ±1.5% error) compared to very high errors associated with forecast of individual consumer demand.« less
NASA Astrophysics Data System (ADS)
Srikantha, Pirathayini
Today's electric grid is rapidly evolving to provision for heterogeneous system components (e.g. intermittent generation, electric vehicles, storage devices, etc.) while catering to diverse consumer power demand patterns. In order to accommodate this changing landscape, the widespread integration of cyber communication with physical components can be witnessed in all tenets of the modern power grid. This ubiquitous connectivity provides an elevated level of awareness and decision-making ability to system operators. Moreover, devices that were typically passive in the traditional grid are now `smarter' as these can respond to remote signals, learn about local conditions and even make their own actuation decisions if necessary. These advantages can be leveraged to reap unprecedented long-term benefits that include sustainable, efficient and economical power grid operations. Furthermore, challenges introduced by emerging trends in the grid such as high penetration of distributed energy sources, rising power demands, deregulations and cyber-security concerns due to vulnerabilities in standard communication protocols can be overcome by tapping onto the active nature of modern power grid components. In this thesis, distributed constructs in optimization and game theory are utilized to design the seamless real-time integration of a large number of heterogeneous power components such as distributed energy sources with highly fluctuating generation capacities and flexible power consumers with varying demand patterns to achieve optimal operations across multiple levels of hierarchy in the power grid. Specifically, advanced data acquisition, cloud analytics (such as prediction), control and storage systems are leveraged to promote sustainable and economical grid operations while ensuring that physical network, generation and consumer comfort requirements are met. Moreover, privacy and security considerations are incorporated into the core of the proposed designs and these serve to improve the resiliency of the future smart grid. It is demonstrated both theoretically and practically that the techniques proposed in this thesis are highly scalable and robust with superior convergence characteristics. These distributed and decentralized algorithms allow individual actuating nodes to execute self-healing and adaptive actions when exposed to changes in the grid so that the optimal operating state in the grid is maintained consistently.
A longitudinal test of the demand-control model using specific job demands and specific job control.
de Jonge, Jan; van Vegchel, Natasja; Shimazu, Akihito; Schaufeli, Wilmar; Dormann, Christian
2010-06-01
Supportive studies of the demand-control (DC) model were more likely to measure specific demands combined with a corresponding aspect of control. A longitudinal test of Karasek's (Adm Sci Q. 24:285-308, 1) job strain hypothesis including specific measures of job demands and job control, and both self-report and objectively recorded well-being. Job strain hypothesis was tested among 267 health care employees from a two-wave Dutch panel survey with a 2-year time lag. Significant demand/control interactions were found for mental and emotional demands, but not for physical demands. The association between job demands and job satisfaction was positive in case of high job control, whereas this association was negative in case of low job control. In addition, the relation between job demands and psychosomatic health symptoms/sickness absence was negative in case of high job control and positive in case of low control. Longitudinal support was found for the core assumption of the DC model with specific measures of job demands and job control as well as self-report and objectively recorded well-being.
NASA Technical Reports Server (NTRS)
Wang, Nanbor; Parameswaran, Kirthika; Kircher, Michael; Schmidt, Douglas
2003-01-01
Although existing CORBA specifications, such as Real-time CORBA and CORBA Messaging, address many end-to-end quality-of service (QoS) properties, they do not define strategies for configuring these properties into applications flexibly, transparently, and adaptively. Therefore, application developers must make these configuration decisions manually and explicitly, which is tedious, error-prone, and open sub-optimal. Although the recently adopted CORBA Component Model (CCM) does define a standard configuration framework for packaging and deploying software components, conventional CCM implementations focus on functionality rather than adaptive quality-of-service, which makes them unsuitable for next-generation applications with demanding QoS requirements. This paper presents three contributions to the study of middleware for QoS-enabled component-based applications. It outlines rejective middleware techniques designed to adaptively (1) select optimal communication mechanisms, (2) manage QoS properties of CORBA components in their contain- ers, and (3) (re)con$gure selected component executors dynamically. Based on our ongoing research on CORBA and the CCM, we believe the application of rejective techniques to component middleware will provide a dynamically adaptive and (re)configurable framework for COTS software that is well-suited for the QoS demands of next-generation applications.
NASA Technical Reports Server (NTRS)
Wang, Nanbor; Kircher, Michael; Schmidt, Douglas C.
2000-01-01
Although existing CORBA specifications, such as Real-time CORBA and CORBA Messaging, address many end-to-end quality-of-service (QoS) properties, they do not define strategies for configuring these properties into applications flexibly, transparently, and adaptively. Therefore, application developers must make these configuration decisions manually and explicitly, which is tedious, error-prone, and often sub-optimal. Although the recently adopted CORBA Component Model (CCM) does define a standard configuration frame-work for packaging and deploying software components, conventional CCM implementations focus on functionality rather than adaptive quality-of service, which makes them unsuitable for next-generation applications with demanding QoS requirements. This paper presents three contributions to the study of middleware for QoS-enabled component-based applications. It outlines reflective middleware techniques designed to adaptively: (1) select optimal communication mechanisms, (2) man- age QoS properties of CORBA components in their containers, and (3) (re)configure selected component executors dynamically. Based on our ongoing research on CORBA and the CCM, we believe the application of reflective techniques to component middleware will provide a dynamically adaptive and (re)configurable framework for COTS software that is well-suited for the QoS demands of next-generation applications.
Ride specification review for the Montana Department of Transportation
DOT National Transportation Integrated Search
2006-08-01
This report covers the activities that were performed to enhance the current Montana Department of Transportation (MDT)ride specification for flexible pavements. The project team reviewed the MDT ride specification for flexible pavements and compared...
Cognitive flexibility predicts early reading skills
Colé, Pascale; Duncan, Lynne G.; Blaye, Agnès
2014-01-01
An important aspect of learning to read is efficiency in accessing different kinds of linguistic information (orthographic, phonological, and semantic) about written words. The present study investigates whether, in addition to the integrity of such linguistic skills, early progress in reading may require a degree of cognitive flexibility in order to manage the coordination of this information effectively. Our study will look for evidence of a link between flexibility and both word reading and passage reading comprehension, and examine whether any such link involves domain-general or reading-specific flexibility. As the only previous support for a predictive relationship between flexibility and early reading comes from studies of reading comprehension in the opaque English orthography, another possibility is that this relationship may be largely orthography-dependent, only coming into play when mappings between representations are complex and polyvalent. To investigate these questions, 60 second-graders learning to read the more transparent French orthography were presented with two multiple classification tasks involving reading-specific cognitive flexibility (based on words) and non-specific flexibility (based on pictures). Reading skills were assessed by word reading, pseudo-word decoding, and passage reading comprehension measures. Flexibility was found to contribute significant unique variance to passage reading comprehension even in the less opaque French orthography. More interestingly, the data also show that flexibility is critical in accounting for one of the core components of reading comprehension, namely, the reading of words in isolation. Finally, the results constrain the debate over whether flexibility has to be reading-specific to be critically involved in reading. PMID:24966842
Alternative Fuels Data Center: E85 Flex Fuel Specification
Flexible-Fuel Automotive Spark-Ignition Engines. Fuel retailers or fleets purchasing E85 should require , there is no concern with carrying over winter fuel into the summer months because flexible-fuel vehicles requirements. D5798-15 Standard Specification for Ethanol Fuel Blends for Flexible-Fuel Automotive Spark
ERIC Educational Resources Information Center
Dindo, Umberto
2007-01-01
Today's educators require flexible spaces that can accommodate multiple functions and future demands. They need spaces that enhance modern teaching methods and a student's personal development. Architecture by itself cannot provide a good education, but the environment it creates may impact a student's well-being and ability to learn. Educators…
Learn More | Energy Analysis | NREL
flexibility. Value of Demand Response: Quantities from Production Cost Modeling (Presentation) (2014 adding variable renewable generation to the grid. Market Design Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation (2014) Reviewed market design approaches focused on
School/Business Partnerships. Working Paper 3.
ERIC Educational Resources Information Center
Chicago United, IL.
Illinois is considering various approaches to school/business partnerships that will alleviate some of the problems facing America today, especially the need for an educated, trainable, and flexible workforce able to satisfy the demands of a radically altered economic environment. Widespread functional illiteracy, retraining needs, and…
The Energy-Environment Simulator as a Classroom Aid.
ERIC Educational Resources Information Center
Sell, Nancy J.; Van Koevering, Thomas E.
1981-01-01
Describes the use, availability, and flexibility of the Energy-Environment Simulator, a specially designed analog computer which simulates the real-world energy situation and which is programed with estimated United States and world supplies of energy sources and estimated United States energy demands. (MP)
Erecting a Sturdy Financial Structure.
ERIC Educational Resources Information Center
West, Jeffrey J.
1998-01-01
Explanation of the technological setting in which college and university financial systems have developed is provided for financial officers, to aid in devising a plan for the chart of accounts and erecting an efficient, logical, flexible financial structure. Topics include software/hardware advances, understanding the demand for financial…
USDA-ARS?s Scientific Manuscript database
Simulation modelers increasingly require greater flexibility for model implementation on diverse operating systems, and they demand high computational speed for efficient iterative simulations. Additionally, model users may differ in preference for proprietary versus open-source software environment...
Virus resistant plums through genetic engineering - from lab to market
USDA-ARS?s Scientific Manuscript database
Genetic engineering (GE) has the potential to revolutionize the genetic improvement of fruit trees and other specialty crops, to provide greater flexibility and speed in responding to changes in climate, production systems and market demands, and to maintain the competitiveness of American agricultu...
Community Colleges Put Their Best Faces Forward for Students of Tomorrow.
ERIC Educational Resources Information Center
Aslanian, Carol B.
1998-01-01
Suggests a positive future for community colleges as the educational needs of high school students, business organizations, graduate students, and diverse others stimulate enrollment. Predicts high demand for community colleges for reasons including convenience, quality of instruction, and flexibility in scheduling. (VWC)
Attention Modifies Spatial Resolution According to Task Demands.
Barbot, Antoine; Carrasco, Marisa
2017-03-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands.
Peng, Qingyu; Qin, Yuyang; Zhao, Xu; Sun, Xianxian; Chen, Qiang; Xu, Fan; Lin, Zaishan; Yuan, Ye; Li, Ying; Li, Jianjun; Yin, Weilong; Gao, Chao; Zhang, Fan; He, Xiaodong; Li, Yibin
2017-12-20
Lightweight, high-performance, thermally insulating, and antifrosting porous materials are in increasing demand to improve energy efficiency in many fields, such as aerospace and wearable devices. However, traditional thermally insulating materials (porous ceramics, polymer-based sponges) could not simultaneously meet these demands. Here, we propose a hierarchical assembly strategy for producing nanocomposite foams with lightweight, mechanically flexible, superinsulating, and antifrosting properties. The nanocomposite foams consist of a highly anisotropic reduced graphene oxide/polyimide (abbreviated as rGO/PI) network and hollow graphene oxide microspheres. The hierarchical nanocomposite foams are ultralight (density of 9.2 mg·cm -3 ) and exhibit ultralow thermal conductivity of 9 mW·m -1 ·K -1 , which is about a third that of traditional polymer-based insulating materials. Meanwhile, the nanocomposite foams show excellent icephobic performance. Our results show that hierarchical nanocomposite foams have promising applications in aerospace, wearable devices, refrigerators, and liquid nitrogen/oxygen transportation.
Attention Modifies Spatial Resolution According to Task Demands
Barbot, Antoine; Carrasco, Marisa
2017-01-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands. PMID:28118103
Otto, A Ross; Gershman, Samuel J; Markman, Arthur B; Daw, Nathaniel D
2013-05-01
A number of accounts of human and animal behavior posit the operation of parallel and competing valuation systems in the control of choice behavior. In these accounts, a flexible but computationally expensive model-based reinforcement-learning system has been contrasted with a less flexible but more efficient model-free reinforcement-learning system. The factors governing which system controls behavior-and under what circumstances-are still unclear. Following the hypothesis that model-based reinforcement learning requires cognitive resources, we demonstrated that having human decision makers perform a demanding secondary task engenders increased reliance on a model-free reinforcement-learning strategy. Further, we showed that, across trials, people negotiate the trade-off between the two systems dynamically as a function of concurrent executive-function demands, and people's choice latencies reflect the computational expenses of the strategy they employ. These results demonstrate that competition between multiple learning systems can be controlled on a trial-by-trial basis by modulating the availability of cognitive resources.
Otto, A. Ross; Gershman, Samuel J.; Markman, Arthur B.; Daw, Nathaniel D.
2013-01-01
A number of accounts of human and animal behavior posit the operation of parallel and competing valuation systems in the control of choice behavior. Along these lines, a flexible but computationally expensive model-based reinforcement learning system has been contrasted with a less flexible but more efficient model-free reinforcement learning system. The factors governing which system controls behavior—and under what circumstances—are still unclear. Based on the hypothesis that model-based reinforcement learning requires cognitive resources, we demonstrate that having human decision-makers perform a demanding secondary task engenders increased reliance on a model-free reinforcement learning strategy. Further, we show that across trials, people negotiate this tradeoff dynamically as a function of concurrent executive function demands and their choice latencies reflect the computational expenses of the strategy employed. These results demonstrate that competition between multiple learning systems can be controlled on a trial-by-trial basis by modulating the availability of cognitive resources. PMID:23558545
Flexible and Lightweight Fuel Cell with High Specific Power Density.
Ning, Fandi; He, Xudong; Shen, Yangbin; Jin, Hehua; Li, Qingwen; Li, Da; Li, Shuping; Zhan, Yulu; Du, Ying; Jiang, Jingjing; Yang, Hui; Zhou, Xiaochun
2017-06-27
Flexible devices have been attracting great attention recently due to their numerous advantages. But the energy densities of current energy sources are still not high enough to support flexible devices for a satisfactory length of time. Although proton exchange membrane fuel cells (PEMFCs) do have a high-energy density, traditional PEMFCs are usually too heavy, rigid, and bulky to be used in flexible devices. In this research, we successfully invented a light and flexible air-breathing PEMFC by using a new design of PEMFC and a flexible composite electrode. The flexible air-breathing PEMFC with 1 × 1 cm 2 working area can be as light as 0.065 g and as thin as 0.22 mm. This new PEMFC exhibits an amazing specific volume power density as high as 5190 W L -1 , which is much higher than traditional (air-breathing) PEMFCs. Also outstanding is that the flexible PEMFC retains 89.1% of its original performance after being bent 600 times, and it retains its original performance after being dropped five times from a height of 30 m. Moreover, the research has demonstrated that when stacked, the flexible PEMFCs are also useful in mobile applications such as mobile phones. Therefore, our research shows that PEMFCs can be made light, flexible, and suitable for applications in flexible devices. These innovative flexible PEMFCs may also notably advance the progress in the PEMFC field, because flexible PEMFCs can achieve high specific power density with small size, small volume, low weight, and much lower cost; they are also much easier to mass produce.
Choi, Jaeyoo; Jung, Yeonsu; Yang, Seung Jae; Oh, Jun Young; Oh, Jinwoo; Jo, Kiyoung; Son, Jeong Gon; Moon, Seung Eon; Park, Chong Rae; Kim, Heesuk
2017-08-22
As practical interest in flexible/or wearable power-conversion devices increases, the demand for high-performance alternatives to thermoelectric (TE) generators based on brittle inorganic materials is growing. Herein, we propose a flexible and ultralight TE generator (TEG) based on carbon nanotube yarn (CNTY) with excellent TE performance. The as-prepared CNTY shows a superior electrical conductivity of 3147 S/cm due to increased longitudinal carrier mobility derived from a highly aligned structure. Our TEG is innovative in that the CNTY acts as multifunctions in the same device. The CNTY is alternatively doped into n- and p-types using polyethylenimine and FeCl 3 , respectively. The highly conductive CNTY between the doped regions is used as electrodes to minimize the circuit resistance, thereby forming an all-carbon TEG without additional metal deposition. A flexible TEG based on 60 pairs of n- and p-doped CNTY shows the maximum power density of 10.85 and 697 μW/g at temperature differences of 5 and 40 K, respectively, which are the highest values among reported TEGs based on flexible materials. We believe that the strategy proposed here to improve the power density of flexible TEG by introducing highly aligned CNTY and designing a device without metal electrodes shows great potential for the flexible/or wearable power-conversion devices.
Planning and conducting medical support to joint operations.
Hughes, A S
2000-01-01
Operations are core business for all of us and the PJHQ medical cell is at the heart of this process. With the likelihood of a continuing UK presence in the Balkans for some time to come, the challenge of meeting this and any other new operational commitments will continue to demand a flexible and innovative approach from all concerned. These challenges together with the Joint and multinational aspects of the job make the PJHQ medical cell a demanding but rewarding place to work and provide a valuable Joint staff training opportunity for the RNMS.
NASA Technical Reports Server (NTRS)
Sofie, Stephen W.; Cable, Thomas L.; Salamone, Sam M.
2005-01-01
Solid oxide fuel cells (SOFCs) have tremendous commercial potential because of their high efficiency, high energy density, and flexible fuel capability (ability to use fossil fuels). The drive for high-power-utilizing, ultrathin electrolytes (less than 10 microns), has placed an increased demand on the anode to provide structural support, yet allow sufficient fuel entry for sustained power generation. Concentration polarization, a condition where the fuel demand exceeds the supply, is evident in all commercial-based anode-supported cells, and it presents a significant roadblock to SOFC commercialization.
Energy Storage Requirements for Achieving 50% Penetration of Solar Photovoltaic Energy in California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, Paul; Margolis, Robert
2016-09-01
We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generatorsmore » under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.« less
Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, Paul; Margolis, Robert
2016-08-01
We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generatorsmore » under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.« less
Chemical Vapour Deposition of Graphene with Re-useable Pt and Cu substrates for Flexible Electronics
NASA Astrophysics Data System (ADS)
Karamat, Shumaila; Sonusen, Selda; Celik, Umit; Uysalli, Yigit; Oral, Ahmet
2015-03-01
Graphene has gained the attention of scientific world due to its outstanding physical properties. The future demand of flexible electronics such as solar cells, light emitting diodes, photo-detectors and touch screen technology requires more exploration of graphene properties on flexible substrates. The most interesting application of graphene is in organic light emitting diodes (OLED) where efforts are in progress to replace brittle indium tin oxide (ITO) electrode with a flexible graphene electrode because ITO raw materials are becoming increasingly expensive, and its brittle nature makes it unsuitable for flexible devices. In this work, we grow graphene on Pt and Cu substrates using chemical vapour deposition (CVD) and transferred it to a polymer material (PVA) using lamination technique. We used hydrogen bubbling method for separating graphene from Pt and Cu catalyst to reuse the substrates many times. After successful transfer of graphene on polymer samples, we checked the resistivity values of the graphene sheet which varies with growth conditions. Furthermore, Raman, atomic force microscopy (AFM), I-V and Force-displacement measurements will be presented for these samples.
Bora, Anindita; Mohan, Kiranjyoti; Doley, Simanta; Dolui, Swapan Kumar
2018-03-07
Flexible energy storage devices are in great demand since the advent of flexible electronics. Until now, flexible supercapacitors based on graphene analogues usually have had low operating potential windows. To this end, two dissimilar electrode materials with complementary potential ranges are employed to obtain an optimum cell voltage of 1.8 V. A low-temperature organic sol-gel method is used to prepare two different types of functionalized reduced graphene oxide aerogels (rGOA) where Ag nanorod functionalized rGOA acts as a negative electrode while polyaniline nanotube functionalized rGOA acts as a positive electrode. Both materials comprehensively exploit their unique properties to produce a device that has high energy and power densities. An assembled all-solid-state asymmetric supercapacitor gives a high energy density of 52.85 W h kg -1 and power density of 31.5 kW kg -1 with excellent cycling and temperature stability. The device also performs extraordinarily well under different bending conditions, suggesting its potential to meet the requirements for flexible electronics.
Wang, Qingrong; Wang, Xinyu; Wan, Fang; Chen, Kena; Niu, Zhiqiang; Chen, Jun
2018-06-01
The emergence of flexible and wearable electronics has raised the demand for flexible supercapacitors with accurate sizes and aesthetic shapes. Here, a strategy is developed to prepare flexible all-in-one integrated supercapacitors by combining all-freeze-casting with typography technique. The continuous seamless connection of all-in-one supercapacitor devices enhances the load and/or electron transfer capacity and avoids displacing and detaching between their neighboring components at bending status. Therefore, such a unique structure of all-in-one integrated devices is beneficial for retaining stable electrochemical performance at different bending levels. More importantly, the sizes and aesthetic shapes of integrated supercapacitors could be controlled by the designed molds, like type matrices of typography. The molds could be assembled together and typeset randomly, achieving the controllable construction and series and/or parallel connection of several supercapacitor devices. The preparation of flexible integrated supercapacitors will pave the way for assembling programmable all-in-one energy storage devices into highly flexible electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Assessment of Optimal Flexibility in Ensemble of Frequency Responsive Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Soumya; Hansen, Jacob; Lian, Jianming
2018-04-19
Potential of electrical loads in providing grid ancillary services is often limited due to the uncertainties associated with the load behavior. A knowledge of the expected uncertainties with a load control program would invariably yield to better informed control policies, opening up the possibility of extracting the maximal load control potential without affecting grid operations. In the context of frequency responsive load control, a probabilistic uncertainty analysis framework is presented to quantify the expected error between the target and actual load response, under uncertainties in the load dynamics. A closed-form expression of an optimal demand flexibility, minimizing the expected errormore » in actual and committed flexibility, is provided. Analytical results are validated through Monte Carlo simulations of ensembles of electric water heaters.« less
A flexible metallic actuator using reduced graphene oxide as a multifunctional component.
Meng, Junxing; Mu, Jiuke; Hou, Chengyi; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi
2017-09-14
Flexible actuators are widely in demand for many real-life applications. Considering that existing actuators based on polymers, low-dimensional materials and pore-rich materials are mostly limited by slow response rate, high driving voltage and poor stability, we report here a novel metal based flexible actuator which is fabricated simply through partial oxidation and nano-function of copper foil with the assistance of reduced graphene oxide. The obtained asymmetric metallic actuator is (electric-)thermally driven and exhibits fast response rate (∼2 s) and large curvature (2.4 cm -1 ) under a low voltage (∼1 V) with a sustainable operation of up to ∼50 000 cycles. The actuator can also be triggered by infrared irradiation and direct-heating under various conditions including air, water, and vacuum.
Quantity Stickiness versus Stackelberg Leadership
NASA Astrophysics Data System (ADS)
Ferreira, F. A.
2008-10-01
We study the endogenous Stackelberg relations in a dynamic market. We analyze a twice-repeated duopoly where, in the beginning, each firm chooses either a quantity-sticky production mode or a quantity-flexible production mode. The size of the market becomes observable after the first period. In the second period, a firm can adjust its quantity if, and only if, it has adopted the flexible mode. Hence, if one firm chooses the sticky mode whilst the other chooses the flexible mode, then they respectively play the roles of a Stackelberg leader and a Stackelberg follower in the second marketing period. We compute the supply quantities at equilibrium and the corresponding expected profits of the firms. We also analyze the effect of the slope parameter of the demand curve on the expected supply quantities and on the profits.
Cognitive flexibility in young children: General or task-specific capacity?
Deák, Gedeon O; Wiseheart, Melody
2015-10-01
Cognitive flexibility is the ability to adapt to changing tasks or problems. To test whether cognitive flexibility is a coherent cognitive capacity in young children, we tested 3- to 5-year-olds' performance on two forms of task switching, rule-based (Three Dimension Changes Card Sorting, 3DCCS) and inductive (Flexible Induction of Meaning-Animates and Objects, FIM-Ob and FIM-An), as well as tests of response speed, verbal working memory, inhibition, and reasoning. Results suggest that cognitive flexibility is not a globally coherent trait; only the two inductive word-meaning (FIM) tests showed high inter-test coherence. Task- and knowledge-specific factors also determine children's flexibility in a given test. Response speed, vocabulary size, and causal reasoning skills further predicted individual and age differences in flexibility, although they did not have the same predictive relation with all three flexibility tests. Copyright © 2015 Elsevier Inc. All rights reserved.
Batson, Glenna; Hugenschmidt, Christina E.; Soriano, Christina T.
2016-01-01
Dance is a non-pharmacological intervention that helps maintain functional independence and quality of life in people with Parkinson’s disease (PPD). Results from controlled studies on group-delivered dance for people with mild-to-moderate stage Parkinson’s have shown statistically and clinically significant improvements in gait, balance, and psychosocial factors. Tested interventions include non-partnered dance forms (ballet and modern dance) and partnered (tango). In all of these dance forms, specific movement patterns initially are learned through repetition and performed in time-to-music. Once the basic steps are mastered, students may be encouraged to improvise on the learned steps as they perform them in rhythm with the music. Here, we summarize a method of teaching improvisational dance that advances previous reported benefits of dance for people with Parkinson’s disease (PD). The method relies primarily on improvisational verbal auditory cueing with less emphasis on directed movement instruction. This method builds on the idea that daily living requires flexible, adaptive responses to real-life challenges. In PD, movement disorders not only limit mobility but also impair spontaneity of thought and action. Dance improvisation demands open and immediate interpretation of verbally delivered movement cues, potentially fostering the formation of spontaneous movement strategies. Here, we present an introduction to a proposed method, detailing its methodological specifics, and pointing to future directions. The viewpoint advances an embodied cognitive approach that has eco-validity in helping PPD meet the changing demands of daily living. PMID:26925029
Practices and Strategies of Distributed Knowledge Collaboration
ERIC Educational Resources Information Center
Kudaravalli, Srinivas
2010-01-01
Information Technology is enabling large-scale, distributed collaboration across many different kinds of boundaries. Researchers have used the label new organizational forms to describe such collaborations and suggested that they are better able to meet the demands of flexibility, speed and adaptability that characterize the knowledge economy.…
Academic Decision Making: Faculty Appointments and Reappointments.
ERIC Educational Resources Information Center
Renner, K. Edward
1987-01-01
The rapidly rising costs of the academic salary budget and the lack of flexibility for making new academic appointments or for reallocating resources to new and emerging educational demands are discussed. Personnel decisions made in the Faculty of Arts and Science at Dalhousie University are described. (MLW)
Taxonomy for Modeling Demand Response Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Daniel; Kiliccote, Sila; Sohn, Michael
2014-08-01
Demand response resources are an important component of modern grid management strategies. Accurate characterizations of DR resources are needed to develop systems of optimally managed grid operations and to plan future investments in generation, transmission, and distribution. The DOE Demand Response and Energy Storage Integration Study (DRESIS) project researched the degree to which demand response (DR) and energy storage can provide grid flexibility and stability in the Western Interconnection. In this work, DR resources were integrated with traditional generators in grid forecasting tools, specifically a production cost model of the Western Interconnection. As part of this study, LBNL developed amore » modeling framework for characterizing resource availability and response attributes of DR resources consistent with the governing architecture of the simulation modeling platform. In this report, we identify and describe the following response attributes required to accurately characterize DR resources: allowable response frequency, maximum response duration, minimum time needed to achieve load changes, necessary pre- or re-charging of integrated energy storage, costs of enablement, magnitude of controlled resources, and alignment of availability. We describe a framework for modeling these response attributes, and apply this framework to characterize 13 DR resources including residential, commercial, and industrial end-uses. We group these end-uses into three broad categories based on their response capabilities, and define a taxonomy for classifying DR resources within these categories. The three categories of resources exhibit different capabilities and differ in value to the grid. Results from the production cost model of the Western Interconnection illustrate that minor differences in resource attributes can have significant impact on grid utilization of DR resources. The implications of these findings will be explored in future DR valuation studies.« less
A high-throughput microRNA expression profiling system.
Guo, Yanwen; Mastriano, Stephen; Lu, Jun
2014-01-01
As small noncoding RNAs, microRNAs (miRNAs) regulate diverse biological functions, including physiological and pathological processes. The expression and deregulation of miRNA levels contain rich information with diagnostic and prognostic relevance and can reflect pharmacological responses. The increasing interest in miRNA-related research demands global miRNA expression profiling on large numbers of samples. We describe here a robust protocol that supports high-throughput sample labeling and detection on hundreds of samples simultaneously. This method employs 96-well-based miRNA capturing from total RNA samples and on-site biochemical reactions, coupled with bead-based detection in 96-well format for hundreds of miRNAs per sample. With low-cost, high-throughput, high detection specificity, and flexibility to profile both small and large numbers of samples, this protocol can be adapted in a wide range of laboratory settings.
Emergent Aerospace Designs Using Negotiating Autonomous Agents
NASA Technical Reports Server (NTRS)
Deshmukh, Abhijit; Middelkoop, Timothy; Krothapalli, Anjaneyulu; Smith, Charles
2000-01-01
This paper presents a distributed design methodology where designs emerge as a result of the negotiations between different stake holders in the process, such as cost, performance, reliability, etc. The proposed methodology uses autonomous agents to represent design decision makers. Each agent influences specific design parameters in order to maximize their utility. Since the design parameters depend on the aggregate demand of all the agents in the system, design agents need to negotiate with others in the market economy in order to reach an acceptable utility value. This paper addresses several interesting research issues related to distributed design architectures. First, we present a flexible framework which facilitates decomposition of the design problem. Second, we present overview of a market mechanism for generating acceptable design configurations. Finally, we integrate learning mechanisms in the design process to reduce the computational overhead.
Towards effective interactive three-dimensional colour postprocessing
NASA Technical Reports Server (NTRS)
Bailey, B. C.; Hajjar, J. F.; Abel, J. F.
1986-01-01
Recommendations for the development of effective three-dimensional, graphical color postprocessing are made. First, the evaluation of large, complex numerical models demands that a postprocessor be highly interactive. A menu of available functions should be provided and these operations should be performed quickly so that a sense of continuity and spontaneity exists during the post-processing session. Second, an agenda for three-dimensional color postprocessing is proposed. A postprocessor must be versatile with respect to application and basic algorithms must be designed so that they are flexible. A complete selection of tools is necessary to allow arbitrary specification of views, extraction of qualitative information, and access to detailed quantitative and problem information. Finally, full use of advanced display hardware is necessary if interactivity is to be maximized and effective postprocessing of today's numerical simulations is to be achieved.
Changes in Dimensionality and Fractal Scaling Suggest Soft-Assembled Dynamics in Human EEG
Wiltshire, Travis J.; Euler, Matthew J.; McKinney, Ty L.; Butner, Jonathan E.
2017-01-01
Humans are high-dimensional, complex systems consisting of many components that must coordinate in order to perform even the simplest of activities. Many behavioral studies, especially in the movement sciences, have advanced the notion of soft-assembly to describe how systems with many components coordinate to perform specific functions while also exhibiting the potential to re-structure and then perform other functions as task demands change. Consistent with this notion, within cognitive neuroscience it is increasingly accepted that the brain flexibly coordinates the networks needed to cope with changing task demands. However, evaluation of various indices of soft-assembly has so far been absent from neurophysiological research. To begin addressing this gap, we investigated task-related changes in two distinct indices of soft-assembly using the established phenomenon of EEG repetition suppression. In a repetition priming task, we assessed evidence for changes in the correlation dimension and fractal scaling exponents during stimulus-locked event-related potentials, as a function of stimulus onset and familiarity, and relative to spontaneous non-task-related activity. Consistent with predictions derived from soft-assembly, results indicated decreases in dimensionality and increases in fractal scaling exponents from resting to pre-stimulus states and following stimulus onset. However, contrary to predictions, familiarity tended to increase dimensionality estimates. Overall, the findings support the view from soft-assembly that neural dynamics should become increasingly ordered as external task demands increase, and support the broader application of soft-assembly logic in understanding human behavior and electrophysiology. PMID:28919862
NASA Technical Reports Server (NTRS)
Quon, Leighton
2010-01-01
The key objectives of the NASA ASP are to: Improve mobility, capacity efficiency and access of the airspace system. Improve collaboration, predictability, and flexibility for the airspace users. Enable accurate modeling and simulation of air transportation systems. Accommodate operations of all classes of aircraft. Maintain system safety and environmental protection. In support of these program objectives, the major goal of the NextGen-SAIE Project is to enable the transition of key capacity and efficiency improvements to the NAS. Since many aspects of the NAS are unique to specific airport or airspace environments, demand on various parts of the NAS is not expected to increase equally as system demand grows. SAIE will provide systems level analysis of the NAS characteristics, constraints, and demands such that a suite of capacity-increasing concepts and technologies for system solutions are enabled and facilitated. The technical objectives in support of this goal are the following: Integration, evaluation, and transition of more mature concepts and technologies in an environment that faithfully emulates real-world complexities. Interoperability research and analysis of ASP technologies across ATM functions is performed to facilitate integration and take ASP concepts and technologies to higher Technology Readiness Level (TRL). Analyses are conducted on the program s concepts to identify the system benefits or impacts. System level analysis is conducted to increase understanding of the characteristics and constraints of airspace system and its domains.
Influence of job demands and job control on work-life balance among Taiwanese nurses.
Ng, Lee-Peng; Chen, I-Chi; Ng, Hui-Fuang; Lin, Bo-Yen; Kuar, Lok-Sin
2017-09-01
This study investigated the extent to which the job demands and job control of nurses were related to their work-life balance. The inability to achieve work-life balance is one of the major reasons for the declining retention rate among nurses. Job demands and job control are two major work domain factors that can have a significant influence on the work-life balance of nurses. The study measured the job demands, job control and work-life balance of 2040 nurses in eight private hospitals in Taiwan in 2013. Job demands and job control significantly predicted all the dimensions of work-life balance. Job demands increased the level of work-life imbalance among nurses. While job control showed positive effects on work/personal life enhancement, it was found to increase both work interference with personal life and personal life interference with work. Reducing the level of job demands (particularly for psychological demands) between family and career development and maintaining a proper level of job control are essential to the work-life balance of nurses. Flexible work practices and team-based management could be considered by nursing management to lessen job demand pressure and to facilitate job engagement and participation among nurses, thus promoting a better balance between work and personal life. © 2017 John Wiley & Sons Ltd.
The demands and resources arising from shared office spaces.
Morrison, Rachel L; Macky, Keith A
2017-04-01
The prevalence of flexible and shared office spaces is increasing significantly, yet the socioemotional outcomes associated with these environments are under researched. Utilising the job demands-resources (JD-R) model we investigate both the demands and the resources that can accrue to workers as a result of shared work environments and hot-desking. Data were collected from work experienced respondents (n = 1000) assessing the extent to which they shared their office space with others, along with demands comprising distractions, uncooperative behaviours, distrust, and negative relationships, and resources from co-worker friendships and supervisor support. We found that, as work environments became more shared (with hot-desking being at the extreme end of the continuum), not only were there increases in demands, but co-worker friendships were not improved and perceptions of supervisory support decreased. Findings are discussed in relation to employee well-being and recommendations are made regarding how best to ameliorate negative consequences of shared work environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Evans, J. D.; Tislin, D.
2017-12-01
Observations from the Joint Polar Satellite System (JPSS) support National Weather Service (NWS) forecasters, whose Advanced Weather Interactive Processing System (AWIPS) Data Delivery (DD) will access JPSS data products on demand from the National Environmental Satellite, Data, and Information Service (NESDIS) Product Distribution and Access (PDA) service. Based on the Open Geospatial Consortium (OGC) Web Coverage Service, this on-demand service promises broad interoperability and frugal use of data networks by serving only the data that a user needs. But the volume, velocity, and variety of JPSS data products impose several challenges to such a service. It must be efficient to handle large volumes of complex, frequently updated data, and to fulfill many concurrent requests. It must offer flexible data handling and delivery, to work with a diverse and changing collection of data, and to tailor its outputs into products that users need, with minimal coordination between provider and user communities. It must support 24x7 operation, with no pauses in incoming data or user demand; and it must scale to rapid changes in data volume, variety, and demand as new satellites launch, more products come online, and users rely increasingly on the service. We are addressing these challenges in order to build an efficient and effective on-demand JPSS data service. For example, on-demand subsetting by many users at once may overload a server's processing capacity or its disk bandwidth - unless alleviated by spatial indexing, geolocation transforms, or pre-tiling and caching. Filtering by variable (/ band / layer) may also alleviate network loads, and provide fine-grained variable selection; to that end we are investigating how best to provide random access into the variety of spatiotemporal JPSS data products. Finally, producing tailored products (derivatives, aggregations) can boost flexibility for end users; but some tailoring operations may impose significant server loads. Operating this service in a cloud computing environment allows cost-effective scaling during the development and early deployment phases - and perhaps beyond. We will discuss how NESDIS and NWS are assessing and addressing these challenges to provide timely and effective access to JPSS data products for weather forecasters throughout the country.
The Flexibility Hypothesis of Healing.
Hinton, Devon E; Kirmayer, Laurence J
2017-03-01
Theories of healing have attempted to identify general mechanisms that may work across different modalities. These include altering expectations, remoralization, and instilling hope. In this paper, we argue that many forms of healing and psychotherapy may work by inducing positive psychological states marked by flexibility or an enhanced ability to shift cognitive sets. Healing practices may induce these states of cognitive and emotional flexibility through specific symbolic interventions we term "flexibility primers" that can include images, metaphors, music, and other media. The flexibility hypothesis suggests that cognitive and emotional flexibility is represented, elicited, and enacted through multiple modalities in healing rituals. Identifying psychological processes and cultural forms that evoke and support cognitive and emotional flexibility provides a way to understand the cultural specificity and potential efficacy of particular healing practices and can guide the design of interventions that promote resilience and well-being.
Ultra Barrier Topsheet Film for Flexible Photovoltaics with 3M Company
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funkenbusch, Arnie; Ruth, Charles
2014-12-30
In this DOE sponsored program, 3M achieved the critical UBT features to enable durable flexible high efficiency modules to be produced by a range of customers who have now certified the 3M UBT and are actively developing said flexible modules. The specific objectives and accomplishments of the work under this program were; Scale-up the current Generation-1 UBT from 12” width, as made on 3M’s pilot line, to 1+meter width full-scale manufacturing, while maintaining baseline performance metrics (see table below); This objective was fully met; Validate service life of Generation-1 UBT for the 25+ year lifetime demanded by the photovoltaic market;more » Aggressive testing revealed potential failure modes in the Gen 1 UBT. Deficiencies were identified and corrective action taken in the Gen 2 UBT; Develop a Generation-2 UBT on the pilot line, targeting improved performance relative to baseline, including higher %T (percent transmission), lower water vapor transmission rate (WVTR) with targets based on what the technology needs for 25 year lifetime, proven lifetime of 25 years in solar module construction in the field, and lower cost; Testing of UBT Gen 2 under a wide range of conditions presented in this report failed to reveal any failure mode. Therefore UBT Gen 2 is known to be highly durable. 3M will continue to test towards statistically validating a 25 year lifetime under 3M funding; Transfer Generation-2 UBT from the pilot line to the full-scale manufacturing line within three years; and This objective was fully met.« less
Predictors of Reading Achievement: Time on Reading Instruction and Approaches to Learning
ERIC Educational Resources Information Center
Puccioni, Jaime
2015-01-01
Policies increasing the amount of time allocated to reading instruction are popular initiatives to meet the demands of accountability testing. Research suggests that time on instruction and children's approaches to learning (ATL), which generally includes measures of attention, persistence, motivation, and flexibility, are positively associated…
DOT National Transportation Integrated Search
2012-06-01
The mobility allowance shuttle transit (MAST) system is a hybrid transit system in which vehicles are : allowed to deviate from a fixed route to serve flexible demand. A mixed integer programming (MIP) : formulation for the static scheduling problem ...
Resource Management in QoS-Aware Wireless Cellular Networks
ERIC Educational Resources Information Center
Zhang, Zhi
2011-01-01
Emerging broadband wireless networks that support high speed packet data with heterogeneous quality of service (QoS) requirements demand more flexible and efficient use of the scarce spectral resource. Opportunistic scheduling exploits the time-varying, location-dependent channel conditions to achieve multiuser diversity. In this work, we study…
The Flexibility of Self Regulated Strategy Development for Teaching Argumentative Text
ERIC Educational Resources Information Center
Leins, Patricia A.; Cuenca-Carlino, Yojanna; Kiuhara, Sharlene A.; Jacobson, Laura Thompson
2017-01-01
An increasing challenge for many secondary special education teachers is preparing students for the writing demands in postsecondary settings. The self-regulated strategy development (SRSD) model of writing instruction, considered an evidence-based practice, is an effective strategy for enhancing the writing skills of students with disabilities,…
Parenting, Pressures and Policies.
ERIC Educational Resources Information Center
Chance, Graham W.
2000-01-01
In the 1990s, parenting became a difficult effort to balance work demands with children's needs. However, Canadian and U.S. government policies have not met changing family needs for child care, other services, paid parental leave, and work flexibility. Canada's long-awaited National Children's Agenda has the potential to modernize family policy…
Capstone Portfolios and Geography Student Learning Outcomes
ERIC Educational Resources Information Center
Mossa, Joann
2014-01-01
Due to increasing demands regarding student learning outcomes and accreditation, a capstone portfolio was added to assess critical thinking and communication skills of geography majors at a large public university in the USA. The portfolio guidelines were designed to be adaptable to a flexible curriculum where about half of the requirements within…
Integrating Curriculum for Tomorrow's Students.
ERIC Educational Resources Information Center
Keitz, Ruth
1987-01-01
Finding that its curriculum renewal and adoption process was flawed, the Anchorage School District (AK) instituted new holistic process that identified major trends of the future and then developed groups of skills necessary for living in that future. Curriculum was reworked to prepare students to live in a world that demands flexibility,…
Cloud Computing as a Catalyst in STEM Education
ERIC Educational Resources Information Center
Kumar, Vikas; Sharma, Deepika
2017-01-01
The under representation of students in STEM disciplines creates big worries for the coming demands of STEM occupations. This requires new strategies to make curriculum interesting to enhance student's engagement in learning. Technology integration in curriculum makes more interesting and engaging, where students can learn with flexibility in time…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
... Impact Statement for the Madera Irrigation District Water Supply Enhancement Project located in Madera... Madera Irrigation District Water Supply Enhancement Project (MID WSEP). Reclamation proposes to approve... supply reliability and flexibility for current and future water demand, and reduce local overdraft, MID...
The Bivalency Effect: Evidence for Flexible Adjustment of Cognitive Control
ERIC Educational Resources Information Center
Rey-Mermet, Alodie; Meier, Beat
2012-01-01
When bivalent stimuli (i.e., stimuli with features for two different tasks) appear occasionally, performance is slower on subsequent univalent stimuli. This "bivalency effect" reflects an adjustment of cognitive control arising from the more demanding context created by bivalent stimuli. So far, it has been investigated only on task…
Maintaining Investment Success: The Importance of Asset Suballocation.
ERIC Educational Resources Information Center
Morrell, Louis R.
1997-01-01
To meet demand for increased funding, in a period of probable declining investment returns, colleges and universities must fine-tune their asset suballocations to enhance returns. While the institution should adhere to major asset allocation classes, there can be much flexibility, and enhanced return, in shifting suballocations within the major…
Development and Evaluation of HawkLearn: A Next Generation Learning Management System
ERIC Educational Resources Information Center
Round, Kimberlee L.
2013-01-01
Cloud-based computing in higher education has the potential to impact institutions on a myriad of fronts, including technology governance, flexibility, financial, and intellectual property. As the demand for blended and online education increases, institutions are considering expedient approaches to implementing learning management systems (LMSs).…
The Nature of Organizational Learning in a State Extension Organization
ERIC Educational Resources Information Center
Leuci, Mary Simon
2012-01-01
Our complex and rapidly changing world demands a more nimble, responsive, and flexible Extension organization. The findings from a study involving interviews across a state Cooperative Extension Service paint a picture of organizational learning in Extension. Four key dimensions of learning surfaced. Of particular importance are the application of…
Searching for Bridges between Formal and Informal Language Education
ERIC Educational Resources Information Center
Brebera, Pavel; Hlouskova, Jitka
2012-01-01
Life in the contemporary society and ongoing globalisation processes result in growing demands on educators, including language teachers in higher education. The frequently accentuated so-called postmethod approach to foreign language teaching gives teachers a lot of freedom and flexibility but also creates a large space for various types of…
Post-Implementation Insights about a Hybrid Degree Program
ERIC Educational Resources Information Center
Toth, Meredith; Foulger, Teresa S.; Amrein-Beardsley, Audrey
2008-01-01
Researchers and practitioners in the field of online learning continue to debate how to best leverage the convenience of online delivery while maintaining or increasing the quality and effectiveness of course content and delivery. While students demand the flexibility and convenience that distance education offerings provide, instructors and…
Attentional Set-Shifting in Fragile X Syndrome
ERIC Educational Resources Information Center
Van der Molen, M. J. W.; Van der Molen, M. W.; Ridderinkhof, K. R.; Hamel, B. C. J.; Curfs, L. M. G.; Ramakers, G. J. A.
2012-01-01
The ability to flexibly adapt to the changing demands of the environment is often reported as a core deficit in fragile X syndrome (FXS). However, the cognitive processes that determine this attentional set-shifting deficit remain elusive. The present study investigated attentional set-shifting ability in fragile X syndrome males with the…
Is Adaptation to Task Complexity Really Beneficial for Performance?
ERIC Educational Resources Information Center
Pieschl, Stephanie; Stahl, Elmar; Murray, Tom; Bromme, Rainer
2012-01-01
Theories of self-regulated learning assume that learners flexibly adapt their learning process to external task demands and that this is positively related to performance. In this study, university students (n = 119) solved three tasks that greatly differed in complexity. Their learning processes were captured in detail by task-specific…
Universities UK: Manifesto for Higher Education
ERIC Educational Resources Information Center
Universities UK, 2010
2010-01-01
The challenges that the UK faces today are global and they require world-class solutions. With continued support and investment from the Government, higher education will play a central role in meeting those challenges. Tomorrow's knowledge-based economy will demand a flexible, diverse and well educated workforce. Climate change and rapid…
School Leadership Readiness: Traditional vs. Online Administrative Preparation
ERIC Educational Resources Information Center
Delfin, Jose
2012-01-01
According to the National Center of Educational Statistics (2006-2007) report, 92% of two and four-year Title IV degree-granting postsecondary institutions offered distance education courses due to students' demand for flexible scheduling. That same report cited that 82% of those institutions were seeking to increase student enrollment via…
NASA Astrophysics Data System (ADS)
Shukla, Ashish K.; Yadav, Vinayak M.; Kumar, Akash; Palani, I. A.; Manivannan, Anbarasu
2018-01-01
Polyimide (PI) offers promising features such as high strength and excellent thermal stability for flexible solar panels. The flexible solar cell demands maximum absorption of solar insolation through stacked layers to enhance its performance. However, the fluorescence emission (FE) in inactive polyimide substrate hinders the absorption of irradiated solar energy. In this research work, an attempt has been made to generate rippled morphology on PI substrate using laser processing that enhances the absorption and moderates the FE. These changes are confirmed by calculating the Urbach energy (Eu) of the rippled structure, which is found to be 2.5 times that of the pristine substrate. Furthermore, to reduce the FE, tungsten (W) was coated on the rippled structure of the laser-processed PI, and a significant reduction of 70% FE is achieved compared to the FE of unprocessed PI. These enhanced characteristics of PI obtained by laser processing will be highly helpful for improving the overall performance of flexible solar cells.
Flexible Sensing Electronics for Wearable/Attachable Health Monitoring.
Wang, Xuewen; Liu, Zheng; Zhang, Ting
2017-07-01
Wearable or attachable health monitoring smart systems are considered to be the next generation of personal portable devices for remote medicine practices. Smart flexible sensing electronics are components crucial in endowing health monitoring systems with the capability of real-time tracking of physiological signals. These signals are closely associated with body conditions, such as heart rate, wrist pulse, body temperature, blood/intraocular pressure and blood/sweat bio-information. Monitoring such physiological signals provides a convenient and non-invasive way for disease diagnoses and health assessments. This Review summarizes the recent progress of flexible sensing electronics for their use in wearable/attachable health monitoring systems. Meanwhile, we present an overview of different materials and configurations for flexible sensors, including piezo-resistive, piezo-electrical, capacitive, and field effect transistor based devices, and analyze the working principles in monitoring physiological signals. In addition, the future perspectives of wearable healthcare systems and the technical demands on their commercialization are briefly discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Small Aircraft Transportation System (SATS) Demand Model
NASA Technical Reports Server (NTRS)
Long, Dou; Lee, David; Johnson, Jesse; Kostiuk, Peter; Yackovetsky, Robert (Technical Monitor)
2001-01-01
The Small Aircraft Transportation System (SATS) demand modeling is a tool that will be useful for decision-makers to analyze SATS demands in both airport and airspace. We constructed a series of models following the general top-down, modular principles in systems engineering. There are three principal models, SATS Airport Demand Model (SATS-ADM), SATS Flight Demand Model (SATS-FDM), and LMINET-SATS. SATS-ADM models SATS operations, by aircraft type, from the forecasts in fleet, configuration and performance, utilization, and traffic mixture. Given the SATS airport operations such as the ones generated by SATS-ADM, SATS-FDM constructs the SATS origin and destination (O&D) traffic flow based on the solution of the gravity model, from which it then generates SATS flights using the Monte Carlo simulation based on the departure time-of-day profile. LMINET-SATS, an extension of LMINET, models SATS demands at airspace and airport by all aircraft operations in US The models use parameters to provide the user with flexibility and ease of use to generate SATS demand for different scenarios. Several case studies are included to illustrate the use of the models, which are useful to identify the need for a new air traffic management system to cope with SATS.
Allocation of resources for ambulatory care -a staffing model for outpatient clinics.
Mansdorf, B D
1975-01-01
The enormous commitment of resources to ambulatory health care services requires that flexible and easily implementable management techniques be developed to improve the allocation of health manpower and funds. This article develops a feasible model for staffing outpatient clinics and thereby potentially provides an important analytical tool for allocating and monitoring the utilization of the most critical and expensive of ambulatory care resources-professional and nonprofessional clinic personnel. The model is simplistic, extremely flexible, and can be applied to many modes of delivering ambulatory care-from HMOs to traditional hospital outpatient clinics. To employ the model, certain decision variables must be specified so that the model can produce a least-cost staffing configuration to meet the demand for service in accordance with the desired mode and intensity of care. The key decision varables that require input from administrators and medical personnel include standards for physician-patient contact time, a desired ratio of staff time actually spent treating patients to total paid staff time, and the desired mix of various staff categories to achieve program objectives. Specific benefits of using the model include determining staffing for new, expanded, or existing outpatient clinics, determining budget requirements for such staffing needs, and providing quantitative productivity and utilization objectives and measurements. PMID:809787
NASA Astrophysics Data System (ADS)
Rose, A.; McKee, J.; Weber, E.; Bhaduri, B. L.
2017-12-01
Leveraging decades of expertise in population modeling, and in response to growing demand for higher resolution population data, Oak Ridge National Laboratory is now generating LandScan HD at global scale. LandScan HD is conceived as a 90m resolution population distribution where modeling is tailored to the unique geography and data conditions of individual countries or regions by combining social, cultural, physiographic, and other information with novel geocomputation methods. Similarities among these areas are exploited in order to leverage existing training data and machine learning algorithms to rapidly scale development. Drawing on ORNL's unique set of capabilities, LandScan HD adapts highly mature population modeling methods developed for LandScan Global and LandScan USA, settlement mapping research and production in high-performance computing (HPC) environments, land use and neighborhood mapping through image segmentation, and facility-specific population density models. Adopting a flexible methodology to accommodate different geographic areas, LandScan HD accounts for the availability, completeness, and level of detail of relevant ancillary data. Beyond core population and mapped settlement inputs, these factors determine the model complexity for an area, requiring that for any given area, a data-driven model could support either a simple top-down approach, a more detailed bottom-up approach, or a hybrid approach.
Neural Mechanisms of Information Storage in Visual Short-Term Memory
Serences, John T.
2016-01-01
The capacity to briefly memorize fleeting sensory information supports visual search and behavioral interactions with relevant stimuli in the environment. Traditionally, studies investigating the neural basis of visual short term memory (STM) have focused on the role of prefrontal cortex (PFC) in exerting executive control over what information is stored and how it is adaptively used to guide behavior. However, the neural substrates that support the actual storage of content-specific information in STM are more controversial, with some attributing this function to PFC and others to the specialized areas of early visual cortex that initially encode incoming sensory stimuli. In contrast to these traditional views, I will review evidence suggesting that content-specific information can be flexibly maintained in areas across the cortical hierarchy ranging from early visual cortex to PFC. While the factors that determine exactly where content-specific information is represented are not yet entirely clear, recognizing the importance of task-demands and better understanding the operation of non-spiking neural codes may help to constrain new theories about how memories are maintained at different resolutions, across different timescales, and in the presence of distracting information. PMID:27668990
The Affordance Template ROS Package for Robot Task Programming
NASA Technical Reports Server (NTRS)
Hart, Stephen; Dinh, Paul; Hambuchen, Kimberly
2015-01-01
This paper introduces the Affordance Template ROS package for quickly programming, adjusting, and executing robot applications in the ROS RViz environment. This package extends the capabilities of RViz interactive markers by allowing an operator to specify multiple end-effector waypoint locations and grasp poses in object-centric coordinate frames and to adjust these waypoints in order to meet the run-time demands of the task (specifically, object scale and location). The Affordance Template package stores task specifications in a robot-agnostic XML description format such that it is trivial to apply a template to a new robot. As such, the Affordance Template package provides a robot-generic ROS tool appropriate for building semi-autonomous, manipulation-based applications. Affordance Templates were developed by the NASA-JSC DARPA Robotics Challenge (DRC) team and have since successfully been deployed on multiple platforms including the NASA Valkyrie and Robonaut 2 humanoids, the University of Texas Dreamer robot and the Willow Garage PR2. In this paper, the specification and implementation of the affordance template package is introduced and demonstrated through examples for wheel (valve) turning, pick-and-place, and drill grasping, evincing its utility and flexibility for a wide variety of robot applications.
Kruppel-like factor 15 is required for the cardiac adaptive response to fasting.
Sugi, Keiki; Hsieh, Paishiun N; Ilkayeva, Olga; Shelkay, Shamanthika; Moroney, Bridget; Baadh, Palvir; Haynes, Browning; Pophal, Megan; Fan, Liyan; Newgard, Christopher B; Prosdocimo, Domenick A; Jain, Mukesh K
2018-01-01
Cardiac metabolism is highly adaptive in response to changes in substrate availability, as occur during fasting. This metabolic flexibility is essential to the maintenance of contractile function and is under the control of a group of select transcriptional regulators, notably the nuclear receptor family of factors member PPARα. However, the diversity of physiologic and pathologic states through which the heart must sustain function suggests the possible existence of additional transcriptional regulators that play a role in matching cardiac metabolism to energetic demand. Here we show that cardiac KLF15 is required for the normal cardiac response to fasting. Specifically, we find that cardiac function is impaired upon fasting in systemic and cardiac specific Klf15-null mice. Further, cardiac specific Klf15-null mice display a fasting-dependent accumulation of long chain acylcarnitine species along with a decrease in expression of the carnitine translocase Slc25a20. Treatment with a diet high in short chain fatty acids relieves the KLF15-dependent long chain acylcarnitine accumulation and impaired cardiac function in response to fasting. Our observations establish KLF15 as a critical mediator of the cardiac adaptive response to fasting through its regulation of myocardial lipid utilization.
Neural mechanisms of information storage in visual short-term memory.
Serences, John T
2016-11-01
The capacity to briefly memorize fleeting sensory information supports visual search and behavioral interactions with relevant stimuli in the environment. Traditionally, studies investigating the neural basis of visual short term memory (STM) have focused on the role of prefrontal cortex (PFC) in exerting executive control over what information is stored and how it is adaptively used to guide behavior. However, the neural substrates that support the actual storage of content-specific information in STM are more controversial, with some attributing this function to PFC and others to the specialized areas of early visual cortex that initially encode incoming sensory stimuli. In contrast to these traditional views, I will review evidence suggesting that content-specific information can be flexibly maintained in areas across the cortical hierarchy ranging from early visual cortex to PFC. While the factors that determine exactly where content-specific information is represented are not yet entirely clear, recognizing the importance of task-demands and better understanding the operation of non-spiking neural codes may help to constrain new theories about how memories are maintained at different resolutions, across different timescales, and in the presence of distracting information. Copyright © 2016 Elsevier Ltd. All rights reserved.
Serow, W J
1981-01-01
An effort is made in this discussion to demonstrate the effects of varying rates of population growth upon the industrial and occupational compositions of demand for labor. The discussion extends previous research activity that has demonstrated that changes in the composition of consumer demand are insensitive to alternative rates of population growth. The discussion begins with a replication of projections of consumer demand patterns under 3 alternative population projections and then transforms these results into projections of final demand by industrial sector, demand for labor by industrial sector, and demand for labor by occupational group. Projections of US household composition patterns are made for the 1980-2020 period. The size and composition of the population and households are derived from US Bureau of the Census Series 1, 2, and 3 projections. From these, projections of size and composition of the labor force are derived utilizing Bureau of Labor Statistics' to 1990. Projections of average earnings per worker, in the aggregate, are taken from Bureau of Economic Analysis projections. The results show that both labor force compositions are relatively insensitive to varying demographic patterns. The industrial composition reflects a continuation of already existing trends, but the occupational composition shows some tendency to move away from professional and highly skilled blue collar occupations and towards service and clerical occupations. The results contain a variety of implications for policy considerations concerning higher education and the proper functioning of the labor market. The relative decline in the number of professional and managerial workers, the groups who are most likely to possess a university degree, suggests that the prospects for conventional higher education might be even less bright than would be suggested by an inspection of trends in the size of the 18-24 year old population. Some mitigation of this possibly adverse trend is possible if the system of higher education proves sufficiently flexible to provide more occupational and retraining services than is currently the case. The findings also suggest the need for greater attention to be directed to the design of training programs intended to meet the need for specific occupations. Another problem is the adequacy of labor supply. A possible response to the potential supply-demand imbalances is a reconsideration of current immigration policies in order to allow larger numbers of migrants to enter the labor force.
Post-growth process for flexible CdS/CdTe thin film solar cells with high specific power.
Cho, Eunwoo; Kang, Yoonmook; Kim, Donghwan; Kim, Jihyun
2016-05-16
We demonstrated a flexible CdS/CdTe thin film solar cell with high specific power of approximately 254 W/kg. A flexible and ultra-light weight CdS/CdTe cell treated with pre-NP etch process exhibited high conversion efficiency of 13.56% in superstrate configuration. Morphological, structural and optical changes of CdS/CdTe thin films were characterized when pre-NP etch step was incorporated to the conventional post-deposition process. Improvement of photovoltaic parameters can be attributed to the removal of the oxide and the formation of Te-rich layer, which benefit the activation process. Pre-NP etched cell maintained their flexibility and performance under the repeated tensile strain of 0.13%. Our method can pave a way for manufacturing flexible CdS/CdTe thin film solar cells with high specific power for mobile and aerospace applications.
A Markovian state-space framework for integrating flexibility into space system design decisions
NASA Astrophysics Data System (ADS)
Lafleur, Jarret M.
The past decades have seen the state of the art in aerospace system design progress from a scope of simple optimization to one including robustness, with the objective of permitting a single system to perform well even in off-nominal future environments. Integrating flexibility, or the capability to easily modify a system after it has been fielded in response to changing environments, into system design represents a further step forward. One challenge in accomplishing this rests in that the decision-maker must consider not only the present system design decision, but also sequential future design and operation decisions. Despite extensive interest in the topic, the state of the art in designing flexibility into aerospace systems, and particularly space systems, tends to be limited to analyses that are qualitative, deterministic, single-objective, and/or limited to consider a single future time period. To address these gaps, this thesis develops a stochastic, multi-objective, and multi-period framework for integrating flexibility into space system design decisions. Central to the framework are five steps. First, system configuration options are identified and costs of switching from one configuration to another are compiled into a cost transition matrix. Second, probabilities that demand on the system will transition from one mission to another are compiled into a mission demand Markov chain. Third, one performance matrix for each design objective is populated to describe how well the identified system configurations perform in each of the identified mission demand environments. The fourth step employs multi-period decision analysis techniques, including Markov decision processes from the field of operations research, to find efficient paths and policies a decision-maker may follow. The final step examines the implications of these paths and policies for the primary goal of informing initial system selection. Overall, this thesis unifies state-centric concepts of flexibility from economics and engineering literature with sequential decision-making techniques from operations research. The end objective of this thesis’ framework and its supporting tools is to enable selection of the next-generation space systems today, tailored to decision-maker budget and performance preferences, that will be best able to adapt and perform in a future of changing environments and requirements. Following extensive theoretical development, the framework and its steps are applied to space system planning problems of (1) DARPA-motivated multiple- or distributed-payload satellite selection and (2) NASA human space exploration architecture selection.
SLAE–CPS: Smart Lean Automation Engine Enabled by Cyber-Physical Systems Technologies
Ma, Jing; Wang, Qiang; Zhao, Zhibiao
2017-01-01
In the context of Industry 4.0, the demand for the mass production of highly customized products will lead to complex products and an increasing demand for production system flexibility. Simply implementing lean production-based human-centered production or high automation to improve system flexibility is insufficient. Currently, lean automation (Jidoka) that utilizes cyber-physical systems (CPS) is considered a cost-efficient and effective approach for improving system flexibility under shrinking global economic conditions. Therefore, a smart lean automation engine enabled by CPS technologies (SLAE–CPS), which is based on an analysis of Jidoka functions and the smart capacity of CPS technologies, is proposed in this study to provide an integrated and standardized approach to design and implement a CPS-based smart Jidoka system. A set of comprehensive architecture and standardized key technologies should be presented to achieve the above-mentioned goal. Therefore, a distributed architecture that joins service-oriented architecture, agent, function block (FB), cloud, and Internet of things is proposed to support the flexible configuration, deployment, and performance of SLAE–CPS. Then, several standardized key techniques are proposed under this architecture. The first one is for converting heterogeneous physical data into uniform services for subsequent abnormality analysis and detection. The second one is a set of Jidoka scene rules, which is abstracted based on the analysis of the operator, machine, material, quality, and other factors in different time dimensions. These Jidoka rules can support executive FBs in performing different Jidoka functions. Finally, supported by the integrated and standardized approach of our proposed engine, a case study is conducted to verify the current research results. The proposed SLAE–CPS can serve as an important reference value for combining the benefits of innovative technology and proper methodology. PMID:28657577
SLAE-CPS: Smart Lean Automation Engine Enabled by Cyber-Physical Systems Technologies.
Ma, Jing; Wang, Qiang; Zhao, Zhibiao
2017-06-28
In the context of Industry 4.0, the demand for the mass production of highly customized products will lead to complex products and an increasing demand for production system flexibility. Simply implementing lean production-based human-centered production or high automation to improve system flexibility is insufficient. Currently, lean automation (Jidoka) that utilizes cyber-physical systems (CPS) is considered a cost-efficient and effective approach for improving system flexibility under shrinking global economic conditions. Therefore, a smart lean automation engine enabled by CPS technologies (SLAE-CPS), which is based on an analysis of Jidoka functions and the smart capacity of CPS technologies, is proposed in this study to provide an integrated and standardized approach to design and implement a CPS-based smart Jidoka system. A set of comprehensive architecture and standardized key technologies should be presented to achieve the above-mentioned goal. Therefore, a distributed architecture that joins service-oriented architecture, agent, function block (FB), cloud, and Internet of things is proposed to support the flexible configuration, deployment, and performance of SLAE-CPS. Then, several standardized key techniques are proposed under this architecture. The first one is for converting heterogeneous physical data into uniform services for subsequent abnormality analysis and detection. The second one is a set of Jidoka scene rules, which is abstracted based on the analysis of the operator, machine, material, quality, and other factors in different time dimensions. These Jidoka rules can support executive FBs in performing different Jidoka functions. Finally, supported by the integrated and standardized approach of our proposed engine, a case study is conducted to verify the current research results. The proposed SLAE-CPS can serve as an important reference value for combining the benefits of innovative technology and proper methodology.
Influence of motivation on control hierarchy in the human frontal cortex.
Bahlmann, Jörg; Aarts, Esther; D'Esposito, Mark
2015-02-18
The frontal cortex mediates cognitive control and motivation to shape human behavior. It is generally observed that medial frontal areas are involved in motivational aspects of behavior, whereas lateral frontal regions are involved in cognitive control. Recent models of cognitive control suggest a rostro-caudal gradient in lateral frontal regions, such that progressively more rostral (anterior) regions process more complex aspects of cognitive control. How motivation influences such a control hierarchy is still under debate. Although some researchers argue that both systems work in parallel, others argue in favor of an interaction between motivation and cognitive control. In the latter case it is yet unclear how motivation would affect the different levels of the control hierarchy. This was investigated in the present functional MRI study applying different levels of cognitive control under different motivational states (low vs high reward anticipation). Three levels of cognitive control were tested by varying rule complexity: stimulus-response mapping (low-level), flexible task updating (mid-level), and sustained cue-task associations (high-level). We found an interaction between levels of cognitive control and motivation in medial and lateral frontal subregions. Specifically, flexible updating (mid-level of control) showed the strongest beneficial effect of reward and only this level exhibited functional coupling between dopamine-rich midbrain regions and the lateral frontal cortex. These findings suggest that motivation differentially affects the levels of a control hierarchy, influencing recruitment of frontal cortical control regions depending on specific task demands. Copyright © 2015 the authors 0270-6474/15/353207-11$15.00/0.
A Longitudinal Test of the Demand–Control Model Using Specific Job Demands and Specific Job Control
van Vegchel, Natasja; Shimazu, Akihito; Schaufeli, Wilmar; Dormann, Christian
2010-01-01
Background Supportive studies of the demand–control (DC) model were more likely to measure specific demands combined with a corresponding aspect of control. Purpose A longitudinal test of Karasek’s (Adm Sci Q. 24:285–308, 1) job strain hypothesis including specific measures of job demands and job control, and both self-report and objectively recorded well-being. Method Job strain hypothesis was tested among 267 health care employees from a two-wave Dutch panel survey with a 2-year time lag. Results Significant demand/control interactions were found for mental and emotional demands, but not for physical demands. The association between job demands and job satisfaction was positive in case of high job control, whereas this association was negative in case of low job control. In addition, the relation between job demands and psychosomatic health symptoms/sickness absence was negative in case of high job control and positive in case of low control. Conclusion Longitudinal support was found for the core assumption of the DC model with specific measures of job demands and job control as well as self-report and objectively recorded well-being. PMID:20195810
NASA Astrophysics Data System (ADS)
Gogurla, Narendar; Mondal, Suvra P.; Sinha, Arun K.; Katiyar, Ajit K.; Banerjee, Writam; Kundu, Subhas C.; Ray, Samit K.
2013-08-01
The growing demand for biomaterials for electrical and optical devices is motivated by the need to make building blocks for the next generation of printable bio-electronic devices. In this study, transparent and flexible resistive memory devices with a very high ON/OFF ratio incorporating gold nanoparticles into the Bombyx mori silk protein fibroin biopolymer are demonstrated. The novel electronic memory effect is based on filamentary switching, which leads to the occurrence of bistable states with an ON/OFF ratio larger than six orders of magnitude. The mechanism of this process is attributed to the formation of conductive filaments through silk fibroin and gold nanoparticles in the nanocomposite. The proposed hybrid bio-inorganic devices show promise for use in future flexible and transparent nanoelectronic systems.
Thin film encapsulation for flexible AM-OLED: a review
NASA Astrophysics Data System (ADS)
Park, Jin-Seong; Chae, Heeyeop; Chung, Ho Kyoon; In Lee, Sang
2011-03-01
Flexible organic light emitting diode (OLED) will be the ultimate display technology to customers and industries in the near future but the challenges are still being unveiled one by one. Thin-film encapsulation (TFE) technology is the most demanding requirement to prevent water and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This work provides a review of promising thin-film barrier technologies as well as the basic gas diffusion background. Topics include the significance of the device structure, permeation rate measurement, proposed permeation mechanism, and thin-film deposition technologies (Vitex system and atomic layer deposition (ALD)/molecular layer deposition (MLD)) for effective barrier films.
Recent Advances of Flexible Data Storage Devices Based on Organic Nanoscaled Materials.
Zhou, Li; Mao, Jingyu; Ren, Yi; Han, Su-Ting; Roy, Vellaisamy A L; Zhou, Ye
2018-03-01
Following the trend of miniaturization as per Moore's law, and facing the strong demand of next-generation electronic devices that should be highly portable, wearable, transplantable, and lightweight, growing endeavors have been made to develop novel flexible data storage devices possessing nonvolatile ability, high-density storage, high-switching speed, and reliable endurance properties. Nonvolatile organic data storage devices including memory devices on the basis of floating-gate, charge-trapping, and ferroelectric architectures, as well as organic resistive memory are believed to be favorable candidates for future data storage applications. In this Review, typical information on device structure, memory characteristics, device operation mechanisms, mechanical properties, challenges, and recent progress of the above categories of flexible data storage devices based on organic nanoscaled materials is summarized. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dynamic traffic grooming with Spectrum Engineering (TG-SE) in flexible grid optical networks
NASA Astrophysics Data System (ADS)
Yu, Xiaosong; Zhao, Yongli; Zhang, Jiawei; Wang, Jianping; Zhang, Guoying; Chen, Xue; Zhang, Jie
2015-12-01
Flexible grid has emerged as an evolutionary technology to satisfy the ever increasing demand for higher spectrum efficiency and operational flexibility. To optimize the spectrum resource utilization, this paper introduces the concept of Spectrum Engineering in flex-grid optical networks. The sliceable optical transponder has been proposed to offload IP traffic to the optical layer and reduce the number of IP router ports and transponders. We discuss the impact of sliceable transponder in traffic grooming and propose several traffic-grooming schemes with Spectrum Engineering (TG-SE). Our results show that there is a tradeoff among different traffic grooming policies, which should be adopted based on the network operator's objectives. The proposed traffic grooming with Spectrum Engineering schemes can reduce OPEX as well as increase spectrum efficiency by efficiently utilizing the bandwidth variability and capability of sliceable optical transponders.
Modeling and system design for the LOFAR station digital processing
NASA Astrophysics Data System (ADS)
Alliot, Sylvain; van Veelen, Martijn
2004-09-01
In the context of the LOFAR preliminary design phase and in particular for the specification of the Station Digital Processing (SDP), a performance/cost model of the system was used. We present here the framework and the trajectory followed in this phase when going from requirements to specification. In the phased array antenna concepts for the next generation of radio telescopes (LOFAR, ATA, SKA) signal processing (multi-beaming and RFI mitigation) replaces the large antenna dishes. The embedded systems for these telescopes are major infrastructure cost items. Moreover, the flexibility and overall performance of the instrument depend greatly on them, therefore alternative solutions need to be investigated. In particular, the technology and the various data transport selections play a fundamental role in the optimization of the architecture. We proposed a formal method [1] of exploring these alternatives that has been followed during the SDP developments. Different scenarios were compared for the specification of the application (selection of the algorithms as well as detailed signal processing techniques) and in the specification of the system architecture (selection of high level topologies, platforms and components). It gave us inside knowledge on the possible trade-offs in the application and architecture domains. This was successful in providing firm basis for the design choices that are demanded by technical review committees.
MUSCULOSKELETAL SCREENING AND FUNCTIONAL TESTING: CONSIDERATIONS FOR BASKETBALL ATHLETES
Markwick, William J.
2016-01-01
Background and Purpose Youth participation in basketball is on the rise, with basketball one of the top five participation sports in Australia. With increased participation there is a need for greater awareness of the importance of the pre-participation examination, including musculoskeletal screening and functional performance testing as part of a multidisciplinary approach to reducing the risk for future injuries. As majority of all basketball injuries affect the lower extremities, pre-participation musculoskeletal screening and functional performance testing should assess fundamental movement qualities throughout the kinetic chain with an emphasis on lower extremity force characteristics, specifically eccentric loading tasks. Thus, the purpose of this clinical commentary is to review the existing literature elucidating pre-participation musculoskeletal screening and functional performance tests that can be used as a framework for rehabilitation professionals in assessing basketball athletes’ readiness to safely perform the movement demands of their sport. Methods Relevant articles published between 2000 and 2016 using the search terms ‘musculoskeletal screening’, ‘functional testing’, ‘youth athletes’, and ‘basketball’ were identified using MEDLINE. From a basketball-specific perspective, several relevant musculoskeletal assessments were identified, including: the Functional Hop Test Combination, the Landing Error Scoring System, the Tuck Jump Assessment, the Weight-Bearing Lunge Test, and the Star Excursion Balance Test. Each of these assessments creates movement demands that allow for easy identification of inefficient and/or compensatory movement tendencies. A basic understanding of musculoskeletal deficits including bilateral strength and flexibility imbalances, lower crossed syndrome, and dominance-related factors are key components in determination of injury risk. Discussion Assessment of sport-specific movement demands through musculoskeletal screening and functional performance testing is essential for rehabilitation professionals to determine movement competency during performance of fundamental movements related to basketball performance. Youth athletes represent a unique population due to their developing musculoskeletal and neuromuscular systems and should undergo pre-participation musculoskeletal screening for identification of movement limitations. Such an approach to musculoskeletal screening and functional performance may assist in identifying injury risk and also be useful at the end of rehabilitation in determining readiness to return to sport models. Level of Evidence Level 5 PMID:27757291
MUSCULOSKELETAL SCREENING AND FUNCTIONAL TESTING: CONSIDERATIONS FOR BASKETBALL ATHLETES.
Bird, Stephen P; Markwick, William J
2016-10-01
Youth participation in basketball is on the rise, with basketball one of the top five participation sports in Australia. With increased participation there is a need for greater awareness of the importance of the pre-participation examination, including musculoskeletal screening and functional performance testing as part of a multidisciplinary approach to reducing the risk for future injuries. As majority of all basketball injuries affect the lower extremities, pre-participation musculoskeletal screening and functional performance testing should assess fundamental movement qualities throughout the kinetic chain with an emphasis on lower extremity force characteristics, specifically eccentric loading tasks. Thus, the purpose of this clinical commentary is to review the existing literature elucidating pre-participation musculoskeletal screening and functional performance tests that can be used as a framework for rehabilitation professionals in assessing basketball athletes' readiness to safely perform the movement demands of their sport. Relevant articles published between 2000 and 2016 using the search terms 'musculoskeletal screening', 'functional testing', 'youth athletes', and 'basketball' were identified using MEDLINE. From a basketball-specific perspective, several relevant musculoskeletal assessments were identified, including: the Functional Hop Test Combination, the Landing Error Scoring System, the Tuck Jump Assessment, the Weight-Bearing Lunge Test, and the Star Excursion Balance Test. Each of these assessments creates movement demands that allow for easy identification of inefficient and/or compensatory movement tendencies. A basic understanding of musculoskeletal deficits including bilateral strength and flexibility imbalances, lower crossed syndrome, and dominance-related factors are key components in determination of injury risk. Assessment of sport-specific movement demands through musculoskeletal screening and functional performance testing is essential for rehabilitation professionals to determine movement competency during performance of fundamental movements related to basketball performance. Youth athletes represent a unique population due to their developing musculoskeletal and neuromuscular systems and should undergo pre-participation musculoskeletal screening for identification of movement limitations. Such an approach to musculoskeletal screening and functional performance may assist in identifying injury risk and also be useful at the end of rehabilitation in determining readiness to return to sport models. Level 5.
Song, Wei; Guo, Jun-Tao
2015-01-01
Transcription factors regulate gene expression through binding to specific DNA sequences. How transcription factors achieve high binding specificity is still not well understood. In this paper, we investigated the role of protein flexibility in protein-DNA-binding specificity by comparative molecular dynamics (MD) simulations. Protein flexibility has been considered as a key factor in molecular recognition, which is intrinsically a dynamic process involving fine structural fitting between binding components. In this study, we performed comparative MD simulations on wild-type and F10V mutant P22 Arc repressor in both free and complex conformations. The F10V mutant has lower DNA-binding specificity though both the bound and unbound main-chain structures between the wild-type and F10V mutant Arc are highly similar. We found that the DNA-binding motif of wild-type Arc is structurally more flexible than the F10V mutant in the unbound state, especially for the six DNA base-contacting residues in each dimer. We demonstrated that the flexible side chains of wild-type Arc lead to a higher DNA-binding specificity through forming more hydrogen bonds with DNA bases upon binding. Our simulations also showed a possible conformational selection mechanism for Arc-DNA binding. These results indicate the important roles of protein flexibility and dynamic properties in protein-DNA-binding specificity.
Psychological Flexibility as a Fundamental Aspect of Health
Kashdan, Todd B.
2010-01-01
Traditionally, positive emotions and thoughts, strengths, and the satisfaction of basic psychological needs for belonging, competence, and autonomy have been seen as the cornerstones of psychological health. Without disputing their importance, these foci fail to capture many of the fluctuating, conflicting forces that are readily apparent when people navigate the environment and social world. In this paper, we review literature to offer evidence for the prominence of psychological flexibility in understanding psychological health. Thus far, the importance of psychological flexibility has been obscured by the isolation and disconnection of research conducted on this topic. Psychological flexibility spans a wide range of human abilities to: recognize and adapt to various situational demands; shift mindsets or behavioral repertoires when these strategies compromise personal or social functioning; maintain balance among important life domains; and be aware, open, and committed to behaviors that are congruent with deeply held values. In many forms of psychopathology, these flexibility processes are absent. In hopes of creating a more coherent understanding, we synthesize work in emotion regulation, mindfulness and acceptance, social and personality psychology, and neuropsychology. Basic research findings provide insight into the nature, correlates, and consequences of psychological flexibility and applied research provides details on promising interventions. Throughout, we emphasize dynamic approaches that might capture this fluid construct in the real-world. PMID:21151705
NASA Astrophysics Data System (ADS)
Schmitt, R.; Pavim, A.
2009-06-01
The demand for achieving smaller and more flexible production series with a considerable diversity of products complicates the control of the manufacturing tasks, leading to big challenges for the quality assurance systems. The quality assurance strategy that is nowadays used for mass production is unable to cope with the inspection flexibility needed among automated small series production, because the measuring strategy is totally dependent on the fixed features of the few manufactured object variants and on process parameters that can be controlled/compensated during production time. The major challenge faced by a quality assurance system applied to small series production facilities is to guarantee the needed quality level already at the first run, and therefore, the quality assurance system has to adapt itself constantly to the new manufacturing conditions. The small series production culture requires a change of paradigms, because its strategies are totally different from mass production. This work discusses the tight inspection requirements of small series production and presents flexible metrology strategies based on optical sensor data fusion techniques, agent-based systems as well as cognitive and self-optimised systems for assuring the needed quality level of flexible small series. Examples of application scenarios are provided among the automated assembly of solid state lasers and the flexible inspection of automotive headlights.
Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications
NASA Astrophysics Data System (ADS)
Sahoo, Gopinath; Ghosh, Subrata; Polaki, S. R.; Mathews, Tom; Kamruddin, M.
2017-10-01
Vertical graphene nanosheets (VGN) are the material of choice for application in next-generation electronic devices. The growing demand for VGN-based flexible devices for the electronics industry brings in restriction on VGN growth temperature. The difficulty associated with the direct growth of VGN on flexible substrates can be overcome by adopting an effective strategy of transferring the well-grown VGN onto arbitrary flexible substrates through a soft chemistry route. In the present study, we report an inexpensive and scalable technique for the polymer-free transfer of VGN onto arbitrary substrates without disrupting its morphology, structure, and properties. After transfer, the morphology, chemical structure, and electrical properties are analyzed by scanning electron microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and four-probe resistive methods, respectively. The wetting properties are studied from the water contact angle measurements. The observed results indicate the retention of morphology, surface chemistry, structure, and electronic properties. Furthermore, the storage capacity of the transferred VGN-based binder-free and current collector-free flexible symmetric supercapacitor device is studied. A very low sheet resistance of 670 Ω/□ and excellent supercapacitance of 158 μF cm-2 with 86% retention after 10 000 cycles show the prospect of the damage-free VGN transfer approach for the fabrication of flexible nanoelectronic devices.
Flexible copper-indium-diselenide films and devices for space applications
NASA Technical Reports Server (NTRS)
Armstrong, J. H.; Pistole, C. O.; Misra, M. S.; Kapur, V. K.; Basol, B. M.
1991-01-01
With the ever increasing demands on space power systems, it is imperative that low cost, lightweight, reliable photovoltaics be developed. One avenue of pursuit for future space power applications is the use of low cost, lightweight flexible PV cells and arrays. Most work in this area assumes the use of flexible amorphous silicon (a-Si), despite its inherent instability and low efficiencies. However, polycrystalline thin film PV such as copper-indium-diselenide (CIS) are inherently more stable and exhibit better performance than a-Si. Furthermore, preliminary data indicate that CIS also offers exciting properties with respect to space applications. However, CIS has only heretofore only produced on rigid substrates. The implications of flexible CIS upon present and future space power platforms was explored. Results indicate that space qualified CIS can dramatically reduce the cost of PV, and in most cases, can be substituted for silicon (Si) based on end-of-life (EOL) estimations. Furthermore, where cost is a prime consideration, CIS can become cost effective than gallium arsenide (GaAs) in some applications. Second, investigations into thin film deposition on flexible substrates were made, and data from these tests indicate that fabrication of flexible CIS devices is feasible. Finally, data is also presented on preliminary TCO/CdS/CuInSe2/Mo devices.
Jones, Hendrée E.; Fischer, Gabriele; Heil, Sarah H.; Kaltenbach, Karol; Martin, Peter R.; Coyle, Mara G.; Selby, Peter; Stine, Susan M.; O’Grady, Kevin E.; Arria, Amelia M.
2015-01-01
Aims The Maternal Opioid Treatment: Human Experimental Research (MOTHER) project, an eight-site randomized, double-blind, double-dummy, flexible-dosing, parallel-group clinical trial is described. This study is the most current – and single most comprehensive – research effort to investigate the safety and efficacy of maternal and prenatal exposure to methadone and buprenorphine. Methods The MOTHER study design is outlined, and its basic features are presented. Conclusions At least seven important lessons have been learned from the MOTHER study: (1) an interdisciplinary focus improves the design and methods of a randomized clinical trial; (2) multiple sites in a clinical trial present continuing challenges to the investigative team due to variations in recruitment goals, patient populations, and hospital practices that in turn differentially impact recruitment rates, treatment compliance, and attrition; (3) study design and protocols must be flexible in order to meet the unforeseen demands of both research and clinical management; (4) staff turnover needs to be addressed with a proactive focus on both hiring and training; (5) the implementation of a protocol for the treatment of a particular disorder may identify important ancillary clinical issues worthy of investigation; (6) timely tracking of data in a multi-site trial is both demanding and unforgiving; and, (7) complex multi-site trials pose unanticipated challenges that complicate the choice of statistical methods, thereby placing added demands on investigators to effectively communicate their results. PMID:23106924
Future Data Communication Architectures for Safety Critical Aircraft Cabin Systems
NASA Astrophysics Data System (ADS)
Berkhahn, Sven-Olaf
2012-05-01
The cabin of modern aircraft is subject to increasing demands for fast reconfiguration and hence flexibility. These demands require studies for new network architectures and technologies of the electronic cabin systems, which consider also weight and cost reductions as well as safety constraints. Two major approaches are in consideration to reduce the complex and heavy wiring harness: the usage of a so called hybrid data bus technology, which enables the common usage of the same data bus for several electronic cabin systems with different safety and security requirements and the application of wireless data transfer technologies for electronic cabin systems.
Perspectives of powerful laser technique for medicine
NASA Astrophysics Data System (ADS)
Konov, Vitali I.; Prokhorov, Alexander M.; Shcherbakov, Ivan A.
1991-11-01
The optimum laser-system parameters are being selected for several types of surgical operations using ablation techniques. The choice is based on the specific demands of the operation performed, knowledge of the ablation laws, limitations on laser-beam intensity which come from the necessity to transport high-intensity light through flexible fiber, and the peculiarities of different laser systems. At present it is more expedient to develop laser medical setups oriented to the solution of one task or a limited number of problems. The choice of a concrete installation should be based on the investigation results of interaction of radiation with biological tissues and its transmission through the fiber, the analysis of the level of development of laser and fiber technique, specificity of the operation, and compatibility of laser facilitates and traditional medical equipment. The paper illustrates such an approach by way of several concrete examples and notes the corresponding laser systems, which were developed or are in the developmental stage in the General Physics Institute of the USSR Academy of Sciences and in organizations connected with the Institute.
ERIC Educational Resources Information Center
Devine, Frances; Hearns, Niamh; Baum, Tom; Murray, Anna
2008-01-01
Academics are facing significant challenges in preparing indigenous students for employment in the multicultural working environment of hospitality and tourism organisations. In dealing with the impact of the new skills and flexibilities demanded by increasing globalisation, the indigenous workforce needs to possess a multicultural perspective and…
Balancing Cognitive Demands: Control Adjustments in the Stop-Signal Paradigm
ERIC Educational Resources Information Center
Bissett, Patrick G.; Logan, Gordon D.
2011-01-01
Cognitive control enables flexible interaction with a dynamic environment. In 2 experiments, the authors investigated control adjustments in the stop-signal paradigm, a procedure that requires balancing speed (going) and caution (stopping) in a dual-task environment. Focusing on the slowing of go reaction times after stop signals, the authors…
ERIC Educational Resources Information Center
Lopez, Maria Jose Gonzalez
2006-01-01
The search for more flexibility in financial management of public universities demands adjustments in budgeting strategies. International studies on this topic recommend wider financial autonomy for management units, the use of budgeting models based on performance, the implementation of formula systems for the determination of financial needs of…
Hybrid Program Design: What Works for Adult Learners in a Professional Degree Program?
ERIC Educational Resources Information Center
Stevens, Christine Rowader
2017-01-01
Working adults planning to pursue higher education programs to advance their careers often face conflicting demands. Colleges and universities are challenged to offer non-traditional programs with more scheduling flexibility, allowing adult learners to manage multiple work, family, and other obligations while attending school (Dana, 2013;…
2015-12-01
AND ABBREVIATIONS ACFE ACO AFFAR AFICA AFOSI AFMC AOR AT&L AUSA B BEP BPA BRAC BSIC C2 CEO CFE CFR CICA CID CITP CMMM CONUS COR...or blanket purchase agreements ( BPAs ), thereby providing flexibility to meet fluctuating government demands. c. Proposal Evaluation Criteria
Noncredit Enrollment in Workforce Education: State Policies and Community College Practices
ERIC Educational Resources Information Center
Van Noy, Michelle; Jacobs, James; Korey, Suzanne; Bailey, Thomas; Hughes, Katherine L.
2008-01-01
Postsecondary noncredit education has become increasingly common; many community colleges now enroll more noncredit than credit students. Much of the growth has occurred in workforce instruction and contract training, programs are noted for their role in meeting shifting workforce demands and providing skills in a way that is flexible and…
ERIC Educational Resources Information Center
Rogers, Margaret
1968-01-01
Objectives of this paper are: (1) to provide a practical point of view, based on experience of library and audiovisual practitioners, for expanding secondary school library programs into instructional materials center programs as demanded by instructional programs involving flexible scheduling, inquiry, and independent study; (2) to provide an…
ERIC Educational Resources Information Center
Lucena, Juan C.
2006-01-01
The demand for flexible engineers presents significant challenges to engineering education. Among these is the need for engineers to be prepared to understand and deal with organizational change. Yet engineering education and research on engineers have overlooked the impact of organizational change on engineering work. After outlining the impact…
Student Satisfaction with Online Courses versus Traditional Courses: A Meta-Analysis
ERIC Educational Resources Information Center
Macon, Don Kirk
2011-01-01
Web-based education, because of its convenience, has become an important delivery method across multiple higher education contexts. In particular, online courses offer time and space flexibility that enable working adults to continue to keep their full-time jobs while earning college credits. As a result of this growing demand, junior and…
Austrian Higher Education Meets the Knowledge Society
ERIC Educational Resources Information Center
Pechar, Hans
2004-01-01
Austria has gone through two cycles of university reforms since the 1960s. The first aimed to open the universities to social and labour market demand and to make their structures more democratic and flexible. The second reform cycle dealt with glitches in the overly close relationship between universities and state bureaucracy. Bureaucrats still…
Survival Skills for the Principalship CD Companion
ERIC Educational Resources Information Center
Blaydes, John
2004-01-01
Today's principals face unique challenges--demands of time, knowledge, and organization, which take their toll on even the most flexible leader. A complement to the insightful "Survival Skills for the Principalship: A Treasure Chest of Time-Savers, Short-Cuts, and Strategies to Help You Keep a Balance in Your Life" (ED495598), this ready-to-edit…
Using sampling theory as the basis for a conceptual data model
Fred C. Martin; Tonya Baggett; Tom Wolfe
2000-01-01
Greater demands on forest resources require that larger amounts of information be readily available to decisionmakers. To provide more information faster, databases must be developed that are more comprehensive and easier to use. Data modeling is a process for building more complete and flexible databases by emphasizing fundamental relationships over existing or...
ERIC Educational Resources Information Center
Saltmarsh, Sue; Randell-Moon, Holly
2015-01-01
University work-life balance policies increasingly offer academic workers a range of possible options for managing the competing demands of work, family, and community obligations. Flexible work arrangements, family-friendly hours and campus facilities, physical well-being and mental health programs typify strategies for formally acknowledging the…
Texas Employer 1996 Dependent Care Survey.
ERIC Educational Resources Information Center
Ruggiere, Paul; Glass, James
Many employers have enacted "family-friendly benefits" in response to demands placed on their employees by the stress of caring for children or aging parents. The Employer Dependent Care Survey measured the prevalence of flexible work arrangements and child care and elder care benefits in Texas. Participating were 1,331 out of 6,500…
Exploring a Middle Ground Engagement with Students in a Social Learning Environment.
ERIC Educational Resources Information Center
Smith, Anne M. J.; Campbell, Sonya
2012-01-01
The twenty first century student demands more from universities in terms of engagement that is flexible, accessible and immediate. This means universities revisiting their engagement agenda at a time when financial constraints can least afford expensive technologies and resource dependent engagement solutions. Solutions are likely to be varied…
Direct and Indirect Measures of Level-2 Perspective-Taking in Children and Adults
ERIC Educational Resources Information Center
Surtees, Andrew D. R.; Butterfill, Stephen A.; Apperly, Ian A.
2012-01-01
Studies with infants show divergence between performance on theory of mind tasks depending on whether "direct" or "indirect" measures are used. It has been suggested that direct measures assess a flexible but cognitively demanding ability to reason about the minds of others, whereas indirect measures assess distinct processes…
Europe's Got Talent: Setting the Stage for New Teachers by Educative Mentoring
ERIC Educational Resources Information Center
da Rocha, Karin
2014-01-01
Growing challenges, demographic change and the need to deal with various demands in one's professional and private life call for a high flexibility and willingness to learn, especially among teachers, who serve as role models in this respect. Consequently, professional development has to focus on reflective and introspective processes. At the…
Building 21st Century Schools: Designing Smarter, Sleeker High-Tech Facilities.
ERIC Educational Resources Information Center
Cutshall, Sandy
2003-01-01
The demand for high-tech programs in tandem with traditional classes challenges school districts to provide flexible facilities for career and technical education. Some districts partner with local businesses to develop state-of-the art facilities and deal with costs, upkeep, and upgrading. Some high-tech educational facilities are themselves…
Maintaining Professional Psychological Identity and Integrity in School Practice.
ERIC Educational Resources Information Center
Balinky, Jean L.
The most difficult part of being a school psychologist is working in a school. Demands for accountability and staff productivity from federal, state, and local funding sources can lead to a lack of flexibility in educational strategy, increased pressure to place students in special education programs, and restrictions on the role of the school…
78 FR 46604 - Raw Flexible Magnets From China and Taiwan; Institution of Five-Year Reviews
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... changes, if any, in the supply and demand conditions or business cycle for the Domestic Like Product that... disclosure of business proprietary information (BPI) under an administrative protective order (APO) and APO.../worker group, or trade/business association; import/export Subject Merchandise from more than one Subject...
Building Systems on the Campus, Part I. BSIC/EFL Newsletter.
ERIC Educational Resources Information Center
BSIC/EFL Newsletter, 1972
1972-01-01
The major systems development projects of the 1960's were concerned primarily with facility problems at the elementary and secondary levels. Rapidly increasing enrollments coupled with changes in both curriculum and in teaching methods created a demand for more flexible facilities that could be constructed rapidly and inexpensively. The success of…
An Intuitive Approach to Learning Delivery in Higher Education
ERIC Educational Resources Information Center
Smith, David
2016-01-01
Preparing and teaching subjects in the Higher Education environment has been attracting much attention over the past decade as the sector diversifies and adds online instruction to its on campus delivery to cater to the increased demand for flexibility and choice from students. University lecturers are now required to assume greater responsibility…
Negotiating Professionalism: The Gendered Social Capital of Flexible Time.
ERIC Educational Resources Information Center
Seron, Carroll; Ferris,Kerry
1995-01-01
From a sample of 1,000 New York attorneys, data from 553 men and 129 women suggest that professional autonomy depends on social capital arrangements that assume overtime, open-ended work demands, and release from private obligations. Access to time is qualitatively different for men and women, especially married women with children. (SK)
Self-Assessment in University Assessment of Prior Learning Procedures
ERIC Educational Resources Information Center
Brinke, D. Joosten-Ten; Sluijsmans, D. M. A.; Jochems, W. M. G.
2009-01-01
Competency-based university education, in which lifelong learning and flexible learning are key elements, demands a renewed vision on assessment. Within this vision, Assessment of Prior Learning (APL), in which learners have to show their prior learning in order for their goals to be recognised, becomes an important element. This article focuses…
Metabolizing Data in the Cloud.
Warth, Benedikt; Levin, Nadine; Rinehart, Duane; Teijaro, John; Benton, H Paul; Siuzdak, Gary
2017-06-01
Cloud-based bioinformatic platforms address the fundamental demands of creating a flexible scientific environment, facilitating data processing and general accessibility independent of a countries' affluence. These platforms have a multitude of advantages as demonstrated by omics technologies, helping to support both government and scientific mandates of a more open environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Socialization of Part-Time Faculty at Comprehensive Public Colleges
ERIC Educational Resources Information Center
Frias, Mary Lou
2010-01-01
Fiscal constraints, understaffing, increased enrollments, demand for professional education, and the need for a more flexible workforce account for increases in the employment of part-time faculty in higher education. Part-time faculty tend to teach large, introductory courses for first and second-year students, who are in the "risk…
Climate change and drinking water production in The Netherlands: a flexible approach.
Ramaker, T A B; Meuleman, A F M; Bernhardi, L; Cirkel, G
2005-01-01
Climate change increases water system dynamics through temperature changes, changes in precipitation patterns, evaporation, water quality and water storage in ice packs. Water system dependent economical stakeholders, such as drinking water companies in The Netherlands, have to cope with consequences of climate change, e.g. floods and water shortages in river systems, upconing brackish ground water, salt water intrusion, increasing peak demands and microbiological activity. In the past decades, however, both water systems and drinking water production have become more and more inflexible; water systems have been heavily regulated and the drinking water supply has grown into an inflexible, but cheap and reliable, system. Flexibility and adaptivity are solutions to overcome climate change related consequences. Flexible adaptive strategies for drinking water production comprise new sources for drinking water production, application of storage concepts in the short term, and a redesign of large centralised systems, including flexible treatment plants, in the long term. Transition to flexible concepts will take decades because investment depreciation periods of assets are long. This implies that long-term strategies within an indicated time path have to be developed. These strategies must be based on thorough knowledge of current assets to seize opportunities for change.
Professional judgement and decision-making in adventure sports coaching: the role of interaction.
Collins, Loel; Collins, Dave
2016-01-01
This qualitative study presents the view that coaching practice places demands on the coach's adaptability and flexibility. These requirements for being adaptive and flexible are met through a careful process of professional judgement and decision-making based on context-appropriate bodies of knowledge. Adventure sports coaches were selected for study on the basis that adventure sports create a hyper-dynamic environment in which these features can be examined. Thematic analysis revealed that coaches were generally well informed and practised with respect to the technical aspects of their sporting disciplines. Less positively, however, they often relied on ad hoc contextualisation of generalised theories of coaching practice to respond to the hyper-dynamic environments encountered in adventure sports. We propose that coaching practice reflects the demands of the environment, individual learning needs of the students and the task at hand. Together, these factors outwardly resemble a constraints-led approach but, we suggest, actually reflect manipulation of these parameters from a cognitive rather than an ecological perspective. This process is facilitated by a refined judgement and decision-making process, sophisticated epistemology and an explicit interaction of coaching components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish
2014-08-01
The need for and concepts behind demand response are evolving. As the electric system changes with more intermittent renewable electric supply systems, there is a need to allow buildings to provide more flexible demand. This paper presents results from field studies and pilots, as well as engineering estimates of the potential capabilities of fast load responsiveness in commercial buildings. We present a sector wide analysis of flexible loads in commercial buildings, which was conducted to improve resource planning and determine which loads to evaluate in future demonstrations. These systems provide important capabilities for future transactional systems. The field analysis ismore » based on results from California, plus projects in the northwest and east coast. End-uses considered include heating, ventilation, air conditioning and lighting. The timescales of control include day-ahead, as well as day-of, 10-minute ahead and even faster response. This technology can provide DR signals on different times scales to interact with responsive building loads. We describe the latency of the control systems in the building and the round trip communications with the wholesale grid operators.« less
Perren, S M; Linke, B; Schwieger, K; Wahl, D; Schneider, E
2005-01-01
Fractures of the bones of elderly people occur more often and have a more important effect because of a generally diminished ability to coordinate stance and walking. These fractures occur at a lower level of load because of lack of strength of the porotic bone. Prompt recovery of skeletal support function is essential to avoid respiratory and circulatory complications in the elderly. To prevent elderly people from the risks of being bedridden, demanding internal fixation of fractures is required. The weak porotic bone and the high level of uncontrolled loading after internal fixation pose complex problems. A combination of several technical elements of design, application and aftercare in internal fixation are proposed. Internal fixators with locked screws improve the biology and the mechanics of internal fixation. When such fixators are used as elevated splints they may stimulate early callus formation because of their flexibility, the limit of flexibility being set by the demands of resistance and function of the limb. Our own studies of triangulation of locked screws have demonstrated their beneficial effects and unexpected limitations.
NASA Astrophysics Data System (ADS)
Delmelle, Eric M.; Thill, Jean-Claude; Peeters, Dominique; Thomas, Isabelle
2014-07-01
In rapidly growing urban areas, it is deemed vital to expand (or contract) an existing network of public facilities to meet anticipated changes in the level of demand. We present a multi-period capacitated median model for school network facility location planning that minimizes transportation costs, while functional costs are subject to a budget constraint. The proposed Vintage Flexible Capacitated Location Problem (ViFCLP) has the flexibility to account for a minimum school-age closing requirement, while the maximum capacity of each school can be adjusted by the addition of modular units. Non-closest assignments are controlled by the introduction of a parameter penalizing excess travel. The applicability of the ViFCLP is illustrated on a large US school system (Charlotte-Mecklenburg, North Carolina) where high school demand is expected to grow faster with distance to the city center. Higher school capacities and greater penalty on travel impedance parameter reduce the number of non-closest assignments. The proposed model is beneficial to policy makers seeking to improve the provision and efficiency of public services over a multi-period planning horizon.
Schwendicke, Falk; Jäger, Ralf; Hoffmann, Wolfgang; Jordan, Rainer A; van den Berg, Neeltje
2016-09-01
Assessing the spatial distribution of oral morbidity-related demand and the workforce-related supply is relevant for planning dental services. We aimed to establish and validate a model for estimating the spatially specific demand and supply. This model was then applied to compare demand-supply ratios in 2001 and 2011 in the federal state of Mecklenburg-Vorpommern (Northern Germany). The spatial units were zip code areas. Demand per area was estimated by linking population-specific oral morbidities to working times via insurance claim data. Estimated demand was validated against the provided demand in 2001 and 2011. Supply was calculated for both years using cohort data from the dentist register. The ratio of demand and supply was geographically mapped and its distribution between areas assessed using the Gini coefficient. Between 2001 and 2011, a significant decrease of the general population (-7.0 percent), the annual demand (-13.1 percent), and the annual supply (-12.9 percent) was recorded. The estimated demands were nearly (2001: -4 percent) and completely (2011: ±0 percent) congruent with provided demands. The average demand-supply-ratio did not change significantly between 2001 and 2011 (P > 0.05), but was increasingly unequally distributed. In both years, few areas were over-serviced, while many were under-serviced. The established model can be used to estimate spatially specific demand and supply. © 2016 American Association of Public Health Dentistry.
Procuring load curtailment from local customers under uncertainty.
Mijatović, Aleksandar; Moriarty, John; Vogrinc, Jure
2017-08-13
Demand side response (DSR) provides a flexible approach to managing constrained power network assets. This is valuable if future asset utilization is uncertain. However there may be uncertainty over the process of procurement of DSR from customers. In this context we combine probabilistic modelling, simulation and optimization to identify economically optimal procurement policies from heterogeneous customers local to the asset, under chance constraints on the adequacy of the procured DSR. Mathematically this gives rise to a search over permutations, and we provide an illustrative example implementation and case study.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Ad hoc Laser networks component technology for modular spacecraft
NASA Astrophysics Data System (ADS)
Huang, Xiujun; Shi, Dele; Ma, Zongfeng; Shen, Jingshi
2016-03-01
Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.
Ad hoc laser networks component technology for modular spacecraft
NASA Astrophysics Data System (ADS)
Huang, Xiujun; Shi, Dele; Shen, Jingshi
2017-10-01
Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.
Weser, Oskar; Veryazov, Valera
2017-01-01
Multiconfigurational methods are applied to study electronic properties and structural changes in the highly flexible metal-organic framework MIL53(Cr). Via calculated bending potentials of angles, that change the most during phase transition, it is verified that the high flexibility of this material is not a question about special electronic properties in the coordination chemistry, but about overall linking of the framework. The complex posseses a demanding electronic structure with delocalized spin density, antifferomagnetic coupling and high multi-state character requiring multiconfigurational methods. Calculated properties are in good agreement with known experimental values confirming our chosen methods.
Application of IUS equipment and experience to orbit transfer vehicles of the 90's
NASA Astrophysics Data System (ADS)
Bangsund, E.; Keeney, J.; Cowgill, E.
1985-10-01
This paper relates experiences with the IUS program and the application of that experience to Future Orbit Transfer Vehicles. More specifically it includes the implementation of the U.S. Air Force Space Division high reliability parts standard (SMASO STD 73-2C) and the component/system test standard (MIL-STD-1540A). Test results from the parts and component level testing and the resulting system level test program for fourteen IUS flight vehicles are discussed. The IUS program has had the highest compliance with these standards and thus offers a benchmark of experience for future programs demanding extreme reliability. In summary, application of the stringent parts standard has resulted in fewer failures during testing and the stringent test standard has eliminated design problems in the hardware. Both have been expensive in costs and schedules, and should be applied with flexibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Aiman; Laguna, Ignacio; Sato, Kento
Future high-performance computing systems may face frequent failures with their rapid increase in scale and complexity. Resilience to faults has become a major challenge for large-scale applications running on supercomputers, which demands fault tolerance support for prevalent MPI applications. Among failure scenarios, process failures are one of the most severe issues as they usually lead to termination of applications. However, the widely used MPI implementations do not provide mechanisms for fault tolerance. We propose FTA-MPI (Fault Tolerance Assistant MPI), a programming model that provides support for failure detection, failure notification and recovery. Specifically, FTA-MPI exploits a try/catch model that enablesmore » failure localization and transparent recovery of process failures in MPI applications. We demonstrate FTA-MPI with synthetic applications and a molecular dynamics code CoMD, and show that FTA-MPI provides high programmability for users and enables convenient and flexible recovery of process failures.« less
Yap, Melvin J.; Tse, Chi-Shing; Balota, David A.
2009-01-01
Word frequency and semantic priming effects are among the most robust effects in visual word recognition, and it has been generally assumed that these two variables produce interactive effects in lexical decision performance, with larger priming effects for low-frequency targets. The results from four lexical decision experiments indicate that the joint effects of semantic priming and word frequency are critically dependent upon differences in the vocabulary knowledge of the participants. Specifically, across two Universities, additive effects of the two variables were observed in participants with more vocabulary knowledge, while interactive effects were observed in participants with less vocabulary knowledge. These results are discussed with reference to Borowsky and Besner’s (1993) multistage account and Plaut and Booth’s (2000) single-mechanism model. In general, the findings are also consistent with a flexible lexical processing system that optimizes performance based on processing fluency and task demands. PMID:20161653
NASA Astrophysics Data System (ADS)
Pyne, Moinak
This thesis aspires to model and control, the flow of power in a DC microgrid. Specifically, the energy sources are a photovoltaic system and the utility grid, a lead acid battery based energy storage system and twenty PEV charging stations as the loads. Theoretical principles of large scale state space modeling are applied to model the considerable number of power electronic converters needed for controlling voltage and current thresholds. The energy storage system is developed using principles of neural networks to facilitate a stable and uncomplicated model of the lead acid battery. Power flow control is structured as a hierarchical problem with multiple interactions between individual components of the microgrid. The implementation is done using fuzzy logic with scheduling the maximum use of available solar energy and compensating demand or excess power with the energy storage system, and minimizing utility grid use, while providing multiple speeds of charging the PEVs.
Testing activities at the National Battery Test Laboratory
NASA Astrophysics Data System (ADS)
Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.
The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.
Finite element simulation of adaptive aerospace structures with SMA actuators
NASA Astrophysics Data System (ADS)
Frautschi, Jason; Seelecke, Stefan
2003-07-01
The particular demands of aerospace engineering have spawned many of the developments in the field of adaptive structures. Shape memory alloys are particularly attractive as actuators in these types of structures due to their large strains, high specific work output and potential for structural integration. However, the requisite extensive physical testing has slowed development of potential applications and highlighted the need for a simulation tool for feasibility studies. In this paper we present an implementation of an extended version of the M'ller-Achenbach SMA model into a commercial finite element code suitable for such studies. Interaction between the SMA model and the solution algorithm for the global FE equations is thoroughly investigated with respect to the effect of tolerances and time step size on convergence, computational cost and accuracy. Finally, a simulation of a SMA-actuated flexible trailing edge of an aircraft wing modeled with beam elements is presented.
Fabrication of high-resolution x-ray diffractive optics at King's College London
NASA Astrophysics Data System (ADS)
Charalambous, Pambos S.; Anastasi, Peter A. F.; Burge, Ronald E.; Popova, Katia
1995-09-01
The fabrication of high resolution x-ray diffractive optics, and Fresnel zone plates (ZPs) in particular, is a very demanding multifaceted technological task. The commissioning of more (and brighter) synchrotron radiation sources, has increased the number of x-ray imaging beam lines world wide. The availability of cheaper and more effective laboratory x-ray sources, has further increased the number of laboratories involved in x-ray imaging. The result is an ever increasing demand for x-ray optics with a very wide range of specifications, reflecting the particular type of x-ray imaging performed at different laboratories. We have been involved in all aspects of high resolution nanofabrication for a number of years, and we have explored many different methods of lithography, which, although unorthodox, open up possibilities, and increase our flexibility for the fabrication of different diffractive optical elements, as well as other types of nanostructures. The availability of brighter x-ray sources, means that the diffraction efficiency of the ZPs is becoming of secondary importance, a trend which will continue in the future. Resolution, however, is important and will always remain so. Resolution is directly related to the accuracy af pattern generation, as well as the ability to draw fine lines. This is the area towards which we have directed most of our efforts so far.
Chu, Richard; Shumsky, Jed; Waterhouse, Barry D
2016-06-15
Methyphenidate (MPH) is the primary drug treatment of choice for ADHD. It is also frequently used off-label as a cognitive enhancer by otherwise healthy individuals from all age groups and walks of life. Military personnel, students, and health professionals use MPH illicitly to increase attention and improve workplace performance over extended periods of work activity. Despite the frequency of its use, the efficacy of MPH to enhance cognitive function across individuals and in a variety of circumstances is not well characterized. We sought to better understand MPH׳s cognitive enhancing properties in two different rodent models of attention. We found that MPH could enhance performance in a sustained attention task, but that its effects in this test were subject dependent. More specifically, MPH increased attention in low baseline performing rats but had little to no effect on high performing rats. MPH exerted a similar subject specific effect in a test of flexible attention, i.e. the attention set shifting task. In this test MPH increased behavioral flexibility in animals with poor flexibility but impaired performance in more flexible animals. Overall, our results indicate that the effects of MPH are subject-specific and depend on the baseline level of performance. Furthermore, good performance in in the sustained attention task was correlated with good performance in the flexible attention task; i.e. animals with better vigilance exhibited greater behavioral flexibility. The findings are discussed in terms of potential neurobiological substrates, in particular noradrenergic mechanisms, that might underlie subject specific performance and subject specific responses to MPH. This article is part of a Special Issue entitled SI: Noradrenergic System. Copyright © 2016 Elsevier B.V. All rights reserved.
Campagne, Aurélie; Fradcourt, Benoit; Pichat, Cédric; Baciu, Monica; Kauffmann, Louise; Peyrin, Carole
2016-01-01
Visual processing of emotional stimuli critically depends on the type of cognitive appraisal involved. The present fMRI pilot study aimed to investigate the cerebral correlates involved in the visual processing of emotional scenes in two tasks, one emotional, based on the appraisal of personal emotional experience, and the other motivational, based on the appraisal of the tendency to action. Given that the use of spatial frequency information is relatively flexible during the visual processing of emotional stimuli depending on the task's demands, we also explored the effect of the type of spatial frequency in visual stimuli in each task by using emotional scenes filtered in low spatial frequency (LSF) and high spatial frequencies (HSF). Activation was observed in the visual areas of the fusiform gyrus for all emotional scenes in both tasks, and in the amygdala for unpleasant scenes only. The motivational task induced additional activation in frontal motor-related areas (e.g. premotor cortex, SMA) and parietal regions (e.g. superior and inferior parietal lobules). Parietal regions were recruited particularly during the motivational appraisal of approach in response to pleasant scenes. These frontal and parietal activations, respectively, suggest that motor and navigation processes play a specific role in the identification of the tendency to action in the motivational task. Furthermore, activity observed in the motivational task, in response to both pleasant and unpleasant scenes, was significantly greater for HSF than for LSF scenes, suggesting that the tendency to action is driven mainly by the detailed information contained in scenes. Results for the emotional task suggest that spatial frequencies play only a small role in the evaluation of unpleasant and pleasant emotions. Our preliminary study revealed a partial distinction between visual processing of emotional scenes during identification of the tendency to action, and during identification of personal emotional experiences. It also illustrates flexible use of the spatial frequencies contained in scenes depending on their emotional valence and on task demands.
Nawabi, Danyal H; Bedi, Asheesh; Tibor, Lisa M; Magennis, Erin; Kelly, Bryan T
2014-03-01
The purpose of this study was to determine differences in age, gender, and the need for bilateral surgery between high-level athletes grouped by sports with similar mechanical demands on the hip and recreational athletes undergoing hip arthroscopy for femoroacetabular impingement (FAI). By use of a hip-preservation center registry, a retrospective review of patients undergoing hip arthroscopy for FAI between March 2010 and April 2012 was performed. Athletes were categorized as high level (high school, collegiate, or professional) or recreational. We performed a subgroup analysis for high-level athletes, looking at differences among contact, cutting, impingement, overhead/asymmetric, endurance, and flexibility sports. The study included 288 high-level athletes and 334 recreational athletes. Being a high-level athlete was associated with a younger age (mean age, 20.2 years v 33.0 years; odds ratio, 0.69; P < .001) and male gender (61.5% v 53.6%; odds ratio, 1.75; P = .03). The percentage of high-level athletes undergoing bilateral surgery was higher than that of recreational athletes (28.4% v 15.9%); however, this association was found to be confounded by age on multivariate analysis. The most common sports for high-level athletes were soccer, hockey, and football. Athletes participating in cutting sports were significantly younger than athletes participating flexibility, contact, or impingement sports. When compared with recreational athletes undergoing arthroscopic treatment for FAI, high-level athletes are more likely to be younger, to be male, and to undergo bilateral surgery. When high-level athletes are grouped by the mechanical demands placed on the hip by their sport, athletes participating in cutting sports are more likely to be younger than those in the other groups. Level IV, case series. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Using Count Data and Ordered Models in National Forest Recreation Demand Analysis
NASA Astrophysics Data System (ADS)
Simões, Paula; Barata, Eduardo; Cruz, Luis
2013-11-01
This research addresses the need to improve our knowledge on the demand for national forests for recreation and offers an in-depth data analysis supported by the complementary use of count data and ordered models. From a policy-making perspective, while count data models enable the estimation of monetary welfare measures, ordered models allow for the wider use of the database and provide a more flexible analysis of data. The main purpose of this article is to analyse the individual forest recreation demand and to derive a measure of its current use value. To allow a more complete analysis of the forest recreation demand structure the econometric approach supplements the use of count data models with ordered category models using data obtained by means of an on-site survey in the Bussaco National Forest (Portugal). Overall, both models reveal that travel cost and substitute prices are important explanatory variables, visits are a normal good and demographic variables seem to have no influence on demand. In particular, estimated price and income elasticities of demand are quite low. Accordingly, it is possible to argue that travel cost (price) in isolation may be expected to have a low impact on visitation levels.
Approaches to Enable Demand Response by Industrial Loads for Ancillary Services Provision
NASA Astrophysics Data System (ADS)
Zhang, Xiao
Demand response has gained significant attention in recent years as it demonstrates potentials to enhance the power system's operational flexibility in a cost-effective way. Industrial loads such as aluminum smelters, steel manufacturers, and cement plants demonstrate advantages in supporting power system operation through demand response programs, because of their intensive power consumption, already existing advanced monitoring and control infrastructure, and the strong economic incentive due to the high energy costs. In this thesis, we study approaches to efficiently integrate each of these types of manufacturing processes as demand response resources. The aluminum smelting process is able to change its power consumption both accurately and quickly by controlling the pots' DC voltage, without affecting the production quality. Hence, an aluminum smelter has both the motivation and the ability to participate in demand response. First, we focus on determining the optimal regulation capacity that such a manufacturing plant should provide. Next, we focus on determining its optimal bidding strategy in the day-ahead energy and ancillary services markets. Electric arc furnaces (EAFs) in steel manufacturing consume a large amount of electric energy. However, a steel plant can take advantage of time-based electricity prices by optimally arranging energy-consuming activities to avoid peak hours. We first propose scheduling methods that incorporate the EAFs' flexibilities to reduce the electricity cost. We then propose methods to make the computations more tractable. Finally, we extend the scheduling formulations to enable the provision of spinning reserve. Cement plants are able to quickly adjust their power consumption rate by switching on/off the crushers. However, switching on/off the loading units only achieves discrete power changes, which restricts the load from offering valuable ancillary services such as regulation and load following, as continuous power changes are required for these services. We propose methods that enable these services with the support of an on-site energy storage device. As demonstrated by the case studies, the proposed approaches are effective and can generate practical production instructions for the industrial loads. This thesis not only provides methods to enable demand response by industrial loads but also potentially encourages industrial loads to be active in electricity markets.
Weiss, Manfred; Marx, Gernot; Iber, Thomas
2017-01-01
Intensive care medicine remains one of the most cost-driving areas within hospitals with high personnel costs. Under the scope of limited budgets and reimbursement, realistic needs are essential to justify personnel staffing. Unfortunately, all existing staffing models are top-down calculations with a high variability in results. We present a workload-oriented model, integrating quality of care, efficiency of processes, legal, educational, controlling, local, organisational and economic aspects. In our model, the physician’s workload solely related to the intensive care unit depends on three tasks: Patient-oriented tasks, divided in basic tasks (performed in every patient) and additional tasks (necessary in patients with specific diagnostic and therapeutic requirements depending on their specific illness, only), and non patient-oriented tasks. All three tasks have to be taken into account for calculating the required number of physicians. The calculation tool further allows to determine minimal personnel staffing, distribution of calculated personnel demand regarding type of employee due to working hours per year, shift work or standby duty. This model was introduced and described first by the German Board of Anesthesiologists and the German Society of Anesthesiology and Intensive Care Medicine in 2008 and since has been implemented and updated 2012 in Germany. The modular, flexible nature of the Excel-based calculation tool should allow adaption to the respective legal and organizational demands of different countries. After 8 years of experience with this calculation, we report the generalizable key aspects which may help physicians all around the world to justify realistic workload-oriented personnel staffing needs. PMID:28828300
Weiss, Manfred; Marx, Gernot; Iber, Thomas
2017-08-04
Intensive care medicine remains one of the most cost-driving areas within hospitals with high personnel costs. Under the scope of limited budgets and reimbursement, realistic needs are essential to justify personnel staffing. Unfortunately, all existing staffing models are top-down calculations with a high variability in results. We present a workload-oriented model, integrating quality of care, efficiency of processes, legal, educational, controlling, local, organisational and economic aspects. In our model, the physician's workload solely related to the intensive care unit depends on three tasks: Patient-oriented tasks, divided in basic tasks (performed in every patient) and additional tasks (necessary in patients with specific diagnostic and therapeutic requirements depending on their specific illness, only), and non patient-oriented tasks. All three tasks have to be taken into account for calculating the required number of physicians. The calculation tool further allows to determine minimal personnel staffing, distribution of calculated personnel demand regarding type of employee due to working hours per year, shift work or standby duty. This model was introduced and described first by the German Board of Anesthesiologists and the German Society of Anesthesiology and Intensive Care Medicine in 2008 and since has been implemented and updated 2012 in Germany. The modular, flexible nature of the Excel-based calculation tool should allow adaption to the respective legal and organizational demands of different countries. After 8 years of experience with this calculation, we report the generalizable key aspects which may help physicians all around the world to justify realistic workload-oriented personnel staffing needs.
An Approach to Automated Fusion System Design and Adaptation
Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker
2017-01-01
Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum. PMID:28300762
Persistent neuronal activity in human prefrontal cortex links perception and action
Haller, Matar; Case, John; Crone, Nathan E.; Chang, Edward F.; King-Stephens, David; Laxer, Kenneth D.; Weber, Peter B.; Parvizi, Josef; Knight, Robert T.; Shestyuk, Avgusta Y.
2017-01-01
How do humans flexibly respond to changing environmental demands on a sub-second temporal scale? Extensive research has highlighted the key role of the prefrontal cortex in flexible decision-making and adaptive behavior, yet the core mechanisms that translate sensory information into behavior remain undefined. Utilizing direct human cortical recordings, we investigated the temporal and spatial evolution of neuronal activity, indexed by the broadband gamma signal, while sixteen participants performed a broad range of self-paced cognitive tasks. Here we describe a robust domain- and modality-independent pattern of persistent stimulus-to-response neural activation that encodes stimulus features and predicts motor output on a trial-by-trial basis with near-perfect accuracy. Observed across a distributed network of brain areas, this persistent neural activation is centered in the prefrontal cortex and is required for successful response implementation, providing a functional substrate for domain-general transformation of perception into action, critical for flexible behavior.
Multilayer coatings for flexible high-barrier materials
NASA Astrophysics Data System (ADS)
Vaško, Karol; Noller, Klaus; Mikula, Milan; Amberg-Schwab, Sabine; Weber, Ulrike
2009-06-01
A multilayer, flexible, and transparent high-barrier system based on flexible plastic foils, polyethyleneterephthalate (PET) and ethylene-tetrafluoroethylene-copolymer (ETFE), combined with vacuum-deposited, inorganic SiOx layers and hybrid ORMOCER® varnish layers were prepared in different orders on a semiproduction level. Barrier properties of prepared systems, as water vapour transmission (WVTR) and oxygen transmission (OTR), were measured and studied in connection with surface energy, surface topography, and water vapour adsorption properties. Correlations among layers sequence, barrier properties, and other parameters are presented, including some basic principles of permeation of substances through multilayer barrier systems. A combination of several inorganic and hybrid varnish layers is necessary to achieve the technological demands from a barrier standpoint. It is easier to suppress the oxygen transport than the water transport, due to the additional active penetration of water through hydrogen bonds and silanol creations at oxide interfaces, capillary condensation, and swelling with high internal pressure, leading to new defects.
An Approach to Automated Fusion System Design and Adaptation.
Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker
2017-03-16
Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum.
Process Mechanics Analysis in Single Point Incremental Forming
NASA Astrophysics Data System (ADS)
Ambrogio, G.; Filice, L.; Fratini, L.; Micari, F.
2004-06-01
The request of highly differentiated products and the need of process flexibility have brought the researchers to focus the attention on innovative sheet forming processes. Industrial application of conventional processes is, in fact, economically convenient just for large scale productions; furthermore conventional processes do not allow to fully satisfy the mentioned demand of flexibility. In this contest, single point incremental forming (SPIF) is an innovative and flexible answer to market requests. The process is characterized by a peculiar process mechanics, being the sheet plastically deformed only through a localised stretching mechanism. Some recent experimental studies have shown that SPIF permits a relevant increase of formability limits, just as a consequence of the peculiar deformation mechanics. The research here addressed is focused on the theoretical investigation of process mechanics; the aim was to achieve a deeper understanding of basic phenomena involved in SPIF which justify the above mentioned formability enhancing.
Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials.
Ibbotson, Lindsey A; Demetriadou, Angela; Croxall, Stephen; Hess, Ortwin; Baumberg, Jeremy J
2015-02-09
Metallic woodpile photonic crystals and metamaterials operating across the visible spectrum are extremely difficult to construct over large areas, because of the intricate three-dimensional nanostructures and sub-50 nm features demanded. Previous routes use electron-beam lithography or direct laser writing but widespread application is restricted by their expense and low throughput. Scalable approaches including soft lithography, colloidal self-assembly, and interference holography, produce structures limited in feature size, material durability, or geometry. By multiply stacking gold nanowire flexible gratings, we demonstrate a scalable high-fidelity approach for fabricating flexible metallic woodpile photonic crystals, with features down to 10 nm produced in bulk and at low cost. Control of stacking sequence, asymmetry, and orientation elicits great control, with visible-wavelength band-gap reflections exceeding 60%, and with strong induced chirality. Such flexible and stretchable architectures can produce metamaterials with refractive index near zero, and are easily tuned across the IR and visible ranges.
Liang, Jiajie; Chen, Yongsheng; Xu, Yanfei; Liu, Zhibo; Zhang, Long; Zhao, Xin; Zhang, Xiaoliang; Tian, Jianguo; Huang, Yi; Ma, Yanfeng; Li, Feifei
2010-11-01
Owing to its extraordinary electronic property, chemical stability, and unique two-dimensional nanostructure, graphene is being considered as an ideal material for the highly expected all-carbon-based micro/nanoscale electronics. Herein, we present a simple yet versatile approach to constructing all-carbon micro/nanoelectronics using solution-processing graphene films directly. From these graphene films, various graphene-based microcosmic patterns and structures have been fabricated using maskless computer-controlled laser cutting. Furthermore, a complete system involving a prototype of a flexible write-once-read-many-times memory card and a fast data-reading system has been demonstrated, with infinite data retention time and high reliability. These results indicate that graphene could be the ideal material for fabricating the highly demanded all-carbon and flexible devices and electronics using the simple and efficient roll-to-roll printing process when combined with maskless direct data writing.
Colorimetry as Quality Control Tool for Individual Inkjet-Printed Pediatric Formulations.
Wickström, Henrika; Nyman, Johan O; Indola, Mathias; Sundelin, Heidi; Kronberg, Leif; Preis, Maren; Rantanen, Jukka; Sandler, Niklas
2017-02-01
Printing technologies were recently introduced to the pharmaceutical field for manufacturing of drug delivery systems. Printing allows on demand manufacturing of flexible pharmaceutical doses in a personalized manner, which is critical for a successful and safe treatment of patient populations with specific needs, such as children and the elderly, and patients facing multimorbidity. Printing of pharmaceuticals as technique generates new demands on the quality control procedures. For example, rapid quality control is needed as the printing can be done on demand and at the point of care. This study evaluated the potential use of a handheld colorimetry device for quality control of printed doses of vitamin Bs on edible rice and sugar substrates. The structural features of the substrates with and without ink were also compared. A multicomponent ink formulation with vitamin B 1 , B 2 , B 3 , and B 6 was developed. Doses (4 cm 2 ) were prepared by applying 1-10 layers of yellow ink onto the white substrates using thermal inkjet technology. The colorimetric method was seen to be viable in detecting doses up to the 5th and 6th printed layers until color saturation of the yellow color parameter (b*) was observed on the substrates. Liquid chromatography mass spectrometry was used as a reference method for the colorimetry measurements plotted against the number of printed layers. It was concluded that colorimetry could be used as a quality control tool for detection of different doses. However, optimization of the color addition needs to be done to avoid color saturation within the planned dose interval.
Shi, Yiquan; Wolfensteller, Uta; Schubert, Torsten; Ruge, Hannes
2018-02-01
Cognitive flexibility is essential to cope with changing task demands and often it is necessary to adapt to combined changes in a coordinated manner. The present fMRI study examined how the brain implements such multi-level adaptation processes. Specifically, on a "local," hierarchically lower level, switching between two tasks was required across trials while the rules of each task remained unchanged for blocks of trials. On a "global" level regarding blocks of twelve trials, the task rules could reverse or remain the same. The current task was cued at the start of each trial while the current task rules were instructed before the start of a new block. We found that partly overlapping and partly segregated neural networks play different roles when coping with the combination of global rule reversal and local task switching. The fronto-parietal control network (FPN) supported the encoding of reversed rules at the time of explicit rule instruction. The same regions subsequently supported local task switching processes during actual implementation trials, irrespective of rule reversal condition. By contrast, a cortico-striatal network (CSN) including supplementary motor area and putamen was increasingly engaged across implementation trials and more so for rule reversal than for nonreversal blocks, irrespective of task switching condition. Together, these findings suggest that the brain accomplishes the coordinated adaptation to multi-level demand changes by distributing processing resources either across time (FPN for reversed rule encoding and later for task switching) or across regions (CSN for reversed rule implementation and FPN for concurrent task switching). © 2017 Wiley Periodicals, Inc.
Social support, flexible resources, and health care navigation.
Gage-Bouchard, Elizabeth A
2017-10-01
Recent research has focused attention on the role of patients' and clinicians' cultural skills and values in generating inequalities in health care experiences. Yet, examination of how social structural factors shape people's abilities to build, refine, and leverage strategies for navigating the health care system have received less attention. In this paper I place focus on one such social structural factor, social support, and examine how social support operates as a flexible resource that helps people navigate the health care system. Using the case of families navigating pediatric cancer care this study combines in-depth interviews with parents of pediatric cancer patients (N = 80), direct observation of clinical interactions between families and physicians (N = 73), and in-depth interviews with pediatric oncologists (N = 8). Findings show that physicians assess parental visibility in the hospital, medical vigilance, and adherence to their child's treatment and use these judgments to shape clinical decision-making. Parents who had help from their personal networks had more agility in balancing competing demands, and this allowed parents to more effectively meet institutional expectations for appropriate parental involvement in the child's health care. In this way, social support served as a flexible resource for some families that allowed parents to more quickly adapt to the demands of caring for a child with cancer, foster productive interpersonal relationships with health care providers, and play a more active role in their child's health care. Copyright © 2017 Elsevier Ltd. All rights reserved.
Olfers, Kerwin J F; Band, Guido P H
2018-01-01
There is a demand for ways to enhance cognitive flexibility, as it can be a limiting factor for performance in daily life. Video game training has been linked to advantages in cognitive functioning, raising the question if training with video games can promote cognitive flexibility. In the current study, we investigated if game-based computerized cognitive training (GCCT) could enhance cognitive flexibility in a healthy young adult sample (N = 72), as measured by task-switch performance. Three GCCT schedules were contrasted, which targeted: (1) cognitive flexibility and task switching, (2) attention and working memory, or (3) an active control involving basic math games, in twenty 45-min sessions across 4-6 weeks. Performance on an alternating-runs task-switch paradigm during pretest and posttest sessions indicated greater overall reaction time improvements after both flexibility and attention training as compared to control, although not related to local switch cost. Flexibility training enhanced performance in the presence of distractor-related interference. In contrast, attention training was beneficial when low task difficulty undermined sustained selective attention. Furthermore, flexibility training improved response selection as indicated by a larger N2 amplitude after training as compared to control, and more efficient conflict monitoring as indicated by reduced Nc/CRN and larger Pe amplitude after training. These results provide tentative support for the efficacy of GCCT and suggest that an ideal training might include both task switching and attention components, with maximal task diversity both within and between training games.
NASA Astrophysics Data System (ADS)
Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David
2013-05-01
Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.
Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan
2018-01-19
In this work, bismuth selenides (Bi 2 Se 3 and Bi 3 Se 4 ), both of which have a layered rhombohedral crystal structure, have been found to be useful as electrode materials for supercapacitor applications. In a liquid electrolyte system (6M KOH), Bi 2 Se 3 nanoplates exhibit much better performance as an electrode material than Bi 3 Se 4 nanoparticles do, delivering a higher specific capacitance (272.9 F g -1 ) than that of Bi 3 Se 4 (193.6 F g -1 ) at 5 mV s -1 . This result may be attributed to the fact that Bi 2 Se 3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to their planar quintuple stacked layers (septuple layers for Bi 3 Se 4 ). To meet the demands of electronic skin, we used a novel flexible annular interdigital structure electrode to support the all-solid-state micro-supercapacitors (AMSCs). The Bi 2 Se 3 AMSC device delivers a much better supercapacitor performance, exhibits a large stack capacitance of 89.5 F cm -3 at 20 mV s -1 (Bi 3 Se 4 : 79.1 F cm -3 ), a high energy density of 17.9 mWh cm -3 and a high power density of 18.9 W cm -3 . The bismuth selenides also exhibit good cycle stability, with 95.5% retention after 1000 c for Bi 2 Se 3 (Bi 3 Se 4 :90.3%). Clearly, Bi 2 Se 3 nanoplates can be promising electrode materials for flexible annular interdigital AMSCs.
Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan
2017-12-20
Bismuth selenides (Bi2Se3 and Bi3Se4), both of which have the layered rhombohedral crystal structure, and found to be useful as electrode materials for supercapacitor application in this work. Bi2Se3 nanoplates as electrode material exhibit much better performance than that of Bi3Se4 nanoparticles in liquid electrolyte system (6 M KOH), which delivers a higher specific capacitance (272.9 F/g) than that of Bi3Se4 (193.6 F/g) at 5 mV/s. This result would may be attributed to that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to its planar quintuple stacked layers (septuple layers for Bi3Se4). For the demand of electronic skin, we used a novel flexible annular interdigital structure electrode applying for all-solid-state micro-supercapacitors (AMSCs). Bi2Se3 AMSCs device delivers a much more excellent supercapacitor performance, exhibits a large stack capacitance 89.5 F/cm3 (Bi3Se4: 79.1 F/cm3) at 20 mV/s, a high energy density 17.9 mWh/cm3 and high power density 18.9 W/cm3. The bismuth selenides also exhibit good cycle stability, retention 95.5% (90.3%) after 1000 c for Bi2Se3 (Bi3Se4). Obviously, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital all-solid-sate supercapacitor. © 2017 IOP Publishing Ltd.
GeneFisher-P: variations of GeneFisher as processes in Bio-jETI
Lamprecht, Anna-Lena; Margaria, Tiziana; Steffen, Bernhard; Sczyrba, Alexander; Hartmeier, Sven; Giegerich, Robert
2008-01-01
Background PCR primer design is an everyday, but not trivial task requiring state-of-the-art software. We describe the popular tool GeneFisher and explain its recent restructuring using workflow techniques. We apply a service-oriented approach to model and implement GeneFisher-P, a process-based version of the GeneFisher web application, as a part of the Bio-jETI platform for service modeling and execution. We show how to introduce a flexible process layer to meet the growing demand for improved user-friendliness and flexibility. Results Within Bio-jETI, we model the process using the jABC framework, a mature model-driven, service-oriented process definition platform. We encapsulate remote legacy tools and integrate web services using jETI, an extension of the jABC for seamless integration of remote resources as basic services, ready to be used in the process. Some of the basic services used by GeneFisher are in fact already provided as individual web services at BiBiServ and can be directly accessed. Others are legacy programs, and are made available to Bio-jETI via the jETI technology. The full power of service-based process orientation is required when more bioinformatics tools, available as web services or via jETI, lead to easy extensions or variations of the basic process. This concerns for instance variations of data retrieval or alignment tools as provided by the European Bioinformatics Institute (EBI). Conclusions The resulting service- and process-oriented GeneFisher-P demonstrates how basic services from heterogeneous sources can be easily orchestrated in the Bio-jETI platform and lead to a flexible family of specialized processes tailored to specific tasks. PMID:18460174
Challenges and the state of the technology for printed sensor arrays for structural monitoring
NASA Astrophysics Data System (ADS)
Joshi, Shiv; Bland, Scott; DeMott, Robert; Anderson, Nickolas; Jursich, Gregory
2017-04-01
Printed sensor arrays are attractive for reliable, low-cost, and large-area mapping of structural systems. These sensor arrays can be printed on flexible substrates or directly on monitored structural parts. This technology is sought for continuous or on-demand real-time diagnosis and prognosis of complex structural components. In the past decade, many innovative technologies and functional materials have been explored to develop printed electronics and sensors. For example, an all-printed strain sensor array is a recent example of a low-cost, flexible and light-weight system that provides a reliable method for monitoring the state of aircraft structural parts. Among all-printing techniques, screen and inkjet printing methods are well suited for smaller-scale prototyping and have drawn much interest due to maturity of printing procedures and availability of compatible inks and substrates. Screen printing relies on a mask (screen) to transfer a pattern onto a substrate. Screen printing is widely used because of the high printing speed, large selection of ink/substrate materials, and capability of making complex multilayer devices. The complexity of collecting signals from a large number of sensors over a large area necessitates signal multiplexing electronics that need to be printed on flexible substrate or structure. As a result, these components are subjected to same deformation, temperature and other parameters for which sensor arrays are designed. The characteristics of these electronic components, such as transistors, are affected by deformation and other environmental parameters which can lead to erroneous sensed parameters. The manufacturing and functional challenges of the technology of printed sensor array systems for structural state monitoring are the focus of this presentation. Specific examples of strain sensor arrays will be presented to highlight the technical challenges.
NASA Astrophysics Data System (ADS)
Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan
2018-02-01
In this work, bismuth selenides (Bi2Se3 and Bi3Se4), both of which have a layered rhombohedral crystal structure, have been found to be useful as electrode materials for supercapacitor applications. In a liquid electrolyte system (6M KOH), Bi2Se3 nanoplates exhibit much better performance as an electrode material than Bi3Se4 nanoparticles do, delivering a higher specific capacitance (272.9 F g-1) than that of Bi3Se4 (193.6 F g-1) at 5 mV s-1. This result may be attributed to the fact that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to their planar quintuple stacked layers (septuple layers for Bi3Se4). To meet the demands of electronic skin, we used a novel flexible annular interdigital structure electrode to support the all-solid-state micro-supercapacitors (AMSCs). The Bi2Se3 AMSC device delivers a much better supercapacitor performance, exhibits a large stack capacitance of 89.5 F cm-3 at 20 mV s-1 (Bi3Se4: 79.1 F cm-3), a high energy density of 17.9 mWh cm-3 and a high power density of 18.9 W cm-3. The bismuth selenides also exhibit good cycle stability, with 95.5% retention after 1000 c for Bi2Se3 (Bi3Se4:90.3%). Clearly, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital AMSCs.
Cho, Woo-Hyun; Han, Jung-Soo
2016-01-01
Flexibility in using different learning strategies was assessed in two different inbred strains of mice, the C57BL/6 and DBA/2 strains. Mice were trained sequentially in two different Morris water maze protocols that tested their ability to switch their learning strategy to complete a new task after first being trained in a different task. Training consisted either of visible platform trials (cued training) followed by subsequent hidden platform trials (place training) or the reverse sequence (place training followed by cued training). Both strains of mice showed equivalent performance in the type of training (cued or place) that they received first. However, C57BL/6 mice showed significantly better performances than DBA/2 mice following the switch in training protocols, irrespective of the order of training. After completion of the switched training session, levels of cAMP response element-binding protein (CREB) and phosphorylated CREB (pCREB) were measured in the hippocampus, striatum and prefrontal cortex of the mice. Prefrontal cortical and hippocampal pCREB levels differed by strain, with higher levels found in C57BL/6 mice than in DBA/2 mice. No strain differences were observed in the medial or lateral region of the dorsal striatum. These findings indicate that the engagement (i.e., CREB signaling) of relevant neural structures may vary by the specific demands of the learning strategy, and this is closely tied to differences in the flexibility of C57BL/6 and DBA/2 mice to switch their learning strategies when given a new task. PMID:27695401
A geostatistical approach to estimate mining efficiency indicators with flexible meshes
NASA Astrophysics Data System (ADS)
Freixas, Genis; Garriga, David; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier
2014-05-01
Geostatistics is a branch of statistics developed originally to predict probability distributions of ore grades for mining operations by considering the attributes of a geological formation at unknown locations as a set of correlated random variables. Mining exploitations typically aim to maintain acceptable mineral laws to produce commercial products based upon demand. In this context, we present a new geostatistical methodology to estimate strategic efficiency maps that incorporate hydraulic test data, the evolution of concentrations with time obtained from chemical analysis (packer tests and production wells) as well as hydraulic head variations. The methodology is applied to a salt basin in South America. The exploitation is based on the extraction of brines through vertical and horizontal wells. Thereafter, brines are precipitated in evaporation ponds to obtain target potassium and magnesium salts of economic interest. Lithium carbonate is obtained as a byproduct of the production of potassium chloride. Aside from providing an assemble of traditional geostatistical methods, the strength of this study falls with the new methodology developed, which focus on finding the best sites to exploit the brines while maintaining efficiency criteria. Thus, some strategic indicator efficiency maps have been developed under the specific criteria imposed by exploitation standards to incorporate new extraction wells in new areas that would allow maintain or improve production. Results show that the uncertainty quantification of the efficiency plays a dominant role and that the use flexible meshes, which properly describe the curvilinear features associated with vertical stratification, provides a more consistent estimation of the geological processes. Moreover, we demonstrate that the vertical correlation structure at the given salt basin is essentially linked to variations in the formation thickness, which calls for flexible meshes and non-stationarity stochastic processes.
Hefer, Carmen; Dreisbach, Gesine
2017-10-01
Growing evidence suggests that reward prospect promotes cognitive stability in terms of increased context or cue maintenance. In 3 Experiments, using different versions of the AX-continuous performance task, we investigated whether this reward effect comes at the cost of decreased cognitive flexibility. Experiment 1 shows that the reward induced increase of cue maintenance perseverates even when reward is no longer available. Experiment 2 shows that this reward effect not only survives the withdrawal of reward but also delays the adaptation to changed task conditions that make cue usage maladaptive. And finally in Experiment 3, it is shown that this reduced flexibility to adapt is observed in a more demanding modified version of the AX-continuous performance task and is even stronger under conditions of sustained reward. Taken together, all 3 Experiments thus speak to the idea that the prospect of reward increases cue maintenance and thereby cognitive stability. This increased cognitive stability however comes at the cost of decreased flexibility in terms of delayed adaptation to new reward and task conditions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Liao, Xinqin; Zhang, Zheng; Liang, Qijie; Liao, Qingliang; Zhang, Yue
2017-02-01
Rapid advances in functional sensing electronics place tremendous demands on innovation toward creative uses of versatile advanced materials and effective designs of device structures. Here, we first report a feasible and effective fabrication strategy to integrate commercial abrasive papers with microcracked gold (Au) nanofilms to construct cuttable and self-waterproof crack-based resistive bending strain sensors. Via introducing surface microstructures, the sensitivities of the bending strain sensors are greatly enhanced by 27 times than that of the sensors without surface microstructures, putting forward an alternative suggestion for other flexible electronics to improve their performances. Besides, the bending strain sensors also endow rapid response and relaxation time of 20 ms and ultrahigh stability of >18 000 strain loading-unloading cycles in conjunction with flexibility and robustness. In addition, the concepts of cuttability and self-waterproofness (attain and even surpass IPX-7) of the bending strain sensors have been demonstrated. Because of the distinctive sensing properties, flexibility, cuttability, and self-waterproofness, the bending strain sensors are attractive and promising for wearable electronic devices and smart health monitoring system.
Highly Flexible Dye-sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth
Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Lee, Dong Y.
2014-01-01
Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices. PMID:24957920
Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth.
Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y
2014-06-24
Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices.
de Croon, E M; Blonk, R; de Zwart, B C H; Frings-Dresen, M; Broersen, J
2002-01-01
Objectives: Building on Karasek's model of job demands and control (JD-C model), this study examined the effects of job control, quantitative workload, and two occupation specific job demands (physical demands and supervisor demands) on fatigue and job dissatisfaction in Dutch lorry drivers. Methods: From 1181 lorry drivers (adjusted response 63%) self reported information was gathered by questionnaire on the independent variables (job control, quantitative workload, physical demands, and supervisor demands) and the dependent variables (fatigue and job dissatisfaction). Stepwise multiple regression analyses were performed to examine the main effects of job demands and job control and the interaction effect between job control and job demands on fatigue and job dissatisfaction. Results: The inclusion of physical and supervisor demands in the JD-C model explained a significant amount of variance in fatigue (3%) and job dissatisfaction (7%) over and above job control and quantitative workload. Moreover, in accordance with Karasek's interaction hypothesis, job control buffered the positive relation between quantitative workload and job dissatisfaction. Conclusions: Despite methodological limitations, the results suggest that the inclusion of (occupation) specific job control and job demand measures is a fruitful elaboration of the JD-C model. The occupation specific JD-C model gives occupational stress researchers better insight into the relation between the psychosocial work environment and wellbeing. Moreover, the occupation specific JD-C model may give practitioners more concrete and useful information about risk factors in the psychosocial work environment. Therefore, this model may provide points of departure for effective stress reducing interventions at work. PMID:12040108
de Croon, E M; Blonk, R W B; de Zwart, B C H; Frings-Dresen, M H W; Broersen, J P J
2002-06-01
Building on Karasek's model of job demands and control (JD-C model), this study examined the effects of job control, quantitative workload, and two occupation specific job demands (physical demands and supervisor demands) on fatigue and job dissatisfaction in Dutch lorry drivers. From 1181 lorry drivers (adjusted response 63%) self reported information was gathered by questionnaire on the independent variables (job control, quantitative workload, physical demands, and supervisor demands) and the dependent variables (fatigue and job dissatisfaction). Stepwise multiple regression analyses were performed to examine the main effects of job demands and job control and the interaction effect between job control and job demands on fatigue and job dissatisfaction. The inclusion of physical and supervisor demands in the JD-C model explained a significant amount of variance in fatigue (3%) and job dissatisfaction (7%) over and above job control and quantitative workload. Moreover, in accordance with Karasek's interaction hypothesis, job control buffered the positive relation between quantitative workload and job dissatisfaction. Despite methodological limitations, the results suggest that the inclusion of (occupation) specific job control and job demand measures is a fruitful elaboration of the JD-C model. The occupation specific JD-C model gives occupational stress researchers better insight into the relation between the psychosocial work environment and wellbeing. Moreover, the occupation specific JD-C model may give practitioners more concrete and useful information about risk factors in the psychosocial work environment. Therefore, this model may provide points of departure for effective stress reducing interventions at work.
40 CFR 63.1307 - Recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63... section. Each flexible polyurethane foam slabstock source complying with the emission point specific... this section. Each flexible polyurethane foam slabstock source complying with the source-wide...
40 CFR 63.1307 - Recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63... section. Each flexible polyurethane foam slabstock source complying with the emission point specific... this section. Each flexible polyurethane foam slabstock source complying with the source-wide...
Building an Efficient and Effective Test Management System in an ODL Institution
ERIC Educational Resources Information Center
Yusof, Safiah Md; Lim, Tick Meng; Png, Leo; Khatab, Zainuriyah Abd; Singh, Harvinder Kaur Dharam
2017-01-01
Open University Malaysia (OUM) is progressively moving towards implementing assessment on demand and online assessment. This move is deemed necessary for OUM to continue to be the leading provider of flexible learning. OUM serves a very large number of students each semester and these students are vastly distributed throughout the country. As the…
A Quantitative Inquiry into Software Developers' Intentions to Use Agile Scrum Method
ERIC Educational Resources Information Center
Huq, M. Shamsul
2017-01-01
In recent years, organizations have shown increasing willingness to adopt agile scrum method (ASM) to meet the demand of modern-day software development; that is to deliver faster and better software, with a built-in flexibility to absorb last minute changes in requirements. This research study was undertaken to uncover the underlying factors that…
Reframing Teaching Relationships: From Student-Centred to Subject-Centred Learning
ERIC Educational Resources Information Center
Hobson, Julia; Morrison-Saunders, Angus
2013-01-01
At a time when the context of teaching in higher education is difficult for many number of factors such as: reduced funding, changing demographics of students and demands to teach in flexible times and spaces, there are also higher levels of quality control, transparency and accountability over teaching which are exerted by institutions. This…
Streaming Video--The Wave of the Video Future!
ERIC Educational Resources Information Center
Brown, Laura
2004-01-01
Videos and DVDs give the teachers more flexibility than slide projectors, filmstrips, and 16mm films but teachers and students are excited about a new technology called streaming. Streaming allows the educators to view videos on demand via the Internet, which works through the transfer of digital media like video, and voice data that is received…
Facility Planning for 21st Century. Technology, Industry, and Education.
ERIC Educational Resources Information Center
Hill, Franklin
When the Orange County School Board (Orlando, Florida) decided to build a new high school, they recognized Central Florida's high technology emphasis as a special challenge. The new facility needed to meet present instructional demands while being flexible enough to incorporate 21st century technologies. The final result is a new $30 million high…
ERIC Educational Resources Information Center
Degn, Lise
2015-01-01
Academic values and norms have as a consequence of the wave of European higher education reforms been put under pressure by the increasing expectations and demands of flexibility, entrepreneurialism and accountability. This article examines how these changes affect identity construction processes at department head level in the case of Danish…
Thinking outside the Clocks: The Effect of Layered-Task Time on the Creative Climate of Meetings
ERIC Educational Resources Information Center
Agypt, Brett; Rubin, Beth A.; Spivack, April J.
2012-01-01
The turbulence of the new economy puts demands on organizations to respond rapidly, flexibly and creatively to changing environments. Meetings are one of the organizational sites in which organizational actors "do" creativity; interaction in groups can be an important site for generating creative ideas and brainstorming. Additionally, Blount…
Embracing the Ambiguity: Twelve Considerations for Holistic Time Management
ERIC Educational Resources Information Center
Bresciani, Marilee J.; Duncan, Allison J.; Cao, Liu Hui
2010-01-01
Many people feel overwhelmed by the seemingly never-ending demands of their professional and personal lives. Thinking of one's life as an ongoing journey promotes flexibility and allows one to focus on a current task, while knowing there will be time in the future to complete other tasks or meet other goals later. Research has also shown that…
ERIC Educational Resources Information Center
Ribeiro, Marcelo Afonso; da Conceição Coropos Uvaldo, Maria; da Silva, Fabiano Fonseca
2015-01-01
Facing a working world more flexible, unstable and potentially generator of vulnerabilities, the career counselling has required contemporary approaches that meet these demands, which ones have been present in Latin America for a long time. Thus, the present paper aimed to analyse some Latin American proposals and highlight general principles to…
ERIC Educational Resources Information Center
Kicken, Wendy; Brand-Gruwel, Saskia; van Merrienboer, Jeroen J. G.
2008-01-01
An intuitively appealing approach to increasing the flexibility of vocational education and training is to delegate choices on instruction, such as the selection of learning tasks, to students. However, empirical evidence shows that students often do not have sufficiently developed self-directed learning skills to select suitable tasks. This…
Effective Game Based Citizenship Education in the Age of New Media
ERIC Educational Resources Information Center
Chee, Yam San; Mehrotra, Swati; Liu, Qiang
2013-01-01
Educational systems worldwide are being challenged to respond effectively to the digital revolution and its implications for learning in the 21st century. In the present new media age, educational reforms are desperately needed to support more open and flexible structures of on-demand learning that equip students with competencies required in a…
2011-06-01
companies led the way for companies to move to ERP in order to address potential Y2K issues. As it became clear that the date turnover from December...customer responsiveness, integration, standardization, cost reduction, flexibility, globalization, Y2K , business performance, and supply/demand chain
The Shape of a Sausage: A Challenging Problem in the Calculus of Variations
ERIC Educational Resources Information Center
Deakin, Michael A. B.
2010-01-01
Many familiar household objects (such as sausages) involve the maximization of a volume under geometric constraints. A flexible but inextensible membrane bounds a volume which is to be filled to capacity. In the case of the sausage, a full analytic solution is here provided. Other related but more difficult problems seem to demand approximate…
ERIC Educational Resources Information Center
Suydan, Ava Birgitte
2014-01-01
Despite university efforts to decrease the number of students dropping out of college, attrition of online students occurs at an annual rate of 50% or more (Wang & Wu, 2004). Educational leaders understand the increased demand for online programs and courses because of students' requirements of convenience and flexibility (Kuo, Walker,…
Teachers' Critical Reflective Practice in the Context of Twenty-First Century Learning
ERIC Educational Resources Information Center
Benade, Leon
2015-01-01
In the twenty-first century, learning and teaching at school must prepare young people for engaging in a complex and dynamic world deeply influenced by globalisation and the revolution in digital technology. In addition to the use of digital technologies, is the development of flexible learning spaces. It is claimed that these developments demand,…
ERIC Educational Resources Information Center
Meuwissen, Kevin William
2012-01-01
With current trends in K-12 education toward curriculum centralization and high-stakes test-based accountability, teachers are in a position of increasingly adapting their practices to demands that originate beyond the classroom. A synthesis of literature on the relationship between these external influences and secondary social studies teaching…
From Learning to Labour to Learning for Precarity
ERIC Educational Resources Information Center
Dovemark, Marianne; Beach, Dennis
2016-01-01
A demand on national economies in the 1970s was that they should begin to increase their labour market flexibility, which came to mean transferring risks and insecurity onto workers. Education was one way to prepare future workers for this new situation. The present article examines this preparation of learning for precarity some 40 years on. It…
ERIC Educational Resources Information Center
Chow, Bonnie Wing-Yin
2014-01-01
Paired associated learning (PAL) is a critical skill for making arbitrary associations among print, pronunciation and meaning in reading development. Extended from past research of PAL, this study investigated whether PAL operated flexibly to linguistic demands of languages, by examining word reading abilities in Chinese-English bilingual…
Job-specific mandatory medical examinations for the police force.
Boschman, J S; Hulshof, C T J; Frings-Dresen, M H W; Sluiter, J K
2017-08-01
Mandatory medical examinations (MMEs) of workers should be based on the health and safety requirements that are needed for effectively performing the relevant work. For police personnel in the Netherlands, no job-specific MME exists that takes the specific tasks and duties into account. To provide the Dutch National Police with a knowledge base for job-specific MMEs for police personnel that will lead to equitable decisions from an occupational health perspective about who can perform police duties. We used a stepwise mixed-methods approach in which we included interviews with employees and experts and a review of the national and international literature. We determined the job demands for the various police jobs, determined which were regarded as specific job demands and formulated the matching health requirements as specific as possible for each occupation. A total of 21 specific job demands were considered relevant in different police jobs. These included biomechanical, physiological, physical, emotional, psychological/cognitive and sensory job demands. We formulated both police-generic and job-specific health requirements based on the specific job demands. Two examples are presented: bike patrol and criminal investigation. Our study substantiated the need for job-specific MMEs for police personnel. We found specific job demands that differed substantially for various police jobs. The corresponding health requirements were partly police-generic, and partly job-specific. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Firing Costs and Flexibility: Evidence from Firms’ Employment Responses to Shocks in India*
Adhvaryu, Achyuta; Chari, A. V.; Sharma, Siddharth
2013-01-01
A key prediction of dynamic labor demand models is that firing restrictions attenuate firms’ employment responses to economic fluctuations. We provide the first direct test of this prediction using data from India. We exploit the fact that rainfall fluctuations, through their effects on agricultural productivity, generate variation in local demand within districts over time. Consistent with the theory, we find that industrial employment is more sensitive to shocks where labor regulation is less restrictive. Our results are robust to controlling for endogenous firm placement and vary across factory size in a pattern consistent with institutional features of Indian labor law. PMID:24357882
Thermal energy storage and transport
NASA Technical Reports Server (NTRS)
Hausz, W.
1980-01-01
The extraction of thermal energy from large LWR and coal fired plants for long distance transport to industrial and residential/commercial users is analyzed. Transport of thermal energy as high temperature water is shown to be considerably cheaper than transport as steam, hot oil, or molten salt over a wide temperature range. The delivered heat is competitive with user-generated heat from oil, coal, or electrode boilers at distances well over 50 km when the pipeline operates at high capacity factor. Results indicate that thermal energy storage makes meeting of even very low capacity factor heat demands economic and feasible and gives the utility flexibility to meet coincident electricity and heat demands effectively.
NASA Astrophysics Data System (ADS)
Finley, Christopher
Power generation using wind turbines increases the electrical system balancing, regulation and ramp rate requirements due to the minute to minute variability in wind speed and the difficulty in accurately forecasting wind speeds. The addition of thermal energy storage, such as ice storage, to a building's space cooling equipment increases the operational flexibility of the equipment by allowing the owner to choose when the chiller is run. The ability of the building owner to increase the power demand from the chiller (e.g. make ice) or to decrease the power demand (e.g. melt ice) to provide electrical system ancillary services was evaluated.
Statistical Capability Study of a Helical Grinding Machine Producing Screw Rotors
NASA Astrophysics Data System (ADS)
Holmes, C. S.; Headley, M.; Hart, P. W.
2017-08-01
Screw compressors depend for their efficiency and reliability on the accuracy of the rotors, and therefore on the machinery used in their production. The machinery has evolved over more than half a century in response to customer demands for production accuracy, efficiency, and flexibility, and is now at a high level on all three criteria. Production equipment and processes must be capable of maintaining accuracy over a production run, and this must be assessed statistically under strictly controlled conditions. This paper gives numerical data from such a study of an innovative machine tool and shows that it is possible to meet the demanding statistical capability requirements.
DOT National Transportation Integrated Search
2012-10-01
A handout with tables representing the material requirements, test methods, responsibilities, and minimum classification levels mixture-based specification for flexible base and details on aggregate and test methods employed, along with agency and co...
ERIC Educational Resources Information Center
Didden, R.; Sigafoos, J.; Green, V. A.; Korzilius, H.; Mouws, C.; Lancioni, G. E.; O'Reilly, M. F.; Curfs, L. M. G.
2008-01-01
Background: Little is known about behavioural flexibility in children and adults with Angelman syndrome and whether people with this syndrome have more or less problems in being behaviourally flexible as compared with other people. Method: Behavioural flexibility scores were assessed in 129 individuals with Angelman syndrome using 11 items from…
0-6621 : developing a mixture-based specification for flexible base.
DOT National Transportation Integrated Search
2012-08-01
The Texas Department of Transportation : (TxDOT) currently utilizes Item 247, Flexible : Base, to specify a foundation course of flexible : base utilized in a pavement. Base materials are : not allowed to be used by the contractors until : the ...
Microgrid to enable optimal distributed energy retail and end-user demand response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ming; Feng, Wei; Marnay, Chris
In the face of unprecedented challenges in environmental sustainability and grid resilience, there is an increasingly held consensus regarding the adoption of distributed and renewable energy resources such as microgrids (MGs), and the utilization of flexible electric loads by demand response (DR) to potentially drive a necessary paradigm shift in energy production and consumption patterns. However, the potential value of distributed generation and demand flexibility has not yet been fully realized in the operation of MGs. This study investigates the pricing and operation strategy with DR for a MG retailer in an integrated energy system (IES). Based on co-optimizing retailmore » rates and MG dispatch formulated as a mixed integer quadratic programming (MIQP) problem, our model devises a dynamic pricing scheme that reflects the cost of generation and promotes DR, in tandem with an optimal dispatch plan that exploits spark spread and facilitates the integration of renewables, resulting in improved retailer profits and system stability. Main issues like integrated energy coupling and customer bill reduction are addressed during pricing to ensure rates competitiveness and customer protection. By evaluating on real datasets, the system is demonstrated to optimally coordinate storage, renewables, and combined heat and power (CHP), reduce carbon dioxide emission while maintaining profits, and effectively alleviate the PV curtailment problem. Finally, the model can be used by retailers and MG operators to optimize their operations, as well as regulators to design new utility rates in support of the ongoing transformation of energy systems.« less
Microgrid to enable optimal distributed energy retail and end-user demand response
Jin, Ming; Feng, Wei; Marnay, Chris; ...
2018-06-07
In the face of unprecedented challenges in environmental sustainability and grid resilience, there is an increasingly held consensus regarding the adoption of distributed and renewable energy resources such as microgrids (MGs), and the utilization of flexible electric loads by demand response (DR) to potentially drive a necessary paradigm shift in energy production and consumption patterns. However, the potential value of distributed generation and demand flexibility has not yet been fully realized in the operation of MGs. This study investigates the pricing and operation strategy with DR for a MG retailer in an integrated energy system (IES). Based on co-optimizing retailmore » rates and MG dispatch formulated as a mixed integer quadratic programming (MIQP) problem, our model devises a dynamic pricing scheme that reflects the cost of generation and promotes DR, in tandem with an optimal dispatch plan that exploits spark spread and facilitates the integration of renewables, resulting in improved retailer profits and system stability. Main issues like integrated energy coupling and customer bill reduction are addressed during pricing to ensure rates competitiveness and customer protection. By evaluating on real datasets, the system is demonstrated to optimally coordinate storage, renewables, and combined heat and power (CHP), reduce carbon dioxide emission while maintaining profits, and effectively alleviate the PV curtailment problem. Finally, the model can be used by retailers and MG operators to optimize their operations, as well as regulators to design new utility rates in support of the ongoing transformation of energy systems.« less
The relationship between work arrangements and work-family conflict.
Higgins, Christopher; Duxbury, Linda; Julien, Mark
2014-01-01
A review of the literature determined that our understanding of the efficacy of flexible work arrangements (FWA) in reducing work-family conflict remains inconclusive. To shed light on this issue by examining the relationship between work-to-family conflict, in which work interferes with family (WFC), family-to-work conflict, in which family interferes with work (FWC), and four work arrangements: the traditional 9-5 schedule, compressed work weeks (CWWs) flextime, and telework. Hypotheses were tested on a sample of 16,145 employees with dependent care responsibilities. MANCOVA analysis was used with work arrangement as the independent variable and work interferes with family (WFC) and family interferes with work (FWC) as dependent variables. Work demands, non-work demands, income, job type and gender were entered into the analysis as covariates. The more flexible work arrangements such as flextime and telework were associated with higher levels of WFC than were fixed 9-to 5 and CWW schedules. Employees who teleworked reported higher FWC than their counterparts working a traditional 9-to-5 schedule particularly when work demands were high. The removal of both temporal and physical boundaries separating work and family domains results in higher levels of work-family interference in both directions. The results from this study suggest that policy makers and practitioners who are interested in improving employee well-being can reduce work-family conflict, and by extension improve employee mental health, by focusing on the effective use of traditional and CWW schedules rather than by implementing flextime and telework arrangements.
Residential Consumption Scheduling Based on Dynamic User Profiling
NASA Astrophysics Data System (ADS)
Mangiatordi, Federica; Pallotti, Emiliano; Del Vecchio, Paolo; Capodiferro, Licia
Deployment of household appliances and of electric vehicles raises the electricity demand in the residential areas and the impact of the building's electrical power. The variations of electricity consumption across the day, may affect both the design of the electrical generation facilities and the electricity bill, mainly when a dynamic pricing is applied. This paper focuses on an energy management system able to control the day-ahead electricity demand in a residential area, taking into account both the variability of the energy production costs and the profiling of the users. The user's behavior is dynamically profiled on the basis of the tasks performed during the previous days and of the tasks foreseen for the current day. Depending on the size and on the flexibility in time of the user tasks, home inhabitants are grouped in, one over N, energy profiles, using a k-means algorithm. For a fixed energy generation cost, each energy profile is associated to a different hourly energy cost. The goal is to identify any bad user profile and to make it pay a highest bill. A bad profile example is when a user applies a lot of consumption tasks and low flexibility in task reallocation time. The proposed energy management system automatically schedules the tasks, solving a multi-objective optimization problem based on an MPSO strategy. The goals, when identifying bad users profiles, are to reduce the peak to average ratio in energy demand, and to minimize the energy costs, promoting virtuous behaviors.
On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.
Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Destgeer, Ghulam; Ahmed, Husnain; Ahmad, Raheel; Sung, Hyung Jin
2018-01-30
On-chip droplet splitting is one of the fundamental droplet-based microfluidic unit operations to control droplet volume after production and increase operational capability, flexibility, and throughput. Various droplet splitting methods have been proposed, and among them the acoustic droplet splitting method is promising because of its label-free operation without any physical or thermal damage to droplets. Previous acoustic droplet splitting methods faced several limitations: first, they employed a cross-type acoustofluidic device that precluded multichannel droplet splitting; second, they required irreversible bonding between a piezoelectric substrate and a microfluidic chip, such that the fluidic chip was not replaceable. Here, we present a parallel-type acoustofluidic device with a disposable microfluidic chip to address the limitations of previous acoustic droplet splitting devices. In the proposed device, an acoustic field is applied in the direction opposite to the flow direction to achieve multichannel droplet splitting and steering. A disposable polydimethylsiloxane microfluidic chip is employed in the developed device, thereby removing the need for permanent bonding and improving the flexibility of the droplet microfluidic device. We experimentally demonstrated on-demand acoustic droplet bi-splitting and steering with precise control over the droplet splitting ratio, and we investigated the underlying physical mechanisms of droplet splitting and steering based on Laplace pressure and ray acoustics analyses, respectively. We also demonstrated droplet tri-splitting to prove the feasibility of multichannel droplet splitting. The proposed on-demand acoustic droplet splitting device enables on-chip droplet volume control in various droplet-based microfluidic applications.
NASA Astrophysics Data System (ADS)
Fletcher, S.; Strzepek, K.
2017-12-01
Many urban water planners face increased pressure on water supply systems from increasing demands from population and economic growth in combination with uncertain water supply, driven by short-term climate variability and long-term climate change. These uncertainties are often exacerbated in groundwater-dependent water systems due to the extra difficulty in measuring groundwater storage, recharge, and sustainable yield. Groundwater models are typically under-parameterized due to the high data requirements for calibration and limited data availability, leading to uncertainty in the models' predictions. We develop an integrated approach to urban water supply planning that combines predictive groundwater uncertainty analysis with adaptive water supply planning using multi-stage decision analysis. This allows us to compare the value of collecting additional groundwater data and reducing predictive uncertainty with the value of using water infrastructure planning that is flexible, modular, and can react quickly in response to unexpected changes in groundwater availability. We apply this approach to a case from Riyadh, Saudi Arabia. Riyadh relies on fossil groundwater aquifers and desalination for urban use. The main fossil aquifers incur minimal recharge and face depletion as a result of intense withdrawals for urban and agricultural use. As the water table declines and pumping becomes uneconomical, Riyadh will have to build new supply infrastructure, decrease demand, or increase the efficiency of its distribution system. However, poor groundwater characterization has led to severe uncertainty in aquifer parameters such as hydraulic conductivity, and therefore severe uncertainty in how the water table will respond to pumping over time and when these transitions will be necessary: the potential depletion time varies from approximately five years to 100 years. This case is an excellent candidate for flexible planning both because of its severity and the potential for learning: additional information can be collected over time and flexible options exercised in response. Stochastic dynamic programming is used to find optimal policies for using flexibility under different information scenarios. The performance of each strategy is then assessed using a simulation model of Riyadh's water system.
Boosting CSP Production with Thermal Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, P.; Mehos, M.
2012-06-01
Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PVmore » electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.« less
NASA Astrophysics Data System (ADS)
Dervilllé, A.; Labrosse, A.; Zimmermann, Y.; Foucher, J.; Gronheid, R.; Boeckx, C.; Singh, A.; Leray, P.; Halder, S.
2016-03-01
The dimensional scaling in IC manufacturing strongly drives the demands on CD and defect metrology techniques and their measurement uncertainties. Defect review has become as important as CD metrology and both of them create a new metrology paradigm because it creates a completely new need for flexible, robust and scalable metrology software. Current, software architectures and metrology algorithms are performant but it must be pushed to another higher level in order to follow roadmap speed and requirements. For example: manage defect and CD in one step algorithm, customize algorithms and outputs features for each R&D team environment, provide software update every day or every week for R&D teams in order to explore easily various development strategies. The final goal is to avoid spending hours and days to manually tune algorithm to analyze metrology data and to allow R&D teams to stay focus on their expertise. The benefits are drastic costs reduction, more efficient R&D team and better process quality. In this paper, we propose a new generation of software platform and development infrastructure which can integrate specific metrology business modules. For example, we will show the integration of a chemistry module dedicated to electronics materials like Direct Self Assembly features. We will show a new generation of image analysis algorithms which are able to manage at the same time defect rates, images classifications, CD and roughness measurements with high throughput performances in order to be compatible with HVM. In a second part, we will assess the reliability, the customization of algorithm and the software platform capabilities to follow new specific semiconductor metrology software requirements: flexibility, robustness, high throughput and scalability. Finally, we will demonstrate how such environment has allowed a drastic reduction of data analysis cycle time.
Quiroga-Campano, Ana L; Panoskaltsis, Nicki; Mantalaris, Athanasios
2018-03-02
Demand for high-value biologics, a rapidly growing pipeline, and pressure from competition, time-to-market and regulators, necessitate novel biomanufacturing approaches, including Quality by Design (QbD) principles and Process Analytical Technologies (PAT), to facilitate accelerated, efficient and effective process development platforms that ensure consistent product quality and reduced lot-to-lot variability. Herein, QbD and PAT principles were incorporated within an innovative in vitro-in silico integrated framework for upstream process development (UPD). The central component of the UPD framework is a mathematical model that predicts dynamic nutrient uptake and average intracellular ATP content, based on biochemical reaction networks, to quantify and characterize energy metabolism and its adaptive response, metabolic shifts, to maintain ATP homeostasis. The accuracy and flexibility of the model depends on critical cell type/product/clone-specific parameters, which are experimentally estimated. The integrated in vitro-in silico platform and the model's predictive capacity reduced burden, time and expense of experimentation resulting in optimal medium design compared to commercially available culture media (80% amino acid reduction) and a fed-batch feeding strategy that increased productivity by 129%. The framework represents a flexible and efficient tool that transforms, improves and accelerates conventional process development in biomanufacturing with wide applications, including stem cell-based therapies. Copyright © 2018. Published by Elsevier Inc.
Strategic control in decision-making under uncertainty.
Venkatraman, Vinod; Huettel, Scott A
2012-04-01
Complex economic decisions - whether investing money for retirement or purchasing some new electronic gadget - often involve uncertainty about the likely consequences of our choices. Critical for resolving that uncertainty are strategic meta-decision processes, which allow people to simplify complex decision problems, evaluate outcomes against a variety of contexts, and flexibly match behavior to changes in the environment. In recent years, substantial research has implicated the dorsomedial prefrontal cortex (dmPFC) in the flexible control of behavior. However, nearly all such evidence comes from paradigms involving executive function or response selection, not complex decision-making. Here, we review evidence that demonstrates that the dmPFC contributes to strategic control in complex decision-making. This region contains a functional topography such that the posterior dmPFC supports response-related control, whereas the anterior dmPFC supports strategic control. Activation in the anterior dmPFC signals changes in how a decision problem is represented, which in turn can shape computational processes elsewhere in the brain. Based on these findings, we argue for both generalized contributions of the dmPFC to cognitive control, and specific computational roles for its subregions depending upon the task demands and context. We also contend that these strategic considerations are likely to be critical for decision-making in other domains, including interpersonal interactions in social settings. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Hansen, Jens; Meretzky, David; Woldesenbet, Simeneh; Stolovitzky, Gustavo; Iyengar, Ravi
2017-12-18
Whole cell responses arise from coordinated interactions between diverse human gene products functioning within various pathways underlying sub-cellular processes (SCP). Lower level SCPs interact to form higher level SCPs, often in a context specific manner to give rise to whole cell function. We sought to determine if capturing such relationships enables us to describe the emergence of whole cell functions from interacting SCPs. We developed the Molecular Biology of the Cell Ontology based on standard cell biology and biochemistry textbooks and review articles. Currently, our ontology contains 5,384 genes, 753 SCPs and 19,180 expertly curated gene-SCP associations. Our algorithm to populate the SCPs with genes enables extension of the ontology on demand and the adaption of the ontology to the continuously growing cell biological knowledge. Since whole cell responses most often arise from the coordinated activity of multiple SCPs, we developed a dynamic enrichment algorithm that flexibly predicts SCP-SCP relationships beyond the current taxonomy. This algorithm enables us to identify interactions between SCPs as a basis for higher order function in a context dependent manner, allowing us to provide a detailed description of how SCPs together can give rise to whole cell functions. We conclude that this ontology can, from omics data sets, enable the development of detailed SCP networks for predictive modeling of emergent whole cell functions.