Disk flexibility effects on the rotordynamics of the SSME high pressure turbopumps
NASA Technical Reports Server (NTRS)
Flowers, George T.
1990-01-01
Rotordynamical analyses are typically performed using rigid disk models. Studies of rotor models in which the effects of disk flexibility were included indicate that it may be an important effect for many systems. This issue is addressed with respect to the Space Shuttle Main Engine high pressure turbopumps. Finite element analyses were performed for a simplified free-free flexible disk rotor models and the modes and frequencies compared to those of a rigid disk model. Equations were developed to account for disk flexibility in rotordynamical analysis. Simulation studies were conducted to assess the influence of disk flexibility on the HPOTP. Some recommendations are given as to the importance of disk flexibility and for how this project should proceed.
The influence of disk's flexibility on coupling vibration of shaft disk blades systems
NASA Astrophysics Data System (ADS)
Yang, Chia-Hao; Huang, Shyh-Chin
2007-03-01
The coupling vibrations among shaft-torsion, disk-transverse and blade-bending in a shaft-disk-blades unit are investigated. The equations of motion for the shaft-disk-blades unit are first derived from the energy approach in conjunction with the assumed modes method. The effects of disk flexibility, blade's stagger angle and rotational speed upon the natural frequencies and mode shapes are particularly studied. Previous studies have shown that there were four types of coupling modes, the shaft-blade (SB), the shaft-disk-blades (SDBs), the disk-blades (DB) and the blade-blade (BB) in such a unit. The present research focuses on the influence of disk flexibility on the coupling behavior and discovers that disk's flexibility strongly affects the modes bifurcation and the transition of modes. At slightly flexible disk, the BB modes bifurcate into BB and DB modes. As disk goes further flexible, SB modes shift into SDB modes. If it goes furthermore, additional disk-predominating modes are generated and DB modes appear before the SDB mode. Examination of stagger angle β proves that at two extreme cases; at β=0° the shaft and blades coupled but not the disk, and at β=90° the disk and blades coupled but not the shaft. In between, coupling exists among three components. Increasing β may increase or decrease SB modes, depending on which, the disk or shaft's first mode, is more rigid. The natural frequencies of DB modes usually decrease with the increase of β. Rotation effects show that bifurcation, veering and merging phenomena occur due to disk flexibility. Disk flexibility is also observed to induce more critical speeds in the SDBs systems.
Blade loss transient dynamics analysis with flexible bladed disk
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Black, G.; Bach, L.; Cline, S.; Storace, A.
1983-01-01
The transient dynamic response of a flexible bladed disk on a flexible rotor in a two rotor system is formulated by modal synthesis and a Lagrangian approach. Only the nonequilibrated one diameter flexible mode is considered for the flexible bladed disk, while the two flexible rotors are represented by their normal modes. The flexible bladed disk motion is modeled as a combination of two one diameter standing waves, and is coupled inertially and gyroscopically to the flexible rotors. Application to a two rotor model shows that a flexible bladed disk on one rotor can be driven into resonance by an unbalance in the other rotor, and at a frequency equal to the difference in the rotor speeds.
Shaft flexibility effects on the forced response of a bladed-disk assembly
NASA Technical Reports Server (NTRS)
Khader, N.; Loewy, R. G.
1990-01-01
A model analysis approach is used to study the forced response of an actual flexible bladed-disk-shaft system. Both in-plane and out-of-plane flexible deformations of the bladed-disk assembly are considered, in addition to its rigid-body translations and rotations, resulting from the bending of the supporting flexible shaft in two orthogonal planes. The effects of Coriolis forces and structural coupling between flexible and rigid disk motions on the system's response are investigated. Aerodynamic loads acting on the rotating and vibrating bladed-disk assembly are accounted for through a simple quasi-steady representation, to evaluate their influence, combined with shaft flexibility and Coriolis effects.
Mass storage technology in networks
NASA Astrophysics Data System (ADS)
Ishii, Katsunori; Takeda, Toru; Itao, Kiyoshi; Kaneko, Reizo
1990-08-01
Trends and features of mass storage subsystems in network are surveyed and their key technologies spotlighted. Storage subsystems are becoming increasingly important in new network systems in which communications and data processing are systematically combined. These systems require a new class of high-performance mass-information storage in order to effectively utilize their processing power. The requirements of high transfer rates, high transactional rates and large storage capacities, coupled with high functionality, fault tolerance and flexibility in configuration, are major challenges in storage subsystems. Recent progress in optical disk technology has resulted in improved performance of on-line external memories to optical disk drives, which are competing with mid-range magnetic disks. Optical disks are more effective than magnetic disks in using low-traffic random-access file storing multimedia data that requires large capacity, such as in archive use and in information distribution use by ROM disks. Finally, it demonstrates image coded document file servers for local area network use that employ 130mm rewritable magneto-optical disk subsystems.
NASA Technical Reports Server (NTRS)
Flowers, George T.
1989-01-01
Rotor dynamical analyses are typically performed using rigid disk models. Studies of rotor models in which the effects of disk flexibility were included indicate that is may be an important effect for many systems. This issue is addressed with respect to the Space Shuttle Main Engine high pressure turbo-pumps. Finite element analyses have been performed for a simplified free-free flexible disk rotor model and the modes and frequencies compared to those of a rigid disk model. The simple model was then extended to a more sophisticated HPTOP rotor model and similar results were observed. Equations were developed that are suitable for modifying the current rotordynamical analysis program to account for disk flexibility. Some conclusions are drawn from the results of this work as to the importance of disk flexibility on the HPTOP rotordynamics and some recommendations are given for follow-up research in this area.
Shaft flexibility effects on aeroelastic stability of a rotating bladed disk
NASA Technical Reports Server (NTRS)
Khader, Naim; Loewy, Robert
1989-01-01
A comprehensive study of Coriolis forces and shaft flexibility effects on the structural dynamics and aeroelastic stability of a rotating bladed-disk assembly attached to a cantilever, massless, flexible shaft is presented. Analyses were performed for an actual bladed-disk assembly, used as the first stage in the fan of the 'E3' engine. In the structural model, both in-plane and out-of-plane elastic deformation of the bladed-disk assembly were considered relative to their hub, in addition to rigid disk translations and rotations introduced by shaft flexibility. Besides structural coupling between blades (through the flexible disk), additional coupling is introduced through quasisteady aerodynamic loads. Rotational effects are accounted for throughout the work, and some mode shapes for the whole structure are presented at a selected rpm.
NASA Astrophysics Data System (ADS)
JANG, G. H.; LEE, S. H.; JUNG, M. S.
2002-03-01
Free vibration of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft is analyzed by using Hamilton's principle, FEM and substructure synthesis. The spinning disk is described by using the Kirchhoff plate theory and von Karman non-linear strain. The rotating spindle and stationary shaft are modelled by Rayleigh beam and Euler beam respectively. Using Hamilton's principle and including the rigid body translation and tilting motion, partial differential equations of motion of the spinning flexible disk and spindle are derived consistently to satisfy the geometric compatibility in the internal boundary between substructures. FEM is used to discretize the derived governing equations, and substructure synthesis is introduced to assemble each component of the disk-spindle-bearing-shaft system. The developed method is applied to the spindle system of a computer hard disk drive with three disks, and modal testing is performed to verify the simulation results. The simulation result agrees very well with the experimental one. This research investigates critical design parameters in an HDD spindle system, i.e., the non-linearity of a spinning disk and the flexibility and boundary condition of a stationary shaft, to predict the free vibration characteristics accurately. The proposed method may be effectively applied to predict the vibration characteristics of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft in the various forms of computer storage device, i.e., FDD, CD, HDD and DVD.
NASA Technical Reports Server (NTRS)
Flowers, George T.; Ryan, Stephen G.
1991-01-01
Rotordynamical equations that account for disk flexibility are developed. These equations employ free-free rotor modes to model the rotor system. Only transverse vibrations of the disks are considered, with the shaft/disk system considered to be torsionally rigid. Second order elastic foreshortening effects that couple with the rotor speed to produce first order terms in the equations of motion are included. The approach developed in this study is readily adaptable for usage in many of the codes that are current used in rotordynamical simulations. The equations are similar to those used in standard rigid disk analyses but with additional terms that include the effects of disk flexibility. An example case is presented to demonstrate the use of the equations and to show the influence of disk flexibility on the rotordynamical behavior of a sample system.
Flexible and Secure Computer-Based Assessment Using a Single Zip Disk
ERIC Educational Resources Information Center
Ko, C. C.; Cheng, C. D.
2008-01-01
Electronic examination systems, which include Internet-based system, require extremely complicated installation, configuration and maintenance of software as well as hardware. In this paper, we present the design and development of a flexible, easy-to-use and secure examination system (e-Test), in which any commonly used computer can be used as a…
The dynamics of a flexible bladed disc on a flexible rotor in a two-rotor system
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Stallone, M. J.
1984-01-01
This paper describes the development of the analysis of the transient dynamic response of a bladed disk on a flexible rotor. The rotating flexible bladed disk is considered as a module in a complete turbine engine structure. The analysis of the flexible bladed disk (FBD) module is developed for the non-equilibrated one-diameter axial mode. The FBD motion is considered as a sum of two standing axial waves constrained to the rotor. The FBD is coupled inertially and gyroscopically to its rotor support, and indirectly through connecting elements, to the adjacent rotor and/or other supporting structures. Incorporated in the basic Turbine Engine Transient Response Analysis program (TETRA), the FBD module is demonstrated with a two-rotor model where the FBD can be excited into resonance by an unbalance in the adjacent rotor and at a frequency equal to the differential rotor speed. The FBD module also allows the analysis of two flexible bladed disks in the same rotor.
Optimization of a fiber optic flexible disk microphone
NASA Astrophysics Data System (ADS)
Zhang, Gang; Yu, Benli; Wang, Hui; Liu, Fei; Peng, Jun; Wu, Xuqiang
2011-11-01
An optimized design of a fiber optic flexible disk microphone is presented and verified experimentally. The phase sensitivity of optical fiber microphone (both the ideal model with a simply supported disk (SSD) and the model with a clamped disk (CLD)) is analyzed by utilizing theory of plates and shells. The results show that the microphones have an optimum length of the sensing arm when inner radius of the fiber coils, radius and Poisson's radio of the flexible disk have been determined. Under a typical condition depicted in this paper, an optimum phase sensitivity for SSD model of 27.72 rad/Pa (-91.14 dB re 1 rad/μPa) and an optimum phase sensitivity for CLD model of 3.18 rad/Pa (-109.95 dB re 1 rad/μPa), can be achieved in theory. Several sample microphones are fabricated and tested. The experimental results are basically consistent with the theoretical analysis.
Stagger angle dependence of inertial and elastic coupling in bladed disks
NASA Technical Reports Server (NTRS)
Crawley, E. F.; Mokadam, D. R.
1984-01-01
Conditions which necessitate the inclusion of disk and shaft flexibility in the analysis of blade response in rotating blade-disk-shaft systems are derived in terms of nondimensional parameters. A simple semianalytical Rayleigh-Ritz model is derived in which the disk possesses all six rigid body degrees of freedom, which are elastically constrained by the shaft. Inertial coupling by the rigid body motion of the disk on a flexible shaft and out-of-plane elastic coupling due to disk flexure are included. Frequency ratios and mass ratios, which depend on the stagger angle, are determined for three typical rotors: a first stage high-pressure core compressor, a high bypass ratio fan, and an advanced turboprop. The stagger angle controls the degree of coupling in the blade-disk system. In the blade-disk-shaft system, the stagger angle determines whether blade-disk motion couples principally to the out-of-plane or in-plane motion of the disk on the shaft. The Ritz analysis shows excellent agreement with experimental results.
Höfflin, Jens; Torres Delgado, Saraí M; Suárez Sandoval, Fralett; Korvink, Jan G; Mager, Dario
2015-06-21
We present a design for wireless power transfer, via inductively coupled coils, to a spinning disk. The rectified and stabilised power feeds an Arduino-compatible microcontroller (μC) on the disc, which in turn drives and monitors various sensors and actuators. The platform, which has been conceived to flexibly prototype such systems, demonstrates the feasibility of a wireless power supply and the use of a μC circuit, for example for Lab-on-a-disk applications, thereby eliminating the need for cumbersome slip rings or batteries, and adding a cogent and new degree of freedom to the setup. The large number of sensors and actuators included demonstrate that a wide range of physical parameters can be easily monitored and altered. All devices are connected to the μC via an I(2)C bus, therefore can be easily exchanged or augmented by other devices in order to perform a specific task on the disk. The wireless power supply takes up little additional physical space and should work in conjunction with most existing Lab-on-a-disk platforms as a straightforward add-on, since it does not require modification of the rotation axis and can be readily adapted to specific geometrical requirements.
NASA Technical Reports Server (NTRS)
Kielb, R. (Editor); Crawley, E. (Editor); Simonis, J. C. (Editor)
1987-01-01
The present conference on bladed disk assemblies discusses aerodynamic indicial reponse and stability derivatives for a rotor annulus, an analysis of aerodynamically forced turbomachine vibration, the effect of downwash on the nonsteady forces in a turbomachine stage, the vibration of turbomachine blades with root flexibility effects, mistuned bladed disk assembly vibrations, and the model-generation and modal analysis of flexible bladed disk assemblies. Also discussed are the vibration characteristics of a mistuned bladed disk, free and forced vibrations associated with localization phenomena in mistuned assemblies with cyclic symmetry, steam turbine cyclic symmetry through constraint equations, and the interpretation of experimental and theoretical results predicting vibrating turbocharger blade mode shapes.
Vibration of rotating-shaft design spindles with flexible bases
NASA Astrophysics Data System (ADS)
Tseng, Chaw-Wu
The purpose of this study is to demonstrate an accurate mathematical model predicting forced vibration of rotating-shaft HDD spindle motors with flexible stationary parts. The mathematical model consists of three parts: a rotating part, a stationary part, and bearings. The rotating part includes a flexible hub, a flexible shaft press-fit into the hub, and N elastic disks mounted on the hub. The stationary part can include motor bracket (stator), base casting, and top cover. The bearings under consideration can be ball bearings or hydrodynamic bearings (HDB). The rotating disks are modelled through the classical plate theory. The rotating part (except the disks) and the stationary part are modelled through finite element analyses (FEA). With mode shapes and natural frequencies obtained from FEA, the kinetic and potential energies of the rotating and stationary parts are formulated and discretized to compensate for the gyroscopic effects from rotation. Finally, use of Lagrange equation results in the equations of motion. To verify the mathematical model, frequency response functions are measured experimentally for an HDB spindle carrying two identical disks at motor and drive levels. Experimental measurements agree very well with theoretical predictions not only in resonance frequency but also in resonance amplitude.
High resolution optical shaft encoder for motor speed control based on an optical disk pick-up
NASA Astrophysics Data System (ADS)
Yeh, Wei-Hung; Bletscher, Warren; Mansuripur, M.
1998-08-01
Using a three-beam optical pick-up from a compact disk player and a flexible, shaft-mounted diffraction grating, we obtain information about the rotation speed and angular position of the motor's spindle. This information may be used for feedback to the motor for smooth operation. Due to the small size of the focused spot and the built-in auto-focus mechanism of the optical head, the proposed encoder can achieve submicrometer resolution. With high resolution, reliable operation, and low-cost elements, the proposed method is suitable for rotary and linear motion control where accurate positioning of an object is required.
Recent Cooperative Research Activities of HDD and Flexible Media Transport Technologies in Japan
NASA Astrophysics Data System (ADS)
Ono, Kyosuke
This paper presents the recent status of industry-university cooperative research activities in Japan on the mechatronics of information storage and input/output equipment. There are three research committees for promoting information exchange on technical problems and research topics of head-disk interface in hard disk drives (HDD), flexible media transport and image printing processes which are supported by the Japan Society of Mechanical Engineering (JSME), the Japanese Society of Tribologists (JAST) and the Japan Society of Precision Engineering (JSPE). For hard disk drive technology, the Storage Research Consortium (SRC) is supporting more than 40 research groups in various different universities to perform basic research for future HDD technology. The past and present statuses of these activities are introduced, particularly focusing on HDD and flexible media transport mechanisms.
Laboratory process control using natural language commands from a personal computer
NASA Technical Reports Server (NTRS)
Will, Herbert A.; Mackin, Michael A.
1989-01-01
PC software is described which provides flexible natural language process control capability with an IBM PC or compatible machine. Hardware requirements include the PC, and suitable hardware interfaces to all controlled devices. Software required includes the Microsoft Disk Operating System (MS-DOS) operating system, a PC-based FORTRAN-77 compiler, and user-written device drivers. Instructions for use of the software are given as well as a description of an application of the system.
Blade mistuning coupled with shaft flexibility effects in rotor aeroelasticity
NASA Technical Reports Server (NTRS)
Khader, Naim; Loewy, Robert G.
1989-01-01
The effect of bladed-disk polar dissymmetry, resulting from variations in mass from one blade to another, on aeroelastic stability boundaries for a fan stage is presented. In addition to both in-plane and out-of-plane deformations of the bladed-disk, bending of the supporting shaft in two planes is considered, and the resulting Coriolis forces and gyroscopic moments are included in the analysis. A quasi-steady aerodynamics approach is combined with the Lagrangian method to develop the governing equations of motion for the flexible bladed-disk-shaft assembly. Calculations are performed for an actual fan stage.
ERIC Educational Resources Information Center
ManTech Advanced Technology Systems, Fairfax, VA.
This report contains the results of a study sponsored by the National Library Service for the Blind and Physically Handicapped to investigate the implications of converting its audio magazine program from flexible disk to audiocassette. Specific issues to be considered included whether or not such a conversion would represent: (1) a financial…
Measurement of Flexed Posture for Flexible Mono-Tread Mobile Track
NASA Astrophysics Data System (ADS)
Kinugasa, Tetsuya; Akagi, Tetsuya; Ishii, Kuniaki; Haji, Takafumi; Yoshida, Koji; Amano, Hisanori; Hayashi, Ryota; Tokuda, Kenichi; Iribe, Masatsugu; Osuka, Koichi
We have proposed Flexible Mono-tread mobile Track (FMT) as a mobile mechanism on rough terrain for rescue activity, environmental investigation and planetary explorer, etc. Generally speaking, one has to teleoperate robots under invisible condition. In order to operate the robots skillfully, it is necessary to detect not only condition around the robots and its position but also posture of the robots at any time. Since flexed posture of FMT decides turning radius and direction, it is important to know its posture. FMT has vertebral structure composed of vertebrae as rigid body and intervertebral disks made by flexible devices such as rubber cylinder and spring. Since the intervertebral disks flex in three dimension, traditional sensors such as potentiometers, rotary encoders and range finders can hardly use for measurement of its deformation. The purpose of the paper, therefore, is to measure flexed posture of FMT using a novel flexible displacement sensor. We prove that the flexed posture of FMT with five intervertebral disks can be detected through experiment.
Storage media pipelining: Making good use of fine-grained media
NASA Technical Reports Server (NTRS)
Vanmeter, Rodney
1993-01-01
This paper proposes a new high-performance paradigm for accessing removable media such as tapes and especially magneto-optical disks. In high-performance computing the striping of data across multiple devices is a common means of improving data transfer rates. Striping has been used very successfully for fixed magnetic disks improving overall system reliability as well as throughput. It has also been proposed as a solution for providing improved bandwidth for tape and magneto-optical subsystems. However, striping of removable media has shortcomings, particularly in the areas of latency to data and restricted system configurations, and is suitable primarily for very large I/Os. We propose that for fine-grained media, an alternative access method, media pipelining, may be used to provide high bandwidth for large requests while retaining the flexibility to support concurrent small requests and different system configurations. Its principal drawback is high buffering requirements in the host computer or file server. This paper discusses the possible organization of such a system including the hardware conditions under which it may be effective, and the flexibility of configuration. Its expected performance is discussed under varying workloads including large single I/O's and numerous smaller ones. Finally, a specific system incorporating a high-transfer-rate magneto-optical disk drive and autochanger is discussed.
New generation of compact high power disk lasers
NASA Astrophysics Data System (ADS)
Feuchtenbeiner, Stefanie; Zaske, Sebastian; Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Kumkar, Sören; Metzger, Bernd; Killi, Alexander; Haug, Patrick; Speker, Nicolai
2018-02-01
New technological developments in high power disk lasers emitting at 1030 nm are presented. These include the latest generation of TRUMPF's TruDisk product line offering high power disk lasers with up to 6 kW output power and beam qualities of up to 4 mm*mrad. With these compact devices a footprint reduction of 50% compared to the previous model could be achieved while at the same time improving robustness and increasing system efficiency. In the context of Industry 4.0, the new generation of TruDisk lasers features a synchronized data recording of all sensors, offering high-quality data for virtual analyses. The lasers therefore provide optimal hardware requirements for services like Condition Monitoring and Predictive Maintenance. We will also discuss its innovative and space-saving cooling architecture. It allows operation of the laser under very critical ambient conditions. Furthermore, an outlook on extending the new disk laser platform to higher power levels will be given. We will present a disk laser with 8 kW laser power out of a single disk with a beam quality of 5 mm*mrad using a 125 μm fiber, which makes it ideally suited for cutting and welding applications. The flexibility of the disk laser platform also enables the realization of a wide variety of beam guiding setups. As an example a new scheme called BrightLine Weld will be discussed. This technology allows for an almost spatter free laser welding process, even at high feed rates.
DEVELOPMENT OF A LAMINATED DISK FOR THE SPIN TEK ROTARY MICROFILTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, D.
2011-06-03
Funded by the Department of Energy Office of Environmental Management, EM-31, the Savannah River National Laboratory (SRNL) partnered with SpinTek Filtration{trademark} to develop a filter disk that would withstand a reverse pressure or flow during operation of the rotary microfilter. The ability to withstand a reverse pressure and flow eliminates a potential accident scenario that could have resulted in damage to the filter membranes. While the original welded filter disks have been shown to withstand and reverse pressure/flow in the static condition, the filter disk design discussed in this report will allow a reverse pressure/flow while the disks are rotating.more » In addition, the laminated disk increases the flexibility during filter startup and cleaning operations. The new filter disk developed by SRNL and SpinTek is manufactured with a more open structure significantly reducing internal flow restrictions in the disk. The prototype was tested at the University of Maryland and demonstrated to withstand the reverse pressure due to the centrifugal action of the rotary filter. The tested water flux of the disk was demonstrated to be 1.34 gpm in a single disk test. By comparison, the water flux of the current disk was 0.49 gpm per disk during a 25 disk test. The disk also demonstrated rejection of solids by filtering a 5 wt % Strontium Carbonate slurry with a filtrate clarity of less the 1.4 Nephelometric Turbidity Units (NTU) throughout the two hour test. The Savannah River National Laboratory (SRNL) has been working with SpinTek Filtration{trademark} to adapt the rotary microfilter for radioactive service in the Department of Energy (DOE) Complex. One potential weakness is the loose nature of the membrane on the filter disks. The current disk is constructed by welding the membrane at the outer edge of the disk. The seal for the center of the membrane is accomplished by an o-ring in compression for the assembled stack. The remainder of the membrane is free floating on the disk. This construction requires that a positive pressure be applied to the rotary filter tank to prevent the membrane from rising from the disk structure and potentially contacting the filter turbulence promoter. In addition, one accident scenario is a reverse flow through the filtrate line due to mis-alignment of valves resulting in the membrane rising from the disk structure. The structural integrity of the current disk has been investigated, and shown that the disk can withstand a significant reverse pressure in a static condition. However, the disk will likely incur damage if the filter stack is rotated during a reverse pressure. The development of a laminated disk would have several significant benefits for the operation of the rotary filter including the prevention of a compromise in filter disk integrity during a reverse flow accident, increasing operational flexibility, and increasing the self cleaning ability of the filter. A laminated disk would allow the filter rotor operation prior to a positive pressure in the filter tank. This would prevent the initial dead-head of the filter and prevent the resulting initial filter cake buildup. The laminated disk would allow rotor operation with cleaning fluid, eliminating the need for a recirculation pump. Additionally, a laminated disk would allow a reverse flow of fluid through the membrane pores removing trapped particles.« less
Optical Disk for Digital Storage and Retrieval Systems.
ERIC Educational Resources Information Center
Rose, Denis A.
1983-01-01
Availability of low-cost digital optical disks will revolutionize storage and retrieval systems over next decade. Three major factors will effect this change: availability of disks and controllers at low-cost and in plentiful supply; availability of low-cost and better output means for system users; and more flexible, less expensive communication…
Advanced Forensic Format: an Open Extensible Format for Disk Imaging
NASA Astrophysics Data System (ADS)
Garfinkel, Simson; Malan, David; Dubec, Karl-Alexander; Stevens, Christopher; Pham, Cecile
This paper describes the Advanced Forensic Format (AFF), which is designed as an alternative to current proprietary disk image formats. AFF offers two significant benefits. First, it is more flexible because it allows extensive metadata to be stored with images. Second, AFF images consume less disk space than images in other formats (e.g., EnCase images). This paper also describes the Advanced Disk Imager, a new program for acquiring disk images that compares favorably with existing alternatives.
Dynamics of Rotating Multi-component Turbomachinery Systems
NASA Technical Reports Server (NTRS)
Lawrence, Charles
1993-01-01
The ultimate objective of turbomachinery vibration analysis is to predict both the overall, as well as component dynamic response. To accomplish this objective requires complete engine structural models, including multistages of bladed disk assemblies, flexible rotor shafts and bearings, and engine support structures and casings. In the present approach each component is analyzed as a separate structure and boundary information is exchanged at the inter-component connections. The advantage of this tactic is that even though readily available detailed component models are utilized, accurate and comprehensive system response information may be obtained. Sample problems, which include a fixed base rotating blade and a blade on a flexible rotor, are presented.
Vibration and flutter of mistuned bladed-disk assemblies
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.; Kielb, R. E.
1984-01-01
An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbofans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.
Vibration and flutter of mistuned bladed-disk assemblies
NASA Technical Reports Server (NTRS)
Rao, K.; Kaza, V.; Kielb, R. E.
1984-01-01
An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbufans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.
Flexible matrix composite laminated disk/ring flywheel
NASA Technical Reports Server (NTRS)
Gupta, B. P.; Hannibal, A. J.
1984-01-01
An energy storage flywheel consisting of a quasi-isotropic composite disk overwrapped by a circumferentially wound ring made of carbon fiber and a elastometric matrix is proposed. Through analysis it was demonstrated that with an elastomeric matrix to relieve the radial stresses, a laminated disk/ring flywheel can be designed to store a least 80.3 Wh/kg or about 68% more than previous disk/ring designs. at the same time the simple construction is preserved.
Packing loops into annular cavities.
Sobral, T A; Gomes, M A F
2017-02-01
The continuous packing of a flexible rod in two-dimensional cavities yields a countable set of interacting domains that resembles nonequilibrium cellular systems and belongs to a new class of lightweight material. However, the link between the length of the rod and the number of domains requires investigation, especially in the case of non-simply connected cavities, where the number of avoided regions emulates an effective topological temperature. In the present article we report the results of an experiment of injection of a single flexible rod into annular cavities in order to find the total length needed to insert a given number of loops (domains of one vertex). Using an exponential model to describe the experimental data we quite minutely analyze the initial conditions, the intermediary behavior, and the tight packing limit. This method allows the observation of a new fluctuation phenomenon associated with instabilities in the dynamic evolution of the packing process. Furthermore, the fractal dimension of the global pattern enters the discussion under a novel point of view. A comparison with the classical problems of the random close packing of disks and jammed disk packings is made.
Packing loops into annular cavities
NASA Astrophysics Data System (ADS)
Sobral, T. A.; Gomes, M. A. F.
2017-02-01
The continuous packing of a flexible rod in two-dimensional cavities yields a countable set of interacting domains that resembles nonequilibrium cellular systems and belongs to a new class of lightweight material. However, the link between the length of the rod and the number of domains requires investigation, especially in the case of non-simply connected cavities, where the number of avoided regions emulates an effective topological temperature. In the present article we report the results of an experiment of injection of a single flexible rod into annular cavities in order to find the total length needed to insert a given number of loops (domains of one vertex). Using an exponential model to describe the experimental data we quite minutely analyze the initial conditions, the intermediary behavior, and the tight packing limit. This method allows the observation of a new fluctuation phenomenon associated with instabilities in the dynamic evolution of the packing process. Furthermore, the fractal dimension of the global pattern enters the discussion under a novel point of view. A comparison with the classical problems of the random close packing of disks and jammed disk packings is made.
Needle puncture in rabbit functional spinal units alters rotational biomechanics.
Hartman, Robert A; Bell, Kevin M; Quan, Bichun; Nuzhao, Yao; Sowa, Gwendolyn A; Kang, James D
2015-04-01
An in vitro biomechanical study for rabbit lumbar functional spinal units (FSUs) using a robot-based spine testing system. To elucidate the effect of annular puncture with a 16 G needle on mechanical properties in flexion/extension, axial rotation, and lateral bending. Needle puncture of the intervertebral disk has been shown to alter mechanical properties of the disk in compression, torsion, and bending. The effect of needle puncture in FSUs, where intact spinal ligaments and facet joints may mitigate or amplify these changes in the disk, on spinal motion segment stability subject to physiological rotations remains unknown. Rabbit FSUs were tested using a robot testing system whose force/moment and position precision were assessed to demonstrate system capability. Flexibility testing methods were developed by load-to-failure testing in flexion/extension, axial rotation, and lateral bending. Subsequent testing methods were used to examine a 16 G needle disk puncture and No. 11 blade disk stab (positive control for mechanical disruption). Flexibility testing was used to assess segmental range-of-motion (degrees), neutral zone stiffness (N m/degrees) and width (degrees and N m), and elastic zone stiffness before and after annular injury. The robot-based system was capable of performing flexibility testing on FSUs-mean precision of force/moment measurements and robot system movements were <3% and 1%, respectively, of moment-rotation target values. Flexibility moment targets were 0.3 N m for flexion and axial rotation and 0.15 N m for extension and lateral bending. Needle puncture caused significant (P<0.05) changes only in flexion/extension range-of-motion and neutral zone stiffness and width (N m) compared with preintervention. No. 11 blade-stab significantly increased range-of-motion in all motions, decreased neutral zone stiffness and width (N m) in flexion/extension, and increased elastic zone stiffness in flexion and lateral bending. These findings suggest that disk puncture and stab can destabilize FSUs in primary rotations.
NASA Astrophysics Data System (ADS)
Evans, N. W.; Molloy, M.
2014-07-01
The Gaia dataset will require a huge leap forward in terms of modelling of the Milky Way. Two problems are highlighted here. First, models of the Galactic Bar remain primitive as compared to the Galactic Disk and Stellar Halo. Although Schwarzschild and N-body methods are useful, the future belongs to Made-to-Measure (M2M) models which have significant advantages in terms of storage and flexibility. Second, the Milky Way potential will need much better representation than hitherto. Most models still use very simple building blocks (Miyamoto-Nagai disks or Hernquist bulges) and these will not be fit for purpose in the Gaia Era. Expansions in terms of basis functions offer the possibility of incorporating cosmological information as priors, as well as mych greater adaptability.
"Easy-on, Easy-off" Blanket Fastener
NASA Technical Reports Server (NTRS)
Kolecki, Ronald E.; Clatterbuck, Carroll H.
1992-01-01
Fasteners hold flexible blanket on set of posts on supporting structure. Disk of silicone rubber cast on disk of Mylar, fastened to blanket and press-fit over post to nest securely in groove. No tools needed for installation or removal.
A high-speed, large-capacity, 'jukebox' optical disk system
NASA Technical Reports Server (NTRS)
Ammon, G. J.; Calabria, J. A.; Thomas, D. T.
1985-01-01
Two optical disk 'jukebox' mass storage systems which provide access to any data in a store of 10 to the 13th bits (1250G bytes) within six seconds have been developed. The optical disk jukebox system is divided into two units, including a hardware/software controller and a disk drive. The controller provides flexibility and adaptability, through a ROM-based microcode-driven data processor and a ROM-based software-driven control processor. The cartridge storage module contains 125 optical disks housed in protective cartridges. Attention is given to a conceptual view of the disk drive unit, the NASA optical disk system, the NASA database management system configuration, the NASA optical disk system interface, and an open systems interconnect reference model.
Structural response of a rotating bladed disk to rotor whirl
NASA Technical Reports Server (NTRS)
Crawley, E. F.
1985-01-01
A set of high speed rotating whirl experiments were performed in the vacuum of the MIT Blowdown Compressor Facility on the MIT Aeroelastic Rotor, which is structurally typical of a modern high bypass ratio turbofan stage. These tests identified the natural frequencies of whirl of the rotor system by forcing its response using an electromagnetic shaker whirl excitation system. The excitation was slowly swept in frequency at constant amplitude for several constant rotor speeds in both a forward and backward whirl direction. The natural frequencies of whirl determined by these experiments were compared to those predicted by an analytical 6 DOF model of a flexible blade-rigid disk-flexible shaft rotor. The model is also presented in terms of nondimensional parameters in order to assess the importance of the interation between the bladed disk dynamics and the shaft-disk dynamics. The correlation between the experimental and predicted natural frequencies is reasonable, given the uncertainty involved in determining the stiffness parameters of the system.
Disk/Shaft Vibration Induced by Bearing Clearance Effects: Analysis and Experiment
NASA Technical Reports Server (NTRS)
Flowers, George T.; Wu, Fangsheng
1996-01-01
This study presents an investigation of the dynamics of a rotor system with bearing clearance. Of particular interest is the influence of such effects on coupled disk/shaft vibration. Experimental results for a rotor system with a flexible disk are presented and compared to predictions from a simulation model. Some insights and conclusions are obtained with regard to the conditions under which such vibration may be significant.
NASA Astrophysics Data System (ADS)
Hunter, Craig R.; Jones, Brynmor E.; Schlosser, Peter; Sørensen, Simon Toft; Strain, Michael J.; McKnight, Loyd J.
2018-02-01
This paper will present developments in narrow-linewidth semiconductor-disk-laser systems using novel frequencystabilisation schemes for reduced sensitivity to mechanical vibrations, a critical requirement for mobile applications. Narrow-linewidth single-frequency lasers are required for a range of applications including metrology and highresolution spectroscopy. Stabilisation of the laser was achieved using a monolithic fibre-optic ring resonator with free spectral range of 181 MHz and finesse of 52 to act as passive reference cavity for the laser. Such a cavity can operate over a broad wavelength range and is immune to a wide band of vibrational frequency noise due to its monolithic implementation. The frequency noise of the locked system has been measured and compared to typical Fabry-Perotlocked lasers using vibration equipment to simulate harsh environments, and analysed here. Locked linewidths of < 40 kHz have been achieved. These developments offer a portable, narrow-linewidth laser system for harsh environments that can be flexibly designed for a range of applications.
Generic composite flywheel designs
NASA Technical Reports Server (NTRS)
Steele, R. S.
1984-01-01
Fiber reinforced composites belong to a new class of materials and allow great flexibility in flywheel design. The most efficient flywheel may no longer have the classic Stodola taper and indeed, may not even be round. Some of the flywheel designs that have been developed in the past are discussed. Although choice of material, mounts and service requirements often dictate the final design choice for a particular application, the composite flywheels in this paper are classified within a geometric framework, a simple stress analysis of a circular disk is carried out.
Pepper, W.B.
1984-05-09
A rotating parachute for decelerating objects travelling through atmosphere at subsonic or supersonic deployment speeds includes a circular canopy having a plurality of circumferentially arranged flexible panels projecting radially from a solid central disk. A slot extends radially between adjacent panels to the outer periphery of the canopy. Upon deployment, the solid disk diverts air radially to rapidly inflate the panels into a position of maximum diameter. Air impinging on the panels adjacent the panel slots rotates the parachute during its descent. Centrifugal force flattens the canopy into a constant maximum diameter during terminal descent for maximum drag and deceleration.
NASA Astrophysics Data System (ADS)
Jones, Charles R.
Although a number of studies have been performed regarding the use of interactive multimedia disks in education, none were found which investigated their effect on either retention or recruitment for universities. The purpose of this case study was to gather information regarding student and teacher perceptions on the use of interactive multimedia disks and their effect on retention and recruitment. The primary source of data for this case study was student and teacher interviews. A purposive sample of students taking courses using the interactive multimedia disks in course at the Oregon Institute of Technology and at two Oregon high schools was chosen for the case study. Major findings of the case study were as follows: (1) Students interviewed in this case study perceived the interactive multimedia disk-based instructional method to be equally as effective as the lecture method. (2) Time flexibility in class scheduling was slightly more beneficial to female students than male students and the lack of instructor-led classroom interaction was more of a problem for female students than male students. (3) There was no difference in the perceptions of the college students and the high school students regarding the benefits and drawbacks of the interactive multimedia disk-based classes. (4) The flexible class scheduling made possible through the use of interactive multimedia disks influences some Oregon Institute of Technology students to stay and complete their degree programs. (5) There is some potential for interactive multimedia disk-based courses to be a recruiting tool. However, there is no evidence that it has been a successful recruiting tool for the Oregon Institute of Technology yet.
High power disk lasers: advances and applications
NASA Astrophysics Data System (ADS)
Havrilla, David; Holzer, Marco
2011-02-01
Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.
In-plane inertial coupling in tuned and severely mistuned bladed disks
NASA Technical Reports Server (NTRS)
Crawley, E. F.
1982-01-01
A model has been developed and verified for blade-disk-shaft coupling in rotors due to the in-plane rigid body modes of the disk. An analytic model has been developed which couples the in-plane rigid body modes of the disk on an elastic shaft with the blade bending modes. Bench resonance test were carried out on the M.I.T. Compressor Rotor, typical of research rotors with flexible blades and a thick rigid disk. When the rotor was carefully tuned, the structural coupling of the blades by the disks was confined to zero and one nodal diameter modes, whose modal frequencies were greater than the blade cantilever frequency. In the case of the tuned rotor, and in two cases where severe mistuning was intentionally introduced, agreement between the predicted and observed natural frequencies is excellent. The analytic model was then extended to include the effects of constant angular rotation of the disk.
Microstrip-antenna design for hyperthermia treatment of superficial tumors.
Montecchia, F
1992-06-01
Microstrip antennas have many different advantages over other RF/MW radiative applicators employed for superficial hyperthermia treatment. This is mainly due to their compact and body-conformable structure as well as to printed circuit board techniques, both of which allow a wide design flexibility for superficial tumor heating. Among the wide variety of radiator configurations, three microstrip antennas of increasing complexity with electromagnetic and heating characteristics potentially suitable as applicators for superficial hyperthermia have been designed, developed, and tested in different radiative conditions: a microstrip disk, a microstrip annular-slot, and a microstrip spiral. Electromagnetic design criteria are presented together with the determinations of the applicator return loss versus frequency and thermograms of the near-field heating pattern in muscle-like phantom. The results are in good agreement with theory and indicate that: i) the operating frequency is either single or multiple according to the applicator-mode, "resonant" or "traveling-wave," and can be chosen in the useful frequency range for hyperthermia (200-1000 MHz) according to the tumor cross-section and depth; ii) the heating pattern flexibility increases going from the simple geometry disk to the annular-slot and spiral applicators; iii) a distilled-water bolus is required; iv) the annular-slot applicator exhibits the highest efficiency, while the spiral applicator provides the best performance.
Radiative Transfer Modeling in Proto-planetary Disks
NASA Astrophysics Data System (ADS)
Kasper, David; Jang-Condell, Hannah; Kloster, Dylan
2016-01-01
Young Stellar Objects (YSOs) are rich astronomical research environments. Planets form in circumstellar disks of gas and dust around YSOs. With ever increasing capabilities of the observational instruments designed to look at these proto-planetary disks, most notably GPI, SPHERE, and ALMA, more accurate interfaces must be made to connect modeling of the disks with observation. PaRTY (Parallel Radiative Transfer in YSOs) is a code developed previously to model the observable density and temperature structure of such a disk by self-consistently calculating the structure of the disk based on radiative transfer physics. We present upgrades we are implementing to the PaRTY code to improve its accuracy and flexibility. These upgrades include: creating a two-sided disk model, implementing a spherical coordinate system, and implementing wavelength-dependent opacities. These upgrades will address problems in the PaRTY code of infinite optical thickness, calculation under/over-resolution, and wavelength-independent photon penetration depths, respectively. The upgraded code will be used to better model disk perturbations resulting from planet formation.
High-power disk lasers: advances and applications
NASA Astrophysics Data System (ADS)
Havrilla, David; Ryba, Tracey; Holzer, Marco
2012-03-01
Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With about 2,000 high power disk lasers installations, and a demand upwards of 1,000 lasers per year, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain recent advances in disk laser technology and process relevant features of the laser, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.
NASA Technical Reports Server (NTRS)
Foughner, J. T., Jr.; Alexander, W. C.
1974-01-01
Transonic wind-tunnel studies were conducted with modified cross, hemisflo, and disk-gap-band parachute models in the wake of a cone-cylinder shape forebody. The basic cross design was modified with the addition of a circumferential constraining band at the lower edge of the canopy panels. The tests covered a Mach number range of 0.3 to 1.2 and a dynamic pressure range from 479 Newtons per square meter to 5746 Newtons per square meter. The parachute models were flexible textile-type structures and were tethered to a rigid forebody with a single flexible riser. Different size models of the modified cross and disk-gap-band canopies were tested to evaluate scale effects. Model reference diameters were 0.30, 0.61, and 1.07 meters (1.0, 2.0, and 3.5 ft) for the modified cross; and nominal diameters of 0.25 and 0.52 meter (0.83 and 1.7 ft) for the disk-gap-band; and 0.55 meter (1.8 ft) for the hemisflo. Reefing information is presented for the 0.61-meter-diameter cross and the 0.52-meter-diameter disk-gap-band. Results are presented in the form of the variation of steady-state average drag coefficient with Mach number. General stability characteristics of each parachute are discussed. Included are comments on canopy coning, spinning, and fluttering motions.
Active versus Passive Hard Disks against a Membrane: Mechanical Pressure and Instability.
Junot, G; Briand, G; Ledesma-Alonso, R; Dauchot, O
2017-07-14
We experimentally study the mechanical pressure exerted by a set of respectively passive isotropic and self-propelled polar disks onto two different flexible unidimensional membranes. In the case of the isotropic disks, the mechanical pressure, inferred from the shape of the membrane, is identical for both membranes and follows the equilibrium equation of state for hard disks. On the contrary, for the self-propelled disks, the mechanical pressure strongly depends on the membrane in use and thus is not a state variable. When self-propelled disks are present on both sides of the membrane, we observe an instability of the membrane akin to the one predicted theoretically for active Brownian particles against a soft wall. In that case, the integrated mechanical pressure difference across the membrane cannot be computed from the sole knowledge of the packing fractions on both sides, further evidence of the absence of an equation of state.
Russian-US collaboration on implementation of the active well coincidence counter (AWCC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mozhajev, V.; Pshakin, G.; Stewart, J.
The feasibility of using a standard AWCC at the Obninsk IPPE has been demonstrated through active measurements of single UO{sub 2} (36% enriched) disks and through passive measurements of plutonium metal disks used for simulating reactor cores. The role of the measurements is to verify passport values assigned to the disks by the facility, and thereby facilitate the mass accountability procedures developed for the very large inventory of fuel disks at the facility. The AWCC is a very flexible instrument for verification measurements of the large variety of nuclear material items at the Obninsk IPPE and other Russian facilities. Futuremore » work at the IPPE will include calibration and verification measurements for other materials, both in individual disks and in multi-disk storage tubes; it will also include training in the use of the AWCC.« less
2013-04-01
Identification (RFID), Large Area Flexible Displays, Electronic Paper, Bio - Sensors , Large Area Conformal and Flexible Antennas, Smart and Interactive Textiles...Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator ...Ubiquitous Sensor Networks (USN), Vehicle Clickers Readers, Real Time Locating Systems, Lighting, Photovoltaics etc. FA9550-11-C-0014 STTR Phase II
Finite Element Analysis of Flexural Vibrations in Hard Disk Drive Spindle Systems
NASA Astrophysics Data System (ADS)
LIM, SEUNGCHUL
2000-06-01
This paper is concerned with the flexural vibration analysis of the hard disk drive (HDD) spindle system by means of the finite element method. In contrast to previous research, every system component is here analytically modelled taking into account its structural flexibility and also the centrifugal effect particularly on the disk. To prove the effectiveness and accuracy of the formulated models, commercial HDD systems with two and three identical disks are selected as examples. Then their major natural modes are computed with only a small number of element meshes as the shaft rotational speed is varied, and subsequently compared with the existing numerical results obtained using other methods and newly acquired experimental ones. Based on such a series of studies, the proposed method can be concluded as a very promising tool for the design of HDDs and various other high-performance computer disk drives such as floppy disk drives, CD ROM drives, and their variations having spindle mechanisms similar to those of HDDs.
NASA Astrophysics Data System (ADS)
Jafari, S.; Hojjati, M. H.
2011-12-01
Rotating disks work mostly at high angular velocity and this results a large centrifugal force and consequently induce large stresses and deformations. Minimizing weight of such disks yields to benefits such as low dead weights and lower costs. This paper aims at finding an optimal disk thickness profile for minimum weight design using the simulated annealing (SA) and particle swarm optimization (PSO) as two modern optimization techniques. In using semi-analytical the radial domain of the disk is divided into some virtual sub-domains as rings where the weight of each rings must be minimized. Inequality constrain equation used in optimization is to make sure that maximum von Mises stress is always less than yielding strength of the material of the disk and rotating disk does not fail. The results show that the minimum weight obtained for all two methods is almost identical. The PSO method gives a profile with slightly less weight (6.9% less than SA) while the implementation of both PSO and SA methods are easy and provide more flexibility compared with classical methods.
Tutorial: Performance and reliability in redundant disk arrays
NASA Technical Reports Server (NTRS)
Gibson, Garth A.
1993-01-01
A disk array is a collection of physically small magnetic disks that is packaged as a single unit but operates in parallel. Disk arrays capitalize on the availability of small-diameter disks from a price-competitive market to provide the cost, volume, and capacity of current disk systems but many times their performance. Unfortunately, relative to current disk systems, the larger number of components in disk arrays leads to higher rates of failure. To tolerate failures, redundant disk arrays devote a fraction of their capacity to an encoding of their information. This redundant information enables the contents of a failed disk to be recovered from the contents of non-failed disks. The simplest and least expensive encoding for this redundancy, known as N+1 parity is highlighted. In addition to compensating for the higher failure rates of disk arrays, redundancy allows highly reliable secondary storage systems to be built much more cost-effectively than is now achieved in conventional duplicated disks. Disk arrays that combine redundancy with the parallelism of many small-diameter disks are often called Redundant Arrays of Inexpensive Disks (RAID). This combination promises improvements to both the performance and the reliability of secondary storage. For example, IBM's premier disk product, the IBM 3390, is compared to a redundant disk array constructed of 84 IBM 0661 3 1/2-inch disks. The redundant disk array has comparable or superior values for each of the metrics given and appears likely to cost less. In the first section of this tutorial, I explain how disk arrays exploit the emergence of high performance, small magnetic disks to provide cost-effective disk parallelism that combats the access and transfer gap problems. The flexibility of disk-array configurations benefits manufacturer and consumer alike. In contrast, I describe in this tutorial's second half how parallelism, achieved through increasing numbers of components, causes overall failure rates to rise. Redundant disk arrays overcome this threat to data reliability by ensuring that data remains available during and after component failures.
Axisymmetric bluff-body flow: A vortex solver for thin shells
NASA Astrophysics Data System (ADS)
Strickland, J. H.
1992-05-01
A method which is capable of solving the axisymmetric flow field over bluff bodies consisting of thin shells such as disks, partial spheres, rings, and other such shapes is presented in this report. The body may be made up of several shells whose edges are separated by gaps. The body may be moved axially according to arbitrary velocity time histories. In addition, the surfaces may possess axial and radial degrees of flexibility such that points on the surfaces may be allowed to move relative to each other according to some specified function of time. The surfaces may be either porous or impervious. The present solution technique is based on the axisymmetric vorticity transport equation. Physically, this technique simulates the generation of vorticity at body surfaces in the form of discrete ring vortices which are subsequently diffused and convected into the boundary layers and wake of the body. Relatively large numbers of vortices (1000 or more) are required to obtain good simulations. Since the direct calculation of perturbations from large numbers of ring vortices is computationally intensive, a fast multipole method was used to greatly reduce computer processing time. Several example calculations are presented for disks, disks with holes, hemispheres, and vented hemispheres. These results are compared with steady and unsteady experimental data.
Recent development of disk lasers at TRUMPF
NASA Astrophysics Data System (ADS)
Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Ackermann, Matthias; Bauer, Dominik; Scharun, Michael; Killi, Alexander
2016-03-01
The disk laser is one of the most important laser concepts for today's industrial laser market. Offering high brilliance at low cost, high optical efficiency and great application flexibility the disk laser paved the way for many industrial laser applications. Over the past years power and brightness increased and the disk laser turned out to be a very versatile laser source, not only for welding but also for cutting. Both, the quality and speed of cutting are superior to CO2-based lasers for a vast majority of metals, and, most important, in a broad thickness range. In addition, due to the insensitivity against back reflections the disk laser is well suited for cutting highly reflective metal such as brass or copper. These advantages facilitate versatile cutting machines and explain the high and growing demand for disk lasers for applications besides welding applications that can be observed today. From a today's perspective the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over fiber lasers or direct diode lasers. This paper will give insight in the latest progress in kilowatt class cw disk laser technology at TRUMPF and will discuss recent power scaling results as well.
Steady-state unbalance response of a three-disk flexible rotor on flexible, damped supports
NASA Technical Reports Server (NTRS)
Cunningham, R. E.
1977-01-01
Experimental data are presented for the unbalance response of a flexible, ball bearing supported rotor to speeds above the third lateral bending critical. Values of squeeze film damping coefficients obtained from measured data are compared to theoretical values obtained from short bearing approximation over a frequency range from 5000 to 31 000 cycles/min. Experimental response for an undamped rotor is compared to that of one having oil squeeze film dampers at the bearings. Unbalance applied varied from 0.62 to 15.1 gm-cm.
Ground-based testing of the dynamics of flexible space structures using band mechanisms
NASA Technical Reports Server (NTRS)
Yang, L. F.; Chew, Meng-Sang
1991-01-01
A suspension system based on a band mechanism is studied to provide the free-free conditions for ground based validation testing of flexible space structures. The band mechanism consists of a noncircular disk with a convex profile, preloaded by torsional springs at its center of rotation so that static equilibrium of the test structure is maintained at any vertical location; the gravitational force will be directly counteracted during dynamic testing of the space structure. This noncircular disk within the suspension system can be configured to remain unchanged for test articles with the different weights as long as the torsional spring is replaced to maintain the originally designed frequency ratio of W/k sub s. Simulations of test articles which are modeled as lumped parameter as well as continuous parameter systems, are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apyan, A.; Badillo, J.; Cruz, J. Diaz
The CMS experiment at the LHC relies on 7 Tier-1 centres of the WLCG to perform the majority of its bulk processing activity, and to archive its data. During the first run of the LHC, these two functions were tightly coupled as each Tier-1 was constrained to process only the data archived on its hierarchical storage. This lack of flexibility in the assignment of processing workflows occasionally resulted in uneven resource utilisation and in an increased latency in the delivery of the results to the physics community.The long shutdown of the LHC in 2013-2014 was an opportunity to revisit thismore » mode of operations, disentangling the processing and archive functionalities of the Tier-1 centres. The storage services at the Tier-1s were redeployed breaking the traditional hierarchical model: each site now provides a large disk storage to host input and output data for processing, and an independent tape storage used exclusively for archiving. Movement of data between the tape and disk endpoints is not automated, but triggered externally through the WLCG transfer management systems.With this new setup, CMS operations actively controls at any time which data is available on disk for processing and which data should be sent to archive. Thanks to the high-bandwidth connectivity guaranteed by the LHCOPN, input data can be freely transferred between disk endpoints as needed to take advantage of free CPU, turning the Tier-1s into a large pool of shared resources. The output data can be validated before archiving them permanently, and temporary data formats can be produced without wasting valuable tape resources. Lastly, the data hosted on disk at Tier-1s can now be made available also for user analysis since there is no risk any longer of triggering chaotic staging from tape.In this contribution, we describe the technical solutions adopted for the new disk and tape endpoints at the sites, and we report on the commissioning and scale testing of the service. We detail the procedures implemented by CMS computing operations to actively manage data on disk at Tier-1 sites, and we give examples of the benefits brought to CMS workflows by the additional flexibility of the new system.« less
Point-of-Care Test Equipment for Flexible Laboratory Automation.
You, Won Suk; Park, Jae Jun; Jin, Sung Moon; Ryew, Sung Moo; Choi, Hyouk Ryeol
2014-08-01
Blood tests are some of the core clinical laboratory tests for diagnosing patients. In hospitals, an automated process called total laboratory automation, which relies on a set of sophisticated equipment, is normally adopted for blood tests. Noting that the total laboratory automation system typically requires a large footprint and significant amount of power, slim and easy-to-move blood test equipment is necessary for specific demands such as emergency departments or small-size local clinics. In this article, we present a point-of-care test system that can provide flexibility and portability with low cost. First, the system components, including a reagent tray, dispensing module, microfluidic disk rotor, and photometry scanner, and their functions are explained. Then, a scheduler algorithm to provide a point-of-care test platform with an efficient test schedule to reduce test time is introduced. Finally, the results of diagnostic tests are presented to evaluate the system. © 2014 Society for Laboratory Automation and Screening.
Free Factories: Unified Infrastructure for Data Intensive Web Services
Zaranek, Alexander Wait; Clegg, Tom; Vandewege, Ward; Church, George M.
2010-01-01
We introduce the Free Factory, a platform for deploying data-intensive web services using small clusters of commodity hardware and free software. Independently administered virtual machines called Freegols give application developers the flexibility of a general purpose web server, along with access to distributed batch processing, cache and storage services. Each cluster exploits idle RAM and disk space for cache, and reserves disks in each node for high bandwidth storage. The batch processing service uses a variation of the MapReduce model. Virtualization allows every CPU in the cluster to participate in batch jobs. Each 48-node cluster can achieve 4-8 gigabytes per second of disk I/O. Our intent is to use multiple clusters to process hundreds of simultaneous requests on multi-hundred terabyte data sets. Currently, our applications achieve 1 gigabyte per second of I/O with 123 disks by scheduling batch jobs on two clusters, one of which is located in a remote data center. PMID:20514356
Pooling the resources of the CMS Tier-1 sites
Apyan, A.; Badillo, J.; Cruz, J. Diaz; ...
2015-12-23
The CMS experiment at the LHC relies on 7 Tier-1 centres of the WLCG to perform the majority of its bulk processing activity, and to archive its data. During the first run of the LHC, these two functions were tightly coupled as each Tier-1 was constrained to process only the data archived on its hierarchical storage. This lack of flexibility in the assignment of processing workflows occasionally resulted in uneven resource utilisation and in an increased latency in the delivery of the results to the physics community.The long shutdown of the LHC in 2013-2014 was an opportunity to revisit thismore » mode of operations, disentangling the processing and archive functionalities of the Tier-1 centres. The storage services at the Tier-1s were redeployed breaking the traditional hierarchical model: each site now provides a large disk storage to host input and output data for processing, and an independent tape storage used exclusively for archiving. Movement of data between the tape and disk endpoints is not automated, but triggered externally through the WLCG transfer management systems.With this new setup, CMS operations actively controls at any time which data is available on disk for processing and which data should be sent to archive. Thanks to the high-bandwidth connectivity guaranteed by the LHCOPN, input data can be freely transferred between disk endpoints as needed to take advantage of free CPU, turning the Tier-1s into a large pool of shared resources. The output data can be validated before archiving them permanently, and temporary data formats can be produced without wasting valuable tape resources. Lastly, the data hosted on disk at Tier-1s can now be made available also for user analysis since there is no risk any longer of triggering chaotic staging from tape.In this contribution, we describe the technical solutions adopted for the new disk and tape endpoints at the sites, and we report on the commissioning and scale testing of the service. We detail the procedures implemented by CMS computing operations to actively manage data on disk at Tier-1 sites, and we give examples of the benefits brought to CMS workflows by the additional flexibility of the new system.« less
Pooling the resources of the CMS Tier-1 sites
NASA Astrophysics Data System (ADS)
Apyan, A.; Badillo, J.; Diaz Cruz, J.; Gadrat, S.; Gutsche, O.; Holzman, B.; Lahiff, A.; Magini, N.; Mason, D.; Perez, A.; Stober, F.; Taneja, S.; Taze, M.; Wissing, C.
2015-12-01
The CMS experiment at the LHC relies on 7 Tier-1 centres of the WLCG to perform the majority of its bulk processing activity, and to archive its data. During the first run of the LHC, these two functions were tightly coupled as each Tier-1 was constrained to process only the data archived on its hierarchical storage. This lack of flexibility in the assignment of processing workflows occasionally resulted in uneven resource utilisation and in an increased latency in the delivery of the results to the physics community. The long shutdown of the LHC in 2013-2014 was an opportunity to revisit this mode of operations, disentangling the processing and archive functionalities of the Tier-1 centres. The storage services at the Tier-1s were redeployed breaking the traditional hierarchical model: each site now provides a large disk storage to host input and output data for processing, and an independent tape storage used exclusively for archiving. Movement of data between the tape and disk endpoints is not automated, but triggered externally through the WLCG transfer management systems. With this new setup, CMS operations actively controls at any time which data is available on disk for processing and which data should be sent to archive. Thanks to the high-bandwidth connectivity guaranteed by the LHCOPN, input data can be freely transferred between disk endpoints as needed to take advantage of free CPU, turning the Tier-1s into a large pool of shared resources. The output data can be validated before archiving them permanently, and temporary data formats can be produced without wasting valuable tape resources. Finally, the data hosted on disk at Tier-1s can now be made available also for user analysis since there is no risk any longer of triggering chaotic staging from tape. In this contribution, we describe the technical solutions adopted for the new disk and tape endpoints at the sites, and we report on the commissioning and scale testing of the service. We detail the procedures implemented by CMS computing operations to actively manage data on disk at Tier-1 sites, and we give examples of the benefits brought to CMS workflows by the additional flexibility of the new system.
Deformation of a flexible disk bonded to an elastic half space-application to the lung.
Lai-Fook, S J; Hajji, M A; Wilson, T A
1980-08-01
An analysis is presented of the deformation of a homogeneous, isotropic, elastic half space subjected to a constant radial strain in a circular area on the boundary. Explicit analytic expressions for the normal and radial displacements and the shear stress on the boundary are used to interpret experiments performed on inflated pig lungs. The boundary strain was induced by inflating or deflating the lung after bonding a flexible disk to the lung surface. The prediction that the surface bulges outward for positive boundary strain and inward for negative strain was observed in the experiments. Poisson's ratio at two transpulmonary pressures was measured, by use of the normal displacement equation evaluated at the surface. A direct estimate of Poisson's ratio was possible because the normal displacement of the surface depended uniquely on the compressibility of the material. Qualitative comparisons between theory and experiment support the use of continuum analyses in evaluating the behavior of the lung parenchyma when subjected to small local distortions.
NASA Astrophysics Data System (ADS)
Kamomae, Takeshi; Monzen, Hajime; Kawamura, Mariko; Okudaira, Kuniyasu; Nakaya, Takayoshi; Mukoyama, Takashi; Miyake, Yoshikazu; Ishihara, Yoshitomo; Itoh, Yoshiyuki; Naganawa, Shinji
2018-01-01
Intraoperative electron radiotherapy (IOERT), which is an accelerated partial breast irradiation method, has been used for early-stage breast cancer treatment. In IOERT, a protective disk is inserted behind the target volume to minimize the dose received by normal tissues. However, to use such a disk, the surgical incision must be larger than the field size because the disk is manufactured from stiff and unyielding materials. In this study, the applicability of newly developed tungsten-based functional paper (TFP) was assessed as an alternative to the existing protective disk. The radiation-shielding performance of the TFP was verified through experimental measurements and Monte Carlo simulations. Percentage depth dose curves and lateral dose profiles with and without TFPs were measured and simulated on a dedicated IOERT accelerator. The number of piled-up TFPs was changed from 1 to 40. In the experimental measurements, the relative doses at the exit plane of the TFPs for 9 MeV were 42.7%, 9.2%, 0.2%, and 0.1% with 10, 20, 30, and 40 TFPs, respectively, whereas those for 12 MeV were 63.6%, 27.1%, 8.6%, and 0.2% with 10, 20, 30, and 40 TFPs, respectively. Slight dose enhancements caused by backscatter radiation from the TFPs were observed at the entrance plane of the TFPs at both beam energies. The results of the Monte Carlo simulation indicated the same tendency as the experimental measurements. Based on the experimental and simulated results, the radiation-shielding performances of 30 TFPs for 9 MeV and 40 TFPs for 12 MeV were confirmed to be acceptable and close to those of the existing protective disk. The findings of this study suggest the feasibility of using TFPs as flexible chest wall protectors in IOERT for breast cancer treatment.
Stephens, Susie M; Chen, Jake Y; Davidson, Marcel G; Thomas, Shiby; Trute, Barry M
2005-01-01
As database management systems expand their array of analytical functionality, they become powerful research engines for biomedical data analysis and drug discovery. Databases can hold most of the data types commonly required in life sciences and consequently can be used as flexible platforms for the implementation of knowledgebases. Performing data analysis in the database simplifies data management by minimizing the movement of data from disks to memory, allowing pre-filtering and post-processing of datasets, and enabling data to remain in a secure, highly available environment. This article describes the Oracle Database 10g implementation of BLAST and Regular Expression Searches and provides case studies of their usage in bioinformatics. http://www.oracle.com/technology/software/index.html.
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.
1975-01-01
Experimental tests were conducted to demonstrate the ability of the influence coefficient method to achieve precise balance of flexible rotors of virtually any design for operation through virtually any speed range. Various practical aspects of flexible-rotor balancing were investigated. Tests were made on a laboratory quality machine having a 122 cm (48 in.) long rotor weighing 50 kg (110 lb) and covering a speed range up to 18000 rpm. The balancing method was in every instance effective, practical, and economical and permitted safe rotor operation over the full speed range covering four rotor bending critical speeds. Improved correction weight removal methods for rotor balancing were investigated. Material removal from a rotating disk was demonstrated through application of a commercially available laser.
Welch, J P; Sims, N; Ford-Carlton, P; Moon, J B; West, K; Honore, G; Colquitt, N
1991-01-01
The article describes a study conducted on general surgical and thoracic surgical floors of a 1000-bed hospital to assess the impact of a new network for portable patient care devices. This network was developed to address the needs of hospital patients who need constant, multi-parameter, vital signs surveillance, but do not require intensive nursing care. Bedside wall jacks were linked to UNIX-based workstations using standard digital network hardware, creating a flexible system (for general care floors of the hospital) that allowed the number of monitored locations to increase and decrease as patient census and acuity levels varied. It also allowed the general care floors to provide immediate, centralized vital signs monitoring for patients who unexpectedly became unstable, and permitted portable monitors to travel with patients as they were transferred between hospital departments. A disk-based log within the workstation automatically collected performance data, including patient demographics, monitor alarms, and network status for analysis. The log has allowed the developers to evaluate the use and performance of the system.
Product Operations Status Summary Metrics
NASA Technical Reports Server (NTRS)
Takagi, Atsuya; Toole, Nicholas
2010-01-01
The Product Operations Status Summary Metrics (POSSUM) computer program provides a readable view into the state of the Phoenix Operations Product Generation Subsystem (OPGS) data pipeline. POSSUM provides a user interface that can search the data store, collect product metadata, and display the results in an easily-readable layout. It was designed with flexibility in mind for support in future missions. Flexibility over various data store hierarchies is provided through the disk-searching facilities of Marsviewer. This is a proven program that has been in operational use since the first day of the Phoenix mission.
Tomographie par coherence optique pour le guidage de chirurgies minimalement invasives du rachis
NASA Astrophysics Data System (ADS)
Beaudette, Kathy
Adolescent idiopathic scoliosis is a complex 3D deformity of the spine which requires surgical intervention in severe cases of the condition. The existing corrective procedure of scoliosis is very invasive; it involves a long incision and a large instrumentation, in addition to the fusion of a section of the spine. To improve postoperative conditions and to preserve patients' spinal flexibility, novel fusionless surgical approaches involving growth modulation are under investigation. With this objective in mind, a multidisciplinary team from École Polytechnique of Montreal and Sainte-Justine University Hospital Research Center is developing a surgical technique based on the insertion of micro-staples between vertebral growth plates and corresponding intervertebral disks. Each micro-staple passively modulates the vertebral growth on the convex side of the scoliotic curvature. This modulation modifies vertebral geometry which, for scoliotic patients, presents a wedging deformity. The modulation induced by these devices could lead to the correction of the curvature of the spine. This innovative procedure would preserve the flexibility of the spine as well as the health of intervertebral disks, in addition to being compatible with minimally invasive approaches. However, to be efficient, the micro-staples must be placed at the junction between the growth plate and the disk with a sub-millimeter precision. An intraoperative guiding system is therefore required to ensure the success of the intervention. Optical coherence tomography (OCT) is a promising candidate for this application. OCT is based on low-coherence interferometry and provides cross-sectional images with a resolution about 10 μm for a depth of 2 to 3 mm. This technique allows for the real-time acquisition of images and is compatible with endoscopy, thereby showing a potential for the intraoperative guidance of minimally invasive surgeries (MIS) of the spine. The main objective of this master's project is therefore to evaluate the possibility of using OCT to localize as well as identify spinal structures (such as growth plates, osseous tissue, intervertebral disks and connective tissue) and to guide the insertion of micro-staples. To attain this objective, an OCT handheld probe was designed and developed according to the surgical constraints of MIS performed by thoracoscopy (through the thorax). This probe has an external diameter of 17 mm and is 30 cm long. Coupled with a fibered interferometer, the axial and lateral resolutions of the probe are of 16 and 27 μm respectively. The OCT probe was used in vivo during an open surgery on a porcine model. Different tissues within the operative window (lung, muscles, osseous tissues and intervertebral disk) were imaged during the procedure. These preliminary in vivo tests demonstrated that the probe is capable of identifying different types of tissue with a good sensitivity and an adequate penetration depth. These results also showed that a visual inspection of the in vivo OCT images alone is not sufficient to localize the growth plates on the vertebrae. An ex vivo study using porcine vertebrae was therefore performed to identify quantitative markers in order to facilitate the interpretation of in vivo OCT images. OCT images were initially compared to corresponding histological sections. The ensuing results showed that the connective tissue layer presents a band pattern due to the birefringence properties of the collagen-rich tissue. The intervertebral disk was also shown to have a characteristic lamellar structure on OCT images. Lastly, within growth plate and osseous tissue locations, the OCT signal decay is monotonic, but with different attenuation coefficients (different slopes). Relative attenuation coefficients were therefore measured for each tissue (growth plate, osseous tissue, connective tissue and intervertebral disk) on several specimens and were compared. These results showed that growth plates present an average relative attenuation coefficient statistically different from the other tissues. An automatic growth plate segmentation algorithm was then developed and tested. The algorithm was applied to images from an ex vivo specimen of a porcine vertebra and successfully identified most of the growth plate (> 75%) amidst the osseous tissue of the vertebral body and the intervertebral disk. This master's project shows that OCT presents contrast, resolution and penetration depth that are sufficient for the identification of musculoskeletal structures of the spine. It is thus reasonable to believe that, ultimately, OCT could be used for the intraoperative guiding of the insertion of micro-staples during corrective surgeries of scoliosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, X. L.; Meng, Q. X.; Yuan, C. X.
The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers aremore » particularly desirable for various potential applications including the solar energy absorber.« less
Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials
Seren, Huseyin R.; Zhang, Jingdi; Keiser, George R.; ...
2016-01-26
The development of responsive metamaterials has enabled the realization of compact tunable photonic devices capable of manipulating the amplitude, polarization, wave vector and frequency of light. Integration of semiconductors into the active regions of metallic resonators is a proven approach for creating nonlinear metamaterials through optoelectronic control of the semiconductor carrier density. Metal-free subwavelength resonant semiconductor structures offer an alternative approach to create dynamic metamaterials. We present InAs plasmonic disk arrays as a viable resonant metamaterial at terahertz frequencies. Importantly, InAs plasmonic disks exhibit a strong nonlinear response arising from electric field-induced intervalley scattering, resulting in a reduced carrier mobilitymore » thereby damping the plasmonic response. here, we demonstrate nonlinear perfect absorbers configured as either optical limiters or saturable absorbers, including flexible nonlinear absorbers achieved by transferring the disks to polyimide films. Nonlinear plasmonic metamaterials show potential for use in ultrafast terahertz (THz) optics and for passive protection of sensitive electromagnetic devices.« less
Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seren, Huseyin R.; Zhang, Jingdi; Keiser, George R.
The development of responsive metamaterials has enabled the realization of compact tunable photonic devices capable of manipulating the amplitude, polarization, wave vector and frequency of light. Integration of semiconductors into the active regions of metallic resonators is a proven approach for creating nonlinear metamaterials through optoelectronic control of the semiconductor carrier density. Metal-free subwavelength resonant semiconductor structures offer an alternative approach to create dynamic metamaterials. We present InAs plasmonic disk arrays as a viable resonant metamaterial at terahertz frequencies. Importantly, InAs plasmonic disks exhibit a strong nonlinear response arising from electric field-induced intervalley scattering, resulting in a reduced carrier mobilitymore » thereby damping the plasmonic response. here, we demonstrate nonlinear perfect absorbers configured as either optical limiters or saturable absorbers, including flexible nonlinear absorbers achieved by transferring the disks to polyimide films. Nonlinear plasmonic metamaterials show potential for use in ultrafast terahertz (THz) optics and for passive protection of sensitive electromagnetic devices.« less
Stephens, Susie M.; Chen, Jake Y.; Davidson, Marcel G.; Thomas, Shiby; Trute, Barry M.
2005-01-01
As database management systems expand their array of analytical functionality, they become powerful research engines for biomedical data analysis and drug discovery. Databases can hold most of the data types commonly required in life sciences and consequently can be used as flexible platforms for the implementation of knowledgebases. Performing data analysis in the database simplifies data management by minimizing the movement of data from disks to memory, allowing pre-filtering and post-processing of datasets, and enabling data to remain in a secure, highly available environment. This article describes the Oracle Database 10g implementation of BLAST and Regular Expression Searches and provides case studies of their usage in bioinformatics. http://www.oracle.com/technology/software/index.html PMID:15608287
Software Graphical User Interface For Analysis Of Images
NASA Technical Reports Server (NTRS)
Leonard, Desiree M.; Nolf, Scott R.; Avis, Elizabeth L.; Stacy, Kathryn
1992-01-01
CAMTOOL software provides graphical interface between Sun Microsystems workstation and Eikonix Model 1412 digitizing camera system. Camera scans and digitizes images, halftones, reflectives, transmissives, rigid or flexible flat material, or three-dimensional objects. Users digitize images and select from three destinations: work-station display screen, magnetic-tape drive, or hard disk. Written in C.
A magnetic damper for first mode vibration reduction in multimass flexible rotors
NASA Technical Reports Server (NTRS)
Kasarda, M. E. F.; Allaire, P. E.; Humphris, R. R.; Barrett, L. E.
1989-01-01
Many rotating machines such as compressors, turbines and pumps have long thin shafts with resulting vibration problems, and would benefit from additional damping near the center of the shaft. Magnetic dampers have the potential to be employed in these machines because they can operate in the working fluid environment unlike conventional bearings. An experimental test rig is described which was set up with a long thin shaft and several masses to represent a flexible shaft machine. An active magnetic damper was placed in three locations: near the midspan, near one end disk, and close to the bearing. With typical control parameter settings, the midspan location reduced the first mode vibration 82 percent, the disk location reduced it 75 percent and the bearing location attained a 74 percent reduction. Magnetic damper stiffness and damping values used to obtain these reductions were only a few percent of the bearing stiffness and damping values. A theoretical model of both the rotor and the damper was developed and compared to the measured results. The agreement was good.
Possible Rapid Gas Giant Planet Formation in the Solar Nebula and Other Protoplanetary Disks.
Boss
2000-06-20
Gas giant planets have been detected in orbit around an increasing number of nearby stars. Two theories have been advanced for the formation of such planets: core accretion and disk instability. Core accretion, the generally accepted mechanism, requires several million years or more to form a gas giant planet in a protoplanetary disk like the solar nebula. Disk instability, on the other hand, can form a gas giant protoplanet in a few hundred years. However, disk instability has previously been thought to be important only in relatively massive disks. New three-dimensional, "locally isothermal," hydrodynamical models without velocity damping show that a disk instability can form Jupiter-mass clumps, even in a disk with a mass (0.091 M middle dot in circle within 20 AU) low enough to be in the range inferred for the solar nebula. The clumps form with initially eccentric orbits, and their survival will depend on their ability to contract to higher densities before they can be tidally disrupted at successive periastrons. Because the disk mass in these models is comparable to that apparently required for the core accretion mechanism to operate, the models imply that disk instability could obviate the core accretion mechanism in the solar nebula and elsewhere.
Psyplot: Visualizing rectangular and triangular Climate Model Data with Python
NASA Astrophysics Data System (ADS)
Sommer, Philipp
2016-04-01
The development and use of climate models often requires the visualization of geo-referenced data. Creating visualizations should be fast, attractive, flexible, easily applicable and easily reproducible. There is a wide range of software tools available for visualizing raster data, but they often are inaccessible to many users (e.g. because they are difficult to use in a script or have low flexibility). In order to facilitate easy visualization of geo-referenced data, we developed a new framework called "psyplot," which can aid earth system scientists with their daily work. It is purely written in the programming language Python and primarily built upon the python packages matplotlib, cartopy and xray. The package can visualize data stored on the hard disk (e.g. NetCDF, GeoTIFF, any other file format supported by the xray package), or directly from the memory or Climate Data Operators (CDOs). Furthermore, data can be visualized on a rectangular grid (following or not following the CF Conventions) and on a triangular grid (following the CF or UGRID Conventions). Psyplot visualizes 2D scalar and vector fields, enabling the user to easily manage and format multiple plots at the same time, and to export the plots into all common picture formats and movies covered by the matplotlib package. The package can currently be used in an interactive python session or in python scripts, and will soon be developed for use with a graphical user interface (GUI). Finally, the psyplot framework enables flexible configuration, allows easy integration into other scripts that uses matplotlib, and provides a flexible foundation for further development.
Imaging Transitional Disks with TMT: Lessons Learned from the SEEDS Survey
NASA Technical Reports Server (NTRS)
Grady, Carol A.; Fukagawa, M.; Muto, T.; Hashimoto, J.
2014-01-01
TMT studies of the early phases of giant planet formation will build on studies carried out in this decade using 8-meter class telescopes. One such study is the Strategic Exploration of Exoplanets and Disks with Subaru transitional disk survey. We have found a wealth of indirect signatures of giant planet presence, including spiral arms, pericenter offsets of the outer disk from the star, and changes in disk color at the inner edge of the outer disk in intermediate-mass PMS star disks. T Tauri star transitional disks are less flamboyant, but are also dynamically colder: any spiral arms in these diskswill be more tightly wound. Imaging such features at the distance of the nearest star-forming regions requires higher angular resolution than achieved with HiCIAO+ AO188. Imaging such disks with extreme AO systems requires use of laser guide stars, and are infeasible with the extreme AO systems currently commissioning on 8-meter class telescopes. Similarly, the JWST and AFTAWFIRST coronagraphs being considered have inner working angles 0.2, and will occult the inner 28 atomic units of systems at d140pc, a region where both high-contrast imagery and ALMA data indicate that giant planets are located in transitional disks. However, studies of transitional disks associated with solar-mass stars and their planet complement are feasible with TMT using NFIRAOS.
PHOTOIONIZATION MODELS OF THE INNER GASEOUS DISK OF THE HERBIG BE STAR BD+65 1637
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, P.; Sigut, T. A. A.; Landstreet, J. D., E-mail: ppatel54@uwo.ca
2016-01-20
We attempt to constrain the physical properties of the inner, gaseous disk of the Herbig Be star BD+65 1637 using non-LTE, circumstellar disk codes and observed spectra (3700–10500 Å) from the ESPaDOnS instrument on the Canada–France–Hawaii Telescope. The photoionizing radiation of the central star is assumed to be the sole source of input energy for the disk. We model optical and near-infrared emission lines that are thought to form in this region using standard techniques that have been successful in modeling the spectra of classical Be stars. By comparing synthetic line profiles of hydrogen, helium, iron, and calcium with themore » observed line profiles, we try to constrain the geometry, density structure, and kinematics of the gaseous disk. Reasonable matches have been found for all line profiles individually; however, no disk density model based on a single power law for the equatorial density was able to simultaneously fit all of the observed emission lines. Among the emission lines, the metal lines, especially the Ca ii IR triplet, seem to require higher disk densities than the other lines. Excluding the Ca ii lines, a model in which the equatorial disk density falls as 10{sup −10} (R{sub *}/R){sup 3} g cm{sup −3} seen at an inclination of 45° for a 50 R{sub *} disk provides reasonable matches to the overall line shapes and strengths. The Ca ii lines seem to require a shallower drop-off as 10{sup −10} (R{sub *}/R){sup 2} g cm{sup −3} to match their strength. More complex disk density models are likely required to refine the match to the BD+65 1637 spectrum.« less
Photoionization Models of the Inner Gaseous Disk of the Herbig Be Star BD+65 1637
NASA Astrophysics Data System (ADS)
Patel, P.; Sigut, T. A. A.; Landstreet, J. D.
2016-01-01
We attempt to constrain the physical properties of the inner, gaseous disk of the Herbig Be star BD+65 1637 using non-LTE, circumstellar disk codes and observed spectra (3700-10500 Å) from the ESPaDOnS instrument on the Canada-France-Hawaii Telescope. The photoionizing radiation of the central star is assumed to be the sole source of input energy for the disk. We model optical and near-infrared emission lines that are thought to form in this region using standard techniques that have been successful in modeling the spectra of classical Be stars. By comparing synthetic line profiles of hydrogen, helium, iron, and calcium with the observed line profiles, we try to constrain the geometry, density structure, and kinematics of the gaseous disk. Reasonable matches have been found for all line profiles individually; however, no disk density model based on a single power law for the equatorial density was able to simultaneously fit all of the observed emission lines. Among the emission lines, the metal lines, especially the Ca II IR triplet, seem to require higher disk densities than the other lines. Excluding the Ca II lines, a model in which the equatorial disk density falls as 10-10 (R*/R)3 g cm-3 seen at an inclination of 45° for a 50 R* disk provides reasonable matches to the overall line shapes and strengths. The Ca II lines seem to require a shallower drop-off as 10-10 (R*/R)2 g cm-3 to match their strength. More complex disk density models are likely required to refine the match to the BD+65 1637 spectrum.
Development of Planar Optics for an Optical Tracking Sensor
NASA Astrophysics Data System (ADS)
Kawano, Hiroyuki; Sasagawa, Tomohiro
1998-10-01
An optical tracking sensor for large-capacity flexible disk drive (FDD) is demonstrated. The passive optics is compact and lightweight (5.4 mm length×3.6 mm width×1.2 mm height in size and 18 mg weight). It comprises all passive optical elements necessary for optical tracking, e.g., a focusing lens, a three-beam grating, an aperture and a beam splitter grating. Three beams were focused to a predetermined spot size of 13 µm at designed intervals of 110 µm on a disk surface and the reflected beams were successfully guided to photodiodes. This confirms that the application of the planar optical technique is very useful for realizing a compact and light optical sensor.
Inner Disk Structure and Transport Mechanisms in the Transitional Disk around T Cha
NASA Astrophysics Data System (ADS)
Brown, Alexander
2017-08-01
To better understand how Earth-like planets form around low-mass stars, we propose to study the UV (HST), X-ray (XMM), and optical (LCOGT) variability of the young star T Cha. This variability is caused by obscuration of the star by clumpy material in the rim of its inner disk. Changing sight lines through the disk allow measurement of the temperature and column density of both molecular and atomic gas and the physical properties of the dust grains in the well-mixed inner disk, as well as determining the gas-to-dust ratio. The gas-to-dust ratio affects planetesimal growth and disk stability but is difficult to measure in local regions of disks. Three 5 orbit visits, separated by 3-7 days, are required for use of analysis techniques comprising both differential pair-method comparison of spectra with differing A_v (particularly important for determining the dust extinction curve, A_lambda, where removal of the foreground extinction requires multiple epochs) and detailed spectral fitting of gas absorption features at each epoch. The inner disk of T Cha is particularly interesting, because T Cha has a transitional disk with a large gap at 0.2-15 AU in the dust disk and allows study of the gas and dust structure in the terrestrial planet formation zone during this important rapid phase of protoplanetary disk evolution. Characterizing the high energy (UV/X-ray) radiation field is also essential for in-depth studies of the disk in other spectral regions. Results from these observations will have wide relevance to the modeling and understanding of protoplanetary disk structure and evolution, and the complex gas and dust physics and chemistry in disk surface layers.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-26
... contact information unless you provide it in the body of your comment. If you send an e-mail comment... and other contact information in the body of your comment and with any disk or CD-ROM you submit. If..., Accountable, Flexible, Efficient Transportation Equity Act--A Legacy for Users (SAFETEA-LU) was signed into...
Welch, J. P.; Sims, N.; Ford-Carlton, P.; Moon, J. B.; West, K.; Honore, G.; Colquitt, N.
1991-01-01
The article describes a study conducted on general surgical and thoracic surgical floors of a 1000-bed hospital to assess the impact of a new network for portable patient care devices. This network was developed to address the needs of hospital patients who need constant, multi-parameter, vital signs surveillance, but do not require intensive nursing care. Bedside wall jacks were linked to UNIX-based workstations using standard digital network hardware, creating a flexible system (for general care floors of the hospital) that allowed the number of monitored locations to increase and decrease as patient census and acuity levels varied. It also allowed the general care floors to provide immediate, centralized vital signs monitoring for patients who unexpectedly became unstable, and permitted portable monitors to travel with patients as they were transferred between hospital departments. A disk-based log within the workstation automatically collected performance data, including patient demographics, monitor alarms, and network status for analysis. The log has allowed the developers to evaluate the use and performance of the system. PMID:1807720
Structural control sensors for the CASES GTF
NASA Technical Reports Server (NTRS)
Davis, Hugh W.; Bukley, Angelia P.
1993-01-01
CASES (Controls, Astrophysics and Structures Experiment in Space) is a proposed space experiment to collect x-ray images of the galactic center and solar disk with unprecedented resolution. This requires precision pointing and suppression of vibrations in the long flexible structure that comprises the 32-m x-ray telescope optical bench. Two separate electro-optical sensor systems are provided for the ground test facility (GTF). The Boom Motion Tracker (BMT) measures eigenvector data for post-mission use in system identification. The Tip Displacement Sensor (TDS) measures boom tip position and is used as feedback for the closed-loop control system that stabilizes the boom. Both the BMT and the TDS have met acceptance specifications and were delivered to MSFC in February 1992. This paper describes the sensor concept, the sensor configuration as implemented in the GTF, and the results of characterization and performance testing.
Wen, Junxiang; Xu, Jianwei; Li, Lijun; Yang, Mingjie; Pan, Jie; Chen, Deyu; Jia, Lianshun; Tan, Jun
2017-06-01
In vitro biomechanical study of cervical intervertebral distraction. To investigate the forces required for distraction to different heights in an in vitro C5-C6 anterior cervical distraction model, focusing on the influence of the intervertebral disk, posterior longitudinal ligament (PLL), and ligamentum flavum (LF). No previous studies have reported on the forces required for distraction to various heights or the factors resisting distraction in anterior cervical discectomy and fusion. Anterior cervical distraction at C5-C6 was performed in 6 cadaveric specimens using a biomechanical testing machine, under 4 conditions: A, before disk removal; B, after disk removal; C, after disk and PLL removal; and D, after disk and PLL removal and cutting of the LF. Distraction was performed from 0 to 10 mm at a constant velocity (5 mm/min). Force and distraction height were recorded automatically. The force required increased with distraction height under all 4 conditions. There was a sudden increase in force required at 6-7 mm under conditions B and C, but not D. Under condition A, distraction to 5 mm required a force of 268.3±38.87 N. Under conditions B and C, distraction to 6 mm required <15 N, and further distraction required dramatically increased force, with distraction to 10 mm requiring 115.4±10.67 and 68.4±9.67 N, respectively. Under condition D, no marked increase in force was recorded. Distraction of the intervertebral space was much easier after disk removal. An intact LF caused a sudden marked increase in the force required for distraction, possibly indicating the point at which the LF was fully stretched. This increase in resistance may help to determine the optimal distraction height to avoid stress to the endplate spacer.
Maldonado, Vanessa Y; Espinoza-Montero, Patricio J; Rusinek, Cory A; Swain, Greg M
2018-06-05
The electroanalytical performance of a new commercial boron-doped diamond disk and a traditional nanocrystalline thin-film electrode were compared for the anodic stripping voltammetric determination of Ag(I). The diamond disk electrode is more flexible than the planar film as the former is compatible with most electrochemical cell designs including those incorporating magnetic stirring. Additionally, mechanical polishing and surface cleaning are simpler to execute. Differential pulse anodic stripping voltammetry (DPASV) was used to detect Ag(I) in standard solutions after optimization of the deposition potential, deposition time and scan rate. The optimized conditions were used to determine the concentration of Ag(I) in a NASA simulated potable water sample and a NIST standard reference solution. The electrochemical results were validated by ICP-OES measurements of the same solutions. The detection figures of merit for the disk electrode were as good or superior to those for the thin-film electrode. Detection limits were ≤5 μg L -1 (S/N = 3) for a 120 s deposition period, and response variabilities were <5% RSD. The polished disk electrode presented a more limited linear dynamic range presumably because of the reduced surface area available for metal phase formation. The concentrations of Ag(I) in the two water samples, as determined by DPASV, were in good agreement with the concentrations determined by ICP-OES.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
... (LPT) disks, identified by serial number (S/N). This proposed AD results from the discovery of a... discovery of a material nonconformity requiring removal of the disk before the certified disk life of...
NASA Technical Reports Server (NTRS)
Harrison, Cecil A.
1986-01-01
The efforts to automate the electromagentic compatibility (EMC) test facilites at Marshall Flight Center were examined. A battery of nine standard tests is to be integrated by means of a desktop computer-controller in order to provide near real-time data assessment, store the data acquired during testing on flexible disk, and provide computer production of the certification report.
Passive cyclic pitch control for horizontal axis wind turbines
NASA Technical Reports Server (NTRS)
Bottrell, G. W.
1981-01-01
A flexible rotor concept, called the balanced pitch rotor, is described. The system provides passive adjustment of cyclic pitch in response to unbalanced pitching moments across the rotor disk. Various applications are described and performance predictions are made for wind shear and cross wind operating conditions. Comparisons with the teetered hub are made and significant cost savings are predicted.
Aeroelastic stability and response of rotating structures
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.
1993-01-01
A summary of the work performed during the progress period is presented. Analysis methods for predicting loads and instabilities of wind turbines were developed. Three new areas of research to aid the Advanced Turboprop Project (ATP) were initiated and developed. These three areas of research are aeroelastic analysis methods for cascades including blade and disk flexibility; stall flutter analysis; and computational aeroelasticity.
75 FR 29894 - Approval and Promulgation of Air Quality Implementation Plans; District of Columbia...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... identity or contact information unless you provide it in the body of your comment. If you send an e-mail... and other contact information in the body of your comment and with any disk or CD-ROM you submit. If..., Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU) was signed into law. SAFETEA...
Set processing in a network environment. [data bases and magnetic disks and tapes
NASA Technical Reports Server (NTRS)
Hardgrave, W. T.
1975-01-01
A combination of a local network, a mass storage system, and an autonomous set processor serving as a data/storage management machine is described. Its characteristics include: content-accessible data bases usable from all connected devices; efficient storage/access of large data bases; simple and direct programming with data manipulation and storage management handled by the set processor; simple data base design and entry from source representation to set processor representation with no predefinition necessary; capability available for user sort/order specification; significant reduction in tape/disk pack storage and mounts; flexible environment that allows upgrading hardware/software configuration without causing major interruptions in service; minimal traffic on data communications network; and improved central memory usage on large processors.
NASA Astrophysics Data System (ADS)
Kotulla, Ralf; Gopu, Arvind; Hayashi, Soichi
2016-08-01
Processing astronomical data to science readiness was and remains a challenge, in particular in the case of multi detector instruments such as wide-field imagers. One such instrument, the WIYN One Degree Imager, is available to the astronomical community at large, and, in order to be scientifically useful to its varied user community on a short timescale, provides its users fully calibrated data in addition to the underlying raw data. However, time-efficient re-processing of the often large datasets with improved calibration data and/or software requires more than just a large number of CPU-cores and disk space. This is particularly relevant if all computing resources are general purpose and shared with a large number of users in a typical university setup. Our approach to address this challenge is a flexible framework, combining the best of both high performance (large number of nodes, internal communication) and high throughput (flexible/variable number of nodes, no dedicated hardware) computing. Based on the Advanced Message Queuing Protocol, we a developed a Server-Manager- Worker framework. In addition to the server directing the work flow and the worker executing the actual work, the manager maintains a list of available worker, adds and/or removes individual workers from the worker pool, and re-assigns worker to different tasks. This provides the flexibility of optimizing the worker pool to the current task and workload, improves load balancing, and makes the most efficient use of the available resources. We present performance benchmarks and scaling tests, showing that, today and using existing, commodity shared- use hardware we can process data with data throughputs (including data reduction and calibration) approaching that expected in the early 2020s for future observatories such as the Large Synoptic Survey Telescope.
Evolution of magnetic disk subsystems
NASA Astrophysics Data System (ADS)
Kaneko, Satoru
1994-06-01
The higher recording density of magnetic disk realized today has brought larger storage capacity per unit and smaller form factors. If the required access performance per MB is constant, the performance of large subsystems has to be several times better. This article describes mainly the technology for improving the performance of the magnetic disk subsystems and the prospects of their future evolution. Also considered are 'crosscall pathing' which makes the data transfer channel more effective, 'disk cache' which improves performance coupling with solid state memory technology, and 'RAID' which improves the availability and integrity of disk subsystems by organizing multiple disk drives in a subsystem. As a result, it is concluded that since the performance of the subsystem is dominated by that of the disk cache, maximation of the performance of the disk cache subsystems is very important.
Planet Formation in Stellar Binaries: How Disk Gravity Can Lower theFragmentation Barrier
NASA Astrophysics Data System (ADS)
Silsbee, Kedron; Rafikov, Roman R.
2014-11-01
Binary star systems present a challenge to current theories of planet formation. Perturbations from the companion star dynamically excite the protoplanetary disk, which can lead to destructive collisions between planetesimals, and prevent growth from 1 km to 100 km sized planetesimals. Despite this apparent barrier to coagulation, planets have been discovered within several small-separation (<20 AU), eccentric (eb 0.4) binaries, such as alpha Cen and gamma Cep. We address this problem by analytically exploring planetesimal dynamics under the simultaneous action of (1) binary perturbation, (2) gas drag (which tends to align planetesimal orbits), and (3), the gravity of an eccentric protoplanetary disk. We then use our dynamical solutions to assess the outcomes of planetesimal collisions (growth, destruction, erosion) for a variety of disk models. We find that planets in small-separation binaries can form at their present locations if the primordial protoplanetary disks were massive (>0.01M⊙) and not very eccentric (eccentricity of order several per cent at the location of planet). This constraint on the disk mass is compatible with the high masses of the giant planets in known gamma Cep-like binaries, which require a large mass reservoir for their formation. We show that for these massive disks, disk gravity is dominant over the gravity of the binary companion at the location of the observed planets. Therefore, planetesimal growth is highly sensitive to disk properties. The requirement of low disk eccentricity is in line with the recent hydrodynamic simulations that tend to show gaseous disks in eccentric binaries developing very low eccentricity, at the level of a few percent. A massive purely axisymmetric disk makes for a friendlier environment for planetesimal growth by driving rapid apsidal precession of planetesimals, and averaging out the eccentricity excitation from the binary companion. When the protoplanetary disk is eccentric we find that the most favorable conditions for planetesimal growth emerge when the disk is non-precessing and is apsidally aligned with the orbit of the binary.
FORMATION OF CLOSE IN SUPER-EARTHS AND MINI-NEPTUNES: REQUIRED DISK MASSES AND THEIR IMPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlichting, Hilke E., E-mail: hilke@mit.edu
Recent observations by the Kepler space telescope have led to the discovery of more than 4000 exoplanet candidates consisting of many systems with Earth- to Neptune-sized objects that reside well inside the orbit of Mercury around their respective host stars. How and where these close-in planets formed is one of the major unanswered questions in planet formation. Here, we calculate the required disk masses for in situ formation of the Kepler planets. We find that if close-in planets formed as isolation masses, then standard gas-to-dust ratios yield corresponding gas disks that are gravitationally unstable for a significant fraction of systems,more » ruling out such a scenario. We show that the maximum width of a planet's accretion region in the absence of any migration is 2v {sub esc}/Ω, where v {sub esc} is the escape velocity of the planet and Ω is the Keplerian frequency, and we use it to calculate the required disk masses for in situ formation with giant impacts. Even with giant impacts, formation without migration requires disk surface densities in solids at semi-major axes of less than 0.1 AU of 10{sup 3}-10{sup 5} g cm{sup –2}, implying typical enhancements above the minimum-mass solar nebular (MMSN) by at least a factor of 20. Corresponding gas disks are below but not far from the gravitational stability limit. In contrast, formation beyond a few AU is consistent with MMSN disk masses. This suggests that the migration of either solids or fully assembled planets is likely to have played a major role in the formation of close-in super-Earths and mini-Neptunes.« less
Formation of Close in Super-Earths and Mini-Neptunes: Required Disk Masses and their Implications
NASA Astrophysics Data System (ADS)
Schlichting, Hilke E.
2014-11-01
Recent observations by the Kepler space telescope have led to the discovery of more than 4000 exoplanet candidates consisting of many systems with Earth- to Neptune-sized objects that reside well inside the orbit of Mercury around their respective host stars. How and where these close-in planets formed is one of the major unanswered questions in planet formation. Here, we calculate the required disk masses for in situ formation of the Kepler planets. We find that if close-in planets formed as isolation masses, then standard gas-to-dust ratios yield corresponding gas disks that are gravitationally unstable for a significant fraction of systems, ruling out such a scenario. We show that the maximum width of a planet's accretion region in the absence of any migration is 2v esc/Ω, where v esc is the escape velocity of the planet and Ω is the Keplerian frequency, and we use it to calculate the required disk masses for in situ formation with giant impacts. Even with giant impacts, formation without migration requires disk surface densities in solids at semi-major axes of less than 0.1 AU of 103-105 g cm-2, implying typical enhancements above the minimum-mass solar nebular (MMSN) by at least a factor of 20. Corresponding gas disks are below but not far from the gravitational stability limit. In contrast, formation beyond a few AU is consistent with MMSN disk masses. This suggests that the migration of either solids or fully assembled planets is likely to have played a major role in the formation of close-in super-Earths and mini-Neptunes.
Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.
2002-01-01
A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.
Dynamic stability of stacked disk type flywheels
NASA Astrophysics Data System (ADS)
Younger, F. C.
1981-04-01
A flywheel assembly formed from adhesively bonded stacked fiber composite disks was analyzed. The stiffness and rigidity of the assembly required to prevent uncontrolled growth in the deformations due to centrifugal force was determined. It is shown that stacked disk type flywheels become unstable when the speed exceeds a critical value. This critical value of speed depends upon the stiffness of the bonded attachments between the disks. It is found that elastomeric bonds do not provide adequate stiffness to insure dynamic stability for high speed stacked disk type flywheels.
Coevolution of Binaries and Circumbinary Gaseous Disks
NASA Astrophysics Data System (ADS)
Fleming, David; Quinn, Thomas R.
2018-04-01
The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.
Code of Federal Regulations, 2013 CFR
2013-10-01
... FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO ADVANCED COMMUNICATIONS SERVICES AND EQUIPMENT BY... a hard copy and on computer disk in accordance with the requirements of § 14.51(d) of this subpart... submitted both as a hard copy and on computer disk in accordance with the requirements of § 14.51(d) of this...
Code of Federal Regulations, 2012 CFR
2012-10-01
... FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO ADVANCED COMMUNICATIONS SERVICES AND EQUIPMENT BY... a hard copy and on computer disk in accordance with the requirements of § 14.51(d) of this subpart... submitted both as a hard copy and on computer disk in accordance with the requirements of § 14.51(d) of this...
Code of Federal Regulations, 2014 CFR
2014-10-01
... FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO ADVANCED COMMUNICATIONS SERVICES AND EQUIPMENT BY... a hard copy and on computer disk in accordance with the requirements of § 14.51(d) of this subpart... submitted both as a hard copy and on computer disk in accordance with the requirements of § 14.51(d) of this...
Characterization of high speed synthetic jet actuators
NASA Astrophysics Data System (ADS)
Pikcilingis, Lucia
Over the last 20 years, synthetic jets have been studied as a means for aerodynamic active flow control. Specifically, synthetic jets provide momentum transfer with zero-net mass flux, which has been proven to be effective for controlling flow fields. A synthetic jet is created by the periodic formation of vortex rings at its orifice due to the periodic motion of a piezoelectric disk(s). The present study seeks to optimize the performance of a synthetic jet actuator by utilizing different geometrical parameters such as disk thickness, orifice width and length, cavity height and cavity diameter, and different input parameters such as driving voltage and frequency. Two apparatuses were used with a cavity diameter of either 80 mm or 160 mm. Piezoelectric-based disks were provided by the Mide Corporation. Experiments were conducted using several synthetic jet apparatuses designed for various geometrical parameters utilizing a dual disk configuration. Velocity and temperature measurements were acquired at the center of the synthetic jet orifice using a temperature compensated hotwire and thermocouple probe. The disk(s) displacement was measured at the center of the disk with a laser displacement sensor. It was shown that the synthetic jets, having the 80 mm cavity diameter, are capable of exceeding peak velocities of 200 m/s with a relatively large orifice of dimensions AR = 12, hc* = 3, and hn* = 4. In addition, the conditions at which the disks were manufactured had minimal effect on the performance of the jet, except for the pair with overnight resting time as opposed to less than an hour resting time for the control units. Altering the tab style of the disks, where the tab allows the electrical circuit to be exposed for external power connection, showed that a thin fragile tab versus a tab of the same thickness as the disk has minimal effect on the performance but affects the durability of the disk due to the fragility or robustness of the tab. The synthetic jets, having a 160 mm cavity diameter, yielded jet velocities greater than 300 m/s. Altering the clamping conditions, at which the disks are clamped, showed that increasing the number of clamping points where the disks are clamped, improved the performance of the jet. Coupling this with a flexible clamping boundary condition yielded the best performing jets. Fatigue tests were conducted for both apparatuses using several different disk designs. These tests showed that there is a degradation of the disks that causes the jet performance to decay and eventually cause a fracture in the disk. It is apparent from this work that, though the conditions at which the disks are manufactured have a small effect on performance, the disks do exhibit a threshold where beyond it the performance decays. Though desired jet velocities and momentums are achievable, the abnormality of the disks needs to be addressed before applying the actuator to practical situations. As this research continues, the synthetic jet actuator will become more robust and reliable to be an effective and reliable source of active flow control.
Assessment of disk MHD generators for a base load powerplant
NASA Technical Reports Server (NTRS)
Chubb, D. L.; Retallick, F. D.; Lu, C. L.; Stella, M.; Teare, J. D.; Loubsky, W. J.; Louis, J. F.; Misra, B.
1981-01-01
Results from a study of the disk MHD generator are presented. Both open and closed cycle disk systems were investigated. Costing of the open cycle disk components (nozzle, channel, diffuser, radiant boiler, magnet and power management) was done. However, no detailed costing was done for the closed cycle systems. Preliminary plant design for the open cycle systems was also completed. Based on the system study results, an economic assessment of the open cycle systems is presented. Costs of the open cycle disk conponents are less than comparable linear generator components. Also, costs of electricity for the open cycle disk systems are competitive with comparable linear systems. Advantages of the disk design simplicity are considered. Improvements in the channel availability or a reduction in the channel lifetime requirement are possible as a result of the disk design.
Inner Structure in the TW Hya Circumstellar Disk
NASA Astrophysics Data System (ADS)
Akeson, Rachel L.; Millan-Gabet, R.; Ciardi, D.; Boden, A.; Sargent, A.; Monnier, J.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.
2011-05-01
TW Hya is a nearby (50 pc) young stellar object with an estimated age of 10 Myr and signs of active accretion. Previous modeling of the circumstellar disk has shown that the inner disk contains optically thin material, placing this object in the class of "transition disks". We present new near-infrared interferometric observations of the disk material and use these data, as well as previously published, spatially resolved data at 10 microns and 7 mm, to constrain disk models based on a standard flared disk structure. Our model demonstrates that the constraints imposed by the spatially resolved data can be met with a physically plausible disk but this requires a disk containing not only an inner gap in the optically thick disk as previously suggested, but also some optically thick material within this gap. Our model is consistent with the suggestion by previous authors of a planet with an orbital radius of a few AU. This work was conducted at the NASA Exoplanet Science Institute, California Institute of Technology.
Status of emerging standards for removable computer storage media and related contributions of NIST
NASA Technical Reports Server (NTRS)
Podio, Fernando L.
1992-01-01
Standards for removable computer storage media are needed so that users may reliably interchange data both within and among various computer installations. Furthermore, media interchange standards support competition in industry and prevent sole-source lock-in. NIST participates in magnetic tape and optical disk standards development through Technical Committees X3B5, Digital Magnetic Tapes, X3B11, Optical Digital Data Disk, and the Joint Technical Commission on Data Permanence. NIST also participates in other relevant national and international standards committees for removable computer storage media. Industry standards for digital magnetic tapes require the use of Standard Reference Materials (SRM's) developed and maintained by NIST. In addition, NIST has been studying care and handling procedures required for digital magnetic tapes. NIST has developed a methodology for determining the life expectancy of optical disks. NIST is developing care and handling procedures for optical digital data disks and is involved in a program to investigate error reporting capabilities of optical disk drives. This presentation reflects the status of emerging magnetic tape and optical disk standards, as well as NIST's contributions in support of these standards.
Exploring compression techniques for ROOT IO
NASA Astrophysics Data System (ADS)
Zhang, Z.; Bockelman, B.
2017-10-01
ROOT provides an flexible format used throughout the HEP community. The number of use cases - from an archival data format to end-stage analysis - has required a number of tradeoffs to be exposed to the user. For example, a high “compression level” in the traditional DEFLATE algorithm will result in a smaller file (saving disk space) at the cost of slower decompression (costing CPU time when read). At the scale of the LHC experiment, poor design choices can result in terabytes of wasted space or wasted CPU time. We explore and attempt to quantify some of these tradeoffs. Specifically, we explore: the use of alternate compressing algorithms to optimize for read performance; an alternate method of compressing individual events to allow efficient random access; and a new approach to whole-file compression. Quantitative results are given, as well as guidance on how to make compression decisions for different use cases.
Uniform discotic wax particles via electrospray emulsification.
Mejia, Andres F; He, Peng; Luo, Dawei; Marquez, Manuel; Cheng, Zhengdong
2009-06-01
We present a novel colloidal discotic system: the formation and self-assembling of wax microdisks with a narrow size distribution. Uniform wax emulsions are first fabricated by electrospraying of melt alpha-eicosene. The size of the emulsions can be flexibly tailored by varying the flow rate of the discontinuous phase, its electric conductivity, and the applied voltage. The process of entrainment of wax droplets, vital for obtaining uniform emulsions, is facilitated by the reduction of air-water surface tension and the density of the continuous phase. Then uniform wax discotic particles are produced via phase transition, during which the formation of a layered structure of the rotator phase of wax converts the droplets, one by one, into oblate particles. The time span for the conversion from spherical emulsions to disk particles is linearly dependent on the size of droplets in the emulsion, indicating the growth of a rotator phase from surface to the center is the limiting step in the shape transition. Using polarized light microscopy, the self-assembling of wax disks is observed by increasing disk concentration and inducing depletion attraction among disks, where several phases, such as isotropic, condensed, columnar stacking, and self-assembly of columnar rods are present sequentially during solvent evaporation of a suspension drop.
Rotary-To-Axial Motion Converter For Valve
NASA Technical Reports Server (NTRS)
Reinicke, Robert H.; Mohtar, Rafic
1991-01-01
Nearly frictionless mechanism converts rotary motion into axial motion. Designed for use in electronically variable pressure-regulator valve. Changes rotary motion imparted by motor into translation that opens and closes valve poppet. Cables spaced equidistantly around edge of fixed disk support movable disk. As movable disk rotated, cables twist, lifting it. When rotated in opposite direction, cables untwist, lowering it. Spider disk helps to prevent cables from tangling. Requires no lubrication and insensitive to contamination in fluid flowing through valve.
Archival storage solutions for PACS
NASA Astrophysics Data System (ADS)
Chunn, Timothy
1997-05-01
While they are many, one of the inhibitors to the wide spread diffusion of PACS systems has been robust, cost effective digital archive storage solutions. Moreover, an automated Nearline solution is key to a central, sharable data repository, enabling many applications such as PACS, telemedicine and teleradiology, and information warehousing and data mining for research such as patient outcome analysis. Selecting the right solution depends on a number of factors: capacity requirements, write and retrieval performance requirements, scaleability in capacity and performance, configuration architecture and flexibility, subsystem availability and reliability, security requirements, system cost, achievable benefits and cost savings, investment protection, strategic fit and more.This paper addresses many of these issues. It compares and positions optical disk and magnetic tape technologies, which are the predominant archive mediums today. Price and performance comparisons will be made at different archive capacities, plus the effect of file size on storage system throughput will be analyzed. The concept of automated migration of images from high performance, high cost storage devices to high capacity, low cost storage devices will be introduced as a viable way to minimize overall storage costs for an archive. The concept of access density will also be introduced and applied to the selection of the most cost effective archive solution.
Characterization of the Temperature Capabilities of Advanced Disk Alloy ME3
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; OConnor, Kenneth
2002-01-01
The successful development of an advanced powder metallurgy disk alloy, ME3, was initiated in the NASA High Speed Research/Enabling Propulsion Materials (HSR/EPM) Compressor/Turbine Disk program in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. This alloy was designed using statistical screening and optimization of composition and processing variables to have extended durability at 1200 F in large disks. Disks of this alloy were produced at the conclusion of the program using a realistic scaled-up disk shape and processing to enable demonstration of these properties. The objective of the Ultra-Efficient Engine Technologies disk program was to assess the mechanical properties of these ME3 disks as functions of temperature in order to estimate the maximum temperature capabilities of this advanced alloy. These disks were sectioned, machined into specimens, and extensively tested. Additional sub-scale disks and blanks were processed and selectively tested to explore the effects of several processing variations on mechanical properties. Results indicate the baseline ME3 alloy and process can produce 1300 to 1350 F temperature capabilities, dependent on detailed disk and engine design property requirements.
NASA Technical Reports Server (NTRS)
Faramaz, V.; Beust, H.; Thebault, P.; Augereau, J.-C.; Bonsor, A.; delBurgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.;
2014-01-01
Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around Zeta2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims. We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around Zeta2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods. Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the Zeta2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results. We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For Zeta2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around Zeta2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions. We conclude that eccentric planets or stellar companions can induce long-lived eccentric structures in debris disks. Observations of such eccentric structures thus provide potential evidence of the presence of such a companion in a planetary system. We considered the specific example of Zeta2 Reticuli, whose observed eccentric disk can be explained by a distant companion (at tens of AU) on an eccentric orbit (ep greater than approx. 0.3).
Composite polymer: Glass edge cladding for laser disks
Powell, H.T.; Wolfe, C.A.; Campbell, J.H.; Murray, J.E.; Riley, M.O.; Lyon, R.E.; Jessop, E.S.
1987-11-02
Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation. 18 figs.
Composite polymer-glass edge cladding for laser disks
Powell, Howard T.; Riley, Michael O.; Wolfe, Charles R.; Lyon, Richard E.; Campbell, John H.; Jessop, Edward S.; Murray, James E.
1989-01-01
Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation.
Richter, H.G.; Gillespie, A.S. Jr.
1963-11-12
A flexible Geiger counter constructed from materials composed of vinyl chloride polymerized with plasticizers or co-polymers is presented. The counter can be made either by attaching short segments of corrugated plastic sleeving together, or by starting with a length of vacuum cleaner hose composed of the above materials. The anode is maintained substantially axial Within the sleeving or hose during tube flexing by means of polystyrene spacer disks or an easily assembled polyethylene flexible cage assembly. The cathode is a wire spiraled on the outside of the counter. The sleeving or hose is fitted with glass end-pieces or any other good insulator to maintain the anode wire taut and to admit a counting gas mixture into the counter. Having the cathode wire on the outside of the counter substantially eliminates the objectional sheath effect of prior counters and permits counting rates up to 300,000 counts per minute. (AEC)
Hayashi, Koichiro; Ono, Kenji; Suzuki, Hiromi; Sawada, Makoto; Moriya, Makoto; Sakamoto, Wataru; Yogo, Toshinobu
2010-11-05
Red blood cells (RBCs) are able to avoid filtration in the spleen to prolong their half-time in the body because of their flexibility and unique shape, or a concave disk with diameter of some 10 μm. In addition, they can flow through capillary blood vessels, which are smaller than the diameter of RBCs, by morphing into a parachute-like shape. In this study, flexible RBC-like polymer particles are synthesized by electrospraying based on electrospinning. Furthermore, magnetite nanoparticles and fluorescent dye are encapsulated in the particles via in situ hydrolysis of an iron-organic compound in the presence of celluloses. The superparamagnetic behavior of the particles is confirmed by low-temperature magnetic measurements. The particles exhibited not only a dark contrast in magnetic resonance imaging (MRI), but also effective fluorescence. The RBC-like particles with flexibility are demonstrated to have a dual-modality for MRI and fluorescence imaging.
Formation of Sharp Eccentric Rings in Debris Disks with Gas but Without Planets
NASA Technical Reports Server (NTRS)
Lyra, W.; Kuchner, M.
2013-01-01
'Debris disks' around young stars (analogues of the Kuiper Belt in our Solar System) show a variety of non-trivial structures attributed to planetary perturbations and used to constrain the properties of those planets. However, these analyses have largely ignored the fact that some debris disks are found to contain small quantities of gas, a component that all such disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio of about unity, at which the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report linear and nonlinear modelling that shows that dust-gas interactions can produce some of the key patterns attributed to planets. We find a robust clumping instability that organizes the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The conclusion that such disks might contain planets is not necessarily required to explain these systems.
Multi-access laser communications terminal
NASA Technical Reports Server (NTRS)
1992-01-01
The Optical Multi-Access (OMA) Terminal is capable of establishing up to six simultaneous high-data-rate communication links between low-Earth-orbit satellites and a host satellite at synchronous orbit with only one 16-inch-diameter antenna on the synchronous satellite. The advantage over equivalent RF systems in space weight, power, and swept volume is great when applied to NASA satellite communications networks. A photograph of the 3-channel prototype constructed under the present contract to demonstrate the feasibility of the concept is presented. The telescope has a 10-inch clear aperture and a 22 deg full field of view. It consists of 4 refractive elements to achieve a telecentric focus, i.e., the focused beam is normal to the focal plane at all field angles. This feature permits image pick-up optics in the focal plane to track satellite images without tilting their optic axes to accommodate field angle. The geometry of the imager-pick-up concept and the coordinate system of the swinging arm and disk mechanism for image pick-up are shown. Optics in the arm relay the telescope focus to a communications and tracking receiver and introduce the transmitted beacon beam on a path collinear with the receive path. The electronic circuits for the communications and tracking receivers are contained on the arm and disk assemblies and relay signals to an associated PC-based operator's console for control of the arm and disk motor drive through a flexible cable which permits +/- 240 deg travel for each arm and disk assembly. Power supplies and laser transmitters are mounted in the cradle for the telescope. A single-mode fiber in the cable is used to carry the laser transmitter signal to the arm optics. The promise of the optical multi-access terminal towards which the prototype effort worked is shown. The emphasis in the prototype development was the demonstration of the unique aspect of the concept, and where possible, cost avoidance compromises were implemented in areas already proven on other programs. The design details are described in section 2, the prototype test results in section 3, additional development required in section 4, and conclusions in section 5.
Wen, Junxiang; Xu, Jianwei; Li, Lijun; Yang, Mingjie; Pan, Jie; Chen, Deyu; Jia, Lianshun; Tan, Jun
2017-06-01
In vitro biomechanical study of the cervical intervertebral distraction using a remodeled Caspar retractor. To investigate the torques required for distraction to different heights in an in vitro C3-C4 anterior cervical distraction model using a remodeled Caspar retractor, focusing on the influence of the intervertebral disk, posterior longitudinal ligament (PLL), and ligamentum flavum (LF). No previous studies have reported on the torques required for distraction to various heights or the factors resisting distraction in anterior cervical discectomy and fusion. Anterior cervical distractions at C3-C4 was performed in 6 cadaveric specimens using a remodeled Caspar retractor, under 4 conditions: A, before disk removal; B, after disk removal; C, after disk and PLL removal; and D, after disk and PLL removal and cutting of the LF. Distraction was performed for 5 teeth, and distractive torque of each tooth was recorded. The torque increased with distraction height under all conditions. There was a sudden increase in torque at the fourth tooth under conditions B and C, but not D. Under condition A, distraction to the third tooth required 84.8±13.3 cN m. Under conditions B and C, distraction to the third tooth required <13 cN m, and further distraction required dramatically increased torque. Under condition D, no marked increase in torque was recorded. Distraction of the intervertebral space was much easier after disk removal. An intact LF caused a sudden marked increase in the force required for distraction, possibly indicating the point at which the LF was fully stretched. This increase in resistance may help to determine the optimal distraction height to avoid excessive stress to the endplate spacer. The remodeled Caspar retractor in the present study may provide a feasible and convenient method for intraoperative measurement of distractive resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesvold, Erika R.; Naoz, Smadar; Vican, Laura
The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined tomore » the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N -body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.« less
Janus nanoparticles for stable microemulsions with ultra-low IFT values
NASA Astrophysics Data System (ADS)
Nava, Ilse; Diaz, Agustin; Yu, Yi-Hsien; Cheng, Zhengdong
2015-03-01
Janus particles are an influential type of materials used in foams, detergents, surfactants and cosmetics. Due to their demonstrated flexibility and non-toxicity, they have the potential to replace molecular surfactants, and thanks to their amphiphilicity, they can stabilize immiscible biphasic systems. Disk-based Janus particles best perform this stabilization. Graphene has been used to manufacture this class of particles; however, their fabrication in high yield by short and atomically economic syntheses remains a challenge. In this project we report the first synthesis of monolayer disks by a one pot reaction under microwave energy. Using a scalable method, these disks were synthesized, emulsified (in an oil/water system), and chemically reacted to obtain the Janus nanodisks with an efficient method. Our nanosheets production technique is a promising approach for the fabrication of Janus nanodisks via emulsification as it produces IFT (interfacial tension) values in a lower range than that of the molecular surfactants. These ultra-low values, in conjunction with the sheets' salt resistance, temperature resistance, and non-toxicity position Janus particles as the next generation of nanosurfactants.
Klevay, Michael; Ebinger, Alex; Diekema, Daniel; Messer, Shawn; Hollis, Richard; Pfaller, Michael
2005-01-01
We compared results of disk diffusion antifungal susceptibility testing from Candida sp. strains passaged on CHROMagar and on potato dextrose agar. The overall categorical agreements for fluconazole and voriconazole disk testing were 95% and 98% with 0% and 0.5% very major errors, respectively. Disk diffusion testing by the CLSI (formerly NCCLS) M44-A method can be performed accurately by taking inocula directly from CHROMagar. PMID:16000489
Yamada, Kyohei; Iwao, Yasunori; Bani-Jaber, Ahmad; Noguchi, Shuji; Itai, Shigeru
2015-01-01
Although chitosan (CS) has been recognized as a good material for colon-specific drug delivery systems, an overcoating with an enteric coating polymer on the surface of CS is absolutely necessary because CS is soluble in acidic conditions before reaching the colon. In the present study, to improve its stability in the presence of acid, a newly developed CS-laurate (CS-LA) material was evaluated as a coating dispersion for the development of colon-specific drug delivery systems. Two types of CS with different molecular weights, CS250 and CS600, were used to prepare CS-LA films by the casting method. The CS250-LA films had smooth surfaces, whereas the surfaces of the CS600-LA films were rough, indicating that the CS250-LA dispersion could form a denser film than CS600-LA. Both of these CS-LA films maintained a constant shape over 22 h in a pH 1.2 HCl/NaCl buffer, where the corresponding CS films rapidly disintegrated. In addition, the CS250-LA film showed specific colon degradability in a pH 6.0 phosphate buffered solution containing 1.0% (w/v) β-glucosidase. As a result of tensile strength and elongation at the break, both CS-LA films were found to have flexible film properties. Finally, the release of acetaminophen from disks coated with CS250-LA dispersions was significantly suppressed in fluids at pH 1.2 and 6.8, whereas disks coated with CS solution rapidly released the drug in pH 1.2 fluids. Taken together, this study shows that LA modification could be a useful approach in preparing CS films with acid stability and colonic degradability properties without requiring overcoating.
Sharp Eccentric Rings in Planetless Hydrodynamical Models of Debris Disks
NASA Technical Reports Server (NTRS)
Lyra, W.; Kuchner, M. J.
2013-01-01
Exoplanets are often associated with disks of dust and debris, analogs of the Kuiper Belt in our solar system. These "debris disks" show a variety of non-trivial structures attributed to planetary perturbations and utilized to constrain the properties of the planets. However, analyses of these systems have largely ignored the fact that, increasingly, debris disks are found to contain small quantities of gas, a component all debris disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio around unity where the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report that dust-gas interactions can produce some of the key patterns seen in debris disks that were previously attributed to planets. Through linear and nonlinear modeling of the hydrodynamical problem, we find that a robust clumping instability exists in this configuration, organizing the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The hypothesis that these disks might contain planets, though thrilling, is not necessarily required to explain these systems.
Scalable Automated Model Search
2014-05-20
ma- chines. Categories and Subject Descriptors Big Data [Distributed Computing]: Large scale optimization 1. INTRODUCTION Modern scientific and...from Continuum Analytics[1], and Apache Spark 0.8.1. Additionally, we made use of Hadoop 1.0.4 configured on local disks as our data store for the large...Borkar et al. Hyracks: A flexible and extensible foundation for data -intensive computing. In ICDE, 2011. [16] J. Canny and H. Zhao. Big data
1980-06-01
34 LIST OF ILLUSTRATIONS FIGURE PAGE 1 Block Diagram of DLMS Voice Recognition System .............. S 2 Flowchart of DefaulV...particular are a speech preprocessor and a minicomputer. In the VRS, as shown in the block diagram of Fig. 1, the preprocessor is a TTI model 8040 and...Data General 6026 Magnetic Zo 4 Tape Unit Display L-- - Equipment Cabinet Fig. 1 block Diagram of DIMS Voice Recognition System qS 2. Flexible Disk
NASA Technical Reports Server (NTRS)
Kemp, Richard H; Moseson, Merland L
1952-01-01
A full-scale J33 air-cooled split turbine rotor was designed and spin-pit tested to destruction. Stress analysis and spin-pit results indicated that the rotor in a J33 turbojet engine, however, showed that the rear disk of the rotor operated at temperatures substantially higher than the forward disk. An extension of the stress analysis to include the temperature difference between the two disks indicated that engine modifications are required to permit operation of the two disks at more nearly the same temperature level.
The broad applicability of the disk laser principle: from CW to ps
NASA Astrophysics Data System (ADS)
Killi, Alexander; Stolzenburg, Christian; Zawischa, Ivo; Sutter, Dirk; Kleinbauer, Jochen; Schad, Sven; Brockmann, Rüdiger; Weiler, Sascha; Neuhaus, Jörg; Kalfhues, Steffen; Mehner, Eva; Bauer, Dominik; Schlueter, Holger; Schmitz, Christian
2009-02-01
The quasi two-dimensional geometry of the disk laser results in conceptional advantages over other geometries. Fundamentally, the thin disk laser allows true power scaling by increasing the pump spot diameter on the disk while keeping the power density constant. This scaling procedure keeps optical peak intensity, temperature, stress profile, and optical path differences in the disk nearly unchanged. The required pump beam brightness - a main cost driver of DPSSL systems - also remains constant. We present these fundamental concepts and present results in the wide range of multi kW-class CW-sources, high power Q-switched sources and ultrashort pulsed sources.
Towards a Global Evolutionary Model of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Bai, Xue-Ning
2016-04-01
A global picture of the evolution of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... failure of a first stage turbine disk that had a metallurgical defect. This AD requires inspecting certain...-1. We are issuing this AD to prevent uncontained failure of the first stage turbine disk and damage... failure of a first stage turbine disk that had a metallurgical defect. We are issuing this AD to prevent...
OT1_ipascucc_1: Understanding the Origin of Transition Disks via Disk Mass Measurements
NASA Astrophysics Data System (ADS)
Pascucci, I.
2010-07-01
Transition disks are a distinguished group of few Myr-old systems caught in the phase of dispersing their inner dust disk. Three different processes have been proposed to explain this inside-out clearing: grain growth, photoevaporation driven by the central star, and dynamical clearing by a forming giant planet. Which of these processes lead to a transition disk? Distinguishing between them requires the combined knowledge of stellar accretion rates and disk masses. We propose here to use 43.8 hours of PACS spectroscopy to detect the [OI] 63 micron emission line from a sample of 21 well-known transition disks with measured mass accretion rates. We will use this line, in combination with ancillary CO millimeter lines, to measure their gas disk mass. Because gas dominates the mass of protoplanetary disks our approach and choice of lines will enable us to trace the bulk of the disk mass that resides beyond tens of AU from young stars. Our program will quadruple the number of transition disks currently observed with Herschel in this setting and for which disk masses can be measured. We will then place the transition and the ~100 classical/non-transition disks of similar age (from the Herschel KP "Gas in Protoplanetary Systems") in the mass accretion rate-disk mass diagram with two main goals: 1) reveal which gaps have been created by grain growth, photoevaporation, or giant planet formation and 2) from the statistics, determine the main disk dispersal mechanism leading to a transition disk.
NASA Astrophysics Data System (ADS)
Schumacher, F.; Friederich, W.; Lamara, S.
2016-02-01
We present a new conceptual approach to scattering-integral-based seismic full waveform inversion (FWI) that allows a flexible, extendable, modular and both computationally and storage-efficient numerical implementation. To achieve maximum modularity and extendability, interactions between the three fundamental steps carried out sequentially in each iteration of the inversion procedure, namely, solving the forward problem, computing waveform sensitivity kernels and deriving a model update, are kept at an absolute minimum and are implemented by dedicated interfaces. To realize storage efficiency and maximum flexibility, the spatial discretization of the inverted earth model is allowed to be completely independent of the spatial discretization employed by the forward solver. For computational efficiency reasons, the inversion is done in the frequency domain. The benefits of our approach are as follows: (1) Each of the three stages of an iteration is realized by a stand-alone software program. In this way, we avoid the monolithic, unflexible and hard-to-modify codes that have often been written for solving inverse problems. (2) The solution of the forward problem, required for kernel computation, can be obtained by any wave propagation modelling code giving users maximum flexibility in choosing the forward modelling method. Both time-domain and frequency-domain approaches can be used. (3) Forward solvers typically demand spatial discretizations that are significantly denser than actually desired for the inverted model. Exploiting this fact by pre-integrating the kernels allows a dramatic reduction of disk space and makes kernel storage feasible. No assumptions are made on the spatial discretization scheme employed by the forward solver. (4) In addition, working in the frequency domain effectively reduces the amount of data, the number of kernels to be computed and the number of equations to be solved. (5) Updating the model by solving a large equation system can be done using different mathematical approaches. Since kernels are stored on disk, it can be repeated many times for different regularization parameters without need to solve the forward problem, making the approach accessible to Occam's method. Changes of choice of misfit functional, weighting of data and selection of data subsets are still possible at this stage. We have coded our approach to FWI into a program package called ASKI (Analysis of Sensitivity and Kernel Inversion) which can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. It is written in modern FORTRAN language using object-oriented concepts that reflect the modular structure of the inversion procedure. We validate our FWI method by a small-scale synthetic study and present first results of its application to high-quality seismological data acquired in the southern Aegean.
The inner-disk and stellar properties of the young stellar object WL 16
NASA Technical Reports Server (NTRS)
Carr, John S.; Tokunaga, Alan T.; Najita, Joan; Shu, Frank H.; Glassgold, Alfred E.
1993-01-01
We present kinematic evidence for a rapidly rotating circumstellar disk around the young stellar object WL 16, based on new high-velocity-resolution data of the v = 2-0 CO bandhead emission. A Keplerian disk provides an excellent fit to the observed profile and requires a projected velocity for the CO-emitting region of roughly 250 km/s at the inner radius and 140 km/s at the outer radius, giving a ratio of the inner to the outer radius of about 0.3. We show that satisfying the constraints imposed by the gas kinematics, the observed CO flux, and the total source luminosity requires the mass of WL 16 to lie between 1.4 and 2.5 solar mass. The inner disk radius for the CO emission must be less than 8 solar radii.
Mark 6: A Next-Generation VLBI Data System
NASA Astrophysics Data System (ADS)
Whitney, A. R.; Lapsley, D. E.; Taveniku, M.
2011-07-01
A new real-time high-data-rate disk-array system based on entirely commercial-off-the-shelf hardware components is being evaluated for possible use as a next-generation VLBI data system. The system, developed by XCube Communications of Nashua, NH, USA was originally developed for the automotive industry for testing/evaluation of autonomous driving systems that require continuous capture of an array of video cameras and automotive sensors at ~8Gbps from multiple 10GigE data links and other data sources. In order to sustain the required recording data rate, the system is designed to account for slow and/or failed disks by shifting the load to other disks as necessary in order to maintain the target data rate. The system is based on a Linux OS with some modifications to memory management and drivers in order to guarantee the timely movement of data, and the hardware/software combination is highly tuned to achieve the target data rate; data are stored in standard Linux files. A kit is also being designed that will allow existing Mark 5 disk modules to be modified to be used with the XCube system (though PATA disks will need to be replaced by SATA disks). Demonstrations of the system at Haystack Observatory and NRAO Socorro have proved very encouraging; some modest software upgrades/revisions are being made by XCube in order to meet VLBI-specific requirements. The system is easily expandable, with sustained 16 Gbps likely to be supported before end CY2011.
NASA Astrophysics Data System (ADS)
Faramaz, V.; Beust, H.; Thébault, P.; Augereau, J.-C.; Bonsor, A.; del Burgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.; Mora, A.; Bryden, G.; Danchi, W.; Eiroa, C.; White, G. J.; Wolf, S.
2014-03-01
Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around ζ2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims: We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around ζ2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods: Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the ζ2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results: We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For ζ2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around ζ2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions: We conclude that eccentric planets or stellar companions can induce long-lived eccentric structures in debris disks. Observations of such eccentric structures thus provide potential evidence of the presence of such a companion in a planetary system. We considered the specific example of ζ2 Reticuli, whose observed eccentric disk can be explained by a distant companion (at tens of AU) on an eccentric orbit (ep ≳ 0.3). Appendices are available in electronic form at http://www.aanda.orgHerschel Space Observatory is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
NASA Technical Reports Server (NTRS)
Gabb, Tim; Gayda, John; Telesman, Jack
2001-01-01
The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.
Spin Testing of Superalloy Disks With Dual Grain Structure
NASA Technical Reports Server (NTRS)
Hefferman, Tab M.
2006-01-01
This 24-month program was a joint effort between Allison Advanced Development Company (AADC), General Electric Aircraft (GEAE), and NASA Glenn Research Center (GRC). AADC led the disk and spin hardware design and analysis utilizing existing Rolls-Royce turbine disk forging tooling. Testing focused on spin testing four disks: two supplied by GEAE and two by AADC. The two AADC disks were made of Alloy 10, and each was subjected to a different heat treat process: one producing dual microstructure with coarse grain size at the rim and fine grain size at the bore and the other produced single fine grain structure throughout. The purpose of the spin tests was to provide data for evaluation of the impact of dual grain structure on disk overspeed integrity (yielding) and rotor burst criteria. The program culminated with analysis and correlation of the data to current rotor overspeed criteria and advanced criteria required for dual structure disks.
A DWARF TRANSITIONAL PROTOPLANETARY DISK AROUND XZ TAU B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osorio, Mayra; Macías, Enrique; Anglada, Guillem
We report the discovery of a dwarf protoplanetary disk around the star XZ Tau B that shows all the features of a classical transitional disk but on a much smaller scale. The disk has been imaged with the Atacama Large Millimeter/submillimeter Array (ALMA), revealing that its dust emission has a quite small radius of ∼3.4 au and presents a central cavity of ∼1.3 au in radius that we attribute to clearing by a compact system of orbiting (proto)planets. Given the very small radii involved, evolution is expected to be much faster in this disk (observable changes in a few months)more » than in classical disks (observable changes requiring decades) and easy to monitor with observations in the near future. From our modeling we estimate that the mass of the disk is large enough to form a compact planetary system.« less
Moving mode shape function approach for spinning disk and asymmetric disc brake squeal
NASA Astrophysics Data System (ADS)
Kang, Jaeyoung
2018-06-01
The solution approach of an asymmetric spinning disk under stationary friction loads requires the mode shape function fixed in the disk in the assumed mode method when the equations of motion is described in the space-fixed frame. This model description will be termed the 'moving mode shape function approach' and it allows us to formulate the stationary contact load problem in both the axisymmetric and asymmetric disk cases. Numerical results show that the eigenvalues of the time-periodic axisymmetric disk system are time-invariant. When the axisymmetry of the disk is broken, the positive real parts of the eigenvalues highly vary with the rotation of the disk in the slow speeds in such application as disc brake squeal. By using the Floquet stability analysis, it is also shown that breaking the axisymmetry of the disc alters the stability boundaries of the system.
The role of disk self-gravity on gap formation of the HL Tau proto-planetary disk
Li, Shengtai; Li, Hui
2016-05-31
Here, we use extensive global hydrodynamic disk gas+dust simulations with embedded planets to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). Since the HL Tau is a relatively massive disk, we find the disk self-gravity (DSG) plays an important role in the gap formation induced by the planets. Our simulation results demonstrate that DSG is necessary in explaining of the dust ring and gap in HL Tau disk. The comparison of simulation results shows that the dust rings and gap structures are more evident when the fullymore » 2D DSG (non-axisymmetric components are included) is used than if 1D axisymmetric DSG (only the axisymetric component is included) is used, or the disk self-gravity is not considered. We also find that the couple dust+gas+planet simulations are required because the gap and ring structure is different between dust and gas surface density.« less
Migration of accreting giant planets
NASA Astrophysics Data System (ADS)
Robert, C.; Crida, A.; Lega, E.; Méheut, H.
2017-09-01
Giant planets forming in protoplanetary disks migrate relative to their host star. By repelling the gas in their vicinity, they form gaps in the disk's structure. If they are effectively locked in their gap, it follows that their migration rate is governed by the accretion of the disk itself onto the star, in a so-called type II fashion. Recent results showed however that a locking mechanism was still lacking, and was required to understand how giant planets may survive their disk. We propose that planetary accretion may play this part, and help reach this slow migration regime.
Low Cost Heat Treatment Process for Production of Dual Microstructure Superalloy Disks
NASA Technical Reports Server (NTRS)
Gayda, John; Gabb, Tim; Kantzos, Pete; Furrer, David
2003-01-01
There are numerous incidents where operating conditions imposed on a component mandate different and distinct mechanical property requirements from location to location within the component. Examples include a crankshaft in an internal combustion engine, gears for an automotive transmission, and disks for a gas turbine engine. Gas turbine disks are often made from nickel-base superalloys, because these disks need to withstand the temperature and stresses involved in the gas turbine cycle. In the bore of the disk where the operating temperature is somewhat lower, the limiting material properties are often tensile and fatigue strength. In the rim of the disk, where the operating temperatures are higher than those of the bore, because of the proximity to the combustion gases, resistance to creep and crack growth are often the limiting properties.
Management of Lumbar Conditions in the Elite Athlete.
Hsu, Wellington K; Jenkins, Tyler James
2017-07-01
Lumbar disk herniation, degenerative disk disease, and spondylolysis are the most prevalent lumbar conditions that result in missed playing time. Lumbar disk herniation has a good prognosis. After recovery from injury, professional athletes return to play 82% of the time. Surgical management of lumbar disk herniation has been shown to be a viable option in athletes in whom nonsurgical measures have failed. Degenerative disk disease is predominately genetic but may be accelerated in athletes secondary to increased physiologic loading. Nonsurgical management is the standard of care for lumbar degenerative disk disease in the elite athlete. Spondylolysis is more common in adolescent athletes with back pain than in adult athletes. Nonsurgical management of spondylolysis is typically successful. However, if surgery is required, fusion or direct pars repair can allow the patient to return to sports.
Disk Evolution and the Fate of Water
NASA Astrophysics Data System (ADS)
Hartmann, Lee; Ciesla, Fred; Gressel, Oliver; Alexander, Richard
2017-10-01
We review the general theoretical concepts and observational constraints on the distribution and evolution of water vapor and ice in protoplanetary disks, with a focus on the Solar System. Water is expected to freeze out at distances greater than 1-3 AU from solar-type central stars; more precise estimates are difficult to obtain due to uncertainties in the complex processes involved in disk evolution, including dust growth, settling, and radial drift, and the level of turbulence and viscous dissipation within disks. Interferometric observations are now providing constraints on the positions of CO snow lines, but extrapolation to the unresolved regions where water ice sublimates will require much better theoretical understanding of mass and angular momentum transport in disks as well as more refined comparison of observations with sophisticated disk models.
Numerical modelling of Mars supersonic disk-gap-band parachute inflation
NASA Astrophysics Data System (ADS)
Gao, Xinglong; Zhang, Qingbin; Tang, Qiangang
2016-06-01
The transient dynamic behaviour of supersonic disk-gap-band parachutes in a Mars entry environment involving fluid structure interactions is studied. Based on the multi-material Arbitrary Lagrange-Euler method, the coupling dynamic model between a viscous compressible fluid and a flexible large deformation structure of the parachute is solved. The inflation performance of a parachute with a fixed forebody under different flow conditions is analysed. The decelerating parameters of the parachute, including drag area, opening loads, and coefficients, are obtained from the supersonic wind tunnel test data from NASA. Meanwhile, the evolution of the three-dimensional shape of the disk-gap-band parachute during supersonic inflation is presented, and the structural dynamic behaviour of the parachute is predicted. Then, the influence of the presence of the capsule on the flow field of the parachute is investigated, and the wake of unsteady fluid and the distribution of shock wave around the supersonic parachute are presented. Finally, the structural dynamic response of the canopy fabric under high-pressure conditions is comparatively analysed. The results show that the disk-gap-band parachute is well inflated without serious collapse. As the Mach numbers increase from 2.0 to 2.5, the drag coefficients gradually decrease, along with a small decrease in inflation time, which corresponds with test results, and proves the validity of the method proposed in this paper.
Practical and Secure Recovery of Disk Encryption Key Using Smart Cards
NASA Astrophysics Data System (ADS)
Omote, Kazumasa; Kato, Kazuhiko
In key-recovery methods using smart cards, a user can recover the disk encryption key in cooperation with the system administrator, even if the user has lost the smart card including the disk encryption key. However, the disk encryption key is known to the system administrator in advance in most key-recovery methods. Hence user's disk data may be read by the system administrator. Furthermore, if the disk encryption key is not known to the system administrator in advance, it is difficult to achieve a key authentication. In this paper, we propose a scheme which enables to recover the disk encryption key when the user's smart card is lost. In our scheme, the disk encryption key is not preserved anywhere and then the system administrator cannot know the key before key-recovery phase. Only someone who has a user's smart card and knows the user's password can decrypt that user's disk data. Furthermore, we measured the processing time required for user authentication in an experimental environment using a virtual machine monitor. As a result, we found that this processing time is short enough to be practical.
NASA Astrophysics Data System (ADS)
Grady, C. A.; Schneider, G.; Sitko, M. L.; Williger, G. M.; Hamaguchi, K.; Brittain, S. D.; Ablordeppey, K.; Apai, D.; Beerman, L.; Carpenter, W. J.; Collins, K. A.; Fukagawa, M.; Hammel, H. B.; Henning, Th.; Hines, D.; Kimes, R.; Lynch, D. K.; Ménard, F.; Pearson, R.; Russell, R. W.; Silverstone, M.; Smith, P. S.; Troutman, M.; Wilner, D.; Woodgate, B.; Clampin, M.
2009-07-01
SAO 206462 (HD 135344B) has previously been identified as a Herbig F star with a circumstellar disk with a dip in its infrared excess near 10 μm. In combination with a low accretion rate estimated from Br γ, it may represent a gapped, but otherwise primordial or "pre-transitional" disk. We test this hypothesis with Hubble Space Telescope coronagraphic imagery, FUV spectroscopy and imagery and archival X-ray data, and spectral energy distribution (SED) modeling constrained by the observed system inclination, disk outer radius, and outer disk radial surface brightness (SB) profile using the Whitney Monte Carlo Radiative Transfer Code. The essentially face-on (i lsim 20°) disk is detected in scattered light from 0farcs4 to 1farcs15 (56-160 AU), with a steep (r -9.6) radial SB profile from 0farcs6 to 0farcs93. Fitting the SB data requires a concave upward or anti-flared outer disk, indicating substantial dust grain growth and settling by 8 ± 4 Myr. The warm dust component is significantly variable in near to mid-IR excess and in temperature. At its warmest, it appears confined to a narrow belt from 0.08 to 0.2 AU. The steep SED for this dust component is consistent with grains with a<= 2.5 μm. For cosmic carbon to silicate dust composition, conspicuous 10 μm silicate emission would be expected and is not observed. This may indicate an elevated carbon to silicate ratio for the warm dust, which is not required to fit the outer disk. At its coolest, the warm dust can be fit with a disk from 0.14 to 0.31 AU, but with a higher inclination than either the outer disk or the gaseous disk, providing confirmation of the high inclination inferred from mid-IR interferometry. In tandem, the compositional and inclination difference between the warm dust and the outer dust disk suggests that the warm dust may be of second-generation origin, rather than a remnant of a primordial disk component. With its near face-on inclination, SAO 206462's disk is a prime location for planet searches. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Performances of multiprocessor multidisk architectures for continuous media storage
NASA Astrophysics Data System (ADS)
Gennart, Benoit A.; Messerli, Vincent; Hersch, Roger D.
1996-03-01
Multimedia interfaces increase the need for large image databases, capable of storing and reading streams of data with strict synchronicity and isochronicity requirements. In order to fulfill these requirements, we consider a parallel image server architecture which relies on arrays of intelligent disk nodes, each disk node being composed of one processor and one or more disks. This contribution analyzes through bottleneck performance evaluation and simulation the behavior of two multi-processor multi-disk architectures: a point-to-point architecture and a shared-bus architecture similar to current multiprocessor workstation architectures. We compare the two architectures on the basis of two multimedia algorithms: the compute-bound frame resizing by resampling and the data-bound disk-to-client stream transfer. The results suggest that the shared bus is a potential bottleneck despite its very high hardware throughput (400Mbytes/s) and that an architecture with addressable local memories located closely to their respective processors could partially remove this bottleneck. The point- to-point architecture is scalable and able to sustain high throughputs for simultaneous compute- bound and data-bound operations.
Implementing Journaling in a Linux Shared Disk File System
NASA Technical Reports Server (NTRS)
Preslan, Kenneth W.; Barry, Andrew; Brassow, Jonathan; Cattelan, Russell; Manthei, Adam; Nygaard, Erling; VanOort, Seth; Teigland, David; Tilstra, Mike; O'Keefe, Matthew;
2000-01-01
In computer systems today, speed and responsiveness is often determined by network and storage subsystem performance. Faster, more scalable networking interfaces like Fibre Channel and Gigabit Ethernet provide the scaffolding from which higher performance computer systems implementations may be constructed, but new thinking is required about how machines interact with network-enabled storage devices. In this paper we describe how we implemented journaling in the Global File System (GFS), a shared-disk, cluster file system for Linux. Our previous three papers on GFS at the Mass Storage Symposium discussed our first three GFS implementations, their performance, and the lessons learned. Our fourth paper describes, appropriately enough, the evolution of GFS version 3 to version 4, which supports journaling and recovery from client failures. In addition, GFS scalability tests extending to 8 machines accessing 8 4-disk enclosures were conducted: these tests showed good scaling. We describe the GFS cluster infrastructure, which is necessary for proper recovery from machine and disk failures in a collection of machines sharing disks using GFS. Finally, we discuss the suitability of Linux for handling the big data requirements of supercomputing centers.
Near-infrared structure of fast and slow-rotating disk galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schechtman-Rook, Andrew; Bershady, Matthew A., E-mail: andrew@astro.wisc.edu
We investigate the stellar disk structure of six nearby edge-on spiral galaxies using high-resolution JHK {sub s}-band images and three-dimensional radiative transfer models. To explore how mass and environment shape spiral disks, we selected galaxies with rotational velocities between 69 km s{sup –1} 150 km s{sup –1}) galaxies, only NGC 4013 has the super-thin+thin+thick nested disk structure seen in NGC 891 and the Milky Way, albeit with decreased oblateness, while NGC 1055, a disturbed massive spiral galaxy, contains disks with h{sub z} ≲ 200 pc. NGC 4565, another fast-rotator, contains a prominent ring at a radius ∼5 kpc but nomore » super-thin disk. Despite these differences, all fast-rotating galaxies in our sample have inner truncations in at least one of their disks. These truncations lead to Freeman Type II profiles when projected face-on. Slow-rotating galaxies are less complex, lacking inner disk truncations and requiring fewer disk components to reproduce their light distributions. Super-thin disk components in undisturbed disks contribute ∼25% of the total K {sub s}-band light, up to that of the thin-disk contribution. The presence of super-thin disks correlates with infrared flux ratios; galaxies with super-thin disks have f{sub K{sub s}}/f{sub 60} {sub μm}≤0.12 for integrated light, consistent with super-thin disks being regions of ongoing star-formation. Attenuation-corrected vertical color gradients in (J – K {sub s}) correlate with the observed disk structure and are consistent with population gradients with young-to-intermediate ages closer to the mid-plane, indicating that disk heating—or cooling—is a ubiquitous phenomenon.« less
Magnetically Induced Disk Winds and Transport in the HL Tau Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, Yasuhiro; Flock, Mario; Turner, Neal J.
2017-08-10
The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppressmore » dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β {sub 0} ≃ 2 × 10{sup 4} under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.« less
Magnetically Induced Disk Winds and Transport in the HL Tau Disk
NASA Astrophysics Data System (ADS)
Hasegawa, Yasuhiro; Okuzumi, Satoshi; Flock, Mario; Turner, Neal J.
2017-08-01
The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β 0 ≃ 2 × 104 under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.
Thin-disk piezoceramic ultrasonic motor. Part I: design and performance evaluation.
Wen, Fuh Liang; Yen, Chi Yung; Ouyang, Minsun
2003-08-01
The purpose of this study is to gain the knowledge and experience in the design of thin-disk piezoceramic-driving ultrasonic actuator dedicated. In this paper, the design and construction of an innovative ultrasonic actuator is developed as a stator, which is a composite structure consisting of piezoceramic (PZT) membrane bonded on a metal sheet. Such a concentric PZT structure possesses the electrical and mechanical coupling characteristics in flexural wave. The driving ability of the actuator comes from the mechanical vibration of extension and shrinkage of a metal sheet due to the converse piezoelectric effect, corresponding to the frequency of a single-phase AC power. By applying the constraints on the specific geometry positions on the metal sheet, the various behaviors of flexural waves have been at the different directions. The rotor is impelled by the actuator with rotational speeds of 600 rpm in maximum using a friction-contact mechanism. Very high actuating and braking abilities are obtained. This simple and inexpensive structure of actuator demonstrates that the mechanical design of actuator and rotor could be done separately and flexibly according to the requirements for various applications. And, its running accuracy and positioning precision are described in Part II.A closed loop servo positioning control i.e. sliding mode control (SMC) is used to compensate automatically for nonlinearly mechanical behaviors such as dry friction, ultrasonic vibrating, slip-stick phenomena. Additionally, SMC scheme has been successfully applied to position tracking to prove the excellent robust performance in noise rejection.
Archive Storage Media Alternatives.
ERIC Educational Resources Information Center
Ranade, Sanjay
1990-01-01
Reviews requirements for a data archive system and describes storage media alternatives that are currently available. Topics discussed include data storage; data distribution; hierarchical storage architecture, including inline storage, online storage, nearline storage, and offline storage; magnetic disks; optical disks; conventional magnetic…
Hydrocarbon Emission Rings in Protoplanetary Disks Induced by Dust Evolution
NASA Astrophysics Data System (ADS)
Bergin, Edwin A.; Du, Fujun; Cleeves, L. Ilsedore; Blake, G. A.; Schwarz, K.; Visser, R.; Zhang, K.
2016-11-01
We report observations of resolved C2H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C3H2 emission ring with an identical spatial distribution to C2H in the TW Hya disk. This suggests that these are hydrocarbon rings (I.e., not limited to C2H). Using a detailed thermo-chemical model we show that reproducing the emission from C2H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.
High-resolution 25 μm Imaging of the Disks around Herbig Ae/Be Stars
NASA Astrophysics Data System (ADS)
Honda, M.; Maaskant, K.; Okamoto, Y. K.; Kataza, H.; Yamashita, T.; Miyata, T.; Sako, S.; Fujiyoshi, T.; Sakon, I.; Fujiwara, H.; Kamizuka, T.; Mulders, G. D.; Lopez-Rodriguez, E.; Packham, C.; Onaka, T.
2015-05-01
We imaged circumstellar disks around 22 Herbig Ae/Be stars at 25 μm using Subaru/COMICS and Gemini/T-ReCS. Our sample consists of an equal number of objects from each of the two categories defined by Meeus et al.; 11 group I (flaring disk) and II (flat disk) sources. We find that group I sources tend to show more extended emission than group II sources. Previous studies have shown that the continuous disk is difficult to resolve with 8 m class telescopes in the Q band due to the strong emission from the unresolved innermost region of the disk. This indicates that the resolved Q-band sources require a hole or gap in the disk material distribution to suppress the contribution from the innermost region of the disk. As many group I sources are resolved at 25 μm, we suggest that many, but not all, group I Herbig Ae/Be disks have a hole or gap and are (pre-)transitional disks. On the other hand, the unresolved nature of many group II sources at 25 μm supports the idea that group II disks have a continuous flat disk geometry. It has been inferred that group I disks may evolve into group II through the settling of dust grains into the mid-plane of the protoplanetary disk. However, considering the growing evidence for the presence of a hole or gap in the disk of group I sources, such an evolutionary scenario is unlikely. The difference between groups I and II may reflect different evolutionary pathways of protoplanetary disks. Based on data collected at the Subaru Telescope, via the time exchange program between Subaru and the Gemini Observatory. The Subaru Telescope is operated by the National Astronomical Observatory of Japan.
NASA Technical Reports Server (NTRS)
Currie, Thayne; Sicilia-Aguilar, Auora
2011-01-01
We present Spitzer 3.6-24 micron photometry and spectroscopy for stars in the 1-3 Myr-old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. (2008). Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. (2008) to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters - IC 348, NGC 2362, and eta Cha -- to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks -- those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from approx.15-20% at 1-2 Myr to > 50% at 5-8 Myr; the mean transitional disk lifetime is closer to approx. 1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. (2009) and Sicilia-Aguilar et al. (2009). In the Coronet Cluster and IC 348, transitional disks are more numerous for very low-mass M3--M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically-thick primordial disks is Mdisk approx. 0.001-0.003 M*. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full SED modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.
NASA Astrophysics Data System (ADS)
Currie, Thayne; Sicilia-Aguilar, Aurora
2011-05-01
We present Spitzer 3.6-24 μm photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters—IC 348, NGC 2362, and η Cha—to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks—those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from ~15%-20% at 1-2 Myr to >=50% at 5-8 Myr the mean transitional disk lifetime is closer to ~1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M disk ≈ 0.001-0.003 M sstarf. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.
Apparatus for controlling fluid flow in a conduit wall
Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.
2003-05-13
A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.
Variable Dynamics in the Inner Disk of HD 135344B Revealed with Multi-epoch Scattered Light Imaging
NASA Astrophysics Data System (ADS)
Stolker, Tomas; Sitko, Mike; Lazareff, Bernard; Benisty, Myriam; Dominik, Carsten; Waters, Rens; Min, Michiel; Perez, Sebastian; Milli, Julien; Garufi, Antonio; de Boer, Jozua; Ginski, Christian; Kraus, Stefan; Berger, Jean-Philippe; Avenhaus, Henning
2017-11-01
We present multi-epoch Very Large Telescope/Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT/SPHERE) observations of the protoplanetary disk around HD 135344B (SAO 206462). The J-band scattered light imagery reveal, with high spatial resolution (˜41 mas, 6.4 au), the disk surface beyond ˜20 au. Temporal variations are identified in the azimuthal brightness distributions of all epochs, presumably related to the asymmetrically shading dust distribution in the inner disk. These shadows manifest themselves as narrow lanes, cast by localized density enhancements, and broader features which possibly trace the larger scale dynamics of the inner disk. We acquired visible and near-infrared photometry which shows variations up to 10% in the JHK bands, possibly correlated with the presence of the shadows. Analysis of archival Very Large Telescope Interferometer/Precision Integrated-Optics Near-infrared Imaging ExpeRiment (VLTI/PIONIER) H-band visibilities constrain the orientation of the inner disk to I=18\\buildrel{\\circ}\\over{.} {2}-4.1+3.4 and {PA}=57\\buildrel{\\circ}\\over{.} 3+/- 5\\buildrel{\\circ}\\over{.} 7, consistent with an alignment with the outer disk or a minor disk warp of several degrees. The latter scenario could explain the broad, quasi-stationary shadowing in north-northwest direction in case the inclination of the outer disk is slightly larger. The correlation between the shadowing and the near-infrared excess is quantified with a grid of radiative transfer models. The variability of the scattered light contrast requires extended variations in the inner disk atmosphere (H/r≲ 0.2). Possible mechanisms that may cause asymmetric variations in the optical depth ({{Δ }}τ ≲ 1) through the atmosphere of the inner disk include turbulent fluctuations, planetesimal collisions, or a dusty disk wind, possibly enhanced by a minor disk warp. A fine temporal sampling is required to follow day-to-day changes of the shadow patterns which may be a face-on variant of the UX Orionis phenomenon. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 087.C-0702(A,B), 087.C-0458(B,C), 087.C-0703(B), 088.C-0670(B), 088.D-0185(A), 088.C-0763(D), 089.C-0211(A), 091.C-0570(A), 095.C-0273(A), 097.C-0885(A), 097.C-0702(A), and 297.C-5023(A).
Sgr A* Emission Parametrizations from GRMHD Simulations
NASA Astrophysics Data System (ADS)
Anantua, Richard; Ressler, Sean; Quataert, Eliot
2018-06-01
Galactic Center emission near the vicinity of the central black hole, Sagittarius (Sgr) A*, is modeled using parametrizations involving the electron temperature, which is found from general relativistic magnetohydrodynamic (GRMHD) simulations to be highest in the disk-outflow corona. Jet-motivated prescriptions generalizing equipartition of particle and magnetic energies, e.g., by scaling relativistic electron energy density to powers of the magnetic field strength, are also introduced. GRMHD jet (or outflow)/accretion disk/black hole (JAB) simulation postprocessing codes IBOTHROS and GRMONTY are employed in the calculation of images and spectra. Various parametric models reproduce spectral and morphological features, such as the sub-mm spectral bump in electron temperature models and asymmetric photon rings in equipartition-based models. The Event Horizon Telescope (EHT) will provide unprecedentedly high-resolution 230+ GHz observations of the "shadow" around Sgr A*'s supermassive black hole, which the synthetic models presented here will reverse-engineer. Both electron temperature and equipartition-based models can be constructed to be compatible with EHT size constraints for the emitting region of Sgr A*. This program sets the groundwork for devising a unified emission parametrization flexible enough to model disk, corona and outflow/jet regions with a small set of parameters including electron heating fraction and plasma beta.
Silicon Integrated Cavity Optomechanical Transducer
NASA Astrophysics Data System (ADS)
Zou, Jie; Miao, Houxun; Michels, Thomas; Liu, Yuxiang; Srinivasan, Kartik; Aksyuk, Vladimir
2013-03-01
Cavity optomechanics enables measurements of mechanical motion at the fundamental limits of precision imposed by quantum mechanics. However, the need to align and couple devices to off-chip optical components hinders development, miniaturization and broader application of ultrahigh sensitivity chip-scale optomechanical transducers. Here we demonstrate a fully integrated and optical fiber pigtailed optomechanical transducer with a high Q silicon micro-disk cavity near-field coupled to a nanoscale cantilever. We detect the motion of the cantilever by measuring the resonant frequency shift of the whispering gallery mode of the micro-disk. The sensitivity near the standard quantum limit can be reached with sub-uW optical power. Our on-chip approach combines compactness and stability with great design flexibility: the geometry of the micro-disk and cantilever can be tailored to optimize the mechanical/optical Q factors and tune the mechanical frequency over two orders of magnitudes. Electrical transduction in addition to optical transduction was also demonstrated and both can be used to effectively cool the cantilever. Moreover, cantilevers with sharp tips overhanging the chip edge were fabricated to potentially allow the mechanical cantilever to be coupled to a wide range of off-chip systems, such as spins, DNA, nanostructures and atoms on clean surfaces.
Magnetic bearings for a high-performance optical disk buffer
NASA Technical Reports Server (NTRS)
Hockney, Richard; Hawkey, Timothy
1993-01-01
An optical disk buffer concept can provide gigabit-per-second data rates and terabit capacity through the use of arrays of solid state lasers applied to a stack of erasable/reusable optical disks. The RCA optical disk buffer has evoked interest by NASA for space applications. The porous graphite air bearings in the rotary spindle as well as those used in the linear translation of the read/write head would be replaced by magnetic bearings or mechanical (ball or roller) bearings. Based upon past experience, roller or ball bearings for the translation stages are not feasible. Unsatisfactory, although limited experience exists with ball bearing spindles also. Magnetic bearings, however, appear ideally suited for both applications. The use of magnetic bearings is advantageous in the optical disk buffer because of the absence of physical contact between the rotating and stationary members. This frictionless operation leads to extended life and reduced drag. The manufacturing tolerances that are required to fabricate magnetic bearings would also be relaxed from those required for precision ball and gas bearings. Since magnetic bearings require no lubricant, they are inherently compatible with a space (vacuum) environment. Magnetic bearings also allow the dynamics of the rotor/bearing system to be altered through the use of active control. This provides the potential for reduced vibration, extended regions of stable operation, and more precise control of position.
The Evolution of the Accretion Disk Around 4U 1820-30 During a Superburst
NASA Technical Reports Server (NTRS)
Ballantyne, D. R.; Strohmayer, T. E.
2004-01-01
Accretion from a disk onto a collapsed, relativistic star - a neutron star or black hole - is the mechanism widely believed to be responsible for the emission from compact X-ray binaries. Because of the extreme spatial resolution required, it is not yet possible to directly observe the evolution or dynamics of the inner parts of the accretion disk where general relativistic effects are dominant. Here, we use the bright X-ray emission from a superburst on the surface of the neutron star 4U 1820-30 as a spotlight to illuminate the disk surface. The X-rays cause iron atoms in the disk t o fluoresce, allowing a determination of the ionization state, covering factor and inner radius of the disk over the course of the burst. The time-resolved spectral fitting shows that the inner region of the disk is disrupted by the burst, possibly being heated into a thicker, more tenuous flow, before recovering its previous form in approximately 1000 s. This marks the first instance that the evolution of the inner regions of an accretion disk has been observed in real-time.
Radial Surface Density Profiles of Gas and Dust in the Debris Disk Around 49 Ceti
NASA Technical Reports Server (NTRS)
Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M.; Roberge, Aki; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David J.; Andrews, Sean M.;
2017-01-01
We present approximately 0".4 resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between approximately 100 and 310 au, with a marginally significant enhancement of surface density at a radius of approximately 110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While approximately 80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at approximately 20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (approx. 220 au) is smaller than that of the dust disk (approx. 300 au), consistent with recent observations of other gasbearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti's disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., the following definitions apply to this subchapter: Act means the Social Security Act. Administrative..., statements, and other required documents. Electronic media means: (1) Electronic storage material on which...) and any removable/transportable digital memory medium, such as magnetic tape or disk, optical disk, or...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., the following definitions apply to this subchapter: Act means the Social Security Act. Administrative..., statements, and other required documents. Electronic media means: (1) Electronic storage material on which...) and any removable/transportable digital memory medium, such as magnetic tape or disk, optical disk, or...
Chaining for Flexible and High-Performance Key-Value Systems
2012-09-01
store that is fault tolerant achieves high performance and availability, and offers strong data consistency? We present a new replication protocol...effective high performance data access and analytics, many sites use simpler data model “ NoSQL ” systems. ese systems store and retrieve data only by...DRAM, Flash, and disk-based storage; can act as an unreliable cache or a durable store ; and can offer strong or weak data consistency. e value of
NASA Astrophysics Data System (ADS)
Cui, Honggang
2007-12-01
Amphiphilic block copolymers, consisting of at least two types of monomers with different affinity to the dissolving solvent(s), have been recognized as a molecular building unit for their chemical tunability and design flexibility. Amphiphilic block copolymers with a chargeable block have structural features of polyelectrolytes, block copolymers and surfactants. The combination of these different features offers great flexibility for developing novel assembled morphologies at the nanoscale and outstanding ability to control and manipulate those morphologies. The nanostructures, formed from the spontaneous association of amphiphilic block copolymer in selective solvents, show promise for applications in nanotechnology and pharmaceuticals, including drug delivery, tissue engineering and bio-imaging. A basic knowledge of their modes of self-assembly and their correspondence to application-related properties is just now being developed and poses a considerable scientific challenge. The goal of this dissertation is to investigate the associative behavior of charged, amphiphilic block copolymers in solvent mixtures while in the presence of organic counterions. Self-assembly of poly (acrylic acid)- block-poly (methyl acrylate)-block-polystyrene (PAA- b-PMA-b-PS) triblock copolymers produces nanodomains in THF/water solution specifically through the interaction with organic counterions (polyamines). These assembled structures can include classic micelles (spheres, cylinders and vesicles), but, more importantly, include non-classic micelles (disks, toroids, branched micelles and segmented micelles). Each micelle structure is stable and reproducible at different assembly conditions. The assembled micellar structures depend on not only solution components (thermodynamics) but also mixing procedure and consequent self-assembly pathway (kinetics). The key factors that determine the thermodynamic interactions that partially define the assembled structures and the kinetic assembly process include THF/water ratio, PS block length, the type and amount of organic counterions, and the mixing pathway. Their formation mechanism has been investigated from three aspects: (i) the chain structure of organic counterions, including spacer length, chain hydrophobicity between ionizable groups and the number of ionizable groups (amine group); (ii) molecular structure of the triblock copolymer, including block length of polystyrene and chain architecture; (iii) relative variation of the components, such as different ratios of THF to water and the different ratios of amine groups to acid groups. The first example of a novel micelle formed was the toroidal micelle. The toroidal micelle morphology, which is theoretically predicted but rarely observed, has been produced by the self assembly of PAA99- b-PMA73-b-PS66 in combination with 2,2-(ethylenedioxy)diethylamine (EDDA) and mixed THF/H2O solvent. It was found that toroids can be constructed by two mechanisms: elimination of energetically unfavored cylindrical micelle endcaps or perforation of disk-like micelles. Three-fold junctions were formed as intermediate structures to facilitate toroidal formation from cylindrical micelles. In order to construct toroids from cylindrical micelles, three requirements must be met: lower bending modulus (flexibility of cylinders), selfattraction between cylinders, and extra endcapping energy originating from chain packing frustration. Extremely high energy spheres can also fuse into toroids. Disk-like micelles can transform into a toroidal morphology when cylindrical packing geometry was initiated along the rims of disk-like micelles via solvent mixing that eventually perforated the disk center. The toroidal morphology can be kinetically trapped by either ridding the system of organic solvent or chemically crosslinking the PAA corona with EDDA via addition of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide methiodide (DPEM). The interaction of positively-charged, multivalent organic amines with the negatively-charged PAA corona plays a decisive role in the formation of these micelles. Inter-chain binding from the interaction of the two amine end groups of diamines with acid groups from different PAA corona blocks governs the final assembled structures. Diamines with hydrophilic spacers induced the formation of micelles with larger interfacial curvature as the spacer length increased. Disk-like micelles, cylindrical micelles or spherical micelles were observed with the gradual increase of hydrophilic spacer length. Diamines with variable hydrophobic spacers showed a similar effect when the spacer length was less than six methylene units. Application of longer hydrophobic diamines had a reverse effect on the interfacial curvature. This effect was attributed to the interaction of hydrophobic diamine hydrocarbon linking chains with the PMA-b-PS hydrophobic core. These findings indicate an easy method to tune micelle structure with multivalent organic counterions. (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Currie, Thayne; Sicilia-Aguilar, Aurora
We present Spitzer 3.6-24 {mu}m photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters-IC 348, NGC 2362, and {eta} Cha-to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks-those with inner holes and thosemore » that are homologously depleted. The percentage of disks in the transitional phase increases from {approx}15%-20% at 1-2 Myr to {>=}50% at 5-8 Myr; the mean transitional disk lifetime is closer to {approx}1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M{sub disk} {approx} 0.001-0.003 M{sub *}. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.« less
Thin Disks Gone MAD: Magnetically Arrested Accretion in the Thin Regime
NASA Astrophysics Data System (ADS)
Avara, Mark J.; McKinney, Jonathan C.; Reynolds, Christopher S.
2015-01-01
The collection and concentration of surrounding large scale magnetic fields by black hole accretion disks may be required for production of powerful, spin driven jets. So far, accretion disks have not been shown to grow sufficient poloidal flux via the turbulent dynamo alone to produce such persistent jets. Also, there have been conflicting answers as to how, or even if, an accretion disk can collect enough magnetic flux from the ambient environment. Extending prior numerical studies of magnetically arrested disks (MAD) in the thick (angular height, H/R~1) and intermediate (H/R~.2-.6) accretion regimes, we present our latest results from fully general relativistic MHD simulations of the thinnest BH (H/R~.1) accretion disks to date exhibiting the MAD mode of accretion. We explore the significant deviations of this accretion mode from the standard picture of thin, MRI-driven accretion, and demonstrate the accumulation of large-scale magnetic flux.
Figuring Out Gas in Galaxies In Enzo (FOGGIE): Resolving the Inner Circumgalactic Medium
NASA Astrophysics Data System (ADS)
Corlies, Lauren; Peeples, Molly; Tumlinson, Jason; O'Shea, Brian; Smith, Britton
2018-01-01
Cosmological hydrodynamical simulations using every common numerical method have struggled to reproduce the multiphase nature of the circumgalactic medium (CGM) revealed by recent observations. However, to date, resolution in these simulations has been aimed at dense regions — the galactic disk and in-falling satellites — while the diffuse CGM never reaches comparable levels of refinement. Taking advantage of the flexible grid structure of the adaptive mesh refinement code Enzo, we force refinement in a region of the CGM of a Milky Way-like galaxy to the same spatial resolution as that of the disk. In this talk, I will present how the physical and structural distributions of the circumgalactic gas change dramatically as a function of the resolution alone. I will also show the implications these changes have for the observational properties of the gas in the context of the observations.
Controlling a microdisk laser by local refractive index perturbation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liew, Seng Fatt; Redding, Brandon; Cao, Hui, E-mail: hui.cao@yale.edu
2016-02-01
We demonstrate a simple yet effective approach of controlling lasing in a semiconductor microdisk by photo-thermal effect. A continuous wave green laser beam, focused onto the microdisk perimeter, can enhance or suppress lasing in different cavity modes, depending on the position of the focused beam. Its main effect is a local modification of the refractive index of the disk, which results in an increase in the power slope of some lasing modes and a decrease of others. The boundary roughness breaks the rotational symmetry of a circular disk, allowing the lasing process to be tuned by varying the green beammore » position. Using the same approach, we can also fine tune the relative intensity of a quasi-degenerate pair of lasing modes. Such post-fabrication control, enabled by an additional laser beam, is flexible and reversible, thus enhancing the functionality of semiconductor microdisk lasers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergin, Edwin A.; Du, Fujun; Schwarz, K.
We report observations of resolved C{sub 2}H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C{sub 3}H{sub 2} emission ring with an identical spatial distribution to C{sub 2}H in the TW Hya disk. This suggests that these are hydrocarbon rings (i.e., not limited to C{sub 2}H). Using a detailed thermo-chemical model we show that reproducing the emission frommore » C{sub 2}H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.« less
On the application of Chimera/unstructured hybrid grids for conjugate heat transfer
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing
1995-01-01
A hybrid grid system that combines the Chimera overset grid scheme and an unstructured grid method is developed to study fluid flow and heat transfer problems. With the proposed method, the solid structural region, in which only the heat conduction is considered, can be easily represented using an unstructured grid method. As for the fluid flow region external to the solid material, the Chimera overset grid scheme has been shown to be very flexible and efficient in resolving complex configurations. The numerical analyses require the flow field solution and material thermal response to be obtained simultaneously. A continuous transfer of temperature and heat flux is specified at the interface, which connects the solid structure and the fluid flow as an integral system. Numerical results are compared with analytical and experimental data for a flat plate and a C3X cooled turbine cascade. A simplified drum-disk system is also simulated to show the effectiveness of this hybrid grid system.
The graphics and data acquisition software package
NASA Technical Reports Server (NTRS)
Crosier, W. G.
1981-01-01
A software package was developed for use with micro and minicomputers, particularly the LSI-11/DPD-11 series. The package has a number of Fortran-callable subroutines which perform a variety of frequently needed tasks for biomedical applications. All routines are well documented, flexible, easy to use and modify, and require minimal programmer knowledge of peripheral hardware. The package is also economical of memory and CPU time. A single subroutine call can perform any one of the following functions: (1) plot an array of integer values from sampled A/D data, (2) plot an array of Y values versus an array of X values; (3) draw horizontal and/or vertical grid lines of selectable type; (4) annotate grid lines with user units; (5) get coordinates of user controlled crosshairs from the terminal for interactive graphics; (6) sample any analog channel with program selectable gain; (7) wait a specified time interval, and (8) perform random access I/O of one or more blocks of a sequential disk file. Several miscellaneous functions are also provided.
Extending the Virtual Solar Observatory (VSO) to Incorporate Data Analysis Capabilities (III)
NASA Astrophysics Data System (ADS)
Csillaghy, A.; Etesi, L.; Dennis, B.; Zarro, D.; Schwartz, R.; Tolbert, K.
2008-12-01
We will present a progress report on our activities to extend the data analysis capabilities of the VSO. Our efforts to date have focused on three areas: 1. Extending the data retrieval capabilities by developing a centralized data processing server. The server is built with Java, IDL (Interactive Data Language), and the SSW (Solar SoftWare) package with all SSW-related instrument libraries and required calibration data. When a user requests VSO data that requires preprocessing, the data are transparently sent to the server, processed, and returned to the user's IDL session for viewing and analysis. It is possible to have any Java or IDL client connect to the server. An IDL prototype for preparing and calibrating SOHO/EIT data wll be demonstrated. 2. Improving the solar data search in SHOW SYNOP, a graphical user tool connected to VSO in IDL. We introduce the Java-IDL interface that allows a flexible dynamic, and extendable way of searching the VSO, where all the communication with VSO are managed dynamically by standard Java tools. 3. Improving image overlay capability to support coregistration of solar disk observations obtained from different orbital view angles, position angles, and distances - such as from the twin STEREO spacecraft.
Implementation of Cloud based next generation sequencing data analysis in a clinical laboratory.
Onsongo, Getiria; Erdmann, Jesse; Spears, Michael D; Chilton, John; Beckman, Kenneth B; Hauge, Adam; Yohe, Sophia; Schomaker, Matthew; Bower, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat
2014-05-23
The introduction of next generation sequencing (NGS) has revolutionized molecular diagnostics, though several challenges remain limiting the widespread adoption of NGS testing into clinical practice. One such difficulty includes the development of a robust bioinformatics pipeline that can handle the volume of data generated by high-throughput sequencing in a cost-effective manner. Analysis of sequencing data typically requires a substantial level of computing power that is often cost-prohibitive to most clinical diagnostics laboratories. To address this challenge, our institution has developed a Galaxy-based data analysis pipeline which relies on a web-based, cloud-computing infrastructure to process NGS data and identify genetic variants. It provides additional flexibility, needed to control storage costs, resulting in a pipeline that is cost-effective on a per-sample basis. It does not require the usage of EBS disk to run a sample. We demonstrate the validation and feasibility of implementing this bioinformatics pipeline in a molecular diagnostics laboratory. Four samples were analyzed in duplicate pairs and showed 100% concordance in mutations identified. This pipeline is currently being used in the clinic and all identified pathogenic variants confirmed using Sanger sequencing further validating the software.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operating parameter value and corrective action taken. (6) For each continuous monitoring system, records... operator may retain records on microfilm, computer disks, magnetic tape, or microfiche; and (3) The owner or operator may report required information on paper or on a labeled computer disk using commonly...
The evolution of a dead zone in a circumplanetary disk
NASA Astrophysics Data System (ADS)
Chen, Cheng; Martin, Rebecca; Zhu, Zhaohuan
2018-01-01
Studying the evolution of a circumplanetary disk can help us to understand the formation of Jupiter and the four Galilean satellites. With the grid-based hydrodynamic code, FARGO3D, we simulate the evolution of a circumplanetary disk with a dead zone, a region of low turbulence. Tidal torques from the sun constrain the size of the circumplanetary disk to about 0.4 R_H. The dead zone provides a cold environment for icy satellite formation. However, as material builds up there, the temperature of the dead zone may reach the critical temperature required for the magnetorotational instability to drive turbulence. Part of the dead zone accretes on to the planet in an accretion outburst. We explore possible disk parameters that provide a suitable environment for satellite formation.
Stress Measurement by Geometrical Optics
NASA Technical Reports Server (NTRS)
Robinson, R. S.; Rossnagel, S. M.
1986-01-01
Fast, simple technique measures stresses in thin films. Sample disk bowed by stress into approximately spherical shape. Reflected image of disk magnified by amount related to curvature and, therefore, stress. Method requires sample substrate, such as cheap microscope cover slide, two mirrors, laser light beam, and screen.
A composite-flywheel burst-containment study
NASA Astrophysics Data System (ADS)
Sapowith, A. D.; Handy, W. E.
1982-01-01
A key component impacting total flywheel energy storage system weight is the containment structure. This report addresses the factors that shape this structure and define its design criteria. In addition, containment weight estimates are made for the several composite flywheel designs of interest so that judgements can be made as to the relative weights of their containment structure. The requirements set down for this program were that all containment weight estimates be based on a 1 kWh burst. It should be noted that typical flywheel requirements for regenerative braking of small automobiles call for deliverable energies of 0.25 kWh. This leads to expected maximum burst energies of 0.5 kWh. The flywheels studied are those considered most likely to be carried further for operational design. These are: The pseudo isotropic disk flywheel, sometimes called the alpha ply; the SMC molded disk; either disk with a carbon ring; the subcircular rim with cruciform hub; and Avco's bi-directional circular weave disk.
Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks.
Ji, Hantao; Burin, Michael; Schartman, Ethan; Goodman, Jeremy
2006-11-16
The most efficient energy sources known in the Universe are accretion disks. Those around black holes convert 5-40 per cent of rest-mass energy to radiation. Like water circling a drain, inflowing mass must lose angular momentum, presumably by vigorous turbulence in disks, which are essentially inviscid. The origin of the turbulence is unclear. Hot disks of electrically conducting plasma can become turbulent by way of the linear magnetorotational instability. Cool disks, such as the planet-forming disks of protostars, may be too poorly ionized for the magnetorotational instability to occur, and therefore essentially unmagnetized and linearly stable. Nonlinear hydrodynamic instability often occurs in linearly stable flows (for example, pipe flows) at sufficiently large Reynolds numbers. Although planet-forming disks have extreme Reynolds numbers, keplerian rotation enhances their linear hydrodynamic stability, so the question of whether they can be turbulent and thereby transport angular momentum effectively is controversial. Here we report a laboratory experiment, demonstrating that non-magnetic quasi-keplerian flows at Reynolds numbers up to millions are essentially steady. Scaled to accretion disks, rates of angular momentum transport lie far below astrophysical requirements. By ruling out purely hydrodynamic turbulence, our results indirectly support the magnetorotational instability as the likely cause of turbulence, even in cool disks.
WL 17: A Young Embedded Transition Disk
NASA Astrophysics Data System (ADS)
Sheehan, Patrick D.; Eisner, Josh A.
2017-05-01
We present the highest spatial resolution ALMA observations to date of the Class I protostar WL 17 in the ρ Ophiuchus L1688 molecular cloud complex, which show that it has a 12 au hole in the center of its disk. We consider whether WL 17 is actually a Class II disk being extincted by foreground material, but find that such models do not provide a good fit to the broadband spectral energy distribution (SED) and also require such high extinction that it would presumably arise from dense material close to the source, such as a remnant envelope. Self-consistent models of a disk embedded in a rotating collapsing envelope can nicely reproduce both the ALMA 3 mm observations and the broadband SED of WL 17. This suggests that WL 17 is a disk in the early stages of its formation, and yet even at this young age the inner disk has been depleted. Although there are multiple pathways for such a hole to be created in a disk, if this hole was produced by the formation of planets it could place constraints on the timescale for the growth of planets in protoplanetary disks.
Mo100 to Mo99 Target Cooling Enhancements Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard
2016-02-16
Target design requirements changed significantly over the past year to a much higher beam current on larger diameter disks, and with a beam impingement on both ends of the target. Scaling from the previous design, that required significantly more mass flow rate of helium coolant, and also thinner disks. A new Aerzen GM12.4 blower was selected that can deliver up to 400 g/s at 400 psi, compared to about 100 g/s possible with the Tuthill blower previously selected.Further, to accommodate the 42 MeV, 2.7 mA beam on each side of the target, the disk thickness and the coolant gaps weremore » halved to create the current baseline design: 0.5 mm disk thickness (at 29 mm diameter) and 0.25 mm coolant gap. Thermal-hydraulic analysis of this target, presented below for reference, gave very good results, suggesting that the target could be improved with fewer, thicker disks and with disk thickness increasing toward the target center. The total thickness of Mo100 in the target remaining the same, that reduces the number of coolant gaps. This allows for the gap width to be increased, increasing the mass flow in each gap and consequently increasing heat transfer. A preliminary geometry was selected and analyzed with variable disk thickness and wider coolant gaps. The result of analysis of this target shows that disk thickness increase near the window was too aggressive and further resizing of the disks is necessary, but it does illustrate the potential improvements that are possible. Experimental and analytical study of diffusers on the target exit has been done. This shows modest improvement in requcing pressure drop, as will be summarized below. However, the benefit is not significant, and implementation becomes problematic when disk thickness is varying. A bull nose at the entrance does offer significant benefit and is relatively easy to incorporate. A bull nose on both ends is now a feature of the baseline design, and will be a feature of any redesign or enhanced designs that follow.« less
Coronagraphic Imaging of Debris Disks from a High Altitude Balloon Platform
NASA Technical Reports Server (NTRS)
Unwin, Stephen; Traub, Wesley; Bryden, Geoffrey; Brugarolas, Paul; Chen, Pin; Guyon, Olivier; Hillenbrand, Lynne; Kasdin, Jeremy; Krist, John; Macintosh, Bruce;
2012-01-01
Debris disks around nearby stars are tracers of the planet formation process, and they are a key element of our understanding of the formation and evolution of extrasolar planetary systems. With multi-color images of a significant number of disks, we can probe important questions: can we learn about planetary system evolution; what materials are the disks made of; and can they reveal the presence of planets? Most disks are known to exist only through their infrared flux excesses as measured by the Spitzer Space Telescope, and through images measured by Herschel. The brightest, most extended disks have been imaged with HST, and a few, such as Fomalhaut, can be observed using ground-based telescopes. But the number of good images is still very small, and there are none of disks with densities as low as the disk associated with the asteroid belt and Edgeworth-Kuiper belt in our own Solar System. Direct imaging of disks is a major observational challenge, demanding high angular resolution and extremely high dynamic range close to the parent star. The ultimate experiment requires a space-based platform, but demonstrating much of the needed technology, mitigating the technical risks of a space-based coronagrap, and performing valuable measurements of circumstellar debris disks, can be done from a high-altitude balloon platform. In this paper we present a balloon-borne telescope experiment based on the Zodiac II design that would undertake compelling studies of a sample of debris disks.
Coronagraphic Imaging of Debris Disks from a High Altitude Balloon Platform
NASA Technical Reports Server (NTRS)
Unwin, Stephen; Traub, Wesley; Bryden, Geoffrey; Brugarolas, Paul; Chen, Pin; Guyon, Olivier; Hillenbrand, Lynne; Krist, John; Macintosh, Bruce; Mawet, Dimitri;
2012-01-01
Debris disks around nearby stars are tracers of the planet formation process, and they are a key element of our understanding of the formation and evolution of extrasolar planetary systems. With multi-color images of a significant number of disks, we can probe important questions: can we learn about planetary system evolution; what materials are the disks made of; and can they reveal the presence of planets? Most disks are known to exist only through their infrared flux excesses as measured by the Spitzer Space Telescope, and through images measaured by Herschel. The brightest, most extended disks have been imaged with HST, and a few, such as Fomalhaut, can be observed using ground-based telescopes. But the number of good images is still very small, and there are none of disks with densities as low as the disk associated with the asteroid belt and Edgeworth-Kuiper belt in our own Solar System. Direct imaging of disks is major observational challenge, demanding high angular resolution and extremely high dynamic range close to the parent star. The ultimate experiment requires a space-based platform, but demonstrating much of the needed technology, mitigating the technical risks of a space-based coronagraph, and performing valuable measurements of circumstellar debris disks, can be done from a high-altitude balloon platform. In this paper we present a balloon-borne telescope concept based on the Zodiac II design that could undertake compelling studies of a sample of debris disks.
Ames, Kenneth R.; Doesburg, James M.
1987-01-01
A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.
Method for fabricating multi-strand superconducting cable
Borden, A.R.
1985-04-01
Multi-strand superconducting cables adapted to be used, for example, to wind a magnet are fabricated by directing wire strands inwardly from spools disposed on the perimeter of a rotating disk and wrapping them diagonally around a tapered mandrel with a flattened cross-sectional shape with a core having a wedge-shaped channel. As the cable is pulled axially, flexibly coupled wedge-shaped pieces are continuously passed through the channel in the mandrel and inserted into the cable as an internal support therefor.
Apparatus and method for fabricating multi-strand superconducting cable
Borden, Albert R.
1986-01-01
Multi-strand superconducting cables adapted to be used, for example, to wind a magnet is fabricated by directing wire strands inwardly from spools disposed on the perimeter of a rotating disk and wrapping them diagonally around a tapered mandrel with a flattened cross-sectional shape with a core having a wedge-shaped channel. As the cable is pulled axially, flexibly coupled wedge-shaped pieces are continuously passed through the channel in the mandrel and inserted into the cable as an internal support therefor.
Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes
NASA Technical Reports Server (NTRS)
Artymowicz, Pawel; Lubow, Stephen H.
1994-01-01
We investigate the gravitational interaction of a generally eccentric binary star system with circumbinary and circumstellar gaseous disks. The disks are assumed to be coplanar with the binary, geometrically thin, and primarily governed by gas pressure and (turbulent) viscosity but not self-gravity. Both ordinary and eccentric Lindblad resonances are primarily responsible for truncating the disks in binaries with arbitrary eccentricity and nonextreme mass ratio. Starting from a smooth disk configuration, after the gravitational field of the binary truncates the disk on the dynamical timescale, a quasi-equilibrium is achieved, in which the resonant and viscous torques balance each other and any changes in the structure of the disk (e.g., due to global viscous evolution) occur slowly, preserving the average size of the gap. We analytically compute the approximate sizes of disks (or disk gaps) as a function of binary mass ratio and eccentricity in this quasi-equilibrium. Comparing the gap sizes with results of direct simulations using the smoothed particle hydrodynamics (SPH), we obtain a good agreement. As a by-product of the computations, we verify that standard SPH codes can adequately represent the dynamics of disks with moderate viscosity, Reynolds number R approximately 10(exp 3). For typical viscous disk parameters, and with a denoting the binary semimajor axis, the inner edge location of a circumbinary disk varies from 1.8a to 2.6a with binary eccentricity increasing from 0 to 0.25. For eccentricities 0 less than e less than 0.75, the minimum separation between a component star and the circumbinary disk inner edge is greater than a. Our calculations are relevant, among others, to protobinary stars and the recently discovered T Tau pre-main-sequence binaries. We briefly examine the case of a pre-main-sequence spectroscopic binary GW Ori and conclude that circumbinary disk truncation to the size required by one proposed spectroscopic model cannot be due to Linblad resonances, even if the disk is nonviscous.
Records Management with Optical Disk Technology: Now Is the Time.
ERIC Educational Resources Information Center
Retherford, April; Williams, W. Wes
1991-01-01
The University of Kansas record management system using optical disk storage in a network environment and the selection process used to meet existing hardware and budgeting requirements are described. Viability of the technology, document legality, and difficulties encountered during implementation are discussed. (Author/MSE)
Parallel Readout of Optical Disks
1992-08-01
r(x,y) is the apparent reflectance function of the disk surface including the phase error. The illuminat - ing optics should be chosen so that Er(x,y...of the light uniformly illuminat - ing the chip, Ap = 474\\im 2 is the area of photodiode, and rs is the time required to switch the synapses. Figure...reference beam that is incident from the right. Once the hologram is recorded the input is blocked and the disk is illuminat - ed. Lens LI takes the
Planning for optical disk technology with digital cartography.
Light, D.L.
1986-01-01
A major shortfall that still exists in digital systems is the need for very large mass storage capacity. The decade of the 1980s has introduced laser optical disk storage technology, which may be the breakthrough needed for mass storage. This paper addresses system concepts for digital cartography during the transition period. Emphasis will be placed on determining USGS mass storage requirements and introducing laser optical disk technology for handling storage problems for digital data in this decade.-from Author
Disk Density Tuning of a Maximal Random Packing
Ebeida, Mohamed S.; Rushdi, Ahmad A.; Awad, Muhammad A.; Mahmoud, Ahmed H.; Yan, Dong-Ming; English, Shawn A.; Owens, John D.; Bajaj, Chandrajit L.; Mitchell, Scott A.
2016-01-01
We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling (MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local operations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately model fiber reinforced polymers for elastic and failure simulations. PMID:27563162
Deciphering Debris Disk Structure with the Submillimeter Array
NASA Astrophysics Data System (ADS)
MacGregor, Meredith Ann
2018-01-01
More than 20% of nearby main sequence stars are surrounded by dusty disks continually replenished via the collisional erosion of planetesimals, larger bodies similar to asteroids and comets in our own Solar System. The material in these ‘debris disks’ is directly linked to the larger bodies such as planets in the system. As a result, the locations, morphologies, and physical properties of dust in these disks provide important probes of the processes of planet formation and subsequent dynamical evolution. Observations at millimeter wavelengths are especially critical to our understanding of these systems, since they are dominated by larger grains that do not travel far from their origin and therefore reliably trace the underlying planetesimal distribution. The Submillimeter Array (SMA) plays a key role in advancing our understanding of debris disks by providing sensitivity at the short baselines required to determine the structure of wide-field disks, such as the HR 8799 debris disk. Many of these wide-field disks are among the closest systems to us, and will serve as cornerstone templates for the interpretation of more distant, less accessible systems.
Disk Density Tuning of a Maximal Random Packing.
Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A; Mahmoud, Ahmed H; Yan, Dong-Ming; English, Shawn A; Owens, John D; Bajaj, Chandrajit L; Mitchell, Scott A
2016-08-01
We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling (MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local operations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately model fiber reinforced polymers for elastic and failure simulations.
A Semiautomatic Pipeline for Be Star Light Curves
NASA Astrophysics Data System (ADS)
Rímulo, L. R.; Carciofi, A. C.; Rivinius, T.; Okazaki, A.
2016-11-01
Observational and theoretical studies from the last decade have shown that the Viscous Decretion Disk (VDD) scenario, in which turbulent viscosity is the physical mechanism responsible for the transport of material and angular momentum ejected from the star to the outer regions of the disk, is the only viable model for explaining the circumstellar disks of Be stars. In the α-disk approach applied to the VDD, the dimensionless parameter α is a measure of the turbulent viscosity. Recently, combining the time-dependent evolution of a VDD α-disk with non-LTE radiative transfer calculations, the first measurement of the α parameter was made, for the disk dissipation of the Be star ω CMa. It was found that α≍ 1 for that Be disk. The main motivation of this present work is the statistical determination of the α parameter. For this purpose, we present a pipeline that will allow the semiautomatic determination of the α parameter of several dozens of light curves of Be stars available from photometric surveys, In this contribution, we describe the pipeline, outlining the main staps required for the semiautomatic analysis of light curves
Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.
We present ∼0.″4 resolution images of CO(3–2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ∼100 and 310 au, with a marginally significant enhancement of surface density at a radius of ∼110 au. The SED requires an inner disk of small grains in addition to the outer diskmore » of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ∼80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ∼20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (∼220 au) is smaller than that of the dust disk (∼300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.« less
SMA Continuum Survey of Circumstellar Disks in Serpens
NASA Astrophysics Data System (ADS)
Law, Charles; Ricci, Luca; Andrews, Sean M.; Wilner, David J.; Qi, Chunhua
2017-06-01
The lifetime of disks surrounding pre-main-sequence stars is closely linked to planet formation and provides information on disk dispersal mechanisms and dissipation timescales. The potential for these optically thick, gas-rich disks to form planets is critically dependent on how much dust is available to be converted into terrestrial planets and rocky cores of giant planets. For this reason, an understanding of how dust mass varies with key properties such as stellar mass, age, and environment is critical for understanding planet formation. Millimeter wavelength observations, in which the dust emission is optically thin, are required to study the colder dust residing in the disk’s outer regions and to measure disk dust masses. Hence, we have obtained SMA 1.3 mm continuum observations of 62 Class II sources with suspected circumstellar disks in the Serpens star-forming region (SFR). Relative to the well-studied Taurus SFR, Serpens allows us to probe the distribution of dust masses for disks in a much denser and more clustered environment. Only 13 disks were detected in the continuum with the SMA. We calculate the total dust masses of these disks and compare their masses to those of disks in Taurus, Lupus, and Upper Scorpius. We do not find evidence of diminished dust masses in Serpens disks relative to those in Taurus despite the fact that disks in denser clusters may be expected to contain less dust mass due to stronger and more frequent tidal interactions that can disrupt the outer regions of disks. However, considering the low detection fraction, we likely detected only bright continuum sources and a more sensitive survey of Serpens would help clarify these results.
Department of Defense Semiannual Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
... Register is mandated for the regulatory flexibility agendas required by the Regulatory Flexibility Act (5 U... the Agency's regulatory flexibility agenda, in accordance with the Regulatory Flexibility Act, because... Flexibility Act. Printing of these entries is limited to fields that contain information required by the...
NASA Technical Reports Server (NTRS)
Goodman, P.
1973-01-01
A study has been conducted to determine the feasibility of increasing sensitivity for ozone detection. The detection technique employed is the chemiluminescent reaction of ozone with a rhodamine-B impregnated disk. Previously achieved sensitivities are required to be increased by a factor of about 20 to permit measurements at altitudes of 80 km. Sensitivity was increased by using a more sensitive photomultiplier tube, by increasing the gas velocity past the disk, by different disk preparation techniques, and by using reflective coatings in the disk chamber and on the uncoated side of the glass disk. Reflective coatings provided the largest sensitivity increase. The sum of all these changes was a sensitivity increased by an estimated factor of 70, more than sufficient to permit measurement of ambient ozone concentrations at altitudes of 80 km.
Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed
NASA Technical Reports Server (NTRS)
Gayda, John
2002-01-01
Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the photomicrographs. The fine grain size in the bore can be contrasted with the coarse grain size in the rim. Testing (at NASA Glenn) of coupons machined from these disks showed that the DMHT approach did indeed produce a high-strength, fatigue resistant bore and a creep-resistant rim. This combination of properties was previously unobtainable using conventional heat treatments, which produced disks with a uniform grain size. Future plans are in place to spin test a DMHT disk under the Ultra Safe Propulsion Project to assess the viability of this technology at the component level. This testing will include measurements of disk growth at a high temperature as well as the determination of burst speed at an intermediate temperature.
40 CFR 63.1192 - What recordkeeping requirements must I meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
... detection system alarms. Include the date and time of the alarm, when corrective actions were initiated, the... operating temperature and results of incinerator inspections. For all periods when the average temperature... microfilm, on a computer, on computer disks, on magnetic tape disks, or on microfiche. (e) Report the...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) If a bag leak detection system is used, the number of total operating hours for the affected source...) The owner or operator may retain records on microfilm, computer disks, magnetic tape, or microfiche; and (3) The owner or operator may report required information on paper or on a labeled computer disk...
40 CFR 63.1192 - What recordkeeping requirements must I meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... detection system alarms. Include the date and time of the alarm, when corrective actions were initiated, the... operating temperature and results of incinerator inspections. For all periods when the average temperature... microfilm, on a computer, on computer disks, on magnetic tape disks, or on microfiche. (e) Report the...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) If a bag leak detection system is used, the number of total operating hours for the affected source...) The owner or operator may retain records on microfilm, computer disks, magnetic tape, or microfiche; and (3) The owner or operator may report required information on paper or on a labeled computer disk...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) If a bag leak detection system is used, the number of total operating hours for the affected source...) The owner or operator may retain records on microfilm, computer disks, magnetic tape, or microfiche; and (3) The owner or operator may report required information on paper or on a labeled computer disk...
40 CFR 63.1192 - What recordkeeping requirements must I meet?
Code of Federal Regulations, 2014 CFR
2014-07-01
... detection system alarms. Include the date and time of the alarm, when corrective actions were initiated, the... operating temperature and results of incinerator inspections. For all periods when the average temperature... microfilm, on a computer, on computer disks, on magnetic tape disks, or on microfiche. (e) Report the...
40 CFR 63.1192 - What recordkeeping requirements must I meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... detection system alarms. Include the date and time of the alarm, when corrective actions were initiated, the... operating temperature and results of incinerator inspections. For all periods when the average temperature... microfilm, on a computer, on computer disks, on magnetic tape disks, or on microfiche. (e) Report the...
40 CFR 63.1192 - What recordkeeping requirements must I meet?
Code of Federal Regulations, 2012 CFR
2012-07-01
... detection system alarms. Include the date and time of the alarm, when corrective actions were initiated, the... operating temperature and results of incinerator inspections. For all periods when the average temperature... microfilm, on a computer, on computer disks, on magnetic tape disks, or on microfiche. (e) Report the...
On the tidal interaction between protostellar disks and companions
NASA Technical Reports Server (NTRS)
Lin, D. N. C.; Papaloizou, J. C. B.
1993-01-01
Formation of protoplanets and binary stars in a protostellar disk modifies the structure of the disk. Through tidal interactions, energy and angular momentum are transferred between the disk and protostellar or protoplanetary companion. We summarize recent progress in theoretical investigations of the disk-companion tidal interaction. We show that low-mass protoplanets excite density waves at their Lindblad resonances and that these waves are likely to be dissipated locally. When a protoplanet acquires sufficient mass, its tidal torque induces the formation of a gap in the vicinity of its orbit. Gap formation leads to the termination of protoplanetary growth by accretion. For proto-Jupiter to attain its present mass, we require that (1) the primordial solar nebula is heated by viscous dissipation; (2) the viscous evolution time scale of the nebula is comparable to the age of typical T Tauri stars with circumstellar disks; and (3) the mass distribution in the nebula is comparable to that estimated from a minimum-mass nebula model.
A circumstellar disk associated with a massive protostellar object.
Jiang, Zhibo; Tamura, Motohide; Fukagawa, Misato; Hough, Jim; Lucas, Phil; Suto, Hiroshi; Ishii, Miki; Yang, Ji
2005-09-01
The formation process for stars with masses several times that of the Sun is still unclear. The two main theories are mergers of several low-mass young stellar objects, which requires a high stellar density, or mass accretion from circumstellar disks in the same way as low-mass stars are formed, accompanied by outflows during the process of gravitational infall. Although a number of disks have been discovered around low- and intermediate-mass young stellar objects, the presence of disks around massive young stellar objects is still uncertain and the mass of the disk system detected around one such object, M17, is disputed. Here we report near-infrared imaging polarimetry that reveals an outflow/disk system around the Becklin-Neugebauer protostellar object, which has a mass of at least seven solar masses (M(o)). This strongly supports the theory that stars with masses of at least 7M(o) form in the same way as lower mass stars.
Strengthening Precipitate Morphologies Fully Quantified in Advanced Disk Superalloys
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.
1998-01-01
Advanced aviation gas turbine engines will require disk superalloys that can operate at higher temperatures and stresses than current conditions. Such applications will be limited by the tensile, creep, and fatigue mechanical properties of these alloys. These mechanical properties vary with the size, shape, and quantity of the gamma precipitates that strengthen disk superalloys. It is therefore important to quantify these precipitate parameters and relate them to mechanical properties to improve disk superalloys. Favorable precipitate morphologies and practical processing approaches to achieve them can then be determined. A methodology has been developed at the NASA Lewis Research Center to allow the comprehensive quantification of the size, shape, and quantity of all types of gamma precipitates.
Powerful, Rotating Disk Winds from Stellar-mass Black Holes
NASA Astrophysics Data System (ADS)
Miller, J. M.; Fabian, A. C.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Raymond, J.; Reynolds, C. S.
2015-12-01
We present an analysis of ionized X-ray disk winds found in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generated in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe xxv line is found to be shaped by contributions from the intercombination line (in absorption), and the Fe xxvi line is detected as a spin-orbit doublet. The data require 2-3 absorption zones, depending on the source. The fastest components have velocities approaching or exceeding 0.01c, increasing mass outflow rates and wind kinetic power by orders of magnitude over prior single-zone models. The first-order spectra require re-emission from the wind, broadened by a degree that is loosely consistent with Keplerian orbital velocities at the photoionization radius. This suggests that disk winds are rotating with the orbital velocity of the underlying disk, and provides a new means of estimating launching radii—crucial to understanding wind driving mechanisms. Some aspects of the wind velocities and radii correspond well to the broad-line region in active galactic nuclei (AGNs), suggesting a physical connection. We discuss these results in terms of prevalent models for disk wind production and disk accretion itself, and implications for massive black holes in AGNs.
Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.
Hayashi, Shinichi; Okada, Yasushi
2015-05-01
Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
HECWRC, Flood Flow Frequency Analysis Computer Program 723-X6-L7550
1989-02-14
AGENCY NAME AND ADDRESS, ORDER NO., ETC. (1 NTS sells, leave blank) 11. PRICE INFORMA-ION Price includes documentation: Price code: DO1 $50.00 12 ...required is 256 K. Math coprocessor (8087/80287/80387) is highly recommended but not required. 16. DATA FILE TECHNICAL DESCRIPTION The software is...disk drive (360 KB or 1.2 MB). A 10 MB or larger hard disk is recommended. Math coprocessor (8087/80287/80387) is highly recommended but not renuired
Structural Optimization Methodology for Rotating Disks of Aircraft Engines
NASA Technical Reports Server (NTRS)
Armand, Sasan C.
1995-01-01
In support of the preliminary evaluation of various engine technologies, a methodology has been developed for structurally designing the rotating disks of an aircraft engine. The structural design methodology, along with a previously derived methodology for predicting low-cycle fatigue life, was implemented in a computer program. An interface computer program was also developed that gathers the required data from a flowpath analysis program (WATE) being used at NASA Lewis. The computer program developed for this study requires minimum interaction with the user, thus allowing engineers with varying backgrounds in aeropropulsion to successfully execute it. The stress analysis portion of the methodology and the computer program were verified by employing the finite element analysis method. The 10th- stage, high-pressure-compressor disk of the Energy Efficient Engine Program (E3) engine was used to verify the stress analysis; the differences between the stresses and displacements obtained from the computer program developed for this study and from the finite element analysis were all below 3 percent for the problem solved. The computer program developed for this study was employed to structurally optimize the rotating disks of the E3 high-pressure compressor. The rotating disks designed by the computer program in this study were approximately 26 percent lighter than calculated from the E3 drawings. The methodology is presented herein.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
... Register is mandated for the regulatory flexibility agendas required by the Regulatory Flexibility Act (5 U... the Agency's regulatory flexibility agenda, in accordance with the Regulatory Flexibility Act, because... Flexibility Act. Printing of these entries is limited to fields that contain information required by the...
Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297
NASA Technical Reports Server (NTRS)
Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang-Condell, Hannah; Wilner, David; Andrews, Sean; Kraus, Adam; Dahm, Scott;
2012-01-01
We present Keck/NIRC2 Ks band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3-2.5 arcse (approx 35-280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model for a single dust belt including a phase function with two components and a 5-10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry. Although there may be alternate explanations, agreement between the SW disk brightness peak and disk's peak mm emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1-1 mm-sized grains at approx 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.
Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297
NASA Technical Reports Server (NTRS)
Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang, Condell, Hannah; Wilner, David; Andrews, Sean; Dahm, Scott; Robitaille,Thomas
2012-01-01
We present Keck/NIRC2 K(sub s) band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3 - 2.5" (approx equals 35 - 280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx equals 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model fur a single dust belt including a phase function with two components and a 5 - 10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry and the profile at wider separations (r > 110 AU). Although there may be a1ternate explanations, agreement between the SW disk brightness peak and disk's peak rom emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1 - 1 mm-sized grains at approx equal 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.
Use of CFD Analyses to Predict Disk Friction Loss of Centrifugal Compressor Impellers
NASA Astrophysics Data System (ADS)
Cho, Leesang; Lee, Seawook; Cho, Jinsoo
To improve the total efficiency of centrifugal compressors, it is necessary to reduce disk friction loss, which is expressed as the power loss. In this study, to reduce the disk friction loss due to the effect of axial clearance and surface roughness is analyzed and methods to reduce disk friction loss are proposed. The rotating reference frame technique using a commercial CFD tool (FLUENT) is used for steady-state analysis of the centrifugal compressor. Numerical results of the CFD analysis are compared with theoretical results using established experimental empirical equations. The disk friction loss of the impeller is decreased in line with increments in axial clearance until the axial clearance between the impeller disk and the casing is smaller than the boundary layer thickness. In addition, the disk friction loss of the impeller is increased in line with the increments in surface roughness in a similar pattern as that of existing experimental empirical formulas. The disk friction loss of the impeller is more affected by the surface roughness than the change of the axial clearance. To minimize disk friction loss on the centrifugal compressor impeller, the axial clearance and the theoretical boundary layer thickness should be designed to be the same. The design of the impeller requires careful consideration in order to optimize axial clearance and minimize surface roughness.
Resolving the inner disk of UX Orionis
NASA Astrophysics Data System (ADS)
Kreplin, A.; Madlener, D.; Chen, L.; Weigelt, G.; Kraus, S.; Grinin, V.; Tambovtseva, L.; Kishimoto, M.
2016-05-01
Aims: The cause of the UX Ori variability in some Herbig Ae/Be stars is still a matter of debate. Detailed studies of the circumstellar environment of UX Ori objects (UXORs) are required to test the hypothesis that the observed drop in photometry might be related to obscuration events. Methods: Using near- and mid-infrared interferometric AMBER and MIDI observations, we resolved the inner circumstellar disk region around UX Ori. Results: We fitted the K-, H-, and N-band visibilities and the spectral energy distribution (SED) of UX Ori with geometric and parametric disk models. The best-fit K-band geometric model consists of an inclined ring and a halo component. We obtained a ring-fit radius of 0.45 ± 0.07 AU (at a distance of 460 pc), an inclination of 55.6 ± 2.4°, a position angle of the system axis of 127.5 ± 24.5°, and a flux contribution of the over-resolved halo component to the total near-infrared excess of 16.8 ± 4.1%. The best-fit N-band model consists of an elongated Gaussian with a HWHM ~ 5 AU of the semi-major axis and an axis ration of a/b ~ 3.4 (corresponding to an inclination of ~72°). With a parametric disk model, we fitted all near- and mid-infrared visibilities and the SED simultaneously. The model disk starts at an inner radius of 0.46 ± 0.06 AU with an inner rim temperature of 1498 ± 70 K. The disk is seen under an nearly edge-on inclination of 70 ± 5°. This supports any theories that require high-inclination angles to explain obscuration events in the line of sight to the observer, for example, in UX Ori objects where orbiting dust clouds in the disk or disk atmosphere can obscure the central star. Based on observations made with ESO telescopes at Paranal Observatory under program IDs: 090.C-0769, 074.C-0552.
NASA Technical Reports Server (NTRS)
Woike, Mark R.; Abdul-Aziz, Ali
2010-01-01
The development of new health-monitoring techniques requires the use of theoretical and experimental tools to allow new concepts to be demonstrated and validated prior to use on more complicated and expensive engine hardware. In order to meet this need, significant upgrades were made to NASA Glenn Research Center s Rotordynamics Laboratory and a series of tests were conducted on simulated turbine engine disks as a means of demonstrating potential crack-detection techniques. The Rotordynamics Laboratory consists of a high-precision spin rig that can rotate subscale engine disks at speeds up to 12,000 rpm. The crack-detection experiment involved introducing a notch on a subscale engine disk and measuring its vibration response using externally mounted blade-tip-clearance sensors as the disk was operated at speeds up to 12 000 rpm. Testing was accomplished on both a clean baseline disk and a disk with an artificial crack: a 50.8-mm- (2-in.-) long introduced notch. The disk s vibration responses were compared and evaluated against theoretical models to investigate how successful the technique was in detecting cracks. This paper presents the capabilities of the Rotordynamics Laboratory, the baseline theory and experimental setup for the crack-detection experiments, and the associated results from the latest test campaign.
Visualization of Unsteady Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Haimes, Robert
1997-01-01
The current compute environment that most researchers are using for the calculation of 3D unsteady Computational Fluid Dynamic (CFD) results is a super-computer class machine. The Massively Parallel Processors (MPP's) such as the 160 node IBM SP2 at NAS and clusters of workstations acting as a single MPP (like NAS's SGI Power-Challenge array and the J90 cluster) provide the required computation bandwidth for CFD calculations of transient problems. If we follow the traditional computational analysis steps for CFD (and we wish to construct an interactive visualizer) we need to be aware of the following: (1) Disk space requirements. A single snap-shot must contain at least the values (primitive variables) stored at the appropriate locations within the mesh. For most simple 3D Euler solvers that means 5 floating point words. Navier-Stokes solutions with turbulence models may contain 7 state-variables. (2) Disk speed vs. Computational speeds. The time required to read the complete solution of a saved time frame from disk is now longer than the compute time for a set number of iterations from an explicit solver. Depending, on the hardware and solver an iteration of an implicit code may also take less time than reading the solution from disk. If one examines the performance improvements in the last decade or two, it is easy to see that depending on disk performance (vs. CPU improvement) may not be the best method for enhancing interactivity. (3) Cluster and Parallel Machine I/O problems. Disk access time is much worse within current parallel machines and cluster of workstations that are acting in concert to solve a single problem. In this case we are not trying to read the volume of data, but are running the solver and the solver outputs the solution. These traditional network interfaces must be used for the file system. (4) Numerics of particle traces. Most visualization tools can work upon a single snap shot of the data but some visualization tools for transient problems require dealing with time.
Spatial Searching for Solar Physics Data
NASA Astrophysics Data System (ADS)
Hourcle, Joseph; Spencer, J. L.; The VSO Team
2013-07-01
The Virtual Solar Observatory allows searching across many collections of solar physics data, but does not yet allow a researcher to search based on the location and extent of the observation, other than by selecting general categories such as full disk or off limb. High resolution instruments that observe only a portion of the the solar disk require greater specificity than is currently available. We believe that finer-grained spatial searching will allow for improved access to data from existing instruments such as TRACE, XRT and SOT, and well as from upcoming missions such as ATST and IRIS. Our proposed solution should also help scientists to search on the field of view of full-disk images that are out of the Sun-Earth line, such as STEREO/EUVI and obserations from the upcoming Solar Orbiter and Solar Probe Plus missions. We present our current work on cataloging sub field images for spatial searching so that researchers can more easily search for observations of a given feature of interest, with the intent of soliciting information about researcher's requirements and recommendations for further improvements.Abstract (2,250 Maximum Characters): The Virtual Solar Observatory allows searching across many collections of solar physics data, but does not yet allow a researcher to search based on the location and extent of the observation, other than by selecting general categories such as full disk or off limb. High resolution instruments that observe only a portion of the the solar disk require greater specificity than is currently available. We believe that finer-grained spatial searching will allow for improved access to data from existing instruments such as TRACE, XRT and SOT, and well as from upcoming missions such as ATST and IRIS. Our proposed solution should also help scientists to search on the field of view of full-disk images that are out of the Sun-Earth line, such as STEREO/EUVI and obserations from the upcoming Solar Orbiter and Solar Probe Plus missions. We present our current work on cataloging sub field images for spatial searching so that researchers can more easily search for observations of a given feature of interest, with the intent of soliciting information about researcher's requirements and recommendations for further improvements.
Modeling Jupiter's current disc - Pioneer 10 outbound
NASA Astrophysics Data System (ADS)
Jones, D. E.; Melville, J. G.; Blake, M. L.
1980-07-01
A model of the magnetic field of the Jovian current disk is presented. The model uses Euler functions and the Biot-Savart law applied to a series of concentric, but not necessarily coplanar current rings. It was found that the best fit to the Pioneer 10 outbound perturbation magnetic field data is obtained if the current disk is twisted, and also bent to tend toward parallelism with the Jovigraphic equator. The inner and outer radii of the disk appear to be about 7 and 150 Jovian radii, respectively; because of the observed current disk penetrations, the bent disk also requires a deformation in the form of a bump or wrinkle whose axis tends to exhibit spiraling. Modeling of the azimuthal field shows that it is due to a thin radial current sheet, but it may actually be due in large part to penetration of a tail current sheet as suggested by Voyager observations.
SLM Produced Hermetically Sealed Isolation Valve
NASA Technical Reports Server (NTRS)
Richard, James
2014-01-01
Marshall Space Flight Center (MSFC) has developed a valve concept to replace traditional pyrotechnic-driven isolation valves. This paper will describe the valve design and development process. The valve design uses a stem/wedge to support a disk inside the valve. That disk hermetically seals the pressurized fluids. A release mechanism holds the stem/wedge and a large spring in place. When required to open, a solenoid is energized and pulls the release mechanism allowing the spring to pull the stem/wedge away from the disk. Now the disk is unsupported and the pressure ruptures the disk allowing flow to the outlet of the valve. This paper will provide details of this design, describe the development testing, and show the results from the valve level tests performed. Also, a trade study is presented to show the advantages of this design to a conventional pyrotechnic-based valve.
SLM Produced Hermetically Sealed Isolation Valve
NASA Technical Reports Server (NTRS)
Richard, James A.
2014-01-01
Marshall Space Flight Center (MSFC) has developed a valve concept to replace traditional pyrotechnic driven isolation valves. This paper will describe the valve design and development process. The valve design uses a stem/wedge to support a disk inside the valve. That disk hermetically seals the pressurized fluids. A release mechanism holds the stem/wedge and a large spring in place. When required to open, a solenoid is energized and pulls the release mechanism allowing the spring to pull the stem/wedge away from the disk. Now the disk is unsupported and the pressure ruptures the disk allowing flow to the outlet of the valve. This paper will provide details of this design, describe the development testing, and show the results from the valve level tests performed. Also, a trade study is presented to show the advantages of this design to a conventional pyrotechnic based valve.
NASA Technical Reports Server (NTRS)
Tilghman, Chris; Askey, William; Hopkins, Steven
1989-01-01
Isothermal-forging apparatus produces long shafts integral with disks. Equipment based on modification of conventional isothermal-forging equipment, required stroke cut by more than half. Enables forging of shafts as long as 48 in. (122 cm) on typical modified conventional forging press, otherwise limited to making shafts no longer than 18 in. (46cm). Removable punch, in which forged material cools after plastic deformation, essential novel feature of forging apparatus. Technology used to improve such products as components of gas turbines and turbopumps and of other shaft/disk parts for powerplants, drive trains, or static structures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... “Proposed Order.” The proposed order shall be submitted both as a hard copy and on computer disk in accordance with the requirements of § 1.734(d). Where appropriate, the proposed order format should conform... a “Proposed Order.” The proposed order shall be submitted both as a hard copy and on computer disk...
Maintaining cultures of wood-rotting fungi.
E.E. Nelson; H.A. Fay
1985-01-01
Phellinus weirii cultures were stored successfully for 10 years in small alder (Alnus rubra Bong.) disks at 2 °C. The six isolates tested appeared morphologically identical and after 10 years varied little in growth rate from those stored on malt agar slants. Long-term storage on alder disks reduces the time required for...
The Effect of Stabilization Treatments on Disk Alloy CH98
NASA Technical Reports Server (NTRS)
Gayda, John; Gabb, Timothy P.; Ellis, David L.
2003-01-01
Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickelbase superalloy disks with 1300 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, CH98, is a promising candidate for gas turbine engines and is being studied in NASA s Advanced Subsonic Technology (AST) program. For large disks, residual stresses generated during quenching from solution heat treatments are often reduced by a stabilization heat treatment, in which the disk is heated to 1500 or 1600 F for several hours followed by a static air cool. The reduction in residual stress levels lessens distortion during machining of disks. However, previous work on CH98 has indicated that stabilization treatments can also decrease creep capability. In this study, a systematic variation of stabilization temperature and time was investigated to determine its effect on 1300 F tensile and, more importantly, creep behavior. Dwell crack growth rates were also measured for selected stabilization conditions. As these advanced disk alloys may be given a supersolvus solution or a subsolvus solution heat treatment for a given application, it was decided that both options would be studied.
Database recovery using redundant disk arrays
NASA Technical Reports Server (NTRS)
Mourad, Antoine N.; Fuchs, W. K.; Saab, Daniel G.
1992-01-01
Redundant disk arrays provide a way for achieving rapid recovery from media failures with a relatively low storage cost for large scale database systems requiring high availability. In this paper a method is proposed for using redundant disk arrays to support rapid-recovery from system crashes and transaction aborts in addition to their role in providing media failure recovery. A twin page scheme is used to store the parity information in the array so that the time for transaction commit processing is not degraded. Using an analytical model, it is shown that the proposed method achieves a significant increase in the throughput of database systems using redundant disk arrays by reducing the number of recovery operations needed to maintain the consistency of the database.
Recovery issues in databases using redundant disk arrays
NASA Technical Reports Server (NTRS)
Mourad, Antoine N.; Fuchs, W. K.; Saab, Daniel G.
1993-01-01
Redundant disk arrays provide a way for achieving rapid recovery from media failures with a relatively low storage cost for large scale database systems requiring high availability. In this paper we propose a method for using redundant disk arrays to support rapid recovery from system crashes and transaction aborts in addition to their role in providing media failure recovery. A twin page scheme is used to store the parity information in the array so that the time for transaction commit processing is not degraded. Using an analytical model, we show that the proposed method achieves a significant increase in the throughput of database systems using redundant disk arrays by reducing the number of recovery operations needed to maintain the consistency of the database.
Performance evaluation of redundant disk array support for transaction recovery
NASA Technical Reports Server (NTRS)
Mourad, Antoine N.; Fuchs, W. Kent; Saab, Daniel G.
1991-01-01
Redundant disk arrays provide a way of achieving rapid recovery from media failures with a relatively low storage cost for large scale data systems requiring high availability. Here, we propose a method for using redundant disk arrays to support rapid recovery from system crashes and transaction aborts in addition to their role in providing media failure recovery. A twin page scheme is used to store the parity information in the array so that the time for transaction commit processing is not degraded. Using an analytical model, we show that the proposed method achieves a significant increase in the throughput of database systems using redundant disk arrays by reducing the number of recovery operations needed to maintain the consistency of the database.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamomae, T; Monzen, H; Okudaira, K
Purpose: Intraoperative radiotherapy (IORT) with an electron beam is one of the accelerated partial breast irradiation methods that have recently been used in early-stage breast cancer. A protective acrylic resin-copper disk is inserted between the breast tissue and the pectoralis muscle to minimize the dose received by the posterior structures. However, a problem with this protective disk is that the surgical incision must be larger than the field size because the disk is manufactured from stiff and unyielding materials. The purpose of this study was to assess the applicability of a new tungsten-based functional paper (TFP) as an alternative tomore » the existing protective disk in IORT. Methods: The newly introduced TFP (Toppan Printing Co., Ltd., Tokyo, JP) is anticipated to become a useful device that is lead-free, light, flexible, and easily processed. The radiation shielding performance of TFP was verified by experimental measurements and Monte Carlo (MC) simulations using PHITS code. The doses transmitted through the protective disk or TFP were measured on a Mobetron mobile accelerator. The same geometries were then reproduced, and the dose distributions were simulated by the MC method. Results: The percentages of transmitted dose relative to the absence of the existing protective disk were lower than 2% in both the measurements and MC simulations. In the experimental measurements, the percentages of transmitted dose for a 9 MeV electron beam were 48.1, 2.3, and 0.6% with TFP thicknesses of 1.9, 3.7, and 7.4 mm, respectively. The percentages for a 12 MeV were 76.0, 49.3, 20.0, and 5.5% with TFP thicknesses of 1.9, 3.7, 7.4, and 14.8 mm, respectively. The results of the MC simulation showed a slight dose increase at the incident surface of the TFP caused by backscattered radiation. Conclusion: The results indicate that a small-incision procedure may be possible by the use of TFP.« less
Cometary Volatiles and the Origin of Comets
NASA Technical Reports Server (NTRS)
A'Hearn, Michael F.; Feaga, Lori M.; Keller, H. Uwe; Kawakita, Hideyo; Hampton, Donald L.; Kissel, Jochen; Klaasen, Kenneth P.; McFadden, Lucy A.; Meech, Karen J.; Schultz, Peter H.;
2012-01-01
We describe recent results on the CO/C02/H2O composition of comets and compare these with models of the protoplanetary disk. We argue that the cometary observations require reactions on grain surfaces to convert CO to CO2 and also require formation between the CO and CO2 snow lines. This then requires very early mixing of cometesimals in the protoplanetary disk analogous to the mixing described for the asteroid belt by Walsh and Morbidelli. We suggest that most comets formed in the region of the giant planets. the traditional source of the Oort-cloud comets but not of the Jupiter-family comets
Zodiac II: Debris Disk Science from a Balloon
NASA Technical Reports Server (NTRS)
Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne;
2011-01-01
Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make sa they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.
Zodiac II: Debris Disk Science from a Balloon
NASA Technical Reports Server (NTRS)
Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne;
2011-01-01
Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.
Millimeter observations of the disk around GW Orionis
NASA Astrophysics Data System (ADS)
Fang, M.; Sicilia-Aguilar, A.; Wilner, D.; Wang, Y.; Roccatagliata, V.; Fedele, D.; Wang, J. Z.
2017-07-01
The GW Ori system is a pre-main sequence triple system (GW Ori A/B/C) with companions (GW Ori B/C) at 1 AU and 8 AU, respectively, from the primary (GW Ori A). The primary of the system has a mass of 3.9 M⊙, but shows a spectral type of G8. Thus, GW Ori A could be a precursor of a B star, but it is still at an earlier evolutionary stage than Herbig Be stars. GW Ori provides an ideal target for experiments and observations (being a "blown-up" solar system with a very massive sun and at least two upscaled planets). We present the first spatially resolved millimeter interferometric observations of the disk around the triple pre-main sequence system GW Ori, obtained with the Submillimeter Array, both in continuum and in the 12CO J = 2-1, 13CO J = 2-1, and C18O J = 2-1 lines. These new data reveal a huge, massive, and bright disk in the GW Ori system. The dust continuum emission suggests a disk radius of around 400 AU, but the 12CO J = 2-1 emission shows a much more extended disk with a size around 1300 AU. Owing to the spatial resolution ( 1''), we cannot detect the gap in the disk that is inferred from spectral energy distribution (SED) modeling. We characterize the dust and gas properties in the disk by comparing the observations with the predictions from the disk models with various parameters calculated with a Monte Carlo radiative transfer code RADMC-3D. The disk mass is around0.12 M⊙, and the disk inclination with respect to the line of sight is around 35°. The kinematics in the disk traced by the CO line emission strongly suggest that the circumstellar material in the disk is in Keplerian rotation around GW Ori.Tentatively substantial C18O depletion in gas phase is required to explain the characteristics of the line emission from the disk.
NASA Astrophysics Data System (ADS)
de Boer, J.; Salter, G.; Benisty, M.; Vigan, A.; Boccaletti, A.; Pinilla, P.; Ginski, C.; Juhasz, A.; Maire, A.-L.; Messina, S.; Desidera, S.; Cheetham, A.; Girard, J. H.; Wahhaj, Z.; Langlois, M.; Bonnefoy, M.; Beuzit, J.-L.; Buenzli, E.; Chauvin, G.; Dominik, C.; Feldt, M.; Gratton, R.; Hagelberg, J.; Isella, A.; Janson, M.; Keller, C. U.; Lagrange, A.-M.; Lannier, J.; Menard, F.; Mesa, D.; Mouillet, D.; Mugrauer, M.; Peretti, S.; Perrot, C.; Sissa, E.; Snik, F.; Vogt, N.; Zurlo, A.; SPHERE Consortium
2016-11-01
Context. The effects of a planet sculpting the disk from which it formed are most likely to be found in disks that are in transition between being classical protoplanetary and debris disks. Recent direct imaging of transition disks has revealed structures such as dust rings, gaps, and spiral arms, but an unambiguous link between these structures and sculpting planets is yet to be found. Aims: We aim to find signs of ongoing planet-disk interaction and study the distribution of small grains at the surface of the transition disk around RX J1615.3-3255 (RX J1615). Methods: We observed RX J1615 with VLT/SPHERE. From these observations, we obtained polarimetric imaging with ZIMPOL (R'-band) and IRDIS (J), and IRDIS (H2H3) dual-band imaging with simultaneous spatially resolved spectra with the IFS (YJ). Results: We image the disk for the first time in scattered light and detect two arcs, two rings, a gap and an inner disk with marginal evidence for an inner cavity. The shapes of the arcs suggest that they are probably segments of full rings. Ellipse fitting for the two rings and inner disk yield a disk inclination I = 47 ± 2° and find semi-major axes of 1.50 ± 0.01'' (278 au), 1.06 ± 0.01'' (196 au) and 0.30 ± 0.01'' (56 au), respectively. We determine the scattering surface height above the midplane, based on the projected ring center offsets. Nine point sources are detected between 2.1'' and 8.0'' separation and considered as companion candidates. With NACO data we recover four of the nine point sources, which we determine to be not co-moving, and therefore unbound to the system. Conclusions: We present the first detection of the transition disk of RX J1615 in scattered light. The height of the rings indicate limited flaring of the disk surface, which enables partial self-shadowing in the disk. The outermost arc either traces the bottom of the disk or it is another ring with semi-major axis ≳ 2.35'' (435 au). We explore both scenarios, extrapolating the complete shape of the feature, which will allow us to distinguish between the two in future observations. The most attractive scenario, where the arc traces the bottom of the outer ring, requires the disk to be truncated at r ≈ 360 au. If the closest companion candidate is indeed orbiting the disk at 540 au, then it would be the most likely cause for such truncation. This companion candidate, as well as the remaining four, all require follow up observations to determine if they are bound to the system. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 095.C-0298(A), 095.C-0298(B), and 095.C-0693(A) during guaranteed and open time observations of the SPHERE consortium, and on NACO observations: program IDs: 085.C-0012(A), 087.C-0111(A), and 089.C-0133(A). The reduced images as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A114
An Azimuthal Asymmetry in the LkHα 330 Disk
NASA Astrophysics Data System (ADS)
Isella, Andrea; Pérez, Laura M.; Carpenter, John M.; Ricci, Luca; Andrews, Sean; Rosenfeld, Katherine
2013-09-01
Theory predicts that giant planets and low mass stellar companions shape circumstellar disks by opening annular gaps in the gas and dust spatial distribution. For more than a decade it has been debated whether this is the dominant process that leads to the formation of transitional disks. In this paper, we present millimeter-wave interferometric observations of the transitional disk around the young intermediate mass star LkHα 330. These observations reveal a lopsided ring in the 1.3 mm dust thermal emission characterized by a radius of about 100 AU and an azimuthal intensity variation of a factor of two. By comparing the observations with a Gaussian parametric model, we find that the observed asymmetry is consistent with a circular arc, that extends azimuthally by about 90° and emits about 1/3 of the total continuum flux at 1.3 mm. Hydrodynamic simulations show that this structure is similar to the azimuthal asymmetries in the disk surface density that might be produced by the dynamical interaction with unseen low mass companions orbiting within 70 AU from the central star. We argue that such asymmetries might lead to azimuthal variations in the millimeter-wave dust opacity and in the dust temperature, which will also affect the millimeter-wave continuum emission. Alternative explanations for the observed asymmetry that do not require the presence of companions cannot be ruled out with the existing data. Further observations of both the dust and molecular gas emission are required to derive firm conclusions on the origin of the asymmetry observed in the LkHα 330 disk.
Far-infrared HD emission as a measure of protoplanetary disk mass
NASA Astrophysics Data System (ADS)
Trapman, L.; Miotello, A.; Kama, M.; van Dishoeck, E. F.; Bruderer, S.
2017-09-01
Context. Protoplanetary disks around young stars are the sites of planet formation. While the dust mass can be estimated using standard methods, determining the gas mass - and thus the amount of material available to form giant planets - has proven to be very difficult. Hydrogen deuteride (HD) is a promising alternative to the commonly used gas mass tracer, carbon monoxide. However, the potential of HD has not yet been investigated with models incorporating both HD and CO isotopologue-specific chemistry, and its sensitivity to uncertainties in disk parameters has not yet been quantified. Aims: We examine the robustness of HD as tracer of the disk gas mass, specifically the effect of gas mass on HD far-infrared emission and its sensitivity to the vertical structure. Also, we seek to provide requirements for future far-infrared missions such as SPICA. Methods: Deuterium chemistry reactions relevant for HD were implemented in the thermochemical code DALI and more than 160 disk models were run for a range of disk masses and vertical structures. Results: The HD J = 1-0 line intensity depends directly on the gas mass through a sublinear power law relation with a slope of 0.8. Assuming no prior knowledge about the vertical structure of a disk and using only the HD 1-0 flux, gas masses can be estimated to within a factor of two for low mass disks (Mdisk ≤ 10-3M⊙). For more massive disks, this uncertainty increases to more than an order of magnitude. Adding the HD 2-1 line or independent information about the vertical structure can reduce this uncertainty to a factor of 3 for all disk masses. For TW Hya, using the radial and vertical structure from the literature, the observations constrain the gas mass to 6 × 10-3M⊙ ≤ Mdisk ≤ 9 × 10-3M⊙. Future observations require a 5σ sensitivity of 1.8 × 10-20 W m-2 (2.5 × 10-20 W m-2) and a spectral resolving power R ≥ 300 (1000) to detect HD 1-0 (HD 2-1) for all disk masses above 10-5M⊙ with a line-to-continuum ratio ≥ 0.01. Conclusions: These results show that HD can be used as an independent gas mass tracer with a relatively low uncertainty and should be considered an important science goal for future far-infrared missions.
Jet-Like Flow and Thrust From a Flexible Flapping Foil in Stationary Fluid
2009-12-29
considered as a movable hinge point which travels over the flap region resulting in differential flap portions, pulling and pushing the fluid about this 15...Fliegenflugel und Hypothesen uber zugeordnete instationare Stromungseffekte,” J. Comp. Physiol., vol. 133, pp. 351–355, 1979. [24] Rayner, J. M. V., “A vortex...ring by giving an impulse to a circular disk and then dissolving it away,” J. App. Phys., vol. 24, no. 1, pp. 104, 1953. 17 [28] Wagner H., “ Uber die
78 FR 11565 - Airworthiness Directives; Pratt & Whitney Canada Corp. Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for... (PT) disks were made to specific heat codes that may not achieve the maximum in- service life. This AD requires re-identification of the PT disk to a part number (P/N) with a lower life limit. We are issuing...
NASA Technical Reports Server (NTRS)
Flowers, George T.
1994-01-01
Substantial progress has been made toward the goals of this research effort in the past six months. A simplified rotor model with a flexible shaft and backup bearings has been developed. The model is based upon the work of Ishii and Kirk. Parameter studies of the behavior of this model are currently being conducted. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. The study consists of simulation work coupled with experimental verification. The work is documented in the attached paper. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. The dynamics of this model are currently being studied with the objective of verifying the conclusions obtained from the simpler models. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501.
Flexibility and Performance of Parallel File Systems
NASA Technical Reports Server (NTRS)
Kotz, David; Nieuwejaar, Nils
1996-01-01
As we gain experience with parallel file systems, it becomes increasingly clear that a single solution does not suit all applications. For example, it appears to be impossible to find a single appropriate interface, caching policy, file structure, or disk-management strategy. Furthermore, the proliferation of file-system interfaces and abstractions make applications difficult to port. We propose that the traditional functionality of parallel file systems be separated into two components: a fixed core that is standard on all platforms, encapsulating only primitive abstractions and interfaces, and a set of high-level libraries to provide a variety of abstractions and application-programmer interfaces (API's). We present our current and next-generation file systems as examples of this structure. Their features, such as a three-dimensional file structure, strided read and write interfaces, and I/O-node programs, are specifically designed with the flexibility and performance necessary to support a wide range of applications.
Measuring Protoplanetary Disk Gas Surface Density Profiles with ALMA
NASA Astrophysics Data System (ADS)
Williams, Jonathan P.; McPartland, Conor
2016-10-01
The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams & Best to show that gas surface density profiles can be measured from high fidelity 13CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, M gas = 0.048 M ⊙, and accretion disk characteristic size R c = 213 au and gradient γ = 0.39. The same parameters match the C18O 2-1 image and indicate an abundance ratio [12CO]/[C18O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large 13CO 2-1 image library and fit simulated data. For disks with gas masses 3-10 M Jup at 150 pc, ALMA observations with a resolution of 0.″2-0.″3 and integration times of ˜20 minutes allow reliable estimates of R c to within about 10 au and γ to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.
Hydrogen Cyanide In Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Walker, Ashley L.; Oberg, Karin; Cleeves, L. Ilsedore
2018-01-01
The chemistry behind star and planet formation is extremely complex and important in the formation of habitable planets. Life requires molecules containing carbon, oxygen, and importantly, nitrogen. Hydrogen cyanide, or HCN, one of the main interstellar nitrogen carriers, is extremely dangerous here on Earth. However, it could be used as a vital tool for tracking the chemistry of potentially habitable planets. As we get closer to identifying other habitable planets, we must understand the beginnings of how those planets are formed in the early protoplanetary disk. This project investigates HCN chemistry in different locations in the disk, and what this might mean for forming planets at different distances from the star. HCN is a chemically diverse molecule. It is connected to the formation for other more complex molecules and is commonly used as a nitrogen tracer. Using computational chemical models we look at how the HCN abundance changes at different locations. We use realistic and physically motivated conditions for the gas in the protoplanetary disk: temperature, density, and radiation (UV flux). We analyze the reaction network, formation, and destruction of HCN molecules in the disk environment. The disk environment informs us about stability of habitable planets that are created based on HCN molecules. We reviewed and compared the difference in the molecules with a variety of locations in the disk and ultimately giving us a better understanding on how we view protoplanetary disks.
Time-dependent disk accretion in X-ray Nova MUSCAE 1991
NASA Astrophysics Data System (ADS)
Mineshige, Shin; Hirano, Akira; Kitamoto, Shunji; Yamada, Tatsuya T.; Fukue, Jun
1994-05-01
We propose a new model for X-ray spectral fitting of binary black hole candidates. In this model, it is assumed that X-ray spectra are composed of a Comptonized blackbody (hard component) and a disk blackbody spectra (soft component), in which the temperature gradient of the disk, q identically equal to -d log T/d log r, is left as a fitting parameter. With this model, we have fitted X-ray spectra of X-ray Nova Muscae 1991 obtained by Ginga. The fitting shows that a hot cloud, which Compton up-scatters soft photons from the disk, gradually shrank and became transparent after the main peak. The temperature gradient turns out to be fairly constant and is q approximately 0.75, the value expected for a Newtonian disk model. To reproduce this value with a relativistic disk model, a small inclination angle, i approximately equal to 0 deg to 15 deg, is required. It seems, however, that the q-value temporarily decreased below 0.75 at the main flare, and q increased in a transient fashion at the second peak (or the reflare) occurring approximately 70 days after the main peak. Although statistics are poor, these results, if real, would indicate that the disk brightening responsible for the main and secondary peaks are initiated in the relatively inner portions of the disk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casassus, S.; Marino, S.; Pérez, S.
2015-10-01
The finding of residual gas in the large central cavity of the HD 142527 disk motivates questions regarding the origin of its non-Keplerian kinematics and possible connections with planet formation. We aim to understand the physical structure that underlies the intra-cavity gaseous flows, guided by new molecular-line data in CO(6–5) with unprecedented angular resolutions. Given the warped structure inferred from the identification of scattered-light shadows cast on the outer disk, the kinematics are consistent, to first order, with axisymmetric accretion onto the inner disk occurring at all azimuths. A steady-state accretion profile, fixed at the stellar accretion rate, explains themore » depth of the cavity as traced in CO isotopologues. The abrupt warp and evidence for near free-fall radial flows in HD 142527 resemble theoretical models for disk tearing, which could be driven by the reported low-mass companion, whose orbit may be contained in the plane of the inner disk. The companion’s high inclination with respect to the massive outer disk could drive Kozai oscillations over long timescales; high-eccentricity periods may perhaps account for the large cavity. While shadowing by the tilted disk could imprint an azimuthal modulation in the molecular-line maps, further observations are required to ascertain the significance of azimuthal structure in the density field inside the cavity of HD 142527.« less
Khattree, Nidhi; Ritter, Linda M.; Goldberg, Andrew F. X.
2013-01-01
Summary Vertebrate vision requires photon absorption by photoreceptor outer segments (OSs), structurally elaborate membranous organelles derived from non-motile sensory cilia. The structure and function of OSs depends on a precise stacking of hundreds of membranous disks. Each disk is fully (as in rods) or partially (as in cones) bounded by a rim, at which the membrane is distorted into an energetically unfavorable high-curvature bend; however, the mechanism(s) underlying disk rim structure is (are) not established. Here, we demonstrate that the intrinsically disordered cytoplasmic C-terminus of the photoreceptor tetraspanin peripherin-2/rds (P/rds) can directly generate membrane curvature. A P/rds C-terminal domain and a peptide mimetic of an amphipathic helix contained within it each generated curvature in liposomes with a composition similar to that of OS disks and in liposomes generated from native OS lipids. Association of the C-terminal domain with liposomes required conical phospholipids, and was promoted by membrane curvature and anionic surface charge, results suggesting that the P/rds C-terminal amphipathic helix can partition into the cytosolic membrane leaflet to generate curvature by a hydrophobic insertion (wedging) mechanism. This activity was evidenced in full-length P/rds by its induction of small-diameter tubulovesicular membrane foci in cultured cells. In sum, the findings suggest that curvature generation by the P/rds C-terminus contributes to the distinctive structure of OS disk rims, and provide insight into how inherited defects in P/rds can disrupt organelle structure to cause retinal disease. They also raise the possibility that tethered amphipathic helices can function for shaping cellular membranes more generally. PMID:23886945
Optimization of Smart Structure for Improving Servo Performance of Hard Disk Drive
NASA Astrophysics Data System (ADS)
Kajiwara, Itsuro; Takahashi, Masafumi; Arisaka, Toshihiro
Head positioning accuracy of the hard disk drive should be improved to meet today's increasing performance demands. Vibration suppression of the arm in the hard disk drive is very important to enhance the servo bandwidth of the head positioning system. In this study, smart structure technology is introduced into the hard disk drive to suppress the vibration of the head actuator. It has been expected that the smart structure technology will contribute to the development of small and light-weight mechatronics devices with the required performance. First, modeling of the system is conducted with finite element method and modal analysis. Next, the actuator location and the control system are simultaneously optimized using genetic algorithm. Vibration control effect with the proposed vibration control mechanisms has been evaluated by some simulations.
Mach disk from underexpanded axisymmetric nozzle flow
NASA Technical Reports Server (NTRS)
Chang, I.-S.; Chow, W. L.
1974-01-01
The flowfield associated with the underexpanded axisymmetric nozzle freejet flow including the appearance of a Mach disk has been studied. It is shown that the location and size of the Mach disk are governed by the appearance of a triple-point shock configuration and the condition that the central core flow will reach a state of 'choking at a throat'. It is recognized that coalescence of waves requires special attention and the reflected wave, as well as the vorticity generated from these wave interactions, have to be taken accurately into account. The theoretical results obtained agreed well with the experimental data.
NASA Astrophysics Data System (ADS)
Andrade, P.; Fiorini, B.; Murphy, S.; Pigueiras, L.; Santos, M.
2015-12-01
Over the past two years, the operation of the CERN Data Centres went through significant changes with the introduction of new mechanisms for hardware procurement, new services for cloud provisioning and configuration management, among other improvements. These changes resulted in an increase of resources being operated in a more dynamic environment. Today, the CERN Data Centres provide over 11000 multi-core processor servers, 130 PB disk servers, 100 PB tape robots, and 150 high performance tape drives. To cope with these developments, an evolution of the data centre monitoring tools was also required. This modernisation was based on a number of guiding rules: sustain the increase of resources, adapt to the new dynamic nature of the data centres, make monitoring data easier to share, give more flexibility to Service Managers on how they publish and consume monitoring metrics and logs, establish a common repository of monitoring data, optimise the handling of monitoring notifications, and replace the previous toolset by new open source technologies with large adoption and community support. This contribution describes how these improvements were delivered, present the architecture and technologies of the new monitoring tools, and review the experience of its production deployment.
First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited).
Nakagawa, T; Higurashi, Y; Ohnishi, J; Aihara, T; Tamura, M; Uchiyama, A; Okuno, H; Kusaka, K; Kidera, M; Ikezawa, E; Fujimaki, M; Sato, Y; Watanabe, Y; Komiyama, M; Kase, M; Goto, A; Kamigaito, O; Yano, Y
2010-02-01
The next generation heavy ion accelerator facility, such as the RIKEN radio isotope (RI) beam factory, requires an intense beam of high charged heavy ions. In the past decade, performance of the electron cyclotron resonance (ECR) ion sources has been dramatically improved with increasing the magnetic field and rf frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key parameters (magnetic field configuration, gas pressure, etc.) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and modern superconducting (SC) technology, we successfully constructed the new 28 GHz SC-ECRIS, which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. Using it, we investigated the effect of ECR zone size, magnetic field configuration, and biased disk on the beam intensity of the highly charged heavy ions with 18 GHz microwaves. In this article, we present the structure of the ion source and first experimental results with 18 GHz microwave in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Rebecca G.; Livio, Mario; Palaniswamy, Divya
Pulsar timing observations have revealed planets around only a few pulsars. We suggest that the rarity of these planets is due mainly to two effects. First, we show that the most likely formation mechanism requires the destruction of a companion star. Only pulsars with a suitable companion (with an extreme mass ratio) are able to form planets. Second, while a dead zone (a region of low turbulence) in the disk is generally thought to be essential for planet formation, it is most probably rare in disks around pulsars, because of the irradiation from the pulsar. The irradiation strongly heats themore » inner parts of the disk, thus pushing the inner boundary of the dead zone out. We suggest that the rarity of pulsar planets can be explained by the low probability for these two requirements to be satisfied: a very low-mass companion and a dead zone.« less
NASA Technical Reports Server (NTRS)
Lipert, Robert J.; Porter, Marc D.; Siperko, Lorraine M.; Gazda, Daniel B.; Rutz, Jeff A.; Schultz, John R.; Carrizales, Stephanie M.; McCoy, J. Torin
2009-01-01
An experimental drinking water monitoring kit for the measurement of iodine and silver(I) was recently delivered to the International Space Station (ISS). The kit is based on Colorimetric Solid Phase Extraction (CSPE) technology, which measures the change in diffuse reflectance of indicator disks following exposure to a water sample. To satisfy additional spacecraft water monitoring requirements, CSPE has now been extended to encompass the measurement of total I (iodine, iodide, and triiodide) through the introduction of an oxidizing agent, which converts iodide and triiodide to iodine, for measurement using the same indicator disks currently being tested on ISS. These disks detect iodine, but are insensitive to iodide and triiodide. We report here the operational considerations, design, and ground-based performance of the CSPE method for total I. The results demonstrate that CSPE technology is poised to meet NASA's total I monitoring requirements.
A SYMMETRIC INNER CAVITY IN THE HD 141569A CIRCUMSTELLAR DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazoyer, J.; Choquet, É.; Perrin, M. D.
2016-02-20
Some circumstellar disks, called transitional or hybrid disks, present characteristics of both protoplanetary disks (significant amount of gas) and debris disks (evolved structures around young main-sequence stars, composed of second generation dust, from collisions between planetesimals). Therefore, they are ideal astrophysical laboratories to witness the last stages of planet formation. The circumstellar disk around HD 141569A was intensively observed and resolved in the past from space, but also from the ground. However, the recent implementation of high contrast imaging systems has opened up new opportunities to re-analyze this object. We analyzed Gemini archival data from the Near-infrared Coronagraphic Imager obtained inmore » 2011 in the H band, using several angular differential imaging techniques (classical ADI, LOCI, KLIP). These images reveal the complex structures of this disk with an unprecedented resolution. We also include archival Hubble Space Telescope images as an independent data set to confirm these findings. Using an analysis of the inner edge of the disk, we show that the inner disk is almost axisymmetrical. The measurement of an offset toward the east observed by previous authors is likely due to the fact that the eastern part of this disk is wider and more complex in substructure. Our precise reanalysis of the eastern side shows several structures, including a splitting of the disk and a small finger detached from the inner edge to the southeast. Finally, we find that the arc at 250 AU is unlikely to be a spiral, at least not at the inclination derived from the first ring, but instead could be interpreted as a third belt at a different inclination. If the very symmetrical inner disk edge is carved by a companion, the data presented here put additional constraints on its position. The observed very complex structures will be confirmed by the new generation of coronagraphic instrument (GPI, SPHERE). However, a full understanding of this system will require gas observations at millimetric wavelengths.« less
Frequency doubled high-power disk lasers in pulsed and continuous-wave operation
NASA Astrophysics Data System (ADS)
Weiler, Sascha; Hangst, Alexander; Stolzenburg, Christian; Zawischa, Ivo; Sutter, Dirk; Killi, Alexander; Kalfhues, Steffen; Kriegshaeuser, Uwe; Holzer, Marco; Havrilla, David
2012-03-01
The disk laser with multi-kW output power in infrared cw operation is widely used in today's manufacturing, primarily in the automotive industry. The disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency and high reliability with low investment and operating costs. Additionally, the disk laser is ideally suited for frequency conversion due to its polarized output with negligible depolarization losses. Laser light in the green spectral range (~515 nm) can be created with a nonlinear crystal. Pulsed disk lasers with green output of well above 50 W (extracavity doubling) in the ps regime and several hundreds of Watts in the ns regime with intracavity doubling are already commercially available whereas intracavity doubled disk lasers in continuous wave operation with greater than 250 W output are in test phase. In both operating modes (pulsed and cw) the frequency doubled disk laser offers advantages in existing and new applications. Copper welding for example is said to show much higher process reliability with green laser light due to its higher absorption in comparison to the infrared. This improvement has the potential to be very beneficial for the automotive industry's move to electrical vehicles which requires reliable high-volume welding of copper as a major task for electro motors, batteries, etc.
Stratified Simulations of Collisionless Accretion Disks
NASA Astrophysics Data System (ADS)
Hirabayashi, Kota; Hoshino, Masahiro
2017-06-01
This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale, stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.
Unlocking CO Depletion in Protoplanetary Disks. I. The Warm Molecular Layer
NASA Astrophysics Data System (ADS)
Schwarz, Kamber R.; Bergin, Edwin A.; Cleeves, L. Ilsedore; Zhang, Ke; Öberg, Karin I.; Blake, Geoffrey A.; Anderson, Dana
2018-03-01
CO is commonly used as a tracer of the total gas mass in both the interstellar medium and in protoplanetary disks. Recently, there has been much debate about the utility of CO as a mass tracer in disks. Observations of CO in protoplanetary disks reveal a range of CO abundances, with measurements of low CO to dust mass ratios in numerous systems. One possibility is that carbon is removed from CO via chemistry. However, the full range of physical conditions conducive to this chemical reprocessing is not well understood. We perform a systematic survey of the time dependent chemistry in protoplanetary disks for 198 models with a range of physical conditions. We vary dust grain size distribution, temperature, comic-ray and X-ray ionization rates, disk mass, and initial water abundance, detailing what physical conditions are necessary to activate the various CO depletion mechanisms in the warm molecular layer. We focus our analysis on the warm molecular layer in two regions: the outer disk (100 au) well outside the CO snowline and the inner disk (19 au) just inside the midplane CO snowline. After 1 Myr, we find that the majority of models have a CO abundance relative to H2 less than 10‑4 in the outer disk, while an abundance less than 10‑5 requires the presence of cosmic-rays. Inside the CO snowline, significant depletion of CO only occurs in models with a high cosmic-ray rate. If cosmic-rays are not present in young disks, it is difficult to chemically remove carbon from CO. Additionally, removing water prior to CO depletion impedes the chemical processing of CO. Chemical processing alone cannot explain current observations of low CO abundances. Other mechanisms must also be involved.
NASA Astrophysics Data System (ADS)
Oka, Akinori; Inoue, Akio K.; Nakamoto, Taishi; Honda, Mitsuhiko
2012-03-01
We investigate the effect of photodesorption on the snow line position at the surface of a protoplanetary disk around a Herbig Ae/Be star, motivated by the detection of water ice particles at the surface of the disk around HD142527 by Honda et al. For this aim, we obtain the density and temperature structure in the disk with a 1+1D radiative transfer and determine the distribution of water ice particles in the disk by the balance between condensation, sublimation, and photodesorption. We find that photodesorption induced by far-ultraviolet radiation from the central star depresses the ice-condensation front toward the mid-plane and pushes the surface snow line significantly outward when the stellar effective temperature exceeds a certain critical value. This critical effective temperature depends on the stellar luminosity and mass, the water abundance in the disk, and the yield of photodesorption. We present an approximate analytic formula for the critical temperature. We separate Herbig Ae/Be stars into two groups on the HR diagram according to the critical temperature: one is the disks where photodesorption is effective and from which we may not find ice particles at the surface, and the other is the disks where photodesorption is not effective. We estimate the snow line position at the surface of the disk around HD142527 to be 100-300 AU, which is consistent with the water ice detection at >140 AU in the disk. All the results depend on the dust grain size in a complex way, and this point requires more work in the future.
NASA Astrophysics Data System (ADS)
Yoo, David; Tang, J.
2017-04-01
Since weakly-coupled bladed disks are highly sensitive to the presence of uncertainties, they can easily undergo vibration localization. When vibration localization occurs, vibration modes of bladed disk become dramatically different from those under the perfectly periodic condition, and the dynamic response under engine-order excitation is drastically amplified. In previous studies, it is investigated that amplified vibration response can be suppressed by connecting piezoelectric circuitry into individual blades to induce the damped absorber effect, and localized vibration modes can be alleviated by integrating piezoelectric circuitry network. Delocalization of vibration modes and vibration suppression of bladed disk, however, require different optimal set of circuit parameters. In this research, multi-objective optimization approach is developed to enable finding the best circuit parameters, simultaneously achieving both objectives. In this way, the robustness and reliability in bladed disk can be ensured. Gradient-based optimizations are individually developed for mode delocalization and vibration suppression, which are then integrated into multi-objective optimization framework.
Image processing techniques applied to the detection of optic disk: a comparison
NASA Astrophysics Data System (ADS)
Kumari, Vijaya V.; Narayanan, Suriya N.
2010-02-01
In retinal image analysis, the detection of optic disk is of paramount importance. It facilitates the tracking of various anatomical features and also in the extraction of exudates, drusens etc., present in the retina of human eye. The health of retina crumbles with age in some people during the presence of exudates causing Diabetic Retinopathy. The existence of exudates increases the risk for age related macular Degeneration (AMRD) and it is the leading cause for blindness in people above the age of 50.A prompt diagnosis when the disease is at the early stage can help to prevent irreversible damages to the diabetic eye. Screening to detect diabetic retinopathy helps to prevent the visual loss. The optic disk detection is the rudimentary requirement for the screening. In this paper few methods for optic disk detection were compared which uses both the properties of optic disk and model based approaches. They are uniquely used to give accurate results in the retinal images.
Disk storage management for LHCb based on Data Popularity estimator
NASA Astrophysics Data System (ADS)
Hushchyn, Mikhail; Charpentier, Philippe; Ustyuzhanin, Andrey
2015-12-01
This paper presents an algorithm providing recommendations for optimizing the LHCb data storage. The LHCb data storage system is a hybrid system. All datasets are kept as archives on magnetic tapes. The most popular datasets are kept on disks. The algorithm takes the dataset usage history and metadata (size, type, configuration etc.) to generate a recommendation report. This article presents how we use machine learning algorithms to predict future data popularity. Using these predictions it is possible to estimate which datasets should be removed from disk. We use regression algorithms and time series analysis to find the optimal number of replicas for datasets that are kept on disk. Based on the data popularity and the number of replicas optimization, the algorithm minimizes a loss function to find the optimal data distribution. The loss function represents all requirements for data distribution in the data storage system. We demonstrate how our algorithm helps to save disk space and to reduce waiting times for jobs using this data.
NASA Technical Reports Server (NTRS)
Currie, Thayne; Thalmann, Christian; Matsumura, Soko; Madhusudhan, Nikku; Burrows, Adam; Kuchner, Marc
2011-01-01
We present and analyze a new M' detection of the young exoplanet Beta Pictoris b from 2008 VLT/NaCo data at a separation of approx. = 4 AU and a high signal-to-noise rereduction of L' data taken in December 2Q09. Based on our orbital analysis, the planet's orbit is viewed almost perfectly edge-on (i approx. 89 degrees) and has a Saturn-like semimajor axis of 9.50AU(+3.93 AU)/-(1.7AU) . Intriguingly, the planet's orbit is aligned with the major axis of the outer disk (Omega approx.31 degrees) but probably misaligned with the warp/inclined disk at 80 AU often cited as a signpost for the planet's existence. Our results motivate new studies to clarify how Beta Pic b sculpts debris disk structures and whether a second planet is required to explain the warp/inclined disk
The Effect of Prior Exposures on the Notched Fatigue Behavior of Disk Superalloy ME3
NASA Technical Reports Server (NTRS)
Sudbrack, Chantal K.; Draper, Susan L.; Gorman, Timothy T.; Telesman, Jack; Gabb, Tim P.; Hull, David R.; Perea, Daniel E.; Schreiber, Daniel K.
2013-01-01
Environmental attack has the potential to limit turbine disk durability, particularly in next generation engines which will run hotter; there is a need to understand better oxidation at potential service conditions and develop models that link microstructure to fatigue response. More efficient gas turbine engine designs will require higher operating temperatures. Turbine disks are regarded as critical flight safety components; a failure is a serious hazard. Low cycle fatigue is an important design criteria for turbine disks. Powder metallurgy alloys, like ME3, have led to major improvements in temperature performance through refractory additions (e.g. Mo,W) at the expense of environmental resistance (Al, Cr). Service conditions for aerospace disks can produce major cycle periods extending from minutes to hours and days with total service times exceeding 1,000 hours in aerospace applications. Some of the effects of service can be captured by extended exposures at elevated temperature prior to LCF testing. Some details of the work presented here have been published.
A TEST OF THE FORMATION MECHANISM OF THE BROAD LINE REGION IN ACTIVE GALACTIC NUCLEI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czerny, Bozena; Du, Pu; Wang, Jian-Min
2016-11-20
The origin of the broad line region (BLR) in active galaxies remains unknown. It seems to be related to the underlying accretion disk, but an efficient mechanism is required to raise the material from the disk surface without giving signatures of the outflow that are too strong in the case of the low ionization lines. We discuss in detail two proposed mechanisms: (1) radiation pressure acting on dust in the disk atmosphere creating a failed wind and (2) the gravitational instability of the underlying disk. We compare the predicted location of the inner radius of the BLR in those two scenarios withmore » the observed position obtained from the reverberation studies of several active galaxies. The failed dusty outflow model well represents the observational data while the predictions of the self-gravitational instability are not consistent with observations. The issue that remains is why do we not see any imprints of the underlying disk instability in the BLR properties.« less
Fatigue Failure Modes of the Grain Size Transition Zone in a Dual Microstructure Disk
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Kantzos, Pete T.; Palsa, Bonnie; Telesman, Jack; Gayda, John; Sudbrack, Chantal K.
2012-01-01
Mechanical property requirements vary with location in nickel-based superalloy disks. In order to maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored grain microstructures. In this study, fatigue failure modes of a grain size transition zone in a dual microstructure disk were evaluated. A specialized heat treatment method was applied to produce varying grain microstructure in the bore to rim portions of a powder metallurgy processed nickel-based superalloy disk. The transition in grain size was concentrated in a zone of the disk web, between the bore and rim. Specimens were extracted parallel and transversely across this transition zone, and multiple fatigue tests were performed at 427 C and 704 C. Grain size distributions were characterized in the specimens, and related to operative failure initiation modes. Mean fatigue life decreased with increasing maximum grain size, going out through the transition zone. The scatter in limited tests of replicates was comparable for failures of uniform gage specimens in all transition zone locations examined.
Foreign bodies in the aerodigestive tract in pediatric patients.
Higo, Ryuzaburo; Matsumoto, Yu; Ichimura, Keiichi; Kaga, Kimitaka
2003-12-01
To investigate pediatric foreign body cases in the aerodigestive tract, and to elucidate the characteristic problems in Japan. A total of 310 pediatric patients (age 15 or below), gathered from two medical university hospitals (University of Tokyo and Jichi Medical School), were included in this study. Data were collected by retrospective chart review and were statistically analyzed. Two-year-olds were the most common patients, and the range from age 1 to age 4 included 67.7% of all the patients. The most involved sites were the nose (39.4%) and the pharynx (38.4%), followed by the esophagus (12.9%) and the trachea-bronchi (6.5%). Fish bones and toys were the representative foreign bodies (30.7 and 13.6%, respectively). Other foreign bodies often encountered included coins, food, candy, peanuts and nuts, and batteries. The type of foreign body was closely related to the site in which foreign bodies were lodged: 77.3% of foreign bodies in the pharynx were fish bones, and toys were the most common impacted foreign body in the nose. In the esophagus, representative impacted foreign bodies were coins (35.7%), but disk-type battery ingestion has been increasing in recent years. Although most foreign bodies in the esophagus were safely removed, one case of a disk-type battery had a serious sequela. In the trachea-bronchi, peanuts, food, cotton, and coins were impacted. A rigid bronchoscope was basically used to remove foreign bodies, but in some cases, a fine flexible endoscope, with a channel for fiber forceps, was useful, because it could be inserted into narrow bronchi. Advance of a flexible endoscope will make it an excellent tool for diagnosis and management of the trachea-bronchial foreign body. Fish bones in the pharynx, which were closely related to Japanese eating habits, and toys in the nose, were the typical foreign bodies encountered in this study. In the esophagus, an increased incidence of disk-type battery ingestion has become a serious problem in recent years. Since prevention is the most essential way to manage foreign body cases, feedback from studies to public education should be encouraged.
Chymopapain chemonucleolysis: CT changes after treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentry, L.R.; Turski, P.A.; Strother, C.M.
1985-08-01
Chymopapain chemonucleolysis is now used extensively in this country to treat lumbar disk herniation. Despite increasing experience in patient selection, there continue to be patients who do not respond to treatment and require diagnostic reevaluation. Interpretation of postchemonucleolysis computed tomographic (CT) scans in these patients requires a knowledge of the CT changes that normally occur after treatment with chemonucleolysis. To define these temporal changes, a prospective CT evaluation was performed of 29 treated interspaces in 26 patients who returned for routine postchemonucleolysis follow-up. Despite a successful clinical response in 17 of 21 patients, changes in the size, location, shape, homogeneity,more » and density of the disk herniation were uncommon at the 6 week follow-up. In 24 treated interspaces, the most common changes at 6 week CT follow-up were the development of vacuum phenomenon in three (12.5%) and a slight decrease in the size of two (8.3%) disk herniations. A successful response was noted in 17 of 21 patients scanned at 6 month follow-up, with five (22.7%) of 22 injected interspaces exhibiting vacuum phenomenon and 13 (59.1%) interspaces showing an observable decrease in the size of the disk herniation.« less
Electron trapping data storage system and applications
NASA Technical Reports Server (NTRS)
Brower, Daniel; Earman, Allen; Chaffin, M. H.
1993-01-01
The advent of digital information storage and retrieval has led to explosive growth in data transmission techniques, data compression alternatives, and the need for high capacity random access data storage. Advances in data storage technologies are limiting the utilization of digitally based systems. New storage technologies will be required which can provide higher data capacities and faster transfer rates in a more compact format. Magnetic disk/tape and current optical data storage technologies do not provide these higher performance requirements for all digital data applications. A new technology developed at the Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media is capable of storing as much as 14 gigabytes of uncompressed data on a single, double-sided 54 inch disk with a data transfer rate of up to 12 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out 100 percent photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated Write/Read/Erase cycling.
Mixture design procedure for flexible base.
DOT National Transportation Integrated Search
2013-04-01
This document provides information on mixture design requirements for a flexible base course. Sections : design requirements, job mix formula, contractor's responsibility, and engineer's responsibility. Tables : material requirements; requirements fo...
Disk Detective Follow-Up Program
NASA Astrophysics Data System (ADS)
Kuchner, Marc
As new data on exoplanets and young stellar associations arrive, we will want to know: which of these planetary systems and young stars have circumstellar disks? The vast allsky database of 747 million infrared sources from NASA's Wide-field Infrared Survey Explorer (WISE) mission can supply answers. WISE is a discovery tool intended to find targets for JWST, sensitive enough to detect circumstellar disks as far away as 3000 light years. The vast WISE archive already serves us as a roadmap to guide exoplanet searches, provide information on disk properties as new planets are discovered, and teach us about the many hotly debated connections between disks and exoplanets. However, because of the challenges of utilizing the WISE data, this resource remains underutilized as a tool for disk and planet hunters. Attempts to use WISE to find disks around Kepler planet hosts were nearly scuttled by confusion noise. Moreover, since most of the stars with WISE infrared excesses were too red for Hipparcos photometry, most of the disks sensed by WISE remain obscure, orbiting stars unlisted in the usual star databases. To remedy the confusion noise problem, we have begun a massive project to scour the WISE data archive for new circumstellar disks. The Disk Detective project (Kuchner et al. 2016) engages layperson volunteers to examine images from WISE, NASA's Two Micron All-Sky Survey (2MASS) and optical surveys to search for new circumstellar disk candidates via the citizen science website DiskDetective.org. Fueled by the efforts of > 28,000 citizen scientists, Disk Detective is the largest survey for debris disks with WISE. It has already uncovered 4000 disk candidates worthy of follow-up. However, most host stars of the new Disk Detective disk candidates have no known spectral type or distance, especially those with red colors: K and M stars and Young Stellar Objects. Others require further observations to check for false positives. The Disk Detective project is supported by NASA ADAP funds, which are not allowed to fund a major observational follow-up campaign. So here we propose a campaign of follow-up observations that will turn the unique, growing catalog of Disk Detective disk candidates into a reliable, publically-available treasure trove of new data on nearby disks in time to complement the upcoming new catalogs of planet hosts and stellar moving groups. We will use automated adaptive optics (AO) instruments to image disk candidates and check them for contamination from background objects. We will correlate our discoveries with the vast Gaia and LAMOST surveys to study disks in associations with other young stars. We will follow up disk candidates spectroscopically to remove more false positives. We will search for cold dust around our disk candidates with the James Clerk Maxwell Telescope (JCMT) and analyze data from the Gemini Planet Imager (GPI) to image young, nearby disk candidates. This follow up work will realize the full potential of the WISE mission as a roadmap to future exoplanet discoveries. It will yield contamination rates that will be crucial for interpreting all disk searches done with WISE. Our search will yield 2000 well-vetted nearby disks, including 60 that the Gaia mission will likely find to contain giant planets. This crucial follow-up work should be done now to take full advantage of Gaia during JWST's planned lifetime.
Applying a Particle-only Model to the HL Tau Disk
NASA Astrophysics Data System (ADS)
Tabeshian, Maryam; Wiegert, Paul A.
2018-04-01
Observations have revealed rich structures in protoplanetary disks, offering clues about their embedded planets. Due to the complexities introduced by the abundance of gas in these disks, modeling their structure in detail is computationally intensive, requiring complex hydrodynamic codes and substantial computing power. It would be advantageous if computationally simpler models could provide some preliminary information on these disks. Here we apply a particle-only model (that we developed for gas-poor debris disks) to the gas-rich disk, HL Tauri, to address the question of whether such simple models can inform the study of these systems. Assuming three potentially embedded planets, we match HL Tau’s radial profile fairly well and derive best-fit planetary masses and orbital radii (0.40, 0.02, 0.21 Jupiter masses for the planets orbiting a 0.55 M ⊙ star at 11.22, 29.67, 64.23 au). Our derived parameters are comparable to those estimated by others, except for the mass of the second planet. Our simulations also reproduce some narrower gaps seen in the ALMA image away from the orbits of the planets. The nature of these gaps is debated but, based on our simulations, we argue they could result from planet–disk interactions via mean-motion resonances, and need not contain planets. Our results suggest that a simple particle-only model can be used as a first step to understanding dynamical structures in gas disks, particularly those formed by planets, and determine some parameters of their hidden planets, serving as useful initial inputs to hydrodynamic models which are needed to investigate disk and planet properties more thoroughly.
The use of computerized image guidance in lumbar disk arthroplasty.
Smith, Harvey E; Vaccaro, Alexander R; Yuan, Philip S; Papadopoulos, Stephen; Sasso, Rick
2006-02-01
Surgical navigation systems have been increasingly studied and applied in the application of spinal instrumentation. Successful disk arthroplasty requires accurate midline and rotational positioning for optimal function and longevity. A surgical simulation study in human cadaver specimens was done to evaluate and compare the accuracy of standard fluoroscopy, computer-assisted fluoroscopic image guidance, and Iso-C3D image guidance in the placement of lumbar intervertebral disk replacements. Lumbar intervertebral disk prostheses were placed using three different image guidance techniques in three human cadaver spine specimens at multiple levels. Postinstrumentation accuracy was assessed with thin-cut computed tomography scans. Intervertebral disk replacements placed using the StealthStation with Iso-C3D were more accurately centered than those placed using the StealthStation with FluoroNav and standard fluoroscopy. Intervertebral disk replacements placed with Iso-C3D and FluoroNav had improved rotational divergence compared with standard fluoroscopy. Iso-C3D and FluoroNav had a smaller interprocedure variance than standard fluoroscopy. These results did not approach statistical significance. Relative to both virtual and standard fluoroscopy, use of the StealthStation with Iso-C3D resulted in improved accuracy in centering the lumbar disk prosthesis in the coronal midline. The StealthStation with FluoroNav appears to be at least equivalent to standard fluoroscopy and may offer improved accuracy with rotational alignment while minimizing radiation exposure to the surgeon. Surgical guidance systems may offer improved accuracy and less interprocedure variation in the placement of intervertebral disk replacements than standard fluoroscopy. Further study regarding surgical navigation systems for intervertebral disk replacement is warranted.
Souza, Alessandra S; Rerko, Laura; Lin, Hsuan-Yu; Oberauer, Klaus
2014-10-01
Performance in working memory (WM) tasks depends on the capacity for storing objects and on the allocation of attention to these objects. Here, we explored how capacity models need to be augmented to account for the benefit of focusing attention on the target of recall. Participants encoded six colored disks (Experiment 1) or a set of one to eight colored disks (Experiment 2) and were cued to recall the color of a target on a color wheel. In the no-delay condition, the recall-cue was presented after a 1,000-ms retention interval, and participants could report the retrieved color immediately. In the delay condition, the recall-cue was presented at the same time as in the no-delay condition, but the opportunity to report the color was delayed. During this delay, participants could focus attention exclusively on the target. Responses deviated less from the target's color in the delay than in the no-delay condition. Mixture modeling assigned this benefit to a reduction in guessing (Experiments 1 and 2) and transposition errors (Experiment 2). We tested several computational models implementing flexible or discrete capacity allocation, aiming to explain both the effect of set size, reflecting the limited capacity of WM, and the effect of delay, reflecting the role of attention to WM representations. Both models fit the data better when a spatially graded source of transposition error is added to its assumptions. The benefits of focusing attention could be explained by allocating to this object a higher proportion of the capacity to represent color.
Local shear instabilities in weakly ionized, weakly magnetized disks
NASA Technical Reports Server (NTRS)
Blaes, Omer M.; Balbus, Steven A.
1994-01-01
We extend the analysis of axisymmetric magnetic shear instabilities from ideal magnetohydrodynamic (MHD) flows to weakly ionized plasmas with coupling between ions and neutrals caused by collisions, ionization, and recombination. As part of the analysis, we derive the single-fluid MHD dispersion relation without invoking the Boussinesq approximation. This work expands the range of applications of these instabilities from fully ionized accretion disks to molecular disks in galaxies and, with somewhat more uncertainty, to protostellar disks. Instability generally requires the angular velocity to decrease outward, the magnetic field strengths to be subthermal, and the ions and neutrals to be sufficiently well coupled. If ionization and recombination processes can be neglected on an orbital timescale, adequate coupling is achieved when the collision frequency of a given neutral with the ions exceeds the local epicyclic freqency. When ionization equilibrium is maintained on an orbital timescale, a new feature is present in the disk dynamics: in contrast to a single-fluid system, subthermal azimuthal fields can affect the axisymmetric stability of weakly ionized two-fluid systems. We discuss the underlying causes for this behavior. Azimuthal fields tend to be stabilizing under these circumstances, and good coupling between the neutrals and ions requires the collision frequency to exceed the epicyclic frequency by a potentially large secant factor related to the magnetic field geometry. When the instability is present, subthermal azimuthal fields may also reduce the growth rate unless the collision frequency is high, but this is important only if the field strengths are very subthermal and/or the azimuthal field is the dominant field component. We briefly discuss our results in the context of the Galactic center circumnuclear disk, and suggest that the shear instability might be present there, and be responsible for the observed turbulent motions.
Optimal Sunshade Configurations for Space-Based Geoengineering near the Sun-Earth L1 Point.
Sánchez, Joan-Pau; McInnes, Colin R
2015-01-01
Within the context of anthropogenic climate change, but also considering the Earth's natural climate variability, this paper explores the speculative possibility of large-scale active control of the Earth's radiative forcing. In particular, the paper revisits the concept of deploying a large sunshade or occulting disk at a static position near the Sun-Earth L1 Lagrange equilibrium point. Among the solar radiation management methods that have been proposed thus far, space-based concepts are generally seen as the least timely, albeit also as one of the most efficient. Large occulting structures could potentially offset all of the global mean temperature increase due to greenhouse gas emissions. This paper investigates optimal configurations of orbiting occulting disks that not only offset a global temperature increase, but also mitigate regional differences such as latitudinal and seasonal difference of monthly mean temperature. A globally resolved energy balance model is used to provide insights into the coupling between the motion of the occulting disks and the Earth's climate. This allows us to revise previous studies, but also, for the first time, to search for families of orbits that improve the efficiency of occulting disks at offsetting climate change on both global and regional scales. Although natural orbits exist near the L1 equilibrium point, their period does not match that required for geoengineering purposes, thus forced orbits were designed that require small changes to the disk attitude in order to control its motion. Finally, configurations of two occulting disks are presented which provide the same shading area as previously published studies, but achieve reductions of residual latitudinal and seasonal temperature changes.
Optimal Sunshade Configurations for Space-Based Geoengineering near the Sun-Earth L1 Point
Sánchez, Joan-Pau; McInnes, Colin R.
2015-01-01
Within the context of anthropogenic climate change, but also considering the Earth’s natural climate variability, this paper explores the speculative possibility of large-scale active control of the Earth’s radiative forcing. In particular, the paper revisits the concept of deploying a large sunshade or occulting disk at a static position near the Sun-Earth L1 Lagrange equilibrium point. Among the solar radiation management methods that have been proposed thus far, space-based concepts are generally seen as the least timely, albeit also as one of the most efficient. Large occulting structures could potentially offset all of the global mean temperature increase due to greenhouse gas emissions. This paper investigates optimal configurations of orbiting occulting disks that not only offset a global temperature increase, but also mitigate regional differences such as latitudinal and seasonal difference of monthly mean temperature. A globally resolved energy balance model is used to provide insights into the coupling between the motion of the occulting disks and the Earth’s climate. This allows us to revise previous studies, but also, for the first time, to search for families of orbits that improve the efficiency of occulting disks at offsetting climate change on both global and regional scales. Although natural orbits exist near the L1 equilibrium point, their period does not match that required for geoengineering purposes, thus forced orbits were designed that require small changes to the disk attitude in order to control its motion. Finally, configurations of two occulting disks are presented which provide the same shading area as previously published studies, but achieve reductions of residual latitudinal and seasonal temperature changes. PMID:26309047
CN rings in full protoplanetary disks around young stars as probes of disk structure
NASA Astrophysics Data System (ADS)
Cazzoletti, P.; van Dishoeck, E. F.; Visser, R.; Facchini, S.; Bruderer, S.
2018-01-01
Aims: Bright ring-like structure emission of the CN molecule has been observed in protoplanetary disks. We investigate whether such structures are due to the morphology of the disk itself or if they are instead an intrinsic feature of CN emission. With the intention of using CN as a diagnostic, we also address to which physical and chemical parameters CN is most sensitive. Methods: A set of disk models were run for different stellar spectra, masses, and physical structures via the 2D thermochemical code DALI. An updated chemical network that accounts for the most relevant CN reactions was adopted. Results: Ring-shaped emission is found to be a common feature of all adopted models; the highest abundance is found in the upper outer regions of the disk, and the column density peaks at 30-100 AU for T Tauri stars with standard accretion rates. Higher mass disks generally show brighter CN. Higher UV fields, such as those appropriate for T Tauri stars with high accretion rates or for Herbig Ae stars or for higher disk flaring, generally result in brighter and larger rings. These trends are due to the main formation paths of CN, which all start with vibrationally excited H_2^* molecules, that are produced through far ultraviolet (FUV) pumping of H2. The model results compare well with observed disk-integrated CN fluxes and the observed location of the CN ring for the TW Hya disk. Conclusions: CN rings are produced naturally in protoplanetary disks and do not require a specific underlying disk structure such as a dust cavity or gap. The strong link between FUV flux and CN emission can provide critical information regarding the vertical structure of the disk and the distribution of dust grains which affects the UV penetration, and could help to break some degeneracies in the SED fitting. In contrast with C2H or c-C3H2, the CN flux is not very sensitive to carbon and oxygen depletion.
Shrinking galaxy disks with fountain-driven accretion from the halo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Bruce G.; Struck, Curtis; Hunter, Deidre A., E-mail: bge@watson.ibm.com, E-mail: curt@iastate.edu, E-mail: dah@lowell.edu
2014-12-01
Star formation in most galaxies requires cosmic gas accretion because the gas consumption time is short compared to the Hubble time. This accretion presumably comes from a combination of infalling satellite debris, cold flows, and condensation of hot halo gas at the cool disk interface, perhaps aided by a galactic fountain. In general, the accretion will have a different specific angular momentum than the part of the disk that receives it, even if the gas comes from the nearby halo. The gas disk then expands or shrinks over time. Here we show that condensation of halo gas at a ratemore » proportional to the star formation rate in the fountain model will preserve an initial shape, such as an exponential, with a shrinking scale length, leaving behind a stellar disk with a slightly steeper profile of younger stars near the center. This process is slow for most galaxies, producing imperceptible radial speeds, and it may be dominated by other torques, but it could be important for blue compact dwarfs, which tend to have large, irregular gas reservoirs and steep blue profiles in their inner stellar disks.« less
Ultraviolet line diagnostics of accretion disk winds in cataclysmic variables
NASA Technical Reports Server (NTRS)
Vitello, Peter; Shlosman, Isaac
1993-01-01
The IUE data base is used to analyze the UV line shapes of the cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating biconical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low-inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they: (1) require a much lower ratio of mass-loss rate to accretion rate and are therefore more plausible energetically; (2) provide a natural source for a biconical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low-inclination systems and pure line emission profiles at high inclination with the absence of eclipses in UV lines; and (3) produce rotation-broadened pure emission lines at high inclination.
ECCENTRICITY TRAP: TRAPPING OF RESONANTLY INTERACTING PLANETS NEAR THE DISK INNER EDGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogihara, Masahiro; Ida, Shigeru; Duncan, Martin J., E-mail: ogihara@geo.titech.ac.j, E-mail: ida@geo.titech.ac.j, E-mail: duncan@astro.queensu.c
2010-10-01
Using orbital integration and analytical arguments, we have found a new mechanism (an 'eccentricity trap') to halt type I migration of planets near the inner edge of a protoplanetary disk. Because asymmetric eccentricity damping due to disk-planet interaction on the innermost planet at the disk edge plays a crucial role in the trap, this mechanism requires continuous eccentricity excitation and hence works for a resonantly interacting convoy of planets. This trap is so strong that the edge torque exerted on the innermost planet can completely halt type I migrations of many outer planets through mutual resonant perturbations. Consequently, the convoymore » stays outside the disk edge, as a whole. We have derived a semi-analytical formula for the condition for the eccentricity trap and predict how many planets are likely to be trapped. We found that several planets or more should be trapped by this mechanism in protoplanetary disks that have cavities. It can be responsible for the formation of non-resonant, multiple, close-in super-Earth systems extending beyond 0.1 AU. Such systems are being revealed by radial velocity observations to be quite common around solar-type stars.« less
UV line diagnostics of accretion disk winds in cataclysmic variables
NASA Technical Reports Server (NTRS)
Vitello, Peter; Shlosman, Isaac
1992-01-01
The IUE data base is used to analyze the UV line shapes of cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating bi-conical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3-D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they (1) require a much lower ratio of mass loss rate to accretion rate and are therefore more plausible energetically, (2) provide a natural source for a bi-conical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low inclination systems, and pure line emission profiles at high inclination with the absence of eclipses in UV lines, and (3) produce rotation broadened pure emission lines at high inclination.
Imaging Protoplanets: Observing Transition Disks with Non-Redundant Masking
NASA Astrophysics Data System (ADS)
Sallum, Stephanie
2017-01-01
Transition disks - protoplanetary disks with inner, solar system sized clearings - may be shaped by young planets. Directly imaging protoplanets in these objects requires high contrast and resolution, making them promising targets for future extremely large telescopes. The interferometric technique of non-redundant masking (NRM) is well suited for these observations, enabling companion detection for contrasts of 1:100 - 1:1000 at or within the diffraction limit. My dissertation focuses on searching for and characterizing companions in transition disk clearings using NRM. I will briefly describe the technique and present spatially resolved observations of the T Cha and LkCa 15 transition disks. Both of these objects hosted posited substellar companions. However multi-epoch T Cha datasets cannot be explained by planets orbiting in the disk plane. Conversely, LkCa 15 data taken with the Large Binocular Telescope (LBT) in single-aperture mode reveal the presence of multiple forming planets. The dual aperture LBT will provide triple the angular resolution of these observations, dramatically increasing the phase space for exoplanet detection. I will also present new results from the dual-aperture LBT, with similar resolution to that expected for next generation facilities like GMT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu
2014-12-01
As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets atmore » least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.« less
Beatty, M W; Bruno, M J; Iwasaki, L R; Nickel, J C
2001-10-01
The purpose of this study was to characterize the tensile stress-strain behavior of the porcine temporomandibular joint (TMJ) disk with respect to collagen orientation and strain rate dependency. The apparent elastic modulus, ultimate tensile strength, and strain at maximum stress were measured at three elongation rates (0.5, 50, and 500 mm/min) for dumbbell-shaped samples oriented along either anteroposterior or mediolateral axes of the disks. In order to study the effects of impact-induced fissuring on the mechanical behavior, the same properties were measured along each orientation at an elongation rate of 500 mm/min for disks subjected to impulsive loads of 0.5 N. s. The results suggested a strongly orthotropic nature to the healthy pristine disk. The values for the apparent modulus and ultimate strength were 10-fold higher along the anteroposterior axis (p < or = 0.01), which represented the primary orientation of the collagen fibers. Strain rate dependency was evident for loading along the anteroposterior axis but not along the mediolateral axis. No significant differences in any property were noted between pristine and impulsively loaded disks for either orientation (p > 0.05). The results demonstrated the importance of choosing an orthotropic model for the TMJ disk to conduct finite element modeling, to develop failure criteria, and to construct tissue-engineered replacements. Impact-induced fissuring requires further study to determine if the TMJ disk is orthotropic with respect to fatigue.
An old disk still capable of forming a planetary system.
Bergin, Edwin A; Cleeves, L Ilsedore; Gorti, Uma; Zhang, Ke; Blake, Geoffrey A; Green, Joel D; Andrews, Sean M; Evans, Neal J; Henning, Thomas; Oberg, Karin; Pontoppidan, Klaus; Qi, Chunhua; Salyk, Colette; van Dishoeck, Ewine F
2013-01-31
From the masses of the planets orbiting the Sun, and the abundance of elements relative to hydrogen, it is estimated that when the Solar System formed, the circumstellar disk must have had a minimum mass of around 0.01 solar masses within about 100 astronomical units of the star. (One astronomical unit is the Earth-Sun distance.) The main constituent of the disk, gaseous molecular hydrogen, does not efficiently emit radiation from the disk mass reservoir, and so the most common measure of the disk mass is dust thermal emission and lines of gaseous carbon monoxide. Carbon monoxide emission generally indicates properties of the disk surface, and the conversion from dust emission to gas mass requires knowledge of the grain properties and the gas-to-dust mass ratio, which probably differ from their interstellar values. As a result, mass estimates vary by orders of magnitude, as exemplified by the relatively old (3-10 million years) star TW Hydrae, for which the range is 0.0005-0.06 solar masses. Here we report the detection of the fundamental rotational transition of hydrogen deuteride from the direction of TW Hydrae. Hydrogen deuteride is a good tracer of disk gas because it follows the distribution of molecular hydrogen and its emission is sensitive to the total mass. The detection of hydrogen deuteride, combined with existing observations and detailed models, implies a disk mass of more than 0.05 solar masses, which is enough to form a planetary system like our own.
NuSTAR and XMM-Newton Observations of the 2015 Outburst Decay of GX 339-4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiele, H.; Kong, A. K. H., E-mail: hstiele@mx.nthu.edu.tw
The extent of the accretion disk in the low/hard state of stellar mass black hole X-ray binaries remains an open question. There is some evidence suggesting that the inner accretion disk is truncated and replaced by a hot flow, while the detection of relativistic broadened iron emission lines seems to require an accretion disk extending fully to the innermost stable circular orbit. We present comprehensive spectral and timing analyses of six Nuclear Spectroscopic Telescope Array and XMM-Newton observations of GX 339–4 taken during outburst decay in the autumn of 2015. Using a spectral model consisting of a thermal accretion disk,more » Comptonized emission, and a relativistic reflection component, we obtain a decreasing photon index, consistent with an X-ray binary during outburst decay. Although we observe a discrepancy in the inner radius of the accretion disk and that of the reflector, which can be attributed to the different underlying assumptions in each model, both model components indicate a truncated accretion disk that resiles with decreasing luminosity. The evolution of the characteristic frequency in Fourier power spectra and their missing energy dependence support the interpretation of a truncated and evolving disk in the hard state. The XMM-Newton data set allowed us to study, for the first time, the evolution of the covariance spectra and ratio during outburst decay. The covariance ratio increases and steeps during outburst decay, consistent with increased disk instabilities.« less
A semi-analytical model of disk evaporation by thermal conduction
NASA Astrophysics Data System (ADS)
Dullemond, C. P.
1999-01-01
The conditions for disk evaporation by electron thermal conduction are examined, using a simplified semi-analytical 1-D model. The model is based on the mechanism proposed by Meyer & Meyer-Hofmeister ( te{meyermeyhof:1994}) in which an advection dominated accretion flow evaporates the top layers from the underlying disk by thermal conduction. The evaporation rate is calculated as a function of the density of the advective flow, and an analysis is made of the time scales and length scales of the dynamics of the advective flow. It is shown that evaporation can only completely destroy the disk if the conductive length scale is of the order of the radius. This implies that radial conduction is an essential factor in the evaporation process. The heat required for evaporation is in fact produced at small radii and transported radially towards the evaporation region.
Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions
NASA Astrophysics Data System (ADS)
Chen, Liqiang; Wang, Jianjun; Han, Qinkai; Chu, Fulei
2017-09-01
Rotor systems carried in transportation system or under seismic excitations are considered to have a moving base. To study the dynamic behavior of flexible rotor systems subjected to time-variable base motions, a general model is developed based on finite element method and Lagrange's equation. Two groups of Euler angles are defined to describe the rotation of the rotor with respect to the base and that of the base with respect to the ground. It is found that the base rotations would cause nonlinearities in the model. To verify the proposed model, a novel test rig which could simulate the base angular-movement is designed. Dynamic experiments on a flexible rotor-bearing system with base angular motions are carried out. Based upon these, numerical simulations are conducted to further study the dynamic response of the flexible rotor under harmonic angular base motions. The effects of base angular amplitude, rotating speed and base frequency on response behaviors are discussed by means of FFT, waterfall, frequency response curve and orbits of the rotor. The FFT and waterfall plots of the disk horizontal and vertical vibrations are marked with multiplications of the base frequency and sum and difference tones of the rotating frequency and the base frequency. Their amplitudes will increase remarkably when they meet the whirling frequencies of the rotor system.
PLANNING FOR OPTICAL DISK TECHNOLOGY WITH DIGITAL CARTOGRAPHY.
Light, Donald L.
1984-01-01
Progress in the computer field continues to suggest that the transition from traditional analog mapping systems to digital systems has become a practical possibility. A major shortfall that still exists in digital systems is the need for very large mass storage capacity. The decade of the 1980's has introduced laser optical disk storage technology, which may be the breakthrough needed for mass storage. This paper addresses system concepts for digital cartography during the transition period. Emphasis is placed on determining U. S. Geological Survey mass storage requirements and introducing laser optical disk technology for handling storage problems for digital data in this decade.
DISK PUMP FEASIBILITY INVESTIGATION,
system as an inducer and/or mainstage pump for liquid rocket applications. This investigation consisted of the analysis, design, and test of a disk...pumping action is a function of the viscous properties of the pumped fluid. (2) The pump does not require the conventional pump lifting forces. ( 3 ...with no apparent head deterioration. The representative maximum suction specific speed at a 3 % head drop was never reached. The pump demonstrated
Secular Evolution of Spiral Galaxies
2003-01-01
recombination (z=1000). Furthermore, the BigBang nucleosynthesis model also requires a signi cantamount of non- baryonic dark matter (Primack 1999) ifthe universe...momentum (as well as energy) outward. Associ-ated with this outward angular momentum transport isan expected secular redistribution of disk matter , co...mode, a secular transfer of energy andangular momentum between the disk matter and thedensity wave. The existence of the phase shift betweenthe
NASA Astrophysics Data System (ADS)
Belyaev, Mikhail A.; Quataert, Eliot
2018-04-01
We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.
Mean PB To Failure - Initial results from a long-term study of disk storage patterns at the RACF
NASA Astrophysics Data System (ADS)
Caramarcu, C.; Hollowell, C.; Rao, T.; Strecker-Kellogg, W.; Wong, A.; Zaytsev, S. A.
2015-12-01
The RACF (RHIC-ATLAS Computing Facility) has operated a large, multi-purpose dedicated computing facility since the mid-1990’s, serving a worldwide, geographically diverse scientific community that is a major contributor to various HEPN projects. A central component of the RACF is the Linux-based worker node cluster that is used for both computing and data storage purposes. It currently has nearly 50,000 computing cores and over 23 PB of storage capacity distributed over 12,000+ (non-SSD) disk drives. The majority of the 12,000+ disk drives provide a cost-effective solution for dCache/XRootD-managed storage, and a key concern is the reliability of this solution over the lifetime of the hardware, particularly as the number of disk drives and the storage capacity of individual drives grow. We report initial results of a long-term study to measure lifetime PB read/written to disk drives in the worker node cluster. We discuss the historical disk drive mortality rate, disk drive manufacturers' published MPTF (Mean PB to Failure) data and how they are correlated to our results. The results help the RACF understand the productivity and reliability of its storage solutions and have implications for other highly-available storage systems (NFS, GPFS, CVMFS, etc) with large I/O requirements.
NASA Astrophysics Data System (ADS)
Boss, Alan P.
2009-03-01
The disk instability mechanism for giant planet formation is based on the formation of clumps in a marginally gravitationally unstable protoplanetary disk, which must lose thermal energy through a combination of convection and radiative cooling if they are to survive and contract to become giant protoplanets. While there is good observational support for forming at least some giant planets by disk instability, the mechanism has become theoretically contentious, with different three-dimensional radiative hydrodynamics codes often yielding different results. Rigorous code testing is required to make further progress. Here we present two new analytical solutions for radiative transfer in spherical coordinates, suitable for testing the code employed in all of the Boss disk instability calculations. The testing shows that the Boss code radiative transfer routines do an excellent job of relaxing to and maintaining the analytical results for the radial temperature and radiative flux profiles for a spherical cloud with high or moderate optical depths, including the transition from optically thick to optically thin regions. These radial test results are independent of whether the Eddington approximation, diffusion approximation, or flux-limited diffusion approximation routines are employed. The Boss code does an equally excellent job of relaxing to and maintaining the analytical results for the vertical (θ) temperature and radiative flux profiles for a disk with a height proportional to the radial distance. These tests strongly support the disk instability mechanism for forming giant planets.
Stratified Simulations of Collisionless Accretion Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp
This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale,more » stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.« less
The Effect of Tungsten and Niobium on the Stress Relaxation Rates of Disk Alloy CH98
NASA Technical Reports Server (NTRS)
Gayda, John
2003-01-01
Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickel-base superalloy disks with 1300 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, CH98, is a promising candidate for gas turbine engines and is being studied in NASA s Advanced Subsonic Technology (AST) program. For large disks, residual stresses generated during quenching from solution heat treatment are often reduced by a stabilization heat treatment, in which the disk is heated to 1500 to 1600 F for several hours followed by a static air cool. The reduction in residual stress levels lessens distortion during machining of disks. However, previous work on CH98 has indicated that stabilization treatments decrease creep capability. Additions of the refractory elements tungsten and niobium improve tensile and creep properties after stabilization, while maintaining good crack growth resistance at elevated temperatures. As the additions of refractory elements increase creep capability, they might also effect stress relaxation rates and therefore the reduction in residual stress levels obtained for a given stabilization treatment. To answer this question, the stress relaxation rates of CH98 with and without tungsten and niobium additions are compared in this paper for temperatures and times generally employed in stabilization treatments on modern disk alloys.
Simulation of a data archival and distribution system at GSFC
NASA Technical Reports Server (NTRS)
Bedet, Jean-Jacques; Bodden, Lee; Dwyer, AL; Hariharan, P. C.; Berbert, John; Kobler, Ben; Pease, Phil
1993-01-01
A version-0 of a Data Archive and Distribution System (DADS) is being developed at GSFC to support existing and pre-EOS Earth science datasets and test Earth Observing System Data and Information System (EOSDIS) concepts. The performance of DADS is predicted using a discrete event simulation model. The goals of the simulation were to estimate the amount of disk space needed and the time required to fulfill the DADS requirements for ingestion (14 GB/day) and distribution (48 GB/day). The model has demonstrated that 4 mm and 8 mm stackers can play a critical role in improving the performance of the DADS, since it takes, on average, 3 minutes to manually mount/dismount tapes compared to less than a minute with stackers. With two 4 mm stackers and two 8 mm stackers, and a single operator per shift, the DADS requirements can be met within 16 hours using a total of 9 GB of disk space. When the DADS has no stacker, and the DADS depends entirely on operators to handle the distribution tapes, the simulation has shown that the DADS requirements can still be met within 16 hours, but a minimum of 4 operators per shift were required. The compression/decompression of data sets is very CPU intensive, and relatively slow when performed in software, thereby contributing to an increase in the amount of disk space needed.
First Experimental Realization of the Dirac Oscillator
NASA Astrophysics Data System (ADS)
Franco-Villafañe, J. A.; Sadurní, E.; Barkhofen, S.; Kuhl, U.; Mortessagne, F.; Seligman, T. H.
2013-10-01
We present the first experimental microwave realization of the one-dimensional Dirac oscillator, a paradigm in exactly solvable relativistic systems. The experiment relies on a relation of the Dirac oscillator to a corresponding tight-binding system. This tight-binding system is implemented as a microwave system by a chain of coupled dielectric disks, where the coupling is evanescent and can be adjusted appropriately. The resonances of the finite microwave system yield the spectrum of the one-dimensional Dirac oscillator with and without a mass term. The flexibility of the experimental setup allows the implementation of other one-dimensional Dirac-type equations.
Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design
NASA Technical Reports Server (NTRS)
Whorton, Mark; Buschek, Harald; Calise, Anthony J.
1996-01-01
Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.
Development of integrated optical tracking sensor by planar optics
NASA Astrophysics Data System (ADS)
Kawano, Hiroyuki; Sasagawa, Tomohiro; Nishimae, Junichi; Sato, Yukio
1999-03-01
A compact and light weight optical tracking sensor for a large capacity flexible disk drive is demonstrated. The size of the optical element is no larger than 5.4 mm in length X 3.6 mm in width X 1.2 mm in height and the weight is only 18 mg. The application of the planar optical technique makes it possible to integrate all passive optical elements onto one transparent substrate. These features are useful for high- speed access, easy optical alignment, mass production, and miniaturization. The design and optical characteristics of the optical tracking sensor are described.
Development of homotopy algorithms for fixed-order mixed H2/H(infinity) controller synthesis
NASA Technical Reports Server (NTRS)
Whorton, M.; Buschek, H.; Calise, A. J.
1994-01-01
A major difficulty associated with H-infinity and mu-synthesis methods is the order of the resulting compensator. Whereas model and/or controller reduction techniques are sometimes applied, performance and robustness properties are not preserved. By directly constraining compensator order during the optimization process, these properties are better preserved, albeit at the expense of computational complexity. This paper presents a novel homotopy algorithm to synthesize fixed-order mixed H2/H-infinity compensators. Numerical results are presented for a four-disk flexible structure to evaluate the efficiency of the algorithm.
Converting information from paper to optical media
NASA Technical Reports Server (NTRS)
Deaton, Timothy N.; Tiller, Bruce K.
1990-01-01
The technology of converting large amounts of paper into electronic form is described for use in information management systems based on optical disk storage. The space savings and photographic nature of microfiche are combined in these systems with the advantages of computerized data (fast and flexible retrieval of graphics and text, simultaneous instant access for multiple users, and easy manipulation of data). It is noted that electronic imaging systems offer a unique opportunity to dramatically increase the productivity and profitability of information systems. Particular attention is given to the CALS (Computer-aided Aquisition and Logistic Support) system.
ALMA REVEALS THE ANATOMY OF THE mm-SIZED DUST AND MOLECULAR GAS IN THE HD 97048 DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Catherine; Maud, Luke T.; Juhász, Attila
Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ∼ mm wavelengths. We present the first spatially resolved ∼ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°–40°. HD 97048more » is another source for which the large (∼ mm-sized) dust grains are more centrally concentrated than the small (∼ μ m-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10–20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.« less
Planet-driven Spiral Arms in Protoplanetary Disks. II. Implications
NASA Astrophysics Data System (ADS)
Bae, Jaehan; Zhu, Zhaohuan
2018-06-01
We examine whether various characteristics of planet-driven spiral arms can be used to constrain the masses of unseen planets and their positions within their disks. By carrying out two-dimensional hydrodynamic simulations varying planet mass and disk gas temperature, we find that a larger number of spiral arms form with a smaller planet mass and a lower disk temperature. A planet excites two or more spiral arms interior to its orbit for a range of disk temperatures characterized by the disk aspect ratio 0.04≤slant {(h/r)}p≤slant 0.15, whereas exterior to a planet’s orbit multiple spiral arms can form only in cold disks with {(h/r)}p≲ 0.06. Constraining the planet mass with the pitch angle of spiral arms requires accurate disk temperature measurements that might be challenging even with ALMA. However, the property that the pitch angle of planet-driven spiral arms decreases away from the planet can be a powerful diagnostic to determine whether the planet is located interior or exterior to the observed spirals. The arm-to-arm separations increase as a function of planet mass, consistent with previous studies; however, the exact slope depends on disk temperature as well as the radial location where the arm-to-arm separations are measured. We apply these diagnostics to the spiral arms seen in MWC 758 and Elias 2–27. As shown in Bae et al., planet-driven spiral arms can create concentric rings and gaps, which can produce a more dominant observable signature than spiral arms under certain circumstances. We discuss the observability of planet-driven spiral arms versus rings and gaps.
ALMA Reveals the Anatomy of the mm-sized Dust and Molecular Gas in the HD 97048 Disk
NASA Astrophysics Data System (ADS)
Walsh, Catherine; Juhász, Attila; Meeus, Gwendolyn; Dent, William R. F.; Maud, Luke T.; Aikawa, Yuri; Millar, Tom J.; Nomura, Hideko
2016-11-01
Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ˜ mm wavelengths. We present the first spatially resolved ˜ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°-40°. HD 97048 is another source for which the large (˜ mm-sized) dust grains are more centrally concentrated than the small (˜μm-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10-20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.
A Study of Inner Disk Gas around Young Stars in the Lupus Complex
NASA Astrophysics Data System (ADS)
Arulanantham, Nicole Annemarie; France, Kevin; Hoadley, Keri
2018-06-01
We present a study of molecular hydrogen at the surfaces of the disks around five young stars in the Lupus complex: RY Lupi, RU Lupi, MY Lupi, Sz 68, and TYC 7851. Each system was observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), and we detect a population of fluorescent H2 in all five sources. The temperatures required for LyA fluorescence to proceed (T ~ 1500-2500 K) place the gas within ~15 AU of the central stars. We have used these features to extract the radial distribution of H2 in the inner disk, where planet formation may already be taking place. The objects presented here have very different outer disk morphologies, as seen by ALMA via 890 micron dust continuum emission, ranging from full disks with no signs of cavities to systems with large regions that are clearly depleted (e.g. TYC 7851, with a cavity extending to 75 and 60 AU in dust and gas, respectively). Our results are interpreted in conjunction with sub-mm data from the five systems in an effort to piece together a more complete picture of the overall disk structure. We have previously applied this multi-wavelength approach to RY Lupi, including 4.7 micron IR-CO emission in our analysis. These IR-CO and UV-H2 observations were combined with 10 micron silicate emission, the 890 micron dust continuum, and 1.3 mm CO observations from the literature to infer a gapped structure in the inner disk. This single system has served as a testing ground for the larger Lupus complex sample, which we compare here to examine any trends between the outer disk morphology and inner disk gas distributions.
Time Variability of the Dust Sublimation Zones in Pre-Main Sequence Disk Systems
NASA Technical Reports Server (NTRS)
Sitko, Michael L.; Carpenter, W. J.; Grady, C. A.; Russel, R. W.; Lynch, D. K.; Rudy, R. J.; Mazuk, S. M.; Venturini, C. C.; Kimes, R. L.; Beerman, L. C.;
2007-01-01
The dust sublimation zone (DSZ) is the region of pre-main sequence (PMS) disks where dust grains most easily anneal, sublime, and condense out of the gas. Because of this, it is a location where crystalline material may be enhanced and redistributed throughout the rest of the disk. A decade-long program to monitor the thermal emission of the grains located in this region demonstrates that large changes in emitted flux occur in many systems. Changes in the thermal emission between 3 and 13.5 microns were observed in HD 31648 (MWC 480), HD 163296 (MWC 275), and DG Tau. This emission is consistent with it being produced at the DSZ, where the transition from a disk of gas to one of gas+dust occurs. In the case of DG Tau, the outbursts were accompanied by increased emission on the 10 micron silicate band on one occasion, while on another occasion it went into absorption. This requires lofting of the material above the disk into the line of sight. Such changes will affect the determination of the inner disk structure obtained through interferometry measurements, and this has been confirmed in the case of HD 163296. Cyclic variations in the heating of the DSZ will lead to the annealing of large grains, the sublimation of smaller grains, possibly followed by re-condensation as the zone enters a cooling phase. Lofting of dust above the disk plane, and outward acceleration by stellar winds and radiation pressure, can re-distribute the processed material to cooler regions of the disk, where cometesimals form. This processing is consistent with the detection of the preferential concentration of large crystalline grains in the inner few AU of PMS disks using interferometric spectroscopy with the VLTI.
Roll-to-roll nanopatterning using jet and flash imprint lithography
NASA Astrophysics Data System (ADS)
Ahn, Sean; Ganapathisubramanian, Maha; Miller, Mike; Yang, Jack; Choi, Jin; Xu, Frank; Resnick, Douglas J.; Sreenivasan, S. V.
2012-03-01
The ability to pattern materials at the nanoscale can enable a variety of applications ranging from high density data storage, displays, photonic devices and CMOS integrated circuits to emerging applications in the biomedical and energy sectors. These applications require varying levels of pattern control, short and long range order, and have varying cost tolerances. Extremely large area R2R manufacturing on flexible substrates is ubiquitous for applications such as paper and plastic processing. It combines the benefits of high speed and inexpensive substrates to deliver a commodity product at low cost. The challenge is to extend this approach to the realm of nanopatterning and realize similar benefits. The cost of manufacturing is typically driven by speed (or throughput), tool complexity, cost of consumables (materials used, mold or master cost, etc.), substrate cost, and the downstream processing required (annealing, deposition, etching, etc.). In order to achieve low cost nanopatterning, it is imperative to move towards high speed imprinting, less complex tools, near zero waste of consumables and low cost substrates. The Jet and Flash Imprint Lithography (J-FILTM) process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. In this paper we address the key challenges for roll based nanopatterning by introducing a novel concept: Ink Jet based Roll-to-Roll Nanopatterning. To address this challenge, we have introduced a J-FIL based demonstrator product, the LithoFlex 100. Topics that are discussed in the paper include tool design and process performance. In addition, we have used the LithoFlex 100 to fabricate high performance wire grid polarizers on flexible polycarbonate (PC) films. Transmission of better than 80% and extinction ratios on the order of 4500 have been achieved.
WFIRST: Update on the Coronagraph Science Requirements
NASA Astrophysics Data System (ADS)
Douglas, Ewan S.; Cahoy, Kerri; Carlton, Ashley; Macintosh, Bruce; Turnbull, Margaret; Kasdin, Jeremy; WFIRST Coronagraph Science Investigation Teams
2018-01-01
The WFIRST Coronagraph instrument (CGI) will enable direct imaging and low resolution spectroscopy of exoplanets in reflected light and imaging polarimetry of circumstellar disks. The CGI science investigation teams were tasked with developing a set of science requirements which advance our knowledge of exoplanet occurrence and atmospheric composition, as well as the composition and morphology of exozodiacal debris disks, cold Kuiper Belt analogs, and protoplanetary systems. We present the initial content, rationales, validation, and verification plans for the WFIRST CGI, informed by detailed and still-evolving instrument and observatory performance models. We also discuss our approach to the requirements development and management process, including the collection and organization of science inputs, open source approach to managing the requirements database, and the range of models used for requirements validation. These tools can be applied to requirements development processes for other astrophysical space missions, and may ease their management and maintenance. These WFIRST CGI science requirements allow the community to learn about and provide insights and feedback on the expected instrument performance and science return.
NASA Astrophysics Data System (ADS)
Hoadley, Keri; France, Kevin
2017-01-01
Understanding the evolution of gas over the lifetime of protoplanetary disks provides us with important clues about how planet formation mechanisms drive the diversity of exoplanetary systems observed to date. In the first part of my talk, I will discuss how we use emission line observations of molecular hydrogen (H2) in the far-ultraviolet (far-UV) with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to study the warm molecular regions (a < 10 AU) of planet-forming disks. We compare the observations with analytic disk models that produce synthetic H2 profiles, and we statistically determine the disk representations that best replicate the data. I will discuss the results of our comparisons and how the modeled radial distributions of H2 in the disk help provide important constraints on the effective density of gas left in the inner disk of protoplanetary disks at various disk evolutionary stages. Finally, I will talk about follow-up studies that look to connect the warm, UV-pumped molecular populations of the inner disk to thermally-excited molecules observed in similar regions of the disk in the near- to mid-IR.In the second part of my talk, I will discuss the observational requirements in the UV and IR band passes to gain further insights into the behavior of the warm, gaseous protoplanetary disk, focusing specifically on a spectrograph concept for the next-generation LUVOIR Surveyor. I will discuss a testbed instrument, the Colorado High-resolution Echelle Stellar Spectrograph (CHESS), built as a demonstration of one component of the LUVOIR spectrograph and new technological improvements to UV optical components for the next generation of near- to far-UV astrophysical observatories. CHESS is a far-UV sounding rocket experiment designed to probe the warm and cool atoms and molecules near sites of recent star formation in the local interstellar medium. I will talk about the science goals, design, research and development (R&D) components, and calibration of the CHESS instrument. I will end by presenting the initial data reduction and results of the flight observations taken during the second launch of CHESS.
NASA Astrophysics Data System (ADS)
Tanaka, Yukinobu; Ogata, Takeshi; Imagawa, Seiji
2015-09-01
We developed a decoupled direct tracking control system for multilayer optical disk that uses a separate guide layer. Data marks are recorded on a recording layer immediately above the guide layer by using two spatially separated spots with different wavelengths. Accurate data mark recording requires that the relative positions of the corresponding spots on the recording layer and guide layer are maintained. However, a disk tilt can shift their relative positions and cause previously recorded data marks to be overwritten. Additionally, a two-input/two-output control system is susceptible to mutual interference phenomenon between the two outputs, which can destabilize tracking control. A tracking control system based on use of data marks previously recorded as a virtual track has been developed that prevents spot shifting and mutual interference even if the disk tilt reaches 0.7°, thereby preventing overwriting.
High performance wire grid polarizers using jet and flashTM imprint lithography
NASA Astrophysics Data System (ADS)
Ahn, Sean; Yang, Jack; Miller, Mike; Ganapathisubramanian, Maha; Menezes, Marlon; Choi, Jin; Xu, Frank; Resnick, Douglas J.; Sreenivasan, S. V.
2013-03-01
The ability to pattern materials at the nanoscale can enable a variety of applications ranging from high density data storage, displays, photonic devices and CMOS integrated circuits to emerging applications in the biomedical and energy sectors. These applications require varying levels of pattern control, short and long range order, and have varying cost tolerances. Extremely large area roll to roll (R2R) manufacturing on flexible substrates is ubiquitous for applications such as paper and plastic processing. It combines the benefits of high speed and inexpensive substrates to deliver a commodity product at low cost. The challenge is to extend this approach to the realm of nanopatterning and realize similar benefits. The cost of manufacturing is typically driven by speed (or throughput), tool complexity, cost of consumables (materials used, mold or master cost, etc.), substrate cost, and the downstream processing required (annealing, deposition, etching, etc.). In order to achieve low cost nanopatterning, it is imperative to move towards high speed imprinting, less complex tools, near zero waste of consumables and low cost substrates. The Jet and Flash Imprint Lithography (J-FILTM) process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. In this paper we have developed a roll based J-FIL process and applied it to technology demonstrator tool, the LithoFlex 100, to fabricate large area flexible bilayer wire grid polarizers (WGP) and high performance WGPs on rigid glass substrates. Extinction ratios of better than 10000 were obtained for the glass-based WGPs. Two simulation packages were also employed to understand the effects of pitch, aluminum thickness and pattern defectivity on the optical performance of the WGP devices. It was determined that the WGPs can be influenced by both clear and opaque defects in the gratings, however the defect densities are relaxed relative to the requirements of a high density semiconductor device.
Composite Yb:YAG/SiC-prism thin disk laser.
Newburgh, G A; Michael, A; Dubinskii, M
2010-08-02
We report the first demonstration of a Yb:YAG thin disk laser wherein the gain medium is intracavity face-cooled through bonding to an optical quality SiC prism. Due to the particular design of the composite bonded Yb:YAG/SiC-prism gain element, the laser beam impinges on all refractive index interfaces inside the laser cavity at Brewster's angles. The laser beam undergoes total internal reflection (TIR) at the bottom of the Yb(10%):YAG thin disk layer in a V-bounce cavity configuration. Through the use of TIR and Brewster's angles, no optical coatings, either anti-reflective (AR) or highly reflective (HR), are required inside the laser cavity. In this first demonstration, the 936.5-nm diode pumped laser performed with approximately 38% slope efficiency at 12 W of quasi-CW (Q-CW) output power at 1030 nm with a beam quality measured at M(2) = 1.5. This demonstration opens up a viable path toward novel thin disk laser designs with efficient double-sided room-temperature heatsinking via materials with the thermal conductivity of copper on both sides of the disk.
Defect reduction of patterned media templates and disks
NASA Astrophysics Data System (ADS)
Luo, Kang; Ha, Steven; Fretwell, John; Ramos, Rick; Ye, Zhengmao; Schmid, Gerard; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.
2010-05-01
Imprint lithography has been shown to be an effective technique for the replication of nano-scale features. Acceptance of imprint lithography for manufacturing will require a demonstration of defect levels commensurate with cost-effective device production. This work summarizes the results of defect inspections of hard disks patterned using Jet and Flash Imprint Lithography (J-FILTM). Inspections were performed with optical based automated inspection tools. For the hard drive market, it is important to understand the defectivity of both the template and the imprinted disk. This work presents a methodology for automated pattern inspection and defect classification for imprint-patterned media. Candela CS20 and 6120 tools from KLA-Tencor map the optical properties of the disk surface, producing highresolution grayscale images of surface reflectivity and scattered light. Defects that have been identified in this manner are further characterized according to the morphology. The imprint process was tested after optimizing both the disk cleaning and adhesion layers processes that precede imprinting. An extended imprint run was performed and both the defect types and trends are reported.
AFTOMS Technology Issues and Alternatives Report
1989-12-01
color , resolu- power requirements, physi- tion; memory , processor speed; cal and weather rugged- IAN interfaces, etc,) f,: these ness. display...Telephone and Telegraph 3 CD-I Compact Disk - Interactive CD-ROM Compact Disk-Read Only Memory CGM Computer Graphics Metafile CNWDI Critical Nuclear...Database Management System RFP Request For Proposal 3 RFS Remote File System ROM Read Only Memory 3 S SA-ALC San Antonio Air Logistics Center 3 SAC
High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications
NASA Technical Reports Server (NTRS)
Taveniku, Mikael
2013-01-01
A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.
NASA Astrophysics Data System (ADS)
Ye, L.; Qi, B.; Lawton, T. G.; Mefford, O. T.; Rinaldi, C.; Garzon, S.; Crawford, T. M.
2013-03-01
Using the enormous magnetic field gradients (100 MT/m @ z =20 nm) present near the surface of magnetic recording media, we demonstrate the fabrication of diffraction gratings with lines consisting entirely of magnetic nanoparticles assembled from a colloidal fluid onto a disk drive medium, followed by transfer to a flexible and transparent polymer thin film. These nanomanufactured gratings have line spacings programmed with commercial magnetic recording and are inherently concave with radii of curvature controlled by varying the polymer film thickness. The diffracted intensity increases non-monotonically with the length of time the colloidal fluid remains on the disk surface. In addition to comparing longitudinal and perpendicular magnetic recording, a combination of spectral diffraction efficiency measurements, magnetometry, scanning electron microscopy and inductively coupled plasma atomic emmission spectroscopy of these gratings are employed to understand colloidal nanoparticle dynamics in this extreme gradient limit. Such experiments are necessary to optimize nanoparticle assembly and obtain uniform patterned features. This low-cost and sustainable approach to nanomanufacturing could enable low-cost, high-quality diffraction gratings as well as more complex polymer nanocomposite materials assembled with single-nanometer precision.
PATCHY ACCRETION DISKS IN ULTRA-LUMINOUS X-RAY SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, J. M.; Bachetti, M.; Barret, D.
2014-04-10
The X-ray spectra of the most extreme ultra-luminous X-ray sources—those with L ≥ 10{sup 40} erg s{sup –1}—remain something of a mystery. Spectral roll-over in the 5-10 keV band was originally detected in the deepest XMM-Newton observations of the brightest sources; this is confirmed in subsequent NuSTAR spectra. This emission can be modeled via Comptonization, but with low electron temperatures (kT{sub e} ≅ 2 keV) and high optical depths (τ ≅ 10) that pose numerous difficulties. Moreover, evidence of cooler thermal emission that can be fit with thin disk models persists, even in fits to joint XMM-Newton and NuSTAR observations.more » Using NGC 1313 X-1 as a test case, we show that a patchy disk with a multiple temperature profile may provide an excellent description of such spectra. In principle, a number of patches within a cool disk might emit over a range of temperatures, but the data only require a two-temperature profile plus standard Comptonization, or three distinct blackbody components. A mechanism such as the photon bubble instability may naturally give rise to a patchy disk profile, and could give rise to super-Eddington luminosities. It is possible, then, that a patchy disk (rather than a disk with a standard single-temperature profile) might be a hallmark of accretion disks close to or above the Eddington limit. We discuss further tests of this picture and potential implications for sources such as narrow-line Seyfert-1 galaxies and other low-mass active galactic nuclei.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Ruobing; Rafikov, Roman; Zhu Zhaohuan
Through detailed radiative transfer modeling, we present a disk+cavity model to simultaneously explain both the spectral energy distribution (SED) and Subaru H-band polarized light imaging for the pre-transitional protoplanetary disk PDS 70. In particular, we are able to match not only the radial dependence but also the absolute scale of the surface brightness of the scattered light. Our disk model has a cavity 65 AU in radius, which is heavily depleted of sub-micron-sized dust grains, and a small residual inner disk that produces a weak but still optically thick near-IR excess in the SED. To explain the contrast of themore » cavity's edge in the Subaru image, a factor of {approx}1000 depletion for the sub-micron-sized dust inside the cavity is required. The total dust mass of the disk may be on the order of 10{sup -4} M {sub Sun }, only weakly constrained due to the lack of long-wavelength observations and the uncertainties in the dust model. The scale height of the sub-micron-sized dust is {approx}6 AU at the cavity edge, and the cavity wall is optically thick in the vertical direction at H-band. PDS 70 is not a member of the class of (pre-)transitional disks identified by Dong et al., whose members only show evidence of the cavity in the millimeter-size dust but not the sub-micron-sized dust in resolved images. The two classes of (pre-)transitional disks may form through different mechanisms, or they may simply be at different evolution stages in the disk-clearing process.« less
Wind-Driven Global Evolution of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Bai, Xue-Ning
It has been realized in the recent years that magnetized disk winds
NASA Astrophysics Data System (ADS)
Liu, Shang-Fei; Jin, Sheng; Li, Shengtai; Isella, Andrea; Li, Hui
2018-04-01
Recent Atacama Large Millimeter and Submillimeter Array (ALMA) observations of the protoplanetary disk around the Herbig Ae star HD 163296 revealed three depleted dust gaps at 60, 100, and 160 au in the 1.3 mm continuum as well as CO depletion in the middle and outer dust gaps. However, no CO depletion was found in the inner dust gap. To examine the planet–disk interaction model, we present results of 2D two fluid (gas + dust) hydrodynamic simulations coupled with 3D radiative transfer simulations. To fit the high gas-to-dust ratio of the first gap, we find that the Shakura–Sunyaev viscosity parameter α must be very small (≲ {10}-4) in the inner disk. On the other hand, a relatively large α (∼ 7.5× {10}-3) is required to reproduce the dust surface density in the outer disk. We interpret the variation of α as an indicator of the transition from an inner dead zone to the outer magnetorotational instability (MRI) active zone. Within ∼100 au, the HD 163296 disk’s ionization level is low, and non-ideal magnetohydrodynamic effects could suppress the MRI, so the disk can be largely laminar. The disk’s ionization level gradually increases toward larger radii, and the outermost disk (r> 300 au) becomes turbulent due to MRI. Under this condition, we find that the observed dust continuum and CO gas line emissions can be reasonably fit by three half-Jovian-mass planets (0.46, 0.46, and 0.58 {M}{{J}}) at 59, 105, and 160 au, respectively.
MEASURING PROTOPLANETARY DISK GAS SURFACE DENSITY PROFILES WITH ALMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Jonathan P.; McPartland, Conor, E-mail: jpw@ifa.hawaii.edu
2016-10-10
The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams and Best to show that gas surface density profiles can be measured from high fidelity {sup 13}CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, M {sub gas} = 0.048 M {sub ⊙}, and accretion disk characteristic size R {sub c} =more » 213 au and gradient γ = 0.39. The same parameters match the C{sup 18}O 2–1 image and indicate an abundance ratio [{sup 12}CO]/[C{sup 18}O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large {sup 13}CO 2–1 image library and fit simulated data. For disks with gas masses 3–10 M {sub Jup} at 150 pc, ALMA observations with a resolution of 0.″2–0.″3 and integration times of ∼20 minutes allow reliable estimates of R {sub c} to within about 10 au and γ to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.« less
Short-term storage allocation in a filmless hospital
NASA Astrophysics Data System (ADS)
Strickland, Nicola H.; Deshaies, Marc J.; Reynolds, R. Anthony; Turner, Jonathan E.; Allison, David J.
1997-05-01
Optimizing limited short term storage (STS) resources requires gradual, systematic changes, monitored and modified within an operational PACS environment. Optimization of the centralized storage requires a balance of exam numbers and types in STS to minimize lengthy retrievals from long term archive. Changes to STS parameters and work procedures were made while monitoring the effects on resource allocation by analyzing disk space temporally. Proportions of disk space allocated to each patient category on STS were measured to approach the desired proportions in a controlled manner. Key factors for STS management were: (1) sophisticated exam prefetching algorithms: HIS/RIS-triggered, body part-related and historically-selected, and (2) a 'storage onion' design allocating various exam categories to layers with differential deletion protection. Hospitals planning for STS space should consider the needs of radiology, wards, outpatient clinics and clinicoradiological conferences for new and historical exams; desired on-line time; and potential increase in image throughput and changing resources, such as an increase in short term storage disk space.
NASA Astrophysics Data System (ADS)
Wang, K.-S.; van der Tak, F. F. S.; Hogerheijde, M. R.
2012-07-01
Context. Recent detections of disks around young high-mass stars support the idea of massive star formation through accretion rather than coalescence, but the detailed kinematics in the equatorial region of the disk candidates is not well known, which limits our understanding of the accretion process. Aims: This paper explores the kinematics of the gas around a young massive star with millimeter-wave interferometry to improve our understanding of the formation of massive stars though accretion. Methods: We use Plateau de Bure interferometric images to probe the environment of the nearby (~1 kpc) and luminous (~20 000 L⊙) high-mass (10-16 M⊙) young star AFGL 2591-VLA3 in continuum and in lines of HDO, H_218O and SO2 in the 115 and 230 GHz bands. Radiative transfer calculations are employed to investigate the kinematics of the source. Results: At ~0.5″ (500 AU) resolution, the line images clearly resolve the velocity field of the central compact source (diameter of ~800 AU) and show linear velocity gradients in the northeast-southwest direction. Judging from the disk-outflow geometry, the observed velocity gradient results from rotation and radial expansion in the equatorial region of VLA3. Radiative transfer calculations suggest that the velocity field is consistent with sub-Keplerian rotation plus Hubble-law like expansion. The line profiles of the observed molecules suggest a layered structure, with HDO emission arising from the disk mid-plane, H_218O from the warm mid-layer, and SO2 from the upper disk. Conclusions: We propose AFGL 2591-VLA3 as a new massive disk candidate, with peculiar kinematics. The rotation of this disk is sub-Keplerian, probably due to magnetic braking, while the stellar wind may be responsible for the expansion of the disk. The expansion motion may also be an indirect evidence of disk accretion in the very inner region because of the conservation of angular momentum. The sub-Keplerian rotation discovered in our work suggests that AFGL 2591-VLA3 may be a special case linking transition of velocity field of massive disks from pure Keplerian rotation to solid-body rotation though definitely more new detections of circumstellar disks around high-mass YSOs are required to examine this hypothesis. Our results support the idea that early B-type stars could be formed with a circumstellar disk from the point of view of the disk-outflow geometry, though the accretion processes in the disk need to be further investigated.
Development of Y-Ba-Cu-O Superconductors for Magnetic Bearings
NASA Technical Reports Server (NTRS)
Selvamanickam, V.; Pfaffenbach, K.; Sokolowski, R. S.; Zhang, Y.; Salama, K.
1996-01-01
The material requirements, material manufacturing and magnetic properties that are relevant to fabrication of High Temperature Superconductor (HTS) magnetic bearings have been discussed. It is found that the seeded-melt-texturing method can be used to fabricate the single domain material that is required to achieve the best magnetic properties. Trapped-field mapping has been used as a non-destructive tool to determine the single-domain nature of the HTS material and quantity of the HTS disks. Both the trapped field and the levitation force of the Y-Ba-Cu-O disks are found to be strongly sensitive to the oxygen content.
Array-on-a-disk? How Blu-ray technology can be applied to molecular diagnostics.
Morais, Sergi; Tortajada-Genaro, Luis; Maquieira, Angel
2014-09-01
This editorial comments on the balance and perspectives of compact disk technology applied to molecular diagnostics. The development of sensitive, rapid and multiplex assays using Blu-ray technology for the determination of biomarkers, drug allergens, pathogens and detection of infections would have a direct impact on diagnostics. Effective tests for use in clinical, environmental and food applications require versatile and low-cost platforms as well as cost-effective detectors. Blu-ray technology accomplishes those requirements and advances on the concept of high density arrays for massive screening to achieve the demands of point of care or in situ analysis.
Miniaturized INtrinsic DISsolution Screening (MINDISS) assay for preformulation.
Alsenz, Jochem; Haenel, Elisabeth; Anedda, Aline; Du Castel, Pauline; Cirelli, Giorgio
2016-05-25
This study describes a novel Miniaturized INtrinsic DISsolution Screening (MINDISS) assay for measuring disk intrinsic dissolution rates (DIDR). In MINDISS, compacted mini disks of drugs (2-5mg/disk) are prepared in custom made holders with a surface area of 3mm(2). Disks are immersed, pellet side down, into 0.35ml of appropriate dissolution media per well in 96-well microtiter plates, media are stirred and disk-holders are transferred to new wells after defined periods of time. After filtration, drug concentration in dissolution media is quantified by Ultra Performance Liquid Chromatography (UPLC) and solid state property of the disk is characterized by Raman spectroscopy. MINDISS was identified as an easy-to-use tool for rapid, parallel determination of DIDR of compounds that requires only small amounts of compound and of dissolution medium. Results obtained with marketed drugs in MINDISS correlate well with large scale DIDR methods and indicate that MINDISS can be used for (1) rank-ordering of compounds by intrinsic dissolution in late phase discovery and early development, (2) comparison of polymorphic forms and salts, (3) screening and selection of appropriate dissolution media, and (4) characterization of the intestinal release behavior of compounds along the gastro intestinal tract by changing biorelevant media during experiments. Copyright © 2015 Elsevier B.V. All rights reserved.
Planetary Torque in 3D Isentropic Disks
NASA Astrophysics Data System (ADS)
Fung, Jeffrey; Masset, Frédéric; Lega, Elena; Velasco, David
2017-03-01
Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential (r s), and that it has a weak dependence on the adiabatic index of the gaseous disk (γ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ, up to supersonic speeds for the smallest r s and γ in our study.
Turbomachinery Design Quality Checks to Avoid Friction Induced Structural Failure
NASA Technical Reports Server (NTRS)
Moore, Jerry H.
1999-01-01
A unique configuration of the P&W SSME Alternate Fuel Turbopump turbine disk/blade assembly, combined with a severe thermal environment, resulted in several structural anomalies that were driven by frictional contact forces. Understanding the mechanics of these problems provides new quality checks for future turbo machinery designs. During development testing in 1997 of the SSME alternate fuel turbopump at Stennis Space Center, several potentially serious problems surfaced with the turbine disk/blade assembly that had not been experienced in extensive earlier testing. Changes to the operational thermal environment were noted based on analytical prediction of modifications that affected performance and on stationary thermal measurements adjacent to the rotor assembly. A detailed structural investigation was required to reveal the mechanism of distress induced by the change. The turbine disk experienced cracking in several locations due to increased thermal gradient induced stress during start and shutdown transients. This was easily predictable using standard analysis procedures and expected once the thermal environment was characterized. What was not expected was the curling of a piston ring used for blade axial retention in the disk, indentation of the axial face of the blade attachment by a spacer separating the first and second stage blades, and most significantly, galling and cracking of the blade root attachment that could have resulted in blade release. Past experience, in gas turbine environments, set a precedent of never relying on friction for help and to evaluate it only in specific instances where it was obvious that it would degrade capability. In each of the three cases above, friction proved to be a determining factor that pushed the components into an unsatisfactory mode of operation. The higher than expected temperatures and rapid thermal transients combined with friction to move beyond past experience. The turbine disk/blade assembly configuration contributed to the potential for these problems to occur by limiting the radial deflection from thermals and centrifugal loading. The cooled solid bore configuration was chosen to improve rotordynamic stability by limiting the length of rotor overhang while still protecting the roller bearing by maintaining zero slope under the inner race. During a start transient, the rim area of the disk heats rapidly and expands axially and circumferentially and requires corresponding radial and axial growth of the disk to maintain relative positioning of the disk, blades, spacers and retainer rings. The stiffness, large thermal mass, and bore cooling flow combine to severely limit the disk rim radial growth which results in the potential for relative movement between these parts. Friction then becomes a player in the determination of component stress.
Capsule- and disk-filter procedure
Skrobialowski, Stanley C.
2016-01-01
Capsule and disk filters are disposable, self-contained units composed of a pleated or woven filter medium encased in a polypropylene or other plastic housing that can be connected inline to a sample-delivery system (such as a submersible or peristaltic pump) that generates sufficient pressure (positive or negative) to force water through the filter. Filter media are available in several pore sizes, but 0.45 µm is the pore size used routinely for most studies at this time. Capsule or disk filters (table 5.2.1.A.1) are required routinely for most studies when filtering samples for trace-element analyses and are recommended when filtering samples for major-ion or other inorganic-constituent analyses.
Protoplanetary disk observations in the ALMA era
NASA Astrophysics Data System (ADS)
Salyk, Colette
2018-06-01
In this talk, I’ll discuss how ALMA is advancing our understanding of protoplanetary disks with its unprecedented sensitivity and spatial resolution. In particular, I’ll focus on how ALMA is providing our first detailed view of gas-phase chemistry in giant planet forming regions, allowing us to test our ideas about how planets develop their diverse characteristics. Interpretation of these spectroscopic datasets requires sophisticated modeling tools and accurate laboratory data, as protoplanetary disks are ever-evolving environments that span a large range in density, temperature, and radiation field. I’ll discuss some recent results that highlight the important interplay between modeling and data analysis/interpretation, and suggest research directions that ALMA is likely to pursue going forward.
Compact Packaging of Photonic Millimeter-Wave Receiver
NASA Technical Reports Server (NTRS)
Nguyen, Hung; Pouch, John; Miranda, Felix; Levi, Anthony F.
2007-01-01
A carrier structure made from a single silicon substrate is the basis of a compact, lightweight, relatively inexpensive package that holds the main optical/electronic coupling components of a photonic millimeter-wave receiver based on a lithium niobate resonator disk. The design of the package is simple and provides for precise relative placement of optical components, eliminating the need for complex, bulky positioning mechanisms like those commonly used to align optical components to optimize focus and coupling. Although a prototype of the package was fabricated as a discrete unit, the design is amenable to integration of the package into a larger photonic and/or electronic receiver system. The components (see figure) include a lithium niobate optical resonator disk of 5-mm diameter and .200- m thickness, positioned adjacent to a millimeter- wave resonator electrode. Other components include input and output coupling prisms and input and output optical fibers tipped with ball lenses for focusing and collimation, respectively. Laser light is introduced via the input optical fiber and focused into the input coupling prism. The input coupling prism is positioned near (but not in contact with) the resonator disk so that by means of evanescent-wave coupling, the input laser light in the prism gives rise to laser light propagating circumferentially in guided modes in the resonator disk. Similarly, a portion of the circumferentially propagating optical power is extracted from the disk by evanescent-wave coupling from the disk to the output coupling prism, from whence the light passes through the collimating ball lens into the output optical fiber. The lens-tipped optical fibers must be positioned at a specified focal distance from the prisms. The optical fibers and the prisms must be correctly positioned relative to the resonator disk and must be oriented to obtain the angle of incidence (55 in the prototype) required for evanescent-wave coupling of light into and out of the desired guided modes in the resonator disk. To satisfy all these requirements, precise alignment features are formed in the silicon substrate by use of a conventional wet-etching process. These features include a 5-mm-diameter, 50- m-deep cavity that holds the disk; two trapezoidal-cross-section recesses for the prisms; and two grooves that hold the optical fibers at the correct positions and angles relative to the prisms and disk. The fiber grooves contain abrupt tapers, near the prisms, that serve as hard stops for positioning the lenses at the focal distance from the prisms. There are also two grooves for prismadjusting rods. The design provides a little slack in the prism recesses for adjusting the positions of the prisms by means of these rods to optimize the optical coupling.
Herschel's "Cold Debris Disks": Background Galaxies or Quiescent Rims of Planetary Systems?
NASA Technical Reports Server (NTRS)
Krivov, A. V.; Eiroa, C.; Loehne, T.; Marshall, J. P.; Montesinos, B.; DelBurgo, C.; Absil, O.; Ardila, D.; Augereau, J.-C.; Bayo, A.;
2013-01-01
Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around approx, 100 micron or shorter. However, 6 out of 31 excess sources studied in the Herschel Open Time Key Programme, DUNES, have been seen to show significant-and in some cases extended-excess emission at 160 micron, which is larger than the 100 micron excess. This excess emission has been attributed to circumstellar dust and has been suggested to stem from debris disks colder than those known previously. Since the excess emission of the cold disk candidates is extremely weak, challenging even the unrivaled sensitivity of Herschel, it is prudent to carefully consider whether some or even all of them may represent unrelated galactic or extragalactic emission, or even instrumental noise. We re-address these issues using several distinct methods and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the spectral energy distributions and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than approx. 100 micron, even if they are rich in ices or are composed of any other material with a low absorption in the visible. The dearth of small grains is puzzling, since collisional models of debris disks predict that grains of all sizes down to several times the radiation pressure blowout limit should be present. We explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can indeed survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but smaller than a few kilometers in size. If larger planetesimals were present, then they would stir the disk, triggering a collisional cascade and thus causing production of small debris, which is not seen. Thus, planetesimal formation, at least in the outer regions of the systems, has stopped before "cometary" or "asteroidal" sizes were reached.
Herschel's "Cold Debris Disks": Background Galaxies or Quiescent Rims of Planetary Systems?
NASA Astrophysics Data System (ADS)
Krivov, A. V.; Eiroa, C.; Löhne, T.; Marshall, J. P.; Montesinos, B.; del Burgo, C.; Absil, O.; Ardila, D.; Augereau, J.-C.; Bayo, A.; Bryden, G.; Danchi, W.; Ertel, S.; Lebreton, J.; Liseau, R.; Mora, A.; Mustill, A. J.; Mutschke, H.; Neuhäuser, R.; Pilbratt, G. L.; Roberge, A.; Schmidt, T. O. B.; Stapelfeldt, K. R.; Thébault, Ph.; Vitense, Ch.; White, G. J.; Wolf, S.
2013-07-01
Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around ~100 μm or shorter. However, 6 out of 31 excess sources studied in the Herschel Open Time Key Programme, DUNES, have been seen to show significant—and in some cases extended—excess emission at 160 μm, which is larger than the 100 μm excess. This excess emission has been attributed to circumstellar dust and has been suggested to stem from debris disks colder than those known previously. Since the excess emission of the cold disk candidates is extremely weak, challenging even the unrivaled sensitivity of Herschel, it is prudent to carefully consider whether some or even all of them may represent unrelated galactic or extragalactic emission, or even instrumental noise. We re-address these issues using several distinct methods and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the spectral energy distributions and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than ~100 μm, even if they are rich in ices or are composed of any other material with a low absorption in the visible. The dearth of small grains is puzzling, since collisional models of debris disks predict that grains of all sizes down to several times the radiation pressure blowout limit should be present. We explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can indeed survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but smaller than a few kilometers in size. If larger planetesimals were present, then they would stir the disk, triggering a collisional cascade and thus causing production of small debris, which is not seen. Thus, planetesimal formation, at least in the outer regions of the systems, has stopped before "cometary" or "asteroidal" sizes were reached.
Hubble Space Telescope Observations of the Disk and Jet of HH 30
NASA Astrophysics Data System (ADS)
Burrows, Christopher J.; Stapelfeldt, Karl R.; Watson, Alan M.; Krist, John E.; Ballester, Gilda E.; Clarke, John T.; Crisp, David; Gallagher, John S., III; Griffiths, Richard E.; Hester, J. Jeff; Hoessel, John G.; Holtzman, Jon A.; Mould, Jeremy R.; Scowen, Paul A.; Trauger, John T.; Westphal, James A.
1996-12-01
HH 30 in Taurus has been imaged with the Hubble Space Telescope WFPC2. The images show in reflected light a flared disk with a radius of about 250 AU that obscures the protostar. The disk resembles detailed accretion disk models that constrain its density distribution and show that its inclination is less than 100. There are bipolar emission-line jets perpendicular to the disk, a very clear demonstration of the standard paradigm for accretion disk and jet systems. However, asymmetries in the light distribution show that the disk has not completely settled into a quasi-equilibrium accretion state, or that some of the observed scattering is from an asymmetric envelope. The emission-line jet itself is resolved into a number of knots with typical lengths and separations of 0".4, much smaller and more numerous than indicated by lower resolution ground-based studies. There are indications of still finer structures in the jet all the way to the resolution limit of 0".1. The knots have proper motions ranging from 100 to 300 km s-1 and are therefore generated at the surprisingly high rate of about 0.4 knots per jet per year. The jet appears to be collimated within a cone of opening angle 3° and can be seen to within 30 AU of the star. Both single- and multiple-scattering disk models have a range of possible solutions, but by requiring pressure support and temperature equilibrium, a self-consistent model emerges. There is evidence for pressure support because the disk appears to have a Gaussian height profile. The temperature at each point in the disk is determined by the disk geometry, which in turn fixes the temperature in a self- consistent manner. The extinction to the protostar is unknown but constrained to be greater than 24 mag. The optical properties of the scattering grains in the disk are determined and found to imply a large scattering asymmetry, but they seem to follow the interstellar reddening law. The absolute magnitude and colors of the unseen protostar, which has a brightness in the I bandpass of about 0.16 times solar and is very red, are obtained. The disk mass is about 0.006 times solar and has an expected lifetime of about 105 yr.
Extended X-Ray Emission around Quasars at Intermediate Redshift
NASA Technical Reports Server (NTRS)
Fiore, Fabrizio
1998-01-01
We compare the optical to soft X-ray spectral energy distribution (SED) of a sample of bright low-redshift (0.048 less than z less than 0.155), radio-quiet quasars, with a range of thermal models which have been proposed to explain the optical/UV/soft X-ray quasar emission: (a) optically thin emission from an ionized plasma, (b) optically thick emission from the innermost regions of an accretion disk in Schwarzschild and Kerr geometries. We presented ROSAT PSPC observations of these quasars in an earlier paper. Here our goals are to search for the signature of thermal emission in the quasar SED, and to investigate whether a single component is dominating at different frequencies. We find that isothermal optically thin plasma models can explain the observed soft X-ray color and the mean OUV color. However, they predict an ultraviolet (1325 Angstrom) luminosity a factor of 3 to 10 times lower than observed. Pure disk models, even in a Kerr geometry, do not have the necessary flexibility to account for the observed OUV and soft X-ray luminosities. Additional components are needed both in the optical and in the soft X-rays (e.g. a hot corona can explain the soft X-ray color). The most constrained modification of pure disk models, is the assumption of an underlying power law component extending from the infrared (3 micrometers) to the X-ray. This can explain both the OUV and soft X-ray colors and luminosities and does not exceed the 3 micrometers luminosity, where a contribution from hot dust is likely to be important. We also discuss the possibility that the observed soft X-ray color and luminosity are dominated by reflection from the ionized surface of the accretion disk. While modifications of both optically thin plasma models and pure disk models might account for the observed SED, we do not find any strong evidence that the OUV bump and soft X-ray emission are one and the same component. Likewise, we do not find any strong argument which definitely argues in favor of thermal models.
Anisotropic nanomaterials: Synthesis, optical and magnetic properties, and applications
NASA Astrophysics Data System (ADS)
Banholzer, Matthew John
As nanoscience and nanotechnology mature, anisotropic metal nanostructures are emerging in a variety of contexts as valuable class of nanostructures due to their distinctive attributes. With unique properties ranging from optical to magnetic and beyond, these structures are useful in many new applications. Chapter two discusses the nanodisk code: a linear array of metal disk pairs that serve as surface-enhanced Raman scattering substrates. These multiplexing structures employ a binary encoding scheme, perform better than previous nanowires designs (in the context of SERS) and are useful for both convert encoding and tagging of substrates (based both on spatial disk position and spectroscopic response) as well as biomolecule detection (e.g. DNA). Chapter three describes the development of improved, silver-based nanodisk code structures. Work was undertaken to generate structures with high yield and reproducibility and to reoptimize the geometry of each disk pair for maximum Raman enhancement. The improved silver structures exhibit greater enhancement than Au structures (leading to lower DNA detection limits), convey additional flexibility, and enable trinary encoding schemes where far more unique structures can be created. Chapter four considers the effect of roughness on the plasmonic properties of nanorod structures and introduces a novel method to smooth the end-surfaces of nanorods structures. The smoothing technique is based upon a two-step process relying upon diffusion control during nanowires growth and selective oxidation after each step of synthesis is complete. Empirical and theoretical work show that smoothed nanostructures have superior and controllable optical properties. Chapter five concerns silica-encapsulated gold nanoprisms. This encapsulation allows these highly sensitive prisms to remain stable and protected in solution, enabling their use as class-leading sensors. Theoretical study complements the empirical work, exploring the effect of encapsulation on the SPR of these structures. Chapter six focuses on the magnetic properties of Au-Ni heterostructures. In addition to demonstration of nanoconfinement effects based upon the anisotropy of the nanorods/nanodisk structure, the magnetic coupling of rod-disk heterostructures is examined. Subsequent investigations suggest that the magnetic behavior of disks can be influenced by nearby rod segments, leading to the creation of a three-state spin system that may prove useful in device applications.
40 CFR 63.11417 - What are the compliance requirements for new and existing sources?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Flexible Polyurethane Foam Production and Fabrication Area Sources Standards and Compliance Requirements... a slabstock flexible polyurethane foam production affected source, you must comply with the... affected source, or a loop slitter at a flexible polyurethane foam fabrication affected source you must...
40 CFR 63.11417 - What are the compliance requirements for new and existing sources?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Flexible Polyurethane Foam Production and Fabrication Area Sources Standards and Compliance Requirements... a slabstock flexible polyurethane foam production affected source, you must comply with the... affected source, or a loop slitter at a flexible polyurethane foam fabrication affected source you must...
40 CFR 63.11417 - What are the compliance requirements for new and existing sources?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Flexible Polyurethane Foam Production and Fabrication Area Sources Standards and Compliance Requirements... a slabstock flexible polyurethane foam production affected source, you must comply with the... affected source, or a loop slitter at a flexible polyurethane foam fabrication affected source you must...
40 CFR 63.11417 - What are the compliance requirements for new and existing sources?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Flexible Polyurethane Foam Production and Fabrication Area Sources Standards and Compliance Requirements... a slabstock flexible polyurethane foam production affected source, you must comply with the... affected source, or a loop slitter at a flexible polyurethane foam fabrication affected source you must...
40 CFR 63.11417 - What are the compliance requirements for new and existing sources?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Flexible Polyurethane Foam Production and Fabrication Area Sources Standards and Compliance Requirements... a slabstock flexible polyurethane foam production affected source, you must comply with the... affected source, or a loop slitter at a flexible polyurethane foam fabrication affected source you must...
Star formation in the Auriga-California Giant Molecular Cloud and its circumstellar disk population
NASA Astrophysics Data System (ADS)
Broekhoven-Fiene, Hannah
2016-05-01
This thesis presents a multiwavelength analysis, from the infrared to the microwave, of the young, forming stars in the Auriga-California Molecular Cloud and a first look at the disks they host and their potential for forming planetary systems. At the beginning of this thesis, Auriga-Cal had only recently been identified as one contiguous cloud with its distance placing it within the Gould Belt of nearby star-forming regions (Lada et al. 2009). This thesis presents the largest body of work to date on Auriga-Cal's star formation and disk population. Auriga-Cal is one of two nearby giant molecular clouds (GMCs) in the Gould Belt, the other being the Orion A molecular cloud. These two GMCs have similar mass ( 10^5 Msolar), spatial scale ( 80 pc), distance ( 450 pc), and filamentary morphology, yet the two clouds present very different star formation qualities and quantities. Namely, Auriga-Cal is forming far fewer stars and does not exhibit the high-mass star formation seen in Orion A. In this thesis, I present a census of the star forming objects in the infrared with the Spitzer Space Telescope showing that Auriga-Cal contains at least 166 young stellar objects (YSOs), 15-20x fewer stars than Orion A, the majority of which are located in the cluster around LkHalpha 101, NGC 1529, and the filament extending from it. I find the submillimetre census with the James Clerk Maxwell Telescope, sensitive to the youngest objects, arrives at a similar result showing the disparity between the two clouds observed in the infrared continues to the submillimetre. Therefore the relative star formation rate between the two clouds has remained constant in recent times. The final chapter introduces the first study targeted at the disk population to measure the formation potential of planetary systems around the young stars in Auriga-Cal. The dust thermal emission at cm wavelengths is observed to measure the relative amounts of cm-sized grains, indicative of the grain growth processes that take place in disks and are necessary for planet formation. For a subsample of our targets, we are able to measure the spectral slope in the cm to confirm the thermal nature of the observed emission that we detect and characterize the signature of grain growth. The sensitivity of our observations probes masses greater than the minimum mass solar nebula (MMSN), the disk mass required to form the Solar System. We detect 19 disks, representing almost a third of our sample, comparable to the numbers of disks in other nearby star-forming regions with disks masses exceeding the MMSN, suggesting that the disk population in Auriga-Cal possesses similar planet formation potential as populations in other clouds. Confirmation of this result requires future observations with mm interferometry, the wavelength regime where the majority of statistics of disks has been measured.
Optimizing ROOT’s Performance Using C++ Modules
NASA Astrophysics Data System (ADS)
Vassilev, Vassil
2017-10-01
ROOT comes with a C++ compliant interpreter cling. Cling needs to understand the content of the libraries in order to interact with them. Exposing the full shared library descriptors to the interpreter at runtime translates into increased memory footprint. ROOT’s exploratory programming concepts allow implicit and explicit runtime shared library loading. It requires the interpreter to load the library descriptor. Re-parsing of descriptors’ content has a noticeable effect on the runtime performance. Present state-of-art lazy parsing technique brings the runtime performance to reasonable levels but proves to be fragile and can introduce correctness issues. An elegant solution is to load information from the descriptor lazily and in a non-recursive way. The LLVM community advances its C++ Modules technology providing an io-efficient, on-disk representation capable to reduce build times and peak memory usage. The feature is standardized as a C++ technical specification. C++ Modules are a flexible concept, which can be employed to match CMS and other experiments’ requirement for ROOT: to optimize both runtime memory usage and performance. Cling technically “inherits” the feature, however tweaking it to ROOT scale and beyond is a complex endeavor. The paper discusses the status of the C++ Modules in the context of ROOT, supported by few preliminary performance results. It shows a step-by-step migration plan and describes potential challenges which could appear.
Giske, Christian G.; Haldorsen, Bjørg; Matuschek, Erika; Schønning, Kristian; Leegaard, Truls M.; Kahlmeter, Gunnar
2014-01-01
Different antimicrobial susceptibility testing methods to detect low-level vancomycin resistance in enterococci were evaluated in a Scandinavian multicenter study (n = 28). A phenotypically and genotypically well-characterized diverse collection of Enterococcus faecalis (n = 12) and Enterococcus faecium (n = 18) strains with and without nonsusceptibility to vancomycin was examined blindly in Danish (n = 5), Norwegian (n = 13), and Swedish (n = 10) laboratories using the EUCAST disk diffusion method (n = 28) and the CLSI agar screen (n = 18) or the Vitek 2 system (bioMérieux) (n = 5). The EUCAST disk diffusion method (very major error [VME] rate, 7.0%; sensitivity, 0.93; major error [ME] rate, 2.4%; specificity, 0.98) and CLSI agar screen (VME rate, 6.6%; sensitivity, 0.93; ME rate, 5.6%; specificity, 0.94) performed significantly better (P = 0.02) than the Vitek 2 system (VME rate, 13%; sensitivity, 0.87; ME rate, 0%; specificity, 1). The performance of the EUCAST disk diffusion method was challenged by differences in vancomycin inhibition zone sizes as well as the experience of the personnel in interpreting fuzzy zone edges as an indication of vancomycin resistance. Laboratories using Oxoid agar (P < 0.0001) or Merck Mueller-Hinton (MH) agar (P = 0.027) for the disk diffusion assay performed significantly better than did laboratories using BBL MH II medium. Laboratories using Difco brain heart infusion (BHI) agar for the CLSI agar screen performed significantly better (P = 0.017) than did those using Oxoid BHI agar. In conclusion, both the EUCAST disk diffusion and CLSI agar screening methods performed acceptably (sensitivity, 0.93; specificity, 0.94 to 0.98) in the detection of VanB-type vancomycin-resistant enterococci with low-level resistance. Importantly, use of the CLSI agar screen requires careful monitoring of the vancomycin concentration in the plates. Moreover, disk diffusion methodology requires that personnel be trained in interpreting zone edges. PMID:24599985
Nagai, Hidenori; Irie, Takashi; Takahashi, Junko; Wakida, Shin-ichi
2007-04-15
To realize highly integrated micro total analysis systems (microTAS), a simply controlled miniaturized valve should be utilized on microfluidic device. In this paper, we describe the application of photo-induced super-hydrophilicity of titanium dioxide (TiO2) to microfluidic manipulation. In addition, we found a new phenomenon for reversibly converting the surface wettability using a polydimethylsiloxane (PDMS) matrix and the photocatalytic properties of TiO2. While PDMS polymer was irradiated with UV, it was confirmed that hydrophobic material was released from the polymer to air. Several prepolymers were identified as the hydrophobic material with a gas chromatograph and mass spectrometer (GC/MS). Here, we successfully demonstrated the flexible manipulation of microfluid in a branched microchannel using the reversible wettability as micro opto-switching valve (MOS/V). The simultaneous control of MOS/Vs was also demonstrated on a 256-MOS/V integrated disk. The MOS/V promises to be one of the most effective flow switching valves for advanced applications in highly integrated micro/nano fluidics.
NASA Technical Reports Server (NTRS)
Flowers, George T.
1994-01-01
Progress over the past year includes the following: A simplified rotor model with a flexible shaft and backup bearings has been developed. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501. The magnetic bearing test rig is currently floating and dynamics/control tests are being conducted. A paper has been written that documents the work using the T-501 engine model. Work has continued with the simplified model. The finite element model is currently being modified to include the effects of foundation dynamics. A literature search for material on foil bearings has been conducted. A finite element model is being developed for a magnetic bearing in series with a foil backup bearing.
Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures.
Jia, Chao; Bian, Huiyang; Gao, Tingting; Jiang, Feng; Kierzewski, Iain Michael; Wang, Yilin; Yao, Yonggang; Chen, Liheng; Shao, Ziqiang; Zhu, J Y; Hu, Liangbing
2017-08-30
Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge. Here versatile cellulose nanocrystals (DM-OA-CNCs) are prepared through fully recyclable oxalic acid (OA) hydrolysis along with disk-milling (DM) pretreatment of bleached kraft eucalyptus pulp. Compared with the commonly used cellulose nanocrystals from sulfuric acid hydrolysis, DM-OA-CNCs show several advantages including large aspect ratio, carboxylated surface, and excellent thermal stability along with high yield. We also successfully demonstrate the fabrication of high-performance films and 3D-printed patterns using DM-OA-CNCs. The high-performance films with high transparency, ultralow haze, and excellent thermal stability have the great potential for applications in flexible electronic devices. The 3D-printed patterns with porous structures can be potentially applied in the field of tissue engineering as scaffolds.
NASA Astrophysics Data System (ADS)
Tolfree, Kathryne; Wyse, R. F.
2014-01-01
Radial migration is a way to rearrange the orbital angular momentum of stars in an spiral disk without inducing kinematic heating. When radial migration is very efficient, a large fraction of disk stars experience significant changes in their orbital angular momenta in a short period of time. Such scenarios have strong implications for the chemical and kinematic evolution of disk galaxies. We have undertaken an investigation of the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure by deriving the fraction of stars that can migrate radially given certain conditions. In order for a star in a spiral disk to migrate radially, it must first be “captured" in a family of resonant orbits near the radius of corotation with a spiral pattern. Thus far, the only analytic criterion for capture has been for stars in circular orbits. We present the capture criterion for stars on non-circular orbits in a disk galaxy. We then use our analytically derived capture criteria to model the radial distribution of the captured fraction in an exponential disk with a flat rotation curve as well as the dependence of the total captured fraction in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential at corotation (|Φs|CR). We find that the captured fraction goes as Exp[-σR2/|Φs|CR].
NASA Astrophysics Data System (ADS)
Tolfree, K. J. D.; Wyse, R. F. G.
2014-03-01
Radial migration is a mechanism that can rearrange the orbital angular momentum of stars in a spiral disk without inducing kinematic heating. When radial migration is very efficient, a large fraction of disk stars experience significant changes in their orbital angular momenta over a short period of time. Such scenarios have strong implications for the chemical and kinematic evolution of disk galaxies. We have undertaken an investigation of the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure by deriving the fraction of stars that can migrate radially. In order for a star in a spiral disk to migrate radially, it must first be “captured” in a family of resonant orbits near the radius of corotation with a transient spiral pattern. To date, the only analytic criterion for capture has been for stars in circular orbits. We present the capture criterion for disk stars on non-circular orbits. We then use our analytically derived capture criterion to model the radial distribution of the captured fraction in an exponential disk with a flat rotation curve. Further, we derive the dependence of the total captured fraction in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential evaluated at corotation (|Φs|CR). We find that within an annulus centered around corotation where σR is constant, the captured fraction goes as e-σR2/|Φs|CR.
Transition disks: four candidates for ongoing giant planet formation in Ophiuchus
NASA Astrophysics Data System (ADS)
Orellana, M.; Cieza, L. A.; Schreiber, M. R.; Merín, B.; Brown, J. M.; Pellizza, L. J.; Romero, G. A.
2012-03-01
Among the large set of Spitzer-selected transitional disks that we have examined in the Ophiuchus molecular, four disks have been identified as (giant) planet-forming candidates based on the morphology of their spectral energy distributions (SEDs), their apparent lack of stellar companions, and evidence of accretion. Here we characterize the structures of these disks modeling their optical, infrared, and (sub)millimeter SEDs. We use the Monte Carlo radiative transfer package RADMC to construct a parametric model of the dust distribution in a flared disk with an inner cavity and calculate the temperature structure that is consistent with the density profile, when the disk is in thermal equilibrium with the irradiating star. For each object, we conducted a Bayesian exploration of the parameter space generating Monte Carlo Markov chains (MCMC) that allow the identification of the best-fit model parameters and to constrain their range of statistical confidence. Our calculations imply that evacuated cavities with radii ~2-8 AU are present that appear to have been carved by embedded giant planets. We found parameter values that are consistent with those previously given in the literature, indicating that there has been a mild degree of grain growth and dust settling, which deserves to be investigated with further modeling and follow-up observations. Resolved images with (sub)millimeter interferometers would be required to break some of the degeneracies of the models and more tightly constrain the physical properties of these fascinating disks.
Inside-out Planet Formation. IV. Pebble Evolution and Planet Formation Timescales
NASA Astrophysics Data System (ADS)
Hu, Xiao; Tan, Jonathan C.; Zhu, Zhaohuan; Chatterjee, Sourav; Birnstiel, Tilman; Youdin, Andrew N.; Mohanty, Subhanjoy
2018-04-01
Systems with tightly packed inner planets (STIPs) are very common. Chatterjee & Tan proposed Inside-out Planet Formation (IOPF), an in situ formation theory, to explain these planets. IOPF involves sequential planet formation from pebble-rich rings that are fed from the outer disk and trapped at the pressure maximum associated with the dead zone inner boundary (DZIB). Planet masses are set by their ability to open a gap and cause the DZIB to retreat outwards. We present models for the disk density and temperature structures that are relevant to the conditions of IOPF. For a wide range of DZIB conditions, we evaluate the gap-opening masses of planets in these disks that are expected to lead to the truncation of pebble accretion onto the forming planet. We then consider the evolution of dust and pebbles in the disk, estimating that pebbles typically grow to sizes of a few centimeters during their radial drift from several tens of astronomical units to the inner, ≲1 au scale disk. A large fraction of the accretion flux of solids is expected to be in such pebbles. This allows us to estimate the timescales for individual planet formation and the entire planetary system formation in the IOPF scenario. We find that to produce realistic STIPs within reasonable timescales similar to disk lifetimes requires disk accretion rates of ∼10‑9 M ⊙ yr‑1 and relatively low viscosity conditions in the DZIB region, i.e., a Shakura–Sunyaev parameter of α ∼ 10‑4.
76 FR 63817 - Disclosure of Information; Privacy Act Regulations; Notice and Amendments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
..., paper, reports of examination, work papers, and correspondence relating to such reports, to the.... Regulatory Flexibility Act The Regulatory Flexibility Act, 5 U.S.C. 601, et seq., (RFA) applies only to rules... and comment requirements of the APA, the requirement to prepare a final regulatory flexibility...
NASA Astrophysics Data System (ADS)
Sicilia-Aguilar, Aurora; Kim, Jinyoung Serena; Sobolev, Andrej; Getman, Konstantin; Henning, Thomas; Fang, Min
2013-11-01
Aims: We present a study of accretion and protoplanetary disks around M-type stars in the 4 Myr-old cluster Tr 37. With a well-studied solar-type population, Tr 37 is a benchmark for disk evolution. Methods: We used low-resolution spectroscopy to identify and classify 141 members (78 new ones) and 64 probable members, mostly M-type stars. Hα emission provides information about accretion. Optical, 2MASS, Spitzer, and WISE data are used to trace the spectral energy distributions (SEDs) and search for disks. We construct radiative transfer models to explore the structures of full-disks, pre-transition, transition, and dust-depleted disks. Results: Including the new members and the known solar-type stars, we confirm that a substantial fraction (~2/5) of disks show signs of evolution, either as radial dust evolution (transition/pre-transition disks) or as a more global evolution (with low small-dust masses, dust settling, and weak/absent accretion signatures). Accretion is strongly dependent on the SED type. About half of the transition objects are consistent with no accretion, and dust-depleted disks have weak (or undetectable) accretion signatures, especially among M-type stars. Conclusions: The analysis of accretion and disk structure suggests a parallel evolution of dust and gas. We find several distinct classes of evolved disks, based on SED type and accretion status, pointing to different disk dispersal mechanisms and probably different evolutionary paths. Dust depletion and opening of inner holes appear to be independent processes: most transition disks are not dust-depleted, and most dust-depleted disks do not require inner holes. The differences in disk structure between M-type and solar-type stars in Tr 37 (4 Myr old) are not as remarkable as in the young, sparse, Coronet cluster (1-2 Myr old), suggesting that other factors, like the environment/interactions in each cluster, are likely to play an important role in the disk evolution and dispersal. Finally, we also find some evidence of clumpy star formation or mini-clusters within Tr 37. Observations reported here were obtained at the MMT Observatory, a jointfacility of the Smithsonian Institution and the University of Arizona.Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).Appendices A and B are available in electronic form at http://www.aanda.orgFull Tables A.1-A.5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A3
Thin Film Transistor Control Circuitry for MEMS Acoustic Transducers
NASA Astrophysics Data System (ADS)
Daugherty, Robin
This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10-100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.
Factors affecting power requirements for chipping whole trees
Bryce J. Stokes; William F. Watson; Donald L. Sirois
1987-01-01
Large and small in-woods disk chippers were used in field tests to determine the power requirements for chipping whole trees. Hardwood and softwood species were evaluated over a range of diameter classes and moisture contents.
MECHANISM FOR EXCITING PLANETARY INCLINATION AND ECCENTRICITY THROUGH A RESIDUAL GAS DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Yuanyuan; Liu Huigen; Zhao Gang
2013-05-20
According to the theory of Kozai resonance, the initial mutual inclination between a small body and a massive planet in an outer circular orbit is as high as {approx}39. Degree-Sign 2 for pumping the eccentricity of the inner small body. Here we show that with the presence of a residual gas disk outside two planetary orbits, the inclination can be reduced to as low as a few degrees. The presence of the disk changes the nodal precession rates and directions of the planet orbits. At the place where the two planets achieve the same nodal processing rate, vertical secular resonancemore » (VSR) occurs so that the mutual inclination of the two planets will be excited, which might further trigger the Kozai resonance between the two planets. However, in order to pump an inner Jupiter-like planet, the conditions required for the disk and the outer planet are relatively strict. We develop a set of evolution equations, which can fit the N-body simulation quite well but can be integrated within a much shorter time. By scanning the parameter spaces using the evolution equations, we find that a massive planet (10 M{sub J} ) at 30 AU with an inclination of 6 Degree-Sign to a massive disk (50 M{sub J} ) can finally enter the Kozai resonance with an inner Jupiter around the snowline. An inclination of 20 Degree-Sign of the outer planet to the disk is required for flipping the inner one to a retrograde orbit. In multiple planet systems, the mechanism can happen between two nonadjacent planets or can inspire a chain reaction among more than two planets. This mechanism could be the source of the observed giant planets in moderate eccentric and inclined orbits, or hot Jupiters in close-in, retrograde orbits after tidal damping.« less
Rotationally-supported disks around Class I sources in Taurus: disk formation constraints
NASA Astrophysics Data System (ADS)
Harsono, D.; Jørgensen, J. K.; van Dishoeck, E. F.; Hogerheijde, M. R.; Bruderer, S.; Persson, M. V.; Mottram, J. C.
2014-02-01
Context. Disks are observed around pre-main sequence stars, but how and when they form is still heavily debated. While disks around young stellar objects have been identified through thermal dust emission, spatially and spectrally resolved molecular line observations are needed to determine their nature. Only a handful of embedded rotationally supported disks have been identified to date. Aims: We identify and characterize rotationally supported disks near the end of the main accretion phase of low-mass protostars by comparing their gas and dust structures. Methods: Subarcsecond observations of dust and gas toward four Class I low-mass young stellar objects in Taurus are presented at significantly higher sensitivity than previous studies. The 13CO and C18O J = 2-1 transitions at 220 GHz were observed with the Plateau de Bure Interferometer at a spatial resolution of ≤0.8″ (56 AU radius at 140 pc) and analyzed using uv-space position velocity diagrams to determine the nature of their observed velocity gradient. Results: Rotationally supported disks (RSDs) are detected around 3 of the 4 Class I sources studied. The derived masses identify them as Stage I objects; i.e., their stellar mass is higher than their envelope and disk masses. The outer radii of the Keplerian disks toward our sample of Class I sources are ≤100 AU. The lack of on-source C18O emission for TMR1 puts an upper limit of 50 AU on its size. Flattened structures at radii >100 AU around these sources are dominated by infalling motion (υ ∝ r-1). A large-scale envelope model is required to estimate the basic parameters of the flattened structure from spatially resolved continuum data. Similarities and differences between the gas and dust disk are discussed. Combined with literature data, the sizes of the RSDs around Class I objects are best described with evolutionary models with an initial rotation of Ω = 10-14 Hz and slow sound speeds. Based on the comparison of gas and dust disk masses, little CO is frozen out within 100 AU in these disks. Conclusions: Rotationally supported disks with radii up to 100 AU are present around Class I embedded objects. Larger surveys of both Class 0 and I objects are needed to determine whether most disks form late or early in the embedded phase. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNBRS (France), MPG (Germany) and IGN (Spain).Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Nakajima, Miki; Stevenson, David J.
2018-04-01
The Earth's Moon is thought to have formed from a circumterrestrial disk generated by a giant impact between the proto-Earth and an impactor approximately 4.5 billion years ago. Since this impact was energetic, the disk would have been hot (4000-6000 K) and partially vaporized (20-100% by mass). This formation process is thought to be responsible for the geochemical observation that the Moon is depleted in volatiles (e.g., K and Na). To explain this volatile depletion, some studies suggest the Moon-forming disk was rich in hydrogen, which was dissociated from water, and it escaped from the disk as a hydrodynamic wind accompanying heavier volatiles (hydrodynamic escape). This model predicts that the Moon should be significantly depleted in water, but this appears to contradict some of the recently measured lunar water abundances and D/H ratios that suggest that the Moon is more water-rich than previously thought. Alternatively, the Moon could have retained its water if the upper parts (low pressure regions) of the disk were dominated by heavier species because hydrogen would have had to diffuse out from the heavy-element rich disk, and therefore the escape rate would have been limited by this slow diffusion process (diffusion-limited escape). To identify which escape the disk would have experienced and to quantify volatiles loss from the disk, we compute the thermal structure of the Moon-forming disk considering various bulk water abundances (100-1000 ppm) and mid-plane disk temperatures (2500-4000 K). Assuming that the disk consists of silicate (SiO2 or Mg2SiO4) and water and that the disk is in the chemical equilibrium, our calculations show that the upper parts of the Moon-forming disk are dominated by heavy atoms or molecules (SiO and O at Tmid > 2500- 2800 K and H2O at Tmid < 2500- 2800 K) and hydrogen is a minor species. This indicates that hydrogen escape would have been diffusion-limited, and therefore the amount of lost water and hydrogen would have been small compared to the initial abundance assumed. This result indicates that the giant impact hypothesis can be consistent with the water-rich Moon. Furthermore, since the hydrogen wind would have been weak, the other volatiles would not have escaped either. Thus, the observed volatile depletion of the Moon requires another mechanism.
Disk-Wind Connection During the Heartbeats of GRS 1915+105
NASA Technical Reports Server (NTRS)
Zoghbi, Abderahmen; Miller, J. M.; King, A. L.; Miller, M. C.; Proga, D.; Kallman, T.; Fabian, A. C.; Harrison, F. A.; Kaastra, J.; Raymond, J.;
2016-01-01
Disk and wind signatures are seen in the soft state of Galactic black holes, while the jet is seen in the hard state. Here we study the disk-wind connection in the Rho class of variability in GRS 1915+105 using a joint NuSTAR-Chandra observation. The source shows 50 s limit cycle oscillations. By including new information provided by the reflection spectrum and using phase-resolved spectroscopy, we find that the change in the inner disk inferred from the blackbody emission is not matched by reflection measurements. The latter is almost constant, independent of the continuum model. The two radii are comparable only if the disk temperature color correction factor changes, an effect that could be due to the changing opacity of the disk caused by changes in metal abundances. The disk inclination is similar to that inferred from the jet axis, and oscillates by approx.10 deg. The simultaneous Chandra data show the presence of two wind components with velocities between 500 and 5000 km s(exp. -1), and possibly two more with velocities reaching 20,000 km s(exp. -1) (approx. 0.06 c). The column densities are approx. 5 × 10(exp. 22) cm(exp. -2). An upper limit to the wind response time of 2 s is measured, implying a launch radius of less than 6 × 10(exp. 10) cm. The changes in wind velocity and absorbed flux require the geometry of the wind to change during the oscillations, constraining the wind to be launched from a distance of 290-1300 r (sub g) from the black hole. Both data sets support fundamental model predictions in which a bulge originates in the inner disk and moves outward as the instability progresses.
Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing
2011-01-01
In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations. PMID:22163788
Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing
2011-01-01
In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin's discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.
Strong disk winds traced throughout outbursts in black-hole X-ray binaries
NASA Astrophysics Data System (ADS)
Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.
2018-02-01
Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taehyun; Lee, Myung Gyoon; Sheth, Kartik
2015-01-20
We have measured the radial light profiles and global shapes of bars using two-dimensional 3.6 μm image decompositions for 144 face-on barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies. The bar surface brightness profile is correlated with the stellar mass and bulge-to-total (B/T) ratio of their host galaxies. Bars in massive and bulge-dominated galaxies (B/T > 0.2) show a flat profile, while bars in less massive, disk-dominated galaxies (B/T ∼ 0) show an exponential, disk-like profile with a wider spread in the radial profile than in the bulge-dominated galaxies. The global two-dimensional shapes of bars, however, are rectangular/boxy, independentmore » of the bulge or disk properties. We speculate that because bars are formed out of disks, bars initially have an exponential (disk-like) profile that evolves over time, trapping more disk stars to boxy bar orbits. This leads bars to become stronger and have flatter profiles. The narrow spread of bar radial profiles in more massive disks suggests that these bars formed earlier (z > 1), while the disk-like profiles and a larger spread in the radial profile in less massive systems imply a later and more gradual evolution, consistent with the cosmological evolution of bars inferred from observational studies. Therefore, we expect that the flatness of the bar profile can be used as a dynamical age indicator of the bar to measure the time elapsed since the bar formation. We argue that cosmic gas accretion is required to explain our results on bar profile and the presence of gas within the bar region.« less
On the Dramatic Spin-up/Spin-Down Torque Reversals in Accreting Pulsars
NASA Technical Reports Server (NTRS)
Nelson, Robert W.; Bildsten, Lars; Chakrabarty, Deepto; Finger, Mark H.; Koh, Danny T.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Mathew; Vaughan, Brian A.; Wilson, Robert B.
1997-01-01
Dramatic torque reversals between spin-up and spin-down have been observed in half of the persistent X-ray pulsars monitored by the Burst and Transient Space Experiment (BATSE) all-sky monitor on the Compton Gamma Ray Observatory. Theoretical models developed to explain early pulsar timing data can explain spin-down torques via a disk-magnetosphere interaction if the star nearly corotates with the inner accretion disk. To produce the observed BATSE torque reversals, however, these equilibrium models require the disk to alternate between two mass accretion rates, with M+/- producing accretion torques of similar magnitude but always of opposite sign. Moreover, in at least one pulsar (GX 1+4) undergoing secular spin-down, the neutron star spins down faster during brief (approximately 20 day) hard X-ray flares-this is opposite the correlation expected from standard theory, assuming that BATSE pulsed flux increases with mass accretion rate. The 10 day to 10 yr intervals between torque reversals in these systems are much longer than any characteristic magnetic or viscous timescale near the inner disk boundary and are more suggestive of a global disk phenomenon. We discuss possible explanations of the observed torque behavior. Despite the preferred sense of rotation defined by the binary orbit, the BATSE observations are surprisingly consistent with an earlier suggestion for GX 1+4: the disks in these systems somehow alternate between episodes of prograde and retrograde rotation. We are unaware of any mechanism that could produce a stable retrograde disk in a binary undergoing Roche lobe overflow, but such flip-flop behavior does occur in numerical simulations of wind-fed systems. One possibility is that the disks in some of these binaries are fed by an X-ray-excited wind.
Strong disk winds traced throughout outbursts in black-hole X-ray binaries.
Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R
2018-02-01
Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.
Disk-Wind Connection during the Heartbeats of GRS 1915+105
NASA Astrophysics Data System (ADS)
Zoghbi, Abderahmen; Miller, J. M.; King, A. L.; Miller, M. C.; Proga, D.; Kallman, T.; Fabian, A. C.; Harrison, F. A.; Kaastra, J.; Raymond, J.; Reynolds, C. S.; Boggs, S. E.; Christensen, F. E.; Craig, W.; Hailey, C. J.; Stern, D.; Zhang, W. W.
2016-12-01
Disk and wind signatures are seen in the soft state of Galactic black holes, while the jet is seen in the hard state. Here we study the disk-wind connection in the ρ class of variability in GRS 1915+105 using a joint NuSTAR-Chandra observation. The source shows 50 s limit cycle oscillations. By including new information provided by the reflection spectrum and using phase-resolved spectroscopy, we find that the change in the inner disk inferred from the blackbody emission is not matched by reflection measurements. The latter is almost constant, independent of the continuum model. The two radii are comparable only if the disk temperature color correction factor changes, an effect that could be due to the changing opacity of the disk caused by changes in metal abundances. The disk inclination is similar to that inferred from the jet axis, and oscillates by ˜10°. The simultaneous Chandra data show the presence of two wind components with velocities between 500 and 5000 km s-1, and possibly two more with velocities reaching 20,000 km s-1 (˜0.06 c). The column densities are ˜5 × 1022 cm-2. An upper limit to the wind response time of 2 s is measured, implying a launch radius of <6 × 1010 cm. The changes in wind velocity and absorbed flux require the geometry of the wind to change during the oscillations, constraining the wind to be launched from a distance of 290-1300 r g from the black hole. Both data sets support fundamental model predictions in which a bulge originates in the inner disk and moves outward as the instability progresses.
The JASMIN Cloud: specialised and hybrid to meet the needs of the Environmental Sciences Community
NASA Astrophysics Data System (ADS)
Kershaw, Philip; Lawrence, Bryan; Churchill, Jonathan; Pritchard, Matt
2014-05-01
Cloud computing provides enormous opportunities for the research community. The large public cloud providers provide near-limitless scaling capability. However, adapting Cloud to scientific workloads is not without its problems. The commodity nature of the public cloud infrastructure can be at odds with the specialist requirements of the research community. Issues such as trust, ownership of data, WAN bandwidth and costing models make additional barriers to more widespread adoption. Alongside the application of public cloud for scientific applications, a number of private cloud initiatives are underway in the research community of which the JASMIN Cloud is one example. Here, cloud service models are being effectively super-imposed over more established services such as data centres, compute cluster facilities and Grids. These have the potential to deliver the specialist infrastructure needed for the science community coupled with the benefits of a Cloud service model. The JASMIN facility based at the Rutherford Appleton Laboratory was established in 2012 to support the data analysis requirements of the climate and Earth Observation community. In its first year of operation, the 5PB of available storage capacity was filled and the hosted compute capability used extensively. JASMIN has modelled the concept of a centralised large-volume data analysis facility. Key characteristics have enabled success: peta-scale fast disk connected via low latency networks to compute resources and the use of virtualisation for effective management of the resources for a range of users. A second phase is now underway funded through NERC's (Natural Environment Research Council) Big Data initiative. This will see significant expansion to the resources available with a doubling of disk-based storage to 12PB and an increase of compute capacity by a factor of ten to over 3000 processing cores. This expansion is accompanied by a broadening in the scope for JASMIN, as a service available to the entire UK environmental science community. Experience with the first phase demonstrated the range of user needs. A trade-off is needed between access privileges to resources, flexibility of use and security. This has influenced the form and types of service under development for the new phase. JASMIN will deploy a specialised private cloud organised into "Managed" and "Unmanaged" components. In the Managed Cloud, users have direct access to the storage and compute resources for optimal performance but for reasons of security, via a more restrictive PaaS (Platform-as-a-Service) interface. The Unmanaged Cloud is deployed in an isolated part of the network but co-located with the rest of the infrastructure. This enables greater liberty to tenants - full IaaS (Infrastructure-as-a-Service) capability to provision customised infrastructure - whilst at the same time protecting more sensitive parts of the system from direct access using these elevated privileges. The private cloud will be augmented with cloud-bursting capability so that it can exploit the resources available from public clouds, making it effectively a hybrid solution. A single interface will overlay the functionality of both the private cloud and external interfaces to public cloud providers giving users the flexibility to migrate resources between infrastructures as requirements dictate.
Alternative Fuels Data Center: E85 Flex Fuel Specification
Flexible-Fuel Automotive Spark-Ignition Engines. Fuel retailers or fleets purchasing E85 should require , there is no concern with carrying over winter fuel into the summer months because flexible-fuel vehicles requirements. D5798-15 Standard Specification for Ethanol Fuel Blends for Flexible-Fuel Automotive Spark
High-performance mass storage system for workstations
NASA Technical Reports Server (NTRS)
Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.
1993-01-01
Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive media, and the tapes are used as backup media. The storage system is managed by the IEEE mass storage reference model-based UniTree software package. UniTree software will keep track of all files in the system, will automatically migrate the lesser used files to archive media, and will stage the files when needed by the system. The user can access the files without knowledge of their physical location. The high-performance mass storage system developed by Loral AeroSys will significantly boost the system I/O performance and reduce the overall data storage cost. This storage system provides a highly flexible and cost-effective architecture for a variety of applications (e.g., realtime data acquisition with a signal and image processing requirement, long-term data archiving and distribution, and image analysis and enhancement).
NMRPipe: a multidimensional spectral processing system based on UNIX pipes.
Delaglio, F; Grzesiek, S; Vuister, G W; Zhu, G; Pfeifer, J; Bax, A
1995-11-01
The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks.
A simple and inexpensive method for muddy shore profiling
NASA Astrophysics Data System (ADS)
Chowdhury, Sayedur Rahman; Hossain, M. Shahadat; Sharifuzzaman, S. M.
2014-11-01
There are several well-established methods for obtaining beach profiles, and more accurate and precise high-tech methods are emerging. Traditional low-cost methods requiring minimal user skill or training are still popular among professionals, scientists, and coastal zone management practitioners. Simple methods are being developed with a primary focus on sand and gravel beaches. This paper describes a simple, low-cost, manual field method for measuring profiles of beaches, which is particularly suitable for muddy shores. The equipment is a type of flexible U-tube manometer that uses liquid columns in vertical tubes to measure differences in elevation; the supporting frame is constructed from wooden poles with base disks, which hold measuring scales and a PVC tube. The structure was trialed on a mudflat characterized by a 20-40-cm-thick surface layer of silt and clay, located at the Kutubdia Island, Bangladesh. The study results are discussed with notes on the method's applicability, advantages and limitations, and several optional modifications for different scenarios for routine profiling of muddy shores. The equipment can be used by one person or two people, and the accuracy of the method is comparable to those in other methods. The equipment can also be used on sandy or gravel beaches.
Experimental demonstration of the control of flexible structures
NASA Technical Reports Server (NTRS)
Schaechter, D. B.; Eldred, D. B.
1984-01-01
The Large Space Structure Technology Flexible Beam Experiment employs a pinned-free flexible beam to demonstrate such required methods as dynamic and adaptive control, as well as various control law design approaches and hardware requirements. An attempt is made to define the mechanization difficulties that may inhere in flexible structures. Attention is presently given to analytical work performed in support of the test facility's development, the final design's specifications, the control laws' synthesis, and experimental results obtained.
Dielectric Haloscopes: A New Way to Detect Axion Dark Matter.
Caldwell, Allen; Dvali, Gia; Majorovits, Béla; Millar, Alexander; Raffelt, Georg; Redondo, Javier; Reimann, Olaf; Simon, Frank; Steffen, Frank
2017-03-03
We propose a new strategy to search for dark matter axions in the mass range of 40-400 μeV by introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing dielectric media cause discontinuities in the axion-induced electric field, leading to the generation of propagating electromagnetic waves to satisfy the continuity requirements at the interfaces. Large-area disks with adjustable distances boost the microwave signal (10-100 GHz) to an observable level and allow one to scan over a broad axion mass range. A sensitivity to QCD axion models is conceivable with 80 disks of 1 m^{2} area contained in a 10 T field.
Unmanned Systems Acquisition and Technology Development: Is a More Integrated Approach Required
2010-11-01
The initial niche market of college students grew and in a few years, the music industry was forced to completely change its business models as...accepted and initially more effective sustaining technologies.39 An example of a sustaining technology would be the compact disk within the music ... industry . Like the advancement from the vinyl record to the cassette tape, the incremental advance to the compact disk was a vast improvement over the
Recovering Galaxy Rotation Speeds from Irregular Emission Profiles
NASA Astrophysics Data System (ADS)
Lavezzi, T. E.; Dickey, J. M.
1997-12-01
We simulate extragalactic emission spectra in order to determine whether the spectra of molecular gas measure the full velocity of disk rotation, despite their confined gas distributions. We present synthetic emission profiles to determine the effects on profile shapes due to factors such as telescope beam size. gas distribution, opacity, and pointing errors. We find that linewidths cease to be useful if the telescope beam resolves the solid body rotation region of the galaxy disk, or if the disk is very optically thick. Opacity is more problematic for edge-on galaxies; at lower optical depths, we find that very often a trough is created in the center of the emission line. We establish guidelines for rejecting spectra as unreliable disk-velocity indicators, and determine what corrections to the measured line widths at 20% and 50% of the peak intensity are best to recover twice the disk rotation velocity. Following the procedure of Bicay & Giovanelli (1986, AJ, 91, 705) we find that the 50% of peak intensity threshold for measuring linewidths (W50p, or FWHM) is the most robust, yielding the smallest measurement errors as a function of signal to noise, and requires the smallest turbulence corrections.
ON THE NATURE OF THE TERTIARY COMPANION TO FW TAU: ALMA CO OBSERVATIONS AND SED MODELING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caceres, Claudio; Hardy, Adam; Schreiber, Matthias R.
2015-06-20
It is thought that planetary mass companions may form through gravitational disk instabilities or core accretion. Identifying such objects in the process of formation would provide the most direct test for the competing formation theories. One of the most promising candidates for a planetary mass object still in formation is the third object in the FW Tau system. We present here ALMA cycle 1 observations confirming the recently published 1.3 mm detection of a dust disk around this third object and present for the first time a clear detection of a single peak {sup 12}CO (2–1) line, providing direct evidencemore » for the simultaneous existence of a gas disk. We perform radiative transfer modeling of the third object in FW Tau and find that current observations are consistent with either a brown dwarf embedded in an edge-on disk or a planet embedded in a low inclination disk, which is externally irradiated by the binary companion. Further observations with ALMA, aiming for high SNR detections of non-contaminated gas lines, are required to conclusively unveil the nature of the third object in FW Tau.« less
Design and Optimization Method of a Two-Disk Rotor System
NASA Astrophysics Data System (ADS)
Huang, Jingjing; Zheng, Longxi; Mei, Qing
2016-04-01
An integrated analytical method based on multidisciplinary optimization software Isight and general finite element software ANSYS was proposed in this paper. Firstly, a two-disk rotor system was established and the mode, humorous response and transient response at acceleration condition were analyzed with ANSYS. The dynamic characteristics of the two-disk rotor system were achieved. On this basis, the two-disk rotor model was integrated to the multidisciplinary design optimization software Isight. According to the design of experiment (DOE) and the dynamic characteristics, the optimization variables, optimization objectives and constraints were confirmed. After that, the multi-objective design optimization of the transient process was carried out with three different global optimization algorithms including Evolutionary Optimization Algorithm, Multi-Island Genetic Algorithm and Pointer Automatic Optimizer. The optimum position of the two-disk rotor system was obtained at the specified constraints. Meanwhile, the accuracy and calculation numbers of different optimization algorithms were compared. The optimization results indicated that the rotor vibration reached the minimum value and the design efficiency and quality were improved by the multidisciplinary design optimization in the case of meeting the design requirements, which provided the reference to improve the design efficiency and reliability of the aero-engine rotor.
Akiyama, Hideo; Shimoda, Yukitoshi; Fukuchi, Mariko; Kashima, Tomoyuki; Mayuzumi, Hideyasu; Shinohara, Yoichiro; Kishi, Shoji
2014-02-01
To evaluate the clinical outcomes after gas tamponade without vitrectomy for retinal detachment associated with an optic disk pit using optical coherence tomography. Intravitreal gas injection was performed on 8 consecutive patients (mean age, 35.0 years; range, 15-74 years) with unilateral macular detachment associated with an optic disk pit. A 0.3-mL injection of 100% sulfur hexafluoride 6 gas was carried out without an anterior chamber tap. Patients treated with gas injection were instructed to remain facedown for 5 days. Complete retinal reattachment after only gas tamponade was achieved in four out of eight eyes. The mean number of gas injections was 1.8. The mean best-corrected visual acuity before and after the treatment with gas tamponade was approximately 30/100 and 20/20, respectively. The period required for reattachment after final gas treatment was 12 months. There were no incidences of recurrence after complete reattachment by gas tamponade in any of the cases during the 94-month average follow-up period (range, 64-132 months). Gas tamponade appears to be an effective alternative method for macular detachment associated with an optic disk pit, even though the mechanisms of optic disk pit maculopathy are still unknown.
Externally Induced Evaporation of Young Stellar Disks: The Case for HST 10 in Orion's Trapezium.
NASA Astrophysics Data System (ADS)
Johnstone, D.; Hollenbach, D.; Storzer, H.; Bally, J.; Sutherland, R.
1996-12-01
The Trapezium region in Orion is composed of a few high-mass stars, responsible for the ionization of the surrounding gas, and a plethora of low-mass stars with disks. Observations at infrared, optical, and radio wavelengths have led to the discovery of extended ionized envelopes around many of the young low-mass stars requiring evaporation rates dot M ~ 10(-7) Modot/yr. In this poster we explain these observations through a model for the evaporation of disks around young low-mass stars by an external source of high energy photons. In particular, the externally produced ultraviolet continuum longward of the Lyman limit is used to heat the disk surface and produce a warm neutral flow. The model results in an offset ionization front, where the neutral flow encounters Lyman continuum radiation, and a mass-loss rate which is fixed due to the self-regulating nature of FUV heating. Applying this model to the Trapezium region evaporating objects, particularly HST 10, produces a satisfactory solution to both the mass-loss rate and the size of the ionized envelopes. The resulting short destruction times for these disks constrain the gestation period for planet embryos around stars in dense clusters.
NASA Astrophysics Data System (ADS)
Morris, Melissa A.; Garvie, Laurence A. J.; Knauth, L. Paul
2015-03-01
Many aspects of planet formation are controlled by the amount of gas remaining in the natal protoplanetary disks (PPDs). Infrared observations show that PPDs undergo a transition stage at several megayears, during which gas densities are reduced. Our Solar System would have experienced such a stage. However, there is currently no data that provides insight into this crucial time in our PPD’s evolution. We show that the Isheyevo meteorite contains the first definitive evidence for a transition disk stage in our Solar System. Isheyevo belongs to a class of metal-rich meteorites whose components have been dated at almost 5 Myr after formation of Ca, Al-rich inclusions, and exhibits unique sedimentary layers that imply formation through gentle sedimentation. We show that such layering can occur via the gentle sweep-up of material found in the impact plume resulting from the collision of two planetesimals. Such sweep-up requires gas densities consistent with observed transition disks (10-12-10-11 g cm-3). As such, Isheyevo presents the first evidence of our own transition disk and provides new constraints on the evolution of our solar nebula.
NASA Astrophysics Data System (ADS)
Millan-Gabet, R.; Monnier, J. D.; Berger, J.-P.; Traub, W. A.; Schloerb, F. P.; Pedretti, E.; Benisty, M.; Carleton, N. P.; Haguenauer, P.; Kern, P.; Labeye, P.; Lacasse, M. G.; Malbet, F.; Perraut, K.; Pearlman, M.; Thureau, N.
2006-07-01
We report on the detection of localized off-center emission at 1-4 AU in the circumstellar environment of the young stellar object AB Aurigae. We used closure-phase measurements in the near-infrared that were made at the long-baseline interferometer IOTA, the first obtained on a young stellar object using this technique. When probing sub-AU scales, all closure phases are close to zero degrees, as expected given the previously determined size of the AB Aurigae inner-dust disk. However, a clear closure-phase signal of -3.5d +/- 0.5d is detected on one triangle containing relatively short baselines, requiring a high degree of non-point symmetry from emission at larger (AU-sized) scales in the disk. We have not identified any alternative explanation for these closure-phase results, and we demonstrate that a ``disk hot spot'' model can fit our data. We speculate that such detected asymmetric near-infrared emission might arise as a result of localized viscous heating due to a gravitational instability in the AB Aurigae disk, or to the presence of a close stellar companion or accreting substellar object.
DISK ASSEMBLY AND THE M {sub BH}-{sigma} {sub e} RELATION OF SUPERMASSIVE BLACK HOLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debattista, Victor P.; Kazantzidis, Stelios; Van den Bosch, Frank C., E-mail: vpdebattista@gmail.com, E-mail: stelios@mps.ohio-state.edu, E-mail: frank.vandenbosch@yale.edu
2013-03-01
Recent Hubble Space Telescope observations have revealed that a majority of active galactic nuclei (AGNs) at z {approx} 1-3 are resident in isolated disk galaxies, contrary to the usual expectation that AGNs are triggered by mergers. Here we develop a new test of the cosmic evolution of supermassive black holes (SMBHs) in disk galaxies by considering the local population of SMBHs. We show that substantial SMBH growth in spiral galaxies is required as disks assemble. SMBHs exhibit a tight relation between their mass and the velocity dispersion of the spheroid within which they reside, the M {sub .}-{sigma} {sub e}more » relation. In disk galaxies the bulge is the spheroid of interest. We explore the evolution of the M {sub .}-{sigma} {sub e} relation when bulges form together with SMBHs on the M {sub .}-{sigma} {sub e} relation and then slowly re-form a disk around them. The formation of the disk compresses the bulge, raising its {sigma} {sub e}. We present evidence for such compression in the form of larger velocity dispersion of classical bulges compared with elliptical galaxies at the same mass. This compression leads to an offset in the M {sub .}-{sigma} {sub e} relation if it is not accompanied by an increased M {sub .}. We quantify the expected offset based on photometric data and show that, on average, SMBHs must grow by {approx}50%-65% just to remain on the M {sub .}-{sigma} {sub e} relation. We find no significant offset in the M {sub .}-{sigma} {sub e} relations of classical bulges and of ellipticals, implying that SMBHs have been growing along with disks. Our simulations demonstrate that SMBH growth is necessary for the local population of disk galaxies to have remained on the M {sub .}-{sigma} {sub e} relation.« less
Antibiogramj: A tool for analysing images from disk diffusion tests.
Alonso, C A; Domínguez, C; Heras, J; Mata, E; Pascual, V; Torres, C; Zarazaga, M
2017-05-01
Disk diffusion testing, known as antibiogram, is widely applied in microbiology to determine the antimicrobial susceptibility of microorganisms. The measurement of the diameter of the zone of growth inhibition of microorganisms around the antimicrobial disks in the antibiogram is frequently performed manually by specialists using a ruler. This is a time-consuming and error-prone task that might be simplified using automated or semi-automated inhibition zone readers. However, most readers are usually expensive instruments with embedded software that require significant changes in laboratory design and workflow. Based on the workflow employed by specialists to determine the antimicrobial susceptibility of microorganisms, we have designed a software tool that, from images of disk diffusion tests, semi-automatises the process. Standard computer vision techniques are employed to achieve such an automatisation. We present AntibiogramJ, a user-friendly and open-source software tool to semi-automatically determine, measure and categorise inhibition zones of images from disk diffusion tests. AntibiogramJ is implemented in Java and deals with images captured with any device that incorporates a camera, including digital cameras and mobile phones. The fully automatic procedure of AntibiogramJ for measuring inhibition zones achieves an overall agreement of 87% with an expert microbiologist; moreover, AntibiogramJ includes features to easily detect when the automatic reading is not correct and fix it manually to obtain the correct result. AntibiogramJ is a user-friendly, platform-independent, open-source, and free tool that, up to the best of our knowledge, is the most complete software tool for antibiogram analysis without requiring any investment in new equipment or changes in the laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldi, Giulio Francesco; Bozza, Valerio, E-mail: giuliofrancesco.aldi@sa.infn.it, E-mail: valboz@sa.infn.it
The shapes of relativistic iron lines observed in spectra of candidate black holes carry the signatures of the strong gravitational fields in which the accretion disks lie. These lines result from the sum of the contributions of all images of the disk created by gravitational lensing, with the direct and first-order images largely dominating the overall shapes. Higher order images created by photons tightly winding around the black holes are often neglected in the modeling of these lines, since they require a substantially higher computational effort. With the help of the strong deflection limit, we present the most accurate semi-analyticalmore » calculation of these higher order contributions to the iron lines for Schwarzschild black holes. We show that two regimes exist depending on the inclination of the disk with respect to the line of sight. Many useful analytical formulae can be also derived in this framework.« less
The excess infrared emission of Herbig Ae/Be stars - Disks or envelopes?
NASA Technical Reports Server (NTRS)
Hartmann, Lee; Kenyon, Scott J.; Calvet, Nuria
1993-01-01
It is suggested that the near-IR emission in many Herbig Ae/Be stars arises in surrounding dusty envelopes, rather than circumstellar disks. It is shown that disks around Ae/Be stars are likely to remain optically thick at the required accretion rates. It is proposed that the IR excesses of many Ae/Be stars originate in surrounding dust nebulae instead of circumstellar disks. It is suggested that the near-IR emission of the envelope is enhanced by the same processes that produce anomalous strong continuum emission at temperatures of about 1000 K in reflection nebulae surrounding hot stars. This near-IR emission could be due to small grains transiently heated by UV photons. The dust envelopes could be associated with the primary star or a nearby companion star. Some Ae/Be stars show evidence for the 3.3-6.3-micron emission features seen in reflection nebulae around hot stars, which lends further support to this suggestion.
CONSTRAINTS FROM ASYMMETRIC HEATING: INVESTIGATING THE EPSILON AURIGAE DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, Richard L. III; Stencel, Robert E., E-mail: richard.pearson@du.edu, E-mail: robert.stencel@du.edu
2015-01-01
Epsilon Aurigae is a long-period eclipsing binary that likely contains an F0Ia star and a circumstellar disk enshrouding a hidden companion, assumed to be a main-sequence B star. High uncertainty in its parallax has kept the evolutionary status of the system in question and, hence, the true nature of each component. This unknown, as well as the absence of solid state spectral features in the infrared, requires an investigation of a wide parameter space by means of both analytic and Monte Carlo radiative transfer (MCRT) methods. The first MCRT models of epsilon Aurigae that include all three system components aremore » presented here. We seek additional system parameter constraints by melding analytic approximations with MCRT outputs (e.g., dust temperatures) on a first-order level. The MCRT models investigate the effects of various parameters on the disk-edge temperatures; these include two distances, three particle size distributions, three compositions, and two disk masses, resulting in 36 independent models. Specifically, the MCRT temperatures permit analytic calculations of effective heating and cooling curves along the disk edge. These are used to calculate representative observed fluxes and corresponding temperatures. This novel application of thermal properties provides the basis for utilization of other binary systems containing disks. We find degeneracies in the model fits for the various parameter sets. However, the results show a preference for a carbon disk with particle size distributions ≥10 μm. Additionally, a linear correlation between the MCRT noon and basal temperatures serves as a tool for effectively eliminating portions of the parameter space.« less
NASA Astrophysics Data System (ADS)
Windhorst, Rogier A.; Timmes, F. X.; Wyithe, J. Stuart B.; Alpaslan, Mehmet; Andrews, Stephen K.; Coe, Daniel; Diego, Jose M.; Dijkstra, Mark; Driver, Simon P.; Kelly, Patrick L.; Kim, Duho
2018-02-01
We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-infrared surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z ≃ 7–17. Theoretical predictions and recent near-infrared power spectra provide tighter constraints on their sky signal. We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z≳ 7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions. We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be μ ≃ {10}4{--}{10}5, with rise times of hours and decline times of ≲ 1 year for cluster transverse velocities of {v}T≲ 1000 km s‑1. Microlensing by intracluster-medium objects can modify transit magnifications but lengthen visibility times. Depending on BH masses, accretion-disk radii, and feeding efficiencies, stellar-mass BH accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require monitoring 3–30 lensing clusters to {AB}≲ 29 mag over a decade.
Destruction of Refractory Carbon in Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Dana E.; Blake, Geoffrey A.; Bergin, Edwin A.
The Earth and other rocky bodies in the inner solar system contain significantly less carbon than the primordial materials that seeded their formation. These carbon-poor objects include the parent bodies of primitive meteorites, suggesting that at least one process responsible for solid-phase carbon depletion was active prior to the early stages of planet formation. Potential mechanisms include the erosion of carbonaceous materials by photons or atomic oxygen in the surface layers of the protoplanetary disk. Under photochemically generated favorable conditions, these reactions can deplete the near-surface abundance of carbon grains and polycyclic aromatic hydrocarbons by several orders of magnitude onmore » short timescales relative to the lifetime of the disk out to radii of ∼20–100+ au from the central star depending on the form of refractory carbon present. Due to the reliance of destruction mechanisms on a high influx of photons, the extent of refractory carbon depletion is quite sensitive to the disk’s internal radiation field. Dust transport within the disk is required to affect the composition of the midplane. In our current model of a passive, constant- α disk, where α = 0.01, carbon grains can be turbulently lofted into the destructive surface layers and depleted out to radii of ∼3–10 au for 0.1–1 μ m grains. Smaller grains can be cleared out of the planet-forming region completely. Destruction may be more effective in an actively accreting disk or when considering individual grain trajectories in non-idealized disks.« less
NASA Astrophysics Data System (ADS)
Steiman-Cameron, Thomas Y.; Durisen, Richard H.; Boley, Aaron C.; Michael, Scott; McConnell, Caitlin R.
2013-05-01
We conduct a convergence study of a protoplanetary disk subject to gravitational instabilities (GIs) at a time of approximate balance between heating produced by the GIs and radiative cooling governed by realistic dust opacities. We examine cooling times, characterize GI-driven spiral waves and their resultant gravitational torques, and evaluate how accurately mass transport can be represented by an α-disk formulation. Four simulations, identical except for azimuthal resolution, are conducted with a grid-based three-dimensional hydrodynamics code. There are two regions in which behaviors differ as resolution increases. The inner region, which contains 75% of the disk mass and is optically thick, has long cooling times and is well converged in terms of various measures of structure and mass transport for the three highest resolutions. The longest cooling times coincide with radii where the Toomre Q has its minimum value. Torques are dominated in this region by two- and three-armed spirals. The effective α arising from gravitational stresses is typically a few × 10-3 and is only roughly consistent with local balance of heating and cooling when time-averaged over many dynamic times and a wide range of radii. On the other hand, the outer disk region, which is mostly optically thin, has relatively short cooling times and does not show convergence as resolution increases. Treatment of unstable disks with optical depths near unity with realistic radiative transport is a difficult numerical problem requiring further study. We discuss possible implications of our results for numerical convergence of fragmentation criteria in disk simulations.
Misaligned Accretion and Jet Production
NASA Astrophysics Data System (ADS)
King, Andrew; Nixon, Chris
2018-04-01
Disk accretion onto a black hole is often misaligned from its spin axis. If the disk maintains a significant magnetic field normal to its local plane, we show that dipole radiation from Lense–Thirring precessing disk annuli can extract a significant fraction of the accretion energy, sharply peaked toward small disk radii R (as R ‑17/2 for fields with constant equipartition ratio). This low-frequency emission is immediately absorbed by surrounding matter or refracted toward the regions of lowest density. The resultant mechanical pressure, dipole angular pattern, and much lower matter density toward the rotational poles create a strong tendency to drive jets along the black hole spin axis, similar to the spin-axis jets of radio pulsars, also strong dipole emitters. The coherent primary emission may explain the high brightness temperatures seen in jets. The intrinsic disk emission is modulated at Lense–Thirring frequencies near the inner edge, providing a physical mechanism for low-frequency quasi-periodic oscillations (QPOs). Dipole emission requires nonzero hole spin, but uses only disk accretion energy. No spin energy is extracted, unlike the Blandford–Znajek process. Magnetohydrodynamic/general-relativistic magnetohydrodynamic (MHD/GRMHD) formulations do not directly give radiation fields, but can be checked post-process for dipole emission and therefore self-consistency, given sufficient resolution. Jets driven by dipole radiation should be more common in active galactic nuclei (AGN) than in X-ray binaries, and in low accretion-rate states than high, agreeing with observation. In non-black hole accretion, misaligned disk annuli precess because of the accretor’s mass quadrupole moment, similarly producing jets and QPOs.
Impact of convection and resistivity on angular momentum transport in dwarf novae.
NASA Astrophysics Data System (ADS)
Scepi, N.; Lesur, G.; Dubus, G.; Flock, M.
2017-12-01
The eruptive cycles of dwarf novae are thought to be due to a thermal-viscous instability in the accretion disk surrounding the white dwarf. This model has long been known to imply enhanced angular momentum transport in the accretion disk during outburst. This is measured by the stress to pressure ratio α, with α≈ 0.1 required in outburst compared to α≈ 0.01 in quiescence. Such an enhancement in α has recently been observed in simulations of turbulent transport driven by the magneto-rotational instability (MRI) when convection is present, without requiring a net magnetic flux. We independently recover this result by carrying out PLUTO MHD simulations of vertically stratified, radiative, shearing boxes with the thermodynamics and opacities appropriate to dwarf novae. The results are robust against the choice of vertical boundary conditions. In the quiescent state, the disk is only very weakly ionized so, in the second part of our work, we studied the impact of resistive MHD on transport.We find that the MRI-driven transport is quenched (α≈ 0) below the critical density at which the magnetic Reynolds number R_{m}≤ 10^4. This is problematic because the X-ray emission observed in quiescent systems requires ongoing accretion onto the white dwarf.
NuSTAR Observations of the Black Hole GS 1354-645: Evidence of Rapid Black Hole Spin
NASA Astrophysics Data System (ADS)
El-Batal, A. M.; Miller, J. M.; Reynolds, M. T.; Boggs, S. E.; Chistensen, F. E.; Craig, W. W.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Stern, D. K.; Tomsick, J.; Walton, D. J.; Zhang, W. W.
2016-07-01
We present the results of a NuSTAR study of the dynamically confirmed stellar-mass black hole GS 1354-645. The source was observed during its 2015 “hard” state outburst; we concentrate on spectra from two relatively bright phases. In the higher-flux observation, the broadband NuSTAR spectra reveal a clear, strong disk reflection spectrum, blurred by a degree that requires a black hole spin of a={cJ}/{{GM}}2≥slant 0.98 (1σ statistical limits only). The fits also require a high inclination: θ ≃ 75{(2)}\\circ . Strong “dips” are sometimes observed in the X-ray light curves of sources viewed at such an angle; these are absent, perhaps indicating that dips correspond to flared disk structures that only manifest at higher accretion rates. In the lower flux observation, there is evidence of radial truncation of the thin accretion disk. We discuss these results in the context of spin in stellar-mass black holes, and inner accretion flow geometries at moderate accretion rates.
NuSTAR Observations of the Black Hole GS 1354-645: Evidence of Rapid Black Hole Spin
NASA Technical Reports Server (NTRS)
El-Batal, A. M.; Miller, J. M.; Reynolds, M. T.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Stern, D. K.;
2016-01-01
We present the results of a NuSTAR study of the dynamically confirmed stellar-mass black hole GS 1354-645. The source was observed during its 2015 "hard" state outburst; we concentrate on spectra from two relatively bright phases. In the higher-flux observation, the broadband NuSTAR spectra reveal a clear, strong disk reflection spectrum, blurred by a degree that requires a black hole spin of a = cJ/ GM(sup 2) > or = 0.98 (1(sigma) statistical limits only). The fits also require a high inclination: theta approx. = 75(2)deg. Strong "dips" are sometimes observed in the X-ray light curves of sources viewed at such an angle; these are absent, perhaps indicating that dips correspond to flared disk structures that only manifest at higher accretion rates. In the lower flux observation, there is evidence of radial truncation of the thin accretion disk. We discuss these results in the context of spin in stellar-mass black holes, and inner accretion flow geometries at moderate accretion rates.
The Discovery of an Eccentric Millisecond Pulsar in the Galactic Plane
NASA Astrophysics Data System (ADS)
Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Cordes, James M.; Hessels, Jason W. T.; Bassa, Cees; Lorimer, Duncan R.; Stairs, Ingrid H.; van Leeuwen, Joeri; Arzoumnian, Zaven; Backer, Don C.; Bhat, N. D. Ramesh; Chatterjee, Shami; Crawford, Fronefield; Deneva, Julia S.; Faucher-Giguère, Claude-André; Gaensler, B. M.; Han, Jinlin; Jenet, Fredrick A.; Kasian, Laura; Kondratiev, Vlad I.; Kramer, Michael; Lazio, Joseph; McLaughlin, Maura A.; Stappers, Ben W.; Venkataraman, Arun; Vlemmings, Wouter
2008-02-01
The evolution of binary systems is governed by their orbital properties and the stellar density of the local environment. Studies of neutron stars in binary star systems offer unique insights into both these issues. In an Arecibo survey of the Galactic disk, we have found PSR J1903+0327, a radio emitting neutron star (a ``pulsar'') with a 2.15 ms rotation period, in a 95-day orbit around a massive companion. Observations in the infra-red suggests that the companion may be a main-sequence star. Theories requiring an origin in the Galactic disk cannot account for the extraordinarily high orbital eccentricity observed (0.44) or a main-sequence companion of a pulsar that has spin properties suggesting a prolonged accretion history. The most likely formation mechanism is an exchange interaction in a globular star cluster. This requires that the binary was either ejected from its parent globular cluster as a result of a three-body interaction, or that that cluster was disrupted by repeated passages through the disk of the Milky Way.
Can dead zones create structures like a transition disk?
NASA Astrophysics Data System (ADS)
Pinilla, Paola; Flock, Mario; Ovelar, Maria de Juan; Birnstiel, Til
2016-12-01
Context. Regions of low ionisation where the activity of the magneto-rotational instability is suppressed, the so-called dead zones, have been suggested to explain gaps and asymmetries of transition disks. Dead zones are therefore a potential cause for the observational signatures of transition disks without requiring the presence of embedded planets. Aims: We investigate the gas and dust evolution simultaneously assuming simplified prescriptions for a dead zone and a magnetohydrodynamic (MHD) wind acting on the disk. We explore whether the resulting gas and dust distribution can create signatures similar to those observed in transition disks. Methods: We imposed a dead zone and/or an MHD wind in the radial evolution of gas and dust in protoplanetary disks. For the dust evolution, we included the transport, growth, and fragmentation of dust particles. To compare with observations, we produced synthetic images in scattered optical light and in thermal emission at mm wavelengths. Results: In all models with a dead zone, a bump in the gas surface density is produced that is able to efficiently trap large particles (≳ 1 mm) at the outer edge of the dead zone. The gas bump reaches an amplitude of a factor of 5, which can be enhanced by the presence of an MHD wind that removes mass from the inner disk. While our 1D simulations suggest that such a structure can be present only for 1 Myr, the structure may be maintained for a longer time when more realistic 2D/3D simulations are performed. In the synthetic images, gap-like low-emission regions are seen at scattered light and in thermal emission at mm wavelengths, as previously predicted in the case of planet-disk interaction. Conclusions: Main signatures of transition disks can be reproduced by assuming a dead zone in the disk, such as gap-like structure in scattered light and millimetre continuum emission, and a lower gas surface density within the dead zone. Previous studies showed that the Rossby wave instability can also develop at the edge of such dead zones, forming vortices and also creating asymmetries.
Forming Planets in the Hostile Carina Nebula
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-07-01
Can protoplanetary disks form and be maintained around low-mass stars in the harsh environment of a highly active, star-forming nebula? A recent study examines the Carina nebula to answer this question.Crowded ClustersStars are often born in clusters that contain both massive and low-mass stars. The most massive stars in these clusters emit far-ultraviolet and extreme-ultraviolet light that irradiates the region around them, turning the surrounding area into a hostile environment for potential planet formation.Planet formation from protoplanetary disks typically requires timescales of at least 12 million years. Could the harsh radiation from massive stars destroy the protoplanetary disks around low-mass stars by photoevaporation before planets even have a chance to form?Artists impression of a protoplanetary disk. Such disks can be photoevaporated by harsh ultraviolet light from nearby massive stars, causing the disk to be destroyed before planets have a chance to form within them. [ESO/L. Calada]Turning ALMA Toward CarinaA perfect case study for exploring hostile environments is the Carina nebula, located about 7500 lightyears away and home to nearly 100 O-type stars as well as tens of thousands of lower-mass young stars. The Carina population is ~14 Myr old: old enough to form planets within protoplanetary disks, but also old enough that photoevaporation could already have wreaked havoc on those disks.Due to the dense stellar populations in Carinas clusters, this is a difficult region to explore, but the Atacama Large Millimeter-submillimeter Array (ALMA) is up to the task. In a recent study, a team of scientists led by Adal Mesa-Delgado (Pontifical Catholic University of Chile) made use of ALMAs high spatial resolution to image four regions spaced throughout Carina, searching for protoplanetary disks.Detections and Non-DetectionsTwo evaporating gas globules in the Carina nebula, 104-593 and 105-600, that each contain a protoplanetary disk. The top panels are Hubble images of the globules; the bottom panels are ALMA images of the disks detected within them. [Mesa-Delgado et al. 2016]In searching regions outside of the densest, most luminous clusters, the team succeeded in detecting two protoplanetary disks. This region in Carina now marks the most distant massive cluster in which disks have ever been imaged! The discovered disks have radii of roughly 60 AU and masses of 30 and 50 Jupiter masses and given their ages, its entirely plausible that planets are actively forming in these disks.Equally important: Mesa-Delgado and collaborators failed to detect any indication of disks in the core of Trumpler 14, a cluster in Carina that is home to some of the most massive and luminous stars in the Galaxy. This non-detection suggests that the particularly harsh environment of Trumpler 14 is too brutal for disks within it to survive.These observations provide new clues as to where we should be looking to study planet formation: less dense regions in star-forming nebulae seem to be locations that can support giant-planet-forming disks, whereas the harsh radiation fields of especially dense subclusters seem to cause the rapid destruction of such disks.CitationA. Mesa-Delgado et al 2016 ApJ 825 L16. doi:10.3847/2041-8205/825/1/L16
40 CFR 63.2480 - What requirements must I meet for equipment leaks?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Manufacturing Emission Limits, Work Practice Standards, and Compliance Requirements § 63.2480 What requirements... reconfiguration of an equipment train if flexible hose connections are the only disturbed equipment. (3) For an... accordance with § 65.117(b) is not required after reconfiguration of an equipment train if flexible hose...
A flexible insulator of a hollow SiO2 sphere and polyimide hybrid for flexible OLEDs.
Kim, Min Kyu; Kim, Dong Won; Shin, Dong Wook; Seo, Sang Joon; Chung, Ho Kyoon; Yoo, Ji Beom
2015-01-28
The fabrication of interlayer dielectrics (ILDs) in flexible organic light-emitting diodes (OLEDs) not only requires flexible materials with a low dielectric constant, but also ones that possess the electrical, thermal, chemical, and mechanical properties required for optimal device performance. Porous polymer-silica hybrid materials were prepared to satisfy these requirements. Hollow SiO2 spheres were synthesized using atomic layer deposition (ALD) and a thermal calcination process. The hybrid film, which consists of hollow SiO2 spheres and polyimide, shows a low dielectric constant of 1.98 and excellent thermal stability up to 500 °C. After the bending test for 50 000 cycles, the porous hybrid film exhibits no degradation in its dielectric constant or leakage current. These results indicate that the hybrid film made up of hollow SiO2 spheres and polyimide (PI) is useful as a flexible insulator with a low dielectric constant and high thermal stability for flexible OLEDs.
Conceptual approach study of a 200 watt per kilogram solar array
NASA Technical Reports Server (NTRS)
Stanhouse, R. W.; Fox, D.; Wilson, W.
1976-01-01
Solar array candidate configurations (flexible rollup, flexible flat-pact, semi-rigid panel, semi-rigid flat-pack) were analyzed with particular attention to the specific power (W/kg) requirement. Two of these configurations (flexible rollup and flexible flat-pack) are capable of delivering specific powers equal to or exceeding the baseline requirement of 200 W/kg. Only the flexible rollup is capable of in-flight retraction and subsequent redeployment. The wrap-around contact photovoltaic cell configuration has been chosen over the conventional cell. The demand for ultra high specific power forces the selection of ultra-thin cells and cover material. Based on density and mass range considerations, it was concluded that 13 micrometers of FEP Teflon is sufficient to protect the cell from a total proton fluency of 2(10 to the 12th power) particles/sq cm over a three-year interplanetary mission. The V-stiffened, lattice boom deployed, flexible substrate rollup array holds the greatest promise of meeting the baseline requirements set for this study.
NASA Technical Reports Server (NTRS)
Carmona, A.; Pinte, C.; Thi, W. F.; Benisty, M.; Menard, F.; Grady, C.; Kamp, I.; Woitke, P.; Olofsson, J.; Roberge, A.;
2014-01-01
Context: Constraining the gas and dust disk structure of transition disks, particularly in the inner dust cavity, is a crucial step toward understanding the link between them and planet formation. HD 135344B is an accreting (pre-)transition disk that displays the CO 4.7 micrometer emission extending tens of AU inside its 30 AU dust cavity. Aims: We constrain HD 135344B's disk structure from multi-instrument gas and dust observations. Methods: We used the dust radiative transfer code MCFOST and the thermochemical code ProDiMo to derive the disk structure from the simultaneous modeling of the spectral energy distribution (SED), VLT/CRIRES CO P(10) 4.75 Micrometers, Herschel/PACS [O(sub I)] 63 Micrometers, Spitzer/IRS, and JCMT CO-12 J = 3-2 spectra, VLTI/PIONIER H-band visibilities, and constraints from (sub-)mm continuum interferometry and near-IR imaging. Results: We found a disk model able to describe the current gas and dust observations simultaneously. This disk has the following structure. (1) To simultaneously reproduce the SED, the near-IR interferometry data, and the CO ro-vibrational emission, refractory grains (we suggest carbon) are present inside the silicate sublimation radius (0.08 is less than R less than 0.2 AU). (2) The dust cavity (R is less than 30 AU) is filled with gas, the surface density of the gas inside the cavity must increase with radius to fit the CO ro-vibrational line profile, a small gap of a few AU in the gas distribution is compatible with current data, and a large gap of tens of AU in the gas does not appear likely. (4) The gas-to-dust ratio inside the cavity is >100 to account for the 870 Micrometers continuum upper limit and the CO P(10) line flux. (5) The gas-to-dust ratio in the outer disk (30 is less than R less than 200 AU) is less than 10 to simultaneously describe the [O(sub I)] 63 Micrometers line flux and the CO P(10) line profile. (6) In the outer disk, most of the gas and dust mass should be located in the midplane, and a significant fraction of the dust should be in large grains. Conclusions: Simultaneous modeling of the gas and dust is required to break the model degeneracies and constrain the disk structure. An increasing gas surface density with radius in the inner cavity echoes the effect of a migrating Jovian planet in the disk structure. The low gas mass (a few Jupiter masses) throughout the HD 135344B disk supports the idea that it is an evolved disk that has already lost a large portion of its mass.
V/STOL aircraft configurations and opportunities in the Pacific Basin
NASA Technical Reports Server (NTRS)
Albers, James A.; Zuk, John
1987-01-01
Advanced aircraft configurations offer new transportation options for the Pacific Basin. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, subsonic vertical and short takeoff and landing (V/STOL) aircraft, and subsonic short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for satisfying many of the transportation requirements of the Pacific Basin; as such, they could revolutionize short-haul transportation in that region.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-26
... Analysis 6. This document does not contain new or modified information collection requirements. B. Report... Flexibility Analysis 8. As required by the Regulatory Flexibility Act of 1980, as amended (RFA), an Initial Regulatory Flexibility Analysis (IRFA) was incorporated in the NPRM in WT Docket No. 11-202, 77 FR 1661...
ALMA Observations of the Molecular Gas in the Debris Disk of the 30 Myr Old Star HD 21997
NASA Technical Reports Server (NTRS)
Kospal, A.; Moor, A.; Juhasz, A.; Abraham, P.; Apai, D.; Csengeri, T.; Grady, C. A.; Henning, Th.; Hughes, A. M.; Kiss, Cs.;
2013-01-01
The 30 Myr old A3-type star HD 21997 is one of the two known debris dust disks having a measurable amount of cold molecular gas. With the goal of understanding the physical state, origin, and evolution of the gas in young debris disks, we obtained CO line observations with the Atacama Large Millimeter/submillimeter Array (ALMA). Here, we report on the detection of (12)CO and (13)CO in the J = 2-1 and J = 3-2 transitions and C(18)O in the J = 2-1 line. The gas exhibits a Keplerian velocity curve, one of the few direct measurements of Keplerian rotation in young debris disks. The measured CO brightness distribution could be reproduced by a simple star+disk system, whose parameters are r(sub in) < 26 AU, r(sub out) = 138 +/- 20 AU, Stellar M = 1.8 +0.5/-0.2 Solar M, and i = 32. Deg. 6 +/- 3 deg..1. The total CO mass, as calculated from the optically thin C(18)O line, is about (4-8) ×10(exp -2 ) Solar M, while the CO line ratios suggest a radiation temperature on the order of 6-9 K. Comparing our results with those obtained for the dust component of the HD 21997 disk from ALMA continuum observations by Moor et al., we conclude that comparable amounts of CO gas and dust are present in the disk. Interestingly, the gas and dust in the HD 21997 system are not colocated, indicating a dust-free inner gas disk within 55 AU of the star. We explore two possible scenarios for the origin of the gas. A secondary origin, which involves gas production from colliding or active planetesimals, would require unreasonably high gas production rates and would not explain why the gas and dust are not colocated. We propose that HD 21997 is a hybrid system where secondary debris dust and primordial gas coexist. HD 21997, whose age exceeds both the model predictions for disk clearing and the ages of the oldest T Tauri-like or transitional gas disks in the literature, may be a key object linking the primordial and the debris phases of disk evolution.
He, Chenlong; Feng, Zuren; Ren, Zhigang
2018-01-01
In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared.
Feng, Zuren; Ren, Zhigang
2018-01-01
In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared. PMID:29462217
Forming a Moon with an Earth-like composition via a giant impact.
Canup, Robin M
2012-11-23
In the giant impact theory, the Moon formed from debris ejected into an Earth-orbiting disk by the collision of a large planet with the early Earth. Prior impact simulations predict that much of the disk material originates from the colliding planet. However, Earth and the Moon have essentially identical oxygen isotope compositions. This has been a challenge for the impact theory, because the impactor's composition would have likely differed from that of Earth. We simulated impacts involving larger impactors than previously considered. We show that these can produce a disk with the same composition as the planet's mantle, consistent with Earth-Moon compositional similarities. Such impacts require subsequent removal of angular momentum from the Earth-Moon system through a resonance with the Sun as recently proposed.
Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules
Bollard, Jean; Connelly, James N.; Whitehouse, Martin J.; Pringle, Emily A.; Bonal, Lydie; Jørgensen, Jes K.; Nordlund, Åke; Moynier, Frédéric; Bizzarro, Martin
2017-01-01
The most abundant components of primitive meteorites (chondrites) are millimeter-sized glassy spherical chondrules formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules, we show that primary production of chondrules in the early solar system was restricted to the first million years after the formation of the Sun and that these existing chondrules were recycled for the remaining lifetime of the protoplanetary disk. This finding is consistent with a primary chondrule formation episode during the early high-mass accretion phase of the protoplanetary disk that transitions into a longer period of chondrule reworking. An abundance of chondrules at early times provides the precursor material required to drive the efficient and rapid formation of planetary objects via chondrule accretion. PMID:28808680
A translational velocity command system for VTOL low speed flight
NASA Technical Reports Server (NTRS)
Merrick, V. K.
1982-01-01
A translational velocity flight controller, suitable for very low speed maneuvering, is described and its application to a large class of VTOL aircraft from jet lift to propeller driven types is analyzed. Estimates for the more critical lateral axis lead to the conclusion that the controller would provide a jet lift (high disk loading) VTOL aircraft with satisfactory "hands off" station keeping in operational conditions more stringent than any specified in current or projected requirements. It also seems likely that ducted fan or propeller driven (low disk loading) VTOL aircraft would have acceptable hovering handling qualities even in high turbulence, although in these conditions pilot intervention to maintain satisfactory station keeping would probably be required for landing in restricted areas.
Polyimide-Epoxy Composites with Superior Bendable Properties for Application in Flexible Electronics
NASA Astrophysics Data System (ADS)
Lee, Sangyoup; Yoo, Taewon; Han, Youngyu; Kim, Hanglim; Han, Haksoo
2017-08-01
The need for flexible electronics with outstanding bending properties is increasing due to the demand for wearable devices and next-generation flexible or rollable smartphones. In addition, the requirements for flexible or rigid-flexible electronics are sharply increasing to achieve the design of space-saving electronic devices. In this regard, coverlay (CL) film is a key material used in the bending area of flexible electronics, albeit infrequently. Because flexible electronics undergo folding and unfolding numerous times, CL films with superior mechanical and bending properties are required so that the bending area can endure such severe stress. However, because current CL films are only used for a designated bending area in the flexible electronics panel, their highly complicated and expensive manufacturing procedure is a disadvantage. In addition, the thickness of CL films must be decreased to satisfy the ongoing requirement for increasingly thin products. However, due to the limitations of the two-layer structure of existing CL films, the manufacturing process cannot be made more cost effective by simply applying more thin film onto the board. To address this problem, we have developed liquid coverlay inks (LCIs) with superior bendable properties, in comparison with CL films, when applied onto flexible electronics using a screen-printing method. The results show that LCIs have the potential to become one of the leading candidates to replace existing CL films because of their lower cost and faster manufacturing process.
Comparative analysis on flexibility requirements of typical Cryogenic Transfer lines
NASA Astrophysics Data System (ADS)
Jadon, Mohit; Kumar, Uday; Choukekar, Ketan; Shah, Nitin; Sarkar, Biswanath
2017-04-01
The cryogenic systems and their applications; primarily in large Fusion devices, utilize multiple cryogen transfer lines of various sizes and complexities to transfer cryogenic fluids from plant to the various user/ applications. These transfer lines are composed of various critical sections i.e. tee section, elbows, flexible components etc. The mechanical sustainability (under failure circumstances) of these transfer lines are primary requirement for safe operation of the system and applications. The transfer lines need to be designed for multiple design constraints conditions like line layout, support locations and space restrictions. The transfer lines are subjected to single load and multiple load combinations, such as operational loads, seismic loads, leak in insulation vacuum loads etc. [1]. The analytical calculations and flexibility analysis using professional software are performed for the typical transfer lines without any flexible component, the results were analysed for functional and mechanical load conditions. The failure modes were identified along the critical sections. The same transfer line was then refurbished with the flexible components and analysed for failure modes. The flexible components provide additional flexibility to the transfer line system and make it safe. The results obtained from the analytical calculations were compared with those obtained from the flexibility analysis software calculations. The optimization of the flexible component’s size and selection was performed and components were selected to meet the design requirements as per code.
Flexibility Requirements concerning the Design of Synchronous E-Learning Systems
ERIC Educational Resources Information Center
Jahn, Matthias; Piesche, Claudia; Jablonski, Stefan
2012-01-01
Purpose: Today's requirements concerning successful learning support comprise a variety of application scenarios. Therefore, the development of supporting software preferably aims at modular design. This article discusses requirements regarding flexibility of e-learning systems and presents important principles, which should be met by successful…
5 CFR 610.404 - Requirement for time-accounting method.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATIONS HOURS OF DUTY Flexible and Compressed Work Schedules § 610.404 Requirement for time-accounting method. An agency that authorizes a flexible work schedule or a compressed work schedule under this...
Radiative Transfer in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Graziani, L.; Aiello, S.; Belleni-Morante, A.; Cecchi-Pestellini, C.
2008-09-01
Abstract Protoplanetary disks are the precursors of planetary systems. All building materials needed to assembly the planetary systems are supplied by these reservoirs, including many organic molecules [1,2]. Thus, the physical and chemical properties in Protoplanetary disks set the boundary conditions for the formation and evolution of planets and other solar system bodies. In standard radiative scenario structure and chemistry of protoplanetary disks depend strongly on the nature of central star around which they formed. The dust temperature is manly set by the stellar luminosity, while the chemistry of the whole disk depends on the UV and X ray fluxes [3,4,6,8]. Therefore, a knowledge as accurate as possible of the radiative transfer (RT) inside disks is a prerequisite for their modelling. Actually, real disks are complex, stratified and inhomogeneous environments requiring a detailed dust mixture modelling and the ability to follow the radiation transfer across radial and vertical gradients. Different energetic processes as the mass accretion processes onto the star surface, the viscous dissipative heating dominating the midplane region, and the flared atmospheres radiation reprocessing, have a significant role in the disk structuring [4,5,8]. During the last 10 years many authors suggested various numerical and analytical techniques to resolve the disk temperature structure providing vertical temperature profiles and disk SED databases [4,6]. In this work we present the results of our semi analytical and numerical model solving the radiative transfer problem in two separate interesting disk regions: 1) Disk atmospheres at large radius, r > 10 AU. 2) Vertical disk structure over 1 < r < 10 AU and 10 < r < 100 AU. A simplified analytical approach based on P-N approximation [7] for a rectified disk surface (suitable for limited range of r) is compared and contrasted with a more accurate Monte Carlo integration [5]. Our code can handle arbitrary dust inhomogeneities, vertical and radial, in terms of mineralogical and density changes. Different dust mixture models from Pollack [9], Gail [10] and Henning [11] are implemented and tested. The code solves the RT in the 4 Stokes radiation field formalism providing an accurate radiation flux description and the polarization configuration for UV and X-Ray stellar fluxes in various disk regions (disk surface, disk midplane etc..). The complete model is developed within the context of a classical TTauri protostar and for different dust compositions and different ranges of star luminosity in UV and X -Ray are. The effects on some prebiotic molecules are estimated. References [1]Ehrenfreund, P. & Charnley, S.B. (2000), Ann.Rev.Astr.Astrophys, 38, 427-483. [2]Markwick, A.J. & Charnley, S.B. (2004). in P. Eherenfreund et alt. (eds) "Astrobiology: Future Perspectives", Kluwer, 33-66. [3] Chiang, E. I. & Goldreich, P. (1997), ApJ, 490, 368 [4] D'Alessio, P., Canto, J., Calvet, N., & Lizano, S. (1998), ApJ, 500, 411. [5] Bjorkman, J. E. & Wood, K. 2001, ApJ, 554, 615. [6] Dullemond C. P. & A.Natta 2003, A&A 405, 597-605. [7] B. Davison & J. B. Sykes: Neutron Transport theory, Oxford Press 1958. [8] D'Alessio P. et al (2007), Chondrites and the Protoplanetary Disk, ASPConference Series,Vol.341. [9] J.B.Pollack et al. (1994), ApJ,421:615-639. [10] H.P.Gail, (2001), A&A, v.378 [11] T.Henning & R.Stognienko.(1996), ApJ, 311.
NASA Technical Reports Server (NTRS)
Kumar, L.
1978-01-01
A computer program is described for calculating the flexibility coefficients as arm design changes are made for the remote manipulator system. The coefficients obtained are required as input for a second program which reduces the number of payload deployment and retrieval system simulation runs required to simulate the various remote manipulator system maneuvers. The second program calculates end effector flexibility and joint flexibility terms for the torque model of each joint for any arbitrary configurations. The listing of both programs is included in the appendix.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
...). This AD results from the discovery of a material nonconformity requiring removal of the disk before the... airplanes. Unsafe Condition (d) This AD results from the discovery of a material nonconformity requiring...
Detection of Methicillin-Resistant Coagulase-Negative Staphylococci by the Vitek 2 System
Johnson, Kristen N.; Andreacchio, Kathleen
2014-01-01
The accurate performance of the Vitek 2 GP67 card for detecting methicillin-resistant coagulase-negative staphylococci (CoNS) is not known. We prospectively determined the ability of the Vitek 2 GP67 card to accurately detect methicillin-resistant CoNS, with mecA PCR results used as the gold standard for a 4-month period in 2012. Included in the study were 240 consecutively collected nonduplicate CoNS isolates. Cefoxitin susceptibility by disk diffusion testing was determined for all isolates. We found that the three tested systems, Vitek 2 oxacillin and cefoxitin testing and cefoxitin disk susceptibility testing, lacked specificity and, in some cases, sensitivity for detecting methicillin resistance. The Vitek 2 oxacillin and cefoxitin tests had very major error rates of 4% and 8%, respectively, and major error rates of 38% and 26%, respectively. Disk cefoxitin testing gave the best performance, with very major and major error rates of 2% and 24%, respectively. The test performances were species dependent, with the greatest errors found for Staphylococcus saprophyticus. While the 2014 CLSI guidelines recommend reporting isolates that test resistant by the oxacillin MIC or cefoxitin disk test as oxacillin resistant, following such guidelines produces erroneous results, depending on the test method and bacterial species tested. Vitek 2 cefoxitin testing is not an adequate substitute for cefoxitin disk testing. For critical-source isolates, mecA PCR, rather than Vitek 2 or cefoxitin disk testing, is required for optimal antimicrobial therapy. PMID:24951799
The Distribution and Excitation of CH3CN in a Solar Nebula Analog
NASA Astrophysics Data System (ADS)
Loomis, Ryan A.; Cleeves, L. Ilsedore; Öberg, Karin I.; Aikawa, Yuri; Bergner, Jennifer; Furuya, Kenji; Guzman, V. V.; Walsh, Catherine
2018-06-01
Cometary studies suggest that the organic composition of the early Solar Nebula was rich in complex nitrile species such CH3CN. Recent ALMA detections in protoplanetary disks suggest that these species may be common during planet and comet formation, but connecting gas-phase measurements to cometary abundances first requires constraints on formation chemistry and distributions of these species. We present here the detection of seven spatially resolved transitions of CH3CN in the protoplanetary disk around the T-Tauri star TW Hya. Using a rotational diagram analysis, we find a disk-averaged column density of {N}T={1.45}-0.15+0.19× {10}12 cm‑2 and a rotational temperature of {T}rot}={32.7}-3.4+3.9 K. A radially resolved rotational diagram shows the rotational temperature to be constant across the disk, suggesting that the CH3CN emission originates from a layer at z/r ∼ 0.3. Through comparison of the observations with predictions from a disk chemistry model, we find that grain-surface reactions likely dominate CH3CN formation and that in situ disk chemistry is sufficient to explain the observed CH3CN column density profile without invoking inheritance from the protostellar phase. However, the same model fails to reproduce a solar system cometary abundance of CH3CN relative to H2O in the midplane, suggesting that either vigorous vertical mixing or some degree of inheritance from interstellar ices occurred in the Solar Nebula.
NASA Astrophysics Data System (ADS)
Mennickent, Ronald E.; Arenas, Jose
1998-06-01
An orbital period of 0.06288(5) d has been found from a radial velocity study of the Hα emission line. In addition, we have detected an extra line emitting source located ~ 80(deg) apart from the vector joining the secondary--primary centers, as measured in the opposite sense to the binary rotational motion. This is not the expected location for the hotspot in dwarf novae. This anomaly could be removed by assuming a line emission lagging behind the white dwarf binary motion. In addition, we have estimated line emissivity (~ r(-alpha ) ) and disk radius (R equiv r_in/r_out) for 8 SU UMa stars. Most stars fit alpha = 1.8 +/- 0.1 but AK Cnc and WZ Sge strongly deviate from the mean; their emission line shapes can be explained assuming a post-outburst accretion disk mostly emitting close to the white dwarf (AK Cnc) and a ring-like disk (WZ Sge). In addition, we have found a tendency of long-supercycle length SU UMa stars to show very compact (large R; probably ring-like) accretion disks. If the supercycle length were basically controlled by the mass transfer rate (dot {M}), the inner disk radius would be a function of dot {M}. A white dwarf magnetic field ~ 5000 G is required to fit the truncation radius with the magnetosphere radius of SU UMa stars.
ERIC Educational Resources Information Center
US Government Accountability Office, 2016
2016-01-01
Beginning in 2011, the Department of Education (Education) used its statutory authority to invite states to apply for waivers from certain provisions in the Elementary and Secondary Education Act (ESEA) through its Flexibility initiative. To receive Flexibility waivers, states had to agree to meet other requirements related to college- and…
Saadat, Lily V; Dahlke, Allison R; Rajaram, Ravi; Kreutzer, Lindsey; Love, Remi; Odell, David D; Bilimoria, Karl Y; Yang, Anthony D
2016-06-01
The Flexibility in Duty Hour Requirements for Surgical Trainees (FIRST) trial was a national, cluster-randomized, pragmatic, noninferiority trial of 117 general surgery programs, comparing standard ACGME resident duty hour requirements ("Standard Policy") to flexible, less-restrictive policies ("Flexible Policy"). Participating program directors (PDs) were surveyed to assess their perceptions of patient care, resident education, and resident well-being during the study period. A survey was sent to all PDs of the general surgery residency programs participating in the FIRST trial (N = 117 [100% response rate]) in June and July 2015. The survey compared PDs' perceptions of the duty hour requirements in their arm of the FIRST trial during the study period from July 1, 2014 to June 30, 2015. One hundred percent of PDs in the Flexible Policy arm indicated that residents used their additional flexibility in duty hours to complete operations they started or to stabilize a critically ill patient. Compared with the Standard Policy arm, PDs in the Flexible Policy arm perceived a more positive effect of duty hours on the safety of patient care (68.9% vs 0%; p < 0.001), continuity of care (98.3% vs 0%; p < 0.001), and resident ability to attend educational activities (74.1% vs 3.4%; p < 0.001). Most PDs in both arms reported that safety of patient care (71.8%), continuity of care (94.0%), quality of resident education (83.8%), and resident well-being (55.6%) would be improved with a hypothetical permanent adoption of more flexible duty hours. Program directors involved in the FIRST trial perceived improvements in patient safety, continuity of care, and multiple aspects of resident education and well-being with flexible duty hours. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
46 CFR 111.60-13 - Flexible electric cord and cables.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Flexible electric cord and cables. 111.60-13 Section 111... cables. (a) Construction and testing. Each flexible cord and cable must meet the requirements in section.... Each flexible cord must be No. 18 AWG (0.82 mm2) or larger. (e) Splices. Each flexible cord and cable...
NASA Astrophysics Data System (ADS)
Millan-Gabet, Rafael; Che, Xiao; Monnier, John D.; Sitko, Michael L.; Russell, Ray W.; Grady, Carol A.; Day, Amanda N.; Perry, R. B.; Harries, Tim J.; Aarnio, Alicia N.; Colavita, Mark M.; Wizinowich, Peter L.; Ragland, Sam; Woillez, Julien
2016-08-01
We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and MIR disk emission. We find a high degree of correlation between the stellar luminosity and the MIR disk sizes after using near-infrared data to remove the contribution from the inner rim. We then use a semi-analytical physical model to also find that the very widely used “star + inner dust rim + flared disk” class of models strongly fails to reproduce the spectral energy distribution (SED) and spatially resolved MIR data simultaneously; specifically a more compact source of MIR emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the 2-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modeling alone, although detailed silicate feature fitting by McClure et al. recently came to a similar conclusion. As has been suggested recently by Menu et al., the difficulty in predicting MIR sizes from the SED alone might hint at “transition disk”-like gaps in the inner au; however, the relatively high correlation found in our MIR disk size versus stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.
Imaging Planet Formation Inside the Diffraction Limit
NASA Astrophysics Data System (ADS)
Sallum, Stephanie Elise
For decades, astronomers have used observations of mature planetary systems to constrain planet formation theories, beginning with our own solar system and now the thousands of known exoplanets. Recent advances in instrumentation have given us a direct view of some steps in the planet formation process, such as large-scale protostar and protoplanetary disk features and evolution. However, understanding the details of how planets accrete and interact with their environment requires direct observations of protoplanets themselves. Transition disks, protoplanetary disks with inner clearings that may be caused by forming planets, are the best targets for these studies. Their large distances, compared to the stars normally targeted for direct imaging of exoplanets, make protoplanet detection difficult and necessitate novel imaging techniques. In this dissertation, I describe the results of using non-redundant masking (NRM) to search for forming planets in transition disk clearings. I first present a data reduction pipeline that I wrote to this end, using example datasets and simulations to demonstrate reduction and imaging optimizations. I discuss two transition disk NRM case studies: T Cha and LkCa 15. In the case of T Cha, while we detect significant asymmetries, the data cannot be explained by orbiting companions. The fluxes and orbital motion of the LkCa 15 companion signals, however, can be naturally explained by protoplanets in the disk clearing. I use these datasets and simulated observations to illustrate the effects of scattered light from transition disk material on NRM protoplanet searches. I then demonstrate the utility of the dual-aperture Large Binocular Telescope Interferometer's NRM mode on the bright B[e] star MWC 349A. I discuss the implications of this work for planet formation studies as well as future prospects for NRM and related techniques on next generation instruments.
NASA Astrophysics Data System (ADS)
Owocki, S.
2008-06-01
Stellar rotation can play an important role in structuring and enhancing the mass loss from massive stars. Initial 1D models focussed on the expected centrifugal enhancement of the line-driven mass flux from the equator of a rotating star, but the review here emphasizes that the loss of centrifugal support away from the stellar surface actually limits the steady mass flux to just the point-star CAK value, with models near critical rotation characterized by a slow, subcritical acceleration. Recent suggestions that such slow outflows might have high enough density to explain disks in Be or B[e] stars are examined in the context of 2D simulations of the ``Wind Compressed Disk'' (WCD) paradigm, together with a review of the tendency for poleward components of the line-driving force to inhibit WCD formation. When one accounts for equatorial gravity darkening, the net tendency is in fact for the relatively bright regions at higher latitude to drive a faster, denser ``bipolar'' outflow. I discuss the potential relevance for the bipolar form of nebulae from LBV stars like η Carinae, but emphasize that, since the large mass loss associated with the eruption of eta Carinae's Homunculus would heavily saturate line-driving, explaining its bipolar form requires development of analogous models for continuum-driven mass loss. I conclude with a discussion of how radiation seems inherently ill-suited to supporting or driving a geometrically thin, but optically thick disk or disk outflow. The disks inferred in Be and B[e] stars may instead be centrifugally ejected, with radiation inducing an ablation flow from the disk surface, and thus perhaps playing a greater role in destroying (rather than creating) an orbiting, circumstellar disk.
The Accretion Disk Wind in the Black Hole GRS 1915 + 105
NASA Technical Reports Server (NTRS)
Miller, J.M.; Raymond, J.; Fabian, A. C.; Gallo, E.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Reynolds, C. S.; Zoghbi, A.
2016-01-01
We report on a 120 kiloseconds Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in 2015 June. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blueshift of v = 0.03 c (velocity equals 0.03 the speed of light). Broadened reemission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r approximately equal to 10 (sup 2-4) GM (Gravitational constant times Mass) divided by c (sup 2) (the speed of light squared). Wind density values of n approximately equal to 10 (sup 13-16) per cubic centimeter are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to be B approximately equal to 10 (sup 3-4) G (Gravitational constant) if the wind is driven via magnetohydrodynamic (MHD) pressure from within the disk and B approximately equal to 10 (sup 4-5) G (Gravitational constant) if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits predicted by the canonical alpha-disk model. We discuss these results in terms of fundamental disk physics and black hole accretion modes.
An Extreme X-ray Disk Wind in the Black Hole Candidate IGR J17091-3624
NASA Technical Reports Server (NTRS)
King, A. L.; Miller, J. M.; Raymond, J.; Fabian, A. C.; Reynolds, C. S.; Kallman, T. R.; Maitra, D.; Cackett, E. M.; Rupen, M. P.
2012-01-01
Chandra spectroscopy of transient stellar-mass black holes in outburst has clearly revealed accretion disk winds in soft, disk-dominated states, in apparent anti-correlation with relativistic jets in low/hard states. These disk winds are observed to be highly ionized. dense. and to have typical velocities of approx 1000 km/s or less projected along our line of sight. Here. we present an analysis of two Chandra High Energy Transmission Grating spectra of the Galactic black hole candidate IGR J17091-3624 and contemporaneous EVLA radio observations. obtained in 2011. The second Chandra observation reveals an absorption line at 6.91+/-0.01 keV; associating this line with He-like Fe XXV requires a blue-shift of 9300(+500/-400) km/ s (0.03c. or the escape velocity at 1000 R(sub schw)). This projected outflow velocity is an order of magnitude higher than has previously been observed in stellar-mass black holes, and is broadly consistent with some of the fastest winds detected in active galactic nuclei. A potential feature at 7.32 keV, if due to Fe XXVI, would imply a velocity of approx 14600 km/s (0.05c), but this putative feature is marginal. Photoionization modeling suggests that the accretion disk wind in IGR J17091-3624 may originate within 43,300 Schwarzschild radii of the black hole, and may be expelling more gas than accretes. The contemporaneous EVLA observations strongly indicate that jet activity was indeed quenched at the time of our Chandra observations. We discuss the results in the context of disk winds, jets, and basic accretion disk physics in accreting black hole systems
Cooling Requirements for the Vertical Shear Instability in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Lin, Min-Kai; Youdin, Andrew N.
2015-09-01
The vertical shear instability (VSI) offers a potential hydrodynamic mechanism for angular momentum transport in protoplanetary disks (PPDs). The VSI is driven by a weak vertical gradient in the disk’s orbital motion, but must overcome vertical buoyancy, a strongly stabilizing influence in cold disks, where heating is dominated by external irradiation. Rapid radiative cooling reduces the effective buoyancy and allows the VSI to operate. We quantify the cooling timescale tc needed for efficient VSI growth, through a linear analysis of the VSI with cooling in vertically global, radially local disk models. We find the VSI is most vigorous for rapid cooling with {t}{{c}}\\lt {{{Ω }}}{{K}}-1h| q| /(γ -1) in terms of the Keplerian orbital frequency, {{{Ω }}}{{K}}, the disk’s aspect-ratio, h\\ll 1, the radial power-law temperature gradient, q, and the adiabatic index, γ. For longer tc, the VSI is much less effective because growth slows and shifts to smaller length scales, which are more prone to viscous or turbulent decay. We apply our results to PPD models where tc is determined by the opacity of dust grains. We find that the VSI is most effective at intermediate radii, from ∼5 to ∼50 AU with a characteristic growth time of ∼30 local orbital periods. Growth is suppressed by long cooling times both in the opaque inner disk and the optically thin outer disk. Reducing the dust opacity by a factor of 10 increases cooling times enough to quench the VSI at all disk radii. Thus the formation of solid protoplanets, a sink for dust grains, can impede the VSI.
NASA Astrophysics Data System (ADS)
Lin, Lihwai; Belfiore, Francesco; Pan, Hsi-An; Bothwell, M. S.; Hsieh, Pei-Ying; Huang, Shan; Xiao, Ting; Sánchez, Sebastián F.; Hsieh, Bau-Ching; Masters, Karen; Ramya, S.; Lin, Jing-Hua; Hsu, Chin-Hao; Li, Cheng; Maiolino, Roberto; Bundy, Kevin; Bizyaev, Dmitry; Drory, Niv; Ibarra-Medel, Héctor; Lacerna, Ivan; Haines, Tim; Smethurst, Rebecca; Stark, David V.; Thomas, Daniel
2017-12-01
We study the role of cold gas in quenching star formation in the green valley by analyzing ALMA 12CO (1-0) observations of three galaxies with resolved optical spectroscopy from the MaNGA survey. We present resolution-matched maps of the star formation rate and molecular gas mass. These data are used to calculate the star formation efficiency (SFE) and gas fraction ({f}{gas}) for these galaxies separately in the central “bulge” regions and outer disks. We find that, for the two galaxies whose global specific star formation rate (sSFR) deviates most from the star formation main sequence, the gas fraction in the bulges is significantly lower than that in their disks, supporting an “inside-out” model of galaxy quenching. For the two galaxies where SFE can be reliably determined in the central regions, the bulges and disks share similar SFEs. This suggests that a decline in {f}{gas} is the main driver of lowered sSFR in bulges compared to disks in green valley galaxies. Within the disks, there exist common correlations between the sSFR and SFE and between sSFR and {f}{gas} on kiloparsec scales—the local SFE or {f}{gas} in the disks declines with local sSFR. Our results support a picture in which the sSFR in bulges is primarily controlled by {f}{gas}, whereas both SFE and {f}{gas} play a role in lowering the sSFR in disks. A larger sample is required to confirm if the trend established in this work is representative of the green valley as a whole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millan-Gabet, Rafael; Che, Xiao; Monnier, John D.
We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and MIR disk emission. We find a high degree of correlation between the stellar luminosity and the MIR disk sizes after using near-infrared data to remove the contribution from the innermore » rim. We then use a semi-analytical physical model to also find that the very widely used “star + inner dust rim + flared disk” class of models strongly fails to reproduce the spectral energy distribution (SED) and spatially resolved MIR data simultaneously; specifically a more compact source of MIR emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the 2-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modeling alone, although detailed silicate feature fitting by McClure et al. recently came to a similar conclusion. As has been suggested recently by Menu et al., the difficulty in predicting MIR sizes from the SED alone might hint at “transition disk”-like gaps in the inner au; however, the relatively high correlation found in our MIR disk size versus stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.« less
The Text Encoding Initiative: Flexible and Extensible Document Encoding.
ERIC Educational Resources Information Center
Barnard, David T.; Ide, Nancy M.
1997-01-01
The Text Encoding Initiative (TEI), an international collaboration aimed at producing a common encoding scheme for complex texts, examines the requirement for generality versus the requirement to handle specialized text types. Discusses how documents and users tax the limits of fixed schemes requiring flexible extensible encoding to support…
NASA Astrophysics Data System (ADS)
Alvarez, Alejandro; Beche, Alexandre; Furano, Fabrizio; Hellmich, Martin; Keeble, Oliver; Rocha, Ricardo
2012-12-01
The Disk Pool Manager (DPM) is a lightweight solution for grid enabled disk storage management. Operated at more than 240 sites it has the widest distribution of all grid storage solutions in the WLCG infrastructure. It provides an easy way to manage and configure disk pools, and exposes multiple interfaces for data access (rfio, xroot, nfs, gridftp and http/dav) and control (srm). During the last year we have been working on providing stable, high performant data access to our storage system using standard protocols, while extending the storage management functionality and adapting both configuration and deployment procedures to reuse commonly used building blocks. In this contribution we cover in detail the extensive evaluation we have performed of our new HTTP/WebDAV and NFS 4.1 frontends, in terms of functionality and performance. We summarize the issues we faced and the solutions we developed to turn them into valid alternatives to the existing grid protocols - namely the additional work required to provide multi-stream transfers for high performance wide area access, support for third party copies, credential delegation or the required changes in the experiment and fabric management frameworks and tools. We describe new functionality that has been added to ease system administration, such as different filesystem weights and a faster disk drain, and new configuration and monitoring solutions based on the industry standards Puppet and Nagios. Finally, we explain some of the internal changes we had to do in the DPM architecture to better handle the additional load from the analysis use cases.
Lessons from Coronagraphic Imaging with HST that may apply to JWST
NASA Astrophysics Data System (ADS)
Grady, C. A.; Hines, Dean C.; Schneider, Glenn; McElwain, Michael W.
2017-06-01
One of the major capabilities offered by JWST is coronagraphic imaging from space, covering the near through mid-IR and optimized for study of planet formation and the evolution of planetary systems. Planning for JWST has resulted in expectations for instrument performance, observation strategies and data reduction approaches. HST with 20 years of coronagraphic imaging offers some experience which may be useful to those planning for JWST. 1) Real astronomical sources do not necessarily conform to expectations. Debris disks may be accompanied by more distant material, and some systems may be conspicuous in scattered light when offering only modest IR excesses. Proto-planetary disks are not constantly illuminated, and thus a single epoch observation of the source may not be sufficient to reveal everything about it. 2) The early expectation with NICMOS was that shallow, 2-roll observations would reveal a wealth of debris disks imaged in scattered light, and that only a limited set of PSF observations would be required. Instead, building up a library of spatially resolved disks in scattered light has proven to require alternate observing strategies, is still on-going, and has taken far longer than expected. 3) A wealth of coronagraphic options with an instrument may not be scientifically informative, unless there is a similar time investment in acquisition of calibration data in support of the science observations. 4) Finally, no one anticipated what can be gleaned from coronagraphic imaging. We should expect similar, unexpected, and ultimately revolutionary discoveries with JWST.
Data oriented job submission scheme for the PHENIX user analysis in CCJ
NASA Astrophysics Data System (ADS)
Nakamura, T.; En'yo, H.; Ichihara, T.; Watanabe, Y.; Yokkaichi, S.
2011-12-01
The RIKEN Computing Center in Japan (CCJ) has been developed to make it possible analyzing huge amount of data corrected by the PHENIX experiment at RHIC. The corrected raw data or reconstructed data are transferred via SINET3 with 10 Gbps bandwidth from Brookheaven National Laboratory (BNL) by using GridFTP. The transferred data are once stored in the hierarchical storage management system (HPSS) prior to the user analysis. Since the size of data grows steadily year by year, concentrations of the access request to data servers become one of the serious bottlenecks. To eliminate this I/O bound problem, 18 calculating nodes with total 180 TB local disks were introduced to store the data a priori. We added some setup in a batch job scheduler (LSF) so that user can specify the requiring data already distributed to the local disks. The locations of data are automatically obtained from a database, and jobs are dispatched to the appropriate node which has the required data. To avoid the multiple access to a local disk from several jobs in a node, techniques of lock file and access control list are employed. As a result, each job can handle a local disk exclusively. Indeed, the total throughput was improved drastically as compared to the preexisting nodes in CCJ, and users can analyze about 150 TB data within 9 hours. We report this successful job submission scheme and the feature of the PC cluster.
Incorporating Oracle on-line space management with long-term archival technology
NASA Technical Reports Server (NTRS)
Moran, Steven M.; Zak, Victor J.
1996-01-01
The storage requirements of today's organizations are exploding. As computers continue to escalate in processing power, applications grow in complexity and data files grow in size and in number. As a result, organizations are forced to procure more and more megabytes of storage space. This paper focuses on how to expand the storage capacity of a Very Large Database (VLDB) cost-effectively within a Oracle7 data warehouse system by integrating long term archival storage sub-systems with traditional magnetic media. The Oracle architecture described in this paper was based on an actual proof of concept for a customer looking to store archived data on optical disks yet still have access to this data without user intervention. The customer had a requirement to maintain 10 years worth of data on-line. Data less than a year old still had the potential to be updated thus will reside on conventional magnetic disks. Data older than a year will be considered archived and will be placed on optical disks. The ability to archive data to optical disk and still have access to that data provides the system a means to retain large amounts of data that is readily accessible yet significantly reduces the cost of total system storage. Therefore, the cost benefits of archival storage devices can be incorporated into the Oracle storage medium and I/O subsystem without loosing any of the functionality of transaction processing, yet at the same time providing an organization access to all their data.
On the Minimum Core Mass for Giant Planet Formation
NASA Astrophysics Data System (ADS)
Piso, Ana-Maria; Youdin, Andrew; Murray-Clay, Ruth
2013-07-01
The core accretion model proposes that giant planets form by the accretion of gas onto a solid protoplanetary core. Previous studies have found that there exists a "critical core mass" past which hydrostatic solutions can no longer be found and unstable atmosphere collapse occurs. This core mass is typically quoted to be around 10Me. In standard calculations of the critical core mass, planetesimal accretion deposits enough heat to alter the luminosity of the atmosphere, increasing the core mass required for the atmosphere to collapse. In this study we consider the limiting case in which planetesimal accretion is negligible and Kelvin-Helmholtz contraction dominates the luminosity evolution of the planet. We develop a two-layer atmosphere model with an inner convective region and an outer radiative zone that matches onto the protoplanetary disk, and we determine the minimum core mass for a giant planet to form within the typical disk lifetime for a variety of disk conditions. We denote this mass as critical core mass. The absolute minimum core mass required to nucleate atmosphere collapse is ˜ 8Me at 5 AU and steadily decreases to ˜ 3.5Me at 100 AU, for an ideal diatomic gas with a solar composition and a standard ISM opacity law. Lower opacity and disk temperature significantly reduce the critical core mass, while a decrease in the mean molecular weight of the nebular gas results in a larger critical core mass. Our results yield lower mass cores than corresponding studies for large planetesimal accretion rates.
Accretion Disks around Young Stars: An Observational Perspective
NASA Astrophysics Data System (ADS)
Ménard, F.; Bertout, C.
Accretion disks are pivotal elements in the formation and early evolution of solar-like stars. On top of supplying the raw material, their internal conditions also regulate the formation of planets. Their study therefore holds the key to solve this long standing mystery: how did our Solar System form? This chapter focuses on observational studies of the circumstellar environment, and in particular of circumstellar disks, associated with pre-main sequence solar-like stars. The direct measurement of disk parameters poses an obvious challenge: at the distance of the typical star forming regions ( e.g. 140 pc for Taurus), a planetary system like ours (with diameter simeq50 AU out to Pluto, but excluding the Kuiper belt which could extend much farther out) subtends only 0.35''. Yet its surface brightness is low in comparison to the bright central star and high angular and high contrast imaging techniques are required if one hopes to resolve and measure these protoplanetary disks. Fortunately, capable instruments providing 0.1'' resolution or better and high contrast have been available for just about 10 years now. They are covering a large part of the electromagnetic spectrum, from the UV/Optical with HST and the near-infrared from ground-based adaptive optics systems, to the millimetric range with long-baseline radio interferometers. It is therefore not surprising that our knowledge of the structure of the disks surrounding low-mass stars has made a gigantic leap forward in the last decade. In the following pages we will attempt to describe, in a historical perpective, the road that led to the idea that most solar-like stars are surrounded by an accretion disk at one point in their early life and how, nowadays, their structural and physical parameters can be estimated from direct observations. We will follow by a short discussion of a few of the constraints available regarding the evolution and dissipation of these disks. This last topic is particularly relevant today to understand the mechanism leading to the formation of planets.
NASA Astrophysics Data System (ADS)
Zheng, Xiaochen; Lin, Douglas N. C.; Kouwenhoven, M. B. N.; Mao, Shude; Zhang, Xiaojia
2017-11-01
Extended gaps in the debris disks of both Vega and Fomalhaut have been observed. These structures have been attributed to tidal perturbations by multiple super-Jupiter gas giant planets. Within the current observational limits, however, no such massive planets have been detected. Here we propose a less stringent “lone-planet” scenario to account for the observed structure with a single eccentric gas giant and suggest that clearing of these wide gaps is induced by its sweeping secular resonance. With a series of numerical simulations, we show that the gravitational potential of the natal disk induces the planet to precess. At the locations where its precession frequency matches the precession frequency the planet imposes on the residual planetesimals, their eccentricity is excited by its resonant perturbation. Due to the hydrodynamic drag by the residual disk gas, the planetesimals undergo orbital decay as their excited eccentricities are effectively damped. During the depletion of the disk gas, the planet’s secular resonance propagates inward and clears a wide gap over an extended region of the disk. Although some residual intermediate-size planetesimals may remain in the gap, their surface density is too low to either produce super-Earths or lead to sufficiently frequent disruptive collisions to generate any observable dusty signatures. The main advantage of this lone-planet sweeping-secular-resonance model over the previous multiple gas giant tidal truncation scenario is the relaxed requirement on the number of gas giants. The observationally inferred upper mass limit can also be satisfied provided the hypothetical planet has a significant eccentricity. A significant fraction of solar or more massive stars bear gas giant planets with significant eccentricities. If these planets acquired their present-day kinematic properties prior to the depletion of their natal disks, their sweeping secular resonance would effectively impede the retention of neighboring planets and planetesimals over a wide range of orbital semimajor axes.
Sources of Shock Waves in the Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Boss, A. P.; Durisen, R. H.
2005-12-01
Finding an appropriate heat source for melting the chondrules that constitute the bulk of many primitive meteorites is perhaps the most important outstanding problem in all of meteoritics. Shock waves within the Solar Nebula are one possible means for accomplishing this provided that they move with respect to the precursor aggregates at speeds of ~ 6 to 9 km s-1 in environments with appropriate nebular pressures and densities. Here we briefly review the status of four different mechanisms which have been proposed as sources of such shock fronts. We argue that two of them, the accretion shock at the nebular surface and shocks propagating inside the nebula launched by the impact of gas clumps falling onto the disk, are unlikely to work. Bow shocks driven by 1000-km-size planetesimals show more promise, but require the presence of Jupiter to raise the eccentricities of the planetesimals. We then focus this chapter on the fourth mechanism, which may be the dominant source of shocks in the early nebula. Wood (1996) proposed that the chondrule-producing shocks were due to nebular spiral arms. This hypothesis is now strongly supported by recent calculations of the evolution of gravitationally unstable disks. In a gaseous disk capable of forming Jupiter, the disk gas must have been close to marginal gravitational instability near or beyond Jupiter's orbit. Massive clumps and spirals due to such instability can drive spiral shock fronts inward with shock speeds as large as ~ 10 km s-1 at asteroidal orbits, sufficient to account for chondrule formation. Once Jupiter forms, it may either continue to drive strong shock fronts at asteroidal distances, or it may pump up the eccentricity of planetesimals, leading to chondrule processing for as long as the inner disk gas survives, a few Myr or so. Mixing and transport of solids in an unstable disk results in a scenario that unifies chondrite formation from chondrules, refractory inclusions, and matrix grains with disk processes associated with gas giant planet formation.
Energy Storage Requirements for Achieving 50% Penetration of Solar Photovoltaic Energy in California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, Paul; Margolis, Robert
2016-09-01
We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generatorsmore » under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.« less
Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, Paul; Margolis, Robert
2016-08-01
We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generatorsmore » under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.« less
Flexible micro supercapacitors based on laser-scribed graphene/ZnO nanocomposite
NASA Astrophysics Data System (ADS)
Amiri, Morteza Hassanpour; Namdar, Naser; Mashayekhi, Alireza; Ghasemi, Foad; Sanaee, Zeinab; Mohajerzadeh, Shams
2016-08-01
We report on the fabrication of graphene/Zno nanocomposite supercapacitor electrodes. Laser-scribing process was implemented in order to reduce the graphene oxide (GO)/ZnO mixture on a DVD disk. With reduced graphene oxide (rGO)/ZnO composite prepared by a mass ratio of 1:25 of Zn(NO3)2·6H2O to GO constituents, nanoparticles of ZnO with sizes ranging from 20 to 50 nm are obtained. Consequently, 12 times improvement in the specific capacitance was achieved at a current density of 0.1 mA/cm2 compared with pristine rGO electrodes. In addition, flexible microsupercapacitor was fabricated by spin coating of the gel electrolyte, showing high stack capacitance of 9 F/cm3 at a current density of 150 mA/cm2. This microsupercapacitor delivers power density of 70 mW/cm3 and energy density of 1.2 mWh/cm3. Furthermore, the performance of device was investigated at different bending angles. The resulted characteristics demonstrate that LSG/ZnO nanocomposite is a promising electrode material for high-performance supercapacitors.
Imfit: A Fast, Flexible Program for Astronomical Image Fitting
NASA Astrophysics Data System (ADS)
Erwin, Peter
2014-08-01
Imift is an open-source astronomical image-fitting program specialized for galaxies but potentially useful for other sources, which is fast, flexible, and highly extensible. Its object-oriented design allows new types of image components (2D surface-brightness functions) to be easily written and added to the program. Image functions provided with Imfit include Sersic, exponential, and Gaussian galaxy decompositions along with Core-Sersic and broken-exponential profiles, elliptical rings, and three components that perform line-of-sight integration through 3D luminosity-density models of disks and rings seen at arbitrary inclinations. Available minimization algorithms include Levenberg-Marquardt, Nelder-Mead simplex, and Differential Evolution, allowing trade-offs between speed and decreased sensitivity to local minima in the fit landscape. Minimization can be done using the standard chi^2 statistic (using either data or model values to estimate per-pixel Gaussian errors, or else user-supplied error images) or the Cash statistic; the latter is particularly appropriate for cases of Poisson data in the low-count regime. The C++ source code for Imfit is available under the GNU Public License.
Time-variant analysis of rotorcraft systems dynamics - An exploitation of vector processors
NASA Technical Reports Server (NTRS)
Amirouche, F. M. L.; Xie, M.; Shareef, N. H.
1993-01-01
In this paper a generalized algorithmic procedure is presented for handling constraints in mechanical transmissions. The latter are treated as multibody systems of interconnected rigid/flexible bodies. The constraint Jacobian matrices are generated automatically and suitably updated in time, depending on the geometrical and kinematical constraint conditions describing the interconnection between shafts or gears. The type of constraints are classified based on the interconnection of the bodies by assuming that one or more points of contact exist between them. The effects due to elastic deformation of the flexible bodies are included by allowing each body element to undergo small deformations. The procedure is based on recursively formulated Kane's dynamical equations of motion and the finite element method, including the concept of geometrical stiffening effects. The method is implemented on an IBM-3090-600j vector processor with pipe-lining capabilities. A significant increase in the speed of execution is achieved by vectorizing the developed code in computationally intensive areas. An example consisting of two meshing disks rotating at high angular velocity is presented. Applications are intended for the study of the dynamic behavior of helicopter transmissions.
Department of Defense Semiannual Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
... regulatory flexibility agendas required by the Regulatory Flexibility Act (5 U.S.C. 602), the Department of Defense's printed agenda entries include only: (1) Rules that are in the Agency's regulatory flexibility agenda, in accordance with the Regulatory Flexibility Act, because they are likely to have a significant...
Emission Lines from the Gas Disk Around TW Hydra and the Origin of the Inner Hole
NASA Technical Reports Server (NTRS)
Gorti, U.; Hollenbach, D.; Najita, J.; Pascucci, I.
2011-01-01
We compare line emission calculated from theoretical disk models with optical to submillimeter wavelength observational data of the gas disk surrounding TW Hya and infer the spatial distribution of mass in the gas disk. The model disk that best matches observations has a gas mass ranging from approx.10(exp -4) to 10(exp -5) M for 0.06AU < r < 3.5 AU and approx. 0.06M for 3.5AU < r < 200 AU. We find that the inner dust hole (r < 3.5 AU) in the disk must be depleted of gas by approx. 1-2 orders of magnitude compared with the extrapolated surface density distribution of the outer disk. Grain growth alone is therefore not a viable explanation for the dust hole. CO vibrational emission arises within r approx. 0.5 AU from thermal excitation of gas. [O i] 6300Å and 5577Å forbidden lines and OH mid-infrared emission are mainly due to prompt emission following UV photodissociation of OH and water at r < or approx. 0.1 AU and at r approx. 4 AU. [Ne ii] emission is consistent with an origin in X-ray heated neutral gas at r < or approx. 10 AU, and may not require the presence of a significant extreme-ultraviolet (h? > 13.6 eV) flux from TW Hya. H2 pure rotational line emission comes primarily from r approx. 1 to 30 AU. [Oi] 63microns, HCO+, and CO pure rotational lines all arise from the outer disk at r approx. 30-120 AU. We discuss planet formation and photoevaporation as causes for the decrease in surface density of gas and dust inside 4 AU. If a planet is present, our results suggest a planet mass approx. 4-7MJ situated at 3 AU. Using our photoevaporation models and the best surface density profile match to observations, we estimate a current photoevaporative mass loss rate of 4x10(exp -9M)/yr and a remaining disk lifetime of approx.5 million years.
The Dynamics and Implications of Gap Clearing via Planets in Planetesimal (Debris) Disks
NASA Astrophysics Data System (ADS)
Morrison, Sarah Jane
Exoplanets and debris disks are examples of solar systems other than our own. As the dusty reservoirs of colliding planetesimals, debris disks provide indicators of planetary system evolution on orbital distance scales beyond those probed by the most prolific exoplanet detection methods, and on timescales 10 r to 10 Gyr. The Solar System possesses both planets and small bodies, and through studying the gravitational interactions between both, we gain insight into the Solar System's past. As we enter the era of resolved observations of debris disks residing around other stars, I add to our theoretical understanding of the dynamical interactions between debris, planets, and combinations thereof. I quantify how single planets clear material in their vicinity and how long this process takes for the entire planetary mass regime. I use these relationships to assess the lowest mass planet that could clear a gap in observed debris disks over the system's lifetime. In the distant outer reaches of gaps in young debris systems, this minimum planet mass can exceed Neptune's. To complement the discoveries of wide-orbit, massive, exoplanets by direct imaging surveys, I assess the dynamical stability of high mass multi-planet systems to estimate how many high mass planets could be packed into young, gapped debris disks. I compare these expectations to the planet detection rates of direct imaging surveys and find that high mass planets are not the primary culprits for forming gaps in young debris disk systems. As an alternative model for forming gaps in planetesimal disks with planets, I assess the efficacy of creating gaps with divergently migrating pairs of planets. I find that migrating planets could produce observed gaps and elude detection. Moreover, the inferred planet masses when neglecting migration for such gaps could be expected to be observable by direct imaging surveys for young, nearby systems. Wide gaps in young systems would likely still require more than two planets even with plantesimal-driven migration. These efforts begin to probe the types of potential planets carving gaps in disks of different evolutionary stages and at wide orbit separations on scales similar to our outer Solar System.
What Shaped Elias 2-27's Disk?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-04-01
The young star Elias 2-27 is surrounded by a massive disk with spectacular spiral arms. A team of scientists from University of Cambridges Institute of Astronomy has now examined what might cause this disks appearance.Top: ALMA 1.3-mm observations of Elias 2-27s spiral arms, processed with an unsharp masking filter. Two symmetric spiral arms, a bright inner ellipse, and two dark crescents are clearly visible. Bottom: a deprojection of the top image (i.e., what the system would look like face-on). [Meru et al. 2017]ALMA-Imaged Spiral ArmsWith the dawn of new telescopes such as the Atacama Large Millimeter/submillimeter Array, were now able to study the birth of young stars and their newly forming planetary systems in more detail than ever before. But these new images require new models and interpretations!Case in point: Elias 2-27 is a low-mass star thats only a million years old and is surrounded by an unusually massive disk of gas and dust. Recent spatially-resolved ALMA observations of Elias 2-27 have revealed the stunning structure of the stars disk: it contains two enormous, symmetric spiral arms, as well as additional features interior to the spirals.What caused the disk to develop this structure? Led by Farzana Meru, a group of Institute of Astronomy researchers has run a series of simulations that explore different ways that Elias 2-27s disk might have evolved into the shape we see today.Modeling a DiskMeru and collaborators performed a total of 72 three-dimensional smoothed particle hydrodynamics simulations tracking 250,000 gas particles in a model disk around a star like Elias 2-27. They then modeled the transfer of energy through these simulated disks and produced synthetic ALMA observations based on the outcomes.Left: Synthetic ALMA observations of disks shaped by an internal companion (top), an external companion (middle), and gravitational instability within the disk (bottom). Right: Deprojections of the images on the left. Scales are the same as in the actual observations above. The external companion and the gravitational instability scenarios match the actual ALMA observations of Elias 2-27 well. [Adapted from Meru et al. 2017]By comparing these synthetic observations to the true ALMA observations of Elias 2-27, the authors hoped to determine which of three possible scenarios could produce the disk shape we see: 1) a companion (a planet or star) internal to the spiral arms, 2) a companion external to the spirals, or 3) gravitational instabilities operating within the disk.Gravity or a Companion?Meru and collaborators find that two scenarios produce observations that are very similar to what ALMA imaged. In the first, the disk is so massive that it becomes gravitationally unstable. Self-gravity of the disk then forms the spiral structures. In the second scenario, the arms are formed by a planetary companion of up to 1013 Jupiter masses orbiting Elias 2-27 outside of the spiral arms, at a large distance roughly in the range of 300700 AU.Though the possible companion inside the spiral arms is ruled out, the scenarios of a gravitational instability or an external companion remain plausible. If the former is true, then Elias 2-27 would be one of the first examples of an observed self-gravitating disk. If the latter is true, then Elias 2-27s disk likely fragmented recently, forming the giant planet thatshapesthe disk. This would be the first evidence for a disk that has fragmented into planetary-mass objects.Future deep near-infrared imaging may offer the chance to distinguish between these scenarios by allowing us to search for the heat from the possible companion.CitationF. Meru et al 2017ApJL 839 L24. doi:10.3847/2041-8213/aa6837
Integrating new Storage Technologies into EOS
NASA Astrophysics Data System (ADS)
Peters, Andreas J.; van der Ster, Dan C.; Rocha, Joaquim; Lensing, Paul
2015-12-01
The EOS[1] storage software was designed to cover CERN disk-only storage use cases in the medium-term trading scalability against latency. To cover and prepare for long-term requirements the CERN IT data and storage services group (DSS) is actively conducting R&D and open source contributions to experiment with a next generation storage software based on CEPH[3] and ethernet enabled disk drives. CEPH provides a scale-out object storage system RADOS and additionally various optional high-level services like S3 gateway, RADOS block devices and a POSIX compliant file system CephFS. The acquisition of CEPH by Redhat underlines the promising role of CEPH as the open source storage platform of the future. CERN IT is running a CEPH service in the context of OpenStack on a moderate scale of 1 PB replicated storage. Building a 100+PB storage system based on CEPH will require software and hardware tuning. It is of capital importance to demonstrate the feasibility and possibly iron out bottlenecks and blocking issues beforehand. The main idea behind this R&D is to leverage and contribute to existing building blocks in the CEPH storage stack and implement a few CERN specific requirements in a thin, customisable storage layer. A second research topic is the integration of ethernet enabled disks. This paper introduces various ongoing open source developments, their status and applicability.
Blade loss transient dynamics analysis, volume 1. Task 2: TETRA 2 theoretical development
NASA Technical Reports Server (NTRS)
Gallardo, Vincente C.; Black, Gerald
1986-01-01
The theoretical development of the forced steady state analysis of the structural dynamic response of a turbine engine having nonlinear connecting elements is discussed. Based on modal synthesis, and the principle of harmonic balance, the governing relations are the compatibility of displacements at the nonlinear connecting elements. There are four displacement compatibility equations at each nonlinear connection, which are solved by iteration for the principle harmonic of the excitation frequency. The resulting computer program, TETRA 2, combines the original TETRA transient analysis (with flexible bladed disk) with the steady state capability. A more versatile nonlinear rub or bearing element which contains a hardening (or softening) spring, with or without deadband, is also incorporated.
The formation of planetary disks and winds: an ultraviolet view
NASA Astrophysics Data System (ADS)
Gómez de Castro, Ana I.
2009-04-01
Planetary systems are angular momentum reservoirs generated during star formation. This accretion process produces very powerful engines able to drive the optical jets and the molecular outflows. A fraction of the engine energy is released into heating thus the temperature of the engine ranges from the 3000 K of the inner disk material to the 10 MK in the areas where magnetic reconnection occurs. There are important unsolved problems concerning the nature of the engine, its evolution and the impact of the engine in the chemical evolution of the inner disk. Of special relevance is the understanding of the shear layer between the stellar photosphere and the disk; this layer controls a significant fraction of the magnetic field building up and the subsequent dissipative processes ougth to be studied in the UV. This contribution focus on describing the connections between 1 Myr old suns and the Sun and the requirements for new UV instrumentation to address their evolution during this period. Two types of observations are shown to be needed: monitoring programmes and high resolution imaging down to, at least, milliarsecond scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsiang-Hsu; Taam, Ronald E.; Yen, David C. C., E-mail: yen@math.fju.edu.tw
Investigating the evolution of disk galaxies and the dynamics of proto-stellar disks can involve the use of both a hydrodynamical and a Poisson solver. These systems are usually approximated as infinitesimally thin disks using two-dimensional Cartesian or polar coordinates. In Cartesian coordinates, the calculations of the hydrodynamics and self-gravitational forces are relatively straightforward for attaining second-order accuracy. However, in polar coordinates, a second-order calculation of self-gravitational forces is required for matching the second-order accuracy of hydrodynamical schemes. We present a direct algorithm for calculating self-gravitational forces with second-order accuracy without artificial boundary conditions. The Poisson integral in polar coordinates ismore » expressed in a convolution form and the corresponding numerical complexity is nearly linear using a fast Fourier transform. Examples with analytic solutions are used to verify that the truncated error of this algorithm is of second order. The kernel integral around the singularity is applied to modify the particle method. The use of a softening length is avoided and the accuracy of the particle method is significantly improved.« less
Real-time MST radar signal processing using a microcomputer running under FORTH
NASA Technical Reports Server (NTRS)
Bowhill, S. A.
1983-01-01
Data on power, correlation time, and velocity were obtained at the Urbana radar using microcomputer and a single floppy disk drive. This system includes the following features: (1) measurement of the real and imaginary components of the received signal at 20 altitudes spaced by 1.5 km; (2) coherent integration of these components over a 1/8-s time period; (3) continuous real time display of the height profiles of the two coherently integrated components; (4) real time calculation of the 1 minute averages of the power and autocovariance function up to 6 lags; (5) output of these data to floppy disk once every 2 minutes; (6) display of the 1 minute power profiles while the data are stored to the disk; (7) visual prompting for the operator to change disks when required at the end of each hour of data; and (8) continuous audible indication of the status of the interrupt service routine. Accomplishments were enabled by two developments: the use of a new correlation algorithm and the use of the FORTH language to manage the various low level and high level procedures involved.
OT1_mputman_1: ASCII: All Sky observations of Galactic CII
NASA Astrophysics Data System (ADS)
Putman, M.
2010-07-01
The Milky Way and other galaxies require a significant source of ongoing star formation fuel to explain their star formation histories. A new ubiquitous population of discrete, cold clouds have recently been discovered at the disk-halo interface of our Galaxy that could potentially provide this source of fuel. We propose to observe a small sample of these disk-halo clouds with HIFI to determine if the level of [CII] emission detected suggests they represent the cooling of warm clouds at the interface between the star forming disk and halo. These cooling clouds are predicted by simulations of warm clouds moving into the disk-halo interface region. We target 5 clouds in this proposal for which we have high resolution HI maps and can observe the densest core of the cloud. The results of our observations will also be used to interpret the surprisingly high detections of [CII] for low HI column density clouds in the Galactic Plane by the GOT C+ Key Program by extending the clouds probed to high latitude environments.
Discovery of Methanol in a Planetary Birthplace
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-05-01
Data from the Atacama Large Millimeter/submillimeter Array (ALMA) has recently revealed the first detection of gas-phase methanol, a derivative of methane, in a protoplanetary disk. This milestone discovery is an important step in understanding the conditions for planet formation that can lead to life-supporting planets like Earth.Planetary ChemistryOne major goal in the study of exoplanets is to find planets that orbit in their host stars habitable zones, a measure that determines whether the planet receives the right amount of sunlight to support liquid water. But theres another crucial element in the formation of a life-supporting planet: chemistry.To understand the chemistry of newly born planets, we need to study protoplanetary disks because its from these that young planets form. The elements and molecules contained in these dusty disks are what initially make up the atmospheres of planets forming within the disks.The Atacama Large Millimeter/submillimeter Array under the southern sky. [ESO/B. Tafreshi]The Hunt for ComplexityThe detection of complex molecules in protoplanetary disks is an important milestone, because complex molecules are necessary to build the correct chemistry to support life. Unfortunately, detecting these molecules is very difficult, requiring observations with both high spatial resolution and high sensitivity. Thus far, though weve observed elements and simple molecules in protoplanetary disks, detections of complex molecules have been elusive with only one success before now.Luckily, we now have an observatory up to the challenge! ALMAs unprecedented spatial resolution and sensitivity has recently allowed a team of scientists led by Catherine Walsh (Leiden University) to observe gas-phase methanol in a protoplanetary disk for the first time. This detection was made in the disk around the young star TW Hya, and it represents one of the largest molecules that has ever been observed in a disk to date.Locating IcesThe model (purple line) and data (dashed line) showing the methanol line detection. [Adapted from Walsh et al. 2016]Since TW Hyas disk has temperatures of less than ~100K (-173C), we would expect most of the disks methanol to be frozen. The gas-phase methanol observed by Walsh and collaborators was likely released from a larger reservoir of frozen methanol residing on dust grains in the disk. The peak of the methanol emission was detectedfroma ring located about 30 AU out from the central star, which suggests that the larger dust grains in the disk located in the inner 50 AU may host the bulk of the disk ice reservoir.Walsh and collaborators important detection opens a window into studying complex organic chemistry during planetary system formation. This stepping stone can help us to better understand the conditions when Earth formed and what we should look for in the search for life-supporting planets.CitationCatherine Walsh et al 2016 ApJ 823 L10. doi:10.3847/2041-8205/823/1/L10
... person's sports performance. Some activities, like dance or martial arts, require great flexibility. But increased flexibility also can ... activities that encourage flexibility are easy to find. Martial arts like karate, ballet, gymnastics , and yoga are good ...
NASA Astrophysics Data System (ADS)
Lee, Tzuo-Chang; Chen, Di
1987-01-01
We present in this paper an overview of Optotech's 5984 Optical Disk Drive. Key features such as the modulation code, the disk format, defect mapping scheme and the optical head and servo subsystem will be singled out for discussion. Description of Optotech's 5984 disk drive The Optotech 5984 optical disk drive is a write-once-read-mostly (WORM) rotating optical memory with 200 Megabyte capacity on each side of the disk. It has a 5 1/4 inch form factor that will fit into any personal computer full-height slot. The drive specification highlights are given in Table 1. A perspective view of the drive mechanical assembly is shown in Figure 1. The spindle that rotates the disk has a runout of less than 10 um. The rotational speed at 1200 revolutions per minute (rpm) is held to an accuracy of 10-3. The total angular tolerance from perfect perpendicular alignment between the rotating disk and the incident optical beam axis is held to less than 17 milliradians. The coarse seek is accomplished through a stepping motor driving the optical head with 1.3 milliseconds per step or 32 tracks per step. The analog channels including read/write, the phase lock loop and the servo loops for focus and track control are contained on one surface mount pc board while the digital circuitry that interfaces with the drive and the controller is on a separate pc board. A microprocessor 8039 is used to control the handshake and the sequence of R/W commands. A separate power board is used to provide power to the spindle and the stepping motors. In the following we will discuss some of the salient features in the drive and leave the details to three accompanying Optotech papers. These salient features are derived from a design that is driven by three major considerations. One is precise control of the one micron diameter laser spot to any desired location on the disk. The second consideration is effective management of media defects. Given the state of the art of the Te-based disk technology with an average raw defect density of approximately 10-5(compared to 10-draw error rate in high density magnetic hard disks), elaborate defect management tools are required to assure data integrity. The last consideration is, needless to say, low cost and high reliability.
DEAD, UNDEAD, AND ZOMBIE ZONES IN PROTOSTELLAR DISKS AS A FUNCTION OF STELLAR MASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Subhanjoy; Ercolano, Barbara; Turner, Neal J., E-mail: s.mohanty@imperial.ac.uk, E-mail: ercolano@usm.lmu.de, E-mail: neal.turner@jpl.nasa.gov
We investigate the viability of the magnetorotational instability (MRI) in X-ray ionized viscous accretion disks around both solar-type stars and very low mass stars. In particular, we determine the disk regions where the MRI can be shut off either by Ohmic resistivity (the so-called dead and undead zones) or by ambipolar diffusion (a region we term the zombie zone). We consider two stellar masses: M {sub *} = 0.7 M {sub Sun} and 0.1 M {sub Sun }. In each case, we assume that: the disk surface density profile is that of a scaled Minimum Mass Solar Nebula, with Mmore » {sub disk}/M {sub *} = 0.01 as suggested by current data; disk ionization is driven primarily by stellar X-rays, complemented by cosmic rays and radionuclides; and the stellar X-ray luminosity scales with bolometric luminosity as L{sub X} /L {sub *} Almost-Equal-To 10{sup -3.5}, as observed. Ionization rates are calculated with the MOCCASIN Monte Carlo X-ray transport code, and ionization balance determined using a simplified chemical network, including well-mixed 0.1 {mu}m grains at various levels of depletion. We find that (1) ambipolar diffusion is the primary factor controlling MRI activity in disks around both solar-type and very low mass classical T Tauri stars. Assuming that the MRI yields the maximum possible field strength at each radius, we further find that: (2) the MRI-active layer constitutes only {approx}5%-10% of the total disk mass; (3) the accretion rate ( M-dot ) varies radially in both magnitude and sign (inward or outward), implying time-variable accretion as well as the creation of disk gaps and overdensities, with consequences for planet formation and migration; (4) achieving the empirical accretion rates in solar-type and very low mass stars requires a depletion of well-mixed small grains (via grain growth and/or settling) by a factor of 10-1000 relative to the standard dust-to-gas mass ratio of 10{sup -2}; and (5) the current non-detection of polarized emission from field-aligned grains in the outer disk regions is consistent with active MRI at those radii.« less
Origin of Phobos and Deimos by the impact of a Vesta-to-Ceres sized body with Mars.
Canup, Robin; Salmon, Julien
2018-04-01
It has been proposed that Mars' moons formed from a disk produced by a large impact with the planet. However, whether such an event could produce tiny Phobos and Deimos remains unclear. Using a hybrid N -body model of moon accumulation that includes a full treatment of moon-moon dynamical interactions, we first identify new constraints on the disk properties needed to produce Phobos and Deimos. We then simulate the impact formation of disks using smoothed particle hydrodynamics, including a novel approach that resolves the impact ejecta with order-of-magnitude finer mass resolution than existing methods. We find that forming Phobos-Deimos requires an oblique impact by a Vesta-to-Ceres sized object with ~10 -3 times Mars' mass, a much less massive impactor than previously considered.
Li, F Y; Sheng, Z M; Chen, M; Yu, L L; Meyer-ter-Vehn, J; Mori, W B; Zhang, J
2014-10-01
Attosecond bursts of coherent synchrotronlike radiation are found when driving ultrathin relativistic electron disks in a quasi-one-dimensional regime of wakefield acceleration, in which the laser waist is larger than the wake wavelength. The disks of overcritical density shrink radially due to focusing wakefields, thus providing the transverse currents for the emission of an intense, radially polarized, half-cycle pulse of about 100 attoseconds in duration. The electromagnetic pulse first focuses to a peak intensity (7×10(20)W/cm(2)) 10 times larger than the driving pulse and then emerges as a conical beam. Basic dynamics of the radiative process are derived analytically and in agreement with particle-in-cell simulations. By making use of gas targets instead of solids to form the ultrathin disks, this method allows for high repetition rates required for applications.
Mathematical modelling of flow in disc friction LVAD pump
NASA Astrophysics Data System (ADS)
Medvedev, A. E.; Fomin, V. M.; Prikhodko, Yu. M.; Cherniavskiy, A. M.; Fomichev, V. P.; Fomichev, A. V.; Chekhov, V. P.; Ruzmatov, T. M.
2017-10-01
The need for blood circulation support systems in the treatment of chronic heart failure is constantly increasing as 20% of patients on the waiting list die every year. Despite the great need for mechanical heart support systems the use of available systems is limited by the high cost. Therefore, further research in the field of circulatory support systems is appropriate taking into account medical and technical requirements. One of the new research areas is viscous friction disk pumps for transporting liquids based on the Tesla pump principle. The experimental model of LVAD disk pump is developed. Analytical dependencies are obtained to optimize the hydraulic parameters of the pump. On their basis, the experimental model of LVAD disk pump was designed and created. The results of analytical and experimental studies of such a pump are presented.
RAMA: A file system for massively parallel computers
NASA Technical Reports Server (NTRS)
Miller, Ethan L.; Katz, Randy H.
1993-01-01
This paper describes a file system design for massively parallel computers which makes very efficient use of a few disks per processor. This overcomes the traditional I/O bottleneck of massively parallel machines by storing the data on disks within the high-speed interconnection network. In addition, the file system, called RAMA, requires little inter-node synchronization, removing another common bottleneck in parallel processor file systems. Support for a large tertiary storage system can easily be integrated in lo the file system; in fact, RAMA runs most efficiently when tertiary storage is used.
A Study on Aircraft Structure and Jet Engine
NASA Astrophysics Data System (ADS)
Park, Gil Moon; Park, Hwan Kyu; Kim, Jong Il; Kim, Jin Won; Kim, Jin Heung; Lee, Moo Seok; Chung, Nak Kyu
1985-12-01
The one of critical factor in gas turbine engine performance is high turbine inlet gas temperature. Therefore, the turbine rotor has so many problems which must be considered such as the turbine blade cooling, thermal stress of turbine disk due to severe temperature gradient, turbine rotor tip clearance, under the high operation temperature. The purpose of this study is to provide the temperature distribution and heat flux in turbine disk which is required to considered premensioned problem by the Finite Difference Method and the Finite Element Methods on the steady state condition.
Cool circumstellar matter around nearby main-sequence stars
NASA Technical Reports Server (NTRS)
Walker, H. J.; Wolstencroft, R. D.
1988-01-01
Stars are presented which have characteristics similar to Vega and other main-sequence stars with cool dust disks, based on the IRAS Point Source Catalog fluxes. The objects are selected to have a 60-micron/100-micron ratio similar to Vega, Beta Pic, Alpha PsA, and Epsilon Eri, and they are also required to show evidence of extension in the IRAS Working Survey Database. The fluxes are modeled using a blackbody energy distribution. The temperatures derived range from 50 to 650 K. The diameters of the dust disks observed by IRAS are estimated.
Nijhout, H Frederik; Laub, Emily; Grunert, Laura W
2018-03-19
The wing imaginal disks of Lepidoptera can be grown in tissue culture, but require both insulin and ecdysone to grow normally. Here, we investigate the contributions the two hormones make to growth. Ecdysone is required to maintain mitoses, whereas in the presence of insulin alone mitoses stop. Both ecdysone and insulin stimulate protein synthesis, but only ecdysone stimulates DNA synthesis. Insulin stimulates primarily cytoplasmic growth and an increase in cell size, whereas ecdysone, by virtue of its stimulation of DNA synthesis and mitosis, stimulates growth by an increase in cell number. Although both hormones stimulate protein synthesis, they do so in different spatial patterns. Both hormones stimulate protein synthesis in the inter-vein regions, but ecdysone stimulates synthesis more strongly in the veins and in the margin of the wing disk. We propose that the balance of insulin and ecdysone signaling must be regulated to maintain normal growth, and when growth appears to be due primarily to an increase in cell number, or an increase in cell size, this may indicate growth occurred under conditions that favored a stronger role for ecdysone, or insulin, respectively. © 2018. Published by The Company of Biologists Ltd.
Ultrahigh resolution photographic films for X-ray/EUV/FUV astronomy
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Watts, Richard; Tarrio, Charles
1993-01-01
The quest for ultrahigh resolution full-disk images of the sun at soft X-ray/EUV/FUV wavelengths has increased the demand for photographic films with broad spectral sensitivity, high spatial resolution, and wide dynamic range. These requirements were made more stringent by the recent development of multilayer telescopes and coronagraphs capable of operating at normal incidence at soft X-ray/EUV wavelengths. Photographic films are the only detectors now available with the information storage capacity and dynamic range such as is required for recording images of the solar disk and corona simultaneously with sub arc second spatial resolution. During the Stanford/MSFC/LLNL Rocket X-Ray Spectroheliograph and Multi-Spectral Solar Telescope Array (MSSTA) programs, we utilized photographic films to obtain high resolution full-disk images of the sun at selected soft X-ray/EUV/FUV wavelengths. In order to calibrate our instrumentation for quantitative analysis of our solar data and to select the best emulsions and processing conditions for the MSSTA reflight, we recently tested several photographic films. These studies were carried out at the NIST SURF II synchrotron and the Stanford Synchrotron Radiation Laboratory. In this paper, we provide the results of those investigations.
NASA Astrophysics Data System (ADS)
Podolak, Morris
2018-04-01
Modern observational techniques are still not powerful enough to directly view planet formation, and so it is necessary to rely on theory. However, observations do give two important clues to the formation process. The first is that the most primitive form of material in interstellar space exists as a dilute gas. Some of this gas is unstable against gravitational collapse, and begins to contract. Because the angular momentum of the gas is not zero, it contracts along the spin axis, but remains extended in the plane perpendicular to that axis, so that a disk is formed. Viscous processes in the disk carry most of the mass into the center where a star eventually forms. In the process, almost as a by-product, a planetary system is formed as well. The second clue is the time required. Young stars are indeed observed to have gas disks, composed mostly of hydrogen and helium, surrounding them, and observations tell us that these disks dissipate after about 5 to 10 million years. If planets like Jupiter and Saturn, which are very rich in hydrogen and helium, are to form in such a disk, they must accrete their gas within 5 million years of the time of the formation of the disk. Any formation scenario one proposes must produce Jupiter in that time, although the terrestrial planets, which don't contain significant amounts of hydrogen and helium, could have taken longer to build. Modern estimates for the formation time of the Earth are of the order of 100 million years. To date there are two main candidate theories for producing Jupiter-like planets. The core accretion (CA) scenario supposes that any solid materials in the disk slowly coagulate into protoplanetary cores with progressively larger masses. If the core remains small enough it won't have a strong enough gravitational force to attract gas from the surrounding disk, and the result will be a terrestrial planet. If the core grows large enough (of the order of ten Earth masses), and the disk has not yet dissipated, then the planetary embryo can attract gas from the surrounding disk and grow to be a gas giant. If the disk dissipates before the process is complete, the result will be an object like Uranus or Neptune, which has a small, but significant, complement of hydrogen and helium. The main question is whether the protoplanetary core can grow large enough before the disk dissipates. A second scenario is the disk instability (DI) scenario. This scenario posits that the disk itself is unstable and tends to develop regions of higher than normal density. Such regions collapse under their own gravity to form Jupiter-mass protoplanets. In the DI scenario a Jupiter-mass clump of gas can form—in several hundred years which will eventually contract into a gas giant planet. The difficulty here is to bring the disk to a condition where such instabilities will form. Now that we have discovered nearly 3000 planetary systems, there will be numerous examples against which to test these scenarios.
40 CFR 63.1355 - Recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry Notification... on microfilm, on a computer, on floppy disks, on magnetic tape, or on microfiche. (b) The owner or...
Evolution of Archival Storage (from Tape to Memory)
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuram K.
2015-01-01
Over the last three decades, there has been a significant evolution in storage technologies supporting archival of remote sensing data. This section provides a brief survey of how these technologies have evolved. Three main technologies are considered - tape, hard disk and solid state disk. Their historical evolution is traced, summarizing how reductions in cost have helped being able to store larger volumes of data on faster media. The cost per GB of media is only one of the considerations in determining the best approach to archival storage. Active archives generally require faster response to user requests for data than permanent archives. The archive costs have to consider facilities and other capital costs, operations costs, software licenses, utilities costs, etc. For meeting requirements in any organization, typically a mix of technologies is needed.
Optimal mistuning for enhanced aeroelastic stability of transonic fans
NASA Technical Reports Server (NTRS)
Hall, K. C.; Crawley, E. F.
1983-01-01
An inverse design procedure was developed for the design of a mistuned rotor. The design requirements are that the stability margin of the eigenvalues of the aeroelastic system be greater than or equal to some minimum stability margin, and that the mass added to each blade be positive. The objective was to achieve these requirements with a minimal amount of mistuning. Hence, the problem was posed as a constrained optimization problem. The constrained minimization problem was solved by the technique of mathematical programming via augmented Lagrangians. The unconstrained minimization phase of this technique was solved by the variable metric method. The bladed disk was modelled as being composed of a rigid disk mounted on a rigid shaft. Each of the blades were modelled with a single tosional degree of freedom.
Telemetry data storage systems technology for the Space Station Freedom era
NASA Technical Reports Server (NTRS)
Dalton, John T.
1989-01-01
This paper examines the requirements and functions of the telemetry-data recording and storage systems, and the data-storage-system technology projected for the Space Station, with particular attention given to the Space Optical Disk Recorder, an on-board storage subsystem based on 160 gigabit erasable optical disk units each capable of operating at 300 M bits per second. Consideration is also given to storage systems for ground transport recording, which include systems for data capture, buffering, processing, and delivery on the ground. These can be categorized as the first in-first out storage, the fast random-access storage, and the slow access with staging. Based on projected mission manifests and data rates, the worst case requirements were developed for these three storage architecture functions. The results of the analysis are presented.
Mineralogy and petrology of comet 81P/wild 2 nucleus samples
Zolensky, M.E.; Zega, T.J.; Yano, H.; Wirick, S.; Westphal, A.J.; Weisberg, M.K.; Weber, I.; Warren, J.L.; Velbel, M.A.; Tsuchiyama, A.; Tsou, P.; Toppani, A.; Tomioka, N.; Tomeoka, K.; Teslich, N.; Taheri, M.; Susini, J.; Stroud, R.; Stephan, T.; Stadermann, F.J.; Snead, C.J.; Simon, S.B.; Simionovici, A.; See, T.H.; Robert, F.; Rietmeijer, F.J.M.; Rao, W.; Perronnet, M.C.; Papanastassiou, D.A.; Okudaira, K.; Ohsumi, K.; Ohnishi, I.; Nakamura-Messenger, K.; Nakamura, T.; Mostefaoui, S.; Mikouchi, T.; Meibom, A.; Matrajt, G.; Marcus, M.A.; Leroux, H.; Lemelle, L.; Le, L.; Lanzirotti, A.; Langenhorst, F.; Krot, A.N.; Keller, L.P.; Kearsley, A.T.; Joswiak, D.; Jacob, D.; Ishii, H.; Harvey, R.; Hagiya, K.; Grossman, L.; Grossman, J.H.; Graham, G.A.; Gounalle, M.; Gillet, P.; Genge, M.J.; Flynn, G.; Ferroir, T.; Fallon, S.; Ebel, D.S.; Dai, Z.R.; Cordier, P.; Clark, B.; Chi, M.; Butterworth, Anna L.; Brownlee, D.E.; Bridges, J.C.; Brennan, S.; Brearley, A.; Bradley, J.P.; Bleuet, P.; Bland, P.A.; Bastien, R.
2006-01-01
The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk.
Disk space and load time requirements for eye movement biometric databases
NASA Astrophysics Data System (ADS)
Kasprowski, Pawel; Harezlak, Katarzyna
2016-06-01
Biometric identification is a very popular area of interest nowadays. Problems with the so-called physiological methods like fingerprints or iris recognition resulted in increased attention paid to methods measuring behavioral patterns. Eye movement based biometric (EMB) identification is one of the interesting behavioral methods and due to the intensive development of eye tracking devices it has become possible to define new methods for the eye movement signal processing. Such method should be supported by an efficient storage used to collect eye movement data and provide it for further analysis. The aim of the research was to check various setups enabling such a storage choice. There were various aspects taken into consideration, like disk space usage, time required for loading and saving whole data set or its chosen parts.
Central beta-adrenergic modulation of cognitive flexibility.
Beversdorf, David Q; White, Dawn M; Chever, Daquesha C; Hughes, John D; Bornstein, Robert A
2002-12-20
Situational stressors and anxiety impede performance on creativity tests requiring cognitive flexibility. Preliminary research revealed better performance on a task requiring cognitive flexibility, the anagram task, after propranolol (beta-adrenergic antagonist) than after ephedrine (beta-adrenergic agonist). However, propranolol and ephedrine have both peripheral and central beta-adrenergic effects. In order to determine whether noradrenergic modulation of cognitive flexibility is a centrally or peripherally mediated phenomenon, we compared the effects of propranolol (peripheral and central beta-blocker), nadolol (peripheral beta-blocker), and placebo on anagram task performance. Solution latency scores for each subject were compared across the drug conditions. Anagram solution latency scores after propranolol were significantly lower than after nadolol. This suggests a centrally mediated modulatory influence of the noradrenergic system on cognitive flexibility.
On Noble Gas Processing in the Solar Accretion Disk
NASA Astrophysics Data System (ADS)
Pepin, R. O.
2003-04-01
Two fractionation models are applied to the problem of generating the widely distributed “Q-component” noble gases in meteorites from the solar-like isotopic and elemental compositions that presumably characterized the early solar accretion disk. Noble gas fractionation by mass-dependent dissipation of the solar nebula, as suggested by Ozima et al. (1998), is examined in the context of a model developed by Johnstone et al. (1998) for accretion disk photoevaporation driven by intense UV radiation from a neighboring giant star. Hydrodynamic escape of heavier species entrained in hydrogen outflow from the UV-heated outer regions of the disk can generate substantial noble gas fractionations, but they do not match the observed Q-component isotopic pattern and moreover require the physically unrealistic assumption that the fractionated gases are confined to the heated disk boundary zone, without mixing with the interior nebula, for long periods of time. It seems more likely that hydrodynamic outflow is actually established below this zone, in the body of the disk. In this case fractionations are governed by Rayleigh distillation of the entire remaining nebula, and are negligible at the time when disk erosion is halted by the gravitational potential of the young sun embedded in the disk. A “local” model of noble gas fractionation by hydrodynamic blowoff of transient, methane-rich atmospheres outgassed from the interiors of large primitive planetesimals (Pepin, 1991) is updated and assessed against current data. Degassed atmospheres are assumed to contain isotopically solar noble gases except for an additional nucleogenic Xe component that contributes primarily to the two heaviest isotopes; there is evidence that this same component is present at varying levels in other solar-system volatile reservoirs, possibly reflecting a compositional change with time in the solar nebula. Single fixed values for the two free parameters in the blowoff modeling equations can generate fractionated Xe, Kr, Ar and Ne compositions in the residual atmosphere that closely match observed meteoritic isotopic distributions, and Q-gas elemental ratios are approximated by adsorption of fractionated gases on planetesimal surface grains using plausible values of relative Henry Law constants. Additional requirements for adsorption of sufficient absolute amounts of Q-gases on carrier grains, and their subsequent ejection to space, mixing in the nebula, and dispersal into meteorite bodies, are examined in the context of current models for body sizes and dynamical evolution in an early mass-rich asteroid belt (Chambers and Wetherill, 2001). Despite its ability to replicate isotopic compositions, uncertainties about the environments in which the blowoff model can successfully operate suggest that there is, as yet, no entirely satisfactory understanding of how the Q-component noble gases might have evolved from solar-like precursor compositions.
Shadows and spirals in the protoplanetary disk HD 100453
NASA Astrophysics Data System (ADS)
Benisty, M.; Stolker, T.; Pohl, A.; de Boer, J.; Lesur, G.; Dominik, C.; Dullemond, C. P.; Langlois, M.; Min, M.; Wagner, K.; Henning, T.; Juhasz, A.; Pinilla, P.; Facchini, S.; Apai, D.; van Boekel, R.; Garufi, A.; Ginski, C.; Ménard, F.; Pinte, C.; Quanz, S. P.; Zurlo, A.; Boccaletti, A.; Bonnefoy, M.; Beuzit, J. L.; Chauvin, G.; Cudel, M.; Desidera, S.; Feldt, M.; Fontanive, C.; Gratton, R.; Kasper, M.; Lagrange, A.-M.; LeCoroller, H.; Mouillet, D.; Mesa, D.; Sissa, E.; Vigan, A.; Antichi, J.; Buey, T.; Fusco, T.; Gisler, D.; Llored, M.; Magnard, Y.; Moeller-Nilsson, O.; Pragt, J.; Roelfsema, R.; Sauvage, J.-F.; Wildi, F.
2017-01-01
Context. Understanding the diversity of planets requires studying the morphology and physical conditions in the protoplanetary disks in which they form. Aims: We aim to study the structure of the 10 Myr old protoplanetary disk HD 100453, to detect features that can trace disk evolution and to understand the mechanisms that drive these features. Methods: We observed HD 100453 in polarized scattered light with VLT/SPHERE at optical (0.6 μm, 0.8 μm) and near-infrared (1.2 μm) wavelengths, reaching an angular resolution of 0.02'', and an inner working angle of 0.09''. Results: We spatially resolve the disk around HD 100453, and detect polarized scattered light up to 0.42'' ( 48 au). We detect a cavity, a rim with azimuthal brightness variations at an inclination of 38° with respect to our line of sight, two shadows and two symmetric spiral arms. The spiral arms originate near the location of the shadows, close to the semi major axis. We detect a faint feature in the SW that can be interpreted as the scattering surface of the bottom side of the disk, if the disk is tidally truncated by the M-dwarf companion currently seen at a projected distance of 119 au. We construct a radiative transfer model that accounts for the main characteristics of the features with an inner and outer disk misaligned by 72°. The azimuthal brightness variations along the rim are well reproduced with the scattering phase function of the model. While spirals can be triggered by the tidal interaction with the companion, the close proximity of the spirals to the shadows suggests that the shadows could also play a role. The change in stellar illumination along the rim induces an azimuthal variation of the scale height that can contribute to the brightness variations. Conclusions: Dark regions in polarized images of transition disks are now detected in a handful of disks and often interpreted as shadows due to a misaligned inner disk. However, the origin of such a misalignment in HD 100453, and of the spirals, is still unclear, and might be due to a yet-undetected massive companion inside the cavity, and on an inclined orbit. Observations over a few years will allow us to measure the spiral pattern speed, and determine if the shadows are fixed or moving, which may constrain their origin. Based on observations performed with VLT/SPHERE under program ID 096.C-0248(B).
Case Study Analysis of United States Navy Financial Field Activity
1991-06-01
and must be continued in order to keep providing quality base administration. The replacement of ten inch magnetic disk with modem data storage media...Equipment Priority: 3 Total Required Total Funded Shortfall Total Funding: 847K 791K 56K Narrative Description of Requirements: This requirement is...Equipment Priority: 3 Total Required Total Funded Shortfall Total Funding: 847K 791K 56K Narrative Description of Requirements: This deficiency would
Micromagnetic structure in Co-alloy thin films and its correlation with microstructure
NASA Astrophysics Data System (ADS)
Tang, Kai
The development of magnetic hard disk recording has resulted in an increase of recording density in an accelerated pace. How to maintain the increasingly smaller bits with low noise presents a tremendous challenge to the recording media, which requires detailed study of micromagnetic structure of the media to understand the noise mechanism, and elucidation of the correlation between the micromagnetic structure and microstructure to systematically develop media materials and tailor their microstructure. Lorentz transmission electron microscopy (LTEM) is a high-resolution magnetic imaging technique. However, it requires uniformly thin specimens, which cannot be produced by conventional TEM specimen preparation methods. Consequently, its application to real computer magnetic hard disks has been limited. In this dissertation, a combined dimpling and chemical etching method is introduced to prepare specimens directly from the unmodified hard disks with the typical C/Co alloy/Cr/NiP/Al (substrate) structure. The specimens typically have 2000 μmsp2 or larger electron transparent areas of Co alloy/Cr films with uniform thickness, which are suitable for LTEM observation. This method is applicable to disks with both smooth and mechanically textured substrates. In this work, LTEM has been employed to study recorded patterns in real hard disks. Magnetic recording was performed on a standard spin stand. Bits of densities from 15 to 100 kfci were examined with head skew angles of 0sp° and 20sp°, respectively. We also compared tracks recorded on dc-erased disks with those on as-deposited disks. We observed magnetic ripples within the tracks and the inter-track regions, magnetic vortices of 0.1-0.2 mum in diameter at the bit-transitions, and curved magnetic domain walls in the track-edge regions resulting from the "dog-bone" shaped head field profile. Our results also indicate that the micromagnetic structure at the track edges is influenced by head skew and magnetization direction in the inter-track regions. The LTEM results are combined with MFM observations to provide further understanding. The study has concentrated on isotropic media on smooth substrates since low head-to-medium spacing required by high recording density demonstrates the need for this type of media. The recorded tracks are remanent magnetic states after a strong (head) magnetic field was applied. We also examined an ac-erased state, in which the effect of external field is removed. Magnetic vortices are identified, in which small crystal grains form magnetic clusters and these clusters then form closed-fluxed vortices. The size of these vortices is estimated to be around 1.0-1.5 mum, about 10 times larger than that found in the bit-transition regions. The smaller vortex sizes in the bit-transition regions may result from constraints from adjacent bits as well as the difference in magnetic processes generating these states. (Abstract shortened by UMI.)
76 FR 40150 - Semiannual Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... Commission publishes its semiannual regulatory flexibility agenda. In addition, this document includes an...) requires each agency to publish twice each year a regulatory flexibility agenda containing a brief... 12866 requires each agency to publish twice each year a regulatory agenda of regulations under...
NASA Technical Reports Server (NTRS)
Oren, J. A.
1982-01-01
The soft tube radiator subsystem is described including applicable system requirements, the design and limitations of the subsystem components, and the panel manufacturing method. The soft tube radiator subsystem is applicable to payloads requiring 1 to 12 kW of heat rejection for orbital lifetimes per mission of 30 days or less. The flexible radiator stowage volume required is about 60% and the system weight is about 40% of an equivalent heat rejection rigid panel. The cost should also be considerably less. The flexible radiator is particularly suited to shuttle orbiter sortie payloads and also whose mission lengths do not exceed the 30 day design life.
Magnetic bearings for a high-performance optical disk buffer, volume 1
NASA Technical Reports Server (NTRS)
Hockney, Richard; Adler, Karen; Anastas, George, Jr.; Downer, James; Flynn, Frederick; Goldie, James; Gondhalekar, Vijay; Hawkey, Timothy; Johnson, Bruce
1990-01-01
The innovation investigated in this project was the application of magnetic bearing technology to the translator head of an optical-disk data storage device. Both the capability for space-based applications and improved performance are expected to result. The phase 1 effort produced: (1) detailed specifications for both the translator-head and rotary-spindel bearings; (2) candidate hardware configurations for both bearings with detail definition for the translator head; (3) required characteristics for the magnetic bearing control loops; (4) position sensor selection; and (5) definition of the required electronic functions. The principal objective of Phase 2 was the design, fabrication, assembly, and test of the magnetic bearing system for the translator head. The scope of work included: (1) mechanical design of each of the required components; (2) electrical design of the required circuitry; (3) fabrication of the component parts and bread-board electronics; (4) generation of a test plan; and (5) integration of the prototype unit and performance testing. The project has confirmed the applicability of magnetic bearing technology to suspension of the translator head of the optical disk device, and demonstrated the achievement of all performance objectives. The magnetic bearing control loops perform well, achieving 100 Hz nominal bandwidth with phase margins between 37 and 63 degrees. The worst-case position resolution is 0.02 micron in the displacement loops and 1 micron rad in the rotation loops, The system is very robust to shock disturbances, recovering smoothly even when collisions occur between the translator and frame. The unique start-up/shut-down circuit has proven very effective.
Technical advantages of disk laser technology in short and ultrashort pulse processes
NASA Astrophysics Data System (ADS)
Graham, P.; Stollhof, J.; Weiler, S.; Massa, S.; Faisst, B.; Denney, P.; Gounaris, E.
2011-03-01
This paper demonstrates that disk-laser technology introduces advantages that increase efficiency and allows for high productivity in micro-processing in both the nanosecond (ns) and picosecond (ps) regimes. Some technical advantages of disk technology include not requiring good pump beam quality or special wavelengths for pumping of the disk, high optical efficiencies, no thermal lensing effects and a possible scaling of output power without an increase of pump beam quality. With cavity-dumping, the pulse duration of the disk laser can be specified between 30 and hundreds of nanoseconds, but is independent of frequency, thus maintaining process stability. TRUMPF uses this technology in the 750 watts average power laser TruMicro 7050. High intensity, along with fluency, is important for high ablation rates in thinfilm removal. Thus, these ns lasers show high removal rates, above 60 cm2/s, in thin-film solar cell production. In addition, recent results in paint-stripping of aerospace material prove the green credentials and high processing rates inherent with this technology as it can potentially replace toxic chemical processes. The ps disk technology meanwhile is used in, for example, scribing of solar cells, wafer dicing and drilling injector nozzles, as the pulse duration is short enough to minimize heat input in the laser-matter interaction. In the TruMicro Series 5000, the multi-pass regenerative amplifier stage combines high optical-optical efficiencies together with excellent output beam quality for pulse durations of only 6 ps and high pulse energies of up to 0.25 mJ.
Fatigue Resistance of the Grain Size Transition Zone in a Dual Microstructure Superalloy Disk
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Kantzos, P. T.; Telesman, J.; Gayda, J.; Sudbrack, C. K.; Palsa, B. S.
2010-01-01
Mechanical property requirements vary with location in nickel-based superalloy disks. To maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored microstructures. In this study, a specialized heat treatment method was applied to produce varying grain microstructures from the bore to the rim portions of a powder metallurgy processed nickel-based superalloy disk. The bore of the contoured disk consisted of fine grains to maximize strength and fatigue resistance at lower temperatures. The rim microstructure of the disk consisted of coarse grains for maximum resistance to creep and dwell crack growth at high temperatures up to 704 C. However, the fatigue resistance of the grain size transition zone was unclear, and needed to be evaluated. This zone was located as a band in the disk web between the bore and rim. Specimens were extracted parallel and transverse to the transition zone, and multiple fatigue tests were performed at 427 and 704 C. Mean fatigue lives were lower at 427 C than for 704 C. Specimen failures often initiated at relatively large grains, which failed on crystallographic facets. Grain size distributions were characterized in the specimens, and related to the grains initiating failures as well as location within the transition zone. Fatigue life decreased with increasing maximum grain size. Correspondingly, mean fatigue resistance of the transition zone was slightly higher than that of the rim, but lower than that of the bore. The scatter in limited tests of replicates was comparable for all transition zone locations examined.
Earth horizon modeling and application to static Earth sensors on TRMM spacecraft
NASA Technical Reports Server (NTRS)
Keat, J.; Challa, M.; Tracewell, D.; Galal, K.
1995-01-01
Data from Earth sensor assemblies (ESA's) often are used in the attitude determination (AD) for both spinning and Earth-pointing spacecraft. The ESA's on previous such spacecraft for which the ground-based AD operation was performed by the Flight Dynamics Division (FDD) used the Earth scanning method. AD on such spacecraft requires a model of the shape of the Earth disk as seen from the spacecraft. AD accuracy requirements often are too severe to permit Earth oblateness to be ignored when modeling disk shape. Section 2 of this paper reexamines and extends the methods for Earth disk shape modeling employed in AD work at FDD for the past decade. A new formulation, based on a more convenient Earth flatness parameter, is introduced, and the geometric concepts are examined in detail. It is shown that the Earth disk can be approximated as an ellipse in AD computations. Algorithms for introducing Earth oblateness into the AD process for spacecraft carrying scanning ESA's have been developed at FDD and implemented into the support systems. The Tropical Rainfall Measurement Mission (TRMM) will be the first spacecraft with AD operation performed at FDD that uses a different type of ESA - namely, a static one - containing four fixed detectors D(sub i) (i = 1 to 4). Section 3 of this paper considers the effect of Earth oblateness on AD accuracy for TRMM. This effect ideally will not induce AD errors on TRMM when data from all four D(sub i) are present. When data from only two or three D(sub i) are available, however, a spherical Earth approximation can introduce errors of 0.05 to 0.30 deg on TRMM. These oblateness-induced errors are eliminated by a new algorithm that uses the results of Section 2 to model the Earth disk as an ellipse.
Flexible Learning, Human Resource and Organisational Development: Putting Theory To Work.
ERIC Educational Resources Information Center
Jakupec, Viktor, Ed.; Garrick, John, Ed.
This book addresses contemporary contexts of flexible learning and its practices and provides insights about directions that education and training providers may be required to follow to implement flexible learning in a variety of settings. Key issues and debates include the following: social and economic dimensions of flexible learning and…
49 CFR 178.710 - Standards for flexible IBCs.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Definitions for flexible IBCs: (1) Flexible IBCs consist of a body constructed of film, woven plastic, woven... body of the IBC or formed from a continuation of the IBC body material. (c) Construction requirements... in previous use. (7) When flexible IBCs are filled, the ratio of height to width may not be more than...
49 CFR 178.710 - Standards for flexible IBCs.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Definitions for flexible IBCs: (1) Flexible IBCs consist of a body constructed of film, woven plastic, woven... body of the IBC or formed from a continuation of the IBC body material. (c) Construction requirements... in previous use. (7) When flexible IBCs are filled, the ratio of height to width may not be more than...
49 CFR 178.710 - Standards for flexible IBCs.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Definitions for flexible IBCs: (1) Flexible IBCs consist of a body constructed of film, woven plastic, woven... body of the IBC or formed from a continuation of the IBC body material. (c) Construction requirements... in previous use. (7) When flexible IBCs are filled, the ratio of height to width may not be more than...
49 CFR 178.710 - Standards for flexible IBCs.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Definitions for flexible IBCs: (1) Flexible IBCs consist of a body constructed of film, woven plastic, woven... body of the IBC or formed from a continuation of the IBC body material. (c) Construction requirements... in previous use. (7) When flexible IBCs are filled, the ratio of height to width may not be more than...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
... regulatory flexibility agendas required by the Regulatory Flexibility Act (5 U.S.C. 602), the Department of Defense's printed agenda entries include only: (1) Rules that are in the Agency's regulatory flexibility agenda, in accordance with the Regulatory Flexibility Act, because they are likely to have a significant...