Flexible devices: from materials, architectures to applications
NASA Astrophysics Data System (ADS)
Zou, Mingzhi; Ma, Yue; Yuan, Xin; Hu, Yi; Liu, Jie; Jin, Zhong
2018-01-01
Flexible devices, such as flexible electronic devices and flexible energy storage devices, have attracted a significant amount of attention in recent years for their potential applications in modern human lives. The development of flexible devices is moving forward rapidly, as the innovation of methods and manufacturing processes has greatly encouraged the research of flexible devices. This review focuses on advanced materials, architecture designs and abundant applications of flexible devices, and discusses the problems and challenges in current situations of flexible devices. We summarize the discovery of novel materials and the design of new architectures for improving the performance of flexible devices. Finally, we introduce the applications of flexible devices as key components in real life. Project supported by the National Key R&D Program of China (Nos. 2017YFA0208200, 2016YFB0700600, 2015CB659300), the National Natural Science Foundation of China (Nos. 21403105, 21573108), and the Fundamental Research Funds for the Central Universities (No. 020514380107).
Graphene-Based Flexible and Stretchable Electronics.
Jang, Houk; Park, Yong Ju; Chen, Xiang; Das, Tanmoy; Kim, Min-Seok; Ahn, Jong-Hyun
2016-06-01
Graphene provides outstanding properties that can be integrated into various flexible and stretchable electronic devices in a conventional, scalable fashion. The mechanical, electrical, and optical properties of graphene make it an attractive candidate for applications in electronics, energy-harvesting devices, sensors, and other systems. Recent research progress on graphene-based flexible and stretchable electronics is reviewed here. The production and fabrication methods used for target device applications are first briefly discussed. Then, the various types of flexible and stretchable electronic devices that are enabled by graphene are discussed, including logic devices, energy-harvesting devices, sensors, and bioinspired devices. The results represent important steps in the development of graphene-based electronics that could find applications in the area of flexible and stretchable electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabrication techniques and applications of flexible graphene-based electronic devices
NASA Astrophysics Data System (ADS)
Luqi, Tao; Danyang, Wang; Song, Jiang; Ying, Liu; Qianyi, Xie; He, Tian; Ningqin, Deng; Xuefeng, Wang; Yi, Yang; Tian-Ling, Ren
2016-04-01
In recent years, flexible electronic devices have become a hot topic of scientific research. These flexible devices are the basis of flexible circuits, flexible batteries, flexible displays and electronic skins. Graphene-based materials are very promising for flexible electronic devices, due to their high mobility, high elasticity, a tunable band gap, quantum electronic transport and high mechanical strength. In this article, we review the recent progress of the fabrication process and the applications of graphene-based electronic devices, including thermal acoustic devices, thermal rectifiers, graphene-based nanogenerators, pressure sensors and graphene-based light-emitting diodes. In summary, although there are still a lot of challenges needing to be solved, graphene-based materials are very promising for various flexible device applications in the future. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) Program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and China's Postdoctoral Science Foundation (CPSF).
1-dimension nano-material-based flexible device
NASA Astrophysics Data System (ADS)
Yang, Xing; Zhou, Zhaoying; Zheng, Fuzhong
2009-11-01
1D nano-material-based flexible devices has attracted considerable attention owing to the growing need of the high-sensitivity flexible sensor, portable consumer electronics etc.. In this paper, the 1D nano-materials-based flexible device on polyimide substrate was proposed. The bottom-up and top-down combined process were used for constructing the ZnO nanowire and the CNT-based flexible devices. Their electrical characteristics were also investigated. The measurement results demonstrate that the flexible device covered with a layer of Al2O3 has good ohm electrical contact behavior between the nano-material and micro-electrodes. The proposed 1D nano-material-based flexible device shows the application potential in the sensing fields.
Bioinspired Graphene-Based Nanocomposites and Their Application in Flexible Energy Devices.
Wan, Sijie; Peng, Jingsong; Jiang, Lei; Cheng, Qunfeng
2016-09-01
Graphene is the strongest and stiffest material ever identified and the best electrical conductor known to date, making it an ideal candidate for constructing nanocomposites used in flexible energy devices. However, it remains a great challenge to assemble graphene nanosheets into macro-sized high-performance nanocomposites in practical applications of flexible energy devices using traditional approaches. Nacre, the gold standard for biomimicry, provides an excellent example and guideline for assembling two-dimensional nanosheets into high-performance nanocomposites. This review summarizes recent research on the bioinspired graphene-based nanocomposites (BGBNs), and discusses different bioinspired assembly strategies for constructing integrated high-strength and -toughness graphene-based nanocomposites through various synergistic effects. Fundamental properties of graphene-based nanocomposites, such as strength, toughness, and electrical conductivities, are highlighted. Applications of the BGBNs in flexible energy devices, as well as potential challenges, are addressed. Inspired from the past work done by the community a roadmap for the future of the BGBNs in flexible energy device applications is depicted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Jun-Yang; Lau, Yong-Chang; Coey, J M D; Li, Mo; Wang, Jian-Ping
2017-02-02
The magnetic tunnel junction (MTJ) using MgO barrier is one of most important building blocks for spintronic devices and has been widely utilized as miniaturized magentic sensors. It could play an important role in wearable medical devices if they can be fabricated on flexible substrates. The required stringent fabrication processes to obtain high quality MgO-barrier MTJs, however, limit its integration with flexible electronics devices. In this work, we have developed a method to fabricate high-performance MgO-barrier MTJs directly onto ultrathin flexible silicon membrane with a thickness of 14 μm and then transfer-and-bond to plastic substrates. Remarkably, such flexible MTJs are fully functional, exhibiting a TMR ratio as high as 190% under bending radii as small as 5 mm. The devices' robustness is manifested by its retained excellent performance and unaltered TMR ratio after over 1000 bending cycles. The demonstrated flexible MgO-barrier MTJs opens the door to integrating high-performance spintronic devices in flexible and wearable electronics devices for a plethora of biomedical sensing applications.
Device Engineered Organic Transistors for Flexible Sensing Applications.
Zang, Yaping; Huang, Dazhen; Di, Chong-An; Zhu, Daoben
2016-06-01
Organic thin-film transistors (OFETs) represent a promising candidate for next-generation sensing applications because of the intrinsic advantages of organic semiconductors. The development of flexible sensing devices has received particular interest in the past few years. The recent efforts of developing OFETs for sensitive and specific flexible sensors are summarized from the standpoint of device engineering. The tuning of signal transduction and signal amplification are highlighted based on an overview of active-layer thickness modulation, functional receptor implantation and device geometry optimization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent advances in flexible and wearable organic optoelectronic devices
NASA Astrophysics Data System (ADS)
Zhu, Hong; Shen, Yang; Li, Yanqing; Tang, Jianxin
2018-01-01
Flexible and wearable optoelectronic devices have been developing to a new stage due to their unique capacity for the possibility of a variety of wearable intelligent electronics, including bendable smartphones, foldable touch screens and antennas, paper-like displays, and curved and flexible solid-state lighting devices. Before extensive commercial applications, some issues still have to be solved for flexible and wearable optoelectronic devices. In this regard, this review concludes the newly emerging flexible substrate materials, transparent conductive electrodes, device architectures and light manipulation methods. Examples of these components applied for various kinds of devices are also summarized. Finally, perspectives about the bright future of flexible and wearable electronic devices are proposed. Project supported by the Ministry of Science and Technology of China (No. 2016YFB0400700).
High-efficiency robust perovskite solar cells on ultrathin flexible substrates
Li, Yaowen; Meng, Lei; Yang, Yang (Michael); Xu, Guiying; Hong, Ziruo; Chen, Qi; You, Jingbi; Li, Gang; Yang, Yang; Li, Yongfang
2016-01-01
Wide applications of personal consumer electronics have triggered tremendous need for portable power sources featuring light-weight and mechanical flexibility. Perovskite solar cells offer a compelling combination of low-cost and high device performance. Here we demonstrate high-performance planar heterojunction perovskite solar cells constructed on highly flexible and ultrathin silver-mesh/conducting polymer substrates. The device performance is comparable to that of their counterparts on rigid glass/indium tin oxide substrates, reaching a power conversion efficiency of 14.0%, while the specific power (the ratio of power to device weight) reaches 1.96 kW kg−1, given the fact that the device is constructed on a 57-μm-thick polyethylene terephthalate based substrate. The flexible device also demonstrates excellent robustness against mechanical deformation, retaining >95% of its original efficiency after 5,000 times fully bending. Our results confirmed that perovskite thin films are fully compatible with our flexible substrates, and are thus promising for future applications in flexible and bendable solar cells. PMID:26750664
Flexible energy-storage devices: design consideration and recent progress.
Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen
2014-07-23
Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Jun-Yang; Lau, Yong-Chang; Coey, J. M. D.; Li, Mo; Wang, Jian-Ping
2017-01-01
The magnetic tunnel junction (MTJ) using MgO barrier is one of most important building blocks for spintronic devices and has been widely utilized as miniaturized magentic sensors. It could play an important role in wearable medical devices if they can be fabricated on flexible substrates. The required stringent fabrication processes to obtain high quality MgO-barrier MTJs, however, limit its integration with flexible electronics devices. In this work, we have developed a method to fabricate high-performance MgO-barrier MTJs directly onto ultrathin flexible silicon membrane with a thickness of 14 μm and then transfer-and-bond to plastic substrates. Remarkably, such flexible MTJs are fully functional, exhibiting a TMR ratio as high as 190% under bending radii as small as 5 mm. The devices‘ robustness is manifested by its retained excellent performance and unaltered TMR ratio after over 1000 bending cycles. The demonstrated flexible MgO-barrier MTJs opens the door to integrating high-performance spintronic devices in flexible and wearable electronics devices for a plethora of biomedical sensing applications. PMID:28150807
Semiconductor-based, large-area, flexible, electronic devices
Goyal, Amit [Knoxville, TN
2011-03-15
Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates
Goyal, Amit
2014-08-05
Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
[100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices
Goyal, Amit
2015-03-24
Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue
NASA Astrophysics Data System (ADS)
Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang
2018-07-01
Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.
Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue
NASA Astrophysics Data System (ADS)
Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang
2018-03-01
Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.
Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bin; Zhang, Ji-Guang; Shen, Guozhen
2016-02-01
Stretchable/flexible electronics provide a foundation for various emerging applications that beyond the scope of conventional wafer/circuit board technologies due to their unique features that can satisfy a broad range of applications such as wearable devices. Stretchable electronic and optoelectronics devices require the bendable/wearable rechargeable Li-ion batteries, thus these devices can operate without limitation of external powers. Various two-dimensional (2D) nanomaterials are of great interest in flexible energy storage devices, especially Li-ion batteries. This is because 2D materials exhibit much more exposed surface area supplying abundant Li-insertion channels and shortened paths for fast lithium ion diffusion. Here, we will review themore » recent developments on the flexible Li-ion batteries based on two dimensional nanomaterials. These researches demonstrated advancements in flexible electronics by incorporating various 2D nanomaterials into bendable batteries to achieve high electrochemical performance, excellent mechanical flexibility as well as electrical stability under stretching/bending conditions.« less
Harada, Shingo; Kanao, Kenichiro; Yamamoto, Yuki; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2014-12-23
A three-axis tactile force sensor that determines the touch and slip/friction force may advance artificial skin and robotic applications by fully imitating human skin. The ability to detect slip/friction and tactile forces simultaneously allows unknown objects to be held in robotic applications. However, the functionalities of flexible devices have been limited to a tactile force in one direction due to difficulties fabricating devices on flexible substrates. Here we demonstrate a fully printed fingerprint-like three-axis tactile force and temperature sensor for artificial skin applications. To achieve economic macroscale devices, these sensors are fabricated and integrated using only printing methods. Strain engineering enables the strain distribution to be detected upon applying a slip/friction force. By reading the strain difference at four integrated force sensors for a pixel, both the tactile and slip/friction forces can be analyzed simultaneously. As a proof of concept, the high sensitivity and selectivity for both force and temperature are demonstrated using a 3×3 array artificial skin that senses tactile, slip/friction, and temperature. Multifunctional sensing components for a flexible device are important advances for both practical applications and basic research in flexible electronics.
Toward flexible and wearable human-interactive health-monitoring devices.
Takei, Kuniharu; Honda, Wataru; Harada, Shingo; Arie, Takayuki; Akita, Seiji
2015-03-11
This Progress Report introduces flexible wearable health-monitoring devices that interact with a person by detecting from and stimulating the body. Interactive health-monitoring devices should be highly flexible and attach to the body without awareness like a bandage. This type of wearable health-monitoring device will realize a new class of electronics, which will be applicable not only to health monitoring, but also to other electrical devices. However, to realize wearable health-monitoring devices, many obstacles must be overcome to economically form the active electrical components on a flexible substrate using macroscale fabrication processes. In particular, health-monitoring sensors and curing functions need to be integrated. Here recent developments and advancements toward flexible health-monitoring devices are presented, including conceptual designs of human-interactive devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hard and flexible optical printed circuit board
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, Hyun Sik; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.
2007-02-01
We report on the design and fabrication of hard and flexible optical printed circuit boards (O-PCBs). The objective is to realize generic and application-specific O-PCBs, either in hard form or flexible form, that are compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly, for low-cost and high-volume universal applications. The O-PCBs consist of 2-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate micro/nano-scale photonic devices. The micro/nano-optical functional devices include lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices. For flexible boards, the optical waveguide arrays are fabricated on flexible poly-ethylen terephthalate (PET) substrates by UV embossing. Electrical layer carrying VCSEL and PD array is laminated with the optical layer carrying waveguide arrays. Both hard and flexible electrical lines are replaced with high speed optical interconnection between chips over four waveguide channels up to 10Gbps on each. We discuss uses of hard or flexible O-PCBs for telecommunication systems, computer systems, transportation systems, space/avionic systems, and bio-sensor systems.
Goyal, Amit [Knoxville, TN
2012-05-15
Novel articles and methods to fabricate the same resulting in flexible, {100}<100> or 45.degree.-rotated {100}<100> oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
Transferable and flexible thin film devices for engineering applications
NASA Astrophysics Data System (ADS)
Mutyala, Madhu Santosh K.; Zhou, Jingzhou; Li, Xiaochun
2014-05-01
Thin film devices can be of significance for manufacturing, energy conversion systems, solid state electronics, wireless applications, etc. However, these thin film sensors/devices are normally fabricated on rigid silicon substrates, thus neither flexible nor transferrable for engineering applications. This paper reports an innovative approach to transfer polyimide (PI) embedded thin film devices, which were fabricated on glass, to thin metal foils. Thin film thermocouples (TFTCs) were fabricated on a thin PI film, which was spin coated and cured on a glass substrate. Another layer of PI film was then spin coated again on TFTC/PI and cured to obtain the embedded TFTCs. Assisted by oxygen plasma surface coarsening of the PI film on the glass substrate, the PI embedded TFTC was successfully transferred from the glass substrate to a flexible copper foil. To demonstrate the functionality of the flexible embedded thin film sensors, they were transferred to the sonotrode tip of an ultrasonic metal welding machine for in situ process monitoring. The dynamic temperatures near the sonotrode tip were effectively measured under various ultrasonic vibration amplitudes. This technique of transferring polymer embedded electronic devices onto metal foils yield great potentials for numerous engineering applications.
Flexible Graphene-based Energy Storage Devices for Space Application Project
NASA Technical Reports Server (NTRS)
Calle, Carlos I.
2014-01-01
Develop prototype graphene-based reversible energy storage devices that are flexible, thin, lightweight, durable, and that can be easily attached to spacesuits, rovers, landers, and equipment used in space.
Li, Xiaoyi; Liang, Renrong; Tao, Juan; Peng, Zhengchun; Xu, Qiming; Han, Xun; Wang, Xiandi; Wang, Chunfeng; Zhu, Jing; Pan, Caofeng; Wang, Zhong Lin
2017-04-25
Due to the fragility and the poor optoelectronic performances of Si, it is challenging and exciting to fabricate the Si-based flexible light-emitting diode (LED) array devices. Here, a flexible LED array device made of Si microwires-ZnO nanofilm, with the advantages of flexibility, stability, lightweight, and energy savings, is fabricated and can be used as a strain sensor to demonstrate the two-dimensional pressure distribution. Based on piezo-phototronic effect, the intensity of the flexible LED array can be increased more than 3 times (under 60 MPa compressive strains). Additionally, the device is stable and energy saving. The flexible device can still work well after 1000 bending cycles or 6 months placed in the atmosphere, and the power supplied to the flexible LED array is only 8% of the power of the surface-contact LED. The promising Si-based flexible device has wide range application and may revolutionize the technologies of flexible screens, touchpad technology, and smart skin.
He, Xin; Duan, Feng; Liu, Junyan; Lan, Qiuming; Wu, Jianhao; Yang, Chengyan; Yang, Weijia; Zeng, Qingguang; Wang, Huafang
2017-01-01
Transparent, conductive, and flexible Ag nanowire (NW)-polyimide (PI) composite films were fabricated by a facile solution method. Well-dispersed Ag NWs result in percolation networks on the PI supporting layer. A series of films with transmittance values of 53–80% and sheet resistances of 2.8–16.5 Ω/sq were investigated. To further verify the practicability of the Ag NWs-PI film in optoelectronic devices, we utilized it in a film heater and a flexible solar cell. The film heater was able to generate a temperature of 58 °C at a driving voltage of 3.5 V within 20 s, indicating its potential application in heating devices that require low power consumption and fast response. The flexible solar cell based on the composite film with a transmittance value of 71% presented a power conversion efficiency of 3.53%. These successful applications proved that the fabricated Ag NWs-PI composite film is a good candidate for application in flexible optoelectronic devices. PMID:29186012
He, Xin; Duan, Feng; Liu, Junyan; Lan, Qiuming; Wu, Jianhao; Yang, Chengyan; Yang, Weijia; Zeng, Qingguang; Wang, Huafang
2017-11-29
Transparent, conductive, and flexible Ag nanowire (NW)-polyimide (PI) composite films were fabricated by a facile solution method. Well-dispersed Ag NWs result in percolation networks on the PI supporting layer. A series of films with transmittance values of 53-80% and sheet resistances of 2.8-16.5 Ω/sq were investigated. To further verify the practicability of the Ag NWs-PI film in optoelectronic devices, we utilized it in a film heater and a flexible solar cell. The film heater was able to generate a temperature of 58 °C at a driving voltage of 3.5 V within 20 s, indicating its potential application in heating devices that require low power consumption and fast response. The flexible solar cell based on the composite film with a transmittance value of 71% presented a power conversion efficiency of 3.53%. These successful applications proved that the fabricated Ag NWs-PI composite film is a good candidate for application in flexible optoelectronic devices.
All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device.
Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun
2017-03-03
Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor's dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.
Solution processed molecular floating gate for flexible flash memories
NASA Astrophysics Data System (ADS)
Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.
2013-10-01
Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices.
Solution processed molecular floating gate for flexible flash memories
Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.
2013-01-01
Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices. PMID:24172758
Recent progress on thin-film encapsulation technologies for organic electronic devices
NASA Astrophysics Data System (ADS)
Yu, Duan; Yang, Yong-Qiang; Chen, Zheng; Tao, Ye; Liu, Yun-Fei
2016-03-01
Among the advanced electronic devices, flexible organic electronic devices with rapid development are the most promising technologies to customers and industries. Organic thin films accommodate low-cost fabrication and can exploit diverse molecules in inexpensive plastic light emitting diodes, plastic solar cells, and even plastic lasers. These properties may ultimately enable organic materials for practical applications in industry. However, the stability of organic electronic devices still remains a big challenge, because of the difficulty in fabricating commercial products with flexibility. These organic materials can be protected using substrates and barriers such as glass and metal; however, this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers are other possible alternatives; however, these offer little protection to oxygen and water, thus rapidly degrading the devices. Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation into the flexible devices. Because of these (and other) reasons, there has been an intense interest in developing transparent barrier materials with much lower permeabilities, and their market is expected to reach over 550 million by 2025. In this study, the degradation mechanism of organic electronic devices is reviewed. To increase the stability of devices in air, several TFE technologies were applied to provide efficient barrier performance. In this review, the degradation mechanism of organic electronic devices, permeation rate measurement, traditional encapsulation technologies, and TFE technologies are presented.
An Overview of the Development of Flexible Sensors.
Han, Su-Ting; Peng, Haiyan; Sun, Qijun; Venkatesh, Shishir; Chung, Kam-Sing; Lau, Siu Chuen; Zhou, Ye; Roy, V A L
2017-09-01
Flexible sensors that efficiently detect various stimuli relevant to specific environmental or biological species have been extensively studied due to their great potential for the Internet of Things and wearable electronics applications. The application of flexible and stretchable electronics to device-engineering technologies has enabled the fabrication of slender, lightweight, stretchable, and foldable sensors. Here, recent studies on flexible sensors for biological analytes, ions, light, and pH are outlined. In addition, contemporary studies on device structure, materials, and fabrication methods for flexible sensors are discussed, and a market overview is provided. The conclusion presents challenges and perspectives in this field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Device and method for redirecting electromagnetic signals
Garcia, Ernest J.
1999-01-01
A device fabricated to redirect electromagnetic signals, the device including a primary driver adapted to provide a predetermined force, a linkage system coupled to the primary driver, a pusher rod rotationally coupled to the linkage system, a flexible rod element attached to the pusher rod and adapted to buckle upon the application of the predetermined force, and a mirror structure attached to the flexible rod element at one end and to the substrate at another end. When the predetermined force buckles the flexible rod element, the mirror structure and the flexible rod element both move to thereby allow a remotely-located electromagnetic signal directed towards the device to be redirected.
Recent progress of flexible and wearable strain sensors for human-motion monitoring
NASA Astrophysics Data System (ADS)
Ge, Gang; Huang, Wei; Shao, Jinjun; Dong, Xiaochen
2018-01-01
With the rapid development of human artificial intelligence and the inevitably expanding markets, the past two decades have witnessed an urgent demand for the flexible and wearable devices, especially the flexible strain sensors. Flexible strain sensors, incorporated the merits of stretchability, high sensitivity and skin-mountable, are emerging as an extremely charming domain in virtue of their promising applications in artificial intelligent realms, human-machine systems and health-care devices. In this review, we concentrate on the transduction mechanisms, building blocks of flexible physical sensors, subsequently property optimization in terms of device structures and sensing materials in the direction of practical applications. Perspectives on the existing challenges are also highlighted in the end. Project supported by the NNSF of China (Nos. 61525402, 61604071), the Key University Science Research Project of Jiangsu Province (No. 15KJA430006), and the Natural Science Foundation of Jiangsu Province (No. BK20161012).
2012-02-07
circuits on mechanically flexible substrates for digital, analog and radio frequency applications. The asobtained thin-film transistors ( TFTs ) exhibit... flexible substrates for digital, analog and radio frequency applications. The as- obtained thin-film transistors ( TFTs ) exhibit highly uniform device...LCD) and organic light- emitting diode ( OLED ) displays lack the transparency and flexibility and are thus unsuitable for flexible electronic
Flexible magnetic thin films and devices
NASA Astrophysics Data System (ADS)
Sheng, Ping; Wang, Baomin; Li, Runwei
2018-01-01
Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices. Project supported by the National Key R&D Program of China (No. 2016YFA0201102), the National Natural Science Foundation of China (Nos. 51571208, 51301191, 51525103, 11274321, 11474295, 51401230), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2016270), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M05), the Ningbo Major Project for Science and Technology (No. 2014B11011), the Ningbo Science and Technology Innovation Team (No. 2015B11001), and the Ningbo Natural Science Foundation (No. 2015A610110).
Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.
2016-01-01
High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm2 at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices. PMID:27546225
Zequine, Camila; Ranaweera, C K; Wang, Z; Singh, Sweta; Tripathi, Prashant; Srivastava, O N; Gupta, Bipin Kumar; Ramasamy, K; Kahol, P K; Dvornic, P R; Gupta, Ram K
2016-08-22
High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm(2) at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices.
NASA Astrophysics Data System (ADS)
Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.
2016-08-01
High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm2 at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices.
Flexible copper-indium-diselenide films and devices for space applications
NASA Technical Reports Server (NTRS)
Armstrong, J. H.; Pistole, C. O.; Misra, M. S.; Kapur, V. K.; Basol, B. M.
1991-01-01
With the ever increasing demands on space power systems, it is imperative that low cost, lightweight, reliable photovoltaics be developed. One avenue of pursuit for future space power applications is the use of low cost, lightweight flexible PV cells and arrays. Most work in this area assumes the use of flexible amorphous silicon (a-Si), despite its inherent instability and low efficiencies. However, polycrystalline thin film PV such as copper-indium-diselenide (CIS) are inherently more stable and exhibit better performance than a-Si. Furthermore, preliminary data indicate that CIS also offers exciting properties with respect to space applications. However, CIS has only heretofore only produced on rigid substrates. The implications of flexible CIS upon present and future space power platforms was explored. Results indicate that space qualified CIS can dramatically reduce the cost of PV, and in most cases, can be substituted for silicon (Si) based on end-of-life (EOL) estimations. Furthermore, where cost is a prime consideration, CIS can become cost effective than gallium arsenide (GaAs) in some applications. Second, investigations into thin film deposition on flexible substrates were made, and data from these tests indicate that fabrication of flexible CIS devices is feasible. Finally, data is also presented on preliminary TCO/CdS/CuInSe2/Mo devices.
Nature-Inspired Structural Materials for Flexible Electronic Devices.
Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong
2017-10-25
Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.
Flexible and Stretchable Optoelectronic Devices using Silver Nanowires and Graphene.
Lee, Hanleem; Kim, Meeree; Kim, Ikjoon; Lee, Hyoyoung
2016-06-01
Many studies have accompanied the emergence of a great interest in flexible or/and stretchable devices for new applications in wearable and futuristic technology, including human-interface devices, robotic skin, and biometric devices, and in optoelectronic devices. Especially, new nanodimensional materials enable flexibility or stretchability to be brought based on their dimensionality. Here, the emerging field of flexible devices is briefly introduced using silver nanowires and graphene, which are famous nanomaterials for the use of transparent conductive electrodes, as examples, and their unique functions originating from the intrinsic property of these nanomaterials are highlighted. It is thought that this work will evoke more interest and idea exchanges in this emerging field and hopefully can trigger a breakthrough on a new type of optoelectronics and optogenetic devices in the near future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device
NASA Astrophysics Data System (ADS)
Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun
2017-03-01
Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor’s dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.
Flexible and Lightweight Fuel Cell with High Specific Power Density.
Ning, Fandi; He, Xudong; Shen, Yangbin; Jin, Hehua; Li, Qingwen; Li, Da; Li, Shuping; Zhan, Yulu; Du, Ying; Jiang, Jingjing; Yang, Hui; Zhou, Xiaochun
2017-06-27
Flexible devices have been attracting great attention recently due to their numerous advantages. But the energy densities of current energy sources are still not high enough to support flexible devices for a satisfactory length of time. Although proton exchange membrane fuel cells (PEMFCs) do have a high-energy density, traditional PEMFCs are usually too heavy, rigid, and bulky to be used in flexible devices. In this research, we successfully invented a light and flexible air-breathing PEMFC by using a new design of PEMFC and a flexible composite electrode. The flexible air-breathing PEMFC with 1 × 1 cm 2 working area can be as light as 0.065 g and as thin as 0.22 mm. This new PEMFC exhibits an amazing specific volume power density as high as 5190 W L -1 , which is much higher than traditional (air-breathing) PEMFCs. Also outstanding is that the flexible PEMFC retains 89.1% of its original performance after being bent 600 times, and it retains its original performance after being dropped five times from a height of 30 m. Moreover, the research has demonstrated that when stacked, the flexible PEMFCs are also useful in mobile applications such as mobile phones. Therefore, our research shows that PEMFCs can be made light, flexible, and suitable for applications in flexible devices. These innovative flexible PEMFCs may also notably advance the progress in the PEMFC field, because flexible PEMFCs can achieve high specific power density with small size, small volume, low weight, and much lower cost; they are also much easier to mass produce.
Radio-frequency flexible and stretchable electronics: the need, challenges and opportunities
NASA Astrophysics Data System (ADS)
Jung, Yei Hwan; Seo, Jung-Hun; Zhang, Huilong; Lee, Juhwan; Cho, Sang June; Chang, Tzu-Hsuan; Ma, Zhenqiang
2017-05-01
Successful integration of ultrathin flexible or stretchable systems with new applications, such as medical devices and biodegradable electronics, have intrigued many researchers and industries around the globe to seek materials and processes to create high-performance, non-invasive and cost-effective electronics to match those of state-of-the-art devices. Nevertheless, the crucial concept of transmitting data or power wirelessly for such unconventional devices has been difficult to realize due to limitations of radio-frequency (RF) electronics in individual components that form a wireless circuitry, such as antenna, transmission line, active devices, passive devices etc. To overcome such challenges, these components must be developed in a step-by-step manner, as each component faces a number of different challenges in ultrathin formats. Here, we report on materials and design considerations for fabricating flexible and stretchable electronics systems that operate in the microwave level. High-speed flexible active devices, including cost effective Si-based strained MOSFETs, GaAs-based HBTs and GaN-based HEMTs, performing at multi-gigahertz frequencies are presented. Furthermore, flexible or stretchable passive devices, including capacitors, inductors and transmission lines that are vital parts of a microwave circuitry are also demonstrated. We also present unique applications using the presented flexible or stretchable RF components, including wearable RF electronics and biodegradable RF electronics, which were impossible to achieve using conventional rigid, wafer-based technology. Further opportunities like implantable systems exist utilizing such ultrathin RF components, which are discussed in this report as well.
NASA Astrophysics Data System (ADS)
Gray, Bonnie L.
2012-04-01
Microfluidics is revolutionizing laboratory methods and biomedical devices, offering new capabilities and instrumentation in multiple areas such as DNA analysis, proteomics, enzymatic analysis, single cell analysis, immunology, point-of-care medicine, personalized medicine, drug delivery, and environmental toxin and pathogen detection. For many applications (e.g., wearable and implantable health monitors, drug delivery devices, and prosthetics) mechanically flexible polymer devices and systems that can conform to the body offer benefits that cannot be achieved using systems based on conventional rigid substrate materials. However, difficulties in implementing active devices and reliable packaging technologies have limited the success of flexible microfluidics. Employing highly compliant materials such as PDMS that are typically employed for prototyping, we review mechanically flexible polymer microfluidic technologies based on free-standing polymer substrates and novel electronic and microfluidic interconnection schemes. Central to these new technologies are hybrid microfabrication methods employing novel nanocomposite polymer materials and devices. We review microfabrication methods using these materials, along with demonstrations of example devices and packaging schemes that employ them. We review these recent developments and place them in the context of the fields of flexible microfluidics and conformable systems, and discuss cross-over applications to conventional rigid-substrate microfluidics.
Nakata, Shogo; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2017-03-24
Real-time daily healthcare monitoring may increase the chances of predicting and diagnosing diseases in their early stages which, currently, occurs most frequently during medical check-ups. Next-generation noninvasive healthcare devices, such as flexible multifunctional sensor sheets designed to be worn on skin, are considered to be highly suitable candidates for continuous real-time health monitoring. For healthcare applications, acquiring data on the chemical state of the body, alongside physical characteristics such as body temperature and activity, are extremely important for predicting and identifying potential health conditions. To record these data, in this study, we developed a wearable, flexible sweat chemical sensor sheet for pH measurement, consisting of an ion-sensitive field-effect transistor (ISFET) integrated with a flexible temperature sensor: we intend to use this device as the foundation of a fully integrated, wearable healthcare patch in the future. After characterizing the performance, mechanical flexibility, and stability of the sensor, real-time measurements of sweat pH and skin temperature are successfully conducted through skin contact. This flexible integrated device has the potential to be developed into a chemical sensor for sweat for applications in healthcare and sports.
Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.
Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming
2017-05-31
Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.
Flexible ferroelectric element based on van der Waals heteroepitaxy.
Jiang, Jie; Bitla, Yugandhar; Huang, Chun-Wei; Do, Thi Hien; Liu, Heng-Jui; Hsieh, Ying-Hui; Ma, Chun-Hao; Jang, Chi-Yuan; Lai, Yu-Hong; Chiu, Po-Wen; Wu, Wen-Wei; Chen, Yi-Chun; Zhou, Yi-Chun; Chu, Ying-Hao
2017-06-01
We present a promising technology for nonvolatile flexible electronic devices: A direct fabrication of epitaxial lead zirconium titanate (PZT) on flexible mica substrate via van der Waals epitaxy. These single-crystalline flexible ferroelectric PZT films not only retain their performance, reliability, and thermal stability comparable to those on rigid counterparts in tests of nonvolatile memory elements but also exhibit remarkable mechanical properties with robust operation in bent states (bending radii down to 2.5 mm) and cycling tests (1000 times). This study marks the technological advancement toward realizing much-awaited flexible yet single-crystalline nonvolatile electronic devices for the design and development of flexible, lightweight, and next-generation smart devices with potential applications in electronics, robotics, automotive, health care, industrial, and military systems.
Flexible ferroelectric element based on van der Waals heteroepitaxy
Jiang, Jie; Bitla, Yugandhar; Huang, Chun-Wei; Do, Thi Hien; Liu, Heng-Jui; Hsieh, Ying-Hui; Ma, Chun-Hao; Jang, Chi-Yuan; Lai, Yu-Hong; Chiu, Po-Wen; Wu, Wen-Wei; Chen, Yi-Chun; Zhou, Yi-Chun; Chu, Ying-Hao
2017-01-01
We present a promising technology for nonvolatile flexible electronic devices: A direct fabrication of epitaxial lead zirconium titanate (PZT) on flexible mica substrate via van der Waals epitaxy. These single-crystalline flexible ferroelectric PZT films not only retain their performance, reliability, and thermal stability comparable to those on rigid counterparts in tests of nonvolatile memory elements but also exhibit remarkable mechanical properties with robust operation in bent states (bending radii down to 2.5 mm) and cycling tests (1000 times). This study marks the technological advancement toward realizing much-awaited flexible yet single-crystalline nonvolatile electronic devices for the design and development of flexible, lightweight, and next-generation smart devices with potential applications in electronics, robotics, automotive, health care, industrial, and military systems. PMID:28630922
Chemically modified graphene based supercapacitors for flexible and miniature devices
NASA Astrophysics Data System (ADS)
Ghosh, Debasis; Kim, Sang Ouk
2015-09-01
Rapid progress in the portable and flexible electronic devises has stimulated supercapacitor research towards the design and fabrication of high performance flexible devices. Recent research efforts for flexible supercapacitor electrode materials are highly focusing on graphene and chemically modified graphene owing to the unique properties, including large surface area, high electrical and thermal conductivity, excellent mechanical flexibility, and outstanding chemical stability. This invited review article highlights current status of the flexible electrode material research based on chemically modified graphene for supercapacitor application. A variety of electrode architectures prepared from chemically modified graphene are summarized in terms of their structural dimensions. Novel prototypes for the supercapacitor aiming at flexible miniature devices, i.e. microsupercapacitor with high energy and power density are highlighted. Future challenges relevant to graphene-based flexible supercapacitors are also suggested. [Figure not available: see fulltext.
Peng, Lele; Zhu, Yue; Li, Hongsen; Yu, Guihua
2016-12-01
State-of-the-art energy storage devices are capable of delivering reasonably high energy density (lithium ion batteries) or high power density (supercapacitors). There is an increasing need for these power sources with not only superior electrochemical performance, but also exceptional flexibility. Graphene has come on to the scene and advancements are being made in integration of various electrochemically active compounds onto graphene or its derivatives so as to utilize their flexibility. Many innovative synthesis techniques have led to novel graphene-based hybrid two-dimensional nanostructures. Here, the chemically integrated inorganic-graphene hybrid two-dimensional materials and their applications for energy storage devices are examined. First, the synthesis and characterization of different kinds of inorganic-graphene hybrid nanostructures are summarized, and then the most relevant applications of inorganic-graphene hybrid materials in flexible energy storage devices are reviewed. The general design rules of using graphene-based hybrid 2D materials for energy storage devices and their current limitations and future potential to advance energy storage technologies are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible, highly efficient all-polymer solar cells
Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.
2015-01-01
All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices. PMID:26449658
NASA Astrophysics Data System (ADS)
Kang, Ning
Nanomaterials have shown increasing applications in the design and fabrication of functional devices such as energy storage devices and sensor devices. A key challenge is the ability to harness the nanostructures in terms of size, shape, composition and structure so that the unique nanoscale functional properties can be exploited. This dissertation describes our findings in design, synthesis, and characterization of nanoparticles towards applications in two important fronts. The first involves the investigation of nanoalloy catalysts and functional nanoparticles for energy storage devices, including Li-air and Li-ion batteries, aiming at increasing the capacity and cycle performance. Part of this effort focuses on design of bifunctional nanocatalysts through alloying noble metal with non-noble transition metal to improve the ORR and OER activity of Li-air batteries. By manipulating the composition and alloying structure of the catalysts, synergetic effect has been demonstrated, which is substantiated by both experimental results and theoretical calculation for the charge/discharge process. The other part of the effort focuses on modification of Si nanoparticles towards high-capacity anode materials. The modification involved dopant elements, carbon coating, and graphene composite formation to manipulate the ability of the nanoparticles in accommodating the volume expansion. The second part focuses on the design, preparation and characterization of metal nanoparticles and nanocomposite materials for the application in flexible sensing devices. The investigation focuses on fabrication of a novel class of nanoparticle-nanofibrous membranes consisting of gold nanoparticles embedded in a multi-layered fibrous membrane as a tunable interfacial scaffold for flexible sweat sensors. Sensing responses to different ionic species in aqueous solutions and relative humidity changes in the environment were demonstrated, showing promising potential as flexible sensing devices for applications in wearable sweat sensors. Moreover, printing technique was also applied in the fabrication of conductive patterns as the sensing electrodes. The results shed new lights on the understanding of the structural tuning of the nanomaterials for the ultimate applications in advanced energy storage devices and chemical sensor devices.
Yuen, Po Ki; DeRosa, Michael E
2011-10-07
This article presents a simple, low-cost method of fabrication and the applications of flexible polystyrene microfluidic devices with three-dimensional (3D) interconnected microporous walls based on treatment using a solvent/non-solvent mixture at room temperature. The complete fabrication process from device design concept to working device can be completed in less than an hour in a regular laboratory setting, without the need for expensive equipment. Microfluidic devices were used to demonstrate gas generation and absorption reactions by acidifying water with carbon dioxide (CO(2)) gas. By selectively treating the microporous structures with oxygen plasma, acidification of water by acetic acid (distilled white vinegar) perfusion was also demonstrated with the same device design.
Flexible Organic Electronics in Biology: Materials and Devices.
Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng
2015-12-09
At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Xue-yan; Bao, Jun; Li, Lu; Cui, Shao-li; Du, Xiao-qing
2017-10-01
The flexible electrodes based on CVD-graphene/ AgNWs hybrid transparent films were prepared by the vacuum filtration and substrate transferring method, and several performances of the films including sheet resistance, optical transmittance, work function, surface roughness and flexibility were further researched. The results suggested that the hybrid films which were obtained by vacuum filtration and substrate transferring method have the advantages such as uniform distribution of AgNWs, high work function, low roughness and small sheet resistance and good flexibility. The sheet resistance of the hybrid films would decrease with the increasing of the concentration of AgNWs, while the surface roughness would increase and the optical transmittance at 550nm of the films decrease linearly. Organic light emitting devices (OLED) devices based on CVD-graphene/AgNWs hybrid films were fabricated, and characteristics of voltage-current density, luminance, current efficiency were tested. It's found that CVD-graphene/AgNWs hybrid films were better than CVD-graphene films when they were used as anodes for organic light emitting devices. It can be seen that CVD-graphene/AgNWs hybrid transparent films have great potential in applications of flexible electrodes, and are of great significance for promoting the development of organic light emitting devices.
Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications
NASA Astrophysics Data System (ADS)
Sahoo, Gopinath; Ghosh, Subrata; Polaki, S. R.; Mathews, Tom; Kamruddin, M.
2017-10-01
Vertical graphene nanosheets (VGN) are the material of choice for application in next-generation electronic devices. The growing demand for VGN-based flexible devices for the electronics industry brings in restriction on VGN growth temperature. The difficulty associated with the direct growth of VGN on flexible substrates can be overcome by adopting an effective strategy of transferring the well-grown VGN onto arbitrary flexible substrates through a soft chemistry route. In the present study, we report an inexpensive and scalable technique for the polymer-free transfer of VGN onto arbitrary substrates without disrupting its morphology, structure, and properties. After transfer, the morphology, chemical structure, and electrical properties are analyzed by scanning electron microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and four-probe resistive methods, respectively. The wetting properties are studied from the water contact angle measurements. The observed results indicate the retention of morphology, surface chemistry, structure, and electronic properties. Furthermore, the storage capacity of the transferred VGN-based binder-free and current collector-free flexible symmetric supercapacitor device is studied. A very low sheet resistance of 670 Ω/□ and excellent supercapacitance of 158 μF cm-2 with 86% retention after 10 000 cycles show the prospect of the damage-free VGN transfer approach for the fabrication of flexible nanoelectronic devices.
Three-dimensional ionic conduction in the strained electrolytes of solid oxide fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yupei; Zou, Minda; Lv, Weiqiang
2016-05-07
Flexible power sources including fuel cells and batteries are the key to realizing flexible electronic devices with pronounced foldability. To understand the bending effects in these devices, theoretical analysis on three-dimensional (3-D) lattice bending is necessary. In this report, we derive a 3-D analytical model to analyze the effects of electrolyte crystal bending on ionic conductivity in flexible solid-state batteries/fuel cells. By employing solid oxide fuel cells as a materials' platform, the intrinsic parameters of bent electrolyte materials, including lattice constant, Young's modulus, and Poisson ratio, are evaluated. Our work facilitates the rational design of highly efficient flexible electrolytes formore » high-performance flexible device applications.« less
Li, Wei; Torres, David; Díaz, Ramón; Wang, Zhengjun; Wu, Changsheng; Wang, Chuan; Lin Wang, Zhong; Sepúlveda, Nelson
2017-05-16
Ferroelectret nanogenerators were recently introduced as a promising alternative technology for harvesting kinetic energy. Here we report the device's intrinsic properties that allow for the bidirectional conversion of energy between electrical and mechanical domains; thus extending its potential use in wearable electronics beyond the power generation realm. This electromechanical coupling, combined with their flexibility and thin film-like form, bestows dual-functional transducing capabilities to the device that are used in this work to demonstrate its use as a thin, wearable and self-powered loudspeaker or microphone patch. To determine the device's performance and applicability, sound pressure level is characterized in both space and frequency domains for three different configurations. The confirmed device's high performance is further validated through its integration in three different systems: a music-playing flag, a sound recording film and a flexible microphone for security applications.
NASA Astrophysics Data System (ADS)
Li, Wei; Torres, David; Díaz, Ramón; Wang, Zhengjun; Wu, Changsheng; Wang, Chuan; Lin Wang, Zhong; Sepúlveda, Nelson
2017-05-01
Ferroelectret nanogenerators were recently introduced as a promising alternative technology for harvesting kinetic energy. Here we report the device's intrinsic properties that allow for the bidirectional conversion of energy between electrical and mechanical domains; thus extending its potential use in wearable electronics beyond the power generation realm. This electromechanical coupling, combined with their flexibility and thin film-like form, bestows dual-functional transducing capabilities to the device that are used in this work to demonstrate its use as a thin, wearable and self-powered loudspeaker or microphone patch. To determine the device's performance and applicability, sound pressure level is characterized in both space and frequency domains for three different configurations. The confirmed device's high performance is further validated through its integration in three different systems: a music-playing flag, a sound recording film and a flexible microphone for security applications.
Li, Wei; Torres, David; Díaz, Ramón; Wang, Zhengjun; Wu, Changsheng; Wang, Chuan; Lin Wang, Zhong; Sepúlveda, Nelson
2017-01-01
Ferroelectret nanogenerators were recently introduced as a promising alternative technology for harvesting kinetic energy. Here we report the device's intrinsic properties that allow for the bidirectional conversion of energy between electrical and mechanical domains; thus extending its potential use in wearable electronics beyond the power generation realm. This electromechanical coupling, combined with their flexibility and thin film-like form, bestows dual-functional transducing capabilities to the device that are used in this work to demonstrate its use as a thin, wearable and self-powered loudspeaker or microphone patch. To determine the device's performance and applicability, sound pressure level is characterized in both space and frequency domains for three different configurations. The confirmed device's high performance is further validated through its integration in three different systems: a music-playing flag, a sound recording film and a flexible microphone for security applications. PMID:28508862
Recent Advances of Flexible Data Storage Devices Based on Organic Nanoscaled Materials.
Zhou, Li; Mao, Jingyu; Ren, Yi; Han, Su-Ting; Roy, Vellaisamy A L; Zhou, Ye
2018-03-01
Following the trend of miniaturization as per Moore's law, and facing the strong demand of next-generation electronic devices that should be highly portable, wearable, transplantable, and lightweight, growing endeavors have been made to develop novel flexible data storage devices possessing nonvolatile ability, high-density storage, high-switching speed, and reliable endurance properties. Nonvolatile organic data storage devices including memory devices on the basis of floating-gate, charge-trapping, and ferroelectric architectures, as well as organic resistive memory are believed to be favorable candidates for future data storage applications. In this Review, typical information on device structure, memory characteristics, device operation mechanisms, mechanical properties, challenges, and recent progress of the above categories of flexible data storage devices based on organic nanoscaled materials is summarized. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transparent resistive switching memory using aluminum oxide on a flexible substrate
NASA Astrophysics Data System (ADS)
Yeom, Seung-Won; Shin, Sang-Chul; Kim, Tan-Young; Ha, Hyeon Jun; Lee, Yun-Hi; Shim, Jae Won; Ju, Byeong-Kwon
2016-02-01
Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.
Highly Flexible Dye-sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth
Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Lee, Dong Y.
2014-01-01
Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices. PMID:24957920
Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth.
Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y
2014-06-24
Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices.
Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability.
Wu, Hao; Huang, YongAn; Xu, Feng; Duan, Yongqing; Yin, Zhouping
2016-12-01
The rapid advancements of wearable electronics have caused a paradigm shift in consumer electronics, and the emerging development of stretchable electronics opens a new spectrum of applications for electronic systems. Playing a critical role as the power sources for independent electronic systems, energy harvesters with high flexibility or stretchability have been the focus of research efforts over the past decade. A large number of the flexible energy harvesters developed can only operate at very low strain level (≈0.1%), and their limited flexibility impedes their application in wearable or stretchable electronics. Here, the development of highly flexible and stretchable (stretchability >15% strain) energy harvesters is reviewed with emphasis on strategies of materials synthesis, device fabrication, and integration schemes for enhanced flexibility and stretchability. Due to their particular potential applications in wearable and stretchable electronics, energy-harvesting devices based on piezoelectricity, triboelectricity, thermoelectricity, and dielectric elastomers have been largely developed and the progress is summarized. The challenges and opportunities of assembly and integration of energy harvesters into stretchable systems are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development and applications of transparent conductive nanocellulose paper
NASA Astrophysics Data System (ADS)
Li, Shaohui; Lee, Pooi See
2017-12-01
Increasing attention has been paid to the next generation of 'green' electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential.
Aikio, Sanna; Hiltunen, Jussi; Hiitola-Keinänen, Johanna; Hiltunen, Marianne; Kontturi, Ville; Siitonen, Samuli; Puustinen, Jarkko; Karioja, Pentti
2016-02-08
Flexible photonic integrated circuit technology is an emerging field expanding the usage possibilities of photonics, particularly in sensor applications, by enabling the realization of conformable devices and introduction of new alternative production methods. Here, we demonstrate that disposable polymeric photonic integrated circuit devices can be produced in lengths of hundreds of meters by ultra-high volume roll-to-roll methods on a flexible carrier. Attenuation properties of hundreds of individual devices were measured confirming that waveguides with good and repeatable performance were fabricated. We also demonstrate the applicability of the devices for the evanescent wave sensing of ambient refractive index. The production of integrated photonic devices using ultra-high volume fabrication, in a similar manner as paper is produced, may inherently expand methods of manufacturing low-cost disposable photonic integrated circuits for a wide range of sensor applications.
Producing smart sensing films by means of organic field effect transistors.
Manunza, Ileana; Orgiu, Emanuele; Caboni, Alessandra; Barbaro, Massimo; Bonfiglio, Annalisa
2006-01-01
We have fabricated the first example of totally flexible field effect device for chemical detection based on an organic field effect transistor (OFET) made by pentacene films grown on flexible plastic structures. The ion sensitivity is achieved by employing a thin Mylar foil as gate dielectric. A sensitivity of the device to the pH of the electrolyte solution has been observed A similar structure can be used also for detecting mechanical deformations on flexible surfaces. Thanks to the flexibility of the substrate and the low cost of the employed technology, these devices open the way for the production of flexible chemical and strain gauge sensors that can be employed in a variety of innovative applications such as wearable electronics, e-textiles, new man-machine interfaces.
Long-Lived Flexible Displays Employing Efficient and Stable Inverted Organic Light-Emitting Diodes.
Fukagawa, Hirohiko; Sasaki, Tsubasa; Tsuzuki, Toshimitsu; Nakajima, Yoshiki; Takei, Tatsuya; Motomura, Genichi; Hasegawa, Munehiro; Morii, Katsuyuki; Shimizu, Takahisa
2018-05-29
Although organic light-emitting diodes (OLEDs) are promising for use in applications such as in flexible displays, reports of long-lived flexible OLED-based devices are limited due to the poor environmental stability of OLEDs. Flexible substrates such as plastic allow ambient oxygen and moisture to permeate into devices, which degrades the alkali metals used for the electron-injection layer in conventional OLEDs (cOLEDs). Here, the fabrication of a long-lived flexible display is reported using efficient and stable inverted OLEDs (iOLEDs), in which electrons can be effectively injected without the use of alkali metals. The flexible display employing iOLEDs can emit light for over 1 year with simplified encapsulation, whereas a flexible display employing cOLEDs exhibits almost no luminescence after only 21 d with the same encapsulation. These results demonstrate the great potential of iOLEDs to replace cOLEDs employing alkali metals for use in a wide variety of flexible organic optoelectronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe
Majewski, S.; Kross, B.J.; Zorn, C.J.; Majewski, L.A.
1996-10-22
An optimized examination system and method based on the Reverse Geometry X-Ray{trademark} (RGX{trademark}) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs.
Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe
Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.
1996-01-01
An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.
Screen printed passive components for flexible power electronics
NASA Astrophysics Data System (ADS)
Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.
2015-10-01
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.
Liu, Yuqing; Weng, Bo; Razal, Joselito M; Xu, Qun; Zhao, Chen; Hou, Yuyang; Seyedin, Shayan; Jalili, Rouhollah; Wallace, Gordon G; Chen, Jun
2015-11-20
Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm(-2) was achieved at a scan rate of 10 mV s(-1) using the composite electrode with a high mass loading (8.49 mg cm(-2)), indicating the potential to be used in practical applications. To demonstrate this applicability, a roll-up supercapacitor device was constructed, which illustrated the operation of a green LED light for 20 seconds when fully charged.
Screen printed passive components for flexible power electronics
Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.
2015-01-01
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application. PMID:26514331
NASA Astrophysics Data System (ADS)
Liu, Yuqing; Weng, Bo; Razal, Joselito M.; Xu, Qun; Zhao, Chen; Hou, Yuyang; Seyedin, Shayan; Jalili, Rouhollah; Wallace, Gordon G.; Chen, Jun
2015-11-01
Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm-2 was achieved at a scan rate of 10 mV s-1 using the composite electrode with a high mass loading (8.49 mg cm-2), indicating the potential to be used in practical applications. To demonstrate this applicability, a roll-up supercapacitor device was constructed, which illustrated the operation of a green LED light for 20 seconds when fully charged.
Screen printed passive components for flexible power electronics.
Ostfeld, Aminy E; Deckman, Igal; Gaikwad, Abhinav M; Lochner, Claire M; Arias, Ana C
2015-10-30
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components-inductors, capacitors, and resistors-perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.
Instrument Remote Control Application Framework
NASA Technical Reports Server (NTRS)
Ames, Troy; Hostetter, Carl F.
2006-01-01
The Instrument Remote Control (IRC) architecture is a flexible, platform-independent application framework that is well suited for the control and monitoring of remote devices and sensors. IRC enables significant savings in development costs by utilizing extensible Markup Language (XML) descriptions to configure the framework for a specific application. The Instrument Markup Language (IML) is used to describe the commands used by an instrument, the data streams produced, the rules for formatting commands and parsing the data, and the method of communication. Often no custom code is needed to communicate with a new instrument or device. An IRC instance can advertise and publish a description about a device or subscribe to another device's description on a network. This simple capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture for monitoring and control of complex instruments in diverse environments.
NASA Astrophysics Data System (ADS)
Ge, Jun; Cheng, Guanghui; Chen, Liwei
2011-08-01
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.
Ge, Jun; Cheng, Guanghui; Chen, Liwei
2011-08-01
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm(-2) and 59 wt% PANI gives a specific capacitance of 55.0 F g(-1) at a current density of 2.6 A g(-1), showing its possibility for transparent and flexible energy storage. This journal is © The Royal Society of Chemistry 2011
Fabrication of Circuits on Flexible Substrates Using Conductive SU-8 for Sensing Applications
Gerardo, Carlos D.; Cretu, Edmond; Rohling, Robert
2017-01-01
This article describes a new low-cost rapid microfabrication technology for high-density interconnects and passive devices on flexible substrates for sensing applications. Silver nanoparticles with an average size of 80 nm were used to create a conductive SU-8 mixture with a concentration of wt 25%. The patterned structures after hard baking have a sheet resistance of 11.17 Ω/☐. This conductive SU-8 was used to pattern planar inductors, capacitors and interconnection lines on flexible Kapton film. The conductive SU-8 structures were used as a seed layer for a subsequent electroplating process to increase the conductivity of the devices. Examples of inductors, resistor-capacitor (RC) and inductor-capacitor (LC) circuits, interconnection lines and a near-field communication (NFC) antenna are presented as a demonstration. As an example of high-resolution miniaturization, we fabricated microinductors having line widths of 5 μm. Mechanical bending tests were successful down to a 5 mm radius. To the best of the authors’ knowledge, this is the first report of conductive SU-8 used to fabricate such planar devices and the first on flexible substrates. This is a proof of concept that this fabrication approach can be used as an alternative for microfabrication of planar passive devices on flexible substrates. PMID:28629134
Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection
NASA Astrophysics Data System (ADS)
Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; di, Chong-An; Zhu, Daoben
2015-03-01
The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa-1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications.
Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection
Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; Di, Chong-an; Zhu, Daoben
2015-01-01
The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa−1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications. PMID:25872157
Integration of Metal Oxide Nanowires in Flexible Gas Sensing Devices
Comini, Elisabetta
2013-01-01
Metal oxide nanowires are very promising active materials for different applications, especially in the field of gas sensors. Advances in fabrication technologies now allow the preparation of nanowires on flexible substrates, expanding the potential market of the resulting sensors. The critical steps for the large-scale preparation of reliable sensing devices are the elimination of high temperatures processes and the stretchability of the entire final device, including the active material. Direct growth on flexible substrates and post-growth procedures have been successfully used for the preparation of gas sensors. The paper will summarize the procedures used for the preparation of flexible and wearable gas sensors prototypes with an overlook of the challenges and the future perspectives concerning this field. PMID:23955436
Development and applications of transparent conductive nanocellulose paper
Li, Shaohui; Lee, Pooi See
2017-01-01
Abstract Increasing attention has been paid to the next generation of ‘green’ electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential. PMID:28970870
Flexible single-crystal silicon nanomembrane photonic crystal cavity.
Xu, Xiaochuan; Subbaraman, Harish; Chakravarty, Swapnajit; Hosseini, Amir; Covey, John; Yu, Yalin; Kwong, David; Zhang, Yang; Lai, Wei-Cheng; Zou, Yi; Lu, Nanshu; Chen, Ray T
2014-12-23
Flexible inorganic electronic devices promise numerous applications, especially in fields that could not be covered satisfactorily by conventional rigid devices. Benefits on a similar scale are also foreseeable for silicon photonic components. However, the difficulty in transferring intricate silicon photonic devices has deterred widespread development. In this paper, we demonstrate a flexible single-crystal silicon nanomembrane photonic crystal microcavity through a bonding and substrate removal approach. The transferred cavity shows a quality factor of 2.2×10(4) and could be bent to a curvature of 5 mm radius without deteriorating the performance compared to its counterparts on rigid substrates. A thorough characterization of the device reveals that the resonant wavelength is a linear function of the bending-induced strain. The device also shows a curvature-independent sensitivity to the ambient index variation.
Shir, Daniel; Ballard, Zachary S.; Ozcan, Aydogan
2016-01-01
Mechanical flexibility and the advent of scalable, low-cost, and high-throughput fabrication techniques have enabled numerous potential applications for plasmonic sensors. Sensitive and sophisticated biochemical measurements can now be performed through the use of flexible plasmonic sensors integrated into existing medical and industrial devices or sample collection units. More robust sensing schemes and practical techniques must be further investigated to fully realize the potentials of flexible plasmonics as a framework for designing low-cost, embedded and integrated sensors for medical, environmental, and industrial applications. PMID:27547023
Jung, Seungon; Lee, Junghyun; Seo, Jihyung; Kim, Ungsoo; Choi, Yunseong; Park, Hyesung
2018-02-14
An annealing-free process is considered as a technological advancement for the development of flexible (or wearable) organic electronic devices, which can prevent the distortion of substrates and damage to the active components of the device and simplify the overall fabrication process to increase the industrial applications. Owing to its outstanding electrical, optical, and mechanical properties, graphene is seen as a promising material that could act as a transparent conductive electrode for flexible optoelectronic devices. Owing to their high transparency and electron mobility, zinc oxide nanoparticles (ZnO-NP) are attractive and promising for their application as charge transporting materials for low-temperature processes in organic solar cells (OSCs), particularly because most charge transporting materials require annealing treatments at elevated temperatures. In this study, graphene/annealing-free ZnO-NP hybrid materials were developed for inverted OSC by successfully integrating ZnO-NP on the hydrophobic surface of graphene, thus aiming to enhance the applicability of graphene as a transparent electrode in flexible OSC systems. Chemical, optical, electrical, and morphological analyses of ZnO-NPs showed that the annealing-free process generates similar results to those provided by the conventional annealing process. The approach was effectively applied to graphene-based inverted OSCs with notable power conversion efficiencies of 8.16% and 7.41% on the solid and flexible substrates, respectively, which promises the great feasibility of graphene for emerging optoelectronic device applications.
Experimental study of a flexible and environmentally stable electroadhesive device
NASA Astrophysics Data System (ADS)
Guo, J.; Bamber, T.; Singh, J.; Manby, D.; Bingham, P. A.; Justham, L.; Petzing, J.; Penders, J.; Jackson, M.
2017-12-01
Electroadhesion is a promising adhesion mechanism for robotics and material handling applications due to several distinctive advantages it has over existing technologies. These advantages include enhanced adaptability, gentle/flexible handling, reduced complexity, and ultra-low energy consumption. Unstable electroadhesive forces, however, can arise in ambient environments. Electroadhesive devices that can produce stable forces in changing environments are thus desirable. In this study, a flexible and environmentally stable electroadhesive device was designed and manufactured by conformally coating a layer of barium titanate dielectric on a chemically etched thin copper laminate. The results, obtained from an advanced electroadhesive "normal force" testing platform, show that only a relative difference of 5.94% in the normal force direction was observed. This was achieved when the relative humidity changed from 25% to 53%, temperature from 13.7 °C to 32.8 °C, and atmospheric pressure from 999 hPa to 1016.9 hPa. This environmentally stable electroadhesive device may promote the application of the electroadhesion technology.
NASA Astrophysics Data System (ADS)
El-Kady, Maher F.; Kaner, Richard B.
2013-02-01
The rapid development of miniaturized electronic devices has increased the demand for compact on-chip energy storage. Microscale supercapacitors have great potential to complement or replace batteries and electrolytic capacitors in a variety of applications. However, conventional micro-fabrication techniques have proven to be cumbersome in building cost-effective micro-devices, thus limiting their widespread application. Here we demonstrate a scalable fabrication of graphene micro-supercapacitors over large areas by direct laser writing on graphite oxide films using a standard LightScribe DVD burner. More than 100 micro-supercapacitors can be produced on a single disc in 30 min or less. The devices are built on flexible substrates for flexible electronics and on-chip uses that can be integrated with MEMS or CMOS in a single chip. Remarkably, miniaturizing the devices to the microscale results in enhanced charge-storage capacity and rate capability. These micro-supercapacitors demonstrate a power density of ~200 W cm-3, which is among the highest values achieved for any supercapacitor.
NASA Astrophysics Data System (ADS)
Alomairy, Sultan
Organic photovoltaic (OPV) devices have been developed extensively and optimised due to the use of nanomaterials in their construction. More recently, the demand for such devices to be flexible and mechanically robust has been a major area of research. Presently, Indium Tin Oxide (ITO) is the material that is used almost exclusively for transparent electrode. However, it has several drawbacks such as brittleness, high refractive index and high processing temperature. Furthermore, the price of ITO has been highly volatile due to scarcity of indium resources and the increased consumption of the material. Therefore, cheap, flexible and solution-processed transparent conductors are required for emerging optoelectronic devices with flexible construction which can be promising for wearable or environmentally adaptable devices purposes such as flexible solar cells and displays. Therefore, over the past decade an alternative material has been sought intensively, particularly in the need for producing large area flexible transparent electrodes. Many materials have been investigated but most investigations have focused on carbon nanotube (CNT), graphene flakes and metallic nanowires. Silver nanowires (Ag NWs) networks have been proven to show a high electrical conductivity with high optical transmittance. This special characteristic is desirable in transparent conductive electrodes in optoelectronic applications such as solar cells, light emitting diodes, and touch screen. On the other hand, Polymeric substrates that act as a non-brittle scaffold as well as protective packaging of the OPV are an essential element for such an “All-plastic” device. However, for such applications where the coating should be relatively hard a bottleneck to fabricating large area homogeneous films is associated with the formation of cracks as a result of local mismatches in mechanical properties during film formation. In this work, the fabrication and characterization of flexible transparent electrodes of Ag NWs on flexible substrates by spray deposition technique have been described. Furthermore, a way to enhance the electrical and mechanical properties of the Ag NWs transparent electrodes by incorporating a low density ensemble of graphene on top of the metal electrode networks using the Langmuir-Schafer has been achieved. Interestingly, the electrical conductivity in these hybrid electrodes is stable over relatively large strains during mechanical agitation indicating that such electrodes may have important application in future applications. Finally, producing crack-free monolayer latex over large area has been fabricated and characterised. Therefore, the polymer latex thin film has promising applications as purposes of hard coatings.
Clear Castable Polyurethane Elastomer for Fabrication of Microfluidic Devices
Domansky, Karel; Leslie, Daniel C.; McKinney, James; Fraser, Jacob P.; Sliz, Josiah D.; Hamkins-Indik, Tiama; Hamilton, Geraldine A.; Bahinski, Anthony; Ingber, Donald E.
2013-01-01
Polydimethylsiloxane (PDMS) has numerous desirable properties for fabricating microfluidic devices, including optical transparency, flexibility, biocompatibility, and fabrication by casting; however, partitioning of small hydrophobic molecules into the bulk of PDMS hinders industrial acceptance of PDMS microfluidic devices for chemical processing and drug development applications. Here we describe an attractive alternative material that is similar to PDMS in terms of optical transparency, flexibility and castability, but that is also resistant to absorption of small hydrophobic molecules. PMID:23954953
Direct writing of half-meter long CNT based fiber for flexible electronics.
Huang, Sihan; Zhao, Chunsong; Pan, Wei; Cui, Yi; Wu, Hui
2015-03-11
Rapid construction of flexible circuits has attracted increasing attention according to its important applications in future smart electronic devices. Herein, we introduce a convenient and efficient "writing" approach to fabricate and assemble ultralong functional fibers as fundamental building blocks for flexible electronic devices. We demonstrated that, by a simple hand-writing process, carbon nanotubes (CNTs) can be aligned inside a continuous and uniform polymer fiber with length of more than 50 cm and diameters ranging from 300 nm to several micrometers. The as-prepared continuous fibers exhibit high electrical conductivity as well as superior mechanical flexibility (no obvious conductance increase after 1000 bending cycles to 4 mm diameter). Such functional fibers can be easily configured into designed patterns with high precision according to the easy "writing" process. The easy construction and assembly of functional fiber shown here holds potential for convenient and scalable fabrication of flexible circuits in future smart devices like wearable electronics and three-dimensional (3D) electronic devices.
Flexible substrate-based devices for point-of-care diagnostics
Wang, ShuQi; Chinnasamy, Thiruppathiraja; Lifson, Mark; Inci, Fatih; Demirci, Utkan
2016-01-01
Point-of-care (POC) diagnostics play an important role in delivering healthcare, particularly for clinical management and disease surveillance in both developed and developing countries. Currently, the majority of POC diagnostics utilize paper substrates owing to their affordability, disposability, and mass production capability. Recently, flexible polymer substrates have been investigated due to their enhanced physicochemical properties, potential to be integrated into wearable devices with wireless communications for personalized health monitoring, and ability to be customized for POC diagnostics. Here, we focus on the latest advances in developing flexible substrate-based diagnostic devices, including paper and polymers, and their clinical applications at the POC. PMID:27344425
Flexible Substrate-Based Devices for Point-of-Care Diagnostics.
Wang, ShuQi; Chinnasamy, Thiruppathiraja; Lifson, Mark A; Inci, Fatih; Demirci, Utkan
2016-11-01
Point-of-care (POC) diagnostics play an important role in delivering healthcare, particularly for clinical management and disease surveillance in both developed and developing countries. Currently, the majority of POC diagnostics utilize paper substrates owing to affordability, disposability, and mass production capability. Recently, flexible polymer substrates have been investigated due to their enhanced physicochemical properties, potential to be integrated into wearable devices with wireless communications for personalized health monitoring, and ability to be customized for POC diagnostics. Here, we focus on the latest advances in developing flexible substrate-based diagnostic devices, including paper and polymers, and their clinical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Watkins, James
2013-03-01
Roll-to-roll (R2R) technologies provide routes for continuous production of flexible, nanostructured materials and devices with high throughput and low cost. We employ additive-driven self-assembly to produce well-ordered polymer/nanoparticle hybrid materials that can serve as active device layers, we use highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index, and we employ R2R nanoimprint lithography for device scale patterning. Specific examples include the fabrication of flexible floating gate memory and large area films for optical/EM management. Our newly constructed R2R processing facility includes a custom designed, precision R2R UV-assisted nanoimprint lithography (NIL) system and hybrid nanostructured materials coaters.
NASA Astrophysics Data System (ADS)
Moon, Hong Chul; Lodge, Timothy P.; Frisbie, C. Daniel
2014-03-01
We have expanded the functionality of ion gels and successfully demonstrated low voltage, flexible electrochemiluminescent (ECL) devices using patterned ECL gels. An ECL device composed of only an emissive gel and two electrodes was fabricated on an ITO-coated substrate by solution casting the ECL gel and brush-painting the top silver electrode. The device turned on at an AC voltage as low as 2.6 V (-1.3 V ~ +1.3 V) and showed a relatively rapid response (sub-ms). Also, we varied the mechanical properties of the ECL gel simply by substituting polystyrene-block-poly(methyl methacrylate)-block-polystyrene (SMS) with commercially available poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-co-HFP)), enabling the fabrication of flexible ECL devices on any target substrate by the ``cut-and-stick'' strategy. This simple, rubbery ECL gel should be attractive for flexible electronics applications such as displays on packaging.
Ultrathin (<1 μm) Substrate-Free Flexible Photodetector on Quantum Dot-Nanocellulose Paper
Wu, Jingda; Lin, Lih Y.
2017-01-01
Conventional approaches to flexible optoelectronic devices typically require depositing the active materials on external substrates. This is mostly due to the weak bonding between individual molecules or nanocrystals in the active materials, which prevents sustaining a freestanding thin film. Herein we demonstrate an ultrathin freestanding ZnO quantum dot (QD) active layer with nanocellulose structuring, and its corresponding device fabrication method to achieve substrate-free flexible optoelectronic devices. The ultrathin ZnO QD-nanocellulose composite is obtained by hydrogel transfer printing and solvent-exchange processes to overcome the water capillary force which is detrimental to achieving freestanding thin films. We achieved an active nanocellulose paper with ~550 nm thickness, and >91% transparency in the visible wavelength range. The film retains the photoconductive and photoluminescent properties of ZnO QDs and is applied towards substrate-free Schottky photodetector applications. The device has an overall thickness of ~670 nm, which is the thinnest freestanding optoelectronic device to date, to the best of our knowledge, and functions as a self-powered visible-blind ultraviolet photodetector. This platform can be readily applied to other nano materials as well as other optoelectronic device applications. PMID:28266651
Flexible Lithium-Ion Batteries with High Areal Capacity Enabled by Smart Conductive Textiles.
Ha, Sung Hoon; Shin, Kyu Hang; Park, Hae Won; Lee, Yun Jung
2018-02-05
Increasing demand for flexible devices in various applications, such as smart watches, healthcare, and military applications, requires the development of flexible energy-storage devices, such as lithium-ion batteries (LIBs) with high flexibility and capacity. However, it is difficult to ensure high capacity and high flexibility simultaneously through conventional electrode preparation processes. Herein, smart conductive textiles are employed as current collectors for flexible LIBs owing to their inherent flexibility, fibrous network, rough surface for better adhesion, and electrical conductivity. Conductivity and flexibility are further enhanced by nanosizing lithium titanate oxide (LTO) and lithium iron phosphate (LFP) active materials, and hybridizing them with a flexible 2D graphene template. The resulting LTO/LFP full cells demonstrate high areal capacity and flexibility with tolerance to mechanical fatigue. The battery achieves a capacity of 1.2 mA h cm -2 while showing excellent flexibility. The cells demonstrate stable open circuit voltage retention under repeated flexing for 1000 times at a bending radius of 10 mm. The discharge capacity of the unflexed battery is retained in cells subjected to bending for 100 times at bending radii of 30, 20, and 10 mm, respectively, confirming that the suggested electrode configuration successfully prevents structural damage (delamination or cracking) upon repeated deformation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stretchable electronics for wearable and high-current applications
NASA Astrophysics Data System (ADS)
Hilbich, Daniel; Shannon, Lesley; Gray, Bonnie L.
2016-04-01
Advances in the development of novel materials and fabrication processes are resulting in an increased number of flexible and stretchable electronics applications. This evolving technology enables new devices that are not readily fabricated using traditional silicon processes, and has the potential to transform many industries, including personalized healthcare, consumer electronics, and communication. Fabrication of stretchable devices is typically achieved through the use of stretchable polymer-based conductors, or more rigid conductors, such as metals, with patterned geometries that can accommodate stretching. Although the application space for stretchable electronics is extensive, the practicality of these devices can be severely limited by power consumption and cost. Moreover, strict process flows can impede innovation that would otherwise enable new applications. In an effort to overcome these impediments, we present two modified approaches and applications based on a newly developed process for stretchable and flexible electronics fabrication. This includes the development of a metallization pattern stamping process allowing for 1) stretchable interconnects to be directly integrated with stretchable/wearable fabrics, and 2) a process variation enabling aligned multi-layer devices with integrated ferromagnetic nanocomposite polymer components enabling a fully-flexible electromagnetic microactuator for large-magnitude magnetic field generation. The wearable interconnects are measured, showing high conductivity, and can accommodate over 20% strain before experiencing conductive failure. The electromagnetic actuators have been fabricated and initial measurements show well-aligned, highly conductive, isolated metal layers. These two applications demonstrate the versatility of the newly developed process and suggest potential for its furthered use in stretchable electronics and MEMS applications.
NASA Astrophysics Data System (ADS)
Chung, Daehan; Gray, Bonnie L.
2017-11-01
We present a simple, fast, and inexpensive new printing-based fabrication process for flexible and wearable microfluidic channels and devices. Microfluidic devices are fabricated on textiles (fabric) for applications in clothing-based wearable microfluidic sensors and systems. The wearable and flexible microfluidic devices are comprised of water-insoluable screen-printable plastisol polymer. Sheets of paper are used as sacrificial substrates for multiple layers of polymer on the fabric’s surface. Microfluidic devices can be made within a short time using simple processes and inexpensive equipment that includes a laser cutter and a thermal laminator. The fabrication process is characterized to demonstrate control of microfluidic channel thickness and width. Film thickness smaller than 100 micrometers and lateral dimensions smaller than 150 micrometers are demonstrated. A flexible microfluidic mixer is also developed on fabric and successfully tested on both flat and curved surfaces at volumetric flow rates ranging from 5.5-46 ml min-1.
Flexible self-powered piezo-supercapacitor system for wearable electronics.
Gilshteyn, Evgenia P; Amanbaev, Daler; Silibin, Maxim V; Sysa, Artem; Kondrashov, Vladislav A; Anisimov, Anton S; Kallio, Tanja; Nasibulin, Albert G
2018-08-10
The integration of energy harvesting and energy storage in a single device both enables the conversion of ambient energy into electricity and provides a sustainable power source for various electronic devices and systems. On the other hand, mechanical flexibility, coupled with optical transparency of the energy storage devices, is required for many applications, ranging from self-powered rolled-up displays to wearable optoelectronic devices. We integrate a piezoelectric poly(vinylidene-trifluoroethylene) (P(VDF-TrFE)) film into a flexible supercapacitor system to harvest and store the energy. The asymmetric output characteristics of the piezoelectric P(VDF-TrFE) film under mechanical impacts results in effective charging of the supercapacitors. The integrated piezo-supercapacitor exhibits a specific capacitance of 50 F g -1 . The open-circuit voltage of the flexible and transparent supercapacitor reached 500 mV within 20 s during the mechanical action. Our hybridized energy harvesting and storage device can be further extended to provide a sustainable power source for various types of sensors integrated into wearable units.
Tian, Pengfei; McKendry, Jonathan J D; Gu, Erdan; Chen, Zhizhong; Sun, Yongjian; Zhang, Guoyi; Dawson, Martin D; Liu, Ran
2016-01-11
Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.
A Skin-attachable Flexible Piezoelectric Pulse Wave Energy Harvester
NASA Astrophysics Data System (ADS)
Yoon, Sunghyun; Cho, Young-Ho
2014-11-01
We present a flexible piezoelectric generator, capable to harvest energy from human arterial pulse wave on the human wrist. Special features and advantages of the flexible piezoelectric generator include the multi-layer device design with contact windows and the simple fabrication process for the higher flexibility with the better energy harvesting efficiency. We have demonstrated the design effectiveness and the process simplicity of our skin- attachable flexible piezoelectric pulse wave energy harvester, composed of the sensitive P(VDF-TrFE) piezoelectric layer on the flexible polyimide support layer with windows. We experimentally characterize and demonstrate the energy harvesting capability of 0.2~1.0μW in the Human heart rate range on the skin contact area of 3.71cm2. Additional physiological and/or vital signal monitoring devices can be fabricated and integrated on the skin attachable flexible generator, covered by an insulation layer; thus demonstrating the potentials and advantages of the present device for such applications to the flexible multi-functional selfpowered artificial skins, capable to detect physiological and/or vital signals on Human skin using the energy harvested from arterial pulse waves.
Oh, Gwangtaek; Kim, Jin-Soo; Jeon, Ji Hoon; Won, EunA; Son, Jong Wan; Lee, Duk Hyun; Kim, Cheol Kyeom; Jang, Jingon; Lee, Takhee; Park, Bae Ho
2015-07-28
High-quality channel layer is required for next-generation flexible electronic devices. Graphene is a good candidate due to its high carrier mobility and unique ambipolar transport characteristics but typically shows a low on/off ratio caused by gapless band structure. Popularly investigated organic semiconductors, such as pentacene, suffer from poor carrier mobility. Here, we propose a graphene/pentacene channel layer with high-k ion-gel gate dielectric. The graphene/pentacene device shows both high on/off ratio and carrier mobility as well as excellent mechanical flexibility. Most importantly, it reveals ambipolar behaviors and related negative differential resistance, which are controlled by external bias. Therefore, our graphene/pentacene barristor with ion-gel gate dielectric can offer various flexible device applications with high performances.
2008-12-01
TFTs ) arrays for high information content active matrix flexible displays for Army applications. For all flexible substrates a manufacturable...impermeable flexible substrate systems “display-ready” materials and handling protocols, (ii) high performance TFT devices and circuits fabricated...processes for integration with the flexible TFT arrays. Approaches and solution to address each of these major challenges are described in the
An overview of carbon materials for flexible electrochemical capacitors.
He, Yongmin; Chen, Wanjun; Gao, Caitian; Zhou, Jinyuan; Li, Xiaodong; Xie, Erqing
2013-10-07
Under the background of the quick development of lightweight, flexible, and wearable electronic devices in our society, a flexible and highly efficient energy management strategy is needed for their counterpart energy-storage systems. Among them, flexible electrochemical capacitors (ECs) have been considered as one of the most promising candidates because of their significant advantages in power and energy densities, and unique properties of being flexible, lightweight, low-cost, and environmentally friendly compared with current energy storage devices. In a common EC, carbon materials play an irreplaceable and principal role in its energy-storage performance. Up till now, most progress towards flexible ECs technologies has mostly benefited from the continuous development of carbon materials. As a result, in view of the dual remarkable highlights of ECs and carbon materials, a summary of recent research progress on carbon-based flexible EC electrode materials is presented in this review, including carbon fiber (CF, consisting of carbon microfiber-CMF and carbon nanofiber-CNF) networks, carbon nanotube (CNT) and graphene coatings, CNT and/or graphene papers (or films), and freestanding three-dimensional (3D) flexible carbon-based macroscopic architectures. Furthermore, some promising carbon materials for great potential applications in flexible ECs are introduced. Finally, the trends and challenges in the development of carbon-based electrode materials for flexible ECs and their smart applications are analyzed.
Nanowire–quantum-dot lasers on flexible membranes
NASA Astrophysics Data System (ADS)
Tatebayashi, Jun; Ota, Yasutomo; Ishida, Satomi; Nishioka, Masao; Iwamoto, Satoshi; Arakawa, Yasuhiko
2018-06-01
We demonstrate lasing in a single nanowire with quantum dots as an active medium embedded on poly(dimethylsiloxane) membranes towards application in nanowire-based flexible nanophotonic devices. Nanowire laser structures with 50 quantum dots are grown on patterned GaAs(111)B substrates and then transferred from the as-grown substrates on poly(dimethylsiloxane) transparent flexible organosilicon membranes, by means of spin-casting and curing processes. We observe lasing oscillation in the transferred single nanowire cavity with quantum dots at 1.425 eV with a threshold pump pulse fluence of ∼876 µJ/cm2, which enables the realization of high-performance multifunctional NW-based flexible photonic devices.
Graphene Inks with Cellulosic Dispersants: Development and Applications for Printed Electronics
NASA Astrophysics Data System (ADS)
Secor, Ethan Benjamin
Graphene offers promising opportunities for applications in printed and flexible electronic devices due to its high electrical and thermal conductivity, mechanical flexibility and strength, and chemical and environmental stability. However, scalable production and processing of graphene presents a critical technological challenge preventing the application of graphene for flexible electronic interconnects, electrochemical energy storage, and chemically robust electrical contacts. In this thesis, a promising and versatile platform for the production, patterning, and application of graphene inks is presented based on cellulosic dispersants. Graphene is produced from flake graphite using scalable liquid-phase exfoliation methods, using the polymers ethyl cellulose and nitrocellulose as multifunctional dispersing agents. These cellulose derivatives offer high colloidal stability and broadly tunable rheology for graphene dispersions, providing an effective and tunable platform for graphene ink development. Thermal or photonic annealing decomposes the polymer dispersant to yield high conductivity, flexible graphene patterns for various electronics applications. In particular, the chemical stability of graphene enables robust electrical contacts for ceramic, metallic, organic and electrolytic materials, validating the diverse applicability of graphene in printed electronics. Overall, the strategy for graphene ink design presented here offers a simple, efficient, and versatile method for integrating graphene in a wide range of printed devices and systems, providing both fundamental insight for nanomaterial ink development and realistic opportunities for practical applications.
Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J; Zhang, Yanliang
2016-09-12
Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm(2) with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varghese, Tony; Hollar, Courtney; Richardson, Joseph
Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstratemore » a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm 2 with 60°C temperature difference between the hot side and cold side. In conclusion, the highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.« less
Varghese, Tony; Hollar, Courtney; Richardson, Joseph; ...
2016-09-12
Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstratemore » a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm 2 with 60°C temperature difference between the hot side and cold side. In conclusion, the highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.« less
Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J.; Zhang, Yanliang
2016-01-01
Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm2 with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications. PMID:27615036
NASA Astrophysics Data System (ADS)
Huang, Jinhua; Lu, Yuehui; Wu, Wenxuan; Li, Jia; Zhang, Xianpeng; Zhu, Chaoting; Yang, Ye; Xu, Feng; Song, Weijie
2017-11-01
Various flexible transparent conducting electrodes (FTCEs) have been studied for promising applications in flexible optoelectronic devices, but there are still challenges in achieving higher transparency and conductivity, lower thickness, better mechanical flexibility, and lower preparation temperatures. In this work, we prepared a sub-40 nm Ag(9 nm)/ZnO(30 nm) FTCE at room temperature, where each layer played a relatively independent role in the tailoring of the optoelectronic properties. A continuous and smooth 9-nm Ag thin film was grown on amino-functionalized glass and polyethylene terephthalate (PET) substrates to provide good conductivity. A 30-nm ZnO cladding, as an antireflection layer, further improved the transmittance while hardly affecting the conductivity. The room-temperature grown sub-40 nm Ag/ZnO thin films on PET substrate exhibited a transmittance of 88.6% at 550 nm and a sheet resistance of 7.6 Ω.sq-1, which were superior to those of the commercial ITO. The facile preparation benefits the integration of FTCEs into various flexible optoelectronic devices, where the excellent performance of the sub-40 nm Ag/ZnO FTCEs in a flexible polymer dispersed liquid crystal device was demonstrated. Sub-40 nm Ag/ZnO FTCEs that have the characteristics of simple structure, room-temperature preparation, and easily tailored optoelectronic properties would provide flexible optoelectronic devices with more degrees of freedom.
Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing.
Economou, Anastasios; Kokkinos, Christos; Prodromidis, Mamas
2018-06-26
Flexible biosensors represent an increasingly important and rapidly developing field of research. Flexible materials offer several advantages as supports of biosensing platforms in terms of flexibility, weight, conformability, portability, cost, disposability and scope for integration. On the other hand, electrochemical detection is perfectly suited to flexible biosensing devices. The present paper reviews the field of integrated electrochemical bionsensors fabricated on flexible materials (plastic, paper and textiles) which are used as functional base substrates. The vast majority of electrochemical flexible lab-on-a-chip (LOC) biosensing devices are based on plastic supports in a single or layered configuration. Among these, wearable devices are perhaps the ones that most vividly demonstrate the utility of the concept of flexible biosensors while diagnostic cards represent the state-of-the art in terms of integration and functionality. Another important type of flexible biosensors utilize paper as a functional support material enabling the fabrication of low-cost and disposable paper-based devices operating on the lateral flow, drop-casting or folding (origami) principles. Finally, textile-based biosensors are beginning to emerge enabling real-time measurements in the working environment or in wound care applications. This review is timely due to the significant advances that have taken place over the last few years in the area of LOC biosensors and aims to direct the readers to emerging trends in this field.
Recent Advances in Biointegrated Optoelectronic Devices.
Xu, Huihua; Yin, Lan; Liu, Chuan; Sheng, Xing; Zhao, Ni
2018-05-28
With recent progress in the design of materials and mechanics, opportunities have arisen to improve optoelectronic devices, circuits, and systems in curved, flexible, stretchable, and biocompatible formats, thereby enabling integration of customized optoelectronic devices and biological systems. Here, the core material technologies of biointegrated optoelectronic platforms are discussed. An overview of the design and fabrication methods to form semiconductor materials and devices in flexible and stretchable formats is presented, strategies incorporating various heterogeneous substrates, interfaces, and encapsulants are discussed, and their applications in biomimetic, wearable, and implantable systems are highlighted. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
From dead leaves to sustainable organic resistive switching memory.
Sun, Bai; Zhu, Shouhui; Mao, Shuangsuo; Zheng, Pingping; Xia, Yudong; Yang, Feng; Lei, Ming; Zhao, Yong
2018-03-01
An environmental-friendly, sustainable, pollution-free, biodegradable, flexible and wearable electronic device hold advanced potential applications. Here, an organic resistive switching memory device with Ag/Leaves/Ti/PET structure on a flexible polyethylene terephthalate (PET) substrate was fabricated for the first time. We observed an obvious resistive switching memory characteristic with large switching resistance ratio and stable cycle performance at room temperature. This work demonstrates that leaves, a useless waste, can be properly treated to make useful devices. Furthermore, the as-fabricated devices can be degraded naturally without damage to the environment. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Xiaohui; Huang, Ying; Zhao, Yunong; Mao, Leidong; Gao, Le; Pan, Weidong; Zhang, Yugang; Liu, Ping
2017-09-01
Flexible, stretchable, and wearable strain sensors have attracted significant attention for their potential applications in human movement detection and recognition. Here, we report a highly stretchable and flexible strain sensor based on a single-walled carbon nanotube (SWCNTs)/carbon black (CB) synergistic conductive network. The fabrication, synergistic conductive mechanism, and characterization of the sandwich-structured strain sensor were investigated. The experimental results show that the device exhibits high stretchability (120%), excellent flexibility, fast response (˜60 ms), temperature independence, and superior stability and reproducibility during ˜1100 stretching/releasing cycles. Furthermore, human activities such as the bending of a finger or elbow and gestures were monitored and recognized based on the strain sensor, indicating that the stretchable strain sensor based on the SWCNTs/CB synergistic conductive network could have promising applications in flexible and wearable devices for human motion monitoring.
Liu, Kewei; Sakurai, Makoto; Aono, Masakazu
2012-12-07
The humidity sensitivity of a single β-Ga(2) O(3) /amorphous SnO(2) core/shell microribbon on a flexible substrate is enhanced by the application of tensile strain and increases linearly with the strain. The strain-induced enhancement originates from the increase in the effective surface area where water molecules are adsorbed. This strain dependence of humidity sensitivity can be used to monitor the external strain. The strain sensing of the microribbon device under various amounts of mechanical loading shows excellent reliability and reproducibility with a gauge factor of -41. The flexible device has high potential to detect both humidity and strain at room temperature. These findings and the mechanism involved are expected to pave the way for new flexible strain and multifunctional sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bellet, Daniel; Lagrange, Mélanie; Sannicolo, Thomas; Aghazadehchors, Sara; Nguyen, Viet Huong; Langley, Daniel P.; Muñoz-Rojas, David; Jiménez, Carmen; Bréchet, Yves; Nguyen, Ngoc Duy
2017-01-01
The past few years have seen a considerable amount of research devoted to nanostructured transparent conducting materials (TCM), which play a pivotal role in many modern devices such as solar cells, flexible light-emitting devices, touch screens, electromagnetic devices, and flexible transparent thin film heaters. Currently, the most commonly used TCM for such applications (ITO: Indium Tin oxide) suffers from two major drawbacks: brittleness and indium scarcity. Among emerging transparent electrodes, silver nanowire (AgNW) networks appear to be a promising substitute to ITO since such electrically percolating networks exhibit excellent properties with sheet resistance lower than 10 Ω/sq and optical transparency of 90%, fulfilling the requirements of most applications. In addition, AgNW networks also exhibit very good mechanical flexibility. The fabrication of these electrodes involves low-temperature processing steps and scalable methods, thus making them appropriate for future use as low-cost transparent electrodes in flexible electronic devices. This contribution aims to briefly present the main properties of AgNW based transparent electrodes as well as some considerations relating to their efficient integration in devices. The influence of network density, nanowire sizes, and post treatments on the properties of AgNW networks will also be evaluated. In addition to a general overview of AgNW networks, we focus on two important aspects: (i) network instabilities as well as an efficient Atomic Layer Deposition (ALD) coating which clearly enhances AgNW network stability and (ii) modelling to better understand the physical properties of these networks. PMID:28772931
Printing an ITO-free flexible poly (4-vinylphenol) resistive switching device
NASA Astrophysics Data System (ADS)
Ali, Junaid; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Aziz, Shahid; Choi, Kyung Hyun
2018-02-01
Resistive switching in a sandwich structure of silver (Ag)/Polyvinyl phenol (PVP)/carbon nanotube (CNTs)-silver nanowires (AgNWs) coated on a flexible PET substrate is reported in this work. Densely populated networks of one dimensional nano materials (1DNM), CNTs-AgNWs have been used as the conductive bottom electrode with the prominent features of high flexibility and low sheet resistance of 90 Ω/sq. Thin, yet uniform active layer of PVP was deposited on top of the spin coated 1DNM thin film through state of the art printing technique of electrohydrodynamic atomization (EHDA) with an average thickness of 170 ± 28 nm. Ag dots with an active area of ∼0.1 mm2 were deposited through roll to plate printing system as the top electrodes to complete the device fabrication of flexible memory device. Our memory device exhibited suitable electrical characteristics with OFF/ON ratio of 100:1, retention time of 60 min and electrical endurance for 100 voltage sweeps without any noticeable decay in performance. The resistive switching characteristics at a low current compliance of 3 nA were also evaluated for the application of low power consumption. This memory device is flexible and can sustain more than 100 bending cycles at a bending diameter of 2 cm with stable HRS and LRS values. Our proposed device shows promise to be used as a future potential nonvolatile memory device in flexible electronics.
Gold nanoparticle-embedded silk protein-ZnO nanorod hybrids for flexible bio-photonic devices
NASA Astrophysics Data System (ADS)
Gogurla, Narendar; Kundu, Subhas C.; Ray, Samit K.
2017-04-01
Silk protein has been used as a biopolymer substrate for flexible photonic devices. Here, we demonstrate ZnO nanorod array hybrid photodetectors on Au nanoparticle-embedded silk protein for flexible optoelectronics. Hybrid samples exhibit optical absorption at the band edge of ZnO as well as plasmonic energy due to Au nanoparticles, making them attractive for selective UV and visible wavelength detection. The device prepared on Au-silk protein shows a much lower dark current and a higher photo to dark-current ratio of ∼105 as compared to the control sample without Au nanoparticles. The hybrid device also exhibits a higher specific detectivity due to higher responsivity arising from the photo-generated hole trapping by Au nanoparticles. Sharp pulses in the transient photocurrent have been observed in devices prepared on glass and Au-silk protein substrates due to the light induced pyroelectric effect of ZnO, enabling the demonstration of self-powered photodetectors at zero bias. Flexible hybrid detectors have been demonstrated on Au-silk/polyethylene terephthalate substrates, exhibiting characteristics similar to those fabricated on rigid glass substrates. A study of the performance of photodetectors with different bending angles indicates very good mechanical stability of silk protein based flexible devices. This novel concept of ZnO nanorod array photodetectors on a natural silk protein platform provides an opportunity to realize integrated flexible and self-powered bio-photonic devices for medical applications in near future.
Quantum dot light emitting devices for photomedical applications.
Chen, Hao; He, Juan; Lanzafame, Raymond; Stadler, Istvan; Hamidi, Hamid El; Liu, Hui; Celli, Jonathan; Hamblin, Michael R; Huang, Yingying; Oakley, Emily; Shafirstein, Gal; Chung, Ho-Kyoon; Wu, Shin-Tson; Dong, Yajie
2017-03-01
While OLEDs have struggled to find a niche lighting application that can fully take advantage of their unique form factors as thin, flexible, lightweight and uniformly large-area luminaire, photomedical researchers have been in search of low-cost, effective illumination devices with such form factors that could facilitate widespread clinical applications of photodynamic therapy (PDT) or photobiomodulation (PBM). Although existing OLEDs with either fluorescent or phosphorescent emitters cannot achieve the required high power density at the right wavelength windows for photomedicine, the recently developed ultrabright and efficient deep red quantum dot light emitting devices (QLEDs) can nicely fit into this niche. Here, we report for the first time the in-vitro study to demonstrate that this QLED-based photomedical approach could increase cell metabolism over control systems for PBM and kill cancerous cells efficiently for PDT. The perspective of developing wavelength-specific, flexible QLEDs for two critical photomedical fields (wound repair and cancer treatment) will be presented with their potential impacts summarized. The work promises to generate flexible QLED-based light sources that could enable the widespread use and clinical acceptance of photomedical strategies including PDT and PBM.
Quantum dot light emitting devices for photomedical applications
Chen, Hao; He, Juan; Lanzafame, Raymond; Stadler, Istvan; Hamidi, Hamid El; Liu, Hui; Celli, Jonathan; Hamblin, Michael R.; Huang, Yingying; Oakley, Emily; Shafirstein, Gal; Chung, Ho-Kyoon; Wu, Shin-Tson; Dong, Yajie
2017-01-01
While OLEDs have struggled to find a niche lighting application that can fully take advantage of their unique form factors as thin, flexible, lightweight and uniformly large-area luminaire, photomedical researchers have been in search of low-cost, effective illumination devices with such form factors that could facilitate widespread clinical applications of photodynamic therapy (PDT) or photobiomodulation (PBM). Although existing OLEDs with either fluorescent or phosphorescent emitters cannot achieve the required high power density at the right wavelength windows for photomedicine, the recently developed ultrabright and efficient deep red quantum dot light emitting devices (QLEDs) can nicely fit into this niche. Here, we report for the first time the in-vitro study to demonstrate that this QLED-based photomedical approach could increase cell metabolism over control systems for PBM and kill cancerous cells efficiently for PDT. The perspective of developing wavelength-specific, flexible QLEDs for two critical photomedical fields (wound repair and cancer treatment) will be presented with their potential impacts summarized. The work promises to generate flexible QLED-based light sources that could enable the widespread use and clinical acceptance of photomedical strategies including PDT and PBM. PMID:28867926
Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate
NASA Astrophysics Data System (ADS)
Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan
2015-10-01
Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.
Thin film transistors for flexible electronics: contacts, dielectrics and semiconductors.
Quevedo-Lopez, M A; Wondmagegn, W T; Alshareef, H N; Ramirez-Bon, R; Gnade, B E
2011-06-01
The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed.
Ultra-flexible Piezoelectric Devices Integrated with Heart to Harvest the Biomechanical Energy
Lu, Bingwei; Chen, Ying; Ou, Dapeng; Chen, Hang; Diao, Liwei; Zhang, Wei; Zheng, Jun; Ma, Weiguo; Sun, Lizhong; Feng, Xue
2015-01-01
Power supply for medical implantable devices (i.e. pacemaker) always challenges not only the surgery but also the battery technology. Here, we report a strategy for energy harvesting from the heart motion by using ultra-flexible piezoelectric device based on lead zirconate titanate (PZT) ceramics that has most excellent piezoelectricity in commercial materials, without any burden or damage to hearts. Experimental swine are selected for in vivo test with different settings, i.e. opened chest, close chest and awake from anesthesia, to simulate the scenario of application in body due to their hearts similar to human. The results show the peak-to-peak voltage can reach as high as 3 V when the ultra-flexible piezoelectric device is fixed from left ventricular apex to right ventricle. This demonstrates the possibility and feasibility of fully using the biomechanical energy from heart motion in human body for sustainably driving implantable devices. PMID:26538375
Ultra-flexible Piezoelectric Devices Integrated with Heart to Harvest the Biomechanical Energy
NASA Astrophysics Data System (ADS)
Lu, Bingwei; Chen, Ying; Ou, Dapeng; Chen, Hang; Diao, Liwei; Zhang, Wei; Zheng, Jun; Ma, Weiguo; Sun, Lizhong; Feng, Xue
2015-11-01
Power supply for medical implantable devices (i.e. pacemaker) always challenges not only the surgery but also the battery technology. Here, we report a strategy for energy harvesting from the heart motion by using ultra-flexible piezoelectric device based on lead zirconate titanate (PZT) ceramics that has most excellent piezoelectricity in commercial materials, without any burden or damage to hearts. Experimental swine are selected for in vivo test with different settings, i.e. opened chest, close chest and awake from anesthesia, to simulate the scenario of application in body due to their hearts similar to human. The results show the peak-to-peak voltage can reach as high as 3 V when the ultra-flexible piezoelectric device is fixed from left ventricular apex to right ventricle. This demonstrates the possibility and feasibility of fully using the biomechanical energy from heart motion in human body for sustainably driving implantable devices.
Cai, Shu-Yi; Chang, Cheng-Han; Lin, Hung-I; Huang, Yuan-Fu; Lin, Wei-Ju; Lin, Shih-Yao; Liou, Yi-Rou; Shen, Tien-Lin; Huang, Yen-Hsiang; Tsao, Po-Wei; Tzou, Chen-Yang; Liao, Yu-Ming; Chen, Yang-Fang
2018-05-23
In recent years, flexible magnetoelectronics has attracted a great attention for its intriguing functionalities and potential applications, such as healthcare, memory, soft robots, navigation, and touchless human-machine interaction systems. Here, we provide the first attempt to demonstrate a new type of magneto-piezoresistance device, which possesses an ultrahigh sensitivity with several orders of resistance change under an external magnetic field (100 mT). In our device, Fe-Ni alloy powders are embedded in the silver nanowire-coated micropyramid polydimethylsiloxane films. Our devices can not only serve as an on/off switch but also act as a sensor that can detect different magnetic fields because of its ultrahigh sensitivity, which is very useful for the application in analog signal communication. Moreover, our devices contain several key features, including large-area and easy fabrication processes, fast response time, low working voltage, low power consumption, excellent flexibility, and admirable compatibility onto a freeform surface, which are the critical criteria for the future development of touchless human-machine interaction systems. On the basis of all of these unique characteristics, we have demonstrated a nontouch piano keyboard, instantaneous magnetic field visualization, and autonomous power system, making our new devices be integrable with magnetic field and enable to be implemented into our daily life applications with unfamiliar human senses. Our approach therefore paves a useful route for the development of wearable electronics and intelligent systems.
The Conductive Silver Nanowires Fabricated by Two-beam Laser Direct Writing on the Flexible Sheet.
He, Gui-Cang; Zheng, Mei-Ling; Dong, Xian-Zi; Jin, Feng; Liu, Jie; Duan, Xuan-Ming; Zhao, Zhen-Sheng
2017-02-02
Flexible electrically conductive nanowires are now a key component in the fields of flexible devices. The achievement of metal nanowire with good flexibility, conductivity, compact and smooth morphology is recognized as one critical milestone for the flexible devices. In this study, a two-beam laser direct writing system is designed to fabricate AgNW on PET sheet. The minimum width of the AgNW fabricated by this method is 187 ± 34 nm with the height of 84 ± 4 nm. We have investigated the electrical resistance under different voltages and the applicable voltage per meter range is determined to be less than 7.5 × 10 3 V/m for the fabricated AgNW. The flexibility of the AgNW is very excellent, since the resistance only increases 6.63% even after the stretched bending of 2000 times at such a small bending radius of 1.0 mm. The proposed two-beam laser direct writing is an efficient method to fabricate AgNW on the flexible sheet, which could be applied in flexible micro/nano devices.
The applications of carbon nanomaterials in fiber-shaped energy storage devices
NASA Astrophysics Data System (ADS)
Wu, Jingxia; Hong, Yang; Wang, Bingjie
2018-01-01
As a promising candidate for future demand, fiber-shaped electrochemical energy storage devices, such as supercapacitors and lithium-ion batteries have obtained considerable attention from academy to industry. Carbon nanomaterials, such as carbon nanotube and graphene, have been widely investigated as electrode materials due to their merits of light weight, flexibility and high capacitance. In this review, recent progress of carbon nanomaterials in flexible fiber-shaped energy storage devices has been summarized in accordance with the development of fibrous electrodes, including the diversified electrode preparation, functional and intelligent device structure, and large-scale production of fibrous electrodes or devices. Project supported by the National Natural Science Foundation of China (Nos. 21634003, 21604012).
Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications.
He, Qiyuan; Zeng, Zhiyuan; Yin, Zongyou; Li, Hai; Wu, Shixin; Huang, Xiao; Zhang, Hua
2012-10-08
By combining two kinds of solution-processable two-dimensional materials, a flexible transistor array is fabricated in which MoS(2) thin film is used as the active channel and reduced graphene oxide (rGO) film is used as the drain and source electrodes. The simple device configuration and the 1.5 mm-long MoS(2) channel ensure highly reproducible device fabrication and operation. This flexible transistor array can be used as a highly sensitive gas sensor with excellent reproducibility. Compared to using rGO thin film as the active channel, this new gas sensor exhibits much higher sensitivity. Moreover, functionalization of the MoS(2) thin film with Pt nanoparticles further increases the sensitivity by up to ∼3 times. The successful incorporation of a MoS(2) thin-film into the electronic sensor promises its potential application in various electronic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters
NASA Astrophysics Data System (ADS)
Heo, Kwang; Lee, Byung Yang; Lee, Hyungwoo; Cho, Dong-guk; Arif, Muhammad; Kim, Kyu Young; Choi, Young Jin; Hong, Seunghun
2016-07-01
We report a facile and efficient method for the fabrication of highly-flexible field emission devices by forming tubular hybrid structures based on carbon nanotubes (CNTs) and nickel nanotubes (Ni NTs) on graphene-based flexible substrates. By employing an infiltration process in anodic alumina oxide (AAO) templates followed by Ni electrodeposition, we could fabricate CNT-wrapped Ni NT/graphene hybrid structures. During the electrodeposition process, the CNTs served as Ni nucleation sites, resulting in a large-area array of high aspect-ratio field emitters composed of CNT-wrapped Ni NT hybrid structures. As a proof of concepts, we demonstrate that high-quality flexible field emission devices can be simply fabricated using our method. Remarkably, our proto-type field emission devices exhibited a current density higher by two orders of magnitude compared to other devices fabricated by previous methods, while maintaining its structural integrity in various bending deformations. This novel fabrication strategy can be utilized in various applications such as optoelectronic devices, sensors and energy storage devices.
Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters.
Heo, Kwang; Lee, Byung Yang; Lee, Hyungwoo; Cho, Dong-Guk; Arif, Muhammad; Kim, Kyu Young; Choi, Young Jin; Hong, Seunghun
2016-07-08
We report a facile and efficient method for the fabrication of highly-flexible field emission devices by forming tubular hybrid structures based on carbon nanotubes (CNTs) and nickel nanotubes (Ni NTs) on graphene-based flexible substrates. By employing an infiltration process in anodic alumina oxide (AAO) templates followed by Ni electrodeposition, we could fabricate CNT-wrapped Ni NT/graphene hybrid structures. During the electrodeposition process, the CNTs served as Ni nucleation sites, resulting in a large-area array of high aspect-ratio field emitters composed of CNT-wrapped Ni NT hybrid structures. As a proof of concepts, we demonstrate that high-quality flexible field emission devices can be simply fabricated using our method. Remarkably, our proto-type field emission devices exhibited a current density higher by two orders of magnitude compared to other devices fabricated by previous methods, while maintaining its structural integrity in various bending deformations. This novel fabrication strategy can be utilized in various applications such as optoelectronic devices, sensors and energy storage devices.
Flexible heartbeat sensor for wearable device.
Kwak, Yeon Hwa; Kim, Wonhyo; Park, Kwang Bum; Kim, Kunnyun; Seo, Sungkyu
2017-08-15
We demonstrate a flexible strain-gauge sensor and its use in a wearable application for heart rate detection. This polymer-based strain-gauge sensor was fabricated using a double-sided fabrication method with polymer and metal, i.e., polyimide and nickel-chrome. The fabrication process for this strain-gauge sensor is compatible with the conventional flexible printed circuit board (FPCB) processes facilitating its commercialization. The fabricated sensor showed a linear relation for an applied normal force of more than 930 kPa, with a minimum detectable force of 6.25Pa. This sensor can also linearly detect a bending radius from 5mm to 100mm. It is a thin, flexible, compact, and inexpensive (for mass production) heart rate detection sensor that is highly sensitive compared to the established optical photoplethysmography (PPG) sensors. It can detect not only the timing of heart pulsation, but also the amplitude or shape of the pulse signal. The proposed strain-gauge sensor can be applicable to various applications for smart devices requiring heartbeat detection. Copyright © 2017 Elsevier B.V. All rights reserved.
Monitoring of Vital Signs with Flexible and Wearable Medical Devices.
Khan, Yasser; Ostfeld, Aminy E; Lochner, Claire M; Pierre, Adrien; Arias, Ana C
2016-06-01
Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Innovations in surgical stone disease.
Antonelli, Jodi A
2016-05-01
Urinary stone disease is a condition characterized by a rich history of surgical innovation. Herein, we review the new ideas, devices and methods that are the cornerstones of contemporary surgical innovation in stone disease, specifically flexible ureteroscopy and percutaneous nephrolithotomy. The new ideas being applied to flexible ureteroscopy include extending the boundaries of surgical indications and eliminating the need for intraoperative fluoroscopy. Device advancements include disposable ureteroscopes and flexi semirigid ureteroscopes. Robotic flexible ureteroscopy, the use of magnets and mobile technology applications represent progress in methods of performing flexible ureteroscopy. Three-dimensional computed tomography and printing technology are enhancing percutaneous renal access. Novel image-guided access techniques are improving the accuracy of percutaneous surgery particularly for complex cases. New ideas, devices and methods are continuing to reshape the landscape of surgical stone treatment and in so doing not only have the potential to improve surgical outcomes but also to cultivate further scientific and technological advancements in this area.
NASA Astrophysics Data System (ADS)
Sheng, Jiazhen; Han, Ki-Lim; Hong, TaeHyun; Choi, Wan-Ho; Park, Jin-Seong
2018-01-01
The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors (TFTs), fabricating with atomic layer deposition (ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types (directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields. Project supported by the National Research Foundation of Korea (NRF) (No. NRF-2017R1D1A1B03034035), the Ministry of Trade, Industry & Energy (No. #10051403), and the Korea Semiconductor Research Consortium.
Xu, Jian-Long; Liu, Yan-Hua; Gao, Xu; Sun, Yilin; Shen, Su; Cai, Xinlei; Chen, Linsen; Wang, Sui-Dong
2017-08-23
Flexible transparent solid-state supercapacitors have attracted immerse attention for the power supply of next-generation flexible "see-through" or "invisible" electronics. For fabrication of such devices, high-performance flexible transparent current collectors are highly desired. In this paper, the utilization of embedded Ag grid transparent conductive electrodes (TCEs) fabricated by a facile soft ultraviolet imprinting lithography method combined with scrap techniques, as the current collector for flexible transparent solid-state supercapacitors, is demonstrated. The embedded Ag grid TCEs exhibit not only excellent optoelectronic properties (R S ∼ 2.0 Ω sq -1 and T ∼ 89.74%) but also robust mechanical properties, which could meet the conductivity, transparency, and flexibility needs of current collectors for flexible transparent supercapacitors. The obtained supercapacitor exhibits large specific capacitance, long cycling life, high optical transparency (T ∼ 80.58% at 550 nm), high flexibility, and high stability. Owing to the embedded Ag grid TCE structure, the device shows a slight capacitance loss of 2.6% even after 1000 cycles of repetitive bending for a bending radius of up to 2.0 mm. This paves the way for developing high-performance current collectors and thus flexible transparent energy storage devices, and their general applicability opens up opportunities for flexible transparent electronics.
Jianwei Song; Chaoji Chen; Chengwei Wang; Yudi Kuang; Yongfeng Li; Feng Jiang; Yiju Li; Emily Hitz; Ying Zhang; Boyang Liu; Amy Gong; Huiyang Bian; J. Y. Zhu; Jianhua Zhang; Jun Li; Liangbing Hu
2017-01-01
Flexible porous membranes have attracted increasing scientific interest due to their wide applications in flexible electronics, energy storage devices, sensors, and bioscaffolds. Here, inspired by nature, we develop a facile and scalable top-down approach for fabricating a superflexible, biocompatible, biodegradable three-dimensional (3D) porous membrane directly from...
Guidance for effective use of pylons for lane separation on preferential lanes and freeway ramps.
DOT National Transportation Integrated Search
2013-05-01
Flexible pylons are gaining popularity as traffic channelizing devices in a variety of applications. The : flexible pylons are less rigid (as compared to concrete barriers) enabling easier access for emergency : vehicles and provide more positive con...
Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.
Karnan, M; Subramani, K; Sudhan, N; Ilayaraja, N; Sathish, M
2016-12-28
Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m 2 /g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.
Oxide-based thin film transistors for flexible electronics
NASA Astrophysics Data System (ADS)
He, Yongli; Wang, Xiangyu; Gao, Ya; Hou, Yahui; Wan, Qing
2018-01-01
The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors (TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends. Project supported in part by the National Science Foundation for Distinguished Young Scholars of China (No. 61425020), in part by the National Natural Science Foundation of China (No. 11674162).
Laser-Material Interactions for Flexible Applications.
Joe, Daniel J; Kim, Seungjun; Park, Jung Hwan; Park, Dae Yong; Lee, Han Eol; Im, Tae Hong; Choi, Insung; Ruoff, Rodney S; Lee, Keon Jae
2017-07-01
The use of lasers for industrial, scientific, and medical applications has received an enormous amount of attention due to the advantageous ability of precise parameter control for heat transfer. Laser-beam-induced photothermal heating and reactions can modify nanomaterials such as nanoparticles, nanowires, and two-dimensional materials including graphene, in a controlled manner. There have been numerous efforts to incorporate lasers into advanced electronic processing, especially for inorganic-based flexible electronics. In order to resolve temperature issues with plastic substrates, laser-material processing has been adopted for various applications in flexible electronics including energy devices, processors, displays, and other peripheral electronic components. Here, recent advances in laser-material interactions for inorganic-based flexible applications with regard to both materials and processes are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics.
Park, Gayoung; Chung, Hyun-Joong; Kim, Kwanghee; Lim, Seon Ah; Kim, Jiyoung; Kim, Yun-Soung; Liu, Yuhao; Yeo, Woon-Hong; Kim, Rak-Hwan; Kim, Stanley S; Kim, Jong-Seon; Jung, Yei Hwan; Kim, Tae-Il; Yee, Cassian; Rogers, John A; Lee, Kyung-Mi
2014-04-01
Recent development of flexible/stretchable integrated electronic sensors and stimulation systems has the potential to establish an important paradigm for implantable electronic devices, where shapes and mechanical properties are matched to those of biological tissues and organs. Demonstrations of tissue and immune biocompatibility are fundamental requirements for application of such kinds of electronics for long-term use in the body. Here, a comprehensive set of experiments studies biocompatibility on four representative flexible/stretchable device platforms, selected on the basis of their versatility and relevance in clinical usage. The devices include flexible silicon field effect transistors (FETs) on polyimide and stretchable silicon FETs, InGaN light-emitting diodes (LEDs), and AlInGaPAs LEDs, each on low modulus silicone substrates. Direct cytotoxicity measured by exposure of a surrogate fibroblast line and leachable toxicity by minimum essential medium extraction testing reveal that all of these devices are non-cytotoxic. In vivo immunologic and tissue biocompatibility testing in mice indicate no local inflammation or systemic immunologic responses after four weeks of subcutaneous implantation. The results show that these new classes of flexible implantable devices are suitable for introduction into clinical studies as long-term implantable electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor.
Wei, Zhiqiang; Zhou, Zhang-Kai; Li, Qiuyu; Xue, Jiancai; Di Falco, Andrea; Yang, Zhongjian; Zhou, Jianhua; Wang, Xuehua
2017-07-01
Wearable plasmonic devices combine the advantages of high flexibility, ultrathinness, light weight, and excellent integration with the optical benefits mediated by plasmon-enhanced electric fields. However, two obstacles severely hinder further developments and applications of a wearable plasmonic device. One is the lack of efficient approach to obtaining devices with robust antimotion-interference property, i.e., the devices can work independently on the morphology changes of their working structures caused by arbitrary wearing conditions. The other issue is to seek a facile and high-throughput fabrication method to satisfy the financial requirement of industrialization. In order to overcome these two challenges, a functional flexible film of nanowire cluster is developed, which can be easily fabricated by taking the advantages of both conventional electrochemical and sputtering methods. Such flexible plasmonic films can be made into wearable devices that work independently on shape changes induced by various wearing conditions (such as bending, twisting and stretching). Furthermore, due to plasmonic advantages of color controlling and high sensitivity to environment changes, the flexible film of nanowire cluster can be used to fabricate wearable items (such as bracelet, clothes, bag, or even commercial markers), with the ability of wireless visualization for humidity sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Fukuda, Kenjiro; Takeda, Yasunori; Yoshimura, Yudai; Shiwaku, Rei; Tran, Lam Truc; Sekine, Tomohito; Mizukami, Makoto; Kumaki, Daisuke; Tokito, Shizuo
2014-06-01
Thin, ultra-flexible devices that can be manufactured in a process that covers a large area will be essential to realizing low-cost, wearable electronic applications including foldable displays and medical sensors. The printing technology will be instrumental in fabricating these novel electronic devices and circuits; however, attaining fully printed devices on ultra-flexible films in large areas has typically been a challenge. Here we report on fully printed organic thin-film transistor devices and circuits fabricated on 1-μm-thick parylene-C films with high field-effect mobility (1.0 cm2 V-1 s-1) and fast operating speeds (about 1 ms) at low operating voltages. The devices were extremely light (2 g m-2) and exhibited excellent mechanical stability. The devices remained operational even under 50% compressive strain without significant changes in their performance. These results represent significant progress in the fabrication of fully printed organic thin-film transistor devices and circuits for use in unobtrusive electronic applications such as wearable sensors.
NASA Astrophysics Data System (ADS)
Moreno, I.; Davis, J. A.
2010-06-01
We review the use of a parallel aligned nematic liquid crystal spatial light modulator as a very useful and flexible device for polarimetric and interferometric applications. The device acts as a programmable pixelated waveplate, and the encoding of a linear grating permits its use as a polarization beam splitter. When a grating with a reduced period is encoded, the diffracted beams are spatially separated and the device can be used for polarimetric analysis. On the contrary when a large period grating is displayed, the beams are not spatially separated, and they are useful to realize a common path interferometric system with polarization sensitivity. The flexibility offered by the programmability of the display allows non-conventional uses, including the analysis of light beams with structured spatial polarizations.
Hanh, Nguyen Hong; Jang, Kyungsoo; Yi, Junsin
2016-05-01
We directly deposited amorphous InGaZnO (a-IGZO) nonvolatile memory (NVM) devices with oxynitride-oxide-dioxide (OOO) stack structures on plastic substrate by a DC pulsed magnetron sputtering and inductively coupled plasma chemical vapor deposition (ICPCVD) system, using a low-temperature of 150 degrees C. The fabricated bottom gate a-IGZO NVM devices have a wide memory window with a low operating voltage during programming and erasing, due to an effective control of the gate dielectrics. In addition, after ten years, the memory device retains a memory window of over 73%, with a programming duration of only 1 ms. Moreover, the a-IGZO films show high optical transmittance of over 85%, and good uniformity with a root mean square (RMS) roughness of 0.26 nm. This film is a promising candidate to achieve flexible displays and transparency on plastic substrates because of the possibility of low-temperature deposition, and the high transparent properties of a-IGZO films. These results demonstrate that the a-IGZO NVM devices obtained at low-temperature have a suitable programming and erasing efficiency for data storage under low-voltage conditions, in combination with excellent charge retention characteristics, and thus show great potential application in flexible memory displays.
NASA Astrophysics Data System (ADS)
Ghoneim, M. T.; Hussain, M. M.
2015-08-01
Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ˜260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygen and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.
Highly Stretchable Multifunctional Wearable Devices Based on Conductive Cotton and Wool Fabrics.
Souri, Hamid; Bhattacharyya, Debes
2018-06-05
The demand for stretchable, flexible, and wearable multifunctional devices based on conductive nanomaterials is rapidly increasing considering their interesting applications including human motion detection, robotics, and human-machine interface. There still exists a great challenge to manufacture stretchable, flexible, and wearable devices through a scalable and cost-effective fabrication method. Herein, we report a simple method for the mass production of electrically conductive textiles, made of cotton and wool, by hybridization of graphene nanoplatelets and carbon black particles. Conductive textiles incorporated into a highly elastic elastomer are utilized as highly stretchable and wearable strain sensors and heaters. The electromechanical characterizations of our multifunctional devices establish their excellent performance as wearable strain sensors to monitor various human motions, such as finger, wrist, and knee joint movements, and to recognize sound with high durability. Furthermore, the electrothermal behavior of our devices shows their potential application as stretchable and wearable heaters working at a maximum temperature of 103 °C powered with 20 V.
Sher, Mazhar; Zhuang, Rachel; Demirci, Utkan; Asghar, Waseem
2017-01-01
Introduction There is a significant interest in developing inexpensive portable biosensing platforms for various applications including disease diagnostics, environmental monitoring, food safety, and water testing at the point-of-care (POC) settings. Current diagnostic assays available in the developed world require sophisticated laboratory infrastructure and expensive reagents. Hence, they are not suitable for resource-constrained settings with limited financial resources, basic health infrastructure, and few trained technicians. Cellulose and flexible transparency paper-based analytical devices have demonstrated enormous potential for developing robust, inexpensive and portable devices for disease diagnostics. These devices offer promising solutions to disease management in resource-constrained settings where the vast majority of the population cannot afford expensive and highly sophisticated treatment options. Areas covered In this review, the authors describe currently developed cellulose and flexible transparency paper-based microfluidic devices, device fabrication techniques, and sensing technologies that are integrated with these devices. The authors also discuss the limitations and challenges associated with these devices and their potential in clinical settings. Expert commentary In recent years, cellulose and flexible transparency paper-based microfluidic devices have demonstrated the potential to become future healthcare options despite a few limitations such as low sensitivity and reproducibility. PMID:28103450
Sher, Mazhar; Zhuang, Rachel; Demirci, Utkan; Asghar, Waseem
2017-04-01
There is a significant interest in developing inexpensive portable biosensing platforms for various applications including disease diagnostics, environmental monitoring, food safety, and water testing at the point-of-care (POC) settings. Current diagnostic assays available in the developed world require sophisticated laboratory infrastructure and expensive reagents. Hence, they are not suitable for resource-constrained settings with limited financial resources, basic health infrastructure, and few trained technicians. Cellulose and flexible transparency paper-based analytical devices have demonstrated enormous potential for developing robust, inexpensive and portable devices for disease diagnostics. These devices offer promising solutions to disease management in resource-constrained settings where the vast majority of the population cannot afford expensive and highly sophisticated treatment options. Areas covered: In this review, the authors describe currently developed cellulose and flexible transparency paper-based microfluidic devices, device fabrication techniques, and sensing technologies that are integrated with these devices. The authors also discuss the limitations and challenges associated with these devices and their potential in clinical settings. Expert commentary: In recent years, cellulose and flexible transparency paper-based microfluidic devices have demonstrated the potential to become future healthcare options despite a few limitations such as low sensitivity and reproducibility.
[Flexible print circuit technology application in biomedical engineering].
Jiang, Lihua; Cao, Yi; Zheng, Xiaolin
2013-06-01
Flexible print circuit (FPC) technology has been widely applied in variety of electric circuits with high precision due to its advantages, such as low-cost, high specific fabrication ability, and good flexibility, etc. Recently, this technology has also been used in biomedical engineering, especially in the development of microfluidic chip and microelectrode array. The high specific fabrication can help making microelectrode and other micro-structure equipment. And good flexibility allows the micro devices based on FPC technique to be easily packaged with other parts. In addition, it also reduces the damage of microelectrodes to the tissue. In this paper, the application of FPC technology in biomedical engineering is introduced. Moreover, the important parameters of FPC technique and the development trend of prosperous applications is also discussed.
NASA Astrophysics Data System (ADS)
Muqeet Rehman, Muhammad; Uddin Siddiqui, Ghayas; Kim, Sowon; Choi, Kyung Hyun
2017-08-01
Pursuit of the most appropriate materials and fabrication methods is essential for developing a reliable, rewritable and flexible memory device. In this study, we have proposed an advanced 2D nanocomposite of white graphene (hBN) flakes embedded with graphene quantum dots (GQDs) as the functional layer of a flexible memory device owing to their unique electrical, chemical and mechanical properties. Unlike the typical sandwich type structure of a memory device, we developed a cost effective planar structure, to simplify device fabrication and prevent sneak current. The entire device fabrication was carried out using printing technology followed by encapsulation in an atomically thin layer of aluminum oxide (Al2O3) for protection against environmental humidity. The proposed memory device exhibited attractive bipolar switching characteristics of high switching ratio, large electrical endurance and enhanced lifetime, without any crosstalk between adjacent memory cells. The as-fabricated device showed excellent durability for several bending cycles at various bending diameters without any degradation in bistable resistive states. The memory mechanism was deduced to be conductive filamentary; this was validated by illustrating the temperature dependence of bistable resistive states. Our obtained results pave the way for the execution of promising 2D material based next generation flexible and non-volatile memory (NVM) applications.
Zheng, Z. Q.; Yao, J. D.; Wang, B.; Yang, G. W.
2015-01-01
In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparentand working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90o. Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices. PMID:26076705
Zheng, Z Q; Yao, J D; Wang, B; Yang, G W
2015-06-16
In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparent, and working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90(o). Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices.
Aytug, Tolga; Rager, Matthew S; Higgins, Wesley; Brown, Forrest G; Veith, Gabriel M; Rouleau, Christopher M; Wang, Hui; Hood, Zachary D; Mahurin, Shannon M; Mayes, Richard T; Joshi, Pooran C; Kuruganti, Teja
2018-04-04
Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm -2 ) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.
NASA Astrophysics Data System (ADS)
Sarma, Kalluri
2015-05-01
Organic light emitting diode (OLED) display technology has advanced significantly in recent years and it is increasingly being adapted in consumer electronics products with premium performance, such as high resolution smart phones, Tablet PCs and TVs. Even flexible OLED displays are beginning to be commercialized in consumer electronic devices such as smart phones and smart watches. In addition to the advances in OLED emitters, successful development and adoption of OLED displays for premium performance applications relies on the advances in several enabling technologies including TFT backplanes, pixel drive electronics, pixel patterning technologies, encapsulation technologies and system level engineering. In this paper we will discuss the impact of the recent advances in LTPS and AOS TFTs, R, G, B and White OLED with color filter pixel architectures, and encapsulation, on the success of the OLEDs in consumer electronic devices. We will then discuss potential of these advances in addressing the requirements of OLED and flexible displays for the military and avionics applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Yu; Lei, Jixue; Yin, Bing
2014-03-17
A simple two-step hydrothermal process was proposed for enhancing the performance of the nanogenerator on flexible and wearable terylene-fabric substrate. With this method, a significant enhancement in output voltage of the nanogenerator from ∼10 mV to 7 V was achieved, comparing with the one by conventional one-step process. In addition, another advantage with the devices synthesized by two-step hydrothermal process was that their output voltages are only sensitive to strain rather than strain rate. The devices with a high output voltage have the ability to power common electric devices and will have important applications in flexible electronics and wearable devices.
NASA Astrophysics Data System (ADS)
Li, Guo-Yang; Xu, Guoqiang; Zheng, Yang; Cao, Yanping
2018-03-01
Surface acoustic wave (SAW) devices have found a wide variety of technical applications, including SAW filters, SAW resonators, microfluidic actuators, biosensors, flow measurement devices, and seismic wave shields. Stretchable/flexible electronic devices, such as sensory skins for robotics, structural health monitors, and wearable communication devices, have received considerable attention across different disciplines. Flexible SAW devices are essential building blocks for these applications, wherein piezoelectric films may need to be integrated with the compliant substrates. When piezoelectric films are much stiffer than soft substrates, SAWs are usually leaky and the devices incorporating them suffer from acoustic losses. In this study, the propagation of SAWs in a wrinkled bilayer system is investigated, and our analysis shows that non-leaky modes can be achieved by engineering stress patterns through surface wrinkles in the system. Our analysis also uncovers intriguing bandgaps (BGs) related to the SAWs in a wrinkled bilayer system; these are caused by periodic deformation patterns, which indicate that diverse wrinkling patterns could be used as metasurfaces for controlling the propagation of SAWs.
Wang, Xuewen; Gu, Yang; Xiong, Zuoping; Cui, Zheng; Zhang, Ting
2014-03-05
Flexible and transparent E-skin devices are achieved by combining silk-molded micro-patterned polydimethylsiloxane (PDMS) with single-walled carbon nanotube (SWNT) ultrathin films. The E-skin sensing device demonstrates superior sensitivity, a very low detectable pressure limit, a fast response time, and a high stability for the detection of superslight pressures, which may broaden their potential use as cost-effective wearable electronics for healthcare applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible MEMS: A novel technology to fabricate flexible sensors and electronics
NASA Astrophysics Data System (ADS)
Tu, Hongen
This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high-performance MEMS devices and electronics can be integrated into flexible substrates. The potential of our technology is enormous. Many wearable and implantable devices can be developed based on this technology.
Wang, Shouzhi; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Zhang, Lei; Hao, Xiaopeng
2017-02-01
Flexible supercapacitors have attracted great interest as energy storage devices because of their promise in applications such as wearable and smart electronic devices. Herein, a novel flexible supercapacitor electrode based on gallium nitride nanowire (GaN NW)/graphite paper (GP) nanocomposites is reported. The outstanding electrical conductivities of the GaN NW (6.36 × 10 2 S m -1 ) and GP (7.5 × 10 4 S m -1 ) deliver a synergistically enhanced electrochemical performance that cannot be achieved by either of the components alone. The composite electrode exhibits excellent specific capacitance (237 mF cm -2 at 0.1 mA cm -2 ) and outstanding cycling performance (98% capacitance retention after 10 000 cycles). The flexible symmetric supercapacitor also manifests high energy and power densities (0.30 mW h cm -3 and 1000 mW cm -3 ). These findings demonstrate that the GaN/GP composite electrode has significant potential as a candidate for the flexible energy storage devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...
2016-02-09
To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less
Tavakoli, Mohammad Mahdi; Lin, Qingfeng; Leung, Siu-Fung; Lui, Ga Ching; Lu, Hao; Li, Liang; Xiang, Bin; Fan, Zhiyong
2016-02-21
Utilization of nanostructures on photovoltaic devices can significantly improve the device energy conversion efficiency by enhancing the device light harvesting capability as well as carrier collection efficiency. However, improvements in device mechanical robustness and reliability, particularly for flexible devices, have rarely been reported with in-depth understanding. In this work, we fabricated efficient, flexible and mechanically robust organometallic perovskite solar cells on plastic substrates with inverted nanocone (i-cone) structures. Compared with the reference cell that was fabricated on a flat substrate, it was shown that the device power conversion efficiency could be improved by 37%, and reached up to 11.29% on i-cone substrates. More interestingly, it was discovered that the performance of an i-cone device remained more than 90% of the initial value even after 200 mechanical bending cycles, which is remarkably better than for the flat reference device, which degraded down to only 60% in the same test. Our experiments, coupled with mechanical simulation, demonstrated that a nanostructured template can greatly help in relaxing stress and strain upon device bending, which suppresses crack nucleation in different layers of a perovskite solar cell. This essentially leads to much improved device reliability and robustness and will have significant impact on practical applications.
NASA Astrophysics Data System (ADS)
Gupta, Ram K.; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar
2015-10-01
Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures.
Gupta, Ram K; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar
2015-10-20
Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures.
Gupta, Ram K.; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar
2015-01-01
Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures. PMID:26482921
Printed electronic on flexible and glass substrates
NASA Astrophysics Data System (ADS)
Futera, Konrad; Jakubowska, Małgorzata; Kozioł, Grażyna
2010-09-01
Organic electronics is a platform technology that enables multiple applications based on organic electronics but varied in specifications. Organic electronics is based on the combination of new materials and cost-effective, large area production processes that provide new fields of application. Organic electronic by its size, weight, flexibility and environmental friendliness electronics enables low cost production of numerous electrical components and provides for such promising fields of application as: intelligent packaging, low cost RFID, flexible solar cells, disposable diagnostic devices or games, and printed batteries [1]. The paper presents results of inkjetted electronics elements on flexible and glass substrates. The investigations was target on characterizing shape, surface and geometry of printed structures. Variety of substrates were investigated, within some, low cost, non specialized substrate, design for other purposes than organic electronic.
Chemical formation of soft metal electrodes for flexible and wearable electronics.
Wang, Dongrui; Zhang, Yaokang; Lu, Xi; Ma, Zhijun; Xie, Chuan; Zheng, Zijian
2018-06-18
Flexible and wearable electronics is one major technology after smartphones. It shows remarkable application potential in displays and informatics, robotics, sports, energy harvesting and storage, and medicine. As an indispensable part and the cornerstone of these devices, soft metal electrodes (SMEs) are of great significance. Compared with conventional physical processes such as vacuum thermal deposition and sputtering, chemical approaches for preparing SMEs show significant advantages in terms of scalability, low-cost, and compatibility with the soft materials and substrates used for the devices. This review article provides a detailed overview on how to chemically fabricate SMEs, including the material preparation, fabrication technologies, methods to characterize their key properties, and representative studies on different wearable applications.
Metal-Phenolic Carbon Nanocomposites for Robust and Flexible Energy-Storage Devices.
Oh, Jun Young; Jung, Yeonsu; Cho, Young Shik; Choi, Jaeyoo; Youk, Ji Ho; Fechler, Nina; Yang, Seung Jae; Park, Chong Rae
2017-04-22
Future electronics applications such as wearable electronics depend on the successful construction of energy-storage devices with superior flexibility and high electrochemical performance. However, these prerequisites are challenging to combine: External forces often cause performance degradation, whereas the trade-off between the required nanostructures for strength and electrochemical performance only results in diminished energy storage. Herein, a flexible supercapacitor based on tannic acid (TA) and carbon nanotubes (CNTs) with a unique nanostructure is presented. TA was self-assembled on the surface of the CNTs by metal-phenolic coordination bonds, which provides the hybrid film with both high strength and high pseudocapacitance. Besides 17-fold increased mechanical strength of the final composite, the hybrid film simultaneously exhibits excellent flexibility and volumetric capacitance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A flexible ultrasound transducer array with micro-machined bulk PZT.
Wang, Zhe; Xue, Qing-Tang; Chen, Yuan-Quan; Shu, Yi; Tian, He; Yang, Yi; Xie, Dan; Luo, Jian-Wen; Ren, Tian-Ling
2015-01-23
This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications.
NASA Astrophysics Data System (ADS)
Zheng, Zhaoqiang; Zhang, Tanmei; Yao, Jiandomg; Zhang, Yi; Xu, Jiarui; Yang, Guowei
2016-06-01
Although two-dimensional (2D) materials have attracted considerable research interest for use in the development of innovative wearable optoelectronic systems, the integrated optoelectronic performance of 2D materials photodetectors, including flexibility, transparency, broadband response and stability in air, remains quite low to date. Here, we demonstrate a flexible, transparent, high-stability and ultra-broadband photodetector made using large-area and highly-crystalline WSe2 films that were prepared by pulsed-laser deposition (PLD). Benefiting from the 2D physics of WSe2 films, this device exhibits excellent average transparency of 72% in the visible range and superior photoresponse characteristics, including an ultra-broadband detection spectral range from 370 to 1064 nm, reversible photoresponsivity approaching 0.92 A W-1, external quantum efficiency of up to 180% and a relatively fast response time of 0.9 s. The fabricated photodetector also demonstrates outstanding mechanical flexibility and durability in air. Also, because of the wide compatibility of the PLD-grown WSe2 film, we can fabricate various photodetectors on multiple flexible or rigid substrates, and all these devices will exhibit distinctive switching behavior and superior responsivity. These indicate a possible new strategy for the design and integration of flexible, transparent and broadband photodetectors based on large-area WSe2 films, with great potential for practical applications in the wearable optoelectronic devices.
Split-Ring Resonator-Based Strain Sensor on Flexible Substrates for Glaucoma Detection
NASA Astrophysics Data System (ADS)
Ekinci, Gizem; Deniz Yalcinkaya, Arda; Dundar, Gunhan; Torun, Hamdi
2016-10-01
This paper presents split-ring resonator-based strain sensors designed and characterized for glaucoma detection application. The geometry of the sensor is optimized such that it can be embedded in a contact lens. Silver conductive paint is to form the sensors realized on flexible substrates made of cellulose acetate and latex rubber. The devices are excited and interrogated using a pair of monopole antennas and the characteristics of devices with different curvature profiles are obtained. The sensitivity of the device, i.e. the change in resonant frequency for a unit change in radius of curvature, on acetate film is calculated as -4.73 MHz/mm and the sensitivity of the device on latex is 33.2 MHz/mm. The results indicate that the demonstrated device is suitable for glaucoma diagnosis.
Novel folding device for manufacturing aerospace composite structures
NASA Astrophysics Data System (ADS)
Tewfic, Tarik; Sarhadi, M.
2000-10-01
A new manufacturing methodology, termed shape-inclusive lay-up has been applied that allows the generation of three-dimensional preforms for the resin transfer molding (RTM) process. A flexible novel folding device for forming dry fabrics including non-crimp fabric (NCF) preform is designed and integrated with a Material Delivery System (MDS) into a robotic cell for manufacturing dry fiber composite aerospace components. The paper describes detailed design, implementation and operational performance of a prototype device. The proposed folding device has been implemented and tested by manufacturing a range of reinforcement structure preforms (C,T,J and I reinforcement preforms), normally used in aerostructure applications. A key advantage of the proposed device is its flexibility. The system is capable of manufacturing a wide range of components of various sizes without the need for reconfiguration.
Appendage mountable electronic devices conformable to surfaces
Rogers, John; Ying, Ming; Bonifas, Andrew; Lu, Nanshu
2017-01-24
Disclosed are appendage mountable electronic systems and related methods for covering and conforming to an appendage surface. A flexible or stretchable substrate has an inner surface for receiving an appendage, including an appendage having a curved surface, and an opposed outer surface that is accessible to external surfaces. A stretchable or flexible electronic device is supported by the substrate inner and/or outer surface, depending on the application of interest. The electronic device in combination with the substrate provides a net bending stiffness to facilitate conformal contact between the inner surface and a surface of the appendage provided within the enclosure. In an aspect, the system is capable of surface flipping without adversely impacting electronic device functionality, such as electronic devices comprising arrays of sensors, actuators, or both sensors and actuators.
NASA Astrophysics Data System (ADS)
Jung, Eui Dae; Nam, Yun Seok; Seo, Houn; Lee, Bo Ram; Yu, Jae Choul; Lee, Sang Yun; Kim, Ju-Young; Park, Jang-Ung; Song, Myoung Hoon
2015-09-01
Here, we report a comprehensive analysis of the electrical, optical, mechanical, and surface morphological properties of composite nanostrutures based on silver nanowires (AgNW) and PEDOT:PSS conducting polymer for the use as flexible and transparent electrodes. Compared to ITO or the single material of AgNW or PEDOT:PSS, the AgNW/PEDOT:PSS composite electrode showed high electrical conductivity with a low sheet resistance of 26.8 Ω/sq at 91% transmittance (at 550 nm), improves surface smoothness, and enhances mechanical properties assisted by an amphiphilic fluoro-surfactant. The polymeric light-emitting diodes (PLEDs) and organic solar cells (OSCs) using the AgNW/PEDOT:PSS composite electrode showed higher device performances than those with AgNW and PEDOT:PSS electrodes and excellent flexibility under bending test. These results indicates that the AgNW/PEDOT:PSS composite presented is a good candidate as next-generation transparent elelctrodes for applications into flexible optoelectronic devices. [Figure not available: see fulltext.
Zou, Yuqin; Wang, Shuangyin
2015-07-07
Flexible energy storage devices are highly demanded for various applications. Carbon cloth (CC) woven by carbon fibers (CFs) is typically used as electrode or current collector for flexible devices. The low surface area of CC and the presence of big gaps (ca. micro-size) between individual CFs lead to poor performance. Herein, we interconnect individual CFs through the in-situ exfoliated graphene with high surface area by the electrochemical intercalation method. The interconnected CFs are used as both current collector and electrode materials for flexible supercapacitors, in which the in-situ exfoliated graphene act as active materials and conductive "binders". The in-situ electrochemical intercalation technique ensures the low contact resistance between electrode (graphene) and current collector (carbon cloth) with enhanced conductivity. The as-prepared electrode materials show significantly improved performance for flexible supercapacitors.
Sun, Jing; Zhou, Wenhui; Yang, Haibo; Zhen, Xue; Ma, Longfei; Williams, Dirk; Sun, Xudong; Lang, Ming-Fei
2018-05-10
The development of flexible and transparent devices requires completely transparent and flexible circuits (TFCs). To overcome the disadvantages of the previously reported TFCs that are partially transparent, lacking pattern control, or labor consuming, we achieve true TFCs via a facile process with precise pattern control, exhibiting concurrent high transparency, conductivity, flexibility, stretchability, and robustness. A highly transparent and flexible conductive film is first made through spin coating silver nanowires (AgNWs) onto polydimethylsiloxane (PDMS), and demonstrates simultaneous high transparency (90.86%) and low sheet resistance (3.22 Ω sq-1). Taking advantage of microfluidic technology, circuits with ultraprecise and complex patterns from the microscale to milliscale are obtained through spin coating of AgNWs into microfluidic channels on PDMS. Without elaborate processing, this method may be suitable for mass production, which would contribute enormously to potential applications in wearable medical equipment and transparent electronic devices.
Applications of Microcomputers in Patient Care
Eden, Henry S.
1979-01-01
This paper serves as an introduction to two sessions on microcomputer applications in patient care. It describes several advantages offered by microcomputers in the design of medical devices--flexibility, reliability, smallness, and low power consumption. It concludes by discussing eight categories of microcomputer application.
NASA Astrophysics Data System (ADS)
Trung, Nguyen Huu; Van Toan, Nguyen; Ono, Takahito
2017-12-01
Although the electrochemical deposition of thermoelectric materials is a potential method for applications such as flexible thermoelectric power generators (FTEGs), to date the use of this technique is limited. This paper demonstrates a new fabrication of self-supported π-type FTEGs using electrochemical deposition of thermoelectric materials. Two types of the devices based on Bi2Te3-Cu and Bi2Te3-Sb2Te3 have been fully completed and characterized. The Bi2Te3-Cu and Bi2Te3-Sb2Te3 devices consist of 24 pairs of thermocouples that can harvest thermal energy with output power densities of 1-4 µW cm-2 from temperature differences of approximately 2 °C-4 °C from the human body. The highly scalable and new devices demonstrated in this work open up opportunities for the applications of electrochemically deposited thermoelectric materials.
Zhao, Yudan; Li, Qunqing; Xiao, Xiaoyang; Li, Guanhong; Jin, Yuanhao; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan
2016-02-23
We have proposed and fabricated stable and repeatable, flexible, single-walled carbon nanotube (SWCNT) thin film transistor (TFT) complementary metal-oxide-semiconductor (CMOS) integrated circuits based on a three-dimensional (3D) structure. Two layers of SWCNT-TFT devices were stacked, where one layer served as n-type devices and the other one served as p-type devices. On the basis of this method, it is able to save at least half of the area required to construct an inverter and make large-scale and high-density integrated CMOS circuits easier to design and manufacture. The 3D flexible CMOS inverter gain can be as high as 40, and the total noise margin is more than 95%. Moreover, the input and output voltage of the inverter are exactly matched for cascading. 3D flexible CMOS NOR, NAND logic gates, and 15-stage ring oscillators were fabricated on PI substrates with high performance as well. Stable electrical properties of these circuits can be obtained with bending radii as small as 3.16 mm, which shows that such a 3D structure is a reliable architecture and suitable for carbon nanotube electrical applications in complex flexible and wearable electronic devices.
NASA Astrophysics Data System (ADS)
Lee, Won-Ho; Yoon, Sung-Min
2017-05-01
The resistive change memory (RCM) devices using amorphous In-Ga-Zn-O (IGZO) and microcrystalline Al-doped ZnO (AZO) thin films were fabricated on plastic substrates and characterized for flexible electronic applications. The device cell sizes were varied to 25 × 25, 50 × 50, 100 × 100, and 200 × 200 μm2 to examine the effects of cell size on the resistive-switching (RS) behaviors at a flat state and under bending conditions. First, it was found that the high-resistance state programmed currents markedly increased with the increase in the cell size. Second, while the AZO RCM devices did not exhibit RESET operations at a curvature radius smaller than 8.0 mm, the IGZO RCM devices showed sound RS behaviors even at a curvature radius of 4.5 mm. Third, for the IGZO RCM devices with the cell size bigger than 100 × 100 μm2, the RESET operation could not be performed at a curvature radius smaller than 6.5 mm. Thus, it was elucidated that the RS characteristics of the flexible RCM devices using oxide semiconductor thin films were closely related to the types of RS materials and the cell size of the device.
NASA Astrophysics Data System (ADS)
Kanninen, Petri; Dang Luong, Nguyen; Hoang Sinh, Le; Anoshkin, Ilya V.; Tsapenko, Alexey; Seppälä, Jukka; Nasibulin, Albert G.; Kallio, Tanja
2016-06-01
Transparent and flexible energy storage devices have garnered great interest due to their suitability for display, sensor and photovoltaic applications. In this paper, we report the application of aerosol synthesized and dry deposited single-walled carbon nanotube (SWCNT) thin films as electrodes for an electrochemical double-layer capacitor (EDLC). SWCNT films exhibit extremely large specific capacitance (178 F g-1 or 552 μF cm-2), high optical transparency (92%) and stability for 10 000 charge/discharge cycles. A transparent and flexible EDLC prototype is constructed with a polyethylene casing and a gel electrolyte.
Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application
NASA Astrophysics Data System (ADS)
Wang, Dingrun; Mei, Yongfeng; Huang, Gaoshan
2018-01-01
Printed and flexible electronics are definitely promising cutting-edge electronic technologies of the future. They offer a wide-variety of applications such as flexible circuits, flexible displays, flexible solar cells, skin-like pressure sensors, and radio frequency identification tags in our daily life. As the most-fundamental component of electronics, electrodes are made of conductive materials that play a key role in flexible and printed electronic devices. In this review, various inorganic conductive materials and strategies for obtaining highly conductive and uniform electrodes are demonstrated. Applications of printed electrodes fabricated via these strategies are also described. Nevertheless, there are a number of challenges yet to overcome to optimize the processing and performance of printed electrodes. Project supported by the National Natural Science Foundation of China (Nos. 51475093, U1632115), the Science and Technology Commission of Shanghai Municipality (No. 14JC1400200), the National Key Technologies R&D Program of China (No. 2015ZX02102-003), and the Changjiang Young Scholars Programme of China.
Cheng, Yingwen; Lu, Songtao; Zhang, Hongbo; Varanasi, Chakrapani V; Liu, Jie
2012-08-08
Flexible and lightweight energy storage systems have received tremendous interest recently due to their potential applications in wearable electronics, roll-up displays, and other devices. To manufacture such systems, flexible electrodes with desired mechanical and electrochemical properties are critical. Herein we present a novel method to fabricate conductive, highly flexible, and robust film supercapacitor electrodes based on graphene/MnO(2)/CNTs nanocomposites. The synergistic effects from graphene, CNTs, and MnO(2) deliver outstanding mechanical properties (tensile strength of 48 MPa) and superior electrochemical activity that were not achieved by any of these components alone. These flexible electrodes allow highly active material loading (71 wt % MnO(2)), areal density (8.80 mg/cm(2)), and high specific capacitance (372 F/g) with excellent rate capability for supercapacitors without the need of current collectors and binders. The film can also be wound around 0.5 mm diameter rods for fabricating full cells with high performance, showing significant potential in flexible energy storage devices.
Foldable and Cytocompatible Sol-gel TiO2 Photonics
NASA Astrophysics Data System (ADS)
Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B.; Geiger, Sarah J.; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun
2015-09-01
Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices.
Foldable and Cytocompatible Sol-gel TiO2 Photonics
Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B.; Geiger, Sarah J.; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun
2015-01-01
Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices. PMID:26344823
Foldable and Cytocompatible Sol-gel TiO2 Photonics.
Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B; Geiger, Sarah J; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun
2015-09-07
Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices.
A novel fabrication method for surface integration of metal structures into polymers (SIMSIP)
NASA Astrophysics Data System (ADS)
Carrion-Gonzalez, Hector
Recently developed flexible electronics applications require that the thin metal films embedded on elastomer substrates also be flexible. These electronic systems are radically different in terms of performance and functionality than conventional silicon-based devices. A key question is whether the metal deposited on flexible films can survive large strains without rupture. Cumbersome macro-fabrication methods have been developed for functional and bendable electronics (e.g., interconnects) encapsulated between layers of polymer films. However, future electronic applications may require electronic flexible devices to be in intimate contact with curved surfaces (e.g., retinal implants) and to be robust enough to withstand large and repeated mechanical deformations. In this research, a novel technique for surface integration of metal structures into polymers (SIMSIP) was developed. Surface embedding, as opposed to placing metal on polymers, provides better adherence while leaving the surface accessible for contacts. This was accomplished by first fabricating the micro-scale metal patterns on a quartz or Teflon mother substrate, and then embedding them to a flexible polyimide thin film. The technique was successfully used to embed micro-metal structures of gold (Au), silver (Ag), and copper (Cu) into polyimide films without affecting the functional properties of the either the metals or the polymers. Experimental results confirm the successful surface-embedding of metal structures as narrow as 0.6 microm wide for different geometries commonly used in circuit design. Although similar approaches exist in literature, the proposed methodology provides a simpler and more reliable way of producing flexible circuits/electronics that is also suitable for high volume manufacturing. In order to demonstrate the flexibility of metal interconnects fabricated using the SIMSIP technique, multiple Au electrodes (5 microm and 2.5 microm wide) were tested using the X-theta bending methodology. The X-theta bending test captures data on the electrical resistivity of micro Au electrodes fabricated using the proposed SIMSIP technique by bending them at different angles between 0o and 180o up to 50 times. The data shows that the electrical resistivity of the Au electrodes remains constant (<1% variation) despite the interconnects being repeatedly subjected to extreme tensile and compressive forces during the X-theta bending test. These results are significant from the perspective of flexible electronics and biotechnology applications since the fabricated thin films exhibit significant electrical stability, reliability and wear resistance. These surface-embedded, flexible, and mechanically stable metal interconnects will enable the further development of new electronic products with applications in biotechnology (e.g., e-skin), space exploration (e.g., satellites), and microelectronics (e.g., flat panel displays). The SIMSIP technique is also a suitable process for the nanofabrication of flexible electronic devices in applications that require intimate contact with bendable curved surfaces (e.g., retinal implants).
In situ TEM visualization of superior nanomechanical flexibility of shear-exfoliated phosphorene
Xu, Feng; Ma, Hongyu; Lei, Shuangying; ...
2016-06-20
Recently discovered atomically thin black phosphorus (called phosphorene) holds great promise for applications in flexible nanoelectronic devices. Experimentally identifying and characterizing nanomechanical properties of phosphorene are challenging, but also potentially rewarding. Our work combines for the first time in situ transmission electron microscopy (TEM) imaging and an in situ micro-manipulation system to directly visualize the nanomechanical behaviour of individual phosphorene nanoflakes. Furthermore, we demonstrate that the phosphorene nanoflakes can be easily bent, scrolled, and stretched, showing remarkable mechanical flexibility rather than fracturing. An out-of-plane plate-like bending mechanism and in-plane tensile strain of up to 34% were observed. Moreover, a facilemore » liquid-phase shear exfoliation route has been developed to produce such mono-layer and few-layer phosphorene nanoflakes in organic solvents using only a household kitchen blender. The effects of surface tensions of the applied solvents on the ratio of average length and thickness (L/T) of the nanoflakes were studied systematically. These results reported here will pave the way for potential industrial-scale applications of flexible phosphorene nanoelectronic devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoneim, M. T.; Hussain, M. M., E-mail: muhammadmustafa.hussain@kaust.edu.sa
Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ∼260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygenmore » and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.« less
Wang, Zongrong; Wang, Shan; Zeng, Jifang; Ren, Xiaochen; Chee, Adrian J Y; Yiu, Billy Y S; Chung, Wai Choi; Yang, Yong; Yu, Alfred C H; Roberts, Robert C; Tsang, Anderson C O; Chow, Kwok Wing; Chan, Paddy K L
2016-07-01
A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa(-1) , broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real-time health monitoring, and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shape‐Controlled, Self‐Wrapped Carbon Nanotube 3D Electronics
Wang, Huiliang; Wang, Yanming; Tee, Benjamin C.‐K.; Kim, Kwanpyo; Lopez, Jeffrey; Cai, Wei
2015-01-01
The mechanical flexibility and structural softness of ultrathin devices based on organic thin films and low‐dimensional nanomaterials have enabled a wide range of applications including flexible display, artificial skin, and health monitoring devices. However, both living systems and inanimate systems that are encountered in daily lives are all 3D. It is therefore desirable to either create freestanding electronics in a 3D form or to incorporate electronics onto 3D objects. Here, a technique is reported to utilize shape‐memory polymers together with carbon nanotube flexible electronics to achieve this goal. Temperature‐assisted shape control of these freestanding electronics in a programmable manner is demonstrated, with theoretical analysis for understanding the shape evolution. The shape control process can be executed with prepatterned heaters, desirable for 3D shape formation in an enclosed environment. The incorporation of carbon nanotube transistors, gas sensors, temperature sensors, and memory devices that are capable of self‐wrapping onto any irregular shaped‐objects without degradations in device performance is demonstrated. PMID:27980972
NASA Astrophysics Data System (ADS)
Yang, Ji-Hee; Yun, Da-Jeong; Seo, Gi-Ho; Kim, Seong-Min; Yoon, Myung-Han; Yoon, Sung-Min
2018-03-01
For flexible memory device applications, we propose memory thin-film transistors using an organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gate insulator and an amorphous In-Ga-Zn-O (a-IGZO) active channel. The effects of electrode materials and their deposition methods on the characteristics of memory devices exploiting the ferroelectric field effect were investigated for the proposed ferroelectric memory thin-film transistors (Fe-MTFTs) at flat and bending states. It was found that the plasma-induced sputtering deposition and mechanical brittleness of the indium-tin oxide (ITO) markedly degraded the ferroelectric-field-effect-driven memory window and bending characteristics of the Fe-MTFTs. The replacement of ITO electrodes with metal aluminum (Al) electrodes prepared by plasma-free thermal evaporation greatly enhanced the memory device characteristics even under bending conditions owing to their mechanical ductility. Furthermore, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) was introduced to achieve robust bending performance under extreme mechanical stress. The Fe-MTFTs using PEDOT:PSS source/drain electrodes were successfully fabricated and showed the potential for use as flexible memory devices. The suitable choice of electrode materials employed for the Fe-MTFTs is concluded to be one of the most important control parameters for highly functional flexible Fe-MTFTs.
NASA Astrophysics Data System (ADS)
Zhao, Fei; Cheng, Huhu; Hu, Yue; Song, Long; Zhang, Zhipan; Jiang, Lan; Qu, Liangti
2014-07-01
Graphitic carbon nitride nanosheet (g-C3N4-NS) has layered structure similar with graphene nanosheet and presents unusual physicochemical properties due to the s-triazine fragments. But their electronic and electrochemical applications are limited by the relatively poor conductivity. The current work provides the first example that atomically thick g-C3N4-NSs are the ideal candidate as the active insulator layer with tunable conductivity for achieving the high performance memory devices with electrical bistability. Unlike in conventional memory diodes, the g-C3N4-NSs based devices combined with graphene layer electrodes are flexible, metal-free and low cost. The functionalized g-C3N4-NSs exhibit desirable dispersibility and dielectricity which support the all-solution fabrication and high performance of the memory diodes. Moreover, the flexible memory diodes are conveniently fabricated through the fast laser writing process on graphene oxide/g-C3N4-NSs/graphene oxide thin film. The obtained devices not only have the nonvolatile electrical bistability with great retention and endurance, but also show the rewritable memory effect with a reliable ON/OFF ratio of up to 105, which is the highest among all the metal-free flexible memory diodes reported so far, and even higher than those of metal-containing devices.
Lee, Chihak; Oh, Youngsu; Yoon, In Seon; Kim, Sun Hong; Ju, Byeong-Kwon; Hong, Jae-Min
2018-02-09
Electrochromic devices (ECDs) are emerging as a novel technology for various applications like commercialized smart window glasses, and auto-dimming rear-view mirrors. Recently, the development of low-power, lightweight, flexible, and stretchable devices has been accelerated to meet the growing demand in the new wearable devices market. Silver nanowires (AgNWs) can become new primary transparent conducting electrode (TCE) materials to replace indium tin oxide (ITO) for ECDs. However, issues such as substrate adhesion, delamination, and higher resistance still exist with AgNWs. Herein, we report a high-performance stretchable flash-induced AgNW-network-based TCE on surface-treated polydimethylsiloxane (PDMS) substrates. A Xe flash light method was used to create nanowelded networks of AgNWs. Surface silane treatments increased the adhesion and durability of the films as well. Finally, ECDs were fabricated under the optimal conditions and examined under strained conditions to demonstrate the resistance and mechanical behaviours of the devices. Results showed a flexible and durable film maintaining a high level of conductivity and reversible resistance behaviour, beyond those currently achievable with standard ITO/PET flexible TCEs.
NASA Astrophysics Data System (ADS)
Abdelkader, Amr M.; Karim, Nazmul; Vallés, Cristina; Afroj, Shaila; Novoselov, Kostya S.; Yeates, Stephen G.
2017-09-01
Printed graphene supercapacitors have the potential to empower tomorrow’s wearable electronics. We report a solid-state flexible supercapacitor device printed on textiles using graphene oxide ink and a screen-printing technique. After printing, graphene oxide was reduced in situ via a rapid electrochemical method avoiding the use of any reducing reagents that may damage the textile substrates. The printed electrodes exhibited excellent mechanical stability due to the strong interaction between the ink and textile substrate. The unique hierarchical porous structure of the electrodes facilitated ionic diffusion and maximised the surface area available for the electrolyte/active material interface. The obtained device showed outstanding cyclic stability over 10 000 cycles and maintained excellent mechanical flexibility, which is necessary for wearable applications. The simple printing technique is readily scalable and avoids the problems associated with fabricating supercapacitor devices made of conductive yarn, as previously reported in the literature.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
University of Illinois
2009-04-21
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
Rogers, John A [Champaign, IL; Khang, Dahl-Young [Seoul, KR; Sun, Yugang [Naperville, IL; Menard, Etienne [Durham, NC
2012-06-12
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
Rogers, John A.; Khang, Dahl-Young; Sun, Yugang; Menard, Etienne
2014-06-17
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
Rogers, John A.; Khang, Dahl-Young; Sun, Yugang; Menard, Etienne
2016-12-06
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
High performance flexible electronics for biomedical devices.
Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard
2014-01-01
Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
Rogers, John A.; Khang, Dahl -Young; Sun, Yugang; Menard, Etienne
2015-08-11
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Marked Object Recognition Multitouch Screen Printed Touchpad for Interactive Applications.
Nunes, Jivago Serrado; Castro, Nelson; Gonçalves, Sergio; Pereira, Nélson; Correia, Vitor; Lanceros-Mendez, Senentxu
2017-12-01
The market for interactive platforms is rapidly growing, and touchscreens have been incorporated in an increasing number of devices. Thus, the area of smart objects and devices is strongly increasing by adding interactive touch and multimedia content, leading to new uses and capabilities. In this work, a flexible screen printed sensor matrix is fabricated based on silver ink in a polyethylene terephthalate (PET) substrate. Diamond shaped capacitive electrodes coupled with conventional capacitive reading electronics enables fabrication of a highly functional capacitive touchpad, and also allows for the identification of marked objects. For the latter, the capacitive signatures are identified by intersecting points and distances between them. Thus, this work demonstrates the applicability of a low cost method using royalty-free geometries and technologies for the development of flexible multitouch touchpads for the implementation of interactive and object recognition applications.
Marked Object Recognition Multitouch Screen Printed Touchpad for Interactive Applications
Nunes, Jivago Serrado; Castro, Nelson; Pereira, Nélson; Correia, Vitor; Lanceros-Mendez, Senentxu
2017-01-01
The market for interactive platforms is rapidly growing, and touchscreens have been incorporated in an increasing number of devices. Thus, the area of smart objects and devices is strongly increasing by adding interactive touch and multimedia content, leading to new uses and capabilities. In this work, a flexible screen printed sensor matrix is fabricated based on silver ink in a polyethylene terephthalate (PET) substrate. Diamond shaped capacitive electrodes coupled with conventional capacitive reading electronics enables fabrication of a highly functional capacitive touchpad, and also allows for the identification of marked objects. For the latter, the capacitive signatures are identified by intersecting points and distances between them. Thus, this work demonstrates the applicability of a low cost method using royalty-free geometries and technologies for the development of flexible multitouch touchpads for the implementation of interactive and object recognition applications. PMID:29194414
Fabrication of flexible, multimodal light-emitting devices for wireless optogenetics
Huang, Xian; Jung, Yei Hwan; Al-Hasani, Ream; Omenetto, Fiorenzo G.
2014-01-01
Summary The rise of optogenetics provides unique opportunities to advance materials and biomedical engineering as well as fundamental understanding in neuroscience. This protocol describes the fabrication of optoelectronic devices for studying intact neural systems. Unlike optogenetic approaches that rely on rigid fiber optics tethered to external light sources, these novel devices utilize flexible substrates to carry wirelessly powered microscale, inorganic light-emitting diodes (μ-ILEDs) and multimodal sensors inside the brain. We describe the technical procedures for construction of these devices, their corresponding radiofrequency power scavengers, and their implementation in vivo for experimental application. In total, the timeline of the procedure, including device fabrication, implantation, and preparation to begin in vivo experimentation, can be completed in approximately 3–8 weeks. Implementation of these devices allows for chronic (tested up to six months), wireless optogenetic manipulation of neural circuitry in animals experiencing behaviors such as social interaction, home cage, and other complex natural environments. PMID:24202555
NASA Astrophysics Data System (ADS)
Remirez, Andria A.; Webster, Robert J.
2016-03-01
Many applications in medicine require flexible surgical manipulators and endoscopes capable of reaching tight curvatures. The maximum curvature these devices can achieve is often restricted either by a strain limit, or by a maximum actuation force that the device's components can tolerate without risking mechanical failure. In this paper we propose the use of precurvature to "bias" the workspace of the device in one direction. Combined with axial shaft rotation, biasing increases the size of the device's workspace, enabling it to reach tighter curvatures than a comparable device without biasing can achieve, while still being able to fully straighten. To illustrate this effect, we describe several example prototype devices which use flexible nitinol strips that can be pushed and pulled to generate bending. We provide a statics model that relates the manipulator curvature to actuation force, and validate it experimentally.
Real-Time Operating System/360
NASA Technical Reports Server (NTRS)
Hoffman, R. L.; Kopp, R. S.; Mueller, H. H.; Pollan, W. D.; Van Sant, B. W.; Weiler, P. W.
1969-01-01
RTOS has a cost savings advantage for real-time applications, such as those with random inputs requiring a flexible data routing facility, display systems simplified by a device independent interface language, and complex applications needing added storage protection and data queuing.
Jung, Heesoo; Seo, Jin Ah; Choi, Seungki
2017-01-01
One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design—wearable APP (WAPP)—that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents. PMID:28098192
NASA Astrophysics Data System (ADS)
Jung, Heesoo; Seo, Jin Ah; Choi, Seungki
2017-01-01
One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design—wearable APP (WAPP)—that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents.
Jung, Heesoo; Seo, Jin Ah; Choi, Seungki
2017-01-18
One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design-wearable APP (WAPP)-that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents.
Arrayed waveguide Sagnac interferometer.
Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso
2003-02-01
We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.
Hussain, Aftab M; Hussain, Muhammad M
2016-06-01
Flexible and stretchable electronics can dramatically enhance the application of electronics for the emerging Internet of Everything applications where people, processes, data and devices will be integrated and connected, to augment quality of life. Using naturally flexible and stretchable polymeric substrates in combination with emerging organic and molecular materials, nanowires, nanoribbons, nanotubes, and 2D atomic crystal structured materials, significant progress has been made in the general area of such electronics. However, high volume manufacturing, reliability and performance per cost remain elusive goals for wide commercialization of these electronics. On the other hand, highly sophisticated but extremely reliable, batch-fabrication-capable and mature complementary metal oxide semiconductor (CMOS)-based technology has facilitated tremendous growth of today's digital world using thin-film-based electronics; in particular, bulk monocrystalline silicon (100) which is used in most of the electronics existing today. However, one fundamental challenge is that state-of-the-art CMOS electronics are physically rigid and brittle. Therefore, in this work, how CMOS-technology-enabled flexible and stretchable electronics can be developed is discussed, with particular focus on bulk monocrystalline silicon (100). A comprehensive information base to realistically devise an integration strategy by rational design of materials, devices and processes for Internet of Everything electronics is offered. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent progress of flexible AMOLED displays
NASA Astrophysics Data System (ADS)
Pang, Huiqing; Rajan, Kamala; Silvernail, Jeff; Mandlik, Prashant; Ma, Ruiqing; Hack, Mike; Brown, Julie J.; Yoo, Juhn S.; Jung, Sang-Hoon; Kim, Yong-Cheol; Byun, Seung-Chan; Kim, Jong-Moo; Yoon, Soo-Young; Kim, Chang-Dong; Hwang, Yong-Kee; Chung, In-Jae; Fletcher, Mark; Green, Derek; Pangle, Mike; McIntyre, Jim; Smith, Randal D.
2011-03-01
Significant progress has been made in recent years in flexible AMOLED displays and numerous prototypes have been demonstrated. Replacing rigid glass with flexible substrates and thin-film encapsulation makes displays thinner, lighter, and non-breakable - all attractive features for portable applications. Flexible AMOLEDs equipped with phosphorescent OLEDs are considered one of the best candidates for low-power, rugged, full-color video applications. Recently, we have demonstrated a portable communication display device, built upon a full-color 4.3-inch HVGA foil display with a resolution of 134 dpi using an all-phosphorescent OLED frontplane. The prototype is shaped into a thin and rugged housing that will fit over a user's wrist, providing situational awareness and enabling the wearer to see real-time video and graphics information.
NASA Astrophysics Data System (ADS)
Kang, Dongseok; Lee, Sung-Min; Kwong, Anthony; Yoon, Jongseung
2015-03-01
Despite many unique advantages, vertical cavity surface emitting lasers (VCSELs) have been available mostly on rigid, planar wafers over restricted areas, thereby limiting their usage for applications that can benefit from large-scale, programmable assemblies, hybrid integration with dissimilar materials and devices, or mechanically flexible constructions. Here, materials design and fabrication strategies that address these limitations of conventional VCSELs are presented. Specialized design of epitaxial materials and etching processes, together with printing-based deterministic assemblies and substrate thermal engineering, enabled defect-free release of microscale VCSELs and their device- and circuit-level implementation on non-native, flexible substrates with performance comparable to devices on the growth substrate.
Status of flexible CIS research at ISET
NASA Technical Reports Server (NTRS)
Basol, B. M.; Kapur, V. K.; Minnick, A.; Halani, A.; Leidholm, C. R.
1994-01-01
Polycrystalline thin film solar cells fabricated on light-weight, flexible substrates are very attractive for space applications. In this work CulnSe2 (CIS) based thin film devices were processed on metallic foil substrates using the selenization technique. CIS deposition method involved reaction of electron-bean evaporated Cu-In precursor layers with a selenizing atmosphere at around 400 C. Several metallic foils such as Mo, Ti, Al, Ni, and Cu were evaluated as possible substrates for these devices. Solar cells with AM1.5 efficiencies of 9.0-9.34 percent and good mechanical integrity were demonstrated on Mo and Ti foils. Monolithic integration of these devices was also demonstrated up to 4 in x 4 in size.
Zhang, Chunyan; Cai, Xiaoyi; Qian, Yao; Jiang, Haifeng; Zhou, Lijun; Li, Baosheng; Shen, Zexiang; Huang, Wei
2017-01-01
Abstract A lightweight, flexible, and highly efficient energy management strategy is highly desirable for flexible electronic devices to meet a rapidly growing demand. Herein, Ni–Co–S nanosheet array is successfully deposited on graphene foam (Ni–Co–S/GF) by a one‐step electrochemical method. The Ni–Co–S/GF composed of Ni–Co–S nanosheet array which is vertically aligned to GF and provides a large interfacial area for redox reactions with optimum interstitials facilitates the ions diffusion. The Ni–Co–S/GF electrodes have high specific capacitance values of 2918 and 2364 F g−1 at current densities of 1 and 20 A g−1, respectively. Using such hierarchical Ni–Co–S/GF as the cathode, a flexible asymmetric supercapacitor (ASC) is further fabricated with polypyrrple(PPy)/GF as the anode. The flexible asymmetric supercapacitors have maximum operation potential window of 1.65 V, and energy densities of 79.3 and 37.7 Wh kg−1 when the power densities are 825.0 and 16100 W kg−1, respectively. It's worth nothing that the ASC cells have robust flexibility with performance well maintained when the devices were bent to different angles from 180° to 15° at a duration of 5 min. The efficient electrochemical deposition method of Ni–Co–S with a preferred orientation of nanosheet arrays is applicable for the flexible energy storage devices. PMID:29610721
Zhang, Chunyan; Cai, Xiaoyi; Qian, Yao; Jiang, Haifeng; Zhou, Lijun; Li, Baosheng; Lai, Linfei; Shen, Zexiang; Huang, Wei
2018-02-01
A lightweight, flexible, and highly efficient energy management strategy is highly desirable for flexible electronic devices to meet a rapidly growing demand. Herein, Ni-Co-S nanosheet array is successfully deposited on graphene foam (Ni-Co-S/GF) by a one-step electrochemical method. The Ni-Co-S/GF composed of Ni-Co-S nanosheet array which is vertically aligned to GF and provides a large interfacial area for redox reactions with optimum interstitials facilitates the ions diffusion. The Ni-Co-S/GF electrodes have high specific capacitance values of 2918 and 2364 F g -1 at current densities of 1 and 20 A g -1 , respectively. Using such hierarchical Ni-Co-S/GF as the cathode, a flexible asymmetric supercapacitor (ASC) is further fabricated with polypyrrple(PPy)/GF as the anode. The flexible asymmetric supercapacitors have maximum operation potential window of 1.65 V, and energy densities of 79.3 and 37.7 Wh kg -1 when the power densities are 825.0 and 16100 W kg -1 , respectively. It's worth nothing that the ASC cells have robust flexibility with performance well maintained when the devices were bent to different angles from 180° to 15° at a duration of 5 min. The efficient electrochemical deposition method of Ni-Co-S with a preferred orientation of nanosheet arrays is applicable for the flexible energy storage devices.
NASA Astrophysics Data System (ADS)
Berthier, Florent; Beigne, Edith; Heitzmann, Frédéric; Debicki, Olivier; Christmann, Jean-Frédéric; Valentian, Alexandre; Billoint, Olivier; Amat, Esteve; Morche, Dominique; Chairat, Soundous; Sentieys, Olivier
2016-11-01
In this paper, we propose to analyze Ultra Thin Body and Box FDSOI technology suitability and architectural solutions for IoT applications and more specifically for autonomous Wireless Sensor Nodes (WSNs). As IoT applications are extremely diversified there is a strong need for flexible solutions at design, architectural level but also at technological level. Moreover, as most of those systems are recovering their energy from the environment, they are challenged by low voltage supplies and low leakage functionalities. We detail in this paper some Ultra Thin Body and Box FDSOI 28 nm characteristics and results demonstrating that this technology could be a perfect option for multidisciplinary IoT devices. Back biasing capabilities and low voltage features are investigated demonstrating efficient high speed/low leakage flexibility. In addition, architectural solutions for WSNs microcontroller are also proposed taking advantage of Ultra Thin Body and Box FDSOI characteristics for full user applicative flexibility. A partitioned architecture between an Always Responsive part with an asynchronous Wake Up Controller (WUC) managing WSN current tasks and an On Demand part with a main processor for application maintenance is presented. First results of the Always Responsive part implemented in Ultra Thin Body and Box FDSOI 28 nm are also exposed.
2009-01-01
coatings include flexible liquid crystal displays, OLEDs , and photovoltaic modules.15 Additional applications include packaging for medical devices...copyright, see http://jap.aip.org/jap/copyright.jsp ics of TFT Technology on Flexible Substrates, Flexible Flat Panel Dis- plays, edited by G. P. Crawford...grade “Teonex Q65” is commonly used in the organic light emitting diode OLED field because it is both heat stabilized and coated with a scratch
Multiple wavelength silicon photonic 200 mm R+D platform for 25Gb/s and above applications
NASA Astrophysics Data System (ADS)
Szelag, B.; Blampey, B.; Ferrotti, T.; Reboud, V.; Hassan, K.; Malhouitre, S.; Grand, G.; Fowler, D.; Brision, S.; Bria, T.; Rabillé, G.; Brianceau, P.; Hartmann, J. M.; Hugues, V.; Myko, A.; Elleboode, F.; Gays, F.; Fédéli, J. M.; Kopp, C.
2016-05-01
A silicon photonics platform that uses a CMOS foundry line is described. Fabrication process is following a modular integration scheme which leads to a flexible platform, allowing different device combinations. A complete device library is demonstrated for 1310 nm applications with state of the art performances. A PDK which includes specific photonic features and which is compatible with commercial EDA tools has been developed allowing an MPW shuttle service. Finally platform evolutions such as device offer extension to 1550 nm or new process modules introduction are presented.
Supercapacitors based on pillared graphene nanostructures.
Lin, Jian; Zhong, Jiebin; Bao, Duoduo; Reiber-Kyle, Jennifer; Wang, Wei; Vullev, Valentine; Ozkan, Mihrimah; Ozkan, Cengiz S
2012-03-01
We describe the fabrication of highly conductive and large-area three dimensional pillared graphene nanostructure (PGN) films from assembly of vertically aligned CNT pillars on flexible copper foils for applications in electric double layer capacitors (EDLC). The PGN films synthesized via a one-step chemical vapor deposition process on flexible copper foils exhibit high conductivity with sheet resistance as low as 1.6 ohms per square and possessing high mechanical flexibility. Raman spectroscopy indicates the presence of multi walled carbon nanotubes (MWCNT) and their morphology can be controlled by the growth conditions. It was discovered that nitric acid treatment can significantly increase the specific capacitance of the devices. EDLC devices based on PGN electrodes (surface area of 565 m2/g) demonstrate enhanced performance with specific capacitance value as high as 330 F/g extracted from the current density-voltage (CV) measurements and energy density value of 45.8 Wh/kg. The hybrid graphene-CNT nanostructures are attractive for applications including supercapacitors, fuel cells and batteries.
Wearable energy-smart ribbons for synchronous energy harvest and storage
Li, Chao; Islam, Md. Monirul; Moore, Julian; Sleppy, Joseph; Morrison, Caleb; Konstantinov, Konstantin; Dou, Shi Xue; Renduchintala, Chait; Thomas, Jayan
2016-01-01
A promising energy source for many current and future applications is a ribbon-like device that could simultaneously harvest and store energy. Due to the high flexibility and weavable property, a fabric/matrix made using these ribbons could be highly beneficial for powering wearable electronics. Unlike the approach of using two separate devices, here we report a ribbon that integrates a solar cell and a supercapacitor. The electrons generated by the solar cell are directly transferred and stored on the reverse side of its electrode which in turn also functions as an electrode for the supercapacitor. When the flexible solar ribbon is illuminated with simulated solar light, the supercapacitor holds an energy density of 1.15 mWh cm−3 and a power density of 243 mW cm−3. Moreover, these ribbons are successfully woven into a fabric form. Our all-solid-state ribbon unveils a highly flexible and portable self-sufficient energy system with potential applications in wearables, drones and electric vehicles. PMID:27834367
Wearable energy-smart ribbons for synchronous energy harvest and storage
NASA Astrophysics Data System (ADS)
Li, Chao; Islam, Md. Monirul; Moore, Julian; Sleppy, Joseph; Morrison, Caleb; Konstantinov, Konstantin; Dou, Shi Xue; Renduchintala, Chait; Thomas, Jayan
2016-11-01
A promising energy source for many current and future applications is a ribbon-like device that could simultaneously harvest and store energy. Due to the high flexibility and weavable property, a fabric/matrix made using these ribbons could be highly beneficial for powering wearable electronics. Unlike the approach of using two separate devices, here we report a ribbon that integrates a solar cell and a supercapacitor. The electrons generated by the solar cell are directly transferred and stored on the reverse side of its electrode which in turn also functions as an electrode for the supercapacitor. When the flexible solar ribbon is illuminated with simulated solar light, the supercapacitor holds an energy density of 1.15 mWh cm-3 and a power density of 243 mW cm-3. Moreover, these ribbons are successfully woven into a fabric form. Our all-solid-state ribbon unveils a highly flexible and portable self-sufficient energy system with potential applications in wearables, drones and electric vehicles.
Wearable energy-smart ribbons for synchronous energy harvest and storage.
Li, Chao; Islam, Md Monirul; Moore, Julian; Sleppy, Joseph; Morrison, Caleb; Konstantinov, Konstantin; Dou, Shi Xue; Renduchintala, Chait; Thomas, Jayan
2016-11-11
A promising energy source for many current and future applications is a ribbon-like device that could simultaneously harvest and store energy. Due to the high flexibility and weavable property, a fabric/matrix made using these ribbons could be highly beneficial for powering wearable electronics. Unlike the approach of using two separate devices, here we report a ribbon that integrates a solar cell and a supercapacitor. The electrons generated by the solar cell are directly transferred and stored on the reverse side of its electrode which in turn also functions as an electrode for the supercapacitor. When the flexible solar ribbon is illuminated with simulated solar light, the supercapacitor holds an energy density of 1.15 mWh cm -3 and a power density of 243 mW cm -3 . Moreover, these ribbons are successfully woven into a fabric form. Our all-solid-state ribbon unveils a highly flexible and portable self-sufficient energy system with potential applications in wearables, drones and electric vehicles.
Status and Prospects of ZnO-Based Resistive Switching Memory Devices
NASA Astrophysics Data System (ADS)
Simanjuntak, Firman Mangasa; Panda, Debashis; Wei, Kung-Hwa; Tseng, Tseung-Yuen
2016-08-01
In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges.
Wang, Jie-Xin; Sun, Qian; Chen, Bo; Wu, Xi; Zeng, Xiao-Fei; Zhang, Cong; Zou, Hai-Kui; Chen, Jian-Feng
2015-05-15
Transparent solutions of nanocrystals exhibit many unique properties, and are thus attractive materials for numerous applications. However, the synthesis of transparent nanocrystal solutions of magnesium hydroxide (MH) with wide applications is yet to be realized. Here, we report a facile two-step process, which includes a direct reactive precipitation in alcohol phase instead of aqueous phase combined with a successive surface modification, to prepare transparent alcohol solutions containing lamellar MH nanocrystals with an average size of 52 nm and an ultrathin thickness of 1-2 nm, which is the thinnest MH nanoplatelet reported in the literatures. Further, highly flexible and transparent nanocomposite films are fabricated with a solution mixing method by adding the transparent MH nanocrystal solutions into PVB solution. Considering the simplicity of the fabrication process, high transparency and good flexibility, this MH/polymer nanocomposite film is promising for flame-resistant applications in plastic electronics and optical devices with high transparency, such as flexible displays, optical filters, and flexible solar cells.
Lee, Ho Won; Jeong, Hyunjin; Kim, Young Kwan; Ha, Yunkyoung
2015-10-01
Recently, white organic light-emitting diodes (OLEDs) have aroused considerable attention because they have the potential of next-generation flexible displays and white illuminated applications. White OLED applications are particularly heading to the industry but they have still many problems both materials and manufacturing. Therefore, we proposed that the new iridium compounds of orange emitters could be demonstrated and also applied to flexible white OLEDs for verification of potential. First, we demonstrated the chemical properties of new orange iridium compounds. Secondly, conventional two kinds of white phosphorescent OLEDs were fabricated by following devices; indium-tin oxide coated glass substrate/4,4'-bis[N-(napthyl)-N-phenylamino]biphenyl/N,N'-dicarbazolyl-3,5-benzene doped with blue and new iridium compounds for orange emitting 8 wt%/1,3,5-tris[N-phenylbenzimidazole-2-yl]benzene/lithium quinolate/aluminum. In addition, we fabricated white OLEDs using these emitters to verify the potential on flexible substrate. Therefore, this work could be proposed that white light applications can be applied and could be extended to additional research on flexible applications.
Cai, Jiaying; Cizek, Karel; Long, Brenton; McAferty, Kenyon; Campbell, Casey G.; Allee, David R.; Vogt, Bryan D.; La Belle, Jeff; Wang, Joseph
2009-01-01
The influence of the mechanical bending, rolling and crimping of flexible screen-printed electrodes upon their electrical properties and electrochemical behavior has been elucidated. Three different flexible plastic substrates, Mylar, polyethylene naphthalate (PEN), and Kapton, have been tested in connection to the printing of graphite ink working electrodes. Our data indicate that flexible printed electrodes can be bent to extremely small radii of curvature and still function well, despite a marginal increase the electrical resistance. Below critical radii of curvature of ~8 mm, full recovery of the electrical resistance occurs upon strain release. The electrochemical response is maintained for sub-mm bending radii and a 180° pinch of the electrode does not lead to device failure. The electrodes appear to be resistant to repeated bending. Such capabilities are demonstrated using model compounds, including ferrocyanide, trinitrotoluene (TNT) and nitronaphthalene (NN). These printed electrodes hold great promise for widespread applications requiring flexible, yet robust non-planar sensing devices. PMID:20160861
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shervin, Shahab; Asadirad, Mojtaba; Materials Science and Engineering Program, University of Houston, Houston, Texas 77204
This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strainmore » in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.« less
Graphene-based flexible and wearable electronics
NASA Astrophysics Data System (ADS)
Das, Tanmoy; Sharma, Bhupendra K.; Katiyar, Ajit K.; Ahn, Jong-Hyun
2018-01-01
Graphene with an exceptional combination of electronic, optical and outstanding mechanical features has been proved to lead a completely different kind of 2-D electronics. The most exciting feature of graphene is its ultra-thin thickness, that can be conformally contacted to any kind of rough surface without losing much of its transparency and conductivity. Graphene has been explored demonstrating various prototype flexible electronic applications, however, its potentiality has been proven wherever transparent conductive electrodes (TCEs) are needed in a flexible, stretchable format. Graphene-based TCEs in flexible electronic applications showed greatly superior performance over their conventionally available competitor indium tin oxide (ITO). Moreover, enormous applications have been emerging, especially in wearable devices that can be potentially used in our daily life as well as in biomedical areas. However, the production of high-quality, defect-free large area graphene is still a challenge and the main hurdle in the commercialization of flexible and wearable products. The objective of the present review paper is to summarize the progress made so far in graphene-based flexible and wearable applications. The current developments including challenges and future perspectives are also highlighted. Project supported by the National Research Foundation of Korea (No. NRF-2015R1A3A2066337).
In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P
2012-09-25
We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.
NASA Astrophysics Data System (ADS)
Bai, Shi; Zhang, Shigang; Zhou, Weiping; Ma, Delong; Ma, Ying; Joshi, Pooran; Hu, Anming
2017-10-01
Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the entertainment, health monitoring, and medical care sectors. In this work, conducting copper electrodes were fabricated on polydimethylsiloxane as sensitive stretchable microsensors by integrating laser direct writing and transfer printing approaches. The copper electrode was reduced from copper salt using laser writing rather than the general approach of printing with pre-synthesized copper or copper oxide nanoparticles. An electrical resistivity of 96 μΩ cm was achieved on 40-μm-thick Cu electrodes on flexible substrates. The motion sensing functionality successfully demonstrated a high sensitivity and mechanical robustness. This in situ fabrication method leads to a path toward electronic devices on flexible substrates.[Figure not available: see fulltext.
Gigahertz flexible graphene transistors for microwave integrated circuits.
Yeh, Chao-Hui; Lain, Yi-Wei; Chiu, Yu-Chiao; Liao, Chen-Hung; Moyano, David Ricardo; Hsu, Shawn S H; Chiu, Po-Wen
2014-08-26
Flexible integrated circuits with complex functionalities are the missing link for the active development of wearable electronic devices. Here, we report a scalable approach to fabricate self-aligned graphene microwave transistors for the implementation of flexible low-noise amplifiers and frequency mixers, two fundamental building blocks of a wireless communication receiver. A devised AlOx T-gate structure is used to achieve an appreciable increase of device transconductance and a commensurate reduction of the associated parasitic resistance, thus yielding a remarkable extrinsic cutoff frequency of 32 GHz and a maximum oscillation frequency of 20 GHz; in both cases the operation frequency is an order of magnitude higher than previously reported. The two frequencies work at 22 and 13 GHz even when subjected to a strain of 2.5%. The gigahertz microwave integrated circuits demonstrated here pave the way for applications which require high flexibility and radio frequency operations.
Flexible Architecture for FPGAs in Embedded Systems
NASA Technical Reports Server (NTRS)
Clark, Duane I.; Lim, Chester N.
2012-01-01
Commonly, field-programmable gate arrays (FPGAs) being developed in cPCI embedded systems include the bus interface in the FPGA. This complicates the development because the interface is complicated and requires a lot of development time and FPGA resources. In addition, flight qualification requires a substantial amount of time be devoted to just this interface. Another complication of putting the cPCI interface into the FPGA being developed is that configuration information loaded into the device by the cPCI microprocessor is lost when a new bit file is loaded, requiring cumbersome operations to return the system to an operational state. Finally, SRAM-based FPGAs are typically programmed via specialized cables and software, with programming files being loaded either directly into the FPGA, or into PROM devices. This can be cumbersome when doing FPGA development in an embedded environment, and does not have an easy path to flight. Currently, FPGAs used in space applications are usually programmed via multiple space-qualified PROM devices that are physically large and require extra circuitry (typically including a separate one-time programmable FPGA) to enable them to be used for this application. This technology adds a cPCI interface device with a simple, flexible, high-performance backend interface supporting multiple backend FPGAs. It includes a mechanism for programming the FPGAs directly via the microprocessor in the embedded system, eliminating specialized hardware, software, and PROM devices and their associated circuitry. It has a direct path to flight, and no extra hardware and minimal software are required to support reprogramming in flight. The device added is currently a small FPGA, but an advantage of this technology is that the design of the device does not change, regardless of the application in which it is being used. This means that it needs to be qualified for flight only once, and is suitable for one-time programmable devices or an application specific integrated circuit (ASIC). An application programming interface (API) further reduces the development time needed to use the interface device in a system.
Zhao, Xin; Hayner, Cary M; Kung, Mayfair C; Kung, Harold H
2011-11-22
The unique combination of high surface area, high electrical conductivity and robust mechanical integrity has attracted great interest in the use of graphene sheets for future electronics applications. Their potential applications for high-power energy storage devices, however, are restricted by the accessible volume, which may be only a fraction of the physical volume, a consequence of the compact geometry of the stack and the ion mobility. Here we demonstrated that remarkably enhanced power delivery can be realized in graphene papers for the use in Li-ion batteries by controlled generation of in-plane porosity via a mechanical cavitation-chemical oxidation approach. These flexible, holey graphene papers, created via facile microscopic engineering, possess abundant ion binding sites, enhanced ion diffusion kinetics, and excellent high-rate lithium-ion storage capabilities, and are suitable for high-performance energy storage devices. © 2011 American Chemical Society
Development and Evaluation of Micro-Electrocorticography Arrays for Neural Interfacing Applications
NASA Astrophysics Data System (ADS)
Schendel, Amelia Ann
Neural interfaces have great promise for both electrophysiological research and therapeutic applications. Whether for the study of neural circuitry or for neural prosthetic or other therapeutic applications, micro-electrocorticography (micro-ECoG) arrays have proven extremely useful as neural interfacing devices. These devices strike a balance between invasiveness and signal resolution, an important step towards eventual human application. The objective of this research was to make design improvements to micro-ECoG devices to enhance both biocompatibility and device functionality. To best evaluate the effectiveness of these improvements, a cranial window imaging method for in vivo monitoring of the longitudinal tissue response post device implant was developed. Employment of this method provided valuable insight into the way tissue grows around micro-ECoG arrays after epidural implantation, spurring a study of the effects of substrate geometry on the meningeal tissue response. The results of the substrate footprint comparison suggest that a more open substrate geometry provides an easy path for the tissue to grow around to the top side of the device, whereas a solid device substrate encourages the tissue to thicken beneath the device, between the electrode sites and the brain. The formation of thick scar tissue between the recording electrode sites and the neural tissue is disadvantageous for long-term recorded signal quality, and thus future micro-ECoG device designs should incorporate open-architecture substrates for enhanced longitudinal in vivo function. In addition to investigating improvements for long-term device reliability, it was also desired to enhance the functionality of micro-ECoG devices for neural electrophysiology research applications. To achieve this goal, a completely transparent graphene-based device was fabricated for use with the cranial window imaging method and optogenetic techniques. The use of graphene as the conductive material provided the transparency necessary to image tissues directly below the micro-ECoG electrode sites, and to transmit light through the electrode sites to underlying neural tissue, for optical stimulation of neural cells. The flexibility and broad-spectrum transparency of graphene make it an ideal choice for thin-film, flexible electronic devices.
Highly Flexible and Efficient Solar Steam Generation Device.
Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing
2017-08-01
Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhao, Fei; Cheng, Huhu; Hu, Yue; Song, Long; Zhang, Zhipan; Jiang, Lan; Qu, Liangti
2014-01-01
Graphitic carbon nitride nanosheet (g-C3N4-NS) has layered structure similar with graphene nanosheet and presents unusual physicochemical properties due to the s-triazine fragments. But their electronic and electrochemical applications are limited by the relatively poor conductivity. The current work provides the first example that atomically thick g-C3N4-NSs are the ideal candidate as the active insulator layer with tunable conductivity for achieving the high performance memory devices with electrical bistability. Unlike in conventional memory diodes, the g-C3N4-NSs based devices combined with graphene layer electrodes are flexible, metal-free and low cost. The functionalized g-C3N4-NSs exhibit desirable dispersibility and dielectricity which support the all-solution fabrication and high performance of the memory diodes. Moreover, the flexible memory diodes are conveniently fabricated through the fast laser writing process on graphene oxide/g-C3N4-NSs/graphene oxide thin film. The obtained devices not only have the nonvolatile electrical bistability with great retention and endurance, but also show the rewritable memory effect with a reliable ON/OFF ratio of up to 105, which is the highest among all the metal-free flexible memory diodes reported so far, and even higher than those of metal-containing devices. PMID:25073687
Large-area high-efficiency flexible PHOLED lighting panels
NASA Astrophysics Data System (ADS)
Pang, Huiqing; Mandlik, Prashant; Levermore, Peter A.; Silvernail, Jeff; Ma, Ruiqing; Brown, Julie J.
2012-09-01
Organic Light Emitting Diodes (OLEDs) provide various attractive features for next generation illumination systems, including high efficiency, low power, thin and flexible form factor. In this work, we incorporated phosphorescent emitters and demonstrated highly efficient white phosphorescent OLED (PHOLED) devices on flexible plastic substrates. The 0.94 cm2 small-area device has total thickness of approximately 0.25 mm and achieved 63 lm/W at 1,000 cd/m2 with CRI = 85 and CCT = 2920 K. We further designed and fabricated a 15 cm x 15 cm large-area flexible white OLED lighting panels, finished with a hybrid single-layer ultra-low permeability single layer barrier (SLB) encapsulation film. The flexible panel has an active area of 116.4 cm2, and achieved a power efficacy of 47 lm/W at 1,000 cd/m2 with CRI = 83 and CCT = 3470 K. The efficacy of the panel at 3,000 cd/m2 is 43 lm/W. The large-area flexible PHOLED lighting panel is to bring out enormous possibilities to the future general lighting applications.
High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites.
Wang, Yuming; Bai, Sai; Cheng, Lu; Wang, Nana; Wang, Jianpu; Gao, Feng; Huang, Wei
2016-06-01
Flexible and light-weight solar cells are important because they not only supply power to wearable and portable devices, but also reduce the transportation and installation cost of solar panels. High-efficiency organometal halide perovskite solar cells can be fabricated by a low-temperature solution process, and hence are promising for flexible-solar-cell applications. Here, the development of perovskite solar cells is briefly discussed, followed by the merits of organometal halide perovskites as promising candidates as high-efficiency, flexible, and light-weight photovoltaic materials. Afterward, recent developments of flexible solar cells based on perovskites are reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rogers, John A; Meitl, Matthew; Sun, Yugang; Ko, Heung Cho; Carlson, Andrew; Choi, Won Mook; Stoykovich, Mark; Jiang, Hanqing; Huang, Yonggang; Nuzzo, Ralph G; Zhu, Zhengtao; Menard, Etienne; Khang, Dahl-Young
2014-05-20
In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Rogers, John A [Champaign, IL; Meitl, Matthew [Raleigh, NC; Sun, Yugang [Naperville, IL; Ko, Heung Cho [Urbana, IL; Carlson, Andrew [Urbana, IL; Choi, Won Mook [Champaign, IL; Stoykovich, Mark [Dover, NH; Jiang, Hanqing [Urbana, IL; Huang, Yonggang [Glencoe, IL; Nuzzo, Ralph G [Champaign, IL; Lee, Keon Jae [Tokyo, JP; Zhu, Zhengtao [Rapid City, SD; Menard, Etienne [Durham, NC; Khang, Dahl-Young [Seoul, KR; Kan, Seong Jun [Daejeon, KR; Ahn, Jong Hyun [Suwon, KR; Kim, Hoon-sik [Champaign, IL
2012-07-10
In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... Marks, Devices, and Certificates; Egg Products Export Certification AGENCY: Food Safety and Inspection... inspection marks, devices, and certificates. In addition, FSIS is proposing to amend the egg product export... possible under the current system. The Egg Products Inspection Act (EPIA) (21 U.S.C. 1031-1056) does not...
NASA Astrophysics Data System (ADS)
Haag, Sebastian; Bernhardt, Henning; Rübenach, Olaf; Haverkamp, Tobias; Müller, Tobias; Zontar, Daniel; Brecher, Christian
2015-02-01
In many applications for high-power diode lasers, the production of beam-shaping and homogenizing optical systems experience rising volumes and dynamical market demands. The automation of assembly processes on flexible and reconfigurable machines can contribute to a more responsive and scalable production. The paper presents a flexible mounting device designed for the challenging assembly of side-tab based optical systems. It provides design elements for precisely referencing and fixating two optical elements in a well-defined geometric relation. Side tabs are presented to the machine allowing the application of glue and a rotating mechanism allows the attachment to the optical elements. The device can be adjusted to fit different form factors and it can be used in high-volume assembly machines. The paper shows the utilization of the device for a collimation module consisting of a fast-axis and a slow-axis collimation lens. Results regarding the repeatability and process capability of bonding side tab assemblies as well as estimates from 3D simulation for overall performance indicators achieved such as cycle time and throughput will be discussed.
Kuang, Xiao; Chen, Kaijuan; Dunn, Conner K; Wu, Jiangtao; Li, Vincent C F; Qi, H Jerry
2018-02-28
The three-dimensional (3D) printing of flexible and stretchable materials with smart functions such as shape memory (SM) and self-healing (SH) is highly desirable for the development of future 4D printing technology for myriad applications, such as soft actuators, deployable smart medical devices, and flexible electronics. Here, we report a novel ink that can be used for the 3D printing of highly stretchable, SM, and SH elastomer via UV-light-assisted direct-ink-write printing. An ink containing urethane diacrylate and a linear semicrystalline polymer is developed for the 3D printing of a semi-interpenetrating polymer network elastomer that can be stretched by up to 600%. The 3D-printed complex structures show interesting functional properties, such as high strain SM and SM -assisted SH capability. We demonstrate that such a 3D-printed SM elastomer has the potential application for biomedical devices, such as vascular repair devices. This research paves a new way for the further development of novel 4D printing, soft robotics, and biomedical devices.
Reduced graphene oxide nanoshells for flexible and stretchable conductors
NASA Astrophysics Data System (ADS)
Jiang, Wen-Shuai; Liu, Zhi-Bo; Xin, Wei; Chen, Xu-Dong; Tian, Jian-Guo
2016-03-01
Graphene has been extensively investigated for its use in flexible electronics, especially graphene synthesized by chemical vapor deposition (CVD). To enhance the flexibility of CVD graphene, wrinkles are often introduced. However, reports on the flexibility of reduced graphene oxide (RGO) films are few, because of their weak conductivity and, in particular, poor flexibility. To improve the flexibility of RGO, reduced graphene oxide nanoshells are fabricated, which combine self-assembled polystyrene nanosphere arrays and high-temperature thermal annealing processes. The resulting RGO films with nanoshells present a better resistance stabilization after stretching and bending the devices than RGO without nanoshells. The sustainability and performance advances demonstrated here are promising for the adoption of flexible electronics in a wide variety of future applications.
Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets.
Wang, Qisheng; Safdar, Muhammad; Xu, Kai; Mirza, Misbah; Wang, Zhenxing; He, Jun
2014-07-22
Van der Waals epitaxy (vdWE) is of great interest due to its extensive applications in the synthesis of ultrathin two-dimensional (2D) layered materials. However, vdWE of nonlayered functional materials is still not very well documented. Here, although tellurium has a strong tendency to grow into one-dimensional nanoarchitecture due to its chain-like structure, we successfully realize 2D hexagonal tellurium nanoplates on flexible mica sheets via vdWE. Chemically inert mica surface is found to be crucial for the lateral growth of hexagonal tellurium nanoplates since it (1) facilitates the migration of tellurium adatoms along mica surface and (2) allows a large lattice mismatch. Furthermore, 2D tellurium hexagonal nanoplates-based photodetectors are in situ fabricated on flexible mica sheets. Efficient photoresponse is obtained even after bending the device for 100 times, indicating 2D tellurium hexagonal nanoplates-based photodetectors on mica sheets have a great application potential in flexible and wearable optoelectronic devices. We believe the fundamental understanding of vdWE effect on the growth of 2D tellurium hexagonal nanoplate can pave the way toward leveraging vdWE as a useful channel to realize the 2D geometry of other nonlayered materials.
Flexible anodized aluminum oxide membranes with customizable back contact materials
NASA Astrophysics Data System (ADS)
Nadimpally, B.; Jarro, C. A.; Mangu, R.; Rajaputra, S.; Singh, V. P.
2016-12-01
Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.
Zhang, Xiaoliang; Aitola, Kerttu; Hägglund, Carl; Kaskela, Antti; Johansson, Malin B; Sveinbjörnsson, Kári; Kauppinen, Esko I; Johansson, Erik M J
2017-01-20
Single-walled carbon nanotubes (SWCNTs) show great potential as an alternative material for front electrodes in photovoltaic applications, especially for flexible devices. In this work, a press-transferred transparent SWCNT film was utilized as front electrode for colloidal quantum dot solar cells (CQDSCs). The solar cells were fabricated on both glass and flexible substrates, and maximum power conversion efficiencies of 5.5 and 5.6 %, respectively, were achieved, which corresponds to 90 and 92 % of an indium-doped tin oxide (ITO)-based device (6.1 %). The SWCNTs are therefore a very good alternative to the ITO-based electrodes especially for flexible solar cells. The optical electric field distribution and optical losses within the devices were simulated theoretically and the results agree with the experimental results. With the optical simulations that were performed it may also be possible to enhance the photovoltaic performance of SWCNT-based solar cells even further by optimizing the device configuration or by using additional optical active layers, thus reducing light reflection of the device and increasing light absorption in the quantum dot layer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Rajagopalan, P.; Singh, Vipul; Palani, I. A.
2018-03-01
Zinc oxide (ZnO) is a remarkable inorganic semiconductor with exceptional piezoelectric properties compared to other semiconductors. However, in comparison to lead-based hazardous piezoelectric materials, its properties have undesired limitations. Here we report a 5˜6 fold enhancement in piezoelectric features via chemical doping of copper matched to intrinsic ZnO. A flexible piezoelectric nanogenerator (F-PENG) device was fabricated using an unpretentious solution process of spin coating, with other advantages such as robustness, low-weight, improved adhesion, and low cost. The device was used to demonstrate energy harvesting from a standard weight as low as 4 gm and can work as a self-powered mass sensor in a broad range of 4 to 100 gm. The device exhibited a novel energy harvesting technique from a wind source due to its inherent flexibility. At three different velocities (10˜30 m s-1) and five different angles of attack (0˜180 degrees), the device validated the ability to discern different velocities and directions of flow. The device will be useful for mapping the flow of air apart from harvesting the energy. The simulation was done to verify the underlining mechanism of aerodynamics involved.
Saran, Rinku; Stolojan, Vlad; Curry, Richard J.
2014-01-01
One dimensional single-crystal nanorods of C60 possess unique optoelectronic properties including high electron mobility, high photosensitivity and an excellent electron accepting nature. In addition, their rapid large scale synthesis at room temperature makes these organic semiconducting nanorods highly attractive for advanced optoelectronic device applications. Here, we report low-cost large-area flexible photoconductor devices fabricated using C60 nanorods. We demonstrate that the photosensitivity of the C60 nanorods can be enhanced ~400-fold via an ultralow photodoping mechanism. The photodoped devices offer broadband UV-vis-NIR spectral tuneability, exhibit a detectivitiy >109 Jones, an external quantum efficiency of ~100%, a linear dynamic range of 80 dB, a rise time 60 µs and the ability to measure ac signals up to ~250 kHz. These figures of merit combined are among the highest reported for one dimensional organic and inorganic large-area planar photoconductors and are competitive with commercially available inorganic photoconductors and photoconductive cells. With the additional processing benefits providing compatibility with large-area flexible platforms, these devices represent significant advances and make C60 nanorods a promising candidate for advanced photodetector technologies. PMID:24853479
Rajagopalan, P; Singh, Vipul; Palani, I A
2018-02-01
Zinc oxide (ZnO) is a remarkable inorganic semiconductor with exceptional piezoelectric properties compared to other semiconductors. However, in comparison to lead-based hazardous piezoelectric materials, its properties have undesired limitations. Here we report a 5∼6 fold enhancement in piezoelectric features via chemical doping of copper matched to intrinsic ZnO. A flexible piezoelectric nanogenerator (F-PENG) device was fabricated using an unpretentious solution process of spin coating, with other advantages such as robustness, low-weight, improved adhesion, and low cost. The device was used to demonstrate energy harvesting from a standard weight as low as 4 gm and can work as a self-powered mass sensor in a broad range of 4 to 100 gm. The device exhibited a novel energy harvesting technique from a wind source due to its inherent flexibility. At three different velocities (10∼30 m s -1 ) and five different angles of attack (0∼180 degrees), the device validated the ability to discern different velocities and directions of flow. The device will be useful for mapping the flow of air apart from harvesting the energy. The simulation was done to verify the underlining mechanism of aerodynamics involved.
Anyebe, Ezekiel A.; Sandall, I.; Jin, Z. M.; Sanchez, Ana M.; Rajpalke, Mohana K.; Veal, Timothy D.; Cao, Y. C.; Li, H. D.; Harvey, R.; Zhuang, Q. D.
2017-01-01
The recent discovery of flexible graphene monolayers has triggered extensive research interest for the development of III-V/graphene functional hybrid heterostructures. In order to fully exploit their enormous potential in device applications, it is essential to optimize epitaxial growth for the precise control of nanowire geometry and density. Herein, we present a comprehensive growth study of InAs nanowires on graphitic substrates by molecular beam epitaxy. Vertically well-aligned and thin InAs nanowires with high yield were obtained in a narrow growth temperature window of 420–450 °C within a restricted domain of growth rate and V/III flux ratio. The graphitic substrates enable high nanowire growth rates, which is favourable for cost-effective device fabrication. A relatively low density of defects was observed. We have also demonstrated InAs-NWs/graphite heterojunction devices exhibiting rectifying behaviour. Room temperature photovoltaic response with a cut-off wavelength of 3.4 μm was demonstrated. This elucidates a promising route towards the monolithic integration of InAs nanowires with graphite for flexible and functional hybrid devices. PMID:28393845
Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors
NASA Astrophysics Data System (ADS)
Marrs, Michael
A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs between low temperature and low stress (less than -70 MPa compressive) and device performance. Devices with a dark current of less than 1.0 pA/mm2 and a quantum efficiency of 68% have been demonstrated. Alternative processing techniques, such as pixelating the PIN diode and using organic photodiodes have also been explored for applications where extreme flexibility is desired.
Systems and methods for improved telepresence
Anderson, Matthew O.; Willis, W. David; Kinoshita, Robert A.
2005-10-25
The present invention provides a modular, flexible system for deploying multiple video perception technologies. The telepresence system of the present invention is capable of allowing an operator to control multiple mono and stereo video inputs in a hands-free manner. The raw data generated by the input devices is processed into a common zone structure that corresponds to the commands of the user, and the commands represented by the zone structure are transmitted to the appropriate device. This modularized approach permits input devices to be easily interfaced with various telepresence devices. Additionally, new input devices and telepresence devices are easily added to the system and are frequently interchangeable. The present invention also provides a modular configuration component that allows an operator to define a plurality of views each of which defines the telepresence devices to be controlled by a particular input device. The present invention provides a modular flexible system for providing telepresence for a wide range of applications. The modularization of the software components combined with the generalized zone concept allows the systems and methods of the present invention to be easily expanded to encompass new devices and new uses.
Lam, Jeun-Yan; Shih, Chien-Chung; Lee, Wen-Ya; Chueh, Chu-Chen; Jang, Guang-Way; Huang, Cheng-Jyun; Tung, Shih-Huang; Chen, Wen-Chang
2018-05-30
Exploiting biomass has raised great interest as an alternative to the fossil resources for environmental protection. In this respect, polyethylene furanoate (PEF), one of the bio-based polyesters, thus reveals a great potential to replace the commonly used polyethylene terephthalate (PET) on account of its better mechanical, gas barrier, and thermal properties. Herein, a bio-based, flexible, conductive film is successfully developed by coupling a PEF plastic substrate with silver nanowires (Ag NWs). Besides the appealing advantage of renewable biomass, PEF also exhibits a good transparency around 90% in the visible wavelength range, and its constituent polar furan moiety is revealed to enable an intense interaction with Ag NWs to largely enhance the adhesion of Ag NWs grown above, as exemplified by the superior bending and peeling durability than the currently prevailing PET substrate. Finally, the efficiency of conductive PEF/Ag NWs film in fabricating efficient flexible organic thin-film transistor and organic photovoltaic (OPV) is demonstrated. The OPV device achieves a power conversion efficiency of 6.7%, which is superior to the device based on ITO/PEN device, manifesting the promising merit of the bio-based PEF for flexible electronic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shimotsu, Rie; Takumi, Takahiro; Vohra, Varun
2017-07-31
Recent studies have demonstrated the advantage of developing pressure-sensitive devices with light-emitting properties for direct visualization of pressure distribution, potential application to next generation touch panels and human-machine interfaces. To ensure that this technology is available to everyone, its production cost should be kept as low as possible. Here, simple device concepts, namely, pressure sensitive flexible hybrid electrodes and OLED architecture, are used to produce low-cost resistive or light-emitting pressure sensors. Additionally, integrating solution-processed self-assembled micro-structures into the flexible hybrid electrodes composed of an elastomer and conductive materials results in enhanced device performances either in terms of pressure or spatial distribution sensitivity. For instance, based on the pressure applied, the measured values for the resistances of pressure sensors range from a few MΩ down to 500 Ω. On the other hand, unlike their evaporated equivalents, the combination of solution-processed flexible electrodes with an inverted OLED architectures display bright green emission when a pressure over 200 kPa is applied. At a bias of 3 V, their luminance can be tuned by applying a higher pressure of 500 kPa. Consequently, features such as fingernails and fingertips can be clearly distinguished from one another in these long-lasting low-cost devices.
EDITORIAL: Nanotechnology-based flexible electronics Nanotechnology-based flexible electronics
NASA Astrophysics Data System (ADS)
Subramanian, Vivek; Lee, Takhee
2012-08-01
Research on flexible electronics has grown exponentially over the last decade. Researchers around the globe are developing a wide range of flexible systems, including displays [1, 2], sensors [3-5], RFID tags [6, 7] and other similar devices [8]. Innovations in materials have been key to the increased research success in this field of research in recent years [9]. Transistors, interconnects, memory cells, passive components and other assorted devices all have challenging material demands for flexible electronics to become a reality. Nanomaterials of various kinds have been found to represent a tremendously powerful tool, with nanoparticles [10], nanotubes, nanowires [3, 11] and engineered organic molecules [12, 13] contributing to the realization of high-performance semiconductors, dielectrics and conductors for flexible electronics applications. Nanomaterials offer tunability in terms of performance, solution processability and processing temperature requirements, which makes them very attractive as building blocks for flexible electronic systems. Indeed, such systems represent some of the largest families of commercially produced nanomaterials today, and numerous commercial products based on nanoparticle formulations are widely available. This special issue focuses on the rapidly blossoming field of flexible electronics, with a particular focus on the use of nanotechnology to facilitate flexible electronic materials, processes, devices and systems. Contributions to the issue describe the development of nanomaterials—including nanoparticles, nanotubes, nanowires and carbon-based thin films—for use in conductors, transparent electrodes, semiconductors and dielectrics. The articles feature innovations in nanomanufacturing and novel materials, as well as the application of these technologies to advanced flexible devices and systems. As flexible electronics systems move rapidly towards successful commercial deployment, it is extremely likely that they will exploit nanomaterials as building blocks. Developments in the field will help to leverage the power of these materials to realize novel functionalities in flexible form factors. This special issue provides a view of the state of the art in these technologies, and gives a vision of the coming innovations that will make flexible electronics a reality. References [1] Gelinck G H et al 2004 Flexible active-matrix displays and shift registers based on solution-processed organic transistors Nature Mater. 3 106-10 [2] Zhou L, Wanga A, Wu S C, Sun J, Park S and Jackson T N 2006 All-organic active matrix flexible display Appl. Phys. Lett. 88 083502 [3] Fan Z, Ho J C, Jacobson Z A, Razavi H and Javey A 2008 Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry Proc. Natl Acad. Sci. 105 11066 [4] Sekitani T et al 2009 Organic nonvolatile memory transistors for flexible sensor arrays Science 326 1516-9 [5] Mannsfeld S C B et al 2010 Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers Nature Mater. 9 859-64 [6]Subramanian V, Frechet J M J, Chang P C, Huang D C, Lee J B, Molesa S E, Murphy A R, Redinger D R and Volkman S K 2005 Progress toward development of all-printed RFID tags: materials, processes, and devices Proc. IEEE 93 1330-8 [7] Jung M et al 2010 All-printed and roll-to-roll-printable 13.56 MHz-operated 1 bit RF tag on plastic foils IEEE Trans. Electron. Devices 57 571-80 [8] Kim D-H et al 2011 Epidermal electronics Science 333 838-43 [9] Wagner S and Bauer S 2012 Materials for stretchable electronics MRS Bull. 37 207 [10] Grouchko M, Kamyshny A and Magdassi S 2009 Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing J. Mater. Chem. 19 3057-62 [11] Takei K et al 2010 Nanowire active-matrix circuitry for low-voltage macroscale artificial skin Nature Mater. 9 821-6 [12] Sekitani T, Zschieschang U, Klauk H and Someya T 2010 Flexible organic transistors and circuits with extreme bending stability Nature Mater. 9 1015-22 [13] Park S, Wang G, Cho B, Kim Y, Song S, Ji Y, Yoon M and Lee T 2012 Flexible molecular-scale electronic devices Nature Nanotechnol. 7 438-42
NASA Astrophysics Data System (ADS)
Wang, Li; Luo, Yu; Feng, Xueming; Pei, Yuechen; Lu, Bingheng; Cheng, Shenggui
2018-05-01
In flexible OLEDs (FOLEDs), the traditional ITO anode has disadvantages such as refractive-index mismatches among substrate and other functional layers, leads to light loss of nearly 80%, meanwhile, its brittle nature and lack in raw materials hinder its further applications. We investigated an efficient FOLED using a semi-transparent silver (Ag) anode, whereas the device was built on a nano-corrugated flexible polycarbonate (PC) substrate prepared by thermal nanoimprint lithography. The corrugations were well preserved on each layer of the device, both the micro-cavity effect and surface plasmon polariton (SPP) modes of light loss were effectively suppressed. As a result, the current efficiency of the FOLED using a conformal corrugated Ag anode enhanced by 100% compared with a planar Ag anode device, and enhanced by 13% with conventional ITO device. In addition, owing to the quasi-periodical arrangements of the corrugations, the device achieved broad spectra and Lambertian angular emission. The Ag anode significantly improved the bending properties of the OLED as compared to the conventional ITO device, leading to a longer lifetime in practical use. The proposed manufacturing strategy will be useful for fabricating nano corrugations on plastic substrate of FOLED in a cost-effective and convenient manner.
NASA Astrophysics Data System (ADS)
Lee, Jun Seop; Kim, Minkyu; Lee, Choonghyeon; Cho, Sunghun; Oh, Jungkyun; Jang, Jyongsik
2015-02-01
With recent developments in technology, tremendous effort has been devoted to producing materials for flexible device systems. As a promising approach, solution-processed conducting polymers (CPs) have been extensively studied owing to their facile synthesis, high electrical conductivity, and various morphologies with diverse substrates. Here, we report the demonstration of platinum decorated reduced graphene oxide intercalated polyanililne:poly(4-styrenesulfonate) (Pt_rGO/PANI:PSS) hybrid paste for flexible electric devices. First, platinum decorated reduced graphene oxide (Pt_rGO) was fabricated through the chemical reduction of platinum cations and subsequent heat reduction of GO sheets. Then, the Pt_rGO was mixed with PANI:PSS solution dispersed in diethylene glycol (DEG) using sonication to form a hybrid PANI-based paste (Pt_rGO/PANI:PSS). The Pt_rGO/PANI:PSS was printed as a micropattern and exhibited high electrical conductivity (245.3 S cm-1) with flexible stability. Moreover, it was used in a dipole tag antenna application, where it displayed 0.15 GHz bandwidth and high transmitted power efficiency (99.6%).With recent developments in technology, tremendous effort has been devoted to producing materials for flexible device systems. As a promising approach, solution-processed conducting polymers (CPs) have been extensively studied owing to their facile synthesis, high electrical conductivity, and various morphologies with diverse substrates. Here, we report the demonstration of platinum decorated reduced graphene oxide intercalated polyanililne:poly(4-styrenesulfonate) (Pt_rGO/PANI:PSS) hybrid paste for flexible electric devices. First, platinum decorated reduced graphene oxide (Pt_rGO) was fabricated through the chemical reduction of platinum cations and subsequent heat reduction of GO sheets. Then, the Pt_rGO was mixed with PANI:PSS solution dispersed in diethylene glycol (DEG) using sonication to form a hybrid PANI-based paste (Pt_rGO/PANI:PSS). The Pt_rGO/PANI:PSS was printed as a micropattern and exhibited high electrical conductivity (245.3 S cm-1) with flexible stability. Moreover, it was used in a dipole tag antenna application, where it displayed 0.15 GHz bandwidth and high transmitted power efficiency (99.6%). Electronic supplementary information (ESI) available: TEM images of Pr_rGOs, XRD spectra of various PANI-based hybrid materials, electrical conductivity of Pt_rGO/PANI:PSS with different Pt amounts, surface resistance changes of micropatterns, return loss of the antenna with bending deformation, and transmitted power efficiency of the antenna with bending cycles. See DOI: 10.1039/c4nr06189f
Review on Metallic and Plastic Flexible Dye Sensitized Solar Cell
NASA Astrophysics Data System (ADS)
Yugis, A. R.; Mansa, R. F.; Sipaut, C. S.
2015-04-01
Dye sensitized solar cells (DSSCs) are a promising alternative for the development of a new generation of photovoltaic devices. DSSCs have promoted intense research due to their low cost and eco-friendly advantage over conventional silicon-based crystalline solar cells. In recent years, lightweight flexible types of DSSCs have attracted much intention because of drastic reduction in production cost and more extensive application. The substrate that used as electrode of the DSSCs has a dominant impact on the methods and materials that can be applied to the cell and consequently on the resulting performance of DSSCs. Furthermore, the substrates influence significantly the stability of the device. Although the power conversion efficiency still low compared to traditional glass based DSSCs, flexible DSSCs still have potential to be the most efficient and easily implemented technology.
An overview of recent applications of computational modelling in neonatology
Wrobel, Luiz C.; Ginalski, Maciej K.; Nowak, Andrzej J.; Ingham, Derek B.; Fic, Anna M.
2010-01-01
This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass-transfer mechanisms taking place in medical devices, such as incubators, radiant warmers and oxygen hoods. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and improving the design of medical devices. PMID:20439275
Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo
2016-05-09
Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.
Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo
2016-01-01
Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V−1 sec−1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914
Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates.
Cao, Qing; Kim, Hoon-sik; Pimparkar, Ninad; Kulkarni, Jaydeep P; Wang, Congjun; Shim, Moonsub; Roy, Kaushik; Alam, Muhammad A; Rogers, John A
2008-07-24
The ability to form integrated circuits on flexible sheets of plastic enables attributes (for example conformal and flexible formats and lightweight and shock resistant construction) in electronic devices that are difficult or impossible to achieve with technologies that use semiconductor wafers or glass plates as substrates. Organic small-molecule and polymer-based materials represent the most widely explored types of semiconductors for such flexible circuitry. Although these materials and those that use films or nanostructures of inorganics have promise for certain applications, existing demonstrations of them in circuits on plastic indicate modest performance characteristics that might restrict the application possibilities. Here we report implementations of a comparatively high-performance carbon-based semiconductor consisting of sub-monolayer, random networks of single-walled carbon nanotubes to yield small- to medium-scale integrated digital circuits, composed of up to nearly 100 transistors on plastic substrates. Transistors in these integrated circuits have excellent properties: mobilities as high as 80 cm(2) V(-1) s(-1), subthreshold slopes as low as 140 m V dec(-1), operating voltages less than 5 V together with deterministic control over the threshold voltages, on/off ratios as high as 10(5), switching speeds in the kilohertz range even for coarse (approximately 100-microm) device geometries, and good mechanical flexibility-all with levels of uniformity and reproducibility that enable high-yield fabrication of integrated circuits. Theoretical calculations, in contexts ranging from heterogeneous percolative transport through the networks to compact models for the transistors to circuit level simulations, provide quantitative and predictive understanding of these systems. Taken together, these results suggest that sub-monolayer films of single-walled carbon nanotubes are attractive materials for flexible integrated circuits, with many potential areas of application in consumer and other areas of electronics.
Zhang, Zhi; Chen, Ying; Debeli, Dereje Kebebew; Guo, Jian Sheng
2018-04-18
The trends toward flexible and wearable electronic devices give rise to the attention of triboelectric nanogenerators (TENGs) which can gather tiny energy from human body motions. However, to accommodate the needs, wearable electronics are still facing challenges for choosing a better dielectric material to improve their performance and practicability. As a kind of synthetic rubber, the thermoplastic elastomer (TPE) contains many advantages such as lightweight, good flexibility, high tear strength, and friction resistance, accompanied by good adhesion with fabrics, which is an optimal candidate of dielectric materials. Herein, a novel nanoparticle (NP)-doped TPE composite fabric-based TENG (TF-TENG) has been developed, which operates based on the NP-doped TPE composite fabric using a facile coating method. The performances of the TENG device are systematically investigated under various thicknesses of TPE films, NP kinds, and doping mass. After being composited with a Cu NP-doped TPE film, the TPE composite fabric exhibited superior elastic behavior and good bending property, along with excellent flexibility. Moreover, a maximum output voltage of 470 V, a current of 24 μA, and a power of 12 mW under 3 MΩ can be achieved by applying a force of 60 N on the TF-TENG. More importantly, the TF-TENG can be successfully used to harvest biomechanical energy from human body and provides much more comfort. In general, the TF-TENG has great application prospects in sustainable wearable devices owing to its lightweight, flexibility, and high mechanical properties.
21 CFR 886.1390 - Flexible diagnostic Fresnel lens.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Flexible diagnostic Fresnel lens. 886.1390 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1390 Flexible diagnostic Fresnel lens. (a) Identification. A flexible diagnostic Fresnel lens is a device that is a very thin lens which has...
NASA Astrophysics Data System (ADS)
Kim, Dae-Hyeong; Lee, Mincheol; Lee, Hyunjae
2016-05-01
Recent advances in soft electronics have attracted great attention, largely due to their potential applications in personalized, bio-integrated healthcare devices. The mechanical mismatch between conventional electronic/optoelectronic devices and soft human tissues/organs have presented many challenges, such as the low signalto- noise ratio of biosensors because of the incomplete integration of rigid devices with the body, inflammation and excessive immune responses of implanted stiff devices originated from friction and their foreign nature to biotic systems, and the considerable discomfort and consequent stress experienced by users when wearing/implanting these devices. Ultra-flexible and stretchable electronic devices are being highlighted due to their low system modulus and the intrinsic system-level softness that are important to solve these issues. Here, we describe our unique strategies for the nanomaterial synthesis and fabrication, their seamless assembly and integration, and the design and development of corresponding wearable healthcare devices and minimally invasive surgical tools. These bioelectronic systems fully utilize recent breakthroughs in unconventional soft electronics based on nanomaterials to address unsolved issues in clinical medicine and to provide new opportunities in the personalized healthcare.
Colorless polyimide/organoclay nanocomposite substrates for flexible organic light-emitting devices.
Kim, Jin-Hoe; Choi, Myeon-Chon; Kim, Hwajeong; Kim, Youngkyoo; Chang, Jin-Hae; Han, Mijeong; Kim, Il; Ha, Chang-Sik
2010-01-01
We report the preparation and application of indium tin oxide (ITO) coated fluorine-containing polyimide/organoclay nanocomposite substrate. Fluorine-containing polyimide/organoclay nanocomposite films were prepared through thermal imidization of poly(amic acid)/organoclay mixture films, whilst on which ITO thin films were coated on the films using a radio-frequency planar magnetron sputtering by varying the substrate temperature and the ITO thickness. Finally the ITO coated fluorine-containing polyimide/organoclay nanocomposite substrate was employed to make flexible organic light-emitting devices (OLED). Results showed that the lower sheet resistance was achieved when the substrate temperature was high and the ITO film was thick even though the optical transmittance was slightly lowered as the thickness increased. approximately 10 nm width ITO nanorods were found for all samples but the size of clusters with the nanorods was generally increased with the substrate temperature and the thickness. The flexible OLED made using the present substrate was quite stable even when the device was extremely bended.
Effect of Back Contact and Rapid Thermal Processing Conditions on Flexible CdTe Device Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahabaduge, Hasitha; Meysing, D. M.; Rance, Will L.
Flexible CdTe solar cells on ultra-thin glass substrates can enable new applications that require high specific power, unique form-factors, and low manufacturing costs. To be successful, these cells must be cost competitive, have high efficiency, and have high reliability. Here we present back contact processing conditions that enabled us to achieve over 16% efficiency on flexible Corning (R) Willow (R) Glass substrates. We used co-evaporated ZnTe:Cu and Au as our back contact and used rapid thermal processing (RTP) to activate the back contact. Both the ZnTe to Cu ratio and the RTP activation temperature provide independent control over the devicemore » performance. We have investigated the influence of various RTP conditions to Cu activation and distribution. Current density-voltage, capacitance-voltage measurements along with device simulations were used to examine the device performance in terms of ZnTe to Cu ratio and rapid thermal activation temperature.« less
Park, S; Gopalsamy, C; Rajamanickam, R; Jayaraman, S
1999-01-01
Research on the design and development of a Sensate Liner for Combat Casualty Care has led to the realization of the world's first Wearable Motherboard or an "intelligent" garment for the 21st Century. This Georgia Tech Wearable Motherboard (GTWM) provides an extremely versatile framework for the incorporation of sensing, monitoring and information processing devices. The principal advantage of GTWM is that it provides, for the first time, a very systematic way of monitoring the vital signs of humans in an unobtrusive manner. Appropriate sensors have been "plugged" into this motherboard using the developed Interconnection Technology and attached to any part of the individual being monitored, thereby creating a flexible wearable monitoring device. The flexible data bus integrated into the structure transmits the information to monitoring devices such as an EKG Machine, a temperature recorder, a voice recorder, etc. The bus also serves to transmit information to the sensors (and hence, the wearer) from external sources, thus making GTWM a valuable information infrastructure. GTWM is lightweight and can be worn easily by anyone--from infants to senior citizens. GTWM has enormous potential for applications in fields such as telemedicine, monitoring of patients in post-operative recovery, the prevention of SIDS (sudden infant death syndrome), and monitoring of astronauts, athletes, law enforcement personnel and combat soldiers.
Kang, Dong-Ho; Choi, Woo-Young; Woo, Hyunsuk; Jang, Sungkyu; Park, Hyung-Youl; Shim, Jaewoo; Choi, Jae-Woong; Kim, Sungho; Jeon, Sanghun; Lee, Sungjoo; Park, Jin-Hong
2017-08-16
In this study, we demonstrate a high-performance solid polymer electrolyte (SPE) atomic switching device with low SET/RESET voltages (0.25 and -0.5 V, respectively), high on/off-current ratio (10 5 ), excellent cyclic endurance (>10 3 ), and long retention time (>10 4 s), where poly-4-vinylphenol (PVP)/poly(melamine-co-formaldehyde) (PMF) is used as an SPE layer. To accomplish these excellent device performance parameters, we reduce the off-current level of the PVP/PMF atomic switching device by improving the electrical insulating property of the PVP/PMF electrolyte through adjustment of the number of cross-linked chains. We then apply a titanium buffer layer to the PVP/PMF switching device for further improvement of bipolar switching behavior and device stability. In addition, we first implement SPE atomic switch-based logic AND and OR circuits with low operating voltages below 2 V by integrating 5 × 5 arrays of PVP/PMF switching devices on the flexible substrate. In particular, this low operating voltage of our logic circuits was much lower than that (>5 V) of the circuits configured by polymer resistive random access memory. This research successfully presents the feasibility of PVP/PMF atomic switches for flexible integrated circuits for next-generation electronic applications.
Review of Polyimides Used in the Manufacturing of Micro Systems
NASA Technical Reports Server (NTRS)
Wilson, William C.; Atkinson, Gary M.
2007-01-01
Since their invention, polyimides have found numerous uses in MicroElectroMechanical Systems (MEMS) technology. Polyimides can act as photoresist, sacrificial layers, structural layers, and even as a replacement for silicon as the substrate during MEMS fabrication. They enable fabrication of both low and high aspect ratio devices. Polyimides have been used to fabricate expendable molds and reusable flexible molds. Development of a variety of devices that employ polyimides for sensor applications has occurred. Micro-robotic actuator applications include hinges, thermal actuators and residual stress actuators. Currently, polyimides are being used to create new sensors and devices for aerospace applications. This paper presents a review of some of the many uses of polyimides in the development of MEMS devices, including a new polyimide based MEMS fabrication process.
NASA Astrophysics Data System (ADS)
Choi, Nack-Bong
Flexible electronics is an emerging next-generation technology that offers many advantages such as light weight, durability, comfort, and flexibility. These unique features enable many new applications such as flexible display, flexible sensors, conformable electronics, and so forth. For decades, a variety of flexible substrates have been demonstrated for the application of flexible electronics. Most of them are plastic films and metal foils so far. For the fundamental device of flexible circuits, thin film transistors (TFTs) using poly silicon, amorphous silicon, metal oxide and organic semiconductor have been successfully demonstrated. Depending on application, low-cost and disposable flexible electronics will be required for convenience. Therefore it is important to study inexpensive substrates and to explore simple processes such as printing technology. In this thesis, paper is introduced as a new possible substrate for flexible electronics due to its low-cost and renewable property, and amorphous indium gallium zinc oxide (a-IGZO) TFTs are realized as the promising device on the paper substrate. The fabrication process and characterization of a-IGZO TFT on the paper substrate are discussed. a-IGZO TFTs using a polymer gate dielectric on the paper substrate demonstrate excellent performances with field effect mobility of ˜20 cm2 V-1 s-1, on/off current ratio of ˜106, and low leakage current, which show the enormous potential for flexible electronics application. In order to complement the n-channel a-IGZO TFTs and then enable complementary metal-oxide semiconductor (CMOS) circuit architectures, cuprous oxide is studied as a candidate material of p-channel oxide TFTs. In this thesis, a printing process is investigated as an alternative method for the fabrication of low-cost and disposable electronics. Among several printing methods, a modified offset roll printing that prints high resolution patterns is presented. A new method to fabricate a high resolution printing plate is investigated and the most favorable condition to transfer ink from a blanket to a cliche is studied. Consequently, a high resolution cliche is demonstrated and the printed patterns of 10mum width and 6mum line spacing are presented. In addition, the top gate a-IGZO TFTs with channel width/length of 12/6mum is successfully demonstrated by printing etch-resists. This work validates the compatibility of a-IGZO TFT on paper substrate for the disposable microelectronics application and presents the potential of low-cost and high resolution printing technology.
NASA Astrophysics Data System (ADS)
Shin, Junsoo; Goyal, Amit; Jesse, Stephen; Kim, Dae Ho
2009-06-01
Epitaxial, c-axis oriented BaTiO3 thin films were deposited using pulsed laser ablation on flexible, polycrystalline Ni alloy tape with biaxially textured oxide buffer multilayers. The high quality of epitaxial BaTiO3 thin films with P4mm group symmetry was confirmed by x-ray diffraction. The microscopic ferroelectric domain structure and the piezoelectric domain switching in these films were confirmed via spatially resolved piezoresponse mapping and local hysteresis loops. Macroscopic measurements demonstrate that the films have well-saturated hysteresis loops with a high remanent polarization of ˜11.5 μC/cm2. Such high-quality, single-crystal-like BaTiO3 films on low-cost, polycrystalline, flexible Ni alloy substrates are attractive for applications in flexible lead-free ferroelectric devices.
Jeon, Il; Cui, Kehang; Chiba, Takaaki; Anisimov, Anton; Nasibulin, Albert G; Kauppinen, Esko I; Maruyama, Shigeo; Matsuo, Yutaka
2015-07-01
Organic solar cells have been regarded as a promising electrical energy source. Transparent and conductive carbon nanotube film offers an alternative to commonly used ITO in photovoltaics with superior flexibility. This communication reports carbon nanotube-based indium-free organic solar cells and their flexible application. Direct and dry deposited carbon nanotube film doped with MoO(x) functions as an electron-blocking transparent electrode, and its performance is enhanced further by overcoating with PSS. The single-walled carbon nanotube organic solar cell in this work shows a power conversion efficiency of 6.04%. This value is 83% of the leading ITO-based device performance (7.48%). Flexible application shows 3.91% efficiency and is capable of withstanding a severe cyclic flex test.
Yamamoto, Yuki; Yamamoto, Daisuke; Takada, Makoto; Naito, Hiroyoshi; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2017-09-01
Wearable, flexible healthcare devices, which can monitor health data to predict and diagnose disease in advance, benefit society. Toward this future, various flexible and stretchable sensors as well as other components are demonstrated by arranging materials, structures, and processes. Although there are many sensor demonstrations, the fundamental characteristics such as the dependence of a temperature sensor on film thickness and the impact of adhesive for an electrocardiogram (ECG) sensor are yet to be explored in detail. In this study, the effect of film thickness for skin temperature measurements, adhesive force, and reliability of gel-less ECG sensors as well as an integrated real-time demonstration is reported. Depending on the ambient conditions, film thickness strongly affects the precision of skin temperature measurements, resulting in a thin flexible film suitable for a temperature sensor in wearable device applications. Furthermore, by arranging the material composition, stable gel-less sticky ECG electrodes are realized. Finally, real-time simultaneous skin temperature and ECG signal recordings are demonstrated by attaching an optimized device onto a volunteer's chest. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanocellulose as Material Building Block for Energy and Flexible Electronics
NASA Astrophysics Data System (ADS)
Hu, Liangbing
2014-03-01
In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.
Comparative analysis on flexibility requirements of typical Cryogenic Transfer lines
NASA Astrophysics Data System (ADS)
Jadon, Mohit; Kumar, Uday; Choukekar, Ketan; Shah, Nitin; Sarkar, Biswanath
2017-04-01
The cryogenic systems and their applications; primarily in large Fusion devices, utilize multiple cryogen transfer lines of various sizes and complexities to transfer cryogenic fluids from plant to the various user/ applications. These transfer lines are composed of various critical sections i.e. tee section, elbows, flexible components etc. The mechanical sustainability (under failure circumstances) of these transfer lines are primary requirement for safe operation of the system and applications. The transfer lines need to be designed for multiple design constraints conditions like line layout, support locations and space restrictions. The transfer lines are subjected to single load and multiple load combinations, such as operational loads, seismic loads, leak in insulation vacuum loads etc. [1]. The analytical calculations and flexibility analysis using professional software are performed for the typical transfer lines without any flexible component, the results were analysed for functional and mechanical load conditions. The failure modes were identified along the critical sections. The same transfer line was then refurbished with the flexible components and analysed for failure modes. The flexible components provide additional flexibility to the transfer line system and make it safe. The results obtained from the analytical calculations were compared with those obtained from the flexibility analysis software calculations. The optimization of the flexible component’s size and selection was performed and components were selected to meet the design requirements as per code.
Tunable Microfluidic Devices for Hydrodynamic Fractionation of Cells and Beads: A Review
Alvankarian, Jafar; Majlis, Burhanuddin Yeop
2015-01-01
The adjustable microfluidic devices that have been developed for hydrodynamic-based fractionation of beads and cells are important for fast performance tunability through interaction of mechanical properties of particles in fluid flow and mechanically flexible microstructures. In this review, the research works reported on fabrication and testing of the tunable elastomeric microfluidic devices for applications such as separation, filtration, isolation, and trapping of single or bulk of microbeads or cells are discussed. Such microfluidic systems for rapid performance alteration are classified in two groups of bulk deformation of microdevices using external mechanical forces, and local deformation of microstructures using flexible membrane by pneumatic pressure. The main advantage of membrane-based tunable systems has been addressed to be the high capability of integration with other microdevice components. The stretchable devices based on bulk deformation of microstructures have in common advantage of simplicity in design and fabrication process. PMID:26610519
Pencil drawn strain gauges and chemiresistors on paper.
Lin, Cheng-Wei; Zhao, Zhibo; Kim, Jaemyung; Huang, Jiaxing
2014-01-22
Pencil traces drawn on print papers are shown to function as strain gauges and chemiresistors. Regular graphite/clay pencils can leave traces composed of percolated networks of fine graphite powders, which exhibit reversible resistance changes upon compressive or tensile deflections. Flexible toy pencils can leave traces that are essentially thin films of graphite/polymer composites, which show reversible changes in resistance upon exposure to volatile organic compounds due to absorption/desorption induced swelling/recovery of the polymer binders. Pencil-on-paper devices are low-cost, extremely simple and rapid to fabricate. They are light, flexible, portable, disposable, and do not generate potentially negative environmental impact during processing and device fabrication. One can envision many other types of pencil drawn paper electronic devices that can take on a great variety of form factors. Hand drawn devices could be useful in resource-limited or emergency situations. They could also lead to new applications integrating art and electronics.
Recent progress in flexible OLED displays
NASA Astrophysics Data System (ADS)
Hack, Michael G.; Weaver, Michael S.; Mahon, Janice K.; Brown, Julie J.
2001-09-01
Organic light emitting device (OLED) technology has recently been shown to demonstrate excellent performance and cost characteristics for use in numerous flat panel display (FPD) applications. OLED displays emit bright, colorful light with excellent power efficiency, wide viewing angle and video response rates. OLEDs are also demonstrating the requisite environmental robustness for a wide variety of applications. OLED technology is also the first FPD technology with the potential to be highly functional and durable in a flexible format. The use of plastic and other flexible substrate materials offers numerous advantages over commonly used glass substrates, including impact resistance, light weight, thinness and conformability. Currently, OLED displays are being fabricated on rigid substrates, such as glass or silicon wafers. At Universal Display Corporation (UDC), we are developing a new class of flexible OLED displays (FOLEDs). These displays also have extremely low power consumption through the use of electrophosphorescent doped OLEDs. To commercialize FOLED technology, a number of technical issues related to packaging and display processing on flexible substrates need to be addressed. In this paper, we report on our recent results to demonstrate the key technologies that enable the manufacture of power efficient, long-life flexible OLED displays for commercial and military applications.
Disposable chemical sensors and biosensors made on cellulose paper.
Kim, Joo-Hyung; Mun, Seongcheol; Ko, Hyun-U; Yun, Gyu-Young; Kim, Jaehwan
2014-03-07
Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications.
In vivo recordings of brain activity using organic transistors
Khodagholy, Dion; Doublet, Thomas; Quilichini, Pascale; Gurfinkel, Moshe; Leleux, Pierre; Ghestem, Antoine; Ismailova, Esma; Hervé, Thierry; Sanaur, Sébastien; Bernard, Christophe; Malliaras, George G.
2013-01-01
In vivo electrophysiological recordings of neuronal circuits are necessary for diagnostic purposes and for brain-machine interfaces. Organic electronic devices constitute a promising candidate because of their mechanical flexibility and biocompatibility. Here we demonstrate the engineering of an organic electrochemical transistor embedded in an ultrathin organic film designed to record electrophysiological signals on the surface of the brain. The device, tested in vivo on epileptiform discharges, displayed superior signal-to-noise ratio due to local amplification compared with surface electrodes. The organic transistor was able to record on the surface low-amplitude brain activities, which were poorly resolved with surface electrodes. This study introduces a new class of biocompatible, highly flexible devices for recording brain activity with superior signal-to-noise ratio that hold great promise for medical applications. PMID:23481383
In vivo recordings of brain activity using organic transistors.
Khodagholy, Dion; Doublet, Thomas; Quilichini, Pascale; Gurfinkel, Moshe; Leleux, Pierre; Ghestem, Antoine; Ismailova, Esma; Hervé, Thierry; Sanaur, Sébastien; Bernard, Christophe; Malliaras, George G
2013-01-01
In vivo electrophysiological recordings of neuronal circuits are necessary for diagnostic purposes and for brain-machine interfaces. Organic electronic devices constitute a promising candidate because of their mechanical flexibility and biocompatibility. Here we demonstrate the engineering of an organic electrochemical transistor embedded in an ultrathin organic film designed to record electrophysiological signals on the surface of the brain. The device, tested in vivo on epileptiform discharges, displayed superior signal-to-noise ratio due to local amplification compared with surface electrodes. The organic transistor was able to record on the surface low-amplitude brain activities, which were poorly resolved with surface electrodes. This study introduces a new class of biocompatible, highly flexible devices for recording brain activity with superior signal-to-noise ratio that hold great promise for medical applications.
On the improvement for charging large-scale flexible electrostatic actuators
NASA Astrophysics Data System (ADS)
Liao, Hsu-Ching; Chen, Han-Long; Su, Yu-Hao; Chen, Yu-Chi; Ko, Wen-Ching; Liou, Chang-Ho; Wu, Wen-Jong; Lee, Chih-Kung
2011-04-01
Recently, the development of flexible electret based electrostatic actuator has been widely discussed. The devices was shown to have high sound quality, energy saving, flexible structure and can be cut to any shape. However, achieving uniform charge on the electret diaphragm is one of the most critical processes needed to have the speaker ready for large-scale production. In this paper, corona discharge equipment contains multi-corona probes and grid bias was set up to inject spatial charges within the electret diaphragm. The optimal multi-corona probes system was adjusted to achieve uniform charge distribution of electret diaphragm. The processing conditions include the distance between the corona probes, the voltages of corona probe and grid bias, etc. We assembled the flexible electret loudspeakers first and then measured their sound pressure and beam pattern. The uniform charge distribution within the electret diaphragm based flexible electret loudspeaker provided us with the opportunity to shape the loudspeaker arbitrarily and to tailor the sound distribution per specifications request. Some of the potential futuristic applications for this device such as sound poster, smart clothes, and sound wallpaper, etc. were discussed as well.
Joint with application in electrochemical devices
Weil, K Scott [Richland, WA; Hardy, John S [Richland, WA
2010-09-14
A joint for use in electrochemical devices, such as solid oxide fuel cells (SOFCs), oxygen separators, and hydrogen separators, that will maintain a hermetic seal at operating temperatures of greater than 600.degree. C., despite repeated thermal cycling excess of 600.degree. C. in a hostile operating environment where one side of the joint is continuously exposed to an oxidizing atmosphere and the other side is continuously exposed to a wet reducing gas. The joint is formed of a metal part, a ceramic part, and a flexible gasket. The flexible gasket is metal, but is thinner and more flexible than the metal part. As the joint is heated and cooled, the flexible gasket is configured to flex in response to changes in the relative size of the metal part and the ceramic part brought about by differences in the coefficient of thermal expansion of the metal part and the ceramic part, such that substantially all of the tension created by the differences in the expansion and contraction of the ceramic and metal parts is absorbed and dissipated by flexing the flexible gasket.
Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan
2013-11-21
Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g(-1)), energy (9.0 W h kg(-1)), power (59.7 kW kg(-1)), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.
2015-01-01
The use of UV light sources is highly relevant in many fields of science, being directly related to all those detection and diagnosis procedures that are based on fluorescence spectroscopy. Depending on the specific application, UV light-emitting materials are desired to feature a number of opto-mechanical properties, including brightness, optical gain for being used in laser devices, flexibility to conform with different lab-on-chip architectures, and tailorable wettability to control and minimize their interaction with ambient humidity and fluids. In this work, we introduce multifunctional, UV-emitting electrospun fibers with both optical gain and greatly enhanced anisotropic hydrophobicity compared to films. Fibers are described by the onset of a composite wetting state, and their arrangement in uniaxial arrays further favors liquid directional control. The low gain threshold, optical losses, plastic nature, flexibility, and stability of these UV-emitting fibers make them interesting for building light-emitting devices and microlasers. Furthermore, the anisotropic hydrophobicity found is strongly synergic with optical properties, reducing interfacial interactions with liquids and enabling smart functional surfaces for droplet microfluidic and wearable applications. PMID:26401889
Herbert, Robert; Kim, Jong-Hoon; Kim, Yun Soung; Lee, Hye Moon
2018-01-01
Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas. PMID:29364861
Herbert, Robert; Kim, Jong-Hoon; Kim, Yun Soung; Lee, Hye Moon; Yeo, Woon-Hong
2018-01-24
Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas.
Polyimide-Epoxy Composites with Superior Bendable Properties for Application in Flexible Electronics
NASA Astrophysics Data System (ADS)
Lee, Sangyoup; Yoo, Taewon; Han, Youngyu; Kim, Hanglim; Han, Haksoo
2017-08-01
The need for flexible electronics with outstanding bending properties is increasing due to the demand for wearable devices and next-generation flexible or rollable smartphones. In addition, the requirements for flexible or rigid-flexible electronics are sharply increasing to achieve the design of space-saving electronic devices. In this regard, coverlay (CL) film is a key material used in the bending area of flexible electronics, albeit infrequently. Because flexible electronics undergo folding and unfolding numerous times, CL films with superior mechanical and bending properties are required so that the bending area can endure such severe stress. However, because current CL films are only used for a designated bending area in the flexible electronics panel, their highly complicated and expensive manufacturing procedure is a disadvantage. In addition, the thickness of CL films must be decreased to satisfy the ongoing requirement for increasingly thin products. However, due to the limitations of the two-layer structure of existing CL films, the manufacturing process cannot be made more cost effective by simply applying more thin film onto the board. To address this problem, we have developed liquid coverlay inks (LCIs) with superior bendable properties, in comparison with CL films, when applied onto flexible electronics using a screen-printing method. The results show that LCIs have the potential to become one of the leading candidates to replace existing CL films because of their lower cost and faster manufacturing process.
Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Liu, Yuan; Huang, Yu; Duan, Xiangfeng
2013-05-28
Flexible solid-state supercapacitors are of considerable interest as mobile power supply for future flexible electronics. Graphene or carbon nanotubes based thin films have been used to fabricate flexible solid-state supercapacitors with high gravimetric specific capacitances (80-200 F/g), but usually with a rather low overall or areal specific capacitance (3-50 mF/cm(2)) due to the ultrasmall electrode thickness (typically a few micrometers) and ultralow mass loading, which is not desirable for practical applications. Here we report the exploration of a three-dimensional (3D) graphene hydrogel for the fabrication of high-performance solid-state flexible supercapacitors. With a highly interconnected 3D network structure, graphene hydrogel exhibits exceptional electrical conductivity and mechanical robustness to make it an excellent material for flexible energy storage devices. Our studies demonstrate that flexible supercapacitors with a 120 μm thick graphene hydrogel thin film can exhibit excellent capacitive characteristics, including a high gravimetric specific capacitance of 186 F/g (up to 196 F/g for a 42 μm thick electrode), an unprecedented areal specific capacitance of 372 mF/cm(2) (up to 402 mF/cm(2) for a 185 μm thick electrode), low leakage current (10.6 μA), excellent cycling stability, and extraordinary mechanical flexibility. This study demonstrates the exciting potential of 3D graphene macrostructures for high-performance flexible energy storage devices.
Ultrathin and lightweight organic solar cells with high flexibility
Kaltenbrunner, Martin; White, Matthew S.; Głowacki, Eric D.; Sekitani, Tsuyoshi; Someya, Takao; Sariciftci, Niyazi Serdar; Bauer, Siegfried
2012-01-01
Application-specific requirements for future lighting, displays and photovoltaics will include large-area, low-weight and mechanical resilience for dual-purpose uses such as electronic skin, textiles and surface conforming foils. Here we demonstrate polymer-based photovoltaic devices on plastic foil substrates less than 2 μm thick, with equal power conversion efficiency to their glass-based counterparts. They can reversibly withstand extreme mechanical deformation and have unprecedented solar cell-specific weight. Instead of a single bend, we form a random network of folds within the device area. The processing methods are standard, so the same weight and flexibility should be achievable in light emitting diodes, capacitors and transistors to fully realize ultrathin organic electronics. These ultrathin organic solar cells are over ten times thinner, lighter and more flexible than any other solar cell of any technology to date. PMID:22473014
A Triple-Mode Flexible E-Skin Sensor Interface for Multi-Purpose Wearable Applications
Kim, Sung-Woo; Lee, Youngoh; Park, Jonghwa; Kim, Seungmok; Chae, Heeyoung; Ko, Hyunhyub
2017-01-01
This study presents a flexible wireless electronic skin (e-skin) sensor system that includes a multi-functional sensor device, a triple-mode reconfigurable readout integrated circuit (ROIC), and a mobile monitoring interface. The e-skin device’s multi-functionality is achieved by an interlocked micro-dome array structure that uses a polyvinylidene fluoride and reduced graphene oxide (PVDF/RGO) composite material that is inspired by the structure and functions of the human fingertip. For multi-functional implementation, the proposed triple-mode ROIC is reconfigured to support piezoelectric, piezoresistance, and pyroelectric interfaces through single-type e-skin sensor devices. A flexible system prototype was developed and experimentally verified to provide various wireless wearable sensing functions—including pulse wave, voice, chewing/swallowing, breathing, knee movements, and temperature—while their real-time sensed data are displayed on a smartphone. PMID:29286312
Transparent, flexible supercapacitors from nano-engineered carbon films.
Jung, Hyun Young; Karimi, Majid B; Hahm, Myung Gwan; Ajayan, Pulickel M; Jung, Yung Joon
2012-01-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.
Transparent, flexible supercapacitors from nano-engineered carbon films
Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon
2012-01-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications. PMID:23105970
Transparent, flexible supercapacitors from nano-engineered carbon films
NASA Astrophysics Data System (ADS)
Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon
2012-10-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.
Gao, Ying; Asadirad, Mojtaba; Yao, Yao; Dutta, Pavel; Galstyan, Eduard; Shervin, Shahab; Lee, Keon-Hwa; Pouladi, Sara; Sun, Sicong; Li, Yongkuan; Rathi, Monika; Ryou, Jae-Hyun; Selvamanickam, Venkat
2016-11-02
Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm 2 /V·s and saturation current, I/l W > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.
21 CFR 886.1390 - Flexible diagnostic Fresnel lens.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1390 Flexible diagnostic Fresnel lens. (a) Identification. A flexible diagnostic Fresnel lens is a device that is a very thin lens which has its surface a concentric series of increasingly refractive zones. The device is intended to be applied...
Zhang, Ye; Bai, Wenyu; Cheng, Xunliang; Ren, Jing; Weng, Wei; Chen, Peining; Fang, Xin; Zhang, Zhitao; Peng, Huisheng
2014-12-22
The construction of lightweight, flexible and stretchable power systems for modern electronic devices without using elastic polymer substrates is critical but remains challenging. We have developed a new and general strategy to produce both freestanding, stretchable, and flexible supercapacitors and lithium-ion batteries with remarkable electrochemical properties by designing novel carbon nanotube fiber springs as electrodes. These springlike electrodes can be stretched by over 300 %. In addition, the supercapacitors and lithium-ion batteries have a flexible fiber shape that enables promising applications in electronic textiles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peng, Zhiyuan; Zou, Yubo; Xu, Shiqi; Zhong, Wenbin; Yang, Wantai
2018-06-19
Employing renewable, earth-abundant, environmentally friendly, low-cost natural materials to design flexible supercapacitors (FSCs) as energy storage devices in wearable/portable electronics represents the global perspective to build sustainable and green society. Chemically stable and flexible cellulose and electroactive lignin have been employed to construct a biomass-based FSC for the first time. The FSC was assembled using lignosulfonate/single-walled carbon nanotube HNO 3 (Lig/SWCNT HNO 3 ) pressure-sensitive hydrogels as electrodes and cellulose hydrogels as an electrolyte separator. The assembled biomass-based FSC shows high specific capacitance (292 F g -1 at a current density of 0.5 A g -1 ), excellent rate capability, and an outstanding energy density of 17.1 W h kg -1 at a power density of 324 W kg -1 . Remarkably, the FSC presents outstanding electrochemical stability even suffering 1000 bending cycles. Such excellent flexibility, stability, and electrochemical performance enable the designed biomass-based FSCs as prominent candidates in applications of wearable electronic devices.
Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes.
Hsia, Ben; Marschewski, Julian; Wang, Shuang; In, Jung Bin; Carraro, Carlo; Poulikakos, Dimos; Grigoropoulos, Costas P; Maboudian, Roya
2014-02-07
We report a highly flexible planar micro-supercapacitor with interdigitated finger electrodes of vertically aligned carbon nanotubes (VACNTs). The planar electrode structures are patterned on a thin polycarbonate substrate with a facile, maskless laser-assisted dry transfer method. Sputtered Ni is used to reduce the in-plane resistance of the VACNT electrodes. An ionogel, an ionic liquid in a semi-solid matrix, is used as an electrolyte to form a fully solid-state device. We measure a specific capacitance of 430 μF cm(-2) for a scan rate of 0.1 V s(-1) and achieve rectangular cyclic voltammograms at high scan rates of up to 100 V s(-1). Minimal change in capacitance is observed under bending. Mechanical fatigue tests with more than 1000 cycles confirm the high flexibility and durability of the novel material combination chosen for this device. Our results indicate that this scalable and facile fabrication technique shows promise for application in integrated energy storage for all solid-state flexible microdevices.
Direct X-ray photoconversion in flexible organic thin film devices operated below 1 V
Basiricò, Laura; Ciavatti, Andrea; Cramer, Tobias; Cosseddu, Piero; Bonfiglio, Annalisa; Fraboni, Beatrice
2016-01-01
The application of organic electronic materials for the detection of ionizing radiations is very appealing thanks to their mechanical flexibility, low-cost and simple processing in comparison to their inorganic counterpart. In this work we investigate the direct X-ray photoconversion process in organic thin film photoconductors. The devices are realized by drop casting solution-processed bis-(triisopropylsilylethynyl)pentacene (TIPS-pentacene) onto flexible plastic substrates patterned with metal electrodes; they exhibit a strong sensitivity to X-rays despite the low X-ray photon absorption typical of low-Z organic materials. We propose a model, based on the accumulation of photogenerated charges and photoconductive gain, able to describe the magnitude as well as the dynamics of the X-ray-induced photocurrent. This finding allows us to fabricate and test a flexible 2 × 2 pixelated X-ray detector operating at 0.2 V, with gain and sensitivity up to 4.7 × 104 and 77,000 nC mGy−1 cm−3, respectively. PMID:27708274
NASA Astrophysics Data System (ADS)
Maeda, Yusaku; Maeda, Kohei; Kobara, Hideki; Mori, Hirohito; Takao, Hidekuni
2017-04-01
In this study, an integrated pressure and temperature sensor device for a flexible endoscope with long-term stability in in vivo environments was developed and demonstrated. The sensor, which is embedded in the thin wall of the disposable endoscope hood, is intended for use in endoscopic surgery. The device surface is coated with a Cr layer to prevent photoelectronic generation induced by the strong light of the endoscope. The integrated temperature sensor allows compensation for the effect of the temperature drift on a pressure signal. The fabricated device pressure resolution is 0.4 mmHg; the corresponding pressure error is 3.2 mmHg. The packaged device was used in a surgical simulation in an animal experiment. Pressure and temperature monitoring was achieved even in a pH 1 acid solution. The device enables intraluminal pressure and temperature measurements of the stomach, which facilitate the maintenance of internal stomach conditions. The applicability of the sensor was successfully demonstrated in animal experiments.
Jiang, Zhi Hao; Turpin, Jeremy P.; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H.
2015-01-01
Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. PMID:26217054
Jin, Won-Yong; Ginting, Riski Titian; Ko, Keum-Jin; Kang, Jae-Wook
2016-01-01
A novel approach for the fabrication of ultra-smooth and highly bendable substrates consisting of metal grid-conducting polymers that are fully embedded into transparent substrates (ME-TCEs) was successfully demonstrated. The fully printed ME-TCEs exhibited ultra-smooth surfaces (surface roughness ~1.0 nm), were highly transparent (~90% transmittance at a wavelength of 550 nm), highly conductive (sheet resistance ~4 Ω ◻−1), and relatively stable under ambient air (retaining ~96% initial resistance up to 30 days). The ME-TCE substrates were used to fabricate flexible organic solar cells and organic light-emitting diodes exhibiting devices efficiencies comparable to devices fabricated on ITO/glass substrates. Additionally, the flexibility of the organic devices did not degrade their performance even after being bent to a bending radius of ~1 mm. Our findings suggest that ME-TCEs are a promising alternative to indium tin oxide and show potential for application toward large-area optoelectronic devices via fully printing processes. PMID:27808221
Printing Smart Designs of Light Emitting Devices with Maintained Textile Properties.
Verboven, Inge; Stryckers, Jeroen; Mecnika, Viktorija; Vandevenne, Glen; Jose, Manoj; Deferme, Wim
2018-02-13
To maintain typical textile properties, smart designs of light emitting devices are printed directly onto textile substrates. A first approach shows improved designs for alternating current powder electroluminescence (ACPEL) devices. A configuration with the following build-up, starting from the textile substrate, was applied using the screen printing technique: silver (10 µm)/barium titanate (10 µm)/zinc-oxide (10 µm) and poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (10 µm). Textile properties such as flexibility, drapability and air permeability are preserved by implementing a pixel-like design of the printed layers. Another route is the application of organic light emitting devices (OLEDs) fabricated out of following layers, also starting from the textile substrate: polyurethane or acrylate (10-20 µm) as smoothing layer/silver (200 nm)/poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (35 nm)/super yellow (80 nm)/calcium/aluminum (12/17 nm). Their very thin nm-range layer thickness, preserving the flexibility and drapability of the substrate, and their low working voltage, makes these devices the possible future in light-emitting wearables.
NASA Astrophysics Data System (ADS)
Jin, Won-Yong; Ginting, Riski Titian; Ko, Keum-Jin; Kang, Jae-Wook
2016-11-01
A novel approach for the fabrication of ultra-smooth and highly bendable substrates consisting of metal grid-conducting polymers that are fully embedded into transparent substrates (ME-TCEs) was successfully demonstrated. The fully printed ME-TCEs exhibited ultra-smooth surfaces (surface roughness ~1.0 nm), were highly transparent (~90% transmittance at a wavelength of 550 nm), highly conductive (sheet resistance ~4 Ω ◻-1), and relatively stable under ambient air (retaining ~96% initial resistance up to 30 days). The ME-TCE substrates were used to fabricate flexible organic solar cells and organic light-emitting diodes exhibiting devices efficiencies comparable to devices fabricated on ITO/glass substrates. Additionally, the flexibility of the organic devices did not degrade their performance even after being bent to a bending radius of ~1 mm. Our findings suggest that ME-TCEs are a promising alternative to indium tin oxide and show potential for application toward large-area optoelectronic devices via fully printing processes.
Jin, Won-Yong; Ginting, Riski Titian; Ko, Keum-Jin; Kang, Jae-Wook
2016-11-03
A novel approach for the fabrication of ultra-smooth and highly bendable substrates consisting of metal grid-conducting polymers that are fully embedded into transparent substrates (ME-TCEs) was successfully demonstrated. The fully printed ME-TCEs exhibited ultra-smooth surfaces (surface roughness ~1.0 nm), were highly transparent (~90% transmittance at a wavelength of 550 nm), highly conductive (sheet resistance ~4 Ω ◻ -1 ), and relatively stable under ambient air (retaining ~96% initial resistance up to 30 days). The ME-TCE substrates were used to fabricate flexible organic solar cells and organic light-emitting diodes exhibiting devices efficiencies comparable to devices fabricated on ITO/glass substrates. Additionally, the flexibility of the organic devices did not degrade their performance even after being bent to a bending radius of ~1 mm. Our findings suggest that ME-TCEs are a promising alternative to indium tin oxide and show potential for application toward large-area optoelectronic devices via fully printing processes.
A comparative study of graphene and graphite-based field effect transistor on flexible substrate
NASA Astrophysics Data System (ADS)
Bhatt, Kapil; Rani, Cheenu; Vaid, Monika; Kapoor, Ankit; Kumar, Pramod; Kumar, Sandeep; Shriwastawa, Shilpi; Sharma, Sandeep; Singh, Randhir; Tripathi, C. C.
2018-06-01
In the present era, there has been a great demand of cost-effective, biodegradable, flexible and wearable electronics which may open the gate to many applications like flexible displays, RFID tags, health monitoring devices, etc. Due to the versatile nature of plastic substrates, they have been extensively used in packaging, printing, etc. However, the fabrication of electronic devices requires specially prepared substrates with high quality surfaces, chemical compositions and solutions to the related fabrication issues along with its non-biodegradable nature. Therefore, in this report, a cost-effective, biodegradable cellulose paper as an alternative dielectric substrate material for the fabrication of flexible field effect transistor (FET) is presented. The graphite and liquid phase exfoliated graphene have been used as the material for the realisation of source, drain and channel on cellulose paper substrate for its comparative analysis. The mobility of fabricated FETs was calculated to be 83 cm2/V s (holes) and 33 cm2/V s (electrons) for graphite FET and 100 cm2/V s (holes) and 52 cm2/V s (electrons) for graphene FET, respectively. The output characteristic of the device demonstrates the linear behaviour and a comprehensive increase in conductance as a function of gate voltages. The fabricated FETs may be used for strain sensing, health care monitoring devices, human motion detection, etc.
Rajagopalan, Pandey; Singh, Vipul; I A, Palani
2018-01-10
Zinc oxide (ZnO) is a remarkable inorganic semiconductor with exceptional piezoelectric properties compared to other semiconductors. However, in comparison to lead-based hazardous piezoelectric materials, its features have undesired limitations. Here we report the 5~6 folds enhancement in the piezoelectric properties via chemical doping of copper matched to intrinsic ZnO. The flexible piezoelectric nanogenerator (F-PENG) device was fabricated using an unpretentious solution process of spin coating with other advantages like robust, low weight, improved adhesion, and low cost. The devices were used to demonstrate energy harvesting from a Standard weight as low as 4 gm and can work as a self-powered mass sensor in a broad range of 4 to 100 gm. The device exhibited a novel energy harvesting technique from a wind source due to its inherent flexibility. At three different velocities (10~30 m/s) and five different angles of attack (0~180 degrees), the device validated the ability to discern different velocities and directions of flow. The device will be useful for mapping the flow of air apart from harvesting the energy. The simulation was done to verify the underlining mechanism of aerodynamics involved in it. © 2018 IOP Publishing Ltd.
Deng, Wei; Zhang, Xiujuan; Pan, Huanhuan; Shang, Qixun; Wang, Jincheng; Zhang, Xiaohong; Zhang, Xiwei; Jie, Jiansheng
2014-01-01
Single-crystal organic nanostructures show promising applications in flexible and stretchable electronics, while their applications are impeded by the large incompatibility with the well-developed photolithography techniques. Here we report a novel two-step transfer printing (TTP) method for the construction of organic nanowires (NWs) based devices onto arbitrary substrates. Copper phthalocyanine (CuPc) NWs are first transfer-printed from the growth substrate to the desired receiver substrate by contact-printing (CP) method, and then electrode arrays are transfer-printed onto the resulting receiver substrate by etching-assisted transfer printing (ETP) method. By utilizing a thin copper (Cu) layer as sacrificial layer, microelectrodes fabricated on it via photolithography could be readily transferred to diverse conventional or non-conventional substrates that are not easily accessible before with a high transfer yield of near 100%. The ETP method also exhibits an extremely high flexibility; various electrodes such as Au, Ti, and Al etc. can be transferred, and almost all types of organic devices, such as resistors, Schottky diodes, and field-effect transistors (FETs), can be constructed on planar or complex curvilinear substrates. Significantly, these devices can function properly and exhibit closed or even superior performance than the device counterparts fabricated by conventional approach. PMID:24942458
NASA Astrophysics Data System (ADS)
Santato, Clara
2015-10-01
The boom in multifunctional, flexible, and portable electronics and the increasing need of low-energy cost and autonomy for applications ranging from wireless sensor networks for smart environments to biomedical applications are triggering research efforts towards the development of self-powered sustainable electronic devices. Within this context, the coupling of electronic devices (e.g. sensors, transistors) with small size energy storage systems (e.g. micro-batteries or micro-supercapacitors) is actively pursued. Micro-electrochemical supercapacitors are attracting much attention in electronics for their capability of delivering short power pulses with high stability over repeated charge/discharge cycling. For their high specific pseudocapacitance, electronically conducting polymers are well known as positive materials for hybrid supercapacitors featuring high surface carbon negative electrodes. The processability of both polymer and carbon is of great relevance for the development of flexible miniaturised devices. Electronically conducting polymers are even well known to feature an electronic conductivity that depends on their oxidation (p-doped state) and that it is modulated by the polymer potential. This property and the related pseudocapacitive response make polymer very attracting channel materials for electrolyte-gated (EG) transistors. Here, we propose a novel concept of "Trans-capacitor", an integrated device that exhibits the storage properties of a polymer/carbon hybrid supercapacitor and the low-voltage operation of an electrolyte-gated transistor.
A flexible microcontroller-based data acquisition device.
Hercog, Darko; Gergič, Bojan
2014-06-02
This paper presents a low-cost microcontroller-based data acquisition device. The key component of the presented solution is a configurable microcontroller-based device with an integrated USB transceiver and a 12-bit analogue-to-digital converter (ADC). The presented embedded DAQ device contains a preloaded program (firmware) that enables easy acquisition and generation of analogue and digital signals and data transfer between the device and the application running on a PC via USB bus. This device has been developed as a USB human interface device (HID). This USB class is natively supported by most of the operating systems and therefore any installation of additional USB drivers is unnecessary. The input/output peripheral of the presented device is not static but rather flexible, and could be easily configured to customised needs without changing the firmware. When using the developed configuration utility, a majority of chip pins can be configured as analogue input, digital input/output, PWM output or one of the SPI lines. In addition, LabVIEW drivers have been developed for this device. When using the developed drivers, data acquisition and signal processing algorithms as well as graphical user interface (GUI), can easily be developed using a well-known, industry proven, block oriented LabVIEW programming environment.
NASA Astrophysics Data System (ADS)
Meyer, K.; Malin, R.; Rich, R. L.; Pierce, S. A.
2011-12-01
Shortening the cycle from data collection to research publications is a competitive advantage for researchers. Existing technologies for inventory systems such as UPC barcoding systems can be coupled with flexible mobile or handheld devices to advance efficiency, productivity, automation, and integrity in data flows, from data collection to sample processing to database management and analysis, and finally publication. At the University of Texas, the Data Flow Infrastructure Initiative (DFII) has introduced handheld devices with integrated barcode scanners as a mechanism to enhance research productivity and information access. These devices are established technology and provide a flexible but consistent platform for research data collection and data management. They are not in widespread use yet in the research community. Additional application benefits will accrue by using handheld devices to deliver data on demand in teaching applications. Introducing research scientists, graduate students, and the UT community to the merits and flexibility of these data collection technologies will provide avenues for innovation as well as improving efficiency. The objective of this project is to bring the technology and expertise with handheld systems to a diverse set of pilot projects and establish proficiency at The University of Texas at Austin necessary for widespread application. We have implemented a pilot project in three research labs covering the fields of microbial ecology, water resources decision support, and biogeochemistry to introduce these technologies. We used NautizX5 handheld devices that feature: barcode scanning, bluetooth, stylus, and keypad data inputs coupled with Pendragon Forms Software, a program that allows users to create custom data collection forms structured into an SQL or Access platform thus allowing concurrent data management, data collection and analysis in field and lab settings. Results include the elimination of most manual data entry, reducing data entry error, tracking effectiveness at data collection, and increased sampling efficiency and consistency over multi-year experiments.
Flexible and wearable electronic silk fabrics for human physiological monitoring
NASA Astrophysics Data System (ADS)
Mao, Cuiping; Zhang, Huihui; Lu, Zhisong
2017-09-01
The development of textile-based devices for human physiological monitoring has attracted tremendous interest in recent years. However, flexible physiological sensing elements based on silk fabrics have not been realized. In this paper, ZnO nanorod arrays are grown in situ on reduced graphene oxide-coated silk fabrics via a facile electro-deposition method for the fabrication of silk-fabric-based mechanical sensing devices. The data show that well-aligned ZnO nanorods with hexagonal wurtzite crystalline structures are synthesized on the conductive silk fabric surface. After magnetron sputtering of gold electrodes, silk-fabric-based devices are produced and applied to detect periodic bending and twisting. Based on the electric signals, the deformation and release processes can be easily differentiated. Human arterial pulse and respiration can also be real-time monitored to calculate the pulse rate and respiration frequency, respectively. Throat vibrations during coughing and singing are detected to demonstrate the voice recognition capability. This work may not only help develop silk-fabric-based mechanical sensing elements for potential applications in clinical diagnosis, daily healthcare monitoring and voice recognition, but also provide a versatile method for fabricating textile-based flexible electronic devices.
Design, Prototyping and Control of a Flexible Cystoscope for Biomedical Applications
NASA Astrophysics Data System (ADS)
Sozer, Canberk; Ghorbani, Morteza; Alcan, Gokhan; Uvet, Huseyin; Unel, Mustafa; Kosar, Ali
2017-07-01
Kidney stone and prostate hyperplasia are very common urogenital diseases all over the world. To treat these diseases, one of the ESWL (Extracorporeal Shock Wave Lithotripsy), PCNL (Percutaneous Nephrolithotomy), cystoscopes or open surgery techniques can be used. Cystoscopes named devices are used for in-vivo intervention. A flexible or rigid cystoscope device is inserted into human body and operates on interested area. In this study, a flexible cystoscope prototype has been developed. The prototype is able to bend up to ±40°in X and Y axes, has a hydrodynamic cavitation probe for rounding sharp edges of kidney stone or resection of the filled prostate with hydrodynamic cavitation method and contains a waterproof medical camera to give visual feedback to the operator. The operator steers the flexible end-effector via joystick toward target region. This paper presents design, manufacturing, control and experimental setup of the tendon driven flexible cystoscope prototype. The prototype is 10 mm in outer diameter, 70 mm in flexible part only and 120 mm in total length with flexible part and rigid tube. The experimental results show that the prototype bending mechanism, control system, manufactured prototype parts and experimental setup function properly. A small piece of real kidney stone was broken in targeted area.
Flexible diodes for radio frequency (RF) electronics: a materials perspective
NASA Astrophysics Data System (ADS)
Semple, James; Georgiadou, Dimitra G.; Wyatt-Moon, Gwenhivir; Gelinck, Gerwin; Anthopoulos, Thomas D.
2017-12-01
Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.
New Materials and Device Designs for Organic Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
O'Brien, Barry Patrick
Research and development of organic materials and devices for electronic applications has become an increasingly active area. Display and solid-state lighting are the most mature applications and, and products have been commercially available for several years as of this writing. Significant efforts also focus on materials for organic photovoltaic applications. Some of the newest work is in devices for medical, sensor and prosthetic applications. Worldwide energy demand is increasing as the population grows and the standard of living in developing countries improves. Some studies estimate as much as 20% of annual energy usage is consumed by lighting. Improvements are being made in lightweight, flexible, rugged panels that use organic light emitting diodes (OLEDs), which are particularly useful in developing regions with limited energy availability and harsh environments. Displays also benefit from more efficient materials as well as the lighter weight and ruggedness enabled by flexible substrates. Displays may require different emission characteristics compared with solid-state lighting. Some display technologies use a white OLED (WOLED) backlight with a color filter, but these are more complex and less efficient than displays that use separate emissive materials that produce the saturated colors needed to reproduce the entire color gamut. Saturated colors require narrow-band emitters. Full-color OLED displays up to and including television size are now commercially available from several suppliers, but research continues to develop more efficient and more stable materials. This research program investigates several topics relevant to solid-state lighting and display applications. One project is development of a device structure to optimize performance of a new stable Pt-based red emitter developed in Prof Jian Li's group. Another project investigates new Pt-based red, green and blue emitters for lighting applications and compares a red/blue structure with a red/green/blue structure to produce light with high color rendering index. Another part of this work describes the fabrication of a 14.7" diagonal full color active-matrix OLED display on plastic substrate. The backplanes were designed and fabricated in the ASU Flexible Display Center and required significant engineering to develop; a discussion of that process is also included.
Location Based Application Availability
NASA Astrophysics Data System (ADS)
Naeem Akram, Raja; Markantonakis, Konstantinos; Mayes, Keith
Smart cards are being integrated into a diverse range of industries: ranging from banking, telecom, transport, home/office access control to health and E-passport. Traditionally, cardholders are required to carry a smart card for each application. However, recent developments in the Near Field Communication (NFC) have renewed the interest in multiple applications for different services on a single device. This paper builds onto the NFC initiative and avoids the smart card ownership issues that hinder the adoption of such devices. The proposal integrates the Global Positioning System with the NFC in mobile phones to provide a ubiquitously and flexible service access model.
Optoelectronic devices product assurance guideline for space application
NASA Astrophysics Data System (ADS)
Bensoussan, A.; Vanzi, M.
2017-11-01
New opportunities are emerging for the implementation of hardware sub-systems based on OptoElectronic Devices (OED) for space application. Since the end of this decade the main players for space systems namely designers and users including Industries, Agencies, Manufacturers and Laboratories are strongly demanding of adequate strategies to qualify and validate new optoelectronics products and sub-systems [1]. The long term space application mission will require to address either inter-satellite link (free space communication, positioning systems, tracking) or intra-satellite connectivity/flexibility/reconfigurability or high volume of data transfer between equipment installed into payload.
Jeong, Chang Kyu; Baek, Changyeon; Kingon, Angus I; Park, Kwi-Il; Kim, Seung-Hyun
2018-05-01
In the past two decades, mechanical energy harvesting technologies have been developed in various ways to support or power small-scale electronics. Nevertheless, the strategy for enhancing current and charge performance of flexible piezoelectric energy harvesters using a simple and cost-effective process is still a challenging issue. Herein, a 1D-3D (1-3) fully piezoelectric nanocomposite is developed using perovskite BaTiO 3 (BT) nanowire (NW)-employed poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) for a high-performance hybrid nanocomposite generator (hNCG) device. The harvested output of the flexible hNCG reaches up to ≈14 V and ≈4 µA, which is higher than the current levels of even previous piezoceramic film-based flexible energy harvesters. Finite element analysis method simulations study that the outstanding performance of hNCG devices attributes to not only the piezoelectric synergy of well-controlled BT NWs and within P(VDF-TrFE) matrix, but also the effective stress transferability of piezopolymer. As a proof of concept, the flexible hNCG is directly attached to a hand to scavenge energy using a human motion in various biomechanical frequencies for self-powered wearable patch device applications. This research can pave the way for a new approach to high-performance wearable and biocompatible self-sufficient electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Using partial reconfiguration for SoC design and implementation
NASA Astrophysics Data System (ADS)
Krasteva, Yana E.; Portilla, Jorge; Tobajas Guerrero, Félix; de la Torre, Eduardo
2009-05-01
Most reconfigurable systems rely on FPGA technology. Among these ones, those which permit dynamic and partial reconfiguration, offer added benefits in flexibility, in-field device upgrade, improved design and manufacturing time, and even, in some cases, power consumption reductions. However, dynamic reconfiguration is a complex task, and the real benefits of its use in real applications have been often questioned. This paper presents an overview of the partial reconfiguration technique application, along with four original applications. The main goal of these applications is to test several architectures with different flexibility and, to search for the partial reconfiguration "killing application", that is, the application that better demonstrates the benefits of today reconfigurable systems based on commercial FPGAs. Therefore, the presented applications are rather a proof of concept, than fully operative and closed systems. First, a brief introduction to the partial reconfigurable systems application topic has been included. After that, the descriptions of the created reconfigurable systems are presented: first, an on-chip communications emulation framework, second, an on chip debugging system, third, a wireless sensor network reconfigurable node and finally, a remote reconfigurable client-server device. Each application is described in a separate section of the paper along with some test and results. General conclusions are included at the end of the paper.
Field Effect Transistor Behavior in Electrospun Polyaniline/Polyethylene Oxide Nanofibers
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Theofylaktos, Noulle; Robinson, Daryl C.; Mueller, Carl H.; Pinto, Nicholas J.
2004-01-01
Novel translators and logic devices based on nanotechnology concepts are under intense development. The potential for ultra-low power circuitry makes nanotechnology attractive for applications such as digital electronics and sensors. Furthermore, the ability to form devices on flexible substrates expands the range of applications where electronic circuitry can be introduced. For NASA, nonotechndogy offers opportunities for increased onboard data processing and thus autonomous decision-making ability, ad novel sensors that detect and respond to external stimuli with few oversight requirements. The goat of this work is to demonstrate transistor behavior in polyaniline/ polyethylene oxide nanofibers, thus creating a foundation for future logic devices.
Flexible Display and Integrated Communication Devices (FDICD) Technology. Volume 2
2008-06-01
AFRL-RH-WP-TR-2008-0072 Flexible Display and Integrated Communication Devices (FDICD) Technology, Volume II David Huffman Keith Tognoni...14 April 2004 – 20 June 2008 4. TITLE AND SUBTITLE Flexible Display and Integrated Communication Devices (FDICD) Technology, Volume II 5a...14. ABSTRACT This flexible display and integrated communication devices (FDICD) technology program sought to create a family of powerful
A review of digital microfluidics as portable platforms for lab-on a-chip applications.
Samiei, Ehsan; Tabrizian, Maryam; Hoorfar, Mina
2016-07-07
Following the development of microfluidic systems, there has been a high tendency towards developing lab-on-a-chip devices for biochemical applications. A great deal of effort has been devoted to improve and advance these devices with the goal of performing complete sets of biochemical assays on the device and possibly developing portable platforms for point of care applications. Among the different microfluidic systems used for such a purpose, digital microfluidics (DMF) shows high flexibility and capability of performing multiplex and parallel biochemical operations, and hence, has been considered as a suitable candidate for lab-on-a-chip applications. In this review, we discuss the most recent advances in the DMF platforms, and evaluate the feasibility of developing multifunctional packages for performing complete sets of processes of biochemical assays, particularly for point-of-care applications. The progress in the development of DMF systems is reviewed from eight different aspects, including device fabrication, basic fluidic operations, automation, manipulation of biological samples, advanced operations, detection, biological applications, and finally, packaging and portability of the DMF devices. Success in developing the lab-on-a-chip DMF devices will be concluded based on the advances achieved in each of these aspects.
Hossain, Mozakkar; Kumar, Gundam Sandeep; Barimar Prabhava, S N; Sheerin, Emmet D; McCloskey, David; Acharya, Somobrata; Rao, K D M; Boland, John J
2018-05-22
Optically transparent photodetectors are crucial in next-generation optoelectronic applications including smart windows and transparent image sensors. Designing photodetectors with high transparency, photoresponsivity, and robust mechanical flexibility remains a significant challenge, as is managing the inevitable trade-off between high transparency and strong photoresponse. Here we report a scalable method to produce flexible crystalline Si nanostructured wire (NW) networks fabricated from silicon-on-insulator (SOI) with seamless junctions and highly responsive porous Si segments that combine to deliver exceptional performance. These networks show high transparency (∼92% at 550 nm), broadband photodetection (350 to 950 nm) with excellent responsivity (25 A/W), optical response time (0.58 ms), and mechanical flexibility (1000 cycles). Temperature-dependent photocurrent measurements indicate the presence of localized electronic states in the porous Si segments, which play a crucial role in light harvesting and photocarrier generation. The scalable low-cost approach based on SOI has the potential to deliver new classes of flexible optoelectronic devices, including next-generation photodetectors and solar cells.
Flexible ultraviolet photodetectors based on ZnO-SnO2 heterojunction nanowire arrays
NASA Astrophysics Data System (ADS)
Lou, Zheng; Yang, Xiaoli; Chen, Haoran; Liang, Zhongzhu
2018-02-01
A ZnO-SnO2 nanowires (NWs) array, as a metal oxide semiconductor, was successfully synthesized by a near-field electrospinning method for the applications as high performance ultraviolet photodetectors. Ultraviolet photodetectors based on a single nanowire exhibited excellent photoresponse properties to 300 nm ultraviolet light illumination including ultrahigh I on/I off ratios (up to 103), good stability and reproducibility because of the separation between photo-generated electron-hole pairs. Moreover, the NWs array shows an enhanced photosensing performance. Flexible photodetectors on the PI substrates with similar tendency properties were also fabricated. In addition, under various bending curvatures and cycles, the as-fabricated flexible photodetectors revealed mechanical flexibility and good stable electrical properties, showing that they have the potential for applications in future flexible photoelectron devices. Project supported by the National Science Foundation of China (No. 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine and Physics, Chinese Academy of Sciences.
Field-effect enhanced triboelectric colloidal quantum dot flexible sensor
NASA Astrophysics Data System (ADS)
Meng, Lingju; Xu, Qiwei; Fan, Shicheng; Dick, Carson R.; Wang, Xihua
2017-10-01
Flexible electronics, which is of great importance as fundamental sensor and communication technologies for many internet-of-things applications, has established a huge market encroaching into the trillion-dollar market of solid state electronics. For the capability of being processed by printing or spraying, colloidal quantum dots (CQDs) play an increasingly important role in flexible electronics. Although the electrical properties of CQD thin-films are expected to be stable on flexible substrates, their electrical performance could be tuned for applications in flexible touch sensors. Here, we report CQD touch sensors employing polydimethylsiloxane (PDMS) triboelectric films. The electrical response of touching activity is enhanced by incorporating CQD field-effect transistors into the device architecture. Thanks to the use of the CQD thin film as a current amplifier, the field-effect CQD touch sensor shows a fast response to various touching materials, even being bent to a large curvature. It also shows a much higher output current density compared to a PDMS triboelectric touch sensor.
Cho, Seungse; Kang, Saewon; Pandya, Ashish; Shanker, Ravi; Khan, Ziyauddin; Lee, Youngsu; Park, Jonghwa; Craig, Stephen L; Ko, Hyunhyub
2017-04-25
Silver nanowire (AgNW) networks are considered to be promising structures for use as flexible transparent electrodes for various optoelectronic devices. One important application of AgNW transparent electrodes is the flexible touch screens. However, the performances of flexible touch screens are still limited by the large surface roughness and low electrical to optical conductivity ratio of random network AgNW electrodes. In addition, although the perception of writing force on the touch screen enables a variety of different functions, the current technology still relies on the complicated capacitive force touch sensors. This paper demonstrates a simple and high-throughput bar-coating assembly technique for the fabrication of large-area (>20 × 20 cm 2 ), highly cross-aligned AgNW networks for transparent electrodes with the sheet resistance of 21.0 Ω sq -1 at 95.0% of optical transmittance, which compares favorably with that of random AgNW networks (sheet resistance of 21.0 Ω sq -1 at 90.4% of optical transmittance). As a proof of concept demonstration, we fabricate flexible, transparent, and force-sensitive touch screens using cross-aligned AgNW electrodes integrated with mechanochromic spiropyran-polydimethylsiloxane composite film. Our force-sensitive touch screens enable the precise monitoring of dynamic writings, tracing and drawing of underneath pictures, and perception of handwriting patterns with locally different writing forces. The suggested technique provides a robust and powerful platform for the controllable assembly of nanowires beyond the scale of conventional fabrication techniques, which can find diverse applications in multifunctional flexible electronic and optoelectronic devices.
Vidor, Fábio F.; Meyers, Thorsten; Hilleringmann, Ulrich
2016-01-01
Innovative systems exploring the flexibility and the transparency of modern semiconducting materials are being widely researched by the scientific community and by several companies. For a low-cost production and large surface area applications, thin-film transistors (TFTs) are the key elements driving the system currents. In order to maintain a cost efficient integration process, solution based materials are used as they show an outstanding tradeoff between cost and system complexity. In this paper, we discuss the integration process of ZnO nanoparticle TFTs using a high-k resin as gate dielectric. The performance in dependence on the transistor structure has been investigated, and inverted staggered setups depict an improved performance over the coplanar device increasing both the field-effect mobility and the ION/IOFF ratio. Aiming at the evaluation of the TFT characteristics for digital circuit applications, inverter circuits using a load TFT in the pull-up network and an active TFT in the pull-down network were integrated. The inverters show reasonable switching characteristics and V/V gains. Conjointly, the influence of the geometry ratio and the supply voltage on the devices have been analyzed. Moreover, as all integration steps are suitable to polymeric templates, the fabrication process is fully compatible to flexible substrates. PMID:28335282
Vidor, Fábio F; Meyers, Thorsten; Hilleringmann, Ulrich
2016-08-23
Innovative systems exploring the flexibility and the transparency of modern semiconducting materials are being widely researched by the scientific community and by several companies. For a low-cost production and large surface area applications, thin-film transistors (TFTs) are the key elements driving the system currents. In order to maintain a cost efficient integration process, solution based materials are used as they show an outstanding tradeoff between cost and system complexity. In this paper, we discuss the integration process of ZnO nanoparticle TFTs using a high- k resin as gate dielectric. The performance in dependence on the transistor structure has been investigated, and inverted staggered setups depict an improved performance over the coplanar device increasing both the field-effect mobility and the I ON / I OFF ratio. Aiming at the evaluation of the TFT characteristics for digital circuit applications, inverter circuits using a load TFT in the pull-up network and an active TFT in the pull-down network were integrated. The inverters show reasonable switching characteristics and V / V gains. Conjointly, the influence of the geometry ratio and the supply voltage on the devices have been analyzed. Moreover, as all integration steps are suitable to polymeric templates, the fabrication process is fully compatible to flexible substrates.
Small Molecule Organic Optoelectronic Devices
NASA Astrophysics Data System (ADS)
Bakken, Nathan
Organic optoelectronics include a class of devices synthesized from carbon containing 'small molecule' thin films without long range order crystalline or polymer structure. Novel properties such as low modulus and flexibility as well as excellent device performance such as photon emission approaching 100% internal quantum efficiency have accelerated research in this area substantially. While optoelectronic organic light emitting devices have already realized commercial application, challenges to obtain extended lifetime for the high energy visible spectrum and the ability to reproduce natural white light with a simple architecture have limited the value of this technology for some display and lighting applications. In this research, novel materials discovered from a systematic analysis of empirical device data are shown to produce high quality white light through combination of monomer and excimer emission from a single molecule: platinum(II) bis(methyl-imidazolyl)toluene chloride (Pt-17). Illumination quality achieved Commission Internationale de L'Eclairage (CIE) chromaticity coordinates (x = 0.31, y = 0.38) and color rendering index (CRI) > 75. Further optimization of a device containing Pt-17 resulted in a maximum forward viewing power efficiency of 37.8 lm/W on a plain glass substrate. In addition, accelerated aging tests suggest high energy blue emission from a halogen-free cyclometalated platinum complex could demonstrate degradation rates comparable to known stable emitters. Finally, a buckling based metrology is applied to characterize the mechanical properties of small molecule organic thin films towards understanding the deposition kinetics responsible for an elastic modulus that is both temperature and thickness dependent. These results could contribute to the viability of organic electronic technology in potentially flexible display and lighting applications. The results also provide insight to organic film growth kinetics responsible for optical, mechanical, and water uptake properties relevant to engineering the next generation of optoelectronic devices.
Roll-to-Roll Gravure Printed Electrochemical Sensors for Wearable and Medical Devices.
Bariya, Mallika; Shahpar, Ziba; Park, Hyejin; Sun, Junfeng; Jung, Younsu; Gao, Wei; Nyein, Hnin Yin Yin; Liaw, Tiffany Sun; Tai, Li-Chia; Ngo, Quynh P; Chao, Minghan; Zhao, Yingbo; Hettick, Mark; Cho, Gyoujin; Javey, Ali
2018-06-25
As recent developments in noninvasive biosensors spearhead the thrust toward personalized health and fitness monitoring, there is a need for high throughput, cost-effective fabrication of flexible sensing components. Toward this goal, we present roll-to-roll (R2R) gravure printed electrodes that are robust under a range of electrochemical sensing applications. We use inks and electrode morphologies designed for electrochemical and mechanical stability, achieving devices with uniform redox kinetics printed on 150 m flexible substrate rolls. We show that these electrodes can be functionalized into consistently high performing sensors for detecting ions, metabolites, heavy metals, and other small molecules in noninvasively accessed biofluids, including sensors for real-time, in situ perspiration monitoring during exercise. This development of robust and versatile R2R gravure printed electrodes represents a key translational step in enabling large-scale, low-cost fabrication of disposable wearable sensors for personalized health monitoring applications.
Using SDI-12 with ST microelectronics MCU's
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saari, Alexandra; Hinzey, Shawn Adrian; Frigo, Janette Rose
2015-09-03
ST Microelectronics microcontrollers and processors are readily available, capable and economical processors. Unfortunately they lack a broad user base like similar offerings from Texas Instrument, Atmel, or Microchip. All of these devices could be useful in economical devices for remote sensing applications used with environmental sensing. With the increased need for environmental studies, and limited budgets, flexibility in hardware is very important. To that end, and in an effort to increase open support of ST devices, I am sharing my teams' experience in interfacing a common environmental sensor communication protocol (SDI-12) with ST devices.
Wearable sweat detector device design for health monitoring and clinical diagnosis
NASA Astrophysics Data System (ADS)
Wu, Qiuchen; Zhang, Xiaodong; Tian, Bihao; Zhang, Hongyan; Yu, Yang; Wang, Ming
2017-06-01
Miniaturized sensor is necessary part for wearable detector for biomedical applications. Wearable detector device is indispensable for online health care. This paper presents a concept of an wearable digital health monitoring device design for sweat analysis. The flexible sensor is developed to quantify the amount of hydrogen ions in sweat and skin temperature in real time. The detection system includes pH sensor, temperature sensor, signal processing module, power source, microprocessor, display module and so on. The sweat monitoring device is designed for sport monitoring or clinical diagnosis.
Liu, Yongchuan; Miao, Xiaofei; Fang, Jianhui; Zhang, Xiangxin; Chen, Sujing; Li, Wei; Feng, Wendou; Chen, Yuanqiang; Wang, Wei; Zhang, Yining
2016-03-02
Flexible solid-state supercapacitors provide a promising energy-storage alternative for the rapidly growing flexible and wearable electronic industry. Further improving device energy density and developing a cheap flexible current collector are two major challenges in pushing the technology forward. In this work, we synthesize a nitrogen-doped graphene/MnO2 nanosheet (NGMn) composite by a simple hydrothermal method. Nitrogen-doped graphene acts as a template to induce the growth of layered δ-MnO2 and improves the electronic conductivity of the composite. The NGMn composite exhibits a large specific capacitance of about 305 F g(-1) at a scan rate of 5 mV s(-1). We also create a cheap and highly conductive flexible current collector using Scotch tape. Flexible solid-state asymmetric supercapacitors are fabricated with NGMn cathode, activated carbon anode, and PVA-LiCl gel electrolyte. The device can achieve a high operation voltage of 1.8 V and exhibits a maximum energy density of 3.5 mWh cm(-3) at a power density of 0.019 W cm(-3). Moreover, it retains >90% of its initial capacitance after 1500 cycles. Because of its flexibility, high energy density, and good cycle life, NGMn-based flexible solid state asymmetric supercapacitors have great potential for application in next-generation portable and wearable electronics.
Li, Zhengdao; Zhou, Yong; Bao, Chunxiong; Xue, Guogang; Zhang, Jiyuan; Liu, Jianguo; Yu, Tao; Zou, Zhigang
2012-06-07
Zn(2)SnO(4) nanowire arrays were for the first time grown onto a stainless steel mesh (SSM) in a binary ethylenediamine (En)/water solvent system using a solvothermal route. The morphology evolution following this reaction was carefully followed to understand the formation mechanism. The SSM-supported Zn(2)SnO(4) nanowire was utilized as a photoanode for fabrication of large-area (10 cm × 5 cm size as a typical sample), flexible dye-sensitized solar cells (DSSCs). The synthesized Zn(2)SnO(4) nanowires exhibit great bendability and flexibility, proving potential advantage over other metal oxide nanowires such as TiO(2), ZnO, and SnO(2) for application in flexible solar cells. Relative to the analogous Zn(2)SnO(4) nanoparticle-based flexible DSSCs, the nanowire geometry proves to enhance solar energy conversion efficiency through enhancement of electron transport. The bendable nature of the DSSCs without obvious degradation of efficiency and facile scale up gives the as-made flexible solar cell device potential for practical application.
NASA Astrophysics Data System (ADS)
Lee, Chi Hwan; Kim, Jae-Han; Zou, Chenyu; Cho, In Sun; Weisse, Jeffery M.; Nemeth, William; Wang, Qi; van Duin, Adri C. T.; Kim, Taek-Soo; Zheng, Xiaolin
2013-10-01
Peel-and-stick process, or water-assisted transfer printing (WTP), represents an emerging process for transferring fully fabricated thin-film electronic devices with high yield and fidelity from a SiO2/Si wafer to various non-Si based substrates, including papers, plastics and polymers. This study illustrates that the fundamental working principle of the peel-and-stick process is based on the water-assisted subcritical debonding, for which water reduces the critical adhesion energy of metal-SiO2 interface by 70 ~ 80%, leading to clean and high quality transfer of thin-film electronic devices. Water-assisted subcritical debonding is applicable for a range of metal-SiO2 interfaces, enabling the peel-and-stick process as a general and tunable method for fabricating flexible/transparent thin-film electronic devices.
Lee, Chi Hwan; Kim, Jae-Han; Zou, Chenyu; Cho, In Sun; Weisse, Jeffery M; Nemeth, William; Wang, Qi; van Duin, Adri C T; Kim, Taek-Soo; Zheng, Xiaolin
2013-10-10
Peel-and-stick process, or water-assisted transfer printing (WTP), represents an emerging process for transferring fully fabricated thin-film electronic devices with high yield and fidelity from a SiO2/Si wafer to various non-Si based substrates, including papers, plastics and polymers. This study illustrates that the fundamental working principle of the peel-and-stick process is based on the water-assisted subcritical debonding, for which water reduces the critical adhesion energy of metal-SiO2 interface by 70 ~ 80%, leading to clean and high quality transfer of thin-film electronic devices. Water-assisted subcritical debonding is applicable for a range of metal-SiO2 interfaces, enabling the peel-and-stick process as a general and tunable method for fabricating flexible/transparent thin-film electronic devices.
Biologically Derived Soft Conducting Hydrogels Using Heparin-Doped Polymer Networks
2015-01-01
The emergence of flexible and stretchable electronic components expands the range of applications of electronic devices. Flexible devices are ideally suited for electronic biointerfaces because of mechanically permissive structures that conform to curvilinear structures found in native tissue. Most electronic materials used in these applications exhibit elastic moduli on the order of 0.1–1 MPa. However, many electronically excitable tissues exhibit elasticities in the range of 1–10 kPa, several orders of magnitude smaller than existing components used in flexible devices. This work describes the use of biologically derived heparins as scaffold materials for fabricating networks with hybrid electronic/ionic conductivity and ultracompliant mechanical properties. Photo-cross-linkable heparin–methacrylate hydrogels serve as templates to control the microstructure and doping of in situ polymerized polyaniline structures. Macroscopic heparin-doped polyaniline hydrogel dual networks exhibit impedances as low as Z = 4.17 Ω at 1 kHz and storage moduli of G′ = 900 ± 100 Pa. The conductivity of heparin/polyaniline networks depends on the oxidation state and microstructure of secondary polyaniline networks. Furthermore, heparin/polyaniline networks support the attachment, proliferation, and differentiation of murine myoblasts without any surface treatments. Taken together, these results suggest that heparin/polyaniline hydrogel networks exhibit suitable physical properties as an electronically active biointerface material that can match the mechanical properties of soft tissues composed of excitable cells. PMID:24738911
Ice matrix in reconfigurable microfluidic systems
NASA Astrophysics Data System (ADS)
Bossi, A. M.; Vareijka, M.; Piletska, E. V.; Turner, A. P. F.; Meglinski, I.; Piletsky, S. A.
2013-07-01
Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices.
Silver Nanowire Top Electrodes in Flexible Perovskite Solar Cells using Titanium Metal as Substrate.
Lee, Minoh; Ko, Yohan; Min, Byoung Koun; Jun, Yongseok
2016-01-08
Flexible perovskite solar cells (FPSCs) have various applications such as wearable electronic textiles and portable devices. In this work, we demonstrate FPSCs on a titanium metal substrate employing solution-processed silver nanowires (Ag NWs) as the top electrode. The Ag NW electrodes were deposited on top of the spiro-MeOTAD hole transport layer by a carefully controlled spray-coating method at moderate temperatures. The power conversion efficiency (PCE) reached 7.45 % under AM 1.5 100 mW cm(-2) illumination. Moreover, the efficiency for titanium-based FPSCs decreased only slightly (by 2.6 % of the initial value) after the devices were bent 100 times. With this and other advances, fully solution-based indium-free flexible photovoltaics, advantageous in terms of price and processing, have the potential to be scaled into commercial production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A high output voltage flexible piezoelectric nanogenerator using porous lead-free KNbO3 nanofibers
NASA Astrophysics Data System (ADS)
Ganeshkumar, Rajasekaran; Cheah, Chin Wei; Xu, Ruize; Kim, Sang-Gook; Zhao, Rong
2017-07-01
Self-powered nanodevices for applications such as sensor networks and IoTs are among the emerging technologies in electronics. Piezoelectric nanogenerators (P-NGs) that harvest energy from mechanical stimuli are highly valuable in the development of self-sufficient nanosystems. Despite progress in the development of P-NGs, the use of porous perovskite ferroelectric nanofibers was barely considered or discussed. In this letter, a flexible high output nanogenerator is fabricated using a nanocomposite comprising porous potassium niobate (KNbO3) nanofibers and polydimethylsiloxane. When a compressive force was applied to as-fabricated P-NG, a peak-to-peak output voltage of ˜16 V and a maximum closed circuit current of 230 nA were obtained, which are high enough to realize self-powered nanodevices. In addition, due to their porosity and non-toxic nature, KNbO3 nanofibers may be used as an alternative to the dominant lead-based piezoelectric devices. Besides the high output performance of the device, multifunctional capability, flexible design, and cost-effective construction of the as-fabricated P-NG can be crucial to large-scale deployment of autonomous devices.
Yong, Keong; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo
2016-01-01
We report a one-step polymer-free approach to patterning graphene using a stencil mask and oxygen plasma reactive-ion etching, with a subsequent polymer-free direct transfer for flexible graphene devices. Our stencil mask is fabricated via a subtractive, laser cutting manufacturing technique, followed by lamination of stencil mask onto graphene grown on Cu foil for patterning. Subsequently, micro-sized graphene features of various shapes are patterned via reactive-ion etching. The integrity of our graphene after patterning is confirmed by Raman spectroscopy. We further demonstrate the rapid prototyping capability of a stretchable, crumpled graphene strain sensor and patterned graphene condensation channels for potential applications in sensing and heat transfer, respectively. We further demonstrate that the polymer-free approach for both patterning and transfer to flexible substrates allows the realization of cleaner graphene features as confirmed by water contact angle measurements. We believe that our new method promotes rapid, facile fabrication of cleaner graphene devices, and can be extended to other two dimensional materials in the future. PMID:27118249
Organic electronics with polymer dielectrics on plastic substrates fabricated via transfer printing
NASA Astrophysics Data System (ADS)
Hines, Daniel R.
Printing methods are fast becoming important processing techniques for the fabrication of flexible electronics. Some goals for flexible electronics are to produce cheap, lightweight, disposable radio frequency identification (RFID) tags, very large flexible displays that can be produced in a roll-to-roll process and wearable electronics for both the clothing and medical industries. Such applications will require fabrication processes for the assembly of dissimilar materials onto a common substrate in ways that are compatible with organic and polymeric materials as well as traditional solid-state electronic materials. A transfer printing method has been developed with these goals and application in mind. This printing method relies primarily on differential adhesion where no chemical processing is performed on the device substrate. It is compatible with a wide variety of materials with each component printed in exactly the same way, thus avoiding any mixed processing steps on the device substrate. The adhesion requirements of one material printed onto a second are studied by measuring the surface energy of both materials and by surface treatments such as plasma exposure or the application of self-assembled monolayers (SAM). Transfer printing has been developed within the context of fabricating organic electronics onto plastic substrates because these materials introduce unique opportunities associated with processing conditions not typically required for traditional semiconducting materials. Compared to silicon, organic semiconductors are soft materials that require low temperature processing and are extremely sensitive to chemical processing and environmental contamination. The transfer printing process has been developed for the important and commonly used organic semiconducting materials, pentacene (Pn) and poly(3-hexylthiophene) (P3HT). A three-step printing process has been developed by which these materials are printed onto an electrode subassembly consisting of previously printed electrodes separated by a polymer dielectric layer all on a plastic substrate. These bottom contact, flexible organic thin-film transistors (OTFT) have been compared to unprinted (reference) devices consisting of top contact electrodes and a silicon dioxide dielectric layer on a silicon substrate. Printed Pn and P3HT TFTs have been shown to out-perform the reference devices. This enhancement has been attributed to an annealing under pressure of the organic semiconducting material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beltran-Valle, Omar; Pena-Gallardo, Rafael; Segundo-Ramirez, Juan
This paper presents a comparative study of the application of Flexible AC Transmission System (FACTS) devices, as Thyristor Controlled Series Capacitor (TCSC), Static Synchronous Compensator (STATCOM) and Unified Power Controller (UPFC) on congestion management and voltage support in the area of the Istmo of Tehuantepec, Oaxaca, Mexico. The present work provides an analysis about the performance of the control of active and reactive power of the FACTS controllers applied to mentioned problems in the power system.
Fuzzy logic modeling of high performance rechargeable batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, P.; Fennie, C. Jr.; Reisner, D.E.
1998-07-01
Accurate battery state-of-charge (SOC) measurements are critical in many portable electronic device applications. Yet conventional techniques for battery SOC estimation are limited in their accuracy, reliability, and flexibility. In this paper the authors present a powerful new approach to estimate battery SOC using a fuzzy logic-based methodology. This approach provides a universally applicable, accurate method for battery SOC estimation either integrated within, or as an external monitor to, an electronic device. The methodology is demonstrated in modeling impedance measurements on Ni-MH cells and discharge voltage curves of Li-ion cells.
Vacuum-actuated percutaneous insertion/implantation tool for flexible neural probes and interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheth, Heeral; Bennett, William J.; Pannu, Satinderpall S.
A flexible device insertion tool including an elongated stiffener with one or more suction ports, and a vacuum connector for interfacing the stiffener to a vacuum source, for attaching the flexible device such as a flexible neural probe to the stiffener during insertion by a suction force exerted through the suction ports to, and to release the flexible device by removing the suction force.
Liu, Zhike; Lau, Shu Ping; Yan, Feng
2015-08-07
Graphene is the thinnest two-dimensional (2D) carbon material and has many advantages including high carrier mobilities and conductivity, high optical transparency, excellent mechanical flexibility and chemical stability, which make graphene an ideal material for various optoelectronic devices. The major applications of graphene in photovoltaic devices are for transparent electrodes and charge transport layers. Several other 2D materials have also shown advantages in charge transport and light absorption over traditional semiconductor materials used in photovoltaic devices. Great achievements in the applications of 2D materials in photovoltaic devices have been reported, yet numerous challenges still remain. For practical applications, the device performance should be further improved by optimizing the 2D material synthesis, film transfer, surface functionalization and chemical/physical doping processes. In this review, we will focus on the recent advances in the applications of graphene and other 2D materials in various photovoltaic devices, including organic solar cells, Schottky junction solar cells, dye-sensitized solar cells, quantum dot-sensitized solar cells, other inorganic solar cells, and perovskite solar cells, in terms of the functionalization techniques of the materials, the device design and the device performance. Finally, conclusions and an outlook for the future development of this field will be addressed.
NASA Technical Reports Server (NTRS)
1972-01-01
Device, jetcord, is metal-clad linear explosive of sufficient flexibility to allow forming into intricate shapes. Total effect is termed ''cutting'' with jetcord consistently ''cutting'' a target of greater thickness than can be penetrated. Applications include sheet metal working, pipe cutting and fire-fighting.
Nitride-Based Materials for Flexible MEMS Tactile and Flow Sensors in Robotics
Abels, Claudio; Mastronardi, Vincenzo Mariano; Guido, Francesco; Dattoma, Tommaso; Qualtieri, Antonio; Megill, William M.; De Vittorio, Massimo; Rizzi, Francesco
2017-01-01
The response to different force load ranges and actuation at low energies is of considerable interest for applications of compliant and flexible devices undergoing large deformations. We present a review of technological platforms based on nitride materials (aluminum nitride and silicon nitride) for the microfabrication of a class of flexible micro-electro-mechanical systems. The approach exploits the material stress differences among the constituent layers of nitride-based (AlN/Mo, SixNy/Si and AlN/polyimide) mechanical elements in order to create microstructures, such as upwardly-bent cantilever beams and bowed circular membranes. Piezoresistive properties of nichrome strain gauges and direct piezoelectric properties of aluminum nitride can be exploited for mechanical strain/stress detection. Applications in flow and tactile sensing for robotics are described. PMID:28489040
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qingkun; Frazier, Allister W.; Zhao, Xinpeng
Experimental realization of optically transparent, mechanically robust and flexible aerogels has been a longstanding challenge, which limits their practical applications in energy-saving devices, such as thermally insulating films for enhancing energy efficiency of windows. The poor transparency precluded even hypothetical consideration of the possibility of birefringent aerogels. We develop birefringent and optically isotropic aerogels that combine properties of thermal super-insulation, mechanical robustness and flexibility, and transparency to visible-spectrum light. This unusual combination of physical properties is achieved by combining liquid crystalline self-organization of cellulose nanofibers with polysiloxane cross-linking and control of the nanoscale porosity to form hybrid organic-inorganic mesostructured aerogels.more » Potential applications of these inexpensive materials range from single pane window retrofitting to smart fabrics.« less
2D/0D graphene hybrids for visible-blind flexible UV photodetectors.
Tetsuka, Hiroyuki
2017-07-17
Nitrogen-functionalized graphene quantum dots (NGQDs) are attractive building blocks for optoelectronic devices because of their exceptional tunable optical absorption and fluorescence properties. Here, we developed a high-performance flexible NGQD/graphene field-effect transistor (NGQD@GFET) hybrid ultraviolet (UV) photodetector, using dimethylamine-functionalized GQDs (NMe 2 -GQDs) with a large bandgap of ca. 3.3 eV. The NMe 2 -GQD@GFET photodetector exhibits high photoresponsivity and detectivity of ca. 1.5 × 10 4 A W -1 and ca. 5.5 × 10 11 Jones, respectively, in the deep-UV region as short as 255 nm without application of a backgate voltage. The feasibility of these flexible UV photodetectors for practical application in flame alarms is also demonstrated.
Flexible graphene bio-nanosensor for lactate.
Labroo, Pratima; Cui, Yue
2013-03-15
The development of a flexible nanosensor for detecting lactate could expand opportunities for using graphene, both in fundamental studies for a variety of device platforms and in practical applications. Graphene is a delicate single-layer, two-dimensional network of carbon atoms with ultrasensitive sensing capabilities. Lactic acid is important for clinical analysis, sports medicine, and the food industry. Recently, wearable and flexible bioelectronics on plastics have attracted great interest for healthcare, sports and defense applications due to their advantages of being light-weight, bendable, or stretchable. Here, we demonstrate for the first time the development of a flexible graphene-based bio-nanosensor to detect lactate. Our results show that flexible lactate biosensors can be fabricated on a variety of plastic substrates. The sensor can detect lactate sensitively from 0.08 μM to 20 μM with a fast steady-state measuring time of 2s. The sensor can also detect lactate under different mechanical bending conditions, the sensor response decreased as the bending angle and number of bending repetitions increased. We anticipate that these results could open exciting opportunities for fundamental studies of flexible graphene bioelectronics by using other bioreceptors, as well as a variety of wearable, implantable, real-time, or on-site applications in fields ranging from clinical analysis to defense. Copyright © 2012 Elsevier B.V. All rights reserved.
Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors.
Xiao, Xu; Peng, Xiang; Jin, Huanyu; Li, Tianqi; Zhang, Chengcheng; Gao, Biao; Hu, Bin; Huo, Kaifu; Zhou, Jun
2013-09-25
High-performance all-solid-state supercapacitors (SCs) are fabricated based on thin, lightweight, and flexible freestanding MVNN/CNT hybrid electrodes. The device shows a high volume capacitance of 7.9 F/cm(3) , volume energy and power density of 0.54 mWh/cm(3) and 0.4 W/cm(3) at a current density of 0.025 A/cm(3) . By being highly flexible, environmentally friendly, and easily connectable in series and parallel, the all-solid-state SCs promise potential applications in portable/wearable electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors.
Hao, Guang-Ping; Hippauf, Felix; Oschatz, Martin; Wisser, Florian M; Leifert, Annika; Nickel, Winfried; Mohamed-Noriega, Nasser; Zheng, Zhikun; Kaskel, Stefan
2014-07-22
Conductive polymers showing stretchable and transparent properties have received extensive attention due to their enormous potential in flexible electronic devices. Here, we demonstrate a facile and smart strategy for the preparation of structurally stretchable, electrically conductive, and optically semitransparent polyaniline-containing hybrid hydrogel networks as electrode, which show high-performances in supercapacitor application. Remarkably, the stability can extend up to 35,000 cycles at a high current density of 8 A/g, because of the combined structural advantages in terms of flexible polymer chains, highly interconnected pores, and excellent contact between the host and guest functional polymer phase.
Transparent Large-Area MoS2 Phototransistors with Inkjet-Printed Components on Flexible Platforms.
Kim, Tae-Young; Ha, Jewook; Cho, Kyungjune; Pak, Jinsu; Seo, Jiseok; Park, Jongjang; Kim, Jae-Keun; Chung, Seungjun; Hong, Yongtaek; Lee, Takhee
2017-10-24
Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have gained considerable attention as an emerging semiconductor due to their promising atomically thin film characteristics with good field-effect mobility and a tunable band gap energy. However, their electronic applications have been generally realized with conventional inorganic electrodes and dielectrics implemented using conventional photolithography or transferring processes that are not compatible with large-area and flexible device applications. To facilitate the advantages of 2D TMDCs in practical applications, strategies for realizing flexible and transparent 2D electronics using low-temperature, large-area, and low-cost processes should be developed. Motivated by this challenge, we report fully printed transparent chemical vapor deposition (CVD)-synthesized monolayer molybdenum disulfide (MoS 2 ) phototransistor arrays on flexible polymer substrates. All the electronic components, including dielectric and electrodes, were directly deposited with mechanically tolerable organic materials by inkjet-printing technology onto transferred monolayer MoS 2 , and their annealing temperature of <180 °C allows the direct fabrication on commercial flexible substrates without additional assisted-structures. By integrating the soft organic components with ultrathin MoS 2 , the fully printed MoS 2 phototransistors exhibit excellent transparency and mechanically stable operation.
NASA Astrophysics Data System (ADS)
Jeong, Chang Kyu; Han, Jae Hyun; Palneedi, Haribabu; Park, Hyewon; Hwang, Geon-Tae; Joung, Boyoung; Kim, Seong-Gon; Shin, Hong Ju; Kang, Il-Suk; Ryu, Jungho; Lee, Keon Jae
2017-07-01
Flexible piezoelectric energy harvesters have been regarded as an overarching candidate for achieving self-powered electronic systems for environmental sensors and biomedical devices using the self-sufficient electrical energy. In this research, we realize a flexible high-output and lead-free piezoelectric energy harvester by using the aerosol deposition method and the laser lift-off process. We also investigated the comprehensive biocompatibility of the lead-free piezoceramic device using ex-vivo ionic elusion and in vivo bioimplantation, as well as in vitro cell proliferation and histologic inspection. The fabricated LiNbO3-doped (K,Na)NbO3 (KNN) thin film-based flexible energy harvester exhibited an outstanding piezoresponse, and average output performance of an open-circuit voltage of ˜130 V and a short-circuit current of ˜1.3 μ A under normal bending and release deformation, which is the best record among previously reported flexible lead-free piezoelectric energy harvesters. Although both the KNN and Pb(Zr,Ti)O3 (PZT) devices showed short-term biocompatibility in cellular and histological studies, excessive Pb toxic ions were eluted from the PZT in human serum and tap water. Moreover, the KNN-based flexible energy harvester was implanted into a porcine chest and generated up to ˜5 V and 700 nA from the heartbeat motion, comparable to the output of previously reported lead-based flexible energy harvesters. This work can compellingly serve to advance the development of piezoelectric energy harvesting for actual and practical biocompatible self-powered biomedical applications beyond restrictions of lead-based materials in long-term physiological and clinical aspects.
Integration of Indium Phosphide Based Devices with Flexible Substrates
NASA Astrophysics Data System (ADS)
Chen, Wayne Huai
2011-12-01
Flexible substrates have many advantages in applications where bendability, space, or weight play important roles or where rigid circuits are undesirable. However, conventional flexible thin film transistors are typically characterized as having low carrier mobility as compared to devices used in the electronics industry. This is in part due to the limited temperature tolerance of plastic flexible substrates, which commonly reduces the highest processing temperature to below 200°C. Common approaches of implementation include low temperature deposition of organic, amorphous, or polycrystalline semiconductors, all of which result in carrier mobility well below 100 cm2V -1s-1. High quality, single crystalline III-V semiconductors such as indium phosphide (InP), on the other hand, have carrier mobility well over 1000 cm 2V-1s-1 at room temperature, depending on carrier concentration. Recently, the ion-cut process has been used in conjunction with wafer bonding to integrate thin layers of III-V material onto silicon for optoelectronic applications. This approach has the advantage of high scalability, reusability of the initial III-V substrate, and the ability to tailor the location (depth) of the layer splitting. However, the transferred substrate usually suffers from hydrogen implantation damage. This dissertation demonstrates a new approach to enable integration of InP with various substrates, called the double-flip transfer process. The process combines ion-cutting with adhesive bonding. The problem of hydrogen implantation was overcome by patterned ion-cut transfer. In this type of transfer, areas of interest are shielded from implantation but still transferred by surrounding implanted regions. We found that patterned ion-cut transfer is strongly dependent upon crystal orientation and that using cleavage-plane oriented donors can be beneficial in transferring large areas of high quality semiconductor material. InP-based devices were fabricated to demonstrate the transfer process and test functionality following transfer. Passive devices (photodetectors) as well as active transistors were transferred and fabricated on various substrates. The transferred device layers were either implanted through with a blanket implant or protected with an ion-mask during implantation. Results demonstrate the viability of the double-flip ion-cut process in achieving very high electron mobility (˜2800 cm2V-1s-1) transistors on plastic flexible substrates.
Wen, Lei; Li, Feng; Cheng, Hui-Ming
2016-06-01
Flexible electrochemical energy storage (FEES) devices have received great attention as a promising power source for the emerging field of flexible and wearable electronic devices. Carbon nanotubes (CNTs) and graphene have many excellent properties that make them ideally suited for use in FEES devices. A brief definition of FEES devices is provided, followed by a detailed overview of various structural models for achieving different FEES devices. The latest research developments on the use of CNTs and graphene in FEES devices are summarized. Finally, future prospects and important research directions in the areas of CNT- and graphene-based flexible electrode synthesis and device integration are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
EDITORIAL: Flexible OLEDs and organic electronics Flexible OLEDs and organic electronics
NASA Astrophysics Data System (ADS)
Kim, Jang-Joo; Han, Min-Koo; Noh, Yong-Young
2011-03-01
Following the great discovery of the electrically conducting polymer, doped polyacetylene, which was honorably recognized in 2000 with the Nobel Prize in chemistry, conjugated molecules, i.e. organic semiconductors, have become an attractive class of active elements for various electronic or opto-electronic applications. Significant effort has been made in both academia and industry to investigate π-conjugated molecules for their unique electrical or opto-electrical properties over the last three decades. The discovery of electroluminescence in conjugated small molecules in 1982 and in polymers in 1989 was a major breakthrough, bringing those molecules to commercial applications within reach for the first time in (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells (OPVs), and field-effect transistors (OFETs). Nowadays, we use OLED displays in everyday life in mobile devices. The potential of these devices, which have been fabricated with conjugated molecules, lies in the possibility to combine the advantages of solution processability, chemical tunability and material strength of polymers with the typical properties of plastics, to realize low-cost, large-area electronic devices on flexible substrates by solution deposition and direct-write graphic art printing techniques. The articles in the flexible OLEDs and organic electronics special issue in Semiconductor Science and Technology deal with a diversity of topics and effectively reflect the current status of research from all over the world on various organic electronic devices, including OLEDs, OPVs, and OFETs. Firstly, S Park et al describe the recent progress in thin-film encapsulation techniques for flexible AM-OLED and large-area OLED lightings, and their applications are discussed by J-W Park et al. Flexible active-matrix OLEDs on plastics require stable and flexible thin-film transistors processed at low temperature. Metal oxide thin-film transistors are proposed as one of the best candidates for the purpose, and J K Jeong discusses their status and perspectives. Next, several excellent research articles on OFETs follow. In particular, Y-Y Noh et al introduce an interesting method to control charge injection in top-gated OFETs by insertion of various self-assembled monolayers in their paper entitled 'Controlling contact resistance in top-gate polythiophene-based field-effect transistors by molecular engineering'. We would like to thank all the authors for their contributions, which combine new results and profound overviews of the state of the art in flexible OLEDs and organic electronics areas; it is this combination that most often adds to the value of topical issues. Special thanks also go to the staff of IOP Publishing, particularly Ms Alice Malhador, for contributing to the success of this effort. In this special issue, many wonderful reviews and research articles provide a detailed overview of recent progress in OLEDs, OPVs and OFETs as well as a scientific understanding of the device physics with these materials. We sincerely believe this special issue is a timely publication and will give productive information to a broad range of readers. Flexible OLEDs and organic electronics Contents Thin film encapsulation for flexible AM-OLED: a review Jin-Seong Park, Heeyeop Chae, Ho Kyoon Chung and Sang In Lee Large-area OLED lightings and their applications J W Park, D C Shin and S H Park Controlling contact resistance in top-gate polythiophene-based field-effect transistors by molecular engineering Yong-Young Noh, Xiaoyang Cheng, Marta Tello, Mi-Jung Lee and Henning Sirringhaus Branched polythiophene as a new amorphous semiconducting polymer for an organic field-effect transistor Makoto Karakawa, Yutaka Ie and Yoshio Aso Influence of mechanical strain on the electrical properties of flexible organic thin-film transistors Fang-Chung Chen, Tzung-Da Chen, Bing-Ruei Zeng and Ya-Wei Chung Frequency operation of low-voltage, solution-processed organic field-effect transistors M Caironi, Y-Y Noh and H Sirringhaus Nonvolatile memory thin-film transistors using an organic ferroelectric gate insulator and an oxide semiconducting channel Sung-Min Yoon, Shinhyuk Yang, Chun-Won Byun, Soon-Won Jung, Min-Ki Ryu, Sang-Hee Ko Park, ByeongHoon Kim, Himchan Oh, Chi-Sun Hwang and Byoung-Gon Yu The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays Jae Kyeong Jeong Vertical phase segregation of hybrid poly(3-hexylthiophene) and fullerene derivative composites controlled via velocity of solvent drying Tao Song, Zhongwei Wu, Yingfen Tu, Yizheng Jin and Baoquan Sun Variations of cell performance in ITO-free organic solar cells with increasing cell areas Jun-Seok Yeo, Jin-Mun Yun, Seok-Soon Kim, Dong-Yu Kim, Junkyung Kim and Seok-In Na
Wang, Zhengyun; Dong, Shuang; Gui, Mengxi; Asif, Muhammad; Wang, Wei; Wang, Feng; Liu, Hongfang
2018-02-15
Flexible sweat biosensors are of considerable current interest for the development of wearable smart miniature devices. In this work, we report a novel type of flexible and electrochemical sweat platform fabricated by depositing Cu submicron buds on freestanding graphene paper (GP) carrying MoS 2 nanocrystals monolayer for bio-functional detection of glucose and lactate. Quantitative analysis of glucose and lactate was carried out by using amperometric i-t method. Linear ranges were obtained between 5 and 1775 μM for glucose and 0.01-18.4 mM for lactate, and their corresponding limits of detection were 500 nM and 0.1 μM, respectively. The platform demonstrates fast response, good selectivity, superb reproducibility and outstanding flexibility, which enable its use for monitoring glucose and lactate in human perspiration. The strategy of structurally integrating 3D transition metal, 0D transition metal sulfide and 2D graphene will provide new insight into the design of flexible electrodes for sweat glucose and lactate monitoring and a wider range of applications in biosensing, bioelectronics, and lab-on-a-chip devices. Copyright © 2017. Published by Elsevier Inc.
Lv, Lili; Han, Xiangsheng; Zong, Lu; Li, Mingjie; You, Jun; Wu, Xiaochen; Li, Chaoxu
2017-08-22
Silk, one of the strongest natural biopolymers, was hybridized with Kevlar, one of the strongest synthetic polymers, through a biomimetic nanofibrous strategy. Regenerated silk materials have outstanding properties in transparency, biocompatibility, biodegradability and sustainability, and promising applications as diverse as in pharmaceutics, electronics, photonic devices and membranes. To compete with super mechanic properties of their natural counterpart, regenerated silk materials have been hybridized with inorganic fillers such as graphene and carbon nanotubes, but frequently lose essential mechanic flexibility. Inspired by the nanofibrous strategy of natural biomaterials (e.g., silk fibers, hemp and byssal threads of mussels) for fantastic mechanic properties, Kevlar was integrated in regenerated silk materials by combining nanometric fibrillation with proper hydrothermal treatments. The resultant hybrid films showed an ultimate stress and Young's modulus two times as high as those of pure regenerated SF films. This is not only because of the reinforcing effect of Kevlar nanofibrils, but also because of the increasing content of silk β-sheets. When introducing Kevlar nanofibrils into the membranes of silk nanofibrils assembled by regenerated silk fibroin, the improved mechanic properties further enabled potential applications as pressure-driven nanofiltration membranes and flexible substrates of electronic devices.
Epidermal Inorganic Optoelectronics for Blood Oxygen Measurement.
Li, Haicheng; Xu, Yun; Li, Xiaomin; Chen, Ying; Jiang, Yu; Zhang, Changxing; Lu, Bingwei; Wang, Jian; Ma, Yinji; Chen, Yihao; Huang, Yin; Ding, Minquang; Su, Honghong; Song, Guofeng; Luo, Yi; Feng, X
2017-05-01
Flexible and stretchable optoelectronics, built-in inorganic semiconductor materials, offer a wide range of unprecedented opportunities and will redefine the conventional rigid optoelectronics in biological application and medical measurement. However, a significant bottleneck lies in the brittleness nature of rigid semiconductor materials and the performance's extreme sensitivity to the light intensity variation due to human skin deformation while measuring physical parameters. In this study, the authors demonstrate a systematic strategy to design an epidermal inorganic optoelectronic device by using specific strain-isolation design, nanodiamond thinning, and hybrid transfer printing. The authors propose all-in-one suspension structure to achieve the stretchability and conformability for surrounding environment, and they propose a two-step transfer printing method for hybrid integrating III-V group emitting elements, Si-based photodetector, and interconnects. Owing to the excellent flexibility and stretchability, such device is totally conformal to skin and keeps the constant light transmission between emitting element and photodetector as well as the signal stability due to skin deformation. This method opens a route for traditional inorganic optoelectronics to achieve flexibility and stretchability and improve the performance of optoelectronics for biomedical application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabric Organic Electrochemical Transistors for Biosensors.
Yang, Anneng; Li, Yuanzhe; Yang, Chenxiao; Fu, Ying; Wang, Naixiang; Li, Li; Yan, Feng
2018-06-01
Flexible fabric biosensors can find promising applications in wearable electronics. However, high-performance fabric biosensors have been rarely reported due to many special requirements in device fabrication. Here, the preparation of organic electrochemical transistors (OECTs) on Nylon fibers is reported. By introducing metal/conductive polymer multilayer electrodes on the fibers, the OECTs show very stable performance during bending tests. The devices with functionalized gates are successfully used as various biosensors with high sensitivity and selectivity. The fiber-based OECTs are woven together with cotton yarns successfully by using a conventional weaving machine, resulting in flexible and stretchable fabric biosensors with high performance. The fabric sensors show much more stable signals in the analysis of moving aqueous solutions than planar devices due to a capillary effect in fabrics. The fabric devices are integrated in a diaper and remotely operated by using a mobile phone, offering a unique platform for convenient wearable healthcare monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Flexible Microcontroller-Based Data Acquisition Device
Hercog, Darko; Gergič, Bojan
2014-01-01
This paper presents a low-cost microcontroller-based data acquisition device. The key component of the presented solution is a configurable microcontroller-based device with an integrated USB transceiver and a 12-bit analogue-to-digital converter (ADC). The presented embedded DAQ device contains a preloaded program (firmware) that enables easy acquisition and generation of analogue and digital signals and data transfer between the device and the application running on a PC via USB bus. This device has been developed as a USB human interface device (HID). This USB class is natively supported by most of the operating systems and therefore any installation of additional USB drivers is unnecessary. The input/output peripheral of the presented device is not static but rather flexible, and could be easily configured to customised needs without changing the firmware. When using the developed configuration utility, a majority of chip pins can be configured as analogue input, digital input/output, PWM output or one of the SPI lines. In addition, LabVIEW drivers have been developed for this device. When using the developed drivers, data acquisition and signal processing algorithms as well as graphical user interface (GUI), can easily be developed using a well-known, industry proven, block oriented LabVIEW programming environment. PMID:24892494
Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa
2016-04-13
We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings.
NASA Astrophysics Data System (ADS)
Suganya, N.; Jaisankar, V.; Sivakumar, E. K. T.
Conducting polymer hydrogels represent a unique class of materials that possess enormous application in flexible electronic devices. In the present work, conducting carboxymethylcellulose (CMC)-co-polyacrylamide (PAAm)/polyaniline was synthesized by a two-step interpenetrating network solution polymerization technique. The synthesized CMC-co-PAAm/polyaniline with interpenetrating network structure was prepared by in situ polymerization of aniline to enhance conductivity. The molecular structure and morphology of the copolymer hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The novel conducting polymer hydrogels show good electrical and electrochemical behavior, which makes them potentially useful in electronic devices such as supercapacitors, biosensors, bioelectronics, solar cells and memory devices.
Jiang, Dongyue; Park, Sung-Yong
2016-05-21
Technical advances in electrowetting-on-dielectric (EWOD) over the past few years have extended our attraction to three-dimensional (3D) devices capable of providing more flexibility and functionality with larger volumetric capacity than conventional 2D planar ones. However, typical 3D EWOD devices require complex and expensive fabrication processes for patterning and wiring of pixelated electrodes that also restrict the minimum droplet size to be manipulated. Here, we present a flexible single-sided continuous optoelectrowetting (SCOEW) device which is not only fabricated by a spin-coating method without the need for patterning and wiring processes, but also enables light-driven 3D droplet manipulations. To provide photoconductive properties, previous optoelectrowetting (OEW) devices have used amorphous silicon (a-Si) typically fabricated through high-temperature processes over 300 °C such as CVD or PECVD. However, most of the commercially-available flexible substrates such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) experience serious thermal deformation under such high-temperature processes. Because of this compatibility issue of conventional OEW devices with flexible substrates, light-driven 3D droplet manipulations have not yet been demonstrated on flexible substrates. Our study overcomes this compatibility issue by using a polymer-based photoconductive material, titanium oxide phthalocyanine (TiOPc) and thus SCOEW devices can be simply fabricated on flexible substrates through a low-cost, spin-coating method. In this paper, analytical studies were conducted to understand the effects of light patterns on static contact angles and EWOD forces. For experimental validations of our study, flexible SCOEW devices were successfully fabricated through the TiOPc-based spin-coating method and light-driven droplet manipulations (e.g. transportation, merging, and splitting) have been demonstrated on various 3D terrains such as inclined, vertical, upside-down, and curved surfaces. Our flexible SCOEW technology offers the benefits of device simplicity, flexibility, and functionality over conventional EWOD and OEW devices by enabling optical droplet manipulations on a 3D featureless surface.
Fully Printed Organic-Inorganic Nanocomposites for Flexible Thermoelectric Applications.
Ou, Canlin; Sangle, Abhijeet L; Datta, Anuja; Jing, Qingshen; Busolo, Tommaso; Chalklen, Thomas; Narayan, Vijay; Kar-Narayan, Sohini
2018-06-13
Thermoelectric materials, capable of interconverting heat and electricity, are attractive for applications in thermal energy harvesting as a means to power wireless sensors, wearable devices, and portable electronics. However, traditional inorganic thermoelectric materials pose significant challenges due to high cost, toxicity, scarcity, and brittleness, particularly when it comes to applications requiring flexibility. Here, we investigate organic-inorganic nanocomposites that have been developed from bespoke inks which are printed via an aerosol jet printing method onto flexible substrates. For this purpose, a novel in situ aerosol mixing method has been developed to ensure uniform distribution of Bi 2 Te 3 /Sb 2 Te 3 nanocrystals, fabricated by a scalable solvothermal synthesis method, within a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate matrix. The thermoelectric properties of the resulting printed nanocomposite structures have been evaluated as a function of composition, and the power factor was found to be maximum (∼30 μW/mK 2 ) for a nominal loading fraction of 85 wt % Sb 2 Te 3 nanoflakes. Importantly, the printed nanocomposites were found to be stable and robust upon repeated flexing to curvatures up to 300 m -1 , making these hybrid materials particularly suitable for flexible thermoelectric applications.
Johar, Muhammad Ali; Hassan, Mostafa Afifi; Waseem, Aadil; Ha, Jun-Seok; Lee, June Key; Ryu, Sang-Wan
2018-06-14
A piezoelectric nanogenerator (PNG) that is based on c-axis GaN nanowires is fabricated on flexible substrate. In this regard, c-axis GaN nanowires were grown on GaN substrate using the vapor-liquid-solid (VLS) technique by metal organic chemical vapor deposition. Further, Polydimethylsiloxane (PDMS) was coated on nanowire-arrays then PDMS matrix embedded with GaN nanowire-arrays was transferred on Si-rubber substrate. The piezoelectric performance of nanowire-based flexible PNG was measured, while the device was actuated using a cyclic stretching-releasing agitation mechanism that was driven by a linear motor. The piezoelectric output was measured as a function of actuation frequency ranging from 1 Hz to 10 Hz and a linear tendency was observed for piezoelectric output current, while the output voltages remained constant. A maximum of piezoelectric open circuit voltages and short circuit current were measured 15.4 V and 85.6 nA, respectively. In order to evaluate the feasibility of our flexible PNG for real application, a long term stability test was performed for 20,000 cycles and the device performance was degraded by less than 18%. The underlying reason for the high piezoelectric output was attributed to the reduced free carriers inside nanowires due to surface Fermi-level pinning and insulating metal-dielectric-semiconductor interface, respectively; the former reduced the free carrier screening radially while latter reduced longitudinally. The flexibility and the high aspect ratio of GaN nanowire were the responsible factors for higher stability. Such higher piezoelectric output and the novel design make our device more promising for the diverse range of real applications.
Recording nerve signals in canine sciatic nerves with a flexible penetrating microelectrode array
NASA Astrophysics Data System (ADS)
Byun, Donghak; Cho, Sung-Joon; Lee, Byeong Han; Min, Joongkee; Lee, Jong-Hyun; Kim, Sohee
2017-08-01
Objective. Previously, we presented the fabrication and characterization of a flexible penetrating microelectrode array (FPMA) as a neural interface device. In the present study, we aim to prove the feasibility of the developed FPMA as a chronic intrafascicular recording tool for peripheral applications. Approach. For recording from the peripheral nerves of medium-sized animals, the FPMA was integrated with an interconnection cable and other parts that were designed to fit canine sciatic nerves. The uniformity of tip exposure and in vitro electrochemical properties of the electrodes were characterized. The capability of the device to acquire in vivo electrophysiological signals was evaluated by implanting the FPMA assembly in canine sciatic nerves acutely as well as chronically for 4 weeks. We also examined the histology of implanted tissues to evaluate the damage caused by the device. Main results. Throughout recording sessions, we observed successful multi-channel recordings (up to 73% of viable electrode channels) of evoked afferent and spontaneous nerve unit spikes with high signal quality (SNR > 4.9). Also, minor influences of the device implantation on the morphology of nerve tissues were found. Significance. The presented results demonstrate the viability of the developed FPMA device in the peripheral nerves of medium-sized animals, thereby bringing us a step closer to human applications. Furthermore, the obtained data provide a driving force toward a further study for device improvements to be used as a bidirectional neural interface in humans.
Wide Bandgap Semiconductor Nanowires for Electronic, Photonic and Sensing Devices
2012-01-05
oxide -based thin film transistors ( TFTs ) have attracted much attention for applications like flexible electronic devices. The...crystals, and ~ 1.5 cm2.V-1.s-1 for pentacene thin films ). A number of groups have demonstrated TFTs based on α- oxide semiconductors such as zinc oxide ...show excellent long-term stability at room temperature. Results: High-performance amorphous (α-) InGaZnO-based thin film transistors ( TFTs )
Ultra-slim flexible glass for roll-to-roll electronic device fabrication
NASA Astrophysics Data System (ADS)
Garner, Sean; Glaesemann, Scott; Li, Xinghua
2014-08-01
As displays and electronics evolve to become lighter, thinner, and more flexible, the choice of substrate continues to be critical to their overall optimization. The substrate directly affects improvements in the designs, materials, fabrication processes, and performance of advanced electronics. With their inherent benefits such as surface quality, optical transmission, hermeticity, and thermal and dimensional stability, glass substrates enable high-quality and long-life devices. As substrate thicknesses are reduced below 200 μm, ultra-slim flexible glass continues to provide these inherent benefits to high-performance flexible electronics such as displays, touch sensors, photovoltaics, and lighting. In addition, the reduction in glass thickness also allows for new device designs and high-throughput, continuous manufacturing enabled by R2R processes. This paper provides an overview of ultra-slim flexible glass substrates and how they enable flexible electronic device optimization. Specific focus is put on flexible glass' mechanical reliability. For this, a combination of substrate design and process optimizations has been demonstrated that enables R2R device fabrication on flexible glass. Demonstrations of R2R flexible glass processes such as vacuum deposition, photolithography, laser patterning, screen printing, slot die coating, and lamination have been made. Compatibility with these key process steps has resulted in the first demonstration of a fully functional flexible glass device fabricated completely using R2R processes.
A Thin Film Flexible Supercapacitor Based on Oblique Angle Deposited Ni/NiO Nanowire Arrays.
Ma, Jing; Liu, Wen; Zhang, Shuyuan; Ma, Zhe; Song, Peishuai; Yang, Fuhua; Wang, Xiaodong
2018-06-11
With high power density, fast charging-discharging speed, and a long cycling life, supercapacitors are a kind of highly developed novel energy-storage device that has shown a growing performance and various unconventional shapes such as flexible, linear-type, stretchable, self-healing, etc. Here, we proposed a rational design of thin film, flexible micro-supercapacitors with in-plane interdigital electrodes, where the electrodes were fabricated using the oblique angle deposition technique to grow oblique Ni/NiO nanowire arrays directly on polyimide film. The obtained electrodes have a high specific surface area and good adhesion to the substrate compared with other in-plane micro-supercapacitors. Meanwhile, the as-fabricated micro-supercapacitors have good flexibility and satisfactory energy-storage performance, exhibiting a high specific capacity of 37.1 F/cm³, a high energy density of 5.14 mWh/cm³, a power density of up to 0.5 W/cm³, and good stability during charge-discharge cycles and repeated bending-recovery cycles, respectively. Our micro-supercapacitors can be used as ingenious energy storage devices for future portable and wearable electronic applications.
Flexible Photodiodes Based on Nitride Core/Shell p–n Junction Nanowires
2016-01-01
A flexible nitride p-n photodiode is demonstrated. The device consists of a composite nanowire/polymer membrane transferred onto a flexible substrate. The active element for light sensing is a vertical array of core/shell p–n junction nanowires containing InGaN/GaN quantum wells grown by MOVPE. Electron/hole generation and transport in core/shell nanowires are modeled within nonequilibrium Green function formalism showing a good agreement with experimental results. Fully flexible transparent contacts based on a silver nanowire network are used for device fabrication, which allows bending the detector to a few millimeter curvature radius without damage. The detector shows a photoresponse at wavelengths shorter than 430 nm with a peak responsivity of 0.096 A/W at 370 nm under zero bias. The operation speed for a 0.3 × 0.3 cm2 detector patch was tested between 4 Hz and 2 kHz. The −3 dB cutoff was found to be ∼35 Hz, which is faster than the operation speed for typical photoconductive detectors and which is compatible with UV monitoring applications. PMID:27615556
Flexible graphene transistors for recording cell action potentials
NASA Astrophysics Data System (ADS)
Blaschke, Benno M.; Lottner, Martin; Drieschner, Simon; Bonaccini Calia, Andrea; Stoiber, Karolina; Rousseau, Lionel; Lissourges, Gaëlle; Garrido, Jose A.
2016-06-01
Graphene solution-gated field-effect transistors (SGFETs) are a promising platform for the recording of cell action potentials due to the intrinsic high signal amplification of graphene transistors. In addition, graphene technology fulfills important key requirements for in-vivo applications, such as biocompability, mechanical flexibility, as well as ease of high density integration. In this paper we demonstrate the fabrication of flexible arrays of graphene SGFETs on polyimide, a biocompatible polymeric substrate. We investigate the transistor’s transconductance and intrinsic electronic noise which are key parameters for the device sensitivity, confirming that the obtained values are comparable to those of rigid graphene SGFETs. Furthermore, we show that the devices do not degrade during repeated bending and the transconductance, governed by the electronic properties of graphene, is unaffected by bending. After cell culture, we demonstrate the recording of cell action potentials from cardiomyocyte-like cells with a high signal-to-noise ratio that is higher or comparable to competing state of the art technologies. Our results highlight the great capabilities of flexible graphene SGFETs in bioelectronics, providing a solid foundation for in-vivo experiments and, eventually, for graphene-based neuroprosthetics.
Printing Smart Designs of Light Emitting Devices with Maintained Textile Properties †
Verboven, Inge; Stryckers, Jeroen; Mecnika, Viktorija; Vandevenne, Glen; Jose, Manoj
2018-01-01
To maintain typical textile properties, smart designs of light emitting devices are printed directly onto textile substrates. A first approach shows improved designs for alternating current powder electroluminescence (ACPEL) devices. A configuration with the following build-up, starting from the textile substrate, was applied using the screen printing technique: silver (10 µm)/barium titanate (10 µm)/zinc-oxide (10 µm) and poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (10 µm). Textile properties such as flexibility, drapability and air permeability are preserved by implementing a pixel-like design of the printed layers. Another route is the application of organic light emitting devices (OLEDs) fabricated out of following layers, also starting from the textile substrate: polyurethane or acrylate (10–20 µm) as smoothing layer/silver (200 nm)/poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (35 nm)/super yellow (80 nm)/calcium/aluminum (12/17 nm). Their very thin nm-range layer thickness, preserving the flexibility and drapability of the substrate, and their low working voltage, makes these devices the possible future in light-emitting wearables. PMID:29438276
Jiang, Zhi Hao; Turpin, Jeremy P; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H
2015-08-28
Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy.
Hansen, Benjamin J; Liu, Ying; Yang, Rusen; Wang, Zhong Lin
2010-07-27
Harvesting energy from multiple sources available in our personal and daily environments is highly desirable, not only for powering personal electronics, but also for future implantable sensor-transmitter devices for biomedical and healthcare applications. Here we present a hybrid energy scavenging device for potential in vivo applications. The hybrid device consists of a piezoelectric poly(vinylidene fluoride) nanofiber nanogenerator for harvesting mechanical energy, such as from breathing or from the beat of a heart, and a flexible enzymatic biofuel cell for harvesting the biochemical (glucose/O2) energy in biofluid, which are two types of energy available in vivo. The two energy harvesting approaches can work simultaneously or individually, thereby boosting output and lifetime. Using the hybrid device, we demonstrate a "self-powered" nanosystem by powering a ZnO nanowire UV light sensor.
Flexible packaging for microelectronic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Benjamin John; Nielson, Gregory N.; Cruz-Campa, Jose Luis
An apparatus, method, and system, the apparatus and system including a flexible microsystems enabled microelectronic device package including a microelectronic device positioned on a substrate; an encapsulation layer encapsulating the microelectronic device and the substrate; a protective layer positioned around the encapsulating layer; and a reinforcing layer coupled to the protective layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device. The method including encapsulating a microelectronic device positioned on a substrate within an encapsulation layer; sealing the encapsulated microelectronic device within a protective layer; and coupling themore » protective layer to a reinforcing layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device.« less
Intelligent subsystem interface for modular hardware system
NASA Technical Reports Server (NTRS)
Caffrey, Robert T. (Inventor); Krening, Douglas N. (Inventor); Lannan, Gregory B. (Inventor); Schneiderwind, Michael J. (Inventor); Schneiderwind, Robert A. (Inventor)
2000-01-01
A single chip application specific integrated circuit (ASIC) which provides a flexible, modular interface between a subsystem and a standard system bus. The ASIC includes a microcontroller/microprocessor, a serial interface for connection to the bus, and a variety of communications interface devices available for coupling to the subsystem. A three-bus architecture, utilizing arbitration, provides connectivity within the ASIC and between the ASIC and the subsystem. The communication interface devices include UART (serial), parallel, analog, and external device interface utilizing bus connections paired with device select signals. A low power (sleep) mode is provided as is a processor disable option.
NASA Astrophysics Data System (ADS)
Park, Won-Hyeong; Bae, Jin Woo; Shin, Eun-Jae; Kim, Sang-Youn
2016-11-01
The paradigm of consumer electronic devices is being shifted from rigid hand-held devices to flexible/wearable devices in search of benefits such as enhanced usability and portability, excellent wear characteristics, and more functions in less space. However, the fundamental incompatibility of flexible/wearable devices and a rigid actuator brought forth a new issue obstructing commercialization of flexible/wearable devices. In this paper, we propose a new wave-shaped eco-friendly PVC gel, and a new flexible and bendable vibrotactile actuator that could easily be applied to wearable electronic devices. We explain the vibration mechanism of the proposed vibrotactile actuator and investigate its influence on the content of plasticizer for the performance of the proposed actuator. An experiment for measuring vibrational amplitude was conducted over a wide frequency range. The experiment clearly showed that the proposed vibrotactile actuator could create a variety of haptic sensations in wearable devices.
NASA Astrophysics Data System (ADS)
Tripathy, Ashis; Sharma, Priyaranjan; Sahoo, Narayan
2018-03-01
At the present time, flexible and stretchable electronics has intended to use the new cutting-edge technologies for advanced electronic application. Currently, Polymers are being employed for such applications but they are not effective due to their low dielectric constant. To enhance the dielectric properties of polymer for energy storage application, it is necessary to add ceramic material of high dielectric constant to synthesize a polymer-ceramic composite. Therefore, a novel attempt has been made to enhance the dielectric properties of the Polydimethylsiloxane (PDMS) polymer by adding (CaMgFex)Fe1-xTi3O12-δ(0
BioNet Digital Communications Framework
NASA Technical Reports Server (NTRS)
Gifford, Kevin; Kuzminsky, Sebastian; Williams, Shea
2010-01-01
BioNet v2 is a peer-to-peer middleware that enables digital communication devices to talk to each other. It provides a software development framework, standardized application, network-transparent device integration services, a flexible messaging model, and network communications for distributed applications. BioNet is an implementation of the Constellation Program Command, Control, Communications and Information (C3I) Interoperability specification, given in CxP 70022-01. The system architecture provides the necessary infrastructure for the integration of heterogeneous wired and wireless sensing and control devices into a unified data system with a standardized application interface, providing plug-and-play operation for hardware and software systems. BioNet v2 features a naming schema for mobility and coarse-grained localization information, data normalization within a network-transparent device driver framework, enabling of network communications to non-IP devices, and fine-grained application control of data subscription band width usage. BioNet directly integrates Disruption Tolerant Networking (DTN) as a communications technology, enabling networked communications with assets that are only intermittently connected including orbiting relay satellites and planetary rover vehicles.
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2007-01-01
The NASA Glenn Research Center s Avionics, Power and Communications Branch of the Engineering and Systems Division initiated the Hybrid Power Management (HPM) Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and fuel cells. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. One of the unique power devices being utilized by HPM for energy storage is the ultracapacitor. An ultracapacitor is an electrochemical energy storage device, which has extremely high volumetric capacitance energy due to high surface area electrodes, and very small electrode separation. Ultracapacitors are a reliable, long life, maintenance free, energy storage system. This flexible operating system can be applied to all power systems to significantly improve system efficiency, reliability, and performance. There are many existing and conceptual applications of HPM.
An electric stimulation system for electrokinetic particle manipulation in microfluidic devices.
Lopez-de la Fuente, M S; Moncada-Hernandez, H; Perez-Gonzalez, V H; Lapizco-Encinas, B H; Martinez-Chapa, S O
2013-03-01
Microfluidic devices have grown significantly in the number of applications. Microfabrication techniques have evolved considerably; however, electric stimulation systems for microdevices have not advanced at the same pace. Electric stimulation of micro-fluidic devices is an important element in particle manipulation research. A flexible stimulation instrument is desired to perform configurable, repeatable, automated, and reliable experiments by allowing users to select the stimulation parameters. The instrument presented here is a configurable and programmable stimulation system for electrokinetic-driven microfluidic devices; it consists of a processor, a memory system, and a user interface to deliver several types of waveforms and stimulation patterns. It has been designed to be a flexible, highly configurable, low power instrument capable of delivering sine, triangle, and sawtooth waveforms with one single frequency or two superimposed frequencies ranging from 0.01 Hz to 40 kHz, and an output voltage of up to 30 Vpp. A specific stimulation pattern can be delivered over a single time period or as a sequence of different signals for different time periods. This stimulation system can be applied as a research tool where manipulation of particles suspended in liquid media is involved, such as biology, medicine, environment, embryology, and genetics. This system has the potential to lead to new schemes for laboratory procedures by allowing application specific and user defined electric stimulation. The development of this device is a step towards portable and programmable instrumentation for electric stimulation on electrokinetic-based microfluidic devices, which are meant to be integrated with lab-on-a-chip devices.
An electric stimulation system for electrokinetic particle manipulation in microfluidic devices
NASA Astrophysics Data System (ADS)
Lopez-de la Fuente, M. S.; Moncada-Hernandez, H.; Perez-Gonzalez, V. H.; Lapizco-Encinas, B. H.; Martinez-Chapa, S. O.
2013-03-01
Microfluidic devices have grown significantly in the number of applications. Microfabrication techniques have evolved considerably; however, electric stimulation systems for microdevices have not advanced at the same pace. Electric stimulation of micro-fluidic devices is an important element in particle manipulation research. A flexible stimulation instrument is desired to perform configurable, repeatable, automated, and reliable experiments by allowing users to select the stimulation parameters. The instrument presented here is a configurable and programmable stimulation system for electrokinetic-driven microfluidic devices; it consists of a processor, a memory system, and a user interface to deliver several types of waveforms and stimulation patterns. It has been designed to be a flexible, highly configurable, low power instrument capable of delivering sine, triangle, and sawtooth waveforms with one single frequency or two superimposed frequencies ranging from 0.01 Hz to 40 kHz, and an output voltage of up to 30 Vpp. A specific stimulation pattern can be delivered over a single time period or as a sequence of different signals for different time periods. This stimulation system can be applied as a research tool where manipulation of particles suspended in liquid media is involved, such as biology, medicine, environment, embryology, and genetics. This system has the potential to lead to new schemes for laboratory procedures by allowing application specific and user defined electric stimulation. The development of this device is a step towards portable and programmable instrumentation for electric stimulation on electrokinetic-based microfluidic devices, which are meant to be integrated with lab-on-a-chip devices.
System approach to distributed sensor management
NASA Astrophysics Data System (ADS)
Mayott, Gregory; Miller, Gordon; Harrell, John; Hepp, Jared; Self, Mid
2010-04-01
Since 2003, the US Army's RDECOM CERDEC Night Vision Electronic Sensor Directorate (NVESD) has been developing a distributed Sensor Management System (SMS) that utilizes a framework which demonstrates application layer, net-centric sensor management. The core principles of the design support distributed and dynamic discovery of sensing devices and processes through a multi-layered implementation. This results in a sensor management layer that acts as a System with defined interfaces for which the characteristics, parameters, and behaviors can be described. Within the framework, the definition of a protocol is required to establish the rules for how distributed sensors should operate. The protocol defines the behaviors, capabilities, and message structures needed to operate within the functional design boundaries. The protocol definition addresses the requirements for a device (sensors or processes) to dynamically join or leave a sensor network, dynamically describe device control and data capabilities, and allow dynamic addressing of publish and subscribe functionality. The message structure is a multi-tiered definition that identifies standard, extended, and payload representations that are specifically designed to accommodate the need for standard representations of common functions, while supporting the need for feature-based functions that are typically vendor specific. The dynamic qualities of the protocol enable a User GUI application the flexibility of mapping widget-level controls to each device based on reported capabilities in real-time. The SMS approach is designed to accommodate scalability and flexibility within a defined architecture. The distributed sensor management framework and its application to a tactical sensor network will be described in this paper.
Multi-material optoelectronic fiber devices
NASA Astrophysics Data System (ADS)
Sorin, F.; Yan, Wei; Volpi, Marco; Page, Alexis G.; Nguyen Dang, Tung; Qu, Y.
2017-05-01
The recent ability to integrate materials with different optical and optoelectronic properties in prescribed architectures within flexible fibers is enabling novel opportunities for advanced optical probes, functional surfaces and smart textiles. In particular, the thermal drawing process has known a series of breakthroughs in recent years that have expanded the range of materials and architectures that can be engineered within uniform fibers. Of particular interest in this presentation will be optoelectronic fibers that integrate semiconductors electrically addressed by conducting materials. These long, thin and flexible fibers can intercept optical radiation, localize and inform on a beam direction, detect its wavelength and even harness its energy. They hence constitute ideal candidates for applications such as remote and distributed sensing, large-area optical-detection arrays, energy harvesting and storage, innovative health care solutions, and functional fabrics. To improve performance and device complexity, tremendous progresses have been made in terms of the integrated semiconductor architectures, evolving from large fiber solid-core, to sub-hundred nanometer thin-films, nano-filaments and even nanospheres. To bridge the gap between the optoelectronic fiber concept and practical applications however, we still need to improve device performance and integration. In this presentation we will describe the materials and processing approaches to realize optoelectronic fibers, as well as give a few examples of demonstrated systems for imaging as well as light and chemical sensing. We will then discuss paths towards practical applications focusing on two main points: fiber connectivity, and improving the semiconductor microstructure by developing scalable approaches to make fiber-integrated single-crystal nanowire based devices.
Engineering Low-Dimensional Nanostructures Towards Flexible Electronics
NASA Astrophysics Data System (ADS)
Byrley, Peter Samuel
Flexible electronics have been proposed as the next generation of electronic devices. They have advantages over traditional electronics in that they use less material, are more durable and have greater versatility in their proposed applications. However, there are a variety of types of devices being developed that have specific engineering challenges. This dissertation addresses two of those challenges. The first challenge involves lowering contact resistance in MoS2 based flexible thin film transistor devices using a photochemical phase change method while the second addresses using silver nanowire networks as a replacement flexible electrode for indium tin oxide in flexible electronics. In this dissertation, a scalable method was developed for making monolayer MoS2 using ambient pressure chemical vapor deposition. These films were then characterized using spectroscopic techniques and atomic force microscopy. A photochemical phase change mechanism was then proposed to improve contact resistance in MoS2 based devices. The central hypothesis is that the controllable partial transition from a semiconducting 2H to metallic 1T phase can be realized in monolayer TMDs through photo-reduction in the presence of hole scavenging chemicals. Phase-engineering in monolayer TMDs would enable the fabrication of high-quality heterophase structures with the potential to improve carrier mobility and contact. Phase change as a result of the proposed photochemical method was confirmed using Raman spectroscopy, photoluminescence measurements, X-Ray photoelectron spectroscopy and other supporting data. Gold coated silver nanowires were then created to serve as flexible nanowire based electrodes by overcoming galvanic replacement in solution. This was confirmed using various forms of electron microscopy. The central hypothesis is that a thin gold coating will enable silver nanowire meshes to remain electrically stable in atmosphere and retain necessary low resistance values and transparencies over time. It was shown that gold coated silver nanowire meshes could be created with sheet resistances comparable to indium tin oxide and outlast their bare silver nanowire counterparts in environments at 80 deg C.
Applications of software-defined radio (SDR) technology in hospital environments.
Chávez-Santiago, Raúl; Mateska, Aleksandra; Chomu, Konstantin; Gavrilovska, Liljana; Balasingham, Ilangko
2013-01-01
A software-defined radio (SDR) is a radio communication system where the major part of its functionality is implemented by means of software in a personal computer or embedded system. Such a design paradigm has the major advantage of producing devices that can receive and transmit widely different radio protocols based solely on the software used. This flexibility opens several application opportunities in hospital environments, where a large number of wired and wireless electronic devices must coexist in confined areas like operating rooms and intensive care units. This paper outlines some possible applications in the 2360-2500 MHz frequency band. These applications include the integration of wireless medical devices in a common communication platform for seamless interoperability, and cognitive radio (CR) for body area networks (BANs) and wireless sensor networks (WSNs) for medical environmental surveillance. The description of a proof-of-concept CR prototype is also presented.
Lee, Ho Won; Park, Jaehoon; Yang, Hyung Jin; Lee, Song Eun; Lee, Seok Jae; Koo, Ja Ryong; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan
2015-03-01
In this paper, we demonstrated thin film semitransparent anode electrode using Ni/Ag/Ni (3/6/3 nm) on green and red phosphorescent OLEDs, which have basically high efficiency and good optical characteristics. Moreover, we applied this semitransparent anode on flexible green and red phosphorescent OLEDs, which were then optimized for possible applications on flexible substrates. First, we studied optimization using various conditions of Ni/Ag/Ni electrodes via transmittance and sheet resistance. We then fabricated the devices on a glass substrate with ITO or Ni/Ag/Ni electrodes as well as on a flexible substrate with a Ni/Ag/Ni electrode for green and red phosphorescent OLEDs. Consequently, we could be proposed that the potential of our semitransparent anode electrode is demonstrated. Green phosphorescent OLEDs characteristics using ITO or Ni/Ag/Ni anode electrodes were coincided and those of the red phosphorescent OLEDs were improved by semitransparent electrodes at 10,000 cd/m2 criterion. Therefore, this research suggests for additional studies to be conducted on flexible and high-performance phosphorescent OLED displays and light applications for ITO-free processes.
A novel multi-stimuli responsive gelator based on D-gluconic acetal and its potential applications.
Guan, Xidong; Fan, Kaiqi; Gao, Tongyang; Ma, Anping; Zhang, Bao; Song, Jian
2016-01-18
We construct a simple-structured super gelator with multi-stimuli responsive properties, among which anion responsiveness follows the Hofmeister series in a non-aqueous system. Versatile applications such as being rheological and self-healing agents, waste water treatment, spilled oil recovery and flexible optical device manufacture are integrated into a single organogelator, which was rarely reported.
Paper-Based Inkjet-Printed Flexible Electronic Circuits.
Wang, Yan; Guo, Hong; Chen, Jin-Ju; Sowade, Enrico; Wang, Yu; Liang, Kun; Marcus, Kyle; Baumann, Reinhard R; Feng, Zhe-Sheng
2016-10-05
Printed flexible electronics have been widely studied for their potential use in various applications. In this paper, a simple, low-cost method of fabricating flexible electronic circuits with high conductivity of 4.0 × 10 7 S·m -1 (about 70% of the conductivity of bulk copper) is demonstrated. Teslin paper substrate is treated with stannous chloride (SnCl 2 ) colloidal solution to reduce the high ink absorption rate, and then the catalyst ink is inkjet-printed on its surface, followed by electroless deposition of copper at low temperature. In spite of the decrease in conductance to some extent, electronic circuits fabricated by this method can maintain function even under various folding angles or after repeated folding. This developed technology has great potential in a variety of applications, such as three-dimensional devices and disposable RFID tags.
Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte
NASA Astrophysics Data System (ADS)
Li, Qin; Ardebili, Haleh
2016-01-01
The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.
Remote magnetic actuation using a clinical scale system
Stehning, Christian; Gleich, Bernhard
2018-01-01
Remote magnetic manipulation is a powerful technique for controlling devices inside the human body. It enables actuation and locomotion of tethered and untethered objects without the need for a local power supply. In clinical applications, it is used for active steering of catheters in medical interventions such as cardiac ablation for arrhythmia treatment and for steering of camera pills in the gastro-intestinal tract for diagnostic video acquisition. For these applications, specialized clinical-scale field applicators have been developed, which are rather limited in terms of field strength and flexibility of field application. For a general-purpose field applicator, flexible field generation is required at high field strengths as well as high field gradients to enable the generation of both torques and forces on magnetic devices. To date, this requirement has only been met by small-scale experimental systems. We have built a highly versatile clinical-scale field applicator that enables the generation of strong magnetic fields as well as strong field gradients over a large workspace. We demonstrate the capabilities of this coil-based system by remote steering of magnetic drills through gel and tissue samples with high torques on well-defined curved trajectories. We also give initial proof that, when equipped with high frequency transmit-receive coils, the machine is capable of real-time magnetic particle imaging while retaining a clinical-scale bore size. Our findings open the door for image-guided radiation-free remote magnetic control of devices at the clinical scale, which may be useful in minimally invasive diagnostic and therapeutic medical interventions. PMID:29494647
Jung, Suk Won; Shin, Jong Yoon; Pi, Kilwha; Goo, Yong Sook; Cho, Dong-Il Dan
2016-12-01
This paper proposes a neural stimulation device integrated with a silicon nanowire (SiNW)-based photodetection circuit for the activation of neurons with light. The proposed device is comprised of a voltage divider and a current driver in which SiNWs are used as photodetector and field-effect transistors; it has the functions of detecting light, generating a stimulation signal in proportion to the light intensity, and transmitting the signal to a micro electrode. To show the applicability of the proposed neural stimulation device as a high-resolution retinal prosthesis system, a high-density neural stimulation device with a unit cell size of 110 × 110 μ m and a resolution of 32 × 32 was fabricated on a flexible film with a thickness of approximately 50 μm. Its effectiveness as a retinal stimulation device was then evaluated using a unit cell in an in vitro animal experiment involving the retinal tissue of retinal Degeneration 1 ( rd1 ) mice. Experiments wherein stimulation pulses were applied to the retinal tissues successfully demonstrate that the number of spikes in neural response signals increases in proportion to light intensity.
Kim, Yeong-Gyu; Tak, Young Jun; Kim, Hee Jun; Kim, Won-Gi; Yoo, Hyukjoon; Kim, Hyun Jae
2018-04-03
We fabricated wire-type indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) using a self-formed cracked template based on a lift-off process. The electrical characteristics of wire-type IGZO TFTs could be controlled by changing the width and density of IGZO wires through varying the coating conditions of template solution or multi-stacking additional layers. The fabricated wire-type devices were applied to sensors after functionalizing the surface. The wire-type pH sensor showed a sensitivity of 45.4 mV/pH, and this value was an improved sensitivity compared with that of the film-type device (27.6 mV/pH). Similarly, when the wire-type device was used as a glucose sensor, it showed more variation in electrical characteristics than the film-type device. The improved sensing properties resulted from the large surface area of the wire-type device compared with that of the film-type device. In addition, we fabricated wire-type IGZO TFTs on flexible substrates and confirmed that such structures were very resistant to mechanical stresses at a bending radius of 10 mm.
Scalable Heuristics for Planning, Placement and Sizing of Flexible AC Transmission System Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, Vladmir; Backhaus, Scott N.; Chertkov, Michael
Aiming to relieve transmission grid congestion and improve or extend feasibility domain of the operations, we build optimization heuristics, generalizing standard AC Optimal Power Flow (OPF), for placement and sizing of Flexible Alternating Current Transmission System (FACTS) devices of the Series Compensation (SC) and Static VAR Compensation (SVC) type. One use of these devices is in resolving the case when the AC OPF solution does not exist because of congestion. Another application is developing a long-term investment strategy for placement and sizing of the SC and SVC devices to reduce operational cost and improve power system operation. SC and SVCmore » devices are represented by modification of the transmission line inductances and reactive power nodal corrections respectively. We find one placement and sizing of FACTs devices for multiple scenarios and optimal settings for each scenario simultaneously. Our solution of the nonlinear and nonconvex generalized AC-OPF consists of building a convergent sequence of convex optimizations containing only linear constraints and shows good computational scaling to larger systems. The approach is illustrated on single- and multi-scenario examples of the Matpower case-30 model.« less
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition– and photolithography-based conventional metal patterning processes. The “digital” nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays. PMID:22900011
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.
Bao, Chunxiong; Zhu, Weidong; Yang, Jie; Li, Faming; Gu, Shuai; Wang, Yangrunqian; Yu, Tao; Zhu, Jia; Zhou, Yong; Zou, Zhigang
2016-09-14
Organolead trihalide perovskites (OTPs) such as CH3NH3PbI3 (MAPbI3) have attracted much attention as the absorbing layer in solar cells and photodetectors (PDs). Flexible OTP devices have also been developed. Transparent electrodes (TEs) with higher conductivity, stability, and flexibility are necessary to improve the performance and flexibility of flexible OTP devices. In this work, patterned Au nanowire (AuNW) networks with high conductivity and stability are prepared and used as TEs in self-powered flexible MAPbI3 PDs. These flexible PDs show peak external quantum efficiency and responsivity of 60% and 321 mA/W, which are comparable to those of MAPbI3 PDs based on ITO TEs. The linear dynamic range and response time of the AuNW-based flexible PDs reach ∼84 dB and ∼4 μs, respectively. Moreover, they show higher flexibility than ITO-based devices, around 90%, and 60% of the initial photocurrent can be retained for the AuNW-based flexible PDs when bent to radii of 2.5 and 1.5 mm. This work suggests a high-performance, highly flexible, and stable TE for OTP flexible devices.
NASA Astrophysics Data System (ADS)
Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan
2013-10-01
Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications. Electronic supplementary information (ESI) available: Chemical structures of functional groups on cellulose fibers, the surface water wettability of rice paper, CV curves of supercapacitors at different scan rates, galvanostatic charge-discharge curves of supercapacitors at different current densities, TGA profiles of the SWCNT-MnO2-paper composites synthesized at different temperatures, TEM images of MnO2 particles deposited on rice paper at different temperatures, photographs of supercapacitors under different bending test conditions, and a video of bending and folding the SWCNT-MnO2-paper composites. See DOI: 10.1039/c3nr03010e
Syringe injectable electronics
Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M.
2015-01-01
Seamless and minimally-invasive three-dimensional (3D) interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating syringe injection and subsequent unfolding of submicrometer-thick, centimeter-scale macroporous mesh electronics through needles with a diameter as small as 100 micrometers. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with > 90% device yield. We demonstrate several applications of syringe injectable electronics as a general approach for interpenetrating flexible electronics with 3D structures, including (i) monitoring of internal mechanical strains in polymer cavities, (ii) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (iii) in vivo multiplexed neural recording. Moreover, syringe injection enables delivery of flexible electronics through a rigid shell, delivery of large volume flexible electronics that can fill internal cavities and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics. PMID:26053995
Syringe-injectable electronics.
Liu, Jia; Fu, Tian-Ming; Cheng, Zengguang; Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M
2015-07-01
Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale macroporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.
Syringe-injectable electronics
NASA Astrophysics Data System (ADS)
Liu, Jia; Fu, Tian-Ming; Cheng, Zengguang; Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M.
2015-07-01
Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale macroporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.
Photonics and optoelectronics of two-dimensional materials beyond graphene.
Ponraj, Joice Sophia; Xu, Zai-Quan; Dhanabalan, Sathish Chander; Mu, Haoran; Wang, Yusheng; Yuan, Jian; Li, Pengfei; Thakur, Siddharatha; Ashrafi, Mursal; Mccoubrey, Kenneth; Zhang, Yupeng; Li, Shaojuan; Zhang, Han; Bao, Qiaoliang
2016-11-18
Apart from conventional materials, the study of two-dimensional (2D) materials has emerged as a significant field of study for a variety of applications. Graphene-like 2D materials are important elements of potential optoelectronics applications due to their exceptional electronic and optical properties. The processing of these materials towards the realization of devices has been one of the main motivations for the recent development of photonics and optoelectronics. The recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed in this review. We have started the article with an overview of the electronic properties and continued by highlighting their linear and nonlinear optical properties. The production of TIs and TMDs by different methods is detailed. The following main applications focused towards device fabrication are elaborated: (1) photodetectors, (2) photovoltaic devices, (3) light-emitting devices, (4) flexible devices and (5) laser applications. The possibility of employing these 2D materials in different fields is also suggested based on their properties in the prospective part. This review will not only greatly complement the detailed knowledge of the device physics of these materials, but also provide contemporary perception for the researchers who wish to consider these materials for various applications by following the path of graphene.
Photonics and optoelectronics of two-dimensional materials beyond graphene
NASA Astrophysics Data System (ADS)
Ponraj, Joice Sophia; Xu, Zai-Quan; Chander Dhanabalan, Sathish; Mu, Haoran; Wang, Yusheng; Yuan, Jian; Li, Pengfei; Thakur, Siddharatha; Ashrafi, Mursal; Mccoubrey, Kenneth; Zhang, Yupeng; Li, Shaojuan; Zhang, Han; Bao, Qiaoliang
2016-11-01
Apart from conventional materials, the study of two-dimensional (2D) materials has emerged as a significant field of study for a variety of applications. Graphene-like 2D materials are important elements of potential optoelectronics applications due to their exceptional electronic and optical properties. The processing of these materials towards the realization of devices has been one of the main motivations for the recent development of photonics and optoelectronics. The recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed in this review. We have started the article with an overview of the electronic properties and continued by highlighting their linear and nonlinear optical properties. The production of TIs and TMDs by different methods is detailed. The following main applications focused towards device fabrication are elaborated: (1) photodetectors, (2) photovoltaic devices, (3) light-emitting devices, (4) flexible devices and (5) laser applications. The possibility of employing these 2D materials in different fields is also suggested based on their properties in the prospective part. This review will not only greatly complement the detailed knowledge of the device physics of these materials, but also provide contemporary perception for the researchers who wish to consider these materials for various applications by following the path of graphene.
NASA Astrophysics Data System (ADS)
Blagoev, B. S.; Aleksandrova, M.; Terziyska, P.; Tzvetkov, P.; Kovacheva, D.; Kolev, G.; Mehandzhiev, V.; Denishev, K.; Dimitrov, D.
2018-03-01
We present the results of studies on the structural, optical and piezoelectric properties of ZnO thin films deposited by ALD on flexible polyethylene naphthalate (PEN) substrates. Changes were observed in the optical transmission and crystal structures as the deposition temperature was varied. The electromechanical behavior, dielectric losses and voltage generated from ZnO flexible devices were investigated and discussed, in order to estimate their suitability for potential application as microgenerators activated by human motion.
Lai, Ying-Chih; Hsu, Fang-Chi; Chen, Jian-Yu; He, Jr-Hau; Chang, Ting-Chang; Hsieh, Ya-Ping; Lin, Tai-Yuan; Yang, Ying-Jay; Chen, Yang-Fang
2013-05-21
A newly designed transferable and flexible label-like organic memory based on a graphene electrode behaves like a sticker, and can be readily placed on desired substrates or devices for diversified purposes. The memory label reveals excellent performance despite its physical presentation. This may greatly extend the memory applications in various advanced electronics and provide a simple scheme to integrate with other electronics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Real-time digital signal processing in multiphoton and time-resolved microscopy
NASA Astrophysics Data System (ADS)
Wilson, Jesse W.; Warren, Warren S.; Fischer, Martin C.
2016-03-01
The use of multiphoton interactions in biological tissue for imaging contrast requires highly sensitive optical measurements. These often involve signal processing and filtering steps between the photodetector and the data acquisition device, such as photon counting and lock-in amplification. These steps can be implemented as real-time digital signal processing (DSP) elements on field-programmable gate array (FPGA) devices, an approach that affords much greater flexibility than commercial photon counting or lock-in devices. We will present progress toward developing two new FPGA-based DSP devices for multiphoton and time-resolved microscopy applications. The first is a high-speed multiharmonic lock-in amplifier for transient absorption microscopy, which is being developed for real-time analysis of the intensity-dependence of melanin, with applications in vivo and ex vivo (noninvasive histopathology of melanoma and pigmented lesions). The second device is a kHz lock-in amplifier running on a low cost (50-200) development platform. It is our hope that these FPGA-based DSP devices will enable new, high-speed, low-cost applications in multiphoton and time-resolved microscopy.
NASA Astrophysics Data System (ADS)
Schwartz, Gregor; Tee, Benjamin C.-K.; Mei, Jianguo; Appleton, Anthony L.; Kim, Do Hwan; Wang, Huiliang; Bao, Zhenan
2013-05-01
Flexible pressure sensors are essential parts of an electronic skin to allow future biomedical prostheses and robots to naturally interact with humans and the environment. Mobile biomonitoring in long-term medical diagnostics is another attractive application for these sensors. Here we report the fabrication of flexible pressure-sensitive organic thin film transistors with a maximum sensitivity of 8.4 kPa-1, a fast response time of <10 ms, high stability over >15,000 cycles and a low power consumption of <1 mW. The combination of a microstructured polydimethylsiloxane dielectric and the high-mobility semiconducting polyisoindigobithiophene-siloxane in a monolithic transistor design enabled us to operate the devices in the subthreshold regime, where the capacitance change upon compression of the dielectric is strongly amplified. We demonstrate that our sensors can be used for non-invasive, high fidelity, continuous radial artery pulse wave monitoring, which may lead to the use of flexible pressure sensors in mobile health monitoring and remote diagnostics in cardiovascular medicine.
Schwartz, Gregor; Tee, Benjamin C-K; Mei, Jianguo; Appleton, Anthony L; Kim, Do Hwan; Wang, Huiliang; Bao, Zhenan
2013-01-01
Flexible pressure sensors are essential parts of an electronic skin to allow future biomedical prostheses and robots to naturally interact with humans and the environment. Mobile biomonitoring in long-term medical diagnostics is another attractive application for these sensors. Here we report the fabrication of flexible pressure-sensitive organic thin film transistors with a maximum sensitivity of 8.4 kPa(-1), a fast response time of <10 ms, high stability over >15,000 cycles and a low power consumption of <1 mW. The combination of a microstructured polydimethylsiloxane dielectric and the high-mobility semiconducting polyisoindigobithiophene-siloxane in a monolithic transistor design enabled us to operate the devices in the subthreshold regime, where the capacitance change upon compression of the dielectric is strongly amplified. We demonstrate that our sensors can be used for non-invasive, high fidelity, continuous radial artery pulse wave monitoring, which may lead to the use of flexible pressure sensors in mobile health monitoring and remote diagnostics in cardiovascular medicine.
[Progress of light extraction enhancement in organic light-emitting devices].
Liu, Mo; Li, Tong; Wang, Yan; Zhang, Tian-Yu; Xie, Wen-Fa
2011-04-01
Organic light emitting devices (OLEDs) have been used in flat-panel displays and lighting with a near-30-year development. OLEDs possess many advantages, such as full solid device, fast response, flexible display, and so on. As the application of phosphorescence material, the internal quantum efficiency of OLED has almost reached 100%, but its external quantum efficiency is still not very high due to the low light extraction efficiency. In this review the authors summarizes recent advances in light extraction techniques that have been developed to enhance the light extraction efficiency of OLEDs.
Progress and Prospects in Stretchable Electroluminescent Devices
NASA Astrophysics Data System (ADS)
Wang, Jiangxin; Lee, Pooi See
2017-03-01
Stretchable electroluminescent (EL) devices are a new form of mechanically deformable electronics that are gaining increasing interests and believed to be one of the essential technologies for next generation lighting and display applications. Apart from the simple bending capability in flexible EL devices, the stretchable EL devices are required to withstand larger mechanical deformations and accommodate stretching strain beyond 10%. The excellent mechanical conformability in these devices enables their applications in rigorous mechanical conditions such as flexing, twisting, stretching, and folding.The stretchable EL devices can be conformably wrapped onto arbitrary curvilinear surface and respond seamlessly to the external or internal forces, leading to unprecedented applications that cannot be addressed with conventional technologies. For example, they are in demand for wide applications in biomedical-related devices or sensors and soft interactive display systems, including activating devices for photosensitive drug, imaging apparatus for internal tissues, electronic skins, interactive input and output devices, robotics, and volumetric displays. With increasingly stringent demand on the mechanical requirements, the fabrication of stretchable EL device is encountering many challenges that are difficult to resolve. In this review, recent progresses in the stretchable EL devices are covered with a focus on the approaches that are adopted to tackle materials and process challenges in stretchable EL devices and delineate the strategies in stretchable electronics. We first introduce the emission mechanisms that have been successfully demonstrated on stretchable EL devices. Limitations and advantages of the different mechanisms for stretchable EL devices are also discussed. Representative reports are reviewed based on different structural and material strategies. Unprecedented applications that have been enabled by the stretchable EL devices are reviewed. Finally, we summarize with our perspectives on the approaches for the stretchable EL devices and our proposals on the future development in these devices.
Advanced underwater lift device
NASA Technical Reports Server (NTRS)
Flanagan, David T.; Hopkins, Robert C.
1993-01-01
Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.
NASA Astrophysics Data System (ADS)
Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli
2018-05-01
It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.
NASA Astrophysics Data System (ADS)
Liu, Xinyue; Wang, Jianxing; Yang, Guowei
2017-07-01
There has been growing interest in transparent and flexible electronic devices such as wrist watch, cell phone, and so on. These devices need the power sources which also have transparent and flexible features. Here, we demonstrate a transparent and flexible energy storage device with outstanding electrochemical performance, high energy density, and super-long life based on ultrafine NiCo2O4 nanospheres which are synthesized by an innovative method concerning laser ablation in liquid and hydrothermal process. The ultrafine NiCo2O4 nanospheres provide high electrochemical activity and the synthesized colloidal solution is suitable for transparent devices. The transparent and flexible device shows a high specific capacitance of 299.7 F/g at the scan rate of 1 mV/s and a long cycling life of 90.4% retention rate after 10,000 cycles at a scan rate of 10 mV/s, which is superior to that of previously reported transparent and flexible energy storage device. In addition, an optical transmittance up to 55% at the wavelength of 550 nm is obtained, and the bending test shows that the bending angle makes no difference to the specific capacitance of the device. In addition, it shows an outstanding energy density of 10.41 Wh/kg. The integrated electrochemical performances of the device are good based on NiCo2O4 nanospheres. These findings make the ultrafine NiCo2O4 nanospheres being promising electrode materials for transparent and flexible energy storage devices.
Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting
2015-01-06
There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.
Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting
2013-02-19
There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.
Shi, Jidong; Wang, Liu; Dai, Zhaohe; Zhao, Lingyu; Du, Mingde; Li, Hongbian; Fang, Ying
2018-05-30
Flexible piezoresistive pressure sensors have been attracting wide attention for applications in health monitoring and human-machine interfaces because of their simple device structure and easy-readout signals. For practical applications, flexible pressure sensors with both high sensitivity and wide linearity range are highly desirable. Herein, a simple and low-cost method for the fabrication of a flexible piezoresistive pressure sensor with a hierarchical structure over large areas is presented. The piezoresistive pressure sensor consists of arrays of microscale papillae with nanoscale roughness produced by replicating the lotus leaf's surface and spray-coating of graphene ink. Finite element analysis (FEA) shows that the hierarchical structure governs the deformation behavior and pressure distribution at the contact interface, leading to a quick and steady increase in contact area with loads. As a result, the piezoresistive pressure sensor demonstrates a high sensitivity of 1.2 kPa -1 and a wide linearity range from 0 to 25 kPa. The flexible pressure sensor is applied for sensitive monitoring of small vibrations, including wrist pulse and acoustic waves. Moreover, a piezoresistive pressure sensor array is fabricated for mapping the spatial distribution of pressure. These results highlight the potential applications of the flexible piezoresistive pressure sensor for health monitoring and electronic skin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fast Initialization of Bubble-Memory Systems
NASA Technical Reports Server (NTRS)
Looney, K. T.; Nichols, C. D.; Hayes, P. J.
1986-01-01
Improved scheme several orders of magnitude faster than normal initialization scheme. State-of-the-art commercial bubble-memory device used. Hardware interface designed connects controlling microprocessor to bubblememory circuitry. System software written to exercise various functions of bubble-memory system in comparison made between normal and fast techniques. Future implementations of approach utilize E2PROM (electrically-erasable programable read-only memory) to provide greater system flexibility. Fastinitialization technique applicable to all bubble-memory devices.
Zhou, Hua; Xie, Jing; Mai, Manfang; Wang, Jing; Shen, Xiangqian; Wang, Shuying; Zhang, Lihua; Kisslinger, Kim; Wang, Hui-Qiong; Zhang, Jinxing; Li, Yu; Deng, Junhong; Ke, Shanming; Zeng, Xierong
2018-05-09
Transparent flexible electrodes are in ever-growing demand for modern stretchable optoelectronic devices, such as display technologies, solar cells, and smart windows. Such sandwich-film-electrodes deposited on polymer substrates are unattainable because of the low quality of the films, inducing a relatively large optical loss and resistivity as well as a difficulty in elucidating the interference behavior of light. In this article, we report a high-quality AZO/Au/AZO sandwich film with excellent optoelectronic performance, e.g., an average transmittance of about 81.7% (including the substrate contribution) over the visible range, a sheet resistance of 5 Ω/sq, and a figure-of-merit (FoM) factor of ∼55.1. These values are well ahead of those previously reported for sandwich-film-electrodes. Additionally, the interference behaviors of light modulated by the coat and metal layers have been explored with the employment of transmittance spectra and numerical simulations. In particular, a heater device based on an AZO/Au/AZO sandwich film exhibits high performance such as short response time (∼5 s) and uniform temperature field. This work provides a deep insight into the improvement of the film quality of the sandwich electrodes and the design of high-performance transparent flexible devices by the application of a flexible substrate with an atomically smooth surface.
NASA Astrophysics Data System (ADS)
Aono, Masami; Harata, Tomo; Odawara, Taku; Asai, Shinnosuke; Orihara, Dai; Nogi, Masaya
2018-01-01
Amorphous carbon nitride (a-CN x ) thin films deposited by reactive sputtering have great potential for driving source applications of light-driven active devices. We demonstrate, for the first time, the photoinduced deformation of a-CN x deposited on flexible substrates, namely, poly(ethylene naphthalate) (PEN) films and transparent cellulose nanopaper. a-CN x films without delamination were obtained on both substrates. By decreasing the thickness of PEN films, the photoinduced deformation became extremely large. A light-driven pump was fabricated using a-CN x -coated PEN films, and then the pumping motion was observed up to 10 Hz. When a He-Ne laser traced the surface of a-CN x films deposited on the nanopaper, the sample moved to the opposite side of the laser spot. The motion involved repeated expansions and contractions similar to the motion of caterpillars occurring owing to the temporary photoinduced deformation of a-CN x films.
Metal oxide semiconductor thin-film transistors for flexible electronics
NASA Astrophysics Data System (ADS)
Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard
2016-06-01
The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular, the realization of large-area digital circuitry like flexible near field communication tags and analog integrated circuits such as bendable operational amplifiers is presented. The last topic of this review is devoted for emerging flexible electronic systems, from foldable displays, power transmission elements to integrated systems for large-area sensing and data storage and transmission. Finally, the conclusions are drawn and an outlook over the field with a prediction for the future is provided.
Metal oxide semiconductor thin-film transistors for flexible electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petti, Luisa; Vogt, Christian; Büthe, Lars
The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This reviewmore » reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular, the realization of large-area digital circuitry like flexible near field communication tags and analog integrated circuits such as bendable operational amplifiers is presented. The last topic of this review is devoted for emerging flexible electronic systems, from foldable displays, power transmission elements to integrated systems for large-area sensing and data storage and transmission. Finally, the conclusions are drawn and an outlook over the field with a prediction for the future is provided.« less
NASA Astrophysics Data System (ADS)
Hussain, Muhammad M.; Rojas, Jhonathan P.; Torres Sevilla, Galo A.
2013-05-01
Today's information age is driven by silicon based electronics. For nearly four decades semiconductor industry has perfected the fabrication process of continuingly scaled transistor - heart of modern day electronics. In future, silicon industry will be more pervasive, whose application will range from ultra-mobile computation to bio-integrated medical electronics. Emergence of flexible electronics opens up interesting opportunities to expand the horizon of electronics industry. However, silicon - industry's darling material is rigid and brittle. Therefore, we report a generic batch fabrication process to convert nearly any silicon electronics into a flexible one without compromising its (i) performance; (ii) ultra-large-scale-integration complexity to integrate billions of transistors within small areas; (iii) state-of-the-art process compatibility, (iv) advanced materials used in modern semiconductor technology; (v) the most widely used and well-studied low-cost substrate mono-crystalline bulk silicon (100). In our process, we make trenches using anisotropic reactive ion etching (RIE) in the inactive areas (in between the devices) of a silicon substrate (after the devices have been fabricated following the regular CMOS process), followed by a dielectric based spacer formation to protect the sidewall of the trench and then performing an isotropic etch to create caves in silicon. When these caves meet with each other the top portion of the silicon with the devices is ready to be peeled off from the bottom silicon substrate. Release process does not need to use any external support. Released silicon fabric (25 μm thick) is mechanically flexible (5 mm bending radius) and the trenches make it semi-transparent (transparency of 7%).
21 CFR 874.4720 - Mediastinoscope and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... The device is made of materials such as stainless steel. This generic type of device includes the flexible foreign body claw, flexible biopsy forceps, rigid biopsy curette, flexible biopsy brush, rigid biopsy forceps, and flexible biopsy curette, but excludes the fiberoptic light source and carrier. (b...
21 CFR 874.4720 - Mediastinoscope and accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... The device is made of materials such as stainless steel. This generic type of device includes the flexible foreign body claw, flexible biopsy forceps, rigid biopsy curette, flexible biopsy brush, rigid biopsy forceps, and flexible biopsy curette, but excludes the fiberoptic light source and carrier. (b...
Conducting Polymers for Neural Prosthetic and Neural Interface Applications
2015-01-01
Neural interfacing devices are an artificial mechanism for restoring or supplementing the function of the nervous system lost as a result of injury or disease. Conducting polymers (CPs) are gaining significant attention due to their capacity to meet the performance criteria of a number of neuronal therapies including recording and stimulating neural activity, the regeneration of neural tissue and the delivery of bioactive molecules for mediating device-tissue interactions. CPs form a flexible platform technology that enables the development of tailored materials for a range of neuronal diagnostic and treatment therapies. In this review the application of CPs for neural prostheses and other neural interfacing devices are discussed, with a specific focus on neural recording, neural stimulation, neural regeneration, and therapeutic drug delivery. PMID:26414302
Lim, Su Hui; Radha, Boya; Chan, Jie Yong; Saifullah, Mohammad S M; Kulkarni, Giridhar U; Ho, Ghim Wei
2013-08-14
Flexible palladium-based H2 sensors have a great potential in advanced sensing applications, as they offer advantages such as light weight, space conservation, and mechanical durability. Despite these advantages, the paucity of such sensors is due to the fact that they are difficult to fabricate while maintaining excellent sensing performance. Here, we demonstrate, using direct nanoimprint lithography of palladium, the fabrication of a flexible, durable, and fast responsive H2 sensor that is capable of detecting H2 gas concentration as low as 50 ppm. High resolution and high throughput patterning of palladium gratings over a 2 cm × 1 cm area on a rigid substrate was achieved by heat-treating nanoimprinted palladium benzyl mercaptide at 250 °C for 1 h. The flexible and robust H2 sensing device was fabricated by subsequent transfer nanoimprinting of these gratings into a polycarbonate film at its glass transition temperature. This technique produces flexible H2 sensors with improved durability, sensitivity, and response time in comparison to palladium thin films. At ambient pressure and temperature, the device showed a fast response time of 18 s at a H2 concentration of 3500 ppm. At 50 ppm concentration, the response time was found to be 57 s. The flexibility of the sensor does not appear to compromise its performance.
Wafer-scale design of lightweight and transparent electronics that wraps around hairs
NASA Astrophysics Data System (ADS)
Salvatore, Giovanni A.; Münzenrieder, Niko; Kinkeldei, Thomas; Petti, Luisa; Zysset, Christoph; Strebel, Ivo; Büthe, Lars; Tröster, Gerhard
2014-01-01
Electronics on very thin substrates have shown remarkable bendability, conformability and lightness, which are important attributes for biological tissues sensing, wearable or implantable devices. Here we propose a wafer-scale process scheme to realize ultra flexible, lightweight and transparent electronics on top of a 1-μm thick parylene film that is released from the carrier substrate after the dissolution in water of a polyvinyl- alcohol layer. The thin substrate ensures extreme flexibility, which is demonstrated by transistors that continue to work when wrapped around human hairs. In parallel, the use of amorphous oxide semiconductor and high-K dielectric enables the realization of analogue amplifiers operating at 12 V and above 1 MHz. Electronics can be transferred on any object, surface and on biological tissues like human skin and plant leaves. We foresee a potential application as smart contact lenses, covered with light, transparent and flexible devices, which could serve to monitor intraocular pressure for glaucoma disease.
Wang, Han; Zhen, Honglou; Li, Shilong; Jing, Youliang; Huang, Gaoshan; Mei, Yongfeng; Lu, Wei
2016-01-01
Three-dimensional (3D) design and manufacturing enable flexible nanomembranes to deliver unique properties and applications in flexible electronics, photovoltaics, and photonics. We demonstrate that a quantum well (QW)–embedded nanomembrane in a rolled-up geometry facilitates a 3D QW infrared photodetector (QWIP) device with enhanced responsivity and detectivity. Circular geometry of nanomembrane rolls provides the light coupling route; thus, there are no external light coupling structures, which are normally necessary for QWIPs. This 3D QWIP device under tube-based light-trapping mode presents broadband enhancement of coupling efficiency and omnidirectional detection under a wide incident angle (±70°), offering a unique solution to high-performance focal plane array. The winding number of these rolled-up QWIPs provides well-tunable blackbody photocurrents and responsivity. 3D self-assembly of functional nanomembranes offers a new path for high conversion efficiency between light and electricity in photodetectors, solar cells, and light-emitting diodes. PMID:27536723
Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; Di, Chong-an; Zhu, Daoben
2015-09-21
Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of <0.1 K and a high-pressure-sensing sensitivity of up to 28.9 kPa(-1). More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.
Wang, Min; Ma, Pengsha; Yin, Min; Lu, Linfeng; Lin, Yinyue; Chen, Xiaoyuan; Jia, Wei; Cao, Xinmin; Chang, Paichun; Li, Dongdong
2017-09-01
Antireflection (AR) at the interface between the air and incident window material is paramount to boost the performance of photovoltaic devices. 3D nanostructures have attracted tremendous interest to reduce reflection, while the structure is vulnerable to the harsh outdoor environment. Thus the AR film with improved mechanical property is desirable in an industrial application. Herein, a scalable production of flexible AR films is proposed with microsized structures by roll-to-roll imprinting process, which possesses hydrophobic property and much improved robustness. The AR films can be potentially used for a wide range of photovoltaic devices whether based on rigid or flexible substrates. As a demonstration, the AR films are integrated with commercial Si-based triple-junction thin film solar cells. The AR film works as an effective tool to control the light travel path and utilize the light inward more efficiently by exciting hybrid optical modes, which results in a broadband and omnidirectional enhanced performance.
Wang, Min; Ma, Pengsha; Lu, Linfeng; Lin, Yinyue; Chen, Xiaoyuan; Jia, Wei; Cao, Xinmin; Chang, Paichun
2017-01-01
Antireflection (AR) at the interface between the air and incident window material is paramount to boost the performance of photovoltaic devices. 3D nanostructures have attracted tremendous interest to reduce reflection, while the structure is vulnerable to the harsh outdoor environment. Thus the AR film with improved mechanical property is desirable in an industrial application. Herein, a scalable production of flexible AR films is proposed with microsized structures by roll‐to‐roll imprinting process, which possesses hydrophobic property and much improved robustness. The AR films can be potentially used for a wide range of photovoltaic devices whether based on rigid or flexible substrates. As a demonstration, the AR films are integrated with commercial Si‐based triple‐junction thin film solar cells. The AR film works as an effective tool to control the light travel path and utilize the light inward more efficiently by exciting hybrid optical modes, which results in a broadband and omnidirectional enhanced performance. PMID:28932667
Yang, Qu; Zhou, Ziyao; Wang, Liqian; Zhang, Hongjia; Cheng, Yuxin; Hu, Zhongqiang; Peng, Bin; Liu, Ming
2018-05-01
To meet the demand of developing compatible and energy-efficient flexible spintronics, voltage manipulation of magnetism on soft substrates is in demand. Here, a voltage tunable flexible field-effect transistor structure by ionic gel (IG) gating in perpendicular synthetic anti-ferromagnetic nanostructure is demonstrated. As a result, the interlayer Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction can be tuned electrically at room temperature. With a circuit gating voltage, anti-ferromagnetic (AFM) ordering is enhanced or converted into an AFM-ferromagnetic (FM) intermediate state, accompanying with the dynamic domain switching. This IG gating process can be repeated stably at different curvatures, confirming an excellent mechanical property. The IG-induced modification of interlayer exchange coupling is related to the change of Fermi level aroused by the disturbance of itinerant electrons. The voltage modulation of RKKY interaction with excellent flexibility proposes an application potential for wearable spintronic devices with energy efficiency and ultralow operation voltage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; di, Chong-An; Zhu, Daoben
2015-09-01
Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of <0.1 K and a high-pressure-sensing sensitivity of up to 28.9 kPa-1. More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.
NASA Astrophysics Data System (ADS)
Rahy, Abdelaziz
The primary goal of this project was to develop a flexible transparent conductor with 100 O/sq with 90% transmittance in the wavelength range of 400-700nm on a flexible substrate. A second objective was to simplify the coating process to be commercially viable. The best result achieved so far was 110 O/sq at 88% transmittance using purified single walled nanotubes (SWNTs) coated on a polyethylene naphthalate (PEN) substrate on both sides. The SWNT sample used was purchased from Carbon Nanotechnologies Inc (CNI). Proper sonication of the single walled nanotubes (SWNTs) with a proper solvent selection with no use of surfactant simplified the overall coating procedure from five steps (prior art method) to three steps utilizing a dip coating method. We also found that the use of metallic SWNTs can significantly improve the conductivity and transmittance compared with the use of mixed SWNTs, i.e., unseparated SWNTs We also studied a possible adhesion mechanism between SWNTs and the surface of PEN; we concluded that pi - pi stacking effect and hydrophobic-to-hydrophobic interaction are the major contributing factors to have CNTs adhere on the surface of the PEN substrate. Working devices of polymer light emitting diodes (PLEDs) and solar cell were successfully fabricated using SWNT coated substrates. A no optimized PLEDs device exhibited low turn-on voltage (˜5V), and the fabricated solar cell functioned. The devices have demonstrated the coated film can be used for potential electronic devices.
NASA Astrophysics Data System (ADS)
Wang, Guilian; Zhou, Xiaoqin; Ma, Peiqun; Wang, Rongqi; Meng, Guangwei; Yang, Xu
2018-01-01
The vibration assisted polishing has widely application fields because of higher machining frequency and better polishing quality, especially the polishing with the non-resonant mode that is regarded as a kind of promising polishing method. This paper reports a novel vibration assisted polishing device, consisting of the flexible hinge mechanism driven by the piezoelectric actuators, which is suitable for polishing planes or curve surfaces with slow curvature. Firstly, the generation methods of vibration trajectory are investigated for the same frequency and different frequency signals' inputs, respectively, and then the types of elliptic and Lissajous's vibration trajectories are generated respectively. Secondly, a flexural mechanism consisting of the right circular flexible hinges and the leaf springs is developed to produce two-dimensional vibration trajectory. Statics and dynamics investigating of this flexible mechanism are finished in detail. The analytical models about input and output compliances of the flexural mechanism are established according to the matrix-based compliance modeling, and the dynamic model of the flexural mechanism based on the Euler-Lagrange equation is also presented. The finite element model of the flexural mechanism was established to carry out the numerical simulation in order to testify the rationality of device design. Finally, the polishing experiment is carried out to prove the effectiveness of the vibration device. The experimental results show that this novel vibration assisted polishing device developed in this study can remove more effectively the cutting marks left by last process and obviously reduce the workpiece surface roughness.
Wang, Xingzhao; Yang, Bin; Liu, Jingquan; Zhu, Yanbo; Yang, Chunsheng; He, Qing
2016-01-01
This paper studied and realized a flexible nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT thin composite membrane, which worked under triboelectric and piezoelectric hybrid mechanisms. The P(VDF-TrFE) nanofibers as a piezoelectric functional layer and a triboelectric friction layer are formed by electrospinning process. In order to improve the performance of triboelectric nanogenerator, the multiwall carbon nanotubes (MWCNT) is doped into PDMS patterned films as the other flexible friction layer to increase the initial capacitance. The flexible nanogenerator is fabricated by low cost MEMS processes. Its output performance is characterized in detail and structural optimization is performed. The device’s output peak-peak voltage, power and power density under triboelectric mechanism are 25 V, 98.56 μW and 1.98 mW/cm3 under the pressure force of 5 N, respectively. The output peak-peak voltage, power and power density under piezoelectric working principle are 2.5 V, 9.74 μW, and 0.689 mW/cm3 under the same condition, respectively. We believe that the proposed flexible, biocompatible, lightweight, low cost nanogenerator will supply effective power energy sustainably for wearable devices in practical applications. PMID:27805065
Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors.
Yoon, Sang Su; Lee, Kang Eun; Cha, Hwa-Jin; Seong, Dong Gi; Um, Moon-Kwang; Byun, Joon-Hyung; Oh, Youngseok; Oh, Joon Hak; Lee, Wonoh; Lee, Jea Uk
2015-11-09
Mechanically robust, flexible, and electrically conductive textiles are highly suitable for use in wearable electronic applications. In this study, highly conductive and flexible graphene/Ag hybrid fibers were prepared and used as electrodes for planar and fiber-type transistors. The graphene/Ag hybrid fibers were fabricated by the wet-spinning/drawing of giant graphene oxide and subsequent functionalization with Ag nanoparticles. The graphene/Ag hybrid fibers exhibited record-high electrical conductivity of up to 15,800 S cm(-1). As the graphene/Ag hybrid fibers can be easily cut and placed onto flexible substrates by simply gluing or stitching, ion gel-gated planar transistors were fabricated by using the hybrid fibers as source, drain, and gate electrodes. Finally, fiber-type transistors were constructed by embedding the graphene/Ag hybrid fiber electrodes onto conventional polyurethane monofilaments, which exhibited excellent flexibility (highly bendable and rollable properties), high electrical performance (μh = 15.6 cm(2) V(-1) s(-1), Ion/Ioff > 10(4)), and outstanding device performance stability (stable after 1,000 cycles of bending tests and being exposed for 30 days to ambient conditions). We believe that our simple methods for the fabrication of graphene/Ag hybrid fiber electrodes for use in fiber-type transistors can potentially be applied to the development all-organic wearable devices.
Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors
Yoon, Sang Su; Lee, Kang Eun; Cha, Hwa-Jin; Seong, Dong Gi; Um, Moon-Kwang; Byun, Joon-Hyung; Oh, Youngseok; Oh, Joon Hak; Lee, Wonoh; Lee, Jea Uk
2015-01-01
Mechanically robust, flexible, and electrically conductive textiles are highly suitable for use in wearable electronic applications. In this study, highly conductive and flexible graphene/Ag hybrid fibers were prepared and used as electrodes for planar and fiber-type transistors. The graphene/Ag hybrid fibers were fabricated by the wet-spinning/drawing of giant graphene oxide and subsequent functionalization with Ag nanoparticles. The graphene/Ag hybrid fibers exhibited record-high electrical conductivity of up to 15,800 S cm−1. As the graphene/Ag hybrid fibers can be easily cut and placed onto flexible substrates by simply gluing or stitching, ion gel-gated planar transistors were fabricated by using the hybrid fibers as source, drain, and gate electrodes. Finally, fiber-type transistors were constructed by embedding the graphene/Ag hybrid fiber electrodes onto conventional polyurethane monofilaments, which exhibited excellent flexibility (highly bendable and rollable properties), high electrical performance (μh = 15.6 cm2 V−1 s−1, Ion/Ioff > 104), and outstanding device performance stability (stable after 1,000 cycles of bending tests and being exposed for 30 days to ambient conditions). We believe that our simple methods for the fabrication of graphene/Ag hybrid fiber electrodes for use in fiber-type transistors can potentially be applied to the development all-organic wearable devices. PMID:26549711
NASA Astrophysics Data System (ADS)
Mikolajick, T.; Heinzig, A.; Trommer, J.; Baldauf, T.; Weber, W. M.
2017-04-01
With CMOS scaling reaching physical limits in the next decade, new approaches are required to enhance the functionality of electronic systems. Reconfigurability on the device level promises to realize more complex systems with a lower device count. In the last five years a number of interesting concepts have been proposed to realize such a device level reconfiguration. Among these the reconfigurable field effect transistor (RFET), a device that can be configured between an n-channel and p-channel behavior by applying an electrical signal, can be considered as an end-of-roadmap extension of current technology with only small modifications and even simplifications to the process flow. This article gives a review on the RFET basics and current status. In the first sections state-of-the-art of reconfigurable devices will be summarized and the RFET will be introduced together with related devices based on silicon nanowire technology. The device optimization with respect to device symmetry and performance will be discussed next. The potential of the RFET device technology will then be shown by discussing selected circuit implementations making use of the unique advantages of this device concept. The basic device concept was also extended towards applications in flexible devices and sensors, also extending the capabilities towards so-called More-than-Moore applications where new functionalities are implemented in CMOS-based processes. Finally, the prospects of RFET device technology will be discussed.
Graphene devices based on laser scribing technology
NASA Astrophysics Data System (ADS)
Qiao, Yan-Cong; Wei, Yu-Hong; Pang, Yu; Li, Yu-Xing; Wang, Dan-Yang; Li, Yu-Tao; Deng, Ning-Qin; Wang, Xue-Feng; Zhang, Hai-Nan; Wang, Qian; Yang, Zhen; Tao, Lu-Qi; Tian, He; Yang, Yi; Ren, Tian-Ling
2018-04-01
Graphene with excellent electronic, thermal, optical, and mechanical properties has great potential applications. The current devices based on graphene grown by micromechanical exfoliation, chemical vapor deposition (CVD), and thermal decomposition of silicon carbide are still expensive and inefficient. Laser scribing technology, a low-cost and time-efficient method of fabricating graphene, is introduced in this review. The patterning of graphene can be directly performed on solid and flexible substrates. Therefore, many novel devices such as strain sensors, acoustic devices, memory devices based on laser scribing graphene are fabricated. The outlook and challenges of laser scribing technology have also been discussed. Laser scribing may be a potential way of fabricating wearable and integrated graphene systems in the future.
Materials growth and characterization of thermoelectric and resistive switching devices
NASA Astrophysics Data System (ADS)
Norris, Kate J.
In the 74 years since diode rectifier based radar technology helped the allied forces win WWII, semiconductors have transformed the world we live in. From our smart phones to semiconductor-based energy conversion, semiconductors touch every aspect of our lives. With this thesis I hope to expand human knowledge of semiconductor thermoelectric devices and resistive switching devices through experimentation with materials growth and subsequent materials characterization. Metal organic chemical vapor deposition (MOCVD) was the primary method of materials growth utilized in these studies. Additionally, plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD),ion beam sputter deposition, reactive sputter deposition and electron-beam (e-beam) evaporation were also used in this research for device fabrication. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Electron energy loss spectroscopy (EELS) were the primary characterization methods utilized for this research. Additional device and materials characterization techniques employed include: current-voltage measurements, thermoelectric measurements, x-ray diffraction (XRD), reflection absorption infra-red spectroscopy (RAIRS), atomic force microscopy (AFM), photoluminescence (PL), and raman spectroscopy. As society has become more aware of its impact on the planet and its limited resources, there has been a push toward developing technologies to sustainably produce the energy we need. Thermoelectric devices convert heat directly into electricity. Thermoelectric devices have the potential to save huge amounts of energy that we currently waste as heat, if we can make them cost-effective. Semiconducting thin films and nanowires appear to be promising avenues of research to attain this goal. Specifically, in this work we will explore the use of ErSb thin films as well as Si and InP nanowire networks for thermoelectric applications. First we will discuss the growth of erbium monoantimonide (ErSb) thin films with thermal conductivities close to or slightly smaller than the alloy limit of the two ternary alloy hosts. Second we consider an ex-situ monitoring technique based on glancing-angle infrared-absorption used to determine small amounts of erbium antimonide (ErSb) deposited on an indium antimonide (InSb) layer, a concept for thermoelectric devices to scatter phonons. Thirdly we begin our discussion of nanowires with the selective area growth (SAG) of single crystalline indium phosphide (InP) nanopillars on an array of template segments composed of a stack of gold and amorphous silicon. Our approach enables flexible and scalable nanofabrication using industrially proven tools and a wide range of semiconductors on various non-semiconductor substrates. Then we examine the use of graphene to promote the growth of nanowire networks on flexible copper foil leading to the testing of nanowire network devices for thermoelectric applications and the concept of multi-stage devices. We present the ability to tailor current-voltage characteristics to fit a desired application of thermoelectric devices by using nanowire networks as building blocks that can be stacked vertically or laterally. Furthermore, in the study of our flexible nanowire network multi-stage devices, we discovered the presence of nonlinear current-voltage characteristics and discuss how this feature could be utilized to increase efficiency for thermoelectric devices. This work indicates that with sufficient volume and optimized doping, flexible nanowire networks could be a low cost semiconductor solution to our wasted heat challenge. Resistive switching devices are two terminal electrical resistance switches that retain a state of internal resistance based on the history of applied voltage and current. The occurrence of reversible resistance switching has been widely studied in a variety of material systems for applications including nonvolatile memory, logic circuits, and neuromorphic computing. To this end we next we studied devices in each resistance state of a TaOx switch, which has previously shown high endurance and desirable switching behavior, to better understand the system in nanoscale devices. Finally, we will discuss a self-aligned NbO2 nano-cap demonstrated atop a TaO2.2 switching layer. The goal of this device is to create a nanoscale RRAM and selector device in a single stack. These results indicate that ternary resistive switching devices may be a beneficial method of combining behaviors of different material systems and that with proper engineering a self-aligned selector is possible.
Novel metamaterial based antennas for flexible wireless systems
NASA Astrophysics Data System (ADS)
Khaleel, Haider Raad
Recent years have witnessed a great deal of interest from both academia and industry in the field of flexible electronic systems. This research topic tops the pyramid of research priorities requested by many national research agencies. Consistently, flexible electronic systems require the integration of flexible antennas operating in specific frequency bands to provide wireless connectivity which is highly demanded by today's information oriented society. On the other hand, metamaterials have become very popular in the design of contemporary antenna and microwave devices due to their wide range of applications derived from their unique properties which significantly enhances the performance of antennas and RF systems. Accordingly, the integration of metamaterial structures within flexible wireless systems is very beneficial in this growing field of research. A systematic approach to the analysis and design of flexible and conformal antennas and metamaterials is ultimately needed. The research reported in this thesis focuses on developing flexible low profile antennas and metamaterial structures in addition to characterizing their performance when integrated within flexible wireless systems. Three flexible, compact, and extremely low profile (50.8 microm) antennas intended for WLAN, Bluetooth and Ultra Wide Band (UWB) applications are presented. Next, a novel miniaturized Artificial Magnetic Conductor (AMC) and a new technique to enhance the bandwidth of micro-Negative (MNG) metamaterial are reported. Furthermore, the effect of bending on the AMC and MNG metamaterial is investigated in this thesis for the first time. Finally, the findings of this research are utilized in practical applications with specific design constraints including mutual coupling reduction between radiating elements in antenna arrays and MIMO systems and Specific Absorption Rate (SAR) reduction in telemedicine systems.
NASA Astrophysics Data System (ADS)
Rankin, Alasdair; McGarry, Steven
2018-01-01
The unique and tunable optical properties of metal nanoparticles have attracted intense and sustained academic attention in recent years. In tandem with the demand for low-cost responsive materials, one particular topic of interest is the development of mechanically responsive device structures. This work describes the design, fabrication, and testing of a mechanically responsive plasmonic device structure that has been integrated onto a standard commercial plastic substrate. With a low actuation force and a visually perceivable color shift, this device would be attractive for applications requiring responsive features that can be activated by the human hand.
Soft Sensors and Actuators based on Nanomaterials
NASA Astrophysics Data System (ADS)
Yao, Shanshan
The focus of this research is using novel bottom-up synthesized nanomaterials and structures to build up devices for wearable sensors and soft actuators. The applications of the wearable sensors towards motion detection and health monitoring are investigated. In addition, flexible heaters for bimorph actuators and stretchable patches made of microgel depots containing drug-loaded nanoparticles (NPs) for stretch-triggered wearable drug delivery are studied. Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to 1 MPa) and finger touch with good sensitivity, fast response time ( 40 ms) and good pressure mapping function were developed. The sensors were demonstrated for several wearable applications including monitoring thumb movements and knee motions, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels. In addition to mechanical sensors, a wearable skin hydration sensor made of silver nanowires (AgNWs) in a polydimethylsiloxane (PDMS) matrix was demonstrated based on skin impedance measurement. The hydration sensors were packaged into a flexible wristband for skin hydration monitoring and a chest patch consisting of a strain sensor, three electrocardiogram (ECG) electrodes and a skin hydration sensor for multimodal sensing. The wearable wristband and chest patch may be used for low-cost, wireless and continuous sensing of skin hydration and other health parameters. Two representative applications of the nanomaterials for soft actuators were investigated. In the first application on bimorph actuation, low-voltage and extremely flexible electrothermal bimorph actuators were fabricated in a simple, efficient and scalable process. The bimorph actuators were made of flexible AgNW based heaters, which exhibited a fast heating rate of 18°C/s and stable heating performance under large bending. The actuators offered the largest bending angle (720°) or curvature (2.6 cm-1) at a very low actuation voltage (0.2 V sq-1 or 4.5 V) among all types of bimorph actuators that have been reported. The actuators can be designed and fabricated in different configurations that can achieve complex patterns and shapes upon actuation. Two applications of this type of soft actuators were demonstrated towards biomimetic robotics - a crawling robot that can walk spontaneously on ratchet surfaces and a soft gripper that is capable of manipulating lightweight and delicate objects. In another application towards wearable drug delivery, a wearable, tensile strain-triggered drug delivery device consisting of a stretchable elastomer and microgel depots containing drug loaded nanoparticles is described. By applying a tensile strain to the elastomer film, the release of drug from the micro-depot is promoted. Correspondingly, both sustained drug release by daily body motions and pulsatile release by intentional administration can be conveniently achieved. The work demonstrated that the tensile strain, applied to the stretchable device, facilitated release of therapeutics from micro-depots for anticancer and antibacterial treatments, respectively. Moreover, polymeric microneedles were further integrated with the stretch-responsive device for transcutaneous delivery of insulin and regulation of blood glucose levels of chemically-induced type 1 diabetic mice.
Field programmable gate arrays: Evaluation report for space-flight application
NASA Technical Reports Server (NTRS)
Sandoe, Mike; Davarpanah, Mike; Soliman, Kamal; Suszko, Steven; Mackey, Susan
1992-01-01
Field Programmable Gate Arrays commonly called FPGA's are the newer generation of field programmable devices and offer more flexibility in the logic modules they incorporate and in how they are interconnected. The flexibility, the number of logic building blocks available, and the high gate densities achievable are why users find FPGA's attractive. These attributes are important in reducing product development costs and shortening the development cycle. The aerospace community is interested in incorporating this new generation of field programmable technology in space applications. To this end, a consortium was formed to evaluate the quality, reliability, and radiation performance of FPGA's. This report presents the test results on FPGA parts provided by ACTEL Corporation.
Jung, Heesoo; Park, Jaeyoung; Yoo, Eun Sang; Han, Gill-Sang; Jung, Hyun Suk; Ko, Min Jae; Park, Sanghoo; Choe, Wonho
2013-09-07
A key challenge to the industrial application of nanotechnology is the development of fabrication processes for functional devices based on nanomaterials which can be scaled up for mass production. In this report, we disclose the results of non-thermal radio-frequency (rf) atmospheric pressure plasma (APP) based deposition of TiO2 nanoparticles on a flexible substrate for the fabrication of dye-sensitized solar cells (DSSCs). Operating at 190 °C without a vacuum enclosure, the APP method can avoid thermal damage and vacuum compatibility restrictions and utilize roll-to-roll processing over a large area. The various analyses of the TiO2 films demonstrate that superior film properties can be obtained by the non-thermal APP method when compared with the thermal sintering process operating at 450 °C. The crystallinity of the anatase TiO2 nanoparticles is significantly improved without thermal agglomeration, while the surface defects such as Ti(3+) ions are eliminated, thus providing efficient charge collecting properties for solar cells. Finally, we successfully fabricated a flexible DSSC with an energy conversion efficiency of 4.2% using a transparent plastic substrate. This work demonstrates the potential of non-thermal APP technology in the area of device-level, nano-enabled material manufacturing.
Zhang, Chenchu; Hu, Yanlei; Du, Wenqiang; Wu, Peichao; Rao, Shenglong; Cai, Ze; Lao, Zhaoxin; Xu, Bing; Ni, Jincheng; Li, Jiawen; Zhao, Gang; Wu, Dong; Chu, Jiaru; Sugioka, Koji
2016-09-13
Rapid integration of high-quality functional devices in microchannels is in highly demand for miniature lab-on-a-chip applications. This paper demonstrates the embellishment of existing microfluidic devices with integrated micropatterns via femtosecond laser MRAF-based holographic patterning (MHP) microfabrication, which proves two-photon polymerization (TPP) based on spatial light modulator (SLM) to be a rapid and powerful technology for chip functionalization. Optimized mixed region amplitude freedom (MRAF) algorithm has been used to generate high-quality shaped focus field. Base on the optimized parameters, a single-exposure approach is developed to fabricate 200 × 200 μm microstructure arrays in less than 240 ms. Moreover, microtraps, QR code and letters are integrated into a microdevice by the advanced method for particles capture and device identification. These results indicate that such a holographic laser embellishment of microfluidic devices is simple, flexible and easy to access, which has great potential in lab-on-a-chip applications of biological culture, chemical analyses and optofluidic devices.
NASA Astrophysics Data System (ADS)
Zhang, Chenchu; Hu, Yanlei; Du, Wenqiang; Wu, Peichao; Rao, Shenglong; Cai, Ze; Lao, Zhaoxin; Xu, Bing; Ni, Jincheng; Li, Jiawen; Zhao, Gang; Wu, Dong; Chu, Jiaru; Sugioka, Koji
2016-09-01
Rapid integration of high-quality functional devices in microchannels is in highly demand for miniature lab-on-a-chip applications. This paper demonstrates the embellishment of existing microfluidic devices with integrated micropatterns via femtosecond laser MRAF-based holographic patterning (MHP) microfabrication, which proves two-photon polymerization (TPP) based on spatial light modulator (SLM) to be a rapid and powerful technology for chip functionalization. Optimized mixed region amplitude freedom (MRAF) algorithm has been used to generate high-quality shaped focus field. Base on the optimized parameters, a single-exposure approach is developed to fabricate 200 × 200 μm microstructure arrays in less than 240 ms. Moreover, microtraps, QR code and letters are integrated into a microdevice by the advanced method for particles capture and device identification. These results indicate that such a holographic laser embellishment of microfluidic devices is simple, flexible and easy to access, which has great potential in lab-on-a-chip applications of biological culture, chemical analyses and optofluidic devices.
Dynamic Involvement of Real World Objects in the IoT: A Consensus-Based Cooperation Approach
Pilloni, Virginia; Atzori, Luigi; Mallus, Matteo
2017-01-01
A significant role in the Internet of Things (IoT) will be taken by mobile and low-cost unstable devices, which autonomously self-organize and introduce highly dynamic and heterogeneous scenarios for the deployment of distributed applications. This entails the devices to cooperate to dynamically find the suitable combination of their involvement so as to improve the system reliability while following the changes in their status. Focusing on the above scenario, we propose a distributed algorithm for resources allocation that is run by devices that can perform the same task required by the applications, allowing for a flexible and dynamic binding of the requested services with the physical IoT devices. It is based on a consensus approach, which maximizes the lifetime of groups of nodes involved and ensures the fulfillment of the requested Quality of Information (QoI) requirements. Experiments have been conducted with real devices, showing an improvement of device lifetime of more than 20%, with respect to a uniform distribution of tasks. PMID:28257030
Dynamic Involvement of Real World Objects in the IoT: A Consensus-Based Cooperation Approach.
Pilloni, Virginia; Atzori, Luigi; Mallus, Matteo
2017-03-01
A significant role in the Internet of Things (IoT) will be taken by mobile and low-cost unstable devices, which autonomously self-organize and introduce highly dynamic and heterogeneous scenarios for the deployment of distributed applications. This entails the devices to cooperate to dynamically find the suitable combination of their involvement so as to improve the system reliability while following the changes in their status. Focusing on the above scenario, we propose a distributed algorithm for resources allocation that is run by devices that can perform the same task required by the applications, allowing for a flexible and dynamic binding of the requested services with the physical IoT devices. It is based on a consensus approach, which maximizes the lifetime of groups of nodes involved and ensures the fulfillment of the requested Quality of Information (QoI) requirements. Experiments have been conducted with real devices, showing an improvement of device lifetime of more than 20 % , with respect to a uniform distribution of tasks.
Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion.
Ryu, Seongwoo; Lee, Phillip; Chou, Jeffrey B; Xu, Ruize; Zhao, Rong; Hart, Anastasios John; Kim, Sang-Gook
2015-06-23
The increasing demand for wearable electronic devices has made the development of highly elastic strain sensors that can monitor various physical parameters an essential factor for realizing next generation electronics. Here, we report an ultrahigh stretchable and wearable device fabricated from dry-spun carbon nanotube (CNT) fibers. Stretching the highly oriented CNT fibers grown on a flexible substrate (Ecoflex) induces a constant decrease in the conductive pathways and contact areas between nanotubes depending on the stretching distance; this enables CNT fibers to behave as highly sensitive strain sensors. Owing to its unique structure and mechanism, this device can be stretched by over 900% while retaining high sensitivity, responsiveness, and durability. Furthermore, the device with biaxially oriented CNT fiber arrays shows independent cross-sensitivity, which facilitates simultaneous measurement of strains along multiple axes. We demonstrated potential applications of the proposed device, such as strain gauge, single and multiaxial detecting motion sensors. These devices can be incorporated into various motion detecting systems where their applications are limited to their strain.
Tao, R; Hasan, S A; Wang, H Z; Zhou, J; Luo, J T; McHale, G; Gibson, D; Canyelles-Pericas, P; Cooke, M D; Wood, D; Liu, Y; Wu, Q; Ng, W P; Franke, T; Fu, Y Q
2018-06-13
A fundamental challenge for surface acoustic wave (SAW) temperature sensors is the detection of small temperature changes on non-planar, often curved, surfaces. In this work, we present a new design methodology for SAW devices based on flexible substrate and bimorph material/structures, which can maximize the temperature coefficient of frequency (TCF). We performed finite element analysis simulations and obtained theoretical TCF values for SAW sensors made of ZnO thin films (~5 μm thick) coated aluminum (Al) foil and Al plate substrates with thicknesses varied from 1 to 1600 μm. Based on the simulation results, SAW devices with selected Al foil or plate thicknesses were fabricated. The experimentally measured TCF values were in excellent agreements with the simulation results. A normalized wavelength parameter (e.g., the ratio between wavelength and sample thickness, λ/h) was applied to successfully describe changes in the TCF values, and the TCF readings of the ZnO/Al SAW devices showed dramatic increases when the normalized wavelength λ/h was larger than 1. Using this design approach, we obtained the highest reported TCF value of -760 ppm/K for a SAW device made of ZnO thin film coated on Al foils (50 μm thick), thereby enabling low cost temperature sensor applications to be realized on flexible substrates.
Progress on Electronic and Optoelectronic Devices of 2D Layered Semiconducting Materials.
Wang, Feng; Wang, Zhenxing; Jiang, Chao; Yin, Lei; Cheng, Ruiqing; Zhan, Xueying; Xu, Kai; Wang, Fengmei; Zhang, Yu; He, Jun
2017-09-01
2D layered semiconducting materials (2DLSMs) represent the thinnest semiconductors, holding many novel properties, such as the absence of surface dangling bonds, sizable band gaps, high flexibility, and ability of artificial assembly. With the prospect of bringing revolutionary opportunities for electronic and optoelectronic applications, 2DLSMs have prospered over the past twelve years. From materials preparation and property exploration to device applications, 2DLSMs have been extensively investigated and have achieved great progress. However, there are still great challenges for high-performance devices. In this review, we provide a brief overview on the recent breakthroughs in device optimization based on 2DLSMs, particularly focussing on three aspects: device configurations, basic properties of channel materials, and heterostructures. The effects from device configurations, i.e., electrical contacts, dielectric layers, channel length, and substrates, are discussed. After that, the affect of the basic properties of 2DLSMs on device performance is summarized, including crystal defects, crystal symmetry, doping, and thickness. Finally, we focus on heterostructures based on 2DLSMs. Through this review, we try to provide a guide to improve electronic and optoelectronic devices of 2DLSMs for achieving practical device applications in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lan, Chuwen; Zhu, Di; Gao, Jiannan; Li, Bo; Gao, Zehua
2018-04-30
Terahertz (THz) all-dielectric metasurfaces made of high-index and low-loss resonators have attracted more and more attention due to their versatile properties. However, the all-dielectric metasurfaces in THz suffer from limited bandwidth and low tunability. Meanwhile, they are usually fabricated on flat and rigid substrates, and consequently their applications are restricted. Here, a simple approach is proposed and experimentally demonstrated to obtain a flexible and tunable THz all-dielectric metasurface. In this metasurface, micro ceramic spheres (ZrO 2 ) are embedded in a ferroelectric (strontium titanate) / elastomer (polydimethylsiloxane) composite. It is shown that the Mie resonances in micro ceramic spheres can be thermally and reversibly tuned resulting from the temperature dependent permittivity of the ferroelectric / PDMS composite. This metasurface characterized by flexibility and tunability is expected to have a more extensive application in active THz devices.
Zhu, Laipan; Wang, Longfei; Xue, Fei; Chen, Libo; Fu, Jianqiang; Feng, Xiaolong; Li, Tianfeng
2016-01-01
The piezo‐phototronic effect is about the enhanced separation, transport, and recombination of the photogenerated carriers using the piezoelectric polarization charges present in piezoelectric‐semiconductor materials. Here, it is presented that the piezo‐phototronic effect can be effectively applied to improve the relative conversion efficiency of a flexible solar cell based on n‐ZnO/p‐SnS core–shell nanowire array for 37.3% under a moderate vertical pressure. The performance of the solar cell can be effectively enhanced by a gentle bending of the device, showing its potential for application in curly geometries. This study not only adds further understanding about the concept of increasing solar energy conversion efficiency via piezo‐phototronic effect, but also demonstrates the great potential of piezo‐phototronic effect in the application of large‐scale, flexible, and lightweight nanowire array solar cells. PMID:28105394
Zhu, Laipan; Wang, Longfei; Xue, Fei; Chen, Libo; Fu, Jianqiang; Feng, Xiaolong; Li, Tianfeng; Wang, Zhong Lin
2017-01-01
The piezo-phototronic effect is about the enhanced separation, transport, and recombination of the photogenerated carriers using the piezoelectric polarization charges present in piezoelectric-semiconductor materials. Here, it is presented that the piezo-phototronic effect can be effectively applied to improve the relative conversion efficiency of a flexible solar cell based on n-ZnO/p-SnS core-shell nanowire array for 37.3% under a moderate vertical pressure. The performance of the solar cell can be effectively enhanced by a gentle bending of the device, showing its potential for application in curly geometries. This study not only adds further understanding about the concept of increasing solar energy conversion efficiency via piezo-phototronic effect, but also demonstrates the great potential of piezo-phototronic effect in the application of large-scale, flexible, and lightweight nanowire array solar cells.
Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors
NASA Astrophysics Data System (ADS)
Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing
2015-12-01
Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption.
Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors
Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing
2015-01-01
Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption. PMID:26656113
Laboratory process control using natural language commands from a personal computer
NASA Technical Reports Server (NTRS)
Will, Herbert A.; Mackin, Michael A.
1989-01-01
PC software is described which provides flexible natural language process control capability with an IBM PC or compatible machine. Hardware requirements include the PC, and suitable hardware interfaces to all controlled devices. Software required includes the Microsoft Disk Operating System (MS-DOS) operating system, a PC-based FORTRAN-77 compiler, and user-written device drivers. Instructions for use of the software are given as well as a description of an application of the system.
Optical sensor array platform based on polymer electronic devices
NASA Astrophysics Data System (ADS)
Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.
2007-10-01
Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.
NASA Astrophysics Data System (ADS)
Zhou, Ye; Han, Su-Ting; Xu, Zong-Xiang; Roy, V. A. L.
2013-02-01
The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al2O3) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al2O3 dielectric layer) could be potentially integrated with large area flexible electronics.The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al2O3) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al2O3 dielectric layer) could be potentially integrated with large area flexible electronics. Electronic supplementary information (ESI) available: UV-vis spectrum of Au nanoparticle aqueous solution, transfer characteristics of the transistors without inserting an Au nanoparticle monolayer, AFM image of the pentacene layer, transfer characteristics at different program voltages and memory windows with respect to the P/E voltage. See DOI: 10.1039/c2nr32579a
Fukuda, Kenjiro; Takeda, Yasunori; Mizukami, Makoto; Kumaki, Daisuke; Tokito, Shizuo
2014-01-01
Printing fully solution-processed organic electronic devices may potentially revolutionize production of flexible electronics for various applications. However, difficulties in forming thin, flat, uniform films through printing techniques have been responsible for poor device performance and low yields. Here, we report on fully solution-processed organic thin-film transistor (TFT) arrays with greatly improved performance and yields, achieved by layering solution-processable materials such as silver nanoparticle inks, organic semiconductors, and insulating polymers on thin plastic films. A treatment layer improves carrier injection between the source/drain electrodes and the semiconducting layer and dramatically reduces contact resistance. Furthermore, an organic semiconductor with large-crystal grains results in TFT devices with shorter channel lengths and higher field-effect mobilities. We obtained mobilities of over 1.2 cm2 V−1 s−1 in TFT devices with channel lengths shorter than 20 μm. By combining these fabrication techniques, we built highly uniform organic TFT arrays with average mobility levels as high as 0.80 cm2 V−1 s−1 and ideal threshold voltages of 0 V. These results represent major progress in the fabrication of fully solution-processed organic TFT device arrays. PMID:24492785
Ultralow Power Consumption Flexible Biomemristors.
Kim, Min-Kyu; Lee, Jang-Sik
2018-03-28
Low power consumption is the important requirement in memory devices for saving energy. In particular, improved energy efficiency is essential in implantable electronic devices for operation under a limited power supply. Here, we demonstrate the use of κ-carrageenan (κ-car) as the resistive switching layer to achieve memory that has low power consumption. A carboxymethyl (CM) group is introduced to the κ-car to increase its ionic conductivity. Ag was doped in CM:κ-car to improve the resistive switching properties of the devices. Memory devices based on Ag-doped CM:κ-car showed electroforming-free resistive switching. This device exhibited low reset voltage (∼0.05 V), fast switching speed (50 ns), and high on/off ratio (>10 3 ) under low compliance current (10 -5 A). Its power consumption (∼0.35 μW) is much lower than those of the previously reported biomemristors. The resistive switching may be a result of an electrochemical redox process and Ag filament formation in the CM:κ-car under an electric field. This biopolymer memory can also be fabricated on flexible substrate. This study verifies the feasibility of using biopolymers for applications to future implantable and biocompatible nanoelectronics.
Nanowire surface fastener fabrication on flexible substrate.
Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang
2018-07-27
The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm -2 ) and low contact resistivity (2.2 × 10 -4 Ω cm 2 ).
Guo, Jiaqi; Fang, Wenwen; Welle, Alexander; Feng, Wenqian; Filpponen, Ilari; Rojas, Orlando J; Levkin, Pavel A
2016-12-14
Films comprising nanofibrillated cellulose (NFC) are suitable substrates for flexible devices in analytical, sensor, diagnostic, and display technologies. However, some major challenges in such developments include their high moisture sensitivity and the complexity of current methods available for functionalization and patterning. In this work, we present a facile process for tailoring the surface wettability and functionality of NFC films by a fast and versatile approach. First, the NFC films were coated with a layer of reactive nanoporous silicone nanofilament by polycondensation of trichlorovinylsilane (TCVS). The TCVS afforded reactive vinyl groups, thereby enabling simple UV-induced functionalization of NFC films with various thiol-containing molecules via the photo "click" thiol-ene reaction. Modification with perfluoroalkyl thiols resulted in robust superhydrophobic surfaces, which could then be further transformed into transparent slippery lubricant-infused NFC films that displayed repellency against both aqueous and organic liquids with surface tensions as low as 18 mN·m -1 . Finally, transparent and flexible NFC films incorporated hydrophilic micropatterns by modification with OH, NH 2 , or COOH surface groups, enabling space-resolved superhydrophobic-hydrophilic domains. Flexibility, transparency, patternability, and perfect superhydrophobicity of the produced nanocellulose substrates warrants their application in biosensing, display protection, and biomedical and diagnostics devices.
Evaluation of inertial devices for the control of large, flexible, space-based telerobotic arms
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C.; Kenny, Sean P.; Ghosh, Dave; Shenhar, Joram
1993-01-01
Inertial devices, including sensors and actuators, offer the potential of improving the tracking of telerobotic commands for space-based robots by smoothing payload motions and suppressing vibrations. In this paper, inertial actuators (specifically, torque-wheels and reaction-masses) are studied for that potential application. Batch simulation studies are presented which show that torque-wheels can reduce the overshoot in abrupt stop commands by 82 percent for a two-link arm. For man-in-the-loop evaluation, a real-time simulator has been developed which samples a hand-controller, solves the nonlinear equations of motion, and graphically displays the resulting motion on a computer workstation. Currently, two manipulator models, a two-link, rigid arm and a single-link, flexible arm, have been studied. Results are presented which show that, for a single-link arm, a reaction-mass/torque-wheel combination at the payload end can yield a settling time of 3 s for disturbances in the first flexible mode as opposed to 10 s using only a hub motor. A hardware apparatus, which consists of a single-link, highly flexible arm with a hub motor and a torque-wheel, has been assembled to evaluate the concept and is described herein.
Evaluation of inertial devices for the control of large, flexible, space-based telerobotic arms
NASA Astrophysics Data System (ADS)
Montgomery, Raymond C.; Kenny, Sean P.; Ghosh, Dave; Shenhar, Joram
1993-02-01
Inertial devices, including sensors and actuators, offer the potential of improving the tracking of telerobotic commands for space-based robots by smoothing payload motions and suppressing vibrations. In this paper, inertial actuators (specifically, torque-wheels and reaction-masses) are studied for that potential application. Batch simulation studies are presented which show that torque-wheels can reduce the overshoot in abrupt stop commands by 82 percent for a two-link arm. For man-in-the-loop evaluation, a real-time simulator has been developed which samples a hand-controller, solves the nonlinear equations of motion, and graphically displays the resulting motion on a computer workstation. Currently, two manipulator models, a two-link, rigid arm and a single-link, flexible arm, have been studied. Results are presented which show that, for a single-link arm, a reaction-mass/torque-wheel combination at the payload end can yield a settling time of 3 s for disturbances in the first flexible mode as opposed to 10 s using only a hub motor. A hardware apparatus, which consists of a single-link, highly flexible arm with a hub motor and a torque-wheel, has been assembled to evaluate the concept and is described herein.
Nanowire surface fastener fabrication on flexible substrate
NASA Astrophysics Data System (ADS)
Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang
2018-07-01
The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm‑2) and low contact resistivity (2.2 × 10‑4 Ω cm2).
Nanostructured Silicon Used for Flexible and Mobile Electricity Generation.
Sun, Baoquan; Shao, Mingwang; Lee, Shuitong
2016-12-01
The use of nanostructured silicon for the generation of electricity in flexible and mobile devices is reviewed. This field has attracted widespread interest in recent years due to the emergence of plastic electronics. Such developments are likely to alter the nature of power sources in the near future. For example, flexible photovoltaic cells can supply electricity to rugged and collapsible electronics, biomedical devices, and conformable solar panels that are integrated with the curved surfaces of vehicles or buildings. Here, the unique optical and electrical properties of nanostructured silicon are examined, with regard to how they can be exploited in flexible photovoltaics, thermoelectric generators, and piezoelectric devices, which serve as power generators. Particular emphasis is placed on organic-silicon heterojunction photovoltaic devices, silicon-nanowire-based thermoelectric generators, and core-shell silicon/silicon oxide nanowire-based piezoelectric devices, because they are flexible, lightweight, and portable. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
All-phosphorus flexible devices with non-collinear electrodes: a first principles study.
Li, Junjun; Ruan, Lufeng; Wu, Zewen; Zhang, Guiling; Wang, Yin
2018-03-07
With the continuous expansion of the family of two-dimensional (2D) materials, flexible electronics based on 2D materials have quickly emerged. Theoretically, predicting the transport properties of the flexible devices made up of 2D materials using first principles is of great importance. Using density functional theory combined with the non-equilibrium Green's function formalism, we calculated the transport properties of all-phosphorus flexible devices with non-collinear electrodes, and the results predicted that the device with compressed metallic phosphorene electrodes sandwiching a P-type semiconducting phosphorene shows a better and robust conducting behavior against the bending of the semiconducting region when the angle between the two electrodes is less than 45°, which indicates that this system is very promising for flexible electronics. The calculation of a quantum transport system with non-collinear electrodes demonstrated in this work will provide more interesting information on mesoscopic material systems and related devices.
Aspects of intelligent electronic device based switchgear control training model application
NASA Astrophysics Data System (ADS)
Bogdanov, Dimitar; Popov, Ivaylo
2018-02-01
The design of the protection and control equipment for electrical power sector application was object of extensive advance in the last several decades. The modern technologies offer a wide range of multifunctional flexible applications, making the protection and control of facilities more sophisticated. In the same time, the advance of technology imposes the necessity of simulators, training models and tutorial laboratory equipment to be used for adequate training of students and field specialists
Three-terminal graphene negative differential resistance devices.
Wu, Yanqing; Farmer, Damon B; Zhu, Wenjuan; Han, Shu-Jen; Dimitrakopoulos, Christos D; Bol, Ageeth A; Avouris, Phaedon; Lin, Yu-Ming
2012-03-27
A new mechanism for negative differential resistance (NDR) is discovered in three-terminal graphene devices based on a field-effect transistor configuration. This NDR effect is a universal phenomenon for graphene and is demonstrated in devices fabricated with different types of graphene materials and gate dielectrics. Operation of conventional NDR devices is usually based on quantum tunneling or intervalley carrier transfer, whereas the NDR behavior observed here is unique to the ambipolar behavior of zero-bandgap graphene and is associated with the competition between electron and hole conduction as the drain bias increases. These three terminal graphene NDR devices offer more operation flexibility than conventional two-terminal devices based on tunnel diodes, Gunn diodes, or molecular devices, and open up new opportunities for graphene in microwave to terahertz applications. © 2012 American Chemical Society
NASA Astrophysics Data System (ADS)
Wang, Wei; Peng, Dengfeng; Zhang, Hanlu; Yang, Xiaohong; Pan, Caofeng
2017-07-01
Piezoelectric semiconductor with optical, electrical and mechanical multifunctions has great potential applications in future optoelectronic devices. The rich properties and applications mainly encompass the intrinsic structures and their coupling effects. Here, we report that lanthanide ions doped piezoelectric semiconductor CaZnOS:Sm3+ showing strong red emission induced by dynamic mechanical stress. Under moderate mechanical load, the doped piezoelectric semiconductor exhibits strong visible red emission to the naked eyes even under the day light. A flexible dynamic pressure sensor device is fabricated based on the prepared CaZnOS:Sm3+ powders. The mechanical-induced emission properties of the device are investigated by the optical fiber spectrometer. The linear characteristic emissions are attributed to the 4G5/2→6H5/2 (566 nm), 4G5/2→6H7/2 (580-632 nm), 4G5/2→6H9/2 (653-673 nm) and 4G5/2→6H11/2 (712-735 nm) f-f transitions of Sm3+ ions. The integral emission intensity is proportional to the value of applied pressure. By using the linear relationship between integrated emission intensity and the dynamic pressure, the real-time pressure distribution is visualized and recorded. Our results highlight that the incorporation of lanthanide luminescent ions into piezoelectric semiconductors as smart materials could be applied into the flexible mechanical-optical sensor device without additional auxiliary power, which has great potential for promising applications such as mapping of personalized handwriting, smart display, and human machine interface.
Ultra-smooth glassy graphene thin films for flexible transparent circuits
Dai, Xiao; Wu, Jiang; Qian, Zhicheng; Wang, Haiyan; Jian, Jie; Cao, Yingjie; Rummeli, Mark H.; Yi, Qinghua; Liu, Huiyun; Zou, Guifu
2016-01-01
Large-area graphene thin films are prized in flexible and transparent devices. We report on a type of glassy graphene that is in an intermediate state between glassy carbon and graphene and that has high crystallinity but curly lattice planes. A polymer-assisted approach is introduced to grow an ultra-smooth (roughness, <0.7 nm) glassy graphene thin film at the inch scale. Owing to the advantages inherited by the glassy graphene thin film from graphene and glassy carbon, the glassy graphene thin film exhibits conductivity, transparency, and flexibility comparable to those of graphene, as well as glassy carbon–like mechanical and chemical stability. Moreover, glassy graphene–based circuits are fabricated using a laser direct writing approach. The circuits are transferred to flexible substrates and are shown to perform reliably. The glassy graphene thin film should stimulate the application of flexible transparent conductive materials in integrated circuits. PMID:28138535
Recent advances in flexible low power cholesteric LCDs
NASA Astrophysics Data System (ADS)
Khan, Asad; Shiyanovskaya, Irina; Montbach, Erica; Schneider, Tod; Nicholson, Forrest; Miller, Nick; Marhefka, Duane; Ernst, Todd; Doane, J. W.
2006-05-01
Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. Applications ranging from low resolution large signs to ultra high resolution electronic books can utilize cholesteric displays to not only benefit from the numerous features, but also create enabling features that other flat panel display technologies cannot. Flexible displays are the focus of attention of numerous research groups and corporations worldwide. Cholesteric displays have been demonstrated to be highly amenable to flexible substrates. This paper will review recent advances in flexible cholesteric displays including both phase separation and emulsification approaches to encapsulation. Both approaches provide unique benefits to various aspects of manufacturability, processes, flexibility, and conformability.
Flexible organic light-emitting devices with a smooth and transparent silver nanowire electrode
NASA Astrophysics Data System (ADS)
Cui, Hai-Feng; Zhang, Yi-Fan; Li, Chuan-Nan
2014-07-01
We demonstrate a flexible organic light-emitting device (OLED) by using silver nanowire (AgNW) transparent electrode. A template stripping process has been employed to fabricate the AgNW electrode on a photopolymer substrate. From this approach, a random AgNW network electrode can be transferred to the flexible substrate and its roughness has been successfully decreased. As a result, the devices obtained by this method exhibit high efficiency. In addition, the flexible OLEDs keep good performance under a small bending radius.
Transistor and memory devices based on novel organic and biomaterials
NASA Astrophysics Data System (ADS)
Tseng, Jia-Hung
Organic semiconductor devices have aroused considerable interest because of the enormous potential in many technological applications. Organic electroluminescent devices have been extensively applied in display technology. Rapid progress has also been made in transistor and memory devices. This thesis considers aspects of the transistor based on novel organic single crystals and memory devices using hybrid nanocomposites comprising polymeric/inorganic nanoparticles, and biomolecule/quantum dots. Organic single crystals represent highly ordered structures with much less imperfections compared to amorphous thin films for probing the intrinsic charge transport in transistor devices. We demonstrate that free-standing, thin organic single crystals with natural flexing ability can be fabricated as flexible transistors. We study the surface properties of the organic crystals to determine a nearly perfect surface leading to high performance transistors. The flexible transistors can maintain high performance under reversible bending conditions. Because of the high quality crystal technique, we further develop applications on organic complementary circuits and organic single crystal photovoltaics. In the second part, two aspects of memory devices are studied. We examine the charge transfer process between conjugated polymers and metal nanoparticles. This charge transfer process is essential for the conductance switching in nanoseconds to induce the memory effect. Under the reduction condition, the charge transfer process is eliminated as well as the memory effect, raising the importance of coupling between conjugated systems and nanoparticle accepters. The other aspect of memory devices focuses on the interaction of virus biomolecules with quantum dots or metal nanoparticles in the devices. We investigate the impact of memory function on the hybrid bio-inorganic system. We perform an experimental analysis of the charge storage activation energy in tobacco mosaic virus with platinum nanoparticles. It is established that the effective barrier height in the materials systems needs to be further engineered in order to have sufficiently long retention times. Finally other novel architectures such as negative differential resistance devices and high density memory arrays are investigated for their influence on memory technology.
Cheng, Huhu; Dong, Zelin; Hu, Chuangang; Zhao, Yang; Hu, Yue; Qu, Liangti; Chen, Nan; Dai, Liming
2013-04-21
Functional graphene-based fibers are promising as new types of flexible building blocks for the construction of wearable architectures and devices. Unique one-dimensional (1D) carbon nanotubes (CNTs) and 2D graphene (CNT/G) hybrid fibers with a large surface area and high electrical conductivity have been achieved by pre-intercalating graphene fibers with Fe3O4 nanoparticles for subsequent CVD growth of CNTs. The CNT/G hybrid fibers can be further woven into textile electrodes for the construction of flexible supercapacitors with a high tolerance to the repeated bending cycles. Various other applications, such as catalysis, separation, and adsorption, can be envisioned for the CNT/G hybrid fibers.
Zhu, Siwei; Gao, Yuan; Hu, Bin; Li, Jia; Su, Jun; Fan, Zhiyong; Zhou, Jun
2013-08-23
High performance transparent electrodes (TEs) with figures-of-merit as high as 471 were assembled using ultralong silver nanowires (Ag NWs). A room-temperature plasma was employed to enhance the conductivity of the Ag NW TEs by simultaneously removing the insulating PVP layer coating on the NWs and welding the junctions tightly. Furthermore, we developed a general way to fabricate TEs regardless of substrate limitations by transferring the as-fabricated Ag NW network onto various substrates directly, and the transmittance can remain as high as 91% with a sheet resistivity of 13 Ω/sq. The highly robust and stable flexible TEs will have broad applications in flexible optoelectronic and electronic devices.
Screen printed UHF antennas on flexible substrates
NASA Astrophysics Data System (ADS)
Janeczek, Kamil; Młożniak, Anna; Kozioł, Grażyna; Araźna, Aneta; Jakubowska, Małgorzata; Bajurko, Paweł
2010-09-01
Printed electronics belongs to the most important developing electronics technologies. It provides new possibilities to produce low cost and large area devices. In its range several applications can be distinguished like printed batteries, OLED, biosensors, photovoltaic cells or RFID tags. In the presented investigation, antennas working in UHF frequency range were elaborated. It can be applied in the future for flexible RFID tags. To produce these antennas polymer paste with silver flakes was used. It was deposited on two flexible substrates (foil and photo paper) with screen printing techniques. After printing process surface profile, electrical and microwave parameters of performed antennas were measured using digital multimeter and network analyzer, relatively. Furthermore, a thickness of printed layers was measured.
Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications
Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan
2016-01-01
We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications. PMID:27472335
A General Approach for Fluid Patterning and Application in Fabricating Microdevices.
Huang, Zhandong; Yang, Qiang; Su, Meng; Li, Zheng; Hu, Xiaotian; Li, Yifan; Pan, Qi; Ren, Wanjie; Li, Fengyu; Song, Yanlin
2018-06-19
Engineering the fluid interface such as the gas-liquid interface is of great significance for solvent processing applications including functional material assembly, inkjet printing, and high-performance device fabrication. However, precisely controlling the fluid interface remains a great challenge owing to its flexibility and fluidity. Here, a general method to manipulate the fluid interface for fluid patterning using micropillars in the microchannel is reported. The principle of fluid patterning for immiscible fluid pairs including air, water, and oils is proposed. This understanding enables the preparation of programmable multiphase fluid patterns and assembly of multilayer functional materials to fabricate micro-optoelectronic devices. This general strategy of fluid patterning provides a promising platform to study the fundamental processes occurring on the fluid interface, and benefits applications in many subjects, such as microfluidics, microbiology, chemical analysis and detection, material synthesis and assembly, device fabrication, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications.
Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan
2016-07-26
We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.
Mechanically Flexible and High-Performance CMOS Logic Circuits.
Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2015-10-13
Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal-oxide-semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices.
Mechanically Flexible and High-Performance CMOS Logic Circuits
Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2015-01-01
Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal–oxide–semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices. PMID:26459882
Micro/Nanostructured Films and Adhesives for Biomedical Applications.
Lee, Jungkyu K; Kang, Sung Min; Yang, Sung Ho; Cho, Woo Kyung
2015-12-01
The advanced technologies available for micro/nanofabrication have opened new avenues for interdisciplinary approaches to solve the unmet medical needs of regenerative medicine and biomedical devices. This review highlights the recent developments in micro/nanostructured adhesives and films for biomedical applications, including waterproof seals for wounds or surgery sites, drug delivery, sensing human body signals, and optical imaging of human tissues. We describe in detail the fabrication processes required to prepare the adhesives and films, such as tape-based adhesives, nanofilms, and flexible and stretchable film-based electronic devices. We also discuss their biomedical functions, performance in vitro and in vivo, and the future research needed to improve the current systems.
Flexible thin-film transistors on plastic substrate at room temperature.
Han, Dedong; Wang, Wei; Cai, Jian; Wang, Liangliang; Ren, Yicheng; Wang, Yi; Zhang, Shengdong
2013-07-01
We have fabricated flexible thin-film transistors (TFTs) on plastic substrates using Aluminum-doped ZnO (AZO) as an active channel layer at room temperature. The AZO-TFTs showed n-channel device characteristics and operated in enhancement mode. The device shows a threshold voltage of 1.3 V, an on/off ratio of 2.7 x 10(7), a field effect mobility of 21.3 cm2/V x s, a subthreshold swing of 0.23 V/decade, and the off current of less than 10(-12) A at room temperature. Recently, the flexible displays have become a very hot topic. Flexible thin film transistors are key devices for realizing flexible displays. We have investigated AZO-TFT on flexible plastic substrate, and high performance flexible TFTs have been obtained.
Fabrication of flexible and vertical silicon nanowire electronics.
Weisse, Jeffrey M; Lee, Chi Hwan; Kim, Dong Rip; Zheng, Xiaolin
2012-06-13
Vertical silicon nanowire (SiNW) array devices directly connected on both sides to metallic contacts were fabricated on various non-Si-based substrates (e.g., glass, plastics, and metal foils) in order to fully exploit the nanomaterial properties for final applications. The devices were realized with uniform length Ag-assisted electroless etched SiNW arrays that were detached from their fabrication substrate, typically Si wafers, reattached to arbitrary substrates, and formed with metallic contacts on both sides of the NW array. Electrical characterization of the SiNW array devices exhibits good current-voltage characteristics consistent with the SiNW morphology.
Medical free-electron laser: fact or fiction?
NASA Astrophysics Data System (ADS)
Bell, James P.; Ponikvar, Donald R.
1994-07-01
The free electron laser (FEL) has long been proposed as a flexible tool for a variety of medical applications, and yet the FEL has not seen widespread acceptance in the medical community. The issues have been the laser's size, cost, and complexity. Unfortunately, research on applications of FELs has outpaced the device development efforts. This paper describes the characteristics of the FEL, as they have been demonstrated in the U.S. Army's FEL technology development program, and identifies specific medical applications where demonstrated performance levels would suffice. This includes new photodynamic therapies for cancer and HIV treatment, orthopedic applications, tissue welding applications, and multiwavelength surgical techniques. A new tunable kilowatt class FEL device is described, which utilizes existing hardware from the U.S. Army program. An assessment of the future potential, based on realistic technology scaling is provided.