Science.gov

Sample records for flexible modelling strategy

  1. Mental model progression in learning the electron transport chain: effects of instructional strategies and cognitive flexibility.

    PubMed

    Darabi, Aubteen; Hemphill, Jennifer; Nelson, David W; Boulware, Wilma; Liang, Xinya

    2010-10-01

    This study investigated the effect of two instructional strategies, segmented and holistic, on the progression over time of learners' mental models toward that of an expert with the moderator of cognitive flexibility. Sixty-four juniors and seniors in a college metabolism course were randomly assigned to one of the two strategies for instruction on the electron transport chain. The data were analyzed with a repeated measures general linear model. Mental models progressed significantly for both strategies (p < .001), and a significant interaction was found between cognitive flexibility and instructional strategy on mental model progression (p = .02). The segmented strategy was superior for learners with higher cognitive flexibility but inferior to the holistic strategy for lower cognitive flexibility learners. Results have important implications for differentiating instruction on the basis of learner characteristics.

  2. Mental Model Progression in Learning the Electron Transport Chain: Effects of Instructional Strategies and Cognitive Flexibility

    ERIC Educational Resources Information Center

    Darabi, Aubteen; Hemphill, Jennifer; Nelson, David W.; Boulware, Wilma; Liang, Xinya

    2010-01-01

    This study investigated the effect of two instructional strategies, segmented and holistic, on the progression over time of learners' mental models toward that of an expert with the moderator of cognitive flexibility. Sixty-four juniors and seniors in a college metabolism course were randomly assigned to one of the two strategies for instruction…

  3. Mental Model Progression in Learning the Electron Transport Chain: Effects of Instructional Strategies and Cognitive Flexibility

    ERIC Educational Resources Information Center

    Darabi, Aubteen; Hemphill, Jennifer; Nelson, David W.; Boulware, Wilma; Liang, Xinya

    2010-01-01

    This study investigated the effect of two instructional strategies, segmented and holistic, on the progression over time of learners' mental models toward that of an expert with the moderator of cognitive flexibility. Sixty-four juniors and seniors in a college metabolism course were randomly assigned to one of the two strategies for instruction…

  4. Adaptive Control Strategies for Flexible Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1996-01-01

    The control problem of a flexible robotic arm has been investigated. The control strategies that have been developed have a wide application in approaching the general control problem of flexible space structures. The following control strategies have been developed and evaluated: neural self-tuning control algorithm, neural-network-based fuzzy logic control algorithm, and adaptive pole assignment algorithm. All of the above algorithms have been tested through computer simulation. In addition, the hardware implementation of a computer control system that controls the tip position of a flexible arm clamped on a rigid hub mounted directly on the vertical shaft of a dc motor, has been developed. An adaptive pole assignment algorithm has been applied to suppress vibrations of the described physical model of flexible robotic arm and has been successfully tested using this testbed.

  5. Flexible Cognitive Strategies during Motor Learning

    PubMed Central

    Taylor, Jordan A.; Ivry, Richard B.

    2011-01-01

    Visuomotor rotation tasks have proven to be a powerful tool to study adaptation of the motor system. While adaptation in such tasks is seemingly automatic and incremental, participants may gain knowledge of the perturbation and invoke a compensatory strategy. When provided with an explicit strategy to counteract a rotation, participants are initially very accurate, even without on-line feedback. Surprisingly, with further testing, the angle of their reaching movements drifts in the direction of the strategy, producing an increase in endpoint errors. This drift is attributed to the gradual adaptation of an internal model that operates independently from the strategy, even at the cost of task accuracy. Here we identify constraints that influence this process, allowing us to explore models of the interaction between strategic and implicit changes during visuomotor adaptation. When the adaptation phase was extended, participants eventually modified their strategy to offset the rise in endpoint errors. Moreover, when we removed visual markers that provided external landmarks to support a strategy, the degree of drift was sharply attenuated. These effects are accounted for by a setpoint state-space model in which a strategy is flexibly adjusted to offset performance errors arising from the implicit adaptation of an internal model. More generally, these results suggest that strategic processes may operate in many studies of visuomotor adaptation, with participants arriving at a synergy between a strategic plan and the effects of sensorimotor adaptation. PMID:21390266

  6. A simulation strategy for the atomistic modeling of flexible molecules covalently tethered to rigid surfaces: application to peptides.

    PubMed

    Curcó, David; Zanuy, David; Nussinov, Ruth; Alemán, Carlos

    2011-03-01

    A computational strategy to model flexible molecules tethered to a rigid inert surface is presented. The strategy is able to provide uncorrelated relaxed microstructures at the atomistic level. It combines an algorithm to generate molecules tethered to the surface without atomic overlaps, a method to insert solvent molecules and ions in the simulation box, and a powerful relaxation procedure. The reliability of the strategy has been investigated by simulating two different systems: (i) mixed monolayers consisting of binary mixtures of long-chain alkyl thiols of different lengths adsorbed on a rigid inert surface and (ii) CREKA (Cys-Arg-Glu-Lys-Ala), a short linear pentapeptide that recognizes clotted plasma proteins and selectively homes to tumors, covalently tethered to a rigid inert surface in aqueous solution. In the first, we examined the segregation of the two species in the monolayers using different long-chain:short-chain ratios, whereas in the second, we explored the conformational space of CREKA and ions distribution considering densities of peptides per nm(2) ranging from 0.03 to 1.67. Results indicate a spontaneous segregation in alkyl thiol monolayers, which enhances when the concentration of longest chains increases. However, the whole conformational profile of CREKA depends on the number of molecules tethered to the surface pointing out the large influence of molecular density on the intermolecular interactions, even though the bioactive conformation was found as the most stable in all cases.

  7. Modeling Intercellular Communication as a Survival Strategy of Cancer Cells: An In Silico Approach on a Flexible Bioinformatics Framework.

    PubMed

    Cárdenas-García, Maura; González-Pérez, Pedro P; Montagna, Sara; Cortés, Oscar Sánchez; Caballero, Elena Hernández

    2016-01-01

    Intercellular communication is very important for cell development and allows a group of cells to survive as a population. Cancer cells have a similar behavior, presenting the same mechanisms and characteristics of tissue formation. In this article, we model and simulate the formation of different communication channels that allow an interaction between two cells. This is a first step in order to simulate in the future processes that occur in healthy tissue when normal cells surround a cancer cell and to interrupt the communication, thus preventing the spread of malignancy into these cells. The purpose of this study is to propose key molecules, which can be targeted to allow us to break the communication between cancer cells and surrounding normal cells. The simulation is carried out using a flexible bioinformatics platform that we developed, which is itself based on the metaphor chemistry-based model.

  8. Modeling Intercellular Communication as a Survival Strategy of Cancer Cells: An In Silico Approach on a Flexible Bioinformatics Framework

    PubMed Central

    Cárdenas-García, Maura; González-Pérez, Pedro P.; Montagna, Sara; Cortés, Oscar Sánchez; Caballero, Elena Hernández

    2016-01-01

    Intercellular communication is very important for cell development and allows a group of cells to survive as a population. Cancer cells have a similar behavior, presenting the same mechanisms and characteristics of tissue formation. In this article, we model and simulate the formation of different communication channels that allow an interaction between two cells. This is a first step in order to simulate in the future processes that occur in healthy tissue when normal cells surround a cancer cell and to interrupt the communication, thus preventing the spread of malignancy into these cells. The purpose of this study is to propose key molecules, which can be targeted to allow us to break the communication between cancer cells and surrounding normal cells. The simulation is carried out using a flexible bioinformatics platform that we developed, which is itself based on the metaphor chemistry-based model. PMID:26997867

  9. A flexible search strategy for production systems

    NASA Technical Reports Server (NTRS)

    Dey, Pradip; Srinivasan, S.; Sundararaghavan, K. R.

    1988-01-01

    Most problems considered to be solvable by expert systems have very large search space. It is imperative to use efficient search strategy in expert system tools. Thus, OPS5 uses a kind of hill climbing which is very efficient. However, hill climbing is inadequate for many problems because it is one of the least dependable search strategies. In order to make the search efficient and adequate one can: (1) adopt best-first search instead of hill climbing, or (2) modify hill climbing with intelligent backtracking. The second alternative is adopted. It is implemented in a production system called PRO2 embedded in C running on UNIX. It is called hill tracking. It is a general purpose tool for developing expert systems. This is a rule based production system with an effective, intelligent and flexible backtracking control mechanism, which makes the system more dependable. The advantages and disadvantages of PRO2 are discussed.

  10. Symbolic modeling of flexible manipulators

    NASA Technical Reports Server (NTRS)

    Cetinkunt, Sabri; Book, Wayne J.

    1987-01-01

    An algorithm is presented to symbolically derive the full nonlinear dynamic equations of motion of multilink flexible manipulators. Lagrange's assumed modes method is the basis of new algorithm and adapted in a way suitable for symbolic manipulation by digital computers. It is applied to model a two-link flexible arm by means of a commercially available symbolic manipulation program. The advantages of the algorithm and simulation results are discussed.

  11. Model reduction of flexible manipulators

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Xu, Yangsheng; Chen, C. S.

    1992-06-01

    Flexible manipulators can be characterized by a dynamic model with a large number of vibration modes, and the use of the model in the model-based control schemes requires reduction of model order. Balanced truncation is an effective method for model reduction of asymptotically stable systems by transforming the states to a coordinate system in which the controllability and observability Gramians are equal and diagonal, and eliminating the states which contribute weakly to the input-output map. An elastic flexible manipulator, however, is a marginally stable system and thus the balanced truncation method can not be directly applied. Herein, a method is presented of reducing the order of a marginally stable system based on the fact that translation transformations in the frequency domain preserve input-output properties of the system. The successful application is addressed of the method to model reduction of flexible manipulators with infinite-dimensional for finite-dimensional model. The method is also applicable for any other marginally stable model, such as elastic space trusswork and multi-dimensional space vehicle structure.

  12. Statistical validation of peptide identifications in large-scale proteomics using the target-decoy database search strategy and flexible mixture modeling.

    PubMed

    Choi, Hyungwon; Ghosh, Debashis; Nesvizhskii, Alexey I

    2008-01-01

    Reliable statistical validation of peptide and protein identifications is a top priority in large-scale mass spectrometry based proteomics. PeptideProphet is one of the computational tools commonly used for assessing the statistical confidence in peptide assignments to tandem mass spectra obtained using database search programs such as SEQUEST, MASCOT, or X! TANDEM. We present two flexible methods, the variable component mixture model and the semiparametric mixture model, that remove the restrictive parametric assumptions in the mixture modeling approach of PeptideProphet. Using a control protein mixture data set generated on an linear ion trap Fourier transform (LTQ-FT) mass spectrometer, we demonstrate that both methods improve parametric models in terms of the accuracy of probability estimates and the power to detect correct identifications controlling the false discovery rate to the same degree. The statistical approaches presented here require that the data set contain a sufficient number of decoy (known to be incorrect) peptide identifications, which can be obtained using the target-decoy database search strategy.

  13. Protein flexibility oriented virtual screening strategy for JAK2 inhibitors

    NASA Astrophysics Data System (ADS)

    Xiong, Xiao; Yuan, Haoliang; Zhang, Yanmin; Xu, Jinxing; Ran, Ting; Liu, Haichun; Lu, Shuai; Xu, Anyang; Li, Hongmei; Jiang, Yulei; Lu, Tao; Chen, Yadong

    2015-10-01

    JAK2 has been considered as an important target for the development of anti-cancer agents. In this study, considering the flexibility of its binding site, an integrated strategy combining Bayesian categorization modeling and ensemble docking was established. Four representative crystal structures were selected for ensemble docking by the hierarchical clustering of 34 crystal structures according to the volume overlaps of each structure. A retrospective virtual screening was performed to validate this integrated strategy. As the preliminary filtration, the Bayesian model enhanced the ratio of actives by reducing the large amount of decoys. After docking the remaining compounds, the comparison between the ensemble and individual results showed that the enrichment of ensemble docking improved significantly. The results of analysis on conformational changes of two top ranked active inhibitors when docking into different proteins indicated that compounds with flexible conformations well fitted the different binding site shapes were more likely to be potential JAK2 inhibitors. This high efficient strategy will facilitate virtual screening for novel JAK2 inhibitors and could be even applied in drug discovery against other targets.

  14. Model reduction for flexible structures

    NASA Technical Reports Server (NTRS)

    Gawronski, Wodek; Juang, Jer-Nan

    1990-01-01

    Several conditions for a near-optimal reduction of general dynamic systems are presented focusing on the reduction in balanced and modal coordinates. It is shown that model and balanced reductions give very different results for the flexible structure with closely-spaced natural frequencies. In general, balanced reduction is found to give better results. A robust model reduction technique was developed to study the sensitivity of modeling error to variations in the damping of a structure. New concepts of grammians defined over a finite time and/or a frequency interval are proposed including computational procedures for evaluating them. Application of the model reduction technique to these grammians is considered to lead to a near-optimal reduced model which closely reproduces the full system output in the time and/or frequency interval.

  15. Flexible Studies as Strategy for Lifelong Learning

    ERIC Educational Resources Information Center

    Bugge, Liv Susanne; Wikan, Gerd

    2016-01-01

    Many countries face a challenge in recruiting teachers. At the same time, the labour market is changing and the demand for re-education is increasing. In this situation, lifelong learning is seen as relevant and higher education institutions are asked to offer flexible and decentralised study programmes in order to accommodate the need for formal…

  16. Adaptive control strategies for flexible robotic arm

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1993-01-01

    The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity if not unstable closed-loop behavior. Therefore a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.

  17. Model reduction for flexible space structures

    NASA Technical Reports Server (NTRS)

    Gawronski, Wodek; Williams, Trevor

    1989-01-01

    This paper presents the conditions under which modal truncation yields a near-optimal reduced-order model for a flexible structure. Next, a robust model reduction technique to cope with the damping uncertainties typical of flexible space structure is developed. Finally, a flexible truss and the COFS-1 structure are used to give realistic applications for the model reduction techniques studied in the paper.

  18. Flexible stocking strategies for adapting to climatic variability

    USDA-ARS?s Scientific Manuscript database

    As a result of precipitation-induced variability on forage production, ranchers have difficulty matching animal demand with forage availability in their operations. Flexible stocking strategies could more effectively use extra forage in highly productive years and limit risk of overgrazing during dr...

  19. Two strategies to engineer flexible loops for improved enzyme thermostability

    NASA Astrophysics Data System (ADS)

    Yu, Haoran; Yan, Yihan; Zhang, Cheng; Dalby, Paul A.

    2017-02-01

    Flexible sites are potential targets for engineering the stability of enzymes. Nevertheless, the success rate of the rigidifying flexible sites (RFS) strategy is still low due to a limited understanding of how to determine the best mutation candidates. In this study, two parallel strategies were applied to identify mutation candidates within the flexible loops of Escherichia coli transketolase (TK). The first was a “back to consensus mutations” approach, and the second was computational design based on ΔΔG calculations in Rosetta. Forty-nine single variants were generated and characterised experimentally. From these, three single-variants I189H, A282P, D143K were found to be more thermostable than wild-type TK. The combination of A282P with H192P, a variant constructed previously, resulted in the best all-round variant with a 3-fold improved half-life at 60 °C, 5-fold increased specific activity at 65 °C, 1.3-fold improved kcat and a Tm increased by 5 °C above that of wild type. Based on a statistical analysis of the stability changes for all variants, the qualitative prediction accuracy of the Rosetta program reached 65.3%. Both of the two strategies investigated were useful in guiding mutation candidates to flexible loops, and had the potential to be used for other enzymes.

  20. Two strategies to engineer flexible loops for improved enzyme thermostability

    PubMed Central

    Yu, Haoran; Yan, Yihan; Zhang, Cheng; Dalby, Paul A.

    2017-01-01

    Flexible sites are potential targets for engineering the stability of enzymes. Nevertheless, the success rate of the rigidifying flexible sites (RFS) strategy is still low due to a limited understanding of how to determine the best mutation candidates. In this study, two parallel strategies were applied to identify mutation candidates within the flexible loops of Escherichia coli transketolase (TK). The first was a “back to consensus mutations” approach, and the second was computational design based on ΔΔG calculations in Rosetta. Forty-nine single variants were generated and characterised experimentally. From these, three single-variants I189H, A282P, D143K were found to be more thermostable than wild-type TK. The combination of A282P with H192P, a variant constructed previously, resulted in the best all-round variant with a 3-fold improved half-life at 60 °C, 5-fold increased specific activity at 65 °C, 1.3-fold improved kcat and a Tm increased by 5 °C above that of wild type. Based on a statistical analysis of the stability changes for all variants, the qualitative prediction accuracy of the Rosetta program reached 65.3%. Both of the two strategies investigated were useful in guiding mutation candidates to flexible loops, and had the potential to be used for other enzymes. PMID:28145457

  1. Two strategies to engineer flexible loops for improved enzyme thermostability.

    PubMed

    Yu, Haoran; Yan, Yihan; Zhang, Cheng; Dalby, Paul A

    2017-02-01

    Flexible sites are potential targets for engineering the stability of enzymes. Nevertheless, the success rate of the rigidifying flexible sites (RFS) strategy is still low due to a limited understanding of how to determine the best mutation candidates. In this study, two parallel strategies were applied to identify mutation candidates within the flexible loops of Escherichia coli transketolase (TK). The first was a "back to consensus mutations" approach, and the second was computational design based on ΔΔG calculations in Rosetta. Forty-nine single variants were generated and characterised experimentally. From these, three single-variants I189H, A282P, D143K were found to be more thermostable than wild-type TK. The combination of A282P with H192P, a variant constructed previously, resulted in the best all-round variant with a 3-fold improved half-life at 60 °C, 5-fold increased specific activity at 65 °C, 1.3-fold improved kcat and a Tm increased by 5 °C above that of wild type. Based on a statistical analysis of the stability changes for all variants, the qualitative prediction accuracy of the Rosetta program reached 65.3%. Both of the two strategies investigated were useful in guiding mutation candidates to flexible loops, and had the potential to be used for other enzymes.

  2. Flexible healthcare structures: analysis and evaluation of possible strategies and technologies.

    PubMed

    Buffoli, M; Nachiero, D; Capolongo, S

    2012-01-01

    Hospitals are complex buildings because of their articulation, function, organization and technology equipment. Planning hospitals needs an interdisciplinary approach in order to organize efficiently the construction of qualitative and flexible units, that must be able to answer to all the requirements of different users and to the fast changes due to the research innovations. Human and care activities have a rapid progress, that creates a constant demand of modernizations of the hospitals and readjustment of the functional connections. Flexibility becomes the core of all the modifications depending on the progress of the medical science. The future challenge is to build structures that promote sustainable flexibility and also allow to achieve wellness in a synergic relation with complementary external activities. Therefore the research aims to identify lay-out models, technical and constructive solutions to guarantee different levels of flexibility. The research was made of different stages to define flexibility inside healthcare structures using strategies and technologies. The first step has followed the evolution of hospital structures during the centuries. It illustrates the most efficient methods and solutions used in last fifty years to achieve the flexibility. The second step was the analysis of the most important contemporaries healthcare structures. In that analysis, the hospitals will be compared through an evaluation matrix made by diferent flexibility levels that underlines the most efficient technologies and strategies used. At the end it was made a list of design indications focused on the definition of a new design approach that guarantees flexibility for these complex systems.

  3. Stochastic model for protein flexibility analysis.

    PubMed

    Xia, Kelin; Wei, Guo-Wei

    2013-12-01

    Protein flexibility is an intrinsic property and plays a fundamental role in protein functions. Computational analysis of protein flexibility is crucial to protein function prediction, macromolecular flexible docking, and rational drug design. Most current approaches for protein flexibility analysis are based on Hamiltonian mechanics. We introduce a stochastic model to study protein flexibility. The essential idea is to analyze the free induction decay of a perturbed protein structural probability, which satisfies the master equation. The transition probability matrix is constructed by using probability density estimators including monotonically decreasing radial basis functions. We show that the proposed stochastic model gives rise to some of the best predictions of Debye-Waller factors or B factors for three sets of protein data introduced in the literature.

  4. Dynamic Multiple Work Stealing Strategy for Flexible Load Balancing

    NASA Astrophysics Data System (ADS)

    Adnan; Sato, Mitsuhisa

    Lazy-task creation is an efficient method of overcoming the overhead of the grain-size problem in parallel computing. Work stealing is an effective load balancing strategy for parallel computing. In this paper, we present dynamic work stealing strategies in a lazy-task creation technique for efficient fine-grain task scheduling. The basic idea is to control load balancing granularity depending on the number of task parents in a stack. The dynamic-length strategy of work stealing uses run-time information, which is information on the load of the victim, to determine the number of tasks that a thief is allowed to steal. We compare it with the bottommost first work stealing strategy used in StackThread/MP, and the fixed-length strategy of work stealing, where a thief requests to steal a fixed number of tasks, as well as other multithreaded frameworks such as Cilk and OpenMP task implementations. The experiments show that the dynamic-length strategy of work stealing performs well in irregular workloads such as in UTS benchmarks, as well as in regular workloads such as Fibonacci, Strassen's matrix multiplication, FFT, and Sparse-LU factorization. The dynamic-length strategy works better than the fixed-length strategy because it is more flexible than the latter; this strategy can avoid load imbalance due to overstealing.

  5. Flexible Models for Solar Sail Control

    NASA Technical Reports Server (NTRS)

    Weaver Smith, Suzanne; Song, Haiping; Baker, John R.; Black, Jonathan; Muheim, Danniella M.

    2005-01-01

    Solar sails employ a unique form of propulsion, gaining momentum from incident and reflected photons. However, the momentum transferred by an individual photon is extremely small. Consequently, a solar sail must have an extremely large surface area and also be extremely light. The flexibility of the sail then must be considered when designing or evaluating control laws. In this paper, solar sail flexibility and its influence on control effectiveness is considered using idealized two-dimensional models to represent physical phenomena rather than a specific design. Differential equations of motion are derived for a distributed parameter model of a flexible solar sail idealized as a rotating central hub with two opposing flexible booms. This idealization is appropriate for solar sail designs in which the vibrational modes of the sail and supporting booms move together allowing the sail mass to be distributed along the booms in the idealized model. A reduced analytical model of the flexible response is considered. Linear feedback torque control is applied at the central hub. Two translational disturbances and a torque disturbance also act at the central hub representing the equivalent effect of deflecting sail shape about a reference line. Transient simulations explore different control designs and their effectiveness for controlling orientation, for reducing flexible motion and for disturbance rejection. A second model also is developed as a two-dimensional "pathfinder" model to calculate the effect of solar sail shape on the resultant thrust, in-plane force and torque at the hub. The analysis is then extended to larger models using the finite element method. The finite element modeling approach is verified by comparing results from a two-dimensional finite element model with those from the analytical model. The utility of the finite element modeling approach for this application is then illustrated through examples based on a full finite element model.

  6. A Model for Flexibly Editing CSCL Scripts

    ERIC Educational Resources Information Center

    Sobreira, Pericles; Tchounikine, Pierre

    2012-01-01

    This article presents a model whose primary concern and design rationale is to offer users (teachers) with basic ICT skills an intuitive, easy, and flexible way of editing scripts. The proposal is based on relating an end-user representation as a table and a machine model as a tree. The table-tree model introduces structural expressiveness and…

  7. A Model for Flexibly Editing CSCL Scripts

    ERIC Educational Resources Information Center

    Sobreira, Pericles; Tchounikine, Pierre

    2012-01-01

    This article presents a model whose primary concern and design rationale is to offer users (teachers) with basic ICT skills an intuitive, easy, and flexible way of editing scripts. The proposal is based on relating an end-user representation as a table and a machine model as a tree. The table-tree model introduces structural expressiveness and…

  8. Flexible Bayesian Human Fecundity Models.

    PubMed

    Kim, Sungduk; Sundaram, Rajeshwari; Buck Louis, Germaine M; Pyper, Cecilia

    2012-12-01

    Human fecundity is an issue of considerable interest for both epidemiological and clinical audiences, and is dependent upon a couple's biologic capacity for reproduction coupled with behaviors that place a couple at risk for pregnancy. Bayesian hierarchical models have been proposed to better model the conception probabilities by accounting for the acts of intercourse around the day of ovulation, i.e., during the fertile window. These models can be viewed in the framework of a generalized nonlinear model with an exponential link. However, a fixed choice of link function may not always provide the best fit, leading to potentially biased estimates for probability of conception. Motivated by this, we propose a general class of models for fecundity by relaxing the choice of the link function under the generalized nonlinear model framework. We use a sample from the Oxford Conception Study (OCS) to illustrate the utility and fit of this general class of models for estimating human conception. Our findings reinforce the need for attention to be paid to the choice of link function in modeling conception, as it may bias the estimation of conception probabilities. Various properties of the proposed models are examined and a Markov chain Monte Carlo sampling algorithm was developed for implementing the Bayesian computations. The deviance information criterion measure and logarithm of pseudo marginal likelihood are used for guiding the choice of links. The supplemental material section contains technical details of the proof of the theorem stated in the paper, and contains further simulation results and analysis.

  9. Practical model reduction for flexible structures

    NASA Technical Reports Server (NTRS)

    Mitchell, Jerrel R.; Irwin, R. Dennis; Huston, Genevieve A.

    1990-01-01

    The most accepted methods for developing models of flexible structures for the analysis, design and simulation of control systems are finite element methods and extraction from experimental data. Using either of these methods, models are often produced with modes that do not significantly add to the fidelity of the model. This paper presents techniques for eliminating these modes. Particular attention is paid to multiple-input, multiple-output systems. First, control system models developed for flexible structures, using finite element methods and experimental data, are briefly discussed. the shortcomings of using models with unnecessary and/or residual modes are delineated. Then, two techniques for reducing the order of models are presented; the first is applicable to single-input, single-output systems and the second for multiple-input, multiple-output systems. Finally, both are illustrated using model data from the proposed NASA Shuttle-C.

  10. Analytical and numerical modeling for flexible pipes

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Chen, Geng

    2011-12-01

    The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.

  11. Flexible and robust strategies for waste management in Sweden

    SciTech Connect

    Finnveden, Goeran Bjoerklund, Anna; Reich, Marcus Carlsson; Eriksson, Ola; Soerbom, Adrienne

    2007-07-01

    Treatment of solid waste continues to be on the political agenda. Waste disposal issues are often viewed from an environmental perspective, but economic and social aspects also need to be considered when deciding on waste strategies and policy instruments. The aim of this paper is to suggest flexible and robust strategies for waste management in Sweden, and to discuss different policy instruments. Emphasis is on environmental aspects, but social and economic aspects are also considered. The results show that most waste treatment methods have a role to play in a robust and flexible integrated waste management system, and that the waste hierarchy is valid as a rule of thumb from an environmental perspective. A review of social aspects shows that there is a general willingness among people to source separate wastes. A package of policy instruments can include landfill tax, an incineration tax which is differentiated with respect to the content of fossil fuels and a weight based incineration tax, as well as support to the use of biogas and recycled materials.

  12. Flexible robot control: Modeling and experiments

    NASA Technical Reports Server (NTRS)

    Oppenheim, Irving J.; Shimoyama, Isao

    1989-01-01

    Described here is a model and its use in experimental studies of flexible manipulators. The analytical model uses the equivalent of Rayleigh's method to approximate the displaced shape of a flexible link as the static elastic displacement which would occur under end rotations as applied at the joints. The generalized coordinates are thereby expressly compatible with joint motions and rotations in serial link manipulators, because the amplitude variables are simply the end rotations between the flexible link and the chord connecting the end points. The equations for the system dynamics are quite simple and can readily be formulated for the multi-link, three-dimensional case. When the flexible links possess mass and (polar moment of) inertia which are small compared to the concentrated mass and inertia at the joints, the analytical model is exact and displays the additional advantage of reduction in system dimension for the governing equations. Four series of pilot tests have been completed. Studies on a planar single-link system were conducted at Carnegie-Mellon University, and tests conducted at Toshiba Corporation on a planar two-link system were then incorporated into the study. A single link system under three-dimensional motion, displaying biaxial flexure, was then tested at Carnegie-Mellon.

  13. Modelling and Control of Flexible Airship

    NASA Astrophysics Data System (ADS)

    Bennaceur, S.; Abichou, A.; Azouz, N.

    2008-06-01

    Unmanned Aerial Vehicles (U.A.V.) have a need of a greater autonomy in their new missions. Autonomous U.A.V. flight control systems require a precise modeling of the dynamic behavior taking into account the effect of flexibility and the interaction with surrounding fluid. In this paper, we present an efficient modeling of the autonomous flexible blimps. These flying objects are assumed to undergo large rigid-body motion and small elastic deformations. The formalism used is based on the Newton-Euler approach. This one is frequently used for flying rigid objects. In this study we develop a method to generalize the existing Newton-Euler "rigid body" formalisms by including the effect of the flexibility without destroying the global methodology. The method is hybrid. It uses the Lagrange equations and the Eulerian variables. The flexibility appears in the global dynamical system by the way of few supplementary degrees of freedom. This method has the advantage of making easier the elaboration of algorithms of control, stabilization or generation of trajectories. The added mass phenomenon is also taken into account in the dynamical system. This phenomenon is important for big and light objects moving in a fluid such as airships. As validation we use the parameters of an AS-200 blimp belonging to the University of Evry.

  14. Vocal flexibility and prosodic strategies in a professional impersonator.

    PubMed

    Revis, Joana; De Looze, Céline; Giovanni, Antoine

    2013-07-01

    Voice imitation of a famous personality results in detection and reproduction of some vocal features, including spectral characteristics but also prosody, speech flow, or articulatory patterns. The objective of this study was to describe vocal flexibility in one of the best French impersonators and determine his strategies. Prospective study. We have downloaded the recording of a political speech by former French President Jacques Chirac, who we have chosen for his very specific and recognizable voice. After transcription, we asked one professional impersonator and four control subjects to do several readings in their natural voice and in a spontaneous imitation task (ie, without listening to any of Chirac's recording). To facilitate the control subject's task, we made an additional recording after having them listen to the target sample. Using Praat freeware, we have compared several prosodic measurements taken on each sample: pitch, pitch range, articulatory speed, duration of pauses, and number of pauses. Results showed significant modifications in the participant's prosody and significant differences in the strategies used by the professional impersonator and the control group. The professional impersonator's imitation strategy lies in the reproduction of global characteristics and instant alignment of prosodic variations. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  15. Modeling flexible flapping wings oscillating at resonance

    NASA Astrophysics Data System (ADS)

    Alexeev, Alexander; Masoud, Hassan

    2010-03-01

    Using a hybrid approach for fluid-structure interactions that integrates the lattice Boltzmann and lattice spring models, we study the three-dimensional aerodynamics of flexible flapping wings at hovering. The wings are a pair of flat elastic plates tilted from the horizontal and driven to oscillate according to the sinusoidal law. Our simulations reveal that resonance oscillations of flexible wings dramatically increase aerodynamic lift at low Reynolds number. Comparing to otherwise identical rigid wings, flexible wings at resonance generate up to two orders of magnitude greater lift. Within the resonance band, we identify two operation regimes leading to the maximum lift and the maximum efficiency, respectively. The maximum lift occurs when the wing tip and root move with a phase lag of 90 degrees, whereas the maximum efficiency occurs at the frequency where the wing tip and root oscillate in counterphase. Our results suggest that the resonance regimes would be optimal for the design of microscale flying machines using flexible flapping wings driven by simple kinematic strokes.

  16. Emulating a flexible space structure: Modeling

    NASA Technical Reports Server (NTRS)

    Waites, H. B.; Rice, S. C.; Jones, V. L.

    1988-01-01

    Control Dynamics, in conjunction with Marshall Space Flight Center, has participated in the modeling and testing of Flexible Space Structures. Through the series of configurations tested and the many techniques used for collecting, analyzing, and modeling the data, many valuable insights have been gained and important lessons learned. This paper discusses the background of the Large Space Structure program, Control Dynamics' involvement in testing and modeling of the configurations (especially the Active Control Technique Evaluation for Spacecraft (ACES) configuration), the results from these two processes, and insights gained from this work.

  17. Modeling and Control of Intelligent Flexible Structures

    DTIC Science & Technology

    1994-03-26

    Figure 5 illustrates a comparison between the analytical model obtained from Figure 4 and "" i t " • a . aw SFigure 5 Mtperinenta (solid fine) and...was used for position comol of the m ua various S a frame that models the dynanics of a solr arry.The msiga operations (summada., subractio. etc...34 and -180" for all positive aw , which is equivalent to I lax- lpxrx5Ex 0 for all o) > 0. (19) EXPERIMENTAL TESTBED FLEXIBLE ANTENNA MODEL The convex

  18. Experimental validation of flexible robot arm modeling and control

    NASA Technical Reports Server (NTRS)

    Ulsoy, A. Galip

    1989-01-01

    Flexibility is important for high speed, high precision operation of lightweight manipulators. Accurate dynamic modeling of flexible robot arms is needed. Previous work has mostly been based on linear elasticity with prescribed rigid body motions (i.e., no effect of flexible motion on rigid body motion). Little or no experimental validation of dynamic models for flexible arms is available. Experimental results are also limited for flexible arm control. Researchers include the effects of prismatic as well as revolute joints. They investigate the effect of full coupling between the rigid and flexible motions, and of axial shortening, and consider the control of flexible arms using only additional sensors.

  19. Branch strategies - Modeling and optimization

    NASA Technical Reports Server (NTRS)

    Dubey, Pradeep K.; Flynn, Michael J.

    1991-01-01

    The authors provide a common platform for modeling different schemes for reducing the branch-delay penalty in pipelined processors as well as evaluating the associated increased instruction bandwidth. Their objective is twofold: to develop a model for different approaches to the branch problem and to help select an optimal strategy after taking into account additional i-traffic generated by branch strategies. The model presented provides a flexible tool for comparing different branch strategies in terms of the reduction it offers in average branch delay and also in terms of the associated cost of wasted instruction fetches. This additional criterion turns out to be a valuable consideration in choosing between two strategies that perform almost equally. More importantly, it provides a better insight into the expected overall system performance. Simple compiler-support-based low-implementation-cost strategies can be very effective under certain conditions. An active branch prediction scheme based on loop buffers can be as competitive as a branch-target-buffer based strategy.

  20. Flexibility.

    ERIC Educational Resources Information Center

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  1. Flexibility.

    ERIC Educational Resources Information Center

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  2. Incident Duration Modeling Using Flexible Parametric Hazard-Based Models

    PubMed Central

    2014-01-01

    Assessing and prioritizing the duration time and effects of traffic incidents on major roads present significant challenges for road network managers. This study examines the effect of numerous factors associated with various types of incidents on their duration and proposes an incident duration prediction model. Several parametric accelerated failure time hazard-based models were examined, including Weibull, log-logistic, log-normal, and generalized gamma, as well as all models with gamma heterogeneity and flexible parametric hazard-based models with freedom ranging from one to ten, by analyzing a traffic incident dataset obtained from the Incident Reporting and Dispatching System in Beijing in 2008. Results show that different factors significantly affect different incident time phases, whose best distributions were diverse. Given the best hazard-based models of each incident time phase, the prediction result can be reasonable for most incidents. The results of this study can aid traffic incident management agencies not only in implementing strategies that would reduce incident duration, and thus reduce congestion, secondary incidents, and the associated human and economic losses, but also in effectively predicting incident duration time. PMID:25530753

  3. Flexible Learning Strategies in First through Fourth-Year Courses

    ERIC Educational Resources Information Center

    Cassidy, Alice; Fu, Guopeng; Valley, Will; Lomas, Cyprien; Jovel, Eduardo; Riseman, Andrew

    2016-01-01

    Flexible Learning (FL) is a pedagogical approach allowing for flexibility of time, place, and audience, including but not solely focused on the use of technologies. We describe Flexible Learning as a pedagogical approach in four courses framed by three key themes: 1) objectives and aspects of course design, 2) evaluation and assessment, and 3)…

  4. Bayesian modeling of flexible cognitive control

    PubMed Central

    Jiang, Jiefeng; Heller, Katherine; Egner, Tobias

    2014-01-01

    “Cognitive control” describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation. PMID:24929218

  5. Bayesian modeling of flexible cognitive control.

    PubMed

    Jiang, Jiefeng; Heller, Katherine; Egner, Tobias

    2014-10-01

    "Cognitive control" describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Flexible digestion strategies and trace metal assimilation in marine bivalves

    USGS Publications Warehouse

    Decho, Alan W.; Luoma, Samuel N.

    1996-01-01

    Pulse-chase experiments show that two marine bivalves take optimal advantage of different types of particulate food by varying food retention time in a flexible two-phase digestive system. For example, carbon is efficiently assimilated from bacteria by subjecting nearly all the ingested bacteria to prolonged digestion. Prolonging digestion also enhances assimilation of metals, many of which are toxic in minute quantities if they are biologically available. Detritus-feeding aquatic organisms have always lived in environments naturally rich in particle-reactive metals. We suggest that avoiding excess assimilation of metals could be a factor in the evolution of digestion strategies. We tested that suggestion by studying digestion of particles containing different Cr concentrations. We show that bivalves are capable of modifying the digestive processing of food to reduce exposure to high, biologically available, Cr concentrations. The evolution of a mechanism in some species to avoid high concentrations of metals in food could influence how effects of modern metal pollution are manifested in marine ecosystems.

  7. Modeling Robot Flexibility for Endpoint Force Control.

    DTIC Science & Technology

    1988-05-01

    SIDM 19. KE9Y WORDS fCntknu. OnPVOO&O 0401 It 00041000111O ed 0000#uF 6P 1111411 amA.w) robot force control * robot control / robot dynamics flexible...no. 3, pp. 62-75. [2] Eppinger, S.D. and Seering, W.P. On Dynamic Models of Robot Force Control . In Proceedings of International Conference on...W.P. Understanding Bandwidth Limitations in Robot Force Control . In Proceedings of International Conference on Robotics and Automation. IEEE, April 1987

  8. Model reduction results for flexible space structures

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Mostarshedi, Masoud

    1993-01-01

    This paper describes the novel subsystem balancing technique for obtaining reduced-order models of flexible structures, and investigates its properties fully. This method can be regarded as a combination of the best features of modal truncation (efficiency) and internal balancing (accuracy); it is particularly well suited to the typical practical case of structures which possess clusters of close modes. Numerical results are then presented demonstrating the results obtained by applying subsystem balancing to the Air Force Phillips Laboratory ASTREX testbed, the Jet Propulsion Laboratory antenna facility, and the NASA Marshall Space Flight Center ACES structure.

  9. The Economic Merits of Flexible Carbon Capture and Sequestration as a Compliance Strategy with the Clean Power Plan.

    PubMed

    Craig, Michael T; Jaramillo, Paulina; Zhai, Haibo; Klima, Kelly

    2017-02-07

    Carbon capture and sequestration (CCS) may be a key technology for achieving large CO2 emission reductions. Relative to "normal" CCS, "flexible" CCS retrofits include solvent storage that allows the generator to temporarily reduce the CCS parasitic load and increase the generator's net efficiency, capacity, and ramp rate. Due to this flexibility, flexible CCS generators provide system benefits that normal CCS generators do not, which could make flexible CCS an economic CO2 emission reduction strategy. Here, we estimate the system-level cost effectiveness of reducing CO2 emissions with flexible CCS compared to redispatching (i.e., substituting gas- for coal-fired electricity generation), wind, and normal CCS under the Clean Power Plan (CPP) and a hypothetical more stringent CO2 emission reduction target ("stronger CPP"). Using a unit commitment and economic dispatch model, we find flexible CCS achieves more cost-effective emission reductions than normal CCS under both reduction targets, indicating that policies that promote CCS should encourage flexible CCS. However, flexible CCS is less cost effective than wind under both reduction targets and less and more cost effective than redispatching under the CPP and stronger CPP, respectively. Thus, CCS will likely be a minor CPP compliance strategy but may play a larger role under a stronger emission reduction target.

  10. Robustness, flexibility, and sensitivity in a multifunctional motor control model.

    PubMed

    Lyttle, David N; Gill, Jeffrey P; Shaw, Kendrick M; Thomas, Peter J; Chiel, Hillel J

    2017-02-01

    Motor systems must adapt to perturbations and changing conditions both within and outside the body. We refer to the ability of a system to maintain performance despite perturbations as "robustness," and the ability of a system to deploy alternative strategies that improve fitness as "flexibility." Different classes of pattern-generating circuits yield dynamics with differential sensitivities to perturbations and parameter variation. Depending on the task and the type of perturbation, high sensitivity can either facilitate or hinder robustness and flexibility. Here we explore the role of multiple coexisting oscillatory modes and sensory feedback in allowing multiphasic motor pattern generation to be both robust and flexible. As a concrete example, we focus on a nominal neuromechanical model of triphasic motor patterns in the feeding apparatus of the marine mollusk Aplysia californica. We find that the model can operate within two distinct oscillatory modes and that the system exhibits bistability between the two. In the "heteroclinic mode," higher sensitivity makes the system more robust to changing mechanical loads, but less robust to internal parameter variations. In the "limit cycle mode," lower sensitivity makes the system more robust to changes in internal parameter values, but less robust to changes in mechanical load. Finally, we show that overall performance on a variable feeding task is improved when the system can flexibly transition between oscillatory modes in response to the changing demands of the task. Thus, our results suggest that the interplay of sensory feedback and multiple oscillatory modes can allow motor systems to be both robust and flexible in a variable environment.

  11. Dynamics modeling and adaptive control of flexible manipulators

    NASA Technical Reports Server (NTRS)

    Sasiadek, J. Z.

    1991-01-01

    An application of Model Reference Adaptive Control (MRAC) to the position and force control of flexible manipulators and robots is presented. A single-link flexible manipulator is analyzed. The problem was to develop a mathematical model of a flexible robot that is accurate. The objective is to show that the adaptive control works better than 'conventional' systems and is suitable for flexible structure control.

  12. Dynamics modeling and simulation of flexible airships

    NASA Astrophysics Data System (ADS)

    Li, Yuwen

    The resurgence of airships has created a need for dynamics models and simulation capabilities of these lighter-than-air vehicles. The focus of this thesis is a theoretical framework that integrates the flight dynamics, structural dynamics, aerostatics and aerodynamics of flexible airships. The study begins with a dynamics model based on a rigid-body assumption. A comprehensive computation of aerodynamic effects is presented, where the aerodynamic forces and moments are categorized into various terms based on different physical effects. A series of prediction approaches for different aerodynamic effects are unified and applied to airships. The numerical results of aerodynamic derivatives and the simulated responses to control surface deflection inputs are verified by comparing to existing wind-tunnel and flight test data. With the validated aerodynamics and rigid-body modeling, the equations of motion of an elastic airship are derived by the Lagrangian formulation. The airship is modeled as a free-free Euler-Bernoulli beam and the bending deformations are represented by shape functions chosen as the free-free normal modes. In order to capture the coupling between the aerodynamic forces and the structural elasticity, local velocity on the deformed vehicle is used in the computation of aerodynamic forces. Finally, with the inertial, gravity, aerostatic and control forces incorporated, the dynamics model of a flexible airship is represented by a single set of nonlinear ordinary differential equations. The proposed model is implemented as a dynamics simulation program to analyze the dynamics characteristics of the Skyship-500 airship. Simulation results are presented to demonstrate the influence of structural deformation on the aerodynamic forces and the dynamics behavior of the airship. The nonlinear equations of motion are linearized numerically for the purpose of frequency domain analysis and for aeroelastic stability analysis. The results from the latter for the

  13. Evidence for the flexible sensorimotor strategies predicted by optimal feedback control.

    PubMed

    Liu, Dan; Todorov, Emanuel

    2007-08-29

    Everyday movements pursue diverse and often conflicting mixtures of task goals, requiring sensorimotor strategies customized for the task at hand. Such customization is mostly ignored by traditional theories emphasizing movement geometry and servo control. In contrast, the relationship between the task and the strategy most suitable for accomplishing it lies at the core of our optimal feedback control theory of coordination. Here, we show that the predicted sensitivity to task goals affords natural explanations to a number of novel psychophysical findings. Our point of departure is the little-known fact that corrections for target perturbations introduced late in a reaching movement are incomplete. We show that this is not simply attributable to lack of time, in contradiction with alternative models and, somewhat paradoxically, in agreement with our model. Analysis of optimal feedback gains reveals that the effect is partly attributable to a previously unknown trade-off between stability and accuracy. This yields a testable prediction: if stability requirements are decreased, then accuracy should increase. We confirm the prediction experimentally in three-dimensional obstacle avoidance and interception tasks in which subjects hit a robotic target with programmable impedance. In additional agreement with the theory, we find that subjects do not rely on rigid control strategies but instead exploit every opportunity for increased performance. The modeling methodology needed to capture this extra flexibility is more general than the linear-quadratic methods we used previously. The results suggest that the remarkable flexibility of motor behavior arises from sensorimotor control laws optimized for composite cost functions.

  14. Modeling and control of flexible structures

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Mingori, D. L.

    1988-01-01

    This monograph presents integrated modeling and controller design methods for flexible structures. The controllers, or compensators, developed are optimal in the linear-quadratic-Gaussian sense. The performance objectives, sensor and actuator locations and external disturbances influence both the construction of the model and the design of the finite dimensional compensator. The modeling and controller design procedures are carried out in parallel to ensure compatibility of these two aspects of the design problem. Model reduction techniques are introduced to keep both the model order and the controller order as small as possible. A linear distributed, or infinite dimensional, model is the theoretical basis for most of the text, but finite dimensional models arising from both lumped-mass and finite element approximations also play an important role. A central purpose of the approach here is to approximate an optimal infinite dimensional controller with an implementable finite dimensional compensator. Both convergence theory and numerical approximation methods are given. Simple examples are used to illustrate the theory.

  15. Flexible regression models over river networks

    PubMed Central

    O’Donnell, David; Rushworth, Alastair; Bowman, Adrian W; Marian Scott, E; Hallard, Mark

    2014-01-01

    Many statistical models are available for spatial data but the vast majority of these assume that spatial separation can be measured by Euclidean distance. Data which are collected over river networks constitute a notable and commonly occurring exception, where distance must be measured along complex paths and, in addition, account must be taken of the relative flows of water into and out of confluences. Suitable models for this type of data have been constructed based on covariance functions. The aim of the paper is to place the focus on underlying spatial trends by adopting a regression formulation and using methods which allow smooth but flexible patterns. Specifically, kernel methods and penalized splines are investigated, with the latter proving more suitable from both computational and modelling perspectives. In addition to their use in a purely spatial setting, penalized splines also offer a convenient route to the construction of spatiotemporal models, where data are available over time as well as over space. Models which include main effects and spatiotemporal interactions, as well as seasonal terms and interactions, are constructed for data on nitrate pollution in the River Tweed. The results give valuable insight into the changes in water quality in both space and time. PMID:25653460

  16. Flexible Programmes in Higher Professional Education: Expert Validation of a Flexible Educational Model

    ERIC Educational Resources Information Center

    Schellekens, Ad; Paas, Fred; Verbraeck, Alexander; van Merrienboer, Jeroen J. G.

    2010-01-01

    In a preceding case study, a process-focused demand-driven approach for organising flexible educational programmes in higher professional education (HPE) was developed. Operations management and instructional design contributed to designing a flexible educational model by means of discrete-event simulation. Educational experts validated the model…

  17. Flexible Programmes in Higher Professional Education: Expert Validation of a Flexible Educational Model

    ERIC Educational Resources Information Center

    Schellekens, Ad; Paas, Fred; Verbraeck, Alexander; van Merrienboer, Jeroen J. G.

    2010-01-01

    In a preceding case study, a process-focused demand-driven approach for organising flexible educational programmes in higher professional education (HPE) was developed. Operations management and instructional design contributed to designing a flexible educational model by means of discrete-event simulation. Educational experts validated the model…

  18. Designing Capital-Intensive Systems with Architectural and Operational Flexibility Using a Screening Model

    NASA Astrophysics Data System (ADS)

    Lin, Jijun; de Weck, Olivier; de Neufville, Richard; Robinson, Bob; MacGowan, David

    Development of capital intensive systems, such as offshore oil platforms or other industrial infrastructure, generally requires a significant amount of capital investment under various resource, technical, and market uncertainties. It is a very challenging task for development co-owners or joint ventures because important decisions, such as system architectures, have to be made while uncertainty remains high. This paper develops a screening model and a simulation framework to quickly explore the design space for complex engineering systems under uncertainty allowing promising strategies or architectures to be identified. Flexibility in systems’ design and operation is proposed as a proactive means to enable systems to adapt to future uncertainty. Architectural and operational flexibility can improve systems’ lifecycle value by mitigating downside risks and capturing upside opportunities. In order to effectively explore different flexible strategies addressing a view of uncertainty which changes with time, a computational framework based on Monte Carlo simulation is proposed in this paper. This framework is applied to study flexible development strategies for a representative offshore petroleum project. The complexity of this problem comes from multi-domain uncertainties, large architectural design space, and structure of flexibility decision rules. The results demonstrate that architectural and operational flexibility can significantly improve projects’ Expected Net Present Value (ENPV), reduce downside risks, and improve upside gains, compared to adopting an inflexible strategy appropriate to the view of uncertainty at the start of the project. In this particular case study, the most flexible strategy improves ENPV by 85% over an inflexible base case.

  19. Flexible Strategies for Coping with Rainfall Variability: Seasonal Adjustments in Cropped Area in the Ganges Basin

    PubMed Central

    Siderius, Christian; Biemans, Hester; van Walsum, Paul E. V.; van Ierland, Ekko C.; Kabat, Pavel; Hellegers, Petra J. G. J.

    2016-01-01

    One of the main manifestations of climate change will be increased rainfall variability. How to deal with this in agriculture will be a major societal challenge. In this paper we explore flexibility in land use, through deliberate seasonal adjustments in cropped area, as a specific strategy for coping with rainfall variability. Such adjustments are not incorporated in hydro-meteorological crop models commonly used for food security analyses. Our paper contributes to the literature by making a comprehensive model assessment of inter-annual variability in crop production, including both variations in crop yield and cropped area. The Ganges basin is used as a case study. First, we assessed the contribution of cropped area variability to overall variability in rice and wheat production by applying hierarchical partitioning on time-series of agricultural statistics. We then introduced cropped area as an endogenous decision variable in a hydro-economic optimization model (WaterWise), coupled to a hydrology-vegetation model (LPJmL), and analyzed to what extent its performance in the estimation of inter-annual variability in crop production improved. From the statistics, we found that in the period 1999–2009 seasonal adjustment in cropped area can explain almost 50% of variability in wheat production and 40% of variability in rice production in the Indian part of the Ganges basin. Our improved model was well capable of mimicking existing variability at different spatial aggregation levels, especially for wheat. The value of flexibility, i.e. the foregone costs of choosing not to crop in years when water is scarce, was quantified at 4% of gross margin of wheat in the Indian part of the Ganges basin and as high as 34% of gross margin of wheat in the drought-prone state of Rajasthan. We argue that flexibility in land use is an important coping strategy to rainfall variability in water stressed regions. PMID:26934389

  20. Dynamic model of flexible phytoplankton nutrient uptake

    PubMed Central

    Bonachela, Juan A.; Raghib, Michael; Levin, Simon A.

    2011-01-01

    The metabolic machinery of marine microbes can be remarkably plastic, allowing organisms to persist under extreme nutrient limitation. With some exceptions, most theoretical approaches to nutrient uptake in phytoplankton are largely dominated by the classic Michaelis–Menten (MM) uptake functional form, whose constant parameters cannot account for the observed plasticity in the uptake apparatus. Following seminal ideas by earlier researchers, we propose a simple cell-level model based on a dynamic view of the uptake process whereby the cell can regulate the synthesis of uptake proteins in response to changes in both internal and external nutrient concentrations. In our flexible approach, the maximum uptake rate and nutrient affinity increase monotonically as the external nutrient concentration decreases. For low to medium nutrient availability, our model predicts uptake and growth rates larger than the classic MM counterparts, while matching the classic MM results for large nutrient concentrations. These results have important consequences for global coupled models of ocean circulation and biogeochemistry, which lack this regulatory mechanism and are thus likely to underestimate phytoplankton abundances and growth rates in oligotrophic regions of the ocean. PMID:22143781

  1. Flexibility as a Strategy in Nucleoside Antiviral Drug Design.

    PubMed

    Peters, H L; Ku, T C; Seley-Radtke, K L

    2015-01-01

    As far back as Melville Wolfrom's acyclic sugar synthesis in the 1960's, synthesis of flexible nucleoside analogues have been an area of interest. This concept, however, went against years of enzyme-substrate binding theory. Hence, acyclic methodology in antiviral drug design did not take off until the discovery and subsequent FDA approval of such analogues as Acyclovir and Tenofovir. More recently, the observation that flexible nucleosides could overcome drug resistance spawned a renewed interest in the field of nucleoside drug design. The next generation of flexible nucleosides shifted the focus from the sugar moiety to the nucleobase. With analogues such as Seley-Radtke "fleximers", and Herdewijn's C5 substituted 2'-deoxyuridines, the area of base flexibility has seen great expansion. More recently, the marriage of these methodologies with acyclic sugars has resulted in a series of acyclic flex-base nucleosides with a wide range of antiviral properties, including some of the first to exhibit anti-coronavirus activity. Various flexible nucleosides and their corresponding nucleobases will be compared in this review.

  2. Modelling the Shuttle Remote Manipulator System: Another flexible model

    NASA Technical Reports Server (NTRS)

    Barhorst, Alan A.

    1993-01-01

    High fidelity elastic system modeling algorithms are discussed. The particular system studied is the Space Shuttle Remote Manipulator System (RMS) undergoing full articulated motion. The model incorporates flexibility via a methodology the author has been developing. The technique is based in variational principles, so rigorous boundary condition generation and weak formulations for the associated partial differential equations are realized, yet the analyst need not integrate by parts. The methodology is formulated using vector-dyad notation with minimal use of tensor notation, therefore the technique is believed to be affable to practicing engineers. The objectives of this work are as follows: (1) determine the efficacy of the modeling method; and (2) determine if the method affords an analyst advantages in the overall modeling and simulation task. Generated out of necessity were Mathematica algorithms that quasi-automate the modeling procedure and simulation development. The project was divided into sections as follows: (1) model development of a simplified manipulator; (2) model development of the full-freedom RMS including a flexible movable base on a six degree of freedom orbiter (a rigid-body is attached to the manipulator end-effector); (3) simulation development for item 2; and (4) comparison to the currently used model of the flexible RMS in the Structures and Mechanics Division of NASA JSC. At the time of the writing of this report, items 3 and 4 above were not complete.

  3. Living in the Global Village: Strategies for Teaching Mental Flexibility

    ERIC Educational Resources Information Center

    McNulty, Carol P.; Davies, MaryAnn; Maddoux, Mary

    2010-01-01

    Mental flexibility emerges as an essential skill for preparing young learners for global competency and denotes the ability to learn from and about different perspectives. Students who are regularly exposed to "alternative approaches to a wide range of scientific, social and everyday problems" appear to be more receptive to alternative solutions…

  4. Eye Movements Reveal Components of Flexible Reading Strategies.

    ERIC Educational Resources Information Center

    Shebilske, Wayne L.; Fisher, Dennis F.

    The eye movements of two college graduates were monitored in a study of flexible reading, which is defined as the ability to adjust one's rate and approach to reading according to the purpose of reading, the difficulty of the material, and one's knowledge of the subject matter. The subjects were told to read an excerpt from a tenth grade biology…

  5. Flexible Learning Strategies in Higher and Further Education.

    ERIC Educational Resources Information Center

    Thomas, Diana, Ed.

    This book contains 15 papers written by contributors from all areas of Great Britain in further and higher education. The following papers are included: "Learning to Be Flexible" (Diana Thomas); "Managing Change: Towards a New Paradigm?" (Mac Stephenson, Timothy Lehmann); "Open Learning: Educational Opportunity or…

  6. A reliable and flexible gene manipulation strategy in posthatch zebra finch brain

    PubMed Central

    Ahmadiantehrani, Somayeh; London, Sarah E.

    2017-01-01

    Songbird models meaningfully contribute to many fields including learned vocal communication, the neurobiology of social interactions, brain development, and ecology. The value of investigating gene-brain-behavior relationships in songbirds is therefore high. Viral infections typically used in other lab animals to deliver gene editing constructs have been less effective in songbirds, likely due to immune system properties. We therefore leveraged the in vivo electroporation strategy used in utero in rodents and in ovo in poultry, and apply it to posthatch zebra finch songbird chicks. We present a series of experiments with a combination of promoters, fluorescent protein genes, and piggyBac transposase vectors to demonstrate that this can be a reliable, efficient, and flexible strategy for genome manipulation. We discuss options for gene delivery experiments to test circuit and behavioral hypotheses using a variety of manipulations, including gene overexpression, CRISPR/Cas9 gene editing, inducible technologies, optogenetic or DREADD cellular control, and cell type-specific expression. PMID:28233828

  7. Improving Educational Access of Vulnerable Children in High HIV Prevalence Communities of Malawi: The Potential of Open and Flexible Learning Strategies

    ERIC Educational Resources Information Center

    Jere, Catherine M.

    2012-01-01

    Many children in Malawi have poor access to learning and are at risk of exclusion and early dropout. In the context of HIV/AIDS, formal schools need to become more flexible and responsive to children's lives. Introducing an educational model that integrates open and flexible learning strategies with conventional schooling, this paper highlights…

  8. Modelling Teaching Strategies.

    ERIC Educational Resources Information Center

    Major, Nigel

    1995-01-01

    Describes a modelling language for representing teaching strategies, based in the context of the COCA intelligent tutoring system. Examines work on meta-reasoning in knowledge-based systems and describes COCA's architecture, giving details of the language used for representing teaching knowledge. Discusses implications for future work. (AEF)

  9. Computational strategies in the dynamic simulation of constrained flexible MBS

    NASA Technical Reports Server (NTRS)

    Amirouche, F. M. L.; Xie, M.

    1993-01-01

    This research focuses on the computational dynamics of flexible constrained multibody systems. At first a recursive mapping formulation of the kinematical expressions in a minimum dimension as well as the matrix representation of the equations of motion are presented. The method employs Kane's equation, FEM, and concepts of continuum mechanics. The generalized active forces are extended to include the effects of high temperature conditions, such as creep, thermal stress, and elastic-plastic deformation. The time variant constraint relations for rolling/contact conditions between two flexible bodies are also studied. The constraints for validation of MBS simulation of gear meshing contact using a modified Timoshenko beam theory are also presented. The last part deals with minimization of vibration/deformation of the elastic beam in multibody systems making use of time variant boundary conditions. The above methodologies and computational procedures developed are being implemented in a program called DYAMUS.

  10. Flexibility First, Then Standardize: A Strategy for Growing Inter-Departmental Systems.

    PubMed

    á Torkilsheyggi, Arnvør

    2015-01-01

    Any attempt to use IT to standardize work practices faces the challenge of finding a balance between standardization and flexibility. In implementing electronic whiteboards with the goal of standardizing inter-departmental practices, a hospital in Denmark chose to follow the strategy of "flexibility first, then standardization." To improve the local grounding of the system, they first focused on flexibility by configuring the whiteboards to support intra-departmental practices. Subsequently, they focused on standardization by using the white-boards to negotiate standardization of inter-departmental practices. This paper investigates the chosen strategy and finds: that super users on many wards managed to configure the whiteboard to support intra-departmental practices; that initiatives to standardize inter-departmental practices improved coordination of certain processes; and that the chosen strategy posed a challenge for finding the right time and manner to shift the balance from flexibility to standardization.

  11. Modeling procedures for handling qualities evaluation of flexible aircraft

    NASA Technical Reports Server (NTRS)

    Govindaraj, K. S.; Eulrich, B. J.; Chalk, C. R.

    1981-01-01

    This paper presents simplified modeling procedures to evaluate the impact of flexible modes and the unsteady aerodynamic effects on the handling qualities of Supersonic Cruise Aircraft (SCR). The modeling procedures involve obtaining reduced order transfer function models of SCR vehicles, including the important flexible mode responses and unsteady aerodynamic effects, and conversion of the transfer function models to time domain equations for use in simulations. The use of the modeling procedures is illustrated by a simple example.

  12. Modeling procedures for handling qualities evaluation of flexible aircraft

    NASA Technical Reports Server (NTRS)

    Govindaraj, K. S.; Eulrich, B. J.; Chalk, C. R.

    1981-01-01

    This paper presents simplified modeling procedures to evaluate the impact of flexible modes and the unsteady aerodynamic effects on the handling qualities of Supersonic Cruise Aircraft (SCR). The modeling procedures involve obtaining reduced order transfer function models of SCR vehicles, including the important flexible mode responses and unsteady aerodynamic effects, and conversion of the transfer function models to time domain equations for use in simulations. The use of the modeling procedures is illustrated by a simple example.

  13. Flexibility as an implementation strategy for a daily dialysis program.

    PubMed

    Piccoli, Giorgina Barbara; Mezza, Elisabetta; Quaglia, Marco; Bermond, Francesca; Bechis, Francesca; Burdese, Manuel; Gai, Massimo; Pacitti, Alfonso; Jeantet, Alberto; Segoloni, Giuseppe Paolo; Piccoli, Giuseppe

    2003-01-01

    Daily hemodialysis (DHD) is an interesting dialysis option, experienced worldwide by only a few hundred patients, because of clinical and logistic limitations. This study describes the main clinical and implementation results of a flexible policy applied in starting a DHD program. The setting is the University Nephrology Center of Turin, Italy (approximately 150 hemodialysis and 50 peritoneal dialysis (PD) patients) where in November 1998 a short daily DHD program was started. Outcome measures were logistical (enrollment rate, indications and drop-outs) and clinical (dialysis efficiency, metabolic control, hypertension and anemia control). 25 patients experienced DHD, 16 (11% of the hemodialysis pool) were on DHD in November 2001; overall the DHD follow-up was 409.1 months (median 18, range 0.7-36 months). Flexibility was applied to schedules (patients modulated dialysis time and could switch to 3-4 sessions/wk); treatment setting (home: 11 patients, limited care center: 13; alternate settings: one); clinical selection (23/25 patients with comorbidity). Main reasons for choice were poor tolerance of previous schedule and the search for "best" treatment. Five patients dropped out (work reasons), one died on DHD and three were grafted. As compared to baseline, dialysis efficiency increased (EKRc pre-DHD 14.5 +/- 2.1 mL/min; 17.4 +/- 2.8 mL/min and 17.7 +/- 3.5 mL/min at 1-6 months; p<0.000). Despite the potentially confusing effect of comorbidity, the main clinical data improved. A flexible approach allowed development of DHD in approximately 11% of hemodialysis patients, with promising clinical results, despite frequent comorbidity.

  14. Model reference, sliding mode adaptive control for flexible structures

    NASA Technical Reports Server (NTRS)

    Yurkovich, S.; Ozguner, U.; Al-Abbass, F.

    1988-01-01

    A decentralized model reference adaptive approach using a variable-structure sliding model control has been developed for the vibration suppression of large flexible structures. Local models are derived based upon the desired damping and response time in a model-following scheme, and variable structure controllers are then designed which employ colocated angular rate and position feedback. Numerical simulations have been performed using NASA's flexible grid experimental apparatus.

  15. Linearized flexibility models in multibody dynamics and control

    NASA Technical Reports Server (NTRS)

    Cimino, William W.

    1989-01-01

    Simulation of structural response of multi-flexible-body systems by linearized flexible motion combined with nonlinear rigid motion is discussed. Advantages and applicability of such an approach for accurate simulation with greatly reduced computational costs and turnaround times are described, restricting attention to the control design environment. Requirements for updating the linearized flexibility model to track large angular motions are discussed. Validation of such an approach by comparison with other existing codes is included. Application to a flexible robot manipulator system is described.

  16. A Model for Effective Implementation of Flexible Programme Delivery

    ERIC Educational Resources Information Center

    Normand, Carey; Littlejohn, Allison; Falconer, Isobel

    2008-01-01

    The model developed here is the outcome of a project funded by the Quality Assurance Agency Scotland to support implementation of flexible programme delivery (FPD) in post-compulsory education. We highlight key features of FPD, including explicit and implicit assumptions about why flexibility is needed and the perceived barriers and solutions to…

  17. A Model for Effective Implementation of Flexible Programme Delivery

    ERIC Educational Resources Information Center

    Normand, Carey; Littlejohn, Allison; Falconer, Isobel

    2008-01-01

    The model developed here is the outcome of a project funded by the Quality Assurance Agency Scotland to support implementation of flexible programme delivery (FPD) in post-compulsory education. We highlight key features of FPD, including explicit and implicit assumptions about why flexibility is needed and the perceived barriers and solutions to…

  18. Model Order Reduction of Aeroservoelastic Model of Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Wang, Yi; Song, Hongjun; Pant, Kapil; Brenner, Martin J.; Suh, Peter

    2016-01-01

    This paper presents a holistic model order reduction (MOR) methodology and framework that integrates key technological elements of sequential model reduction, consistent model representation, and model interpolation for constructing high-quality linear parameter-varying (LPV) aeroservoelastic (ASE) reduced order models (ROMs) of flexible aircraft. The sequential MOR encapsulates a suite of reduction techniques, such as truncation and residualization, modal reduction, and balanced realization and truncation to achieve optimal ROMs at grid points across the flight envelope. The consistence in state representation among local ROMs is obtained by the novel method of common subspace reprojection. Model interpolation is then exploited to stitch ROMs at grid points to build a global LPV ASE ROM feasible to arbitrary flight condition. The MOR method is applied to the X-56A MUTT vehicle with flexible wing being tested at NASA/AFRC for flutter suppression and gust load alleviation. Our studies demonstrated that relative to the fullorder model, our X-56A ROM can accurately and reliably capture vehicles dynamics at various flight conditions in the target frequency regime while the number of states in ROM can be reduced by 10X (from 180 to 19), and hence, holds great promise for robust ASE controller synthesis and novel vehicle design.

  19. Flexible strategies for sensory integration during motor planning.

    PubMed

    Sober, Samuel J; Sabes, Philip N

    2005-04-01

    When planning target-directed reaching movements, human subjects combine visual and proprioceptive feedback to form two estimates of the arm's position: one to plan the reach direction, and another to convert that direction into a motor command. These position estimates are based on the same sensory signals but rely on different combinations of visual and proprioceptive input, suggesting that the brain weights sensory inputs differently depending on the computation being performed. Here we show that the relative weighting of vision and proprioception depends both on the sensory modality of the target and on the information content of the visual feedback, and that these factors affect the two stages of planning independently. The observed diversity of weightings demonstrates the flexibility of sensory integration and suggests a unifying principle by which the brain chooses sensory inputs so as to minimize errors arising from the transformation of sensory signals between coordinate frames.

  20. The emergence of flexible spatial strategies in young children.

    PubMed

    Waismeyer, Anna S; Jacobs, Lucia F

    2013-02-01

    The development of spatial navigation in children depends not only on remembering which landmarks lead to a goal location but also on developing strategies to deal with changes in the environment or imperfections in memory. Using cue combination methods, the authors examined 3- and 4-year-old children's memory for different types of spatial cues and the spatial strategies that they use when those cues are in conflict. Children were taught to search for a toy in 1 of 4 possible hiding locations. Children were then tested on transformations of the array of locations. The transformations dissociated the different types of cues by putting them in conflict with one another. The authors were especially interested in the use of a majority strategy, by which children choose to search in the location indicated by the greatest number of cue types rather than relying on a preferred cue type. Children's memory for spatial cues and their strategies varied both by age and by experimental setup. In Experiment 1, both 3- and 4-year-old children preferred to use the distinct landmarks coincident with the hiding locations over any other types of cues and showed no use of a majority strategy. However, in Experiment 2, when the coincident landmarks were moved adjacent to the hiding locations, both 3- and 4-year-old children preferred to search in the position of the hiding location relative to the array. Furthermore, 4-year-old children in Experiment 2 showed better memory for individual types of cues and the emergence of a majority strategy.

  1. Mathematical modeling of a class of multibody flexible spacecraft structures

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul, G.

    1994-01-01

    A mathematical model for a general multibody flexible spacecraft is obtained. The generic spacecraft considered consists of a flexible central body to which a number of flexible multibody structures are attached. The coordinate systems used in the derivation allow effective decoupling of the translational motion of the entire spacecraft from its rotational motion about its center of mass. The derivation assumes that the deformations in the bodies are only due to elastic motions. The dynamic model derived is a closed-form vector-matrix differential equation. The model developed can be used for analysis and simulation of many realistic spacecraft configurations.

  2. The Emergence of Flexible Spatial Strategies in Young Children

    ERIC Educational Resources Information Center

    Waismeyer, Anna S.; Jacobs, Lucia F.

    2013-01-01

    The development of spatial navigation in children depends not only on remembering which landmarks lead to a goal location but also on developing strategies to deal with changes in the environment or imperfections in memory. Using cue combination methods, the authors examined 3- and 4-year-old children's memory for different types of spatial cues…

  3. The Emergence of Flexible Spatial Strategies in Young Children

    ERIC Educational Resources Information Center

    Waismeyer, Anna S.; Jacobs, Lucia F.

    2013-01-01

    The development of spatial navigation in children depends not only on remembering which landmarks lead to a goal location but also on developing strategies to deal with changes in the environment or imperfections in memory. Using cue combination methods, the authors examined 3- and 4-year-old children's memory for different types of spatial cues…

  4. Residual flexibility test method for verification of constrained structural models

    NASA Technical Reports Server (NTRS)

    Admire, John R.; Tinker, Michael L.; Ivey, Edward W.

    1992-01-01

    A method is presented for deriving constrained modes and frequencies from a model correlated to a set of free-free test modes and a set of measured residual flexibilities. The method involves a simple modification of the MacNeal and Rubin component mode representation to allow verification of a constrained structural model. Results for two spaceflight structures show quick convergence of constrained modes using an easily measurable set of free-free modes plus the residual flexibility matrix or its boundary partition. This paper further validates the residual flexibility approach as an alternative test/analysis method when fixed-base testing proves impractical.

  5. Modeling Flexible Aircraft for Flight Control Design

    DTIC Science & Technology

    1989-01-01

    body variahlos. control surface deflections, or gust variables as well as structur l m -,,- 4hapes. 1-12 As indicated by Arrows 3 and 11 in Figure 1-1...flexibility matrix is used, it i:: m - , i,ticable to define it for a structure that is supported in a statical1y d--’,iiate way. 1-27 !* CDMS GEOMETRY...dynamicist chooses as his reduced set of degrees of freedom m ,,tly translational deflections along the major axes of the str,,t,,, : on a wing

  6. Intrinsic flexibility of porous materials; theory, modelling and the flexibility window of the EMT zeolite framework

    PubMed Central

    Fletcher, Rachel E.; Wells, Stephen A.; Leung, Ka Ming; Edwards, Peter P.; Sartbaeva, Asel

    2015-01-01

    Framework materials have structures containing strongly bonded polyhedral groups of atoms connected through their vertices. Typically the energy cost for variations of the inter-polyhedral geometry is much less than the cost of distortions of the polyhedra themselves – as in the case of silicates, where the geometry of the SiO4 tetrahedral group is much more strongly constrained than the Si—O—Si bridging angle. As a result, framework materials frequently display intrinsic flexibility, and their dynamic and static properties are strongly influenced by low-energy collective motions of the polyhedra. Insight into these motions can be obtained in reciprocal space through the ‘rigid unit mode’ (RUM) model, and in real-space through template-based geometric simulations. We briefly review the framework flexibility phenomena in energy-relevant materials, including ionic conductors, perovskites and zeolites. In particular we examine the ‘flexibility window’ phenomenon in zeolites and present novel results on the flexibility window of the EMT framework, which shed light on the role of structure-directing agents. Our key finding is that the crown ether, despite its steric bulk, does not limit the geometric flexibility of the framework. PMID:26634720

  7. Real-time strategy game training: emergence of a cognitive flexibility trait.

    PubMed

    Glass, Brian D; Maddox, W Todd; Love, Bradley C

    2013-01-01

    Training in action video games can increase the speed of perceptual processing. However, it is unknown whether video-game training can lead to broad-based changes in higher-level competencies such as cognitive flexibility, a core and neurally distributed component of cognition. To determine whether video gaming can enhance cognitive flexibility and, if so, why these changes occur, the current study compares two versions of a real-time strategy (RTS) game. Using a meta-analytic Bayes factor approach, we found that the gaming condition that emphasized maintenance and rapid switching between multiple information and action sources led to a large increase in cognitive flexibility as measured by a wide array of non-video gaming tasks. Theoretically, the results suggest that the distributed brain networks supporting cognitive flexibility can be tuned by engrossing video game experience that stresses maintenance and rapid manipulation of multiple information sources. Practically, these results suggest avenues for increasing cognitive function.

  8. Real-Time Strategy Game Training: Emergence of a Cognitive Flexibility Trait

    PubMed Central

    Glass, Brian D.; Maddox, W. Todd; Love, Bradley C.

    2013-01-01

    Training in action video games can increase the speed of perceptual processing. However, it is unknown whether video-game training can lead to broad-based changes in higher-level competencies such as cognitive flexibility, a core and neurally distributed component of cognition. To determine whether video gaming can enhance cognitive flexibility and, if so, why these changes occur, the current study compares two versions of a real-time strategy (RTS) game. Using a meta-analytic Bayes factor approach, we found that the gaming condition that emphasized maintenance and rapid switching between multiple information and action sources led to a large increase in cognitive flexibility as measured by a wide array of non-video gaming tasks. Theoretically, the results suggest that the distributed brain networks supporting cognitive flexibility can be tuned by engrossing video game experience that stresses maintenance and rapid manipulation of multiple information sources. Practically, these results suggest avenues for increasing cognitive function. PMID:23950921

  9. Mathematical Modeling For Control Of A Flexible Manipulator

    NASA Technical Reports Server (NTRS)

    Hu, Anren

    1996-01-01

    Improved method of mathematical modeling of dynamics of flexible robotic manipulators developed for use in controlling motions of manipulators. Involves accounting for effect, upon modes of vibration of manipulator, of changes in configuration of manipulator and manipulated payload(s). Flexible manipulator has one or more long, slender articulated link(s), like those used in outer space, method also applicable to terrestrial industrial robotic manipulators with relatively short, stiff links, or to such terrestrial machines as construction cranes.

  10. Transitioning Back to Mainstream Education: The Flexible Integration Model

    ERIC Educational Resources Information Center

    Cumming, Therese M.; Strnadová, Iva

    2017-01-01

    The implementation of a transition model, the flexible integration model, was investigated in a school in Sydney, Australia, using an exploratory single case study design (Rowley, 2002). It is a person-centred model designed to assist students in transitioning from a special school for students with emotional and behavioural disabilities to…

  11. A general dynamic model of flexible robot arms for control

    NASA Technical Reports Server (NTRS)

    Ding, X.; Tarn, T. J.; Bejczy, A. K.

    1989-01-01

    Hamilton's principle is used to derive the dynamic model for a large class of flexible robot arms. The resultant dynamic model consists of a system of partial differential-integral equations and the dynamic boundary conditions associated with it. Some properties of the model are observed, and its application to control is discussed. This model represents an infinite-dimensional nonlinear dynamic system and yet can be turned into a finite-dimensional system that could be obtained by modal expansion, if it is desired. This provides more flexibility for control purposes as well as for the analysis of the system.

  12. Liquid plug propagation in flexible microchannels: A small airway model

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Fujioka, H.; Bian, S.; Torisawa, Y.; Huh, D.; Takayama, S.; Grotberg, J. B.

    2009-07-01

    In the present study, we investigate the effect of wall flexibility on the plug propagation and the resulting wall stresses in small airway models with experimental measurements and numerical simulations. Experimentally, a flexible microchannel was fabricated to mimic the flexible small airways using soft lithography. Liquid plugs were generated and propagated through the microchannels. The local wall deformation is observed instantaneously during plug propagation with the maximum increasing with plug speed. The pressure drop across the plug is measured and observed to increase with plug speed, and is slightly smaller in a flexible channel compared to that in a rigid channel. A computational model is then presented to model the steady plug propagation through a flexible channel corresponding to the middle plane in the experimental device. The results show qualitative agreements with experiments on wall shapes and pressure drops and the discrepancies bring up interesting questions on current field of modeling. The flexible wall deforms inward near the plug core region, the deformation and pressure drop across the plug increase with the plug speed. The wall deformation and resulting stresses vary with different longitudinal tensions, i.e., for large wall longitudinal tension, the wall deforms slightly, which causes decreased fluid stress and stress gradients on the flexible wall comparing to that on rigid walls; however, the wall stress gradients are found to be much larger on highly deformable walls with small longitudinal tensions. Therefore, in diseases such as emphysema, with more deformable airways, there is a high possibility of induced injuries on lining cells along the airways because of larger wall stresses and stress gradients.

  13. Flexible multivariate marginal models for analyzing multivariate longitudinal data, with applications in R.

    PubMed

    Asar, Ozgür; Ilk, Ozlem

    2014-07-01

    Most of the available multivariate statistical models dictate on fitting different parameters for the covariate effects on each multiple responses. This might be unnecessary and inefficient for some cases. In this article, we propose a modelling framework for multivariate marginal models to analyze multivariate longitudinal data which provides flexible model building strategies. We show that the model handles several response families such as binomial, count and continuous. We illustrate the model on the Kenya Morbidity data set. A simulation study is conducted to examine the parameter estimates. An R package mmm2 is proposed to fit the model.

  14. A Neurobehavioral Model of Flexible Spatial Language Behaviors

    ERIC Educational Resources Information Center

    Lipinski, John; Schneegans, Sebastian; Sandamirskaya, Yulia; Spencer, John P.; Schoner, Gregor

    2012-01-01

    We propose a neural dynamic model that specifies how low-level visual processes can be integrated with higher level cognition to achieve flexible spatial language behaviors. This model uses real-word visual input that is linked to relational spatial descriptions through a neural mechanism for reference frame transformations. We demonstrate that…

  15. Finite element models and feedback control of flexible aerospace structures

    NASA Technical Reports Server (NTRS)

    Balas, M. J.

    1980-01-01

    Large flexible aerospace structures, such as the solar power satellite, are distributed parameter systems with very complex continuum descriptions. This paper investigates the use of finite element methods to produce reduced-order models and finite dimensional feedback controllers for these structures. The main results give conditions under which stable control of the finite element model will produce stable control of the actual structure.

  16. A Multilevel Strategy for the Exploration of the Conformational Flexibility of Small Molecules.

    PubMed

    Forti, Flavio; Cavasotto, Claudio N; Orozco, Modesto; Barril, Xavier; Luque, F Javier

    2012-05-08

    Predicting the conformational preferences of flexible compounds is still a challenging problem with important implications in areas such as molecular recognition and drug design. In this work, we describe a multilevel strategy to explore the conformational preferences of molecules. The method relies on the predominant-state approximation, which partitions the conformational space into distinct conformational wells. Moreover, it combines low-level (LL) methods for sampling the conformational minima and high-level (HL) techniques for calibrating their relative stability. In the implementation used in this study, the LL sampling is performed with the semiempirical RM1 Hamiltonian, and solvent effects are included using the RM1 version of the MST continuum solvation model. The HL refinement of the conformational wells is performed by combining geometry optimizations of the minima at the B3LYP (gas phase) or MST-B3LYP (solution) level, followed by single point MP2 computations using Dunning's augmented basis sets. Then, the effective free energy of a conformational well is estimated by combining the MP2 energy, supplemented with the MST-B3LYP solvation free energy for a conformational search in solution, with the local curvature of the well sampled at the semiempirical level. Applications of this strategy involve the exploration of the conformational preferences of 1,2-dichloroethane and neutral histamine in both the gas phase and water solution. Finally, the multilevel strategy is used to estimate the reorganization cost required for selecting the bioactive conformation of HIV reverse transcriptase inhibitors, which is estimated to be at most 1.3 kcal/mol.

  17. Modeling the interaction between flow and highly flexible aquatic vegetation

    NASA Astrophysics Data System (ADS)

    Dijkstra, J. T.; Uittenbogaard, R. E.

    2010-12-01

    Aquatic vegetation has an important role in estuaries and rivers by acting as bed stabilizer, filter, food source, and nursing area. However, macrophyte populations worldwide are under high anthropogenic pressure. Protection and restoration efforts will benefit from more insight into the interaction between vegetation, currents, waves, and sediment transport. Most aquatic plants are very flexible, implying that their shape and hence their drag and turbulence production depend on the flow conditions. We have developed a numerical simulation model that describes this dynamic interaction between very flexible vegetation and a time-varying flow, using the sea grass Zostera marina as an example. The model consists of two parts: an existing 1DV k-ɛ turbulence model simulating the flow combined with a new model simulating the bending of the plants, based on a force balance that takes account of both vegetation position and buoyancy. We validated this model using observations of positions of flexible plastic strips and of the forces they are subjected to, as well as hydrodynamic measurements. The model predicts important properties like the forces on plants, flow velocity profiles, and turbulence characteristics well. Although the validation data are limited, the results are sufficiently encouraging to consider our model to be of generic value in studying flow processes in fields of flexible vegetation.

  18. Mechanism test bed. Flexible body model report

    NASA Technical Reports Server (NTRS)

    Compton, Jimmy

    1991-01-01

    The Space Station Mechanism Test Bed is a six degree-of-freedom motion simulation facility used to evaluate docking and berthing hardware mechanisms. A generalized rigid body math model was developed which allowed the computation of vehicle relative motion in six DOF due to forces and moments from mechanism contact, attitude control systems, and gravity. No vehicle size limitations were imposed in the model. The equations of motion were based on Hill's equations for translational motion with respect to a nominal circular earth orbit and Newton-Euler equations for rotational motion. This rigid body model and supporting software were being refined.

  19. The Rigid-Flexible System Dynamics Model of Highline Cable

    NASA Astrophysics Data System (ADS)

    Xing, Daoqi; Li, Nan; Zhang, Shiyun

    The paper researches rigid flexible system dynamics model of the rope, and used it to simulate sealift Highline based on the multi-body dynamics theory. Meanwhile the paper simulated to the sea dry cargo replenishment of transverse process, then gain the conclusion that the rigid flexible dynamic model get in the paper is more close to the Caucasus, and the dynamic calculation results closer to the actual situation, through the analysis of simulation results, and combined with the actual situation in the Caucasus the structure of overhead cable.

  20. Mathematical model of a flexible space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Harvey, C. A.

    1972-01-01

    The development of a mathematical model of the lateral motion of a flexible space shuttle vehicle during ascent is described. The model was developed to perform control system synthesis using stochastic constrained optimization techniques. The goals of the control system synthesis are to demonstrate the applicability of the techniques and to discover any problems peculiar to the flexible nature of a shuttle vehicle. The equations of motion are derived. A brief description of the generation of numerical data is given. Explicit definitions and numerical values of trajectory data and coefficients appearing in the equations of motion are included.

  1. Analytical higher-order model for flexible and stretchable sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Yongfang; Zhu, Hongbin; Liu, Cheng; Liu, Xu; Liu, Fuxi; Lü, Yanjun

    2015-03-01

    The stretchable sensor wrapped around a foldable airfoil or embedded inside of it has great potential for use in the monitoring of the structural status of the foldable airfoil. The design methodology is important to the development of the stretchable sensor for status monitoring on the foldable airfoil. According to the requirement of mechanical flexibility of the sensor, the combined use of a layered flexible structural formation and a strain isolation layer is implemented. An analytical higher-order model is proposed to predict the stresses of the strain-isolation layer based on the shear-lag model for the safe design of the flexible and stretchable sensors. The normal stress and shear stress equations in the constructed structure of the sensors are obtained by the proposed model. The stress distribution in the structure is investigated when bending load is applied to the structures. The numerical results show that the proposed model can predict the variation of normal stress and shear stress along the thickness of the strain-isolation (polydimethylsiloxane) layer accurately. The results by the proposed model are in good agreement with the finite element method, in which the normal stress is variable while the shear stress is invariable along the thickness direction of strain-isolation layer. The high-order model is proposed to predict the stresses of the layered structure of the flexible and stretchable sensor for monitoring the status of the foldable airfoil.

  2. Frequency response modeling and control of flexible structures: Computational methods

    NASA Technical Reports Server (NTRS)

    Bennett, William H.

    1989-01-01

    The dynamics of vibrations in flexible structures can be conventiently modeled in terms of frequency response models. For structural control such models capture the distributed parameter dynamics of the elastic structural response as an irrational transfer function. For most flexible structures arising in aerospace applications the irrational transfer functions which arise are of a special class of pseudo-meromorphic functions which have only a finite number of right half place poles. Computational algorithms are demonstrated for design of multiloop control laws for such models based on optimal Wiener-Hopf control of the frequency responses. The algorithms employ a sampled-data representation of irrational transfer functions which is particularly attractive for numerical computation. One key algorithm for the solution of the optimal control problem is the spectral factorization of an irrational transfer function. The basis for the spectral factorization algorithm is highlighted together with associated computational issues arising in optimal regulator design. Options for implementation of wide band vibration control for flexible structures based on the sampled-data frequency response models is also highlighted. A simple flexible structure control example is considered to demonstrate the combined frequency response modeling and control algorithms.

  3. Model Offices: Flexible Options, Local Innovations.

    ERIC Educational Resources Information Center

    Perspective: Essays and Reviews of Issues in Employment Security and Employment and Training Programs, 1990

    1990-01-01

    This volume of an annual journal contains 17 articles that focus on model local offices of the employment security (ES) and training systems. The articles are arranged in three parts. Part I, on developing new initiatives, contains the following five articles: "A Public Employment Service for the 1990s" (Elizabeth Dole); "The…

  4. Model Offices: Flexible Options, Local Innovations.

    ERIC Educational Resources Information Center

    Perspective: Essays and Reviews of Issues in Employment Security and Employment and Training Programs, 1990

    1990-01-01

    This volume of an annual journal contains 17 articles that focus on model local offices of the employment security (ES) and training systems. The articles are arranged in three parts. Part I, on developing new initiatives, contains the following five articles: "A Public Employment Service for the 1990s" (Elizabeth Dole); "The…

  5. Cell flexibility affects the alignment of model myxobacteria.

    PubMed

    Janulevicius, Albertas; van Loosdrecht, Mark C M; Simone, Angelo; Picioreanu, Cristian

    2010-11-17

    Myxobacteria are social bacteria that exhibit a complex life cycle culminating in the development of multicellular fruiting bodies. The alignment of rod-shaped myxobacteria cells within populations is crucial for development to proceed. It has been suggested that myxobacteria align due to mechanical interactions between gliding cells and that cell flexibility facilitates reorientation of cells upon mechanical contact. However, these suggestions have not been based on experimental or theoretical evidence. Here we created a computational mass-spring model of a flexible rod-shaped cell that glides on a substratum periodically reversing direction. The model was formulated in terms of experimentally measurable mechanical parameters, such as engine force, bending stiffness, and drag coefficient. We investigated how cell flexibility and motility engine type affected the pattern of cell gliding and the alignment of a population of 500 mechanically interacting cells. It was found that a flexible cell powered by engine force at the rear of the cell, as suggested by the slime extrusion hypothesis for myxobacteria motility engine, would not be able to glide in the direction of its long axis. A population of rigid reversing cells could indeed align due to mechanical interactions between cells, but cell flexibility impaired the alignment.

  6. Flexible Environmental Modeling with Python and Open - GIS

    NASA Astrophysics Data System (ADS)

    Pryet, Alexandre; Atteia, Olivier; Delottier, Hugo; Cousquer, Yohann

    2015-04-01

    Numerical modeling now represents a prominent task of environmental studies. During the last decades, numerous commercial programs have been made available to environmental modelers. These software applications offer user-friendly graphical user interfaces that allow an efficient management of many case studies. However, they suffer from a lack of flexibility and closed-source policies impede source code reviewing and enhancement for original studies. Advanced modeling studies require flexible tools capable of managing thousands of model runs for parameter optimization, uncertainty and sensitivity analysis. In addition, there is a growing need for the coupling of various numerical models associating, for instance, groundwater flow modeling to multi-species geochemical reactions. Researchers have produced hundreds of open-source powerful command line programs. However, there is a need for a flexible graphical user interface allowing an efficient processing of geospatial data that comes along any environmental study. Here, we present the advantages of using the free and open-source Qgis platform and the Python scripting language for conducting environmental modeling studies. The interactive graphical user interface is first used for the visualization and pre-processing of input geospatial datasets. Python scripting language is then employed for further input data processing, call to one or several models, and post-processing of model outputs. Model results are eventually sent back to the GIS program, processed and visualized. This approach combines the advantages of interactive graphical interfaces and the flexibility of Python scripting language for data processing and model calls. The numerous python modules available facilitate geospatial data processing and numerical analysis of model outputs. Once input data has been prepared with the graphical user interface, models may be run thousands of times from the command line with sequential or parallel calls. We

  7. Manipulators with flexible links: A simple model and experiments

    NASA Technical Reports Server (NTRS)

    Shimoyama, Isao; Oppenheim, Irving J.

    1989-01-01

    A simple dynamic model proposed for flexible links is briefly reviewed and experimental control results are presented for different flexible systems. A simple dynamic model is useful for rapid prototyping of manipulators and their control systems, for possible application to manipulator design decisions, and for real time computation as might be applied in model based or feedforward control. Such a model is proposed, with the further advantage that clear physical arguments and explanations can be associated with its simplifying features and with its resulting analytical properties. The model is mathematically equivalent to Rayleigh's method. Taking the example of planar bending, the approach originates in its choice of two amplitude variables, typically chosen as the link end rotations referenced to the chord (or the tangent) motion of the link. This particular choice is key in establishing the advantageous features of the model, and it was used to support the series of experiments reported.

  8. Modeling and Control of Large Flexible Structures.

    DTIC Science & Technology

    1984-07-31

    frequencies induced by the 4th spatial mode.) The meaning of the plot titles is as follows: "Beam at x, yth mode," t means that the beam is initially...structures, represented here by an Euler beam model. The results of . this algorithm provide a means for assessing effects of controller/observer...define T - - r-i E), T- - (60) +- 1 then .L. 0 t>O 0 > 7 𔄀) -1 (61 C: t𔃾) 0 0J -. This means that T +(respectively T ) is the projection of T onto the

  9. DEM modeling of flexible structures against granular material avalanches

    NASA Astrophysics Data System (ADS)

    Lambert, Stéphane; Albaba, Adel; Nicot, François; Chareyre, Bruno

    2016-04-01

    This article presents the numerical modeling of flexible structures intended to contain avalanches of granular and coarse material (e.g. rock slide, a debris slide). The numerical model is based on a discrete element method (YADE-Dem). The DEM modeling of both the flowing granular material and the flexible structure are detailed before presenting some results. The flowing material consists of a dry polydisperse granular material accounting for the non-sphericity of real materials. The flexible structure consists in a metallic net hanged on main cables, connected to the ground via anchors, on both sides of the channel, including dissipators. All these components were modeled as flexible beams or wires, with mechanical parameters defined from literature data. The simulation results are presented with the aim of investigating the variability of the structure response depending on different parameters related to the structure (inclination of the fence, with/without brakes, mesh size opening), but also to the channel (inclination). Results are then compared with existing recommendations in similar fields.

  10. Energetic Optimisation of Foraging Honeybees: Flexible Change of Strategies in Response to Environmental Challenges

    PubMed Central

    Stabentheiner, Anton; Kovac, Helmut

    2014-01-01

    Heterothermic insects like honeybees, foraging in a variable environment, face the challenge of keeping their body temperature high to enable immediate flight and to promote fast exploitation of resources. Because of their small size they have to cope with an enormous heat loss and, therefore, high costs of thermoregulation. This calls for energetic optimisation which may be achieved by different strategies. An ‘economizing’ strategy would be to reduce energetic investment whenever possible, for example by using external heat from the sun for thermoregulation. An ‘investment-guided’ strategy, by contrast, would be to invest additional heat production or external heat gain to optimize physiological parameters like body temperature which promise increased energetic returns. Here we show how honeybees balance these strategies in response to changes of their local microclimate. In a novel approach of simultaneous measurement of respiration and body temperature foragers displayed a flexible strategy of thermoregulatory and energetic management. While foraging in shade on an artificial flower they did not save energy with increasing ambient temperature as expected but acted according to an ‘investment-guided’ strategy, keeping the energy turnover at a high level (∼56–69 mW). This increased thorax temperature and speeded up foraging as ambient temperature increased. Solar heat was invested to increase thorax temperature at low ambient temperature (‘investment-guided’ strategy) but to save energy at high temperature (‘economizing’ strategy), leading to energy savings per stay of ∼18–76% in sunshine. This flexible economic strategy minimized costs of foraging, and optimized energetic efficiency in response to broad variation of environmental conditions. PMID:25162211

  11. Energetic optimisation of foraging honeybees: flexible change of strategies in response to environmental challenges.

    PubMed

    Stabentheiner, Anton; Kovac, Helmut

    2014-01-01

    Heterothermic insects like honeybees, foraging in a variable environment, face the challenge of keeping their body temperature high to enable immediate flight and to promote fast exploitation of resources. Because of their small size they have to cope with an enormous heat loss and, therefore, high costs of thermoregulation. This calls for energetic optimisation which may be achieved by different strategies. An 'economizing' strategy would be to reduce energetic investment whenever possible, for example by using external heat from the sun for thermoregulation. An 'investment-guided' strategy, by contrast, would be to invest additional heat production or external heat gain to optimize physiological parameters like body temperature which promise increased energetic returns. Here we show how honeybees balance these strategies in response to changes of their local microclimate. In a novel approach of simultaneous measurement of respiration and body temperature foragers displayed a flexible strategy of thermoregulatory and energetic management. While foraging in shade on an artificial flower they did not save energy with increasing ambient temperature as expected but acted according to an 'investment-guided' strategy, keeping the energy turnover at a high level (∼56-69 mW). This increased thorax temperature and speeded up foraging as ambient temperature increased. Solar heat was invested to increase thorax temperature at low ambient temperature ('investment-guided' strategy) but to save energy at high temperature ('economizing' strategy), leading to energy savings per stay of ∼18-76% in sunshine. This flexible economic strategy minimized costs of foraging, and optimized energetic efficiency in response to broad variation of environmental conditions.

  12. A comparison of refined models for flexible subassemblies

    NASA Technical Reports Server (NTRS)

    Smith, Suzanne Weaver; Zimmerman, David C.

    1993-01-01

    Interactions between structure response and control of large flexible space systems have challenged current modeling techniques and have prompted development of new techniques for model improvement. Due to the geometric complexity of envisioned large flexible space structures, finite element models (FEM's) will be used to predict the dynamic characteristics of structural components. It is widely accepted that these models must be experimentally 'validated' before their acceptance as the basis for final design analysis. However, predictions of modal properties (natural frequencies, mode shapes, and damping ratios) are often in error when compared to those obtained from Experimental Modal Analysis (EMA). Recent research efforts have resulted in the development of algorithmic approaches for model improvement, also referred to as system or structure identification.

  13. Direct model reference adaptive control of a flexible robotic manipulator

    NASA Technical Reports Server (NTRS)

    Meldrum, D. R.

    1985-01-01

    Quick, precise control of a flexible manipulator in a space environment is essential for future Space Station repair and satellite servicing. Numerous control algorithms have proven successful in controlling rigid manipulators wih colocated sensors and actuators; however, few have been tested on a flexible manipulator with noncolocated sensors and actuators. In this thesis, a model reference adaptive control (MRAC) scheme based on command generator tracker theory is designed for a flexible manipulator. Quicker, more precise tracking results are expected over nonadaptive control laws for this MRAC approach. Equations of motion in modal coordinates are derived for a single-link, flexible manipulator with an actuator at the pinned-end and a sensor at the free end. An MRAC is designed with the objective of controlling the torquing actuator so that the tip position follows a trajectory that is prescribed by the reference model. An appealing feature of this direct MRAC law is that it allows the reference model to have fewer states than the plant itself. Direct adaptive control also adjusts the controller parameters directly with knowledge of only the plant output and input signals.

  14. Pressure Sensitive Paint Applied to Flexible Models Project

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Kushner, Laura Kathryn

    2014-01-01

    One gap in current pressure-measurement technology is a high-spatial-resolution method for accurately measuring pressures on spatially and temporally varying wind-tunnel models such as Inflatable Aerodynamic Decelerators (IADs), parachutes, and sails. Conventional pressure taps only provide sparse measurements at discrete points and are difficult to integrate with the model structure without altering structural properties. Pressure Sensitive Paint (PSP) provides pressure measurements with high spatial resolution, but its use has been limited to rigid or semi-rigid models. Extending the use of PSP from rigid surfaces to flexible surfaces would allow direct, high-spatial-resolution measurements of the unsteady surface pressure distribution. Once developed, this new capability will be combined with existing stereo photogrammetry methods to simultaneously measure the shape of a dynamically deforming model in a wind tunnel. Presented here are the results and methodology for using PSP on flexible surfaces.

  15. Remarks on modeling the flexible seal ring housing

    NASA Astrophysics Data System (ADS)

    Kundera, C.; Martsynkovskyy, V.; Zahorulko, A.

    2017-08-01

    When formulating models of dynamic face seals, two issues are of essential importance. The first concerns the determination of the forces formed in the medium film in the gap formed by the faces of two rings, while the second refers to the model of the flexible housing of one of the seal rings. The first issue includes the analysis of the medium flow through a narrow slit, taking thermal phenomena and deformations of slit-forming surfaces into account. The second issue concerns the modeling of properties of seal structural components, especially the modeling of elastic-damping properties of the flexible seal ring housing. This paper presents the results of simple relaxation tests of elastomeric rings and the procedure for analyzing these results and evaluating the elastic-damping properties of the rings tested. Finally, experimental results will be compared with theory.

  16. Distributed Flexibility Characterization and Resource Allocation Strategies for Multi-zone Commercial Buildings in the Smart Grid

    SciTech Connect

    Hao, He; Lian, Jianming; Kalsi, Karanjit; Stoustrup, Jakob

    2015-12-15

    The HVAC (Heating, Ventilation, and Air- Conditioning) system of commercial buildings is a complex system with a large number of dynamically interacting components. In particular, the thermal dynamics of each zone are coupled with those of the neighboring zones. In this paper, we study a multi-agent based approach to model and control commercial building HVAC system for providing grid services. In the multi-agent system (MAS), individual zones are modeled as agents that can communicate, interact, and negotiate with one another to achieve a common objective. We first propose a distributed characterization method on the aggregated airflow (and thus fan power) flexibility that the HVAC system can provide to the ancillary service market. Then, we propose a Nash-bargaining based airflow allocation strategy to track a dispatch signal (that is within the offered flexibility limit) while respecting the preference and flexibility of individual zones. Moreover, we devise a distributed algorithm to obtain the Nash bargaining solution via dual decomposition and average consensus. Numerical simulations illustrate that the proposed distributed protocols are much more scalable than the centralized approaches especially when the system becomes larger and more complex.

  17. Recent Advancements in Flexible and Stretchable Electrodes for Electromechanical Sensors: Strategies, Materials, and Features.

    PubMed

    Zhao, Songfang; Li, Jinhui; Cao, Duxia; Zhang, Guoping; Li, Jia; Li, Kui; Yang, Yang; Wang, Wei; Jin, Yufeng; Sun, Rong; Wong, Ching-Ping

    2017-03-30

    Stretchable and flexible sensors attached onto the surface of the human body can perceive external stimuli, thus attracting extensive attention due to their lightweight, low modulus, low cost, high flexibility, and stretchability. Recently, a myriad of efforts have been devoted to improving the performance and functionality of wearable sensors. Herein, this review focuses on recent remarkable advancements in the development of flexible and stretchable sensors. Multifunction of these wearable sensors is realized by incorporating some desired features (e.g., self-healing, self-powering, linearity, and printing). Next, focusing on the characteristics of carbon nanomaterials, nanostructured metal, conductive polymer, or their hybrid composites, two major strategies (e.g., materials that stretch and structures that stretch) and diverse design approaches have been developed to achieve highly flexible and stretchable electrodes. Strain sensing performances of recently reported sensors indicate that the appropriate choice of geometric engineering as well as intrinsically stretchable materials is essential for high-performance strain sensing. Finally, some important directions and challenges of a fully sensor-integrated wearable platform are proposed to realize their potential applications for human motion monitoring and human-machine interfaces.

  18. The Creative Music Strategy: A Seven-Step Instructional Model

    ERIC Educational Resources Information Center

    Robinson, Nathalie G.; Bell, Cindy L.; Pogonowski, Lenore

    2011-01-01

    The creative music strategy is a dynamic and flexible seven-step model for guiding general music students through the music concepts of improvisation and composition, followed by critical reflection. These are musical behaviors that cultivate the development of our students' deeper conceptual understandings and music independence by helping them…

  19. Strategy Generalization across Orientation Tasks: Testing a Computational Cognitive Model

    ERIC Educational Resources Information Center

    Gunzelmann, Glenn

    2008-01-01

    Humans use their spatial information processing abilities flexibly to facilitate problem solving and decision making in a variety of tasks. This article explores the question of whether a general strategy can be adapted for performing two different spatial orientation tasks by testing the predictions of a computational cognitive model. Human…

  20. A flexible active and reactive power control strategy for a variable speed constant frequency generating system

    SciTech Connect

    Tang, Y.; Xu, L.

    1995-07-01

    Variable-speed constant-frequency generating systems are used in wind power, hydro power, aerospace, and naval power generations to enhance efficiency and reduce friction. In these applications, an attractive candidate is the slip power recovery system comprising of doubly excited induction machine or doubly excited brushless reluctance machine and PWM converters with a dc link. In this paper, a flexible active and reactive power control strategy is developed, such that the optimal torque-speed profile of the turbine can be followed and overall reactive power can be controlled, while the machine copper losses have been minimized. At the same time, harmonics injected into the power network has also been minimized. In this manner, the system can function as both a high-efficient power generator and a flexible reactive power compensator.

  1. Parameter estimation for distributed parameter models of complex, flexible structures

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr.

    1991-01-01

    Distributed parameter modeling of structural dynamics has been limited to simple spacecraft configurations because of the difficulty of handling several distributed parameter systems linked at their boundaries. Although there is other computer software able to generate such models or complex, flexible spacecraft, unfortunately, neither is suitable for parameter estimation. Because of this limitation the computer software PDEMOD is being developed for the express purposes of modeling, control system analysis, parameter estimation and structure optimization. PDEMOD is capable of modeling complex, flexible spacecraft which consist of a three-dimensional network of flexible beams and rigid bodies. Each beam has bending (Bernoulli-Euler or Timoshenko) in two directions, torsion, and elongation degrees of freedom. The rigid bodies can be attached to the beam ends at any angle or body location. PDEMOD is also capable of performing parameter estimation based on matching experimental modal frequencies and static deflection test data. The underlying formulation and the results of using this approach for test data of the Mini-MAST truss will be discussed. The resulting accuracy of the parameter estimates when using such limited data can impact significantly the instrumentation requirements for on-orbit tests.

  2. Simple and Large-Scale Strategy to Prepare Flexible Graphene Tape Electrode.

    PubMed

    Wang, Li; Yu, Jie; Zhang, Yayun; Yang, Han; Miao, Longfei; Song, Yonghai

    2017-03-15

    A simple and large-scale strategy to prepare flexible graphene tape electrode (GTE) was proposed. The flexible GTE was prepared by a facile peeling method in which a piece of commercial graphite foil was first covered by a commercial acrylic transparent tape and then the transparent adhesive tape was quickly torn off from the graphite foil. Scanning electron microscopy results showed that some folded and wrinkled graphene layers stood up on the GTE surface to form three-dimensional (3D) porous graphene foam. The 3D porous flexible GTE was proposed as a novel supporting matrix to load Ni-Co nanoparticles (Ni-CoNPs) and glucose oxidase (GOD) as examples to test its applications for electrochemical glucose sensing. The Ni-CoNPs/GTE showed the linear range of 0.6 μM-0.26 mM and 1.360-5.464 mM with a detection limit of 0.16 μM. The GOD/AuNPs-CHIT/GTE had a linear range of 0.616-14.0 mM and a detection limit of 0.202 mM. These results were similar or superior to the printable electrodes by nanocarbon and electrodes modified with graphene, carbon nanotubes, or porous carbon materials, but the flexible GTE was more easier to prepare in large-scale and the 3D porous graphene foam were not easy to drop off from the tape because they were glued on acrylic transparent tape firmly. Therefore, the 3D porous flexible GTE should be promising candidates for electrochemical sensors and other electrochemical applications.

  3. Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies.

    PubMed

    Garthe, Alexander; Behr, Joachim; Kempermann, Gerd

    2009-01-01

    Despite enormous progress in the past few years the specific contribution of newly born granule cells to the function of the adult hippocampus is still not clear. We hypothesized that in order to solve this question particular attention has to be paid to the specific design, the analysis, and the interpretation of the learning test to be used. We thus designed a behavioral experiment along hypotheses derived from a computational model predicting that new neurons might be particularly relevant for learning conditions, in which novel aspects arise in familiar situations, thus putting high demands on the qualitative aspects of (re-)learning.In the reference memory version of the water maze task suppression of adult neurogenesis with temozolomide (TMZ) caused a highly specific learning deficit. Mice were tested in the hidden platform version of the Morris water maze (6 trials per day for 5 days with a reversal of the platform location on day 4). Testing was done at 4 weeks after the end of four cycles of treatment to minimize the number of potentially recruitable new neurons at the time of testing. The reduction of neurogenesis did not alter longterm potentiation in CA3 and the dentate gyrus but abolished the part of dentate gyrus LTP that is attributed to the new neurons. TMZ did not have any overt side effects at the time of testing, and both treated mice and controls learned to find the hidden platform. Qualitative analysis of search strategies, however, revealed that treated mice did not advance to spatially precise search strategies, in particular when learning a changed goal position (reversal). New neurons in the dentate gyrus thus seem to be necessary for adding flexibility to some hippocampus-dependent qualitative parameters of learning.Our finding that a lack of adult-generated granule cells specifically results in the animal's inability to precisely locate a hidden goal is also in accordance with a specialized role of the dentate gyrus in generating a metric

  4. Residual flexibility test method for verification of constrained structural models

    NASA Technical Reports Server (NTRS)

    Admire, John R.; Tinker, Michael L.; Ivey, Edward W.

    1994-01-01

    A method is described for deriving constrained modes and frequencies from a reduced model based on a subset of the free-free modes plus the residual effects of neglected modes. The method involves a simple modification of the MacNeal and Rubin component mode representation to allow development of a verified constrained (fixed-base) structural model. Results for two spaceflight structures having translational boundary degrees of freedom show quick convergence of constrained modes using a measureable number of free-free modes plus the boundary partition of the residual flexibility matrix. This paper presents the free-free residual flexibility approach as an alternative test/analysis method when fixed-base testing proves impractical.

  5. Experimental Study of Flexible Plate Vibration Control by Using Two-Loop Sliding Mode Control Strategy

    NASA Astrophysics Data System (ADS)

    Yang, Jingyu; Lin, Jiahui; Liu, Yuejun; Yang, Kang; Zhou, Lanwei; Chen, Guoping

    2016-06-01

    It is well known that intelligent control theory has been used in many research fields, novel modeling method (DROMM) is used for flexible rectangular active vibration control, and then the validity of new model is confirmed by comparing finite element model with new model. In this paper, taking advantage of the dynamics of flexible rectangular plate, a two-loop sliding mode (TSM) MIMO approach is introduced for designing multiple-input multiple-output continuous vibration control system, which can overcome uncertainties, disturbances or unstable dynamics. An illustrative example is given in order to show the feasibility of the method. Numerical simulations and experiment confirm the effectiveness of the proposed TSM MIMO controller.

  6. Experimental Study of Flexible Plate Vibration Control by Using Two-Loop Sliding Mode Control Strategy

    NASA Astrophysics Data System (ADS)

    Yang, Jingyu; Lin, Jiahui; Liu, Yuejun; Yang, Kang; Zhou, Lanwei; Chen, Guoping

    2017-08-01

    It is well known that intelligent control theory has been used in many research fields, novel modeling method (DROMM) is used for flexible rectangular active vibration control, and then the validity of new model is confirmed by comparing finite element model with new model. In this paper, taking advantage of the dynamics of flexible rectangular plate, a two-loop sliding mode (TSM) MIMO approach is introduced for designing multiple-input multiple-output continuous vibration control system, which can overcome uncertainties, disturbances or unstable dynamics. An illustrative example is given in order to show the feasibility of the method. Numerical simulations and experiment confirm the effectiveness of the proposed TSM MIMO controller.

  7. Numerical modeling of flexible insect wings using volume penalization

    NASA Astrophysics Data System (ADS)

    Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Sesterhenn, Joern

    2012-11-01

    We consider the effects of chordwise flexibility on the aerodynamic performance of insect flapping wings. We developed a numerical method for modeling viscous fluid flows past moving deformable foils. It extends on the previously reported model for flows past moving rigid wings (J Comput Phys 228, 2009). The two-dimensional Navier-Stokes equations are solved using a Fourier pseudo-spectral method with the no-slip boundary conditions imposed by the volume penalization method. The deformable wing section is modeled using a non-linear beam equation. We performed numerical simulations of heaving flexible plates. The results showed that the optimal stroke frequency, which maximizes the mean thrust, is lower than the resonant frequency, in agreement with the experiments by Ramananarivo et al. (PNAS 108(15), 2011). The oscillatory part of the force only increases in amplitude when the frequency increases, and at the optimal frequency it is about 3 times larger than the mean force. We also study aerodynamic interactions between two heaving flexible foils. This flow configuration corresponds to the wings of dragonflies. We explore the effects of the phase difference and spacing between the fore- and hind-wing.

  8. An integrated dynamic model of a flexible wind turbine

    NASA Astrophysics Data System (ADS)

    Bongers, Peter M. M.; Bierbooms, Wim A. A.; Dijkstra, Sjoerd; Vanholten, Theo

    1990-06-01

    A model to study the dynamic behavior of flexible wind turbines was developed. The different subsystems of the wind turbine are individually modeled with about the same degree of accuracy. The aerodynamic part describes wind shear, gravity effects, unsteady effects, and dynamic inflow. The rotor blades are provided with degrees of freedom in lag and flap directions. The tower construction is modeled including the first bending mode. The first torsional mode of the transmission is included in the model. The model of synchronous generator with dc link consists of a nonlinear fourth order model, including saturation effects. The different models of the subsystems are coupled into one integrated dynamic model which is implemented as simulation code in the DUWECS (Delf University Wind Energy Converter Simulation Package) program. The DUWECS program is developed in such a manner that it is an easy to handle tool for the study of the dynamic features of wind turbine systems.

  9. Modeling, design, and control of flexible manipulator arms: Status and trends

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1989-01-01

    The desire for higher performance manipulators has lead to dynamic behavior in which the flexibility is an essential aspect. The mathematical representations commonly used in modeling flexible arms and arms with flexible drives are examined first. Then design considerations directly arising from the flexible nature of the arm are discussed. Finally, controls of joints for general and tip motion are discussed.

  10. On the modeling and control of slewing flexible structures

    NASA Astrophysics Data System (ADS)

    Garcia, Ephrahim

    The slewing control of a single link flexible structure is investigated. First a simple model of a slewing beam is examined. This structure is modeled as an Euler-Bernoulli beam which is pinned at one end with the other end free. A model summation procedure is applied to determine the response of the structure. A servo system acting at the pinned end is idealized as a spring. It is shown that the effects of the spring can be modeled through the boundary conditions for the flexible structure, or, the pin-free (open loop) modes of vibration can be assumed and the effects of the spring are included through the use of a position feedback matrix. The slewing equations of motions are derived from Hamilton's principle. The feedback closed loop system matrices are derived for the angular position and velocity, and structural strain signal. The controllability norm of a system with various degree of actuator structure interaction is investigated to determine the degree of controllability of the higher modes of vibration. The nonlinear equations of motion are derived and a summary of nonlinear dynamics in slewing is given. A parameter for gauging the speed of response of slewing structures is proposed, and an example is given which shows the divergence of the linear and nonlinear models as this parameter is increased. The optimal control of the slewing system is discussed and an example using optimal output feedback is presented. The proposed model which accounts for the actuator structure interaction is used to model an experimental slewing structure in a direct drive configuration. It is shown that by taking advantage of the interaction between actuator and structure, vibration attenuation of the flexible modes can be achieved using only angular position and velocity sensors.

  11. Alterations in cognitive flexibility in a rat model of post-traumatic stress disorder.

    PubMed

    George, Sophie A; Rodriguez-Santiago, Mariana; Riley, John; Abelson, James L; Floresco, Stan B; Liberzon, Israel

    2015-06-01

    Exposure to stressful or traumatic events is associated with increased vulnerability to post-traumatic stress disorder (PTSD). This vulnerability may be partly mediated by effects of stress on the prefrontal cortex (PFC) and associated circuitry. The PFC mediates critical cognitive functions, including cognitive flexibility, which reflects an organism's ability to adaptively alter behavior in light of changing contingencies. Prior work suggests that chronic or acute stress exerts complex effects on different forms of cognitive flexibility, via actions on the PFC. Similarly, PFC dysfunction is reported in PTSD, as are executive function deficits. Animal models that permit study of the effects of stress/trauma on cognitive flexibility may be useful in illuminating ways in which stress-linked cognitive changes contribute to PTSD. Here, we examined the behavioral effects of a rodent model of PTSD - single prolonged stress (SPS) - on performance of two forms of cognitive flexibility: reversal learning and strategy set-shifting. SPS did not impair acquisition of either a response or visual-cue discrimination but did cause slight impairments in the retrieval of the visual-cue rule. During response discrimination reversal, SPS rats made more perseverative errors. In comparison, during set-shifting from the visual-cue to response discrimination, SPS rats did not show enhanced perseveration, but did display increased never-reinforced errors, indicative of impairment in selecting a novel strategy. These data demonstrate that SPS leads to a complex and intriguing pattern of deficits in flexible responding and suggest that impairments in executive functioning associated with PTSD could, in part, be a neuro-cognitive consequence of trauma exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Lumped mass formulations for modeling flexible body systems

    NASA Technical Reports Server (NTRS)

    Rampalli, Rajiv

    1989-01-01

    The efforts of Mechanical Dynamics, Inc. in obtaining a general formulation for flexible bodies in a multibody setting are discussed. The efforts being supported by MDI, both in house and externally are summarized. The feasibility of using lumped mass approaches to modeling flexibility in a multibody dynamics context is examined. The kinematics and kinetics for a simple system consisting of two rigid bodies connected together by an elastic beam are developed in detail. Accuracy, efficiency and ease of use using this approach are some of the issues that are then looked at. The formulation is then generalized to a superelement containing several nodes and connecting several bodies. Superelement kinematics and kinetics equations are developed. The feasibility and effectiveness of the method is illustrated by the use of some examples illustrating phenomena common in the context of spacecraft motions.

  13. Takagi-Sugeno fuzzy model based robust dissipative control for uncertain flexible spacecraft with saturated time-delay input.

    PubMed

    Xu, Shidong; Sun, Guanghui; Sun, Weichao

    2017-01-01

    In this paper, the problem of robust dissipative control is investigated for uncertain flexible spacecraft based on Takagi-Sugeno (T-S) fuzzy model with saturated time-delay input. Different from most existing strategies, T-S fuzzy approximation approach is used to model the nonlinear dynamics of flexible spacecraft. Simultaneously, the physical constraints of system, like input delay, input saturation, and parameter uncertainties, are also taken care of in the fuzzy model. By employing Lyapunov-Krasovskii method and convex optimization technique, a novel robust controller is proposed to implement rest-to-rest attitude maneuver for flexible spacecraft, and the guaranteed dissipative performance enables the uncertain closed-loop system to reject the influence of elastic vibrations and external disturbances. Finally, an illustrative design example integrated with simulation results are provided to confirm the applicability and merits of the developed control strategy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Cyberkelp: an integrative approach to the modelling of flexible organisms.

    PubMed Central

    Denny, Mark W; Hale, Ben B

    2003-01-01

    Biomechanical models come in a variety of forms: conceptual models; physical models; and mathematical models (both of the sort written down on paper and the sort carried out on computers). There are model structures (such as insect flight muscle and the tendons of rats' tails), model organisms (such as the flying insect, Manduca sexta), even model systems of organisms (such as the communities that live on wave-swept rocky shores). These different types of models are typically employed separately, but their value often can be enhanced if their insights are integrated. In this brief report we explore a particular example of such integration among models, as applied to flexible marine algae. A conceptual model serves as a template for the construction of a mathematical model of a model species of giant kelp, and the validity of this numerical model is tested using physical models. The validated mathematical model is then used in conjunction with a computer-controlled tensile testing apparatus to simulate the loading regime placed on algal materials. The resulting information can be used to create a more precise mathematical model. PMID:14561344

  15. Rationale for Flexible Path - A Space Exploration Strategy for the 21st Century

    NASA Astrophysics Data System (ADS)

    Schmidt, G. R.; Landis, G. A.; Oleson, S. R.

    In 2009, the U.S. President convened a special committee to recommend directions for the U.S. human spaceflight program. One preferred option - the “Flexible Path” strategy - differs markedly from the Moon and Mars-oriented paradigm that has driven U.S. planning in the past. Specifically, it refrains from placing humans on the surfaces of these planetary bodies in the near-term, and instead focuses on sending piloted spacecraft into orbit around exploration targets of interest, and conducting astronaut exploration of the surfaces using telerobots and remotely controlled systems. Teleoperation provides scientists real- time control of rovers and other sophisticated instruments, thus expanding the scientific return at these destinations. It also eliminates development of the numerous man-rated landers, ascent vehicles and systems required to sustain humans on planetary surfaces. The propulsive requirements to travel from Low Earth Orbit (LEO) to many destinations with shallow gravity-wells in the inner solar system are quite similar. Thus, a common set of spacecraft elements (e.g., launch vehicles, upper stage/transfer vehicle, crew module/habitat) could be used to perform a variety of different missions, including orbit- based surface exploration of the Moon, Mars and Venus, and rendezvous with Near Earth Asteroids (NEAs), as well as Phobos and Deimos. This paper presents the rationale for Flexible Path, and explains why it should be the strategy for human space exploration in the 21st Century.

  16. DEVELOPMENT OF A FLEXIBLE, MULTIZONE, MULTIFAMILY BUILDING SIMULATION MODEL

    SciTech Connect

    Malhotra, Mini; Im, Piljae

    2012-01-01

    Weatherization of multifamily buildings is gaining increased attention in the U.S. Available energy audit tools for multifamily buildings were found to need desirable improvements. On the wish list of field experts for enhanced features was the basic ability to model multizone buildings (i.e., one thermal zone per dwelling unit) with simplified user inputs, which allows a better analysis of decentralized and centralized HVAC and domestic hot water systems of multifamily buildings without having to create detailed building models. To address the desired capabilities, development of an enhanced energy audit tool was begun in 2011. The tool is a strategically structured, flexible, one-zone-per-unit, DOE-2.1e model coupled with a simplified user interface to model small to large multifamily buildings with decentralized or centralized systems and associated energy measures. This paper describes the modeling concept and its implementation.

  17. Elucidating the effects of adsorbent flexibility on fluid adsorption using simple models and flat-histogram sampling methods

    SciTech Connect

    Shen, Vincent K. Siderius, Daniel W.

    2014-06-28

    Using flat-histogram Monte Carlo methods, we investigate the adsorptive behavior of the square-well fluid in two simple slit-pore-like models intended to capture fundamental characteristics of flexible adsorbent materials. Both models require as input thermodynamic information about the flexible adsorbent material itself. An important component of this work involves formulating the flexible pore models in the appropriate thermodynamic (statistical mechanical) ensembles, namely, the osmotic ensemble and a variant of the grand-canonical ensemble. Two-dimensional probability distributions, which are calculated using flat-histogram methods, provide the information necessary to determine adsorption thermodynamics. For example, we are able to determine precisely adsorption isotherms, (equilibrium) phase transition conditions, limits of stability, and free energies for a number of different flexible adsorbent materials, distinguishable as different inputs into the models. While the models used in this work are relatively simple from a geometric perspective, they yield non-trivial adsorptive behavior, including adsorption-desorption hysteresis solely due to material flexibility and so-called “breathing” of the adsorbent. The observed effects can in turn be tied to the inherent properties of the bare adsorbent. Some of the effects are expected on physical grounds while others arise from a subtle balance of thermodynamic and mechanical driving forces. In addition, the computational strategy presented here can be easily applied to more complex models for flexible adsorbents.

  18. Multiscale multiphysics and multidomain models--flexibility and rigidity.

    PubMed

    Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei

    2013-11-21

    The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomic charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of O

  19. Modeling and control of flexible space stations (slew maneuvers)

    NASA Technical Reports Server (NTRS)

    Ahmed, N. U.; Lim, S. S.

    1989-01-01

    Large orbiting space structures are expected to experience mechanical vibrations arising from several disturbing forces such as those induced by shuttle takeoff or docking and crew movements. The problem is considered of modeling and control of large space structures subject to these and other disturbing forces. The system consists of a (rigid) massive body, which may play the role of experimental modules located at the center of the space station and flexible configurations, consisting of several beams, forming the space structure. A complete dynamic model of the system was developed using Hamilton's principle. This model consists of radial equations describing the translational motion of the central body, rotational equations describing the attitude motions of the body and several beam equations governing the vibration of the flexible members (platform) including appropriate boundary conditions. In summary, the dynamics of the space structure is governed by a complex system of interconnected partial and ordinary differential equations. Using Lyapunov's approach the asymptotic stability of the space structure is investigated. For asymptotic stability of the rest state (nominal trajectory), feedback controls are suggested. In the investigation, stability of the slewing maneuvers is also considered. Several numerical results are presented for illustration of the impact of coupling and the effectiveness of the stabilizing controls. Some insight is provided into the complexity of modeling, analysis and stabilization of actual space structures.

  20. Gas Exchange Models for a Flexible Insect Tracheal System.

    PubMed

    Simelane, S M; Abelman, S; Duncan, F D

    2016-06-01

    In this paper two models for movement of respiratory gases in the insect trachea are presented. One model considers the tracheal system as a single flexible compartment while the other model considers the trachea as a single flexible compartment with gas exchange. This work represents an extension of Ben-Tal's work on compartmental gas exchange in human lungs and is applied to the insect tracheal system. The purpose of the work is to study nonlinear phenomena seen in the insect respiratory system. It is assumed that the flow inside the trachea is laminar, and that the air inside the chamber behaves as an ideal gas. Further, with the isothermal assumption, the expressions for the tracheal partial pressures of oxygen and carbon dioxide, rate of volume change, and the rates of change of oxygen concentration and carbon dioxide concentration are derived. The effects of some flow parameters such as diffusion capacities, reaction rates and air concentrations on net flow are studied. Numerical simulations of the tracheal flow characteristics are performed. The models developed provide a mathematical framework to further investigate gas exchange in insects.

  1. A Flexible Statechart-to-Model-Checker Translator

    NASA Technical Reports Server (NTRS)

    Rouquette, Nicolas; Dunphy, Julia; Feather, Martin S.

    2000-01-01

    Many current-day software design tools offer some variant of statechart notation for system specification. We, like others, have built an automatic translator from (a subset of) statecharts to a model checker, for use to validate behavioral requirements. Our translator is designed to be flexible. This allows us to quickly adjust the translator to variants of statechart semantics, including problem-specific notational conventions that designers employ. Our system demonstration will be of interest to the following two communities: (1) Potential end-users: Our demonstration will show translation from statecharts created in a commercial UML tool (Rational Rose) to Promela, the input language of Holzmann's model checker SPIN. The translation is accomplished automatically. To accommodate the major variants of statechart semantics, our tool offers user-selectable choices among semantic alternatives. Options for customized semantic variants are also made available. The net result is an easy-to-use tool that operates on a wide range of statechart diagrams to automate the pathway to model-checking input. (2) Other researchers: Our translator embodies, in one tool, ideas and approaches drawn from several sources. Solutions to the major challenges of statechart-to-model-checker translation (e.g., determining which transition(s) will fire, handling of concurrent activities) are retired in a uniform, fully mechanized, setting. The way in which the underlying architecture of the translator itself facilitates flexible and customizable translation will also be evident.

  2. Human Operator Control Strategy Model.

    DTIC Science & Technology

    1980-04-01

    control learning control strategy N computer simulation of motor behavior ABSTRACT (Continue on reverese ide If necesery end Identify by block numbe...Frank Vogler has been a continuing resource during testing and analysis phases. Cooperative Plan students Kirk Hoyer , Bob Baltar, and Bob Hummel have...Introduction ....... .................... .. 79 1. Question 1: Do HOPE models match human behavior to an acceptable extent? .... ............ ... 80

  3. Nonlinear damping model for flexible structures. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zang, Weijian

    1990-01-01

    The study of nonlinear damping problem of flexible structures is addressed. Both passive and active damping, both finite dimensional and infinite dimensional models are studied. In the first part, the spectral density and the correlation function of a single DOF nonlinear damping model is investigated. A formula for the spectral density is established with O(Gamma(sub 2)) accuracy based upon Fokker-Planck technique and perturbation. The spectral density depends upon certain first order statistics which could be obtained if the stationary density is known. A method is proposed to find the approximate stationary density explicitly. In the second part, the spectral density of a multi-DOF nonlinear damping model is investigated. In the third part, energy type nonlinear damping model in an infinite dimensional setting is studied.

  4. TREAT Modeling and Simulation Strategy

    SciTech Connect

    DeHart, Mark David

    2015-09-01

    This report summarizes a four-phase process used to describe the strategy in developing modeling and simulation software for the Transient Reactor Test Facility. The four phases of this research and development task are identified as (1) full core transient calculations with feedback, (2) experiment modeling, (3) full core plus experiment simulation and (4) quality assurance. The document describes the four phases, the relationship between these research phases, and anticipated needs within each phase.

  5. Protein flexibility and ligand recognition: challenges for molecular modeling.

    PubMed

    Spyrakis, Francesca; BidonChanal, Axel; Barril, Xavier; Luque, F Javier

    2011-01-01

    The intrinsic dynamics of macromolecules is an essential property to relate the structure of biomolecular systems with their function in the cell. In the field of ligand-receptor recognition, numerous evidences have revealed the limitations of the lock-and-key theory, and the need to elaborate models that take into account the inherent plasticity of biomolecules, such as the induced-fit model or the existence of an ensemble of pre-equilibrated conformations. Depending on the nature of the target system, ligand binding can be associated with small local adjustments in side chains or even the backbone to large-scale motions of structural fragments, domains or even subunits. Reproducing the inherent flexibility of biomolecules has thus become one of the most challenging issues in molecular modeling and simulation studies, as it has direct implications in our understanding of the structure-function relationships, but even in areas such as virtual screening and structure-based drug discovery. Given the intrinsic limitation of conventional simulation tools, only events occurring in short time scales can be reproduced at a high accuracy level through all-atom techniques such as Molecular Dynamics simulations. However, larger structural rearrangements demand the use of enhanced sampling methods relying on modified descriptions of the biomolecular system or the potential surface. This review illustrates the crucial role that structural plasticity plays in mediating ligand recognition through representative examples. In addition, it discusses some of the most powerful computational tools developed to characterize the conformational flexibility in ligand-receptor complexes.

  6. Optimal strategies for virtual screening of induced-fit and flexible target in the 2015 D3R Grand Challenge.

    PubMed

    Ye, Zhaofeng; Baumgartner, Matthew P; Wingert, Bentley M; Camacho, Carlos J

    2016-09-01

    Induced fit or protein flexibility can make a given structure less useful for docking and/or scoring. The 2015 Drug Design Data Resource (D3R) Grand Challenge provided a unique opportunity to prospectively test optimal strategies for virtual screening in these type of targets: heat shock protein 90 (HSP90), a protein with multiple ligand-induced binding modes; and mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), a kinase with a large flexible pocket. Using previously known co-crystal structures, we tested predictions from methods that keep the receptor structure fixed and used (a) multiple receptor/ligand co-crystals as binding templates for minimization or docking ("close"), (b) methods that align or dock to a single receptor ("cross"), and (c) a hybrid approach that chose from multiple bound ligands as initial templates for minimization to a single receptor ("min-cross"). Pose prediction using our "close" models resulted in average ligand RMSDs of 0.32 and 1.6 Å for HSP90 and MAP4K4, respectively, the most accurate models of the community-wide challenge. On the other hand, affinity ranking using our "cross" methods performed well overall despite the fact that a fixed receptor cannot model ligand-induced structural changes,. In addition, "close" methods that leverage the co-crystals of the different binding modes of HSP90 also predicted the best affinity ranking. Our studies suggest that analysis of changes on the receptor structure upon ligand binding can help select an optimal virtual screening strategy.

  7. Optimal strategies for virtual screening of induced-fit and flexible target in the 2015 D3R Grand Challenge

    NASA Astrophysics Data System (ADS)

    Ye, Zhaofeng; Baumgartner, Matthew P.; Wingert, Bentley M.; Camacho, Carlos J.

    2016-09-01

    Induced fit or protein flexibility can make a given structure less useful for docking and/or scoring. The 2015 Drug Design Data Resource (D3R) Grand Challenge provided a unique opportunity to prospectively test optimal strategies for virtual screening in these type of targets: heat shock protein 90 (HSP90), a protein with multiple ligand-induced binding modes; and mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), a kinase with a large flexible pocket. Using previously known co-crystal structures, we tested predictions from methods that keep the receptor structure fixed and used (a) multiple receptor/ligand co-crystals as binding templates for minimization or docking ("close"), (b) methods that align or dock to a single receptor ("cross"), and (c) a hybrid approach that chose from multiple bound ligands as initial templates for minimization to a single receptor ("min-cross"). Pose prediction using our "close" models resulted in average ligand RMSDs of 0.32 and 1.6 Å for HSP90 and MAP4K4, respectively, the most accurate models of the community-wide challenge. On the other hand, affinity ranking using our "cross" methods performed well overall despite the fact that a fixed receptor cannot model ligand-induced structural changes,. In addition, "close" methods that leverage the co-crystals of the different binding modes of HSP90 also predicted the best affinity ranking. Our studies suggest that analysis of changes on the receptor structure upon ligand binding can help select an optimal virtual screening strategy.

  8. The MARINA Risk Assessment Strategy: A Flexible Strategy for Efficient Information Collection and Risk Assessment of Nanomaterials.

    PubMed

    Bos, Peter M J; Gottardo, Stefania; Scott-Fordsmand, Janeck J; van Tongeren, Martie; Semenzin, Elena; Fernandes, Teresa F; Hristozov, Danail; Hund-Rinke, Kerstin; Hunt, Neil; Irfan, Muhammad-Adeel; Landsiedel, Robert; Peijnenburg, Willie J G M; Sánchez Jiménez, Araceli; van Kesteren, Petra C E; Oomen, Agnes G

    2015-11-27

    An engineered nanomaterial (ENM) may actually consist of a population of primary particles, aggregates and agglomerates of various sizes. Furthermore, their physico-chemical characteristics may change during the various life-cycle stages. It will probably not be feasible to test all varieties of all ENMs for possible health and environmental risks. There is therefore a need to further develop the approaches for risk assessment of ENMs. Within the EU FP7 project Managing Risks of Nanoparticles (MARINA) a two-phase risk assessment strategy has been developed. In Phase 1 (Problem framing) a base set of information is considered, relevant exposure scenarios (RESs) are identified and the scope for Phase 2 (Risk assessment) is established. The relevance of an RES is indicated by information on exposure, fate/kinetics and/or hazard; these three domains are included as separate pillars that contain specific tools. Phase 2 consists of an iterative process of risk characterization, identification of data needs and integrated collection and evaluation of data on the three domains, until sufficient information is obtained to conclude on possible risks in a RES. Only data are generated that are considered to be needed for the purpose of risk assessment. A fourth pillar, risk characterization, is defined and it contains risk assessment tools. This strategy describes a flexible and efficient approach for data collection and risk assessment which is essential to ensure safety of ENMs. Further developments are needed to provide guidance and make the MARINA Risk Assessment Strategy operational. Case studies will be needed to refine the strategy.

  9. The MARINA Risk Assessment Strategy: A Flexible Strategy for Efficient Information Collection and Risk Assessment of Nanomaterials

    PubMed Central

    Bos, Peter M. J.; Gottardo, Stefania; Scott-Fordsmand, Janeck J.; van Tongeren, Martie; Semenzin, Elena; Fernandes, Teresa F.; Hristozov, Danail; Hund-Rinke, Kerstin; Hunt, Neil; Irfan, Muhammad-Adeel; Landsiedel, Robert; Peijnenburg, Willie J. G. M.; Sánchez Jiménez, Araceli; van Kesteren, Petra C. E.; Oomen, Agnes G.

    2015-01-01

    An engineered nanomaterial (ENM) may actually consist of a population of primary particles, aggregates and agglomerates of various sizes. Furthermore, their physico-chemical characteristics may change during the various life-cycle stages. It will probably not be feasible to test all varieties of all ENMs for possible health and environmental risks. There is therefore a need to further develop the approaches for risk assessment of ENMs. Within the EU FP7 project Managing Risks of Nanoparticles (MARINA) a two-phase risk assessment strategy has been developed. In Phase 1 (Problem framing) a base set of information is considered, relevant exposure scenarios (RESs) are identified and the scope for Phase 2 (Risk assessment) is established. The relevance of an RES is indicated by information on exposure, fate/kinetics and/or hazard; these three domains are included as separate pillars that contain specific tools. Phase 2 consists of an iterative process of risk characterization, identification of data needs and integrated collection and evaluation of data on the three domains, until sufficient information is obtained to conclude on possible risks in a RES. Only data are generated that are considered to be needed for the purpose of risk assessment. A fourth pillar, risk characterization, is defined and it contains risk assessment tools. This strategy describes a flexible and efficient approach for data collection and risk assessment which is essential to ensure safety of ENMs. Further developments are needed to provide guidance and make the MARINA Risk Assessment Strategy operational. Case studies will be needed to refine the strategy. PMID:26633430

  10. Inverse problems in the modeling of vibrations of flexible beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Powers, R. K.; Rosen, I. G.

    1987-01-01

    The formulation and solution of inverse problems for the estimation of parameters which describe damping and other dynamic properties in distributed models for the vibration of flexible structures is considered. Motivated by a slewing beam experiment, the identification of a nonlinear velocity dependent term which models air drag damping in the Euler-Bernoulli equation is investigated. Galerkin techniques are used to generate finite dimensional approximations. Convergence estimates and numerical results are given. The modeling of, and related inverse problems for the dynamics of a high pressure hose line feeding a gas thruster actuator at the tip of a cantilevered beam are then considered. Approximation and convergence are discussed and numerical results involving experimental data are presented.

  11. Dynamical modeling of serial manipulators with flexible links and joints using the method of kinematic influence

    NASA Technical Reports Server (NTRS)

    Graves, Philip L.

    1989-01-01

    A method of formulating the dynamical equations of a flexible, serial manipulator is presented, using the Method of Kinematic Influence. The resulting equations account for rigid body motion, structural motion due to link and joint flexibilities, and the coupling between these two motions. Nonlinear inertial loads are included in the equations. A finite order mode summation method is used to model flexibilities. The structural data may be obtained from experimental, finite element, or analytical methods. Nonlinear flexibilities may be included in the model.

  12. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Pitsch, Heinz

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation; a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet transformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  13. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Heinz Pitsch

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  14. A simple model of backbone flexibility improves modeling of side-chain conformational variability.

    PubMed

    Friedland, Gregory D; Linares, Anthony J; Smith, Colin A; Kortemme, Tanja

    2008-07-18

    The considerable flexibility of side-chains in folded proteins is important for protein stability and function, and may have a role in mediating allosteric interactions. While sampling side-chain degrees of freedom has been an integral part of several successful computational protein design methods, the predictions of these approaches have not been directly compared to experimental measurements of side-chain motional amplitudes. In addition, protein design methods frequently keep the backbone fixed, an approximation that may substantially limit the ability to accurately model side-chain flexibility. Here, we describe a Monte Carlo approach to modeling side-chain conformational variability and validate our method against a large dataset of methyl relaxation order parameters derived from nuclear magnetic resonance (NMR) experiments (17 proteins and a total of 530 data points). We also evaluate a model of backbone flexibility based on Backrub motions, a type of conformational change frequently observed in ultra-high-resolution X-ray structures that accounts for correlated side-chain backbone movements. The fixed-backbone model performs reasonably well with an overall rmsd between computed and predicted side-chain order parameters of 0.26. Notably, including backbone flexibility leads to significant improvements in modeling side-chain order parameters for ten of the 17 proteins in the set. Greater accuracy of the flexible backbone model results from both increases and decreases in side-chain flexibility relative to the fixed-backbone model. This simple flexible-backbone model should be useful for a variety of protein design applications, including improved modeling of protein-protein interactions, design of proteins with desired flexibility or rigidity, and prediction of correlated motions within proteins.

  15. Model updating in flexible-link multibody systems

    NASA Astrophysics Data System (ADS)

    Belotti, R.; Caneva, G.; Palomba, I.; Richiedei, D.; Trevisani, A.

    2016-09-01

    The dynamic response of flexible-link multibody systems (FLMSs) can be predicted through nonlinear models based on finite elements, to describe the coupling between rigid- body and elastic behaviour. Their accuracy should be as high as possible to synthesize controllers and observers. Model updating based on experimental measurements is hence necessary. By taking advantage of the experimental modal analysis, this work proposes a model updating procedure for FLMSs and applies it experimentally to a planar robot. Indeed, several peculiarities of the model of FLMS should be carefully tackled. On the one hand, nonlinear models of a FLMS should be linearized about static equilibrium configurations. On the other, the experimental mode shapes should be corrected to be consistent with the elastic displacements represented in the model, which are defined with respect to a fictitious moving reference (the equivalent rigid link system). Then, since rotational degrees of freedom are also represented in the model, interpolation of the experimental data should be performed to match the model displacement vector. Model updating has been finally cast as an optimization problem in the presence of bounds on the feasible values, by also adopting methods to improve the numerical conditioning and to compute meaningful updated inertial and elastic parameters.

  16. Automated model formulation for time-varying flexible structures

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Hanagud, S.

    1989-01-01

    Presented here is an identification technique that uses the sensor information to choose a new model out of a finite set of discrete model space, in order to follow the observed changes to the given time varying flexible structure. Boundary condition sets or other information on model variations are used to organize the set of possible models laterally into a search tree with levels of abstraction used to order the models vertically within branches. An object-oriented programming approach is used to represent the model set in the search tree. A modified A (asterisk) best first search algorithm finds the model where the model response best matches the current observations. Several extensions to this methodology are discussed. Methods of possible integration of rules with the current search algorithm are considered to give weight to interpreted trends that may be found in a series of observations. This capability might lead, for instance, to identifying a model that incorporates a progressive damage rather than with incorrect paramenters such as added mass. Another new direction is to consider the use of noisy time domain sensor feedback rather than frequency domain information in the search algorithm to improve the real-time capability of the developed procedure.

  17. Automated model formulation for time-varying flexible structures

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Hanagud, S.

    1989-01-01

    Presented here is an identification technique that uses the sensor information to choose a new model out of a finite set of discrete model space, in order to follow the observed changes to the given time varying flexible structure. Boundary condition sets or other information on model variations are used to organize the set of possible models laterally into a search tree with levels of abstraction used to order the models vertically within branches. An object-oriented programming approach is used to represent the model set in the search tree. A modified A (asterisk) best first search algorithm finds the model where the model response best matches the current observations. Several extensions to this methodology are discussed. Methods of possible integration of rules with the current search algorithm are considered to give weight to interpreted trends that may be found in a series of observations. This capability might lead, for instance, to identifying a model that incorporates a progressive damage rather than with incorrect paramenters such as added mass. Another new direction is to consider the use of noisy time domain sensor feedback rather than frequency domain information in the search algorithm to improve the real-time capability of the developed procedure.

  18. Flexible and Versatile Strategy for the Construction of Large Biochemical Pathways.

    PubMed

    Yuan, Yongbo; Andersen, Erik; Zhao, Huimin

    2016-01-15

    Synthetic pathways and circuits have been increasingly used for microbial production of fuels and chemicals. Here, we report a flexible and versatile DNA assembly strategy that allows rapid, modular, and reliable construction of biological pathways and circuits from basic genetic parts. This strategy combines the automation-friendly ligase cycling reaction (LCR) method and the high-fidelity in vivo yeast-based DNA assembly method, DNA assembler. Briefly, LCR is used to preassemble basic genetic parts into gene expression cassettes or to preassemble small parts into larger parts to reduce the number of parts, in which many basic genetic parts can be reused. With the help of specially designed unique linkers, all preassembled parts will then be directly assembled using DNA assembler to build the target constructs. As proof of concept, three plasmids with varying sizes of 13.4, 24, and 44 kb were rapidly constructed with fidelities of 100, 88, and 71%, respectively. The yeast strain harboring the constructed 44 kb plasmid was confirmed to be capable of utilizing xylose, cellobiose, and glucose to produce zeaxanthin. This strategy should be generally applicable to any custom-designed pathways, circuits, or plasmids.

  19. Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility.

    PubMed

    Tian, Sheng; Sun, Huiyong; Pan, Peichen; Li, Dan; Zhen, Xuechu; Li, Youyong; Hou, Tingjun

    2014-10-27

    In this study, to accommodate receptor flexibility, based on multiple receptor conformations, a novel ensemble docking protocol was developed by using the naïve Bayesian classification technique, and it was evaluated in terms of the prediction accuracy of docking-based virtual screening (VS) of three important targets in the kinase family: ALK, CDK2, and VEGFR2. First, for each target, the representative crystal structures were selected by structural clustering, and the capability of molecular docking based on each representative structure to discriminate inhibitors from non-inhibitors was examined. Then, for each target, 50 ns molecular dynamics (MD) simulations were carried out to generate an ensemble of the conformations, and multiple representative structures/snapshots were extracted from each MD trajectory by structural clustering. On average, the representative crystal structures outperform the representative structures extracted from MD simulations in terms of the capabilities to separate inhibitors from non-inhibitors. Finally, by using the naïve Bayesian classification technique, an integrated VS strategy was developed to combine the prediction results of molecular docking based on different representative conformations chosen from crystal structures and MD trajectories. It was encouraging to observe that the integrated VS strategy yields better performance than the docking-based VS based on any single rigid conformation. This novel protocol may provide an improvement over existing strategies to search for more diverse and promising active compounds for a target of interest.

  20. Aeroelastic modeling of the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Heeg, Jennifer; Bennett, Robert M.

    1991-01-01

    The primary issues involved in the generation of linear, state-space equations of motion of a flexible wind tunnel model, the Active Flexible Wing (AFW), are discussed. The codes that were used and their inherent assumptions and limitations are also briefly discussed. The application of the CAP-TSD code to the AFW for determination of the model's transonic flutter boundary is included as well.

  1. Direct Adaptive Control Methodologies for Flexible-Joint Space Manipulators with Uncertainties and Modeling Errors

    NASA Astrophysics Data System (ADS)

    Ulrich, Steve

    This work addresses the direct adaptive trajectory tracking control problem associated with lightweight space robotic manipulators that exhibit elastic vibrations in their joints, and which are subject to parametric uncertainties and modeling errors. Unlike existing adaptive control methodologies, the proposed flexible-joint control techniques do not require identification of unknown parameters, or mathematical models of the system to be controlled. The direct adaptive controllers developed in this work are based on the model reference adaptive control approach, and manage modeling errors and parametric uncertainties by time-varying the controller gains using new adaptation mechanisms, thereby reducing the errors between an ideal model and the actual robot system. More specifically, new decentralized adaptation mechanisms derived from the simple adaptive control technique and fuzzy logic control theory are considered in this work. Numerical simulations compare the performance of the adaptive controllers with a nonadaptive and a conventional model-based controller, in the context of 12.6 m xx 12.6 m square trajectory tracking. To validate the robustness of the controllers to modeling errors, a new dynamics formulation that includes several nonlinear effects usually neglected in flexible-joint dynamics models is proposed. Results obtained with the adaptive methodologies demonstrate an increased robustness to both uncertainties in joint stiffness coefficients and dynamics modeling errors, as well as highly improved tracking performance compared with the nonadaptive and model-based strategies. Finally, this work considers the partial state feedback problem related to flexible-joint space robotic manipulators equipped only with sensors that provide noisy measurements of motor positions and velocities. An extended Kalman filter-based estimation strategy is developed to estimate all state variables in real-time. The state estimation filter is combined with an adaptive

  2. Organizational Learning, Strategic Flexibility and Business Model Innovation: An Empirical Research Based on Logistics Enterprises

    NASA Astrophysics Data System (ADS)

    Bao, Yaodong; Cheng, Lin; Zhang, Jian

    Using the data of 237 Jiangsu logistics firms, this paper empirically studies the relationship among organizational learning capability, business model innovation, strategic flexibility. The results show as follows; organizational learning capability has positive impacts on business model innovation performance; strategic flexibility plays mediating roles on the relationship between organizational learning capability and business model innovation; interaction among strategic flexibility, explorative learning and exploitative learning play significant roles in radical business model innovation and incremental business model innovation.

  3. Introducing MERGANSER: A Flexible Framework for Ecological Niche Modeling

    NASA Astrophysics Data System (ADS)

    Klawonn, M.; Dow, E. M.

    2015-12-01

    Ecological Niche Modeling (ENM) is a collection of techniques to find a "fundamental niche", the range of environmental conditions suitable for a species' survival in the absence of inter-species interactions, given a set of environmental parameters. Traditional approaches to ENM face a number of obstacles including limited data accessibility, data management problems, computational costs, interface usability, and model validation. The MERGANSER system, which stands for Modeling Ecological Residency Given A Normalized Set of Environmental Records, addresses these issues through powerful data persistence and flexible data access, coupled with a clear presentation of results and fine-tuned control over model parameters. MERGANSER leverages data measuring 72 weather related phenomena, land cover, soil type, population, species occurrence, general species information, and elevation, totaling over 1.5 TB of data. To the best of the authors' knowledge, MERGANSER uses higher-resolution spatial data sets than previously published models. Since MERGANSER stores data in an instance of Apache SOLR, layers generated in support of niche models are accessible to users via simplified Apache Lucene queries. This is made even simpler via an HTTP front end that generates Lucene queries automatically. Specifically, a user need only enter the name of a place and a species to run a model. Using this approach to synthesizing model layers, the MERGANSER system has successfully reproduced previously published niche model results with a simplified user experience. Input layers for the model are generated dynamically using OpenStreetMap and SOLR's spatial search functionality. Models are then run using either user-specified or automatically determined parameters after normalizing them into a common grid. Finally, results are visualized in the web interface, which allows for quick validation. Model results and all surrounding metadata are also accessible to the user for further study.

  4. Flexible variable selection for recovering sparsity in nonadditive nonparametric models.

    PubMed

    Fang, Zaili; Kim, Inyoung; Schaumont, Patrick

    2016-12-01

    Variable selection for recovering sparsity in nonadditive and nonparametric models with high-dimensional variables has been challenging. This problem becomes even more difficult due to complications in modeling unknown interaction terms among high-dimensional variables. There is currently no variable selection method to overcome these limitations. Hence, in this article we propose a variable selection approach that is developed by connecting a kernel machine with the nonparametric regression model. The advantages of our approach are that it can: (i) recover the sparsity; (ii) automatically model unknown and complicated interactions; (iii) connect with several existing approaches including linear nonnegative garrote and multiple kernel learning; and (iv) provide flexibility for both additive and nonadditive nonparametric models. Our approach can be viewed as a nonlinear version of a nonnegative garrote method. We model the smoothing function by a Least Squares Kernel Machine (LSKM) and construct the nonnegative garrote objective function as the function of the sparse scale parameters of kernel machine to recover sparsity of input variables whose relevances to the response are measured by the scale parameters. We also provide the asymptotic properties of our approach. We show that sparsistency is satisfied with consistent initial kernel function coefficients under certain conditions. An efficient coordinate descent/backfitting algorithm is developed. A resampling procedure for our variable selection methodology is also proposed to improve the power. © 2016, The International Biometric Society.

  5. Modeling and Simulation of Variable Mass, Flexible Structures

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Matras, Alex L.; Wilson, Heath E.

    2009-01-01

    The advent of the new Ares I launch vehicle has highlighted the need for advanced dynamic analysis tools for variable mass, flexible structures. This system is composed of interconnected flexible stages or components undergoing rapid mass depletion through the consumption of solid or liquid propellant. In addition to large rigid body configuration changes, the system simultaneously experiences elastic deformations. In most applications, the elastic deformations are compatible with linear strain-displacement relationships and are typically modeled using the assumed modes technique. The deformation of the system is approximated through the linear combination of the products of spatial shape functions and generalized time coordinates. Spatial shape functions are traditionally composed of normal mode shapes of the system or even constraint modes and static deformations derived from finite element models of the system. Equations of motion for systems undergoing coupled large rigid body motion and elastic deformation have previously been derived through a number of techniques [1]. However, in these derivations, the mode shapes or spatial shape functions of the system components were considered constant. But with the Ares I vehicle, the structural characteristics of the system are changing with the mass of the system. Previous approaches to solving this problem involve periodic updates to the spatial shape functions or interpolation between shape functions based on system mass or elapsed mission time. These solutions often introduce misleading or even unstable numerical transients into the system. Plus, interpolation on a shape function is not intuitive. This paper presents an approach in which the shape functions are held constant and operate on the changing mass and stiffness matrices of the vehicle components. Each vehicle stage or component finite element model is broken into dry structure and propellant models. A library of propellant models is used to describe the

  6. Modeling and control of flexible space platforms with articulated payloads

    NASA Technical Reports Server (NTRS)

    Graves, Philip C.; Joshi, Suresh M.

    1989-01-01

    The first steps in developing a methodology for spacecraft control-structure interaction (CSI) optimization are identification and classification of anticipated missions, and the development of tractable mathematical models in each mission class. A mathematical model of a generic large flexible space platform (LFSP) with multiple independently pointed rigid payloads is considered. The objective is not to develop a general purpose numerical simulation, but rather to develop an analytically tractable mathematical model of such composite systems. The equations of motion for a single payload case are derived, and are linearized about zero steady-state. The resulting model is then extended to include multiple rigid payloads, yielding the desired analytical form. The mathematical models developed clearly show the internal inertial/elastic couplings, and are therefore suitable for analytical and numerical studies. A simple decentralized control law is proposed for fine pointing the payloads and LFSP attitude control, and simulation results are presented for an example problem. The decentralized controller is shown to be adequate for the example problem chosen, but does not, in general, guarantee stability. A centralized dissipative controller is then proposed, requiring a symmetric form of the composite system equations. Such a controller guarantees robust closed loop stability despite unmodeled elastic dynamics and parameter uncertainties.

  7. copCAR: A Flexible Regression Model for Areal Data.

    PubMed

    Hughes, John

    2015-09-16

    Non-Gaussian spatial data are common in many fields. When fitting regressions for such data, one needs to account for spatial dependence to ensure reliable inference for the regression coefficients. The two most commonly used regression models for spatially aggregated data are the automodel and the areal generalized linear mixed model (GLMM). These models induce spatial dependence in different ways but share the smoothing approach, which is intuitive but problematic. This article develops a new regression model for areal data. The new model is called copCAR because it is copula-based and employs the areal GLMM's conditional autoregression (CAR). copCAR overcomes many of the drawbacks of the automodel and the areal GLMM. Specifically, copCAR (1) is flexible and intuitive, (2) permits positive spatial dependence for all types of data, (3) permits efficient computation, and (4) provides reliable spatial regression inference and information about dependence strength. An implementation is provided by R package copCAR, which is available from the Comprehensive R Archive Network, and supplementary materials are available online.

  8. Bayesian Approach for Flexible Modeling of Semicompeting Risks Data

    PubMed Central

    Han, Baoguang; Yu, Menggang; Dignam, James J.; Rathouz, Paul J.

    2016-01-01

    Summary Semicompeting risks data arise when two types of events, non-terminal and terminal, are observed. When the terminal event occurs first, it censors the non-terminal event, but not vice versa. To account for possible dependent censoring of the non-terminal event by the terminal event and to improve prediction of the terminal event using the non-terminal event information, it is crucial to model their association properly. Motivated by a breast cancer clinical trial data analysis, we extend the well-known illness-death models to allow flexible random effects to capture heterogeneous association structures in the data. Our extension also represents a generalization of the popular shared frailty models that usually assume that the non-terminal event does not affect the hazards of the terminal event beyond a frailty term. We propose a unified Bayesian modeling approach that can utilize existing software packages for both model fitting and individual specific event prediction. The approach is demonstrated via both simulation studies and a breast cancer data set analysis. PMID:25274445

  9. Flexible space structure model reduction by modal cost analysis

    NASA Technical Reports Server (NTRS)

    Skelton, R. E.; Hughes, P. C.

    1979-01-01

    It is noted that reduced models and reduced controllers for flexible space structures are obtained by retaining those modes which make the greatest contribution to quadratic control objectives. Attention is given to the relative importance of damping, frequency and mode shapes in the mode truncation decisions for the following control objectives: attitude control, vibration suppression and figure control. It is also shown that using Modal Cost Analysis (MCA) on the closed loop modes of the optimally controlled system allows the construction of reduced control policies which feedback only those closed loop coordinates which are most critical to the quadratic control performance criterion. In this manner, the modes which need to be controlled are deduced from truncations of the optimal controller.

  10. Computer models of the human immunoglobulins shape and segmental flexibility.

    PubMed

    Pumphrey, R

    1986-06-01

    At present there is interest in the design and deployment of engineered biosensor molecules. Antibodies are the most versatile of the naturally occurring biosensors and it is important to understand their mechanical properties and the ways in which they can interact with their natural ligands. Two dimensional representations are clearly inadequate, and three dimensional representations are too complicated to manipulate except as numerical abstractions in computers. Recent improvements in computer graphics allow these coordinate matrices to be seen and more easily comprehended, and interactive programs permit the modification and reassembly of molecular fragments. The models which result have distinct advantages both over those of lower resolution, and those showing every atom, which are limited to the few fragments(2-5) or mutant molecules for which the X-ray crystallographic coordinates are known. In this review Richard Pumphrey describes the shape and flexibility of immunoglobulin molecules in relation to the three dimensional structure. Copyright © 1986. Published by Elsevier B.V.

  11. Flexible space structure model reduction by modal cost analysis

    NASA Technical Reports Server (NTRS)

    Skelton, R. E.; Hughes, P. C.

    1979-01-01

    It is noted that reduced models and reduced controllers for flexible space structures are obtained by retaining those modes which make the greatest contribution to quadratic control objectives. Attention is given to the relative importance of damping, frequency and mode shapes in the mode truncation decisions for the following control objectives: attitude control, vibration suppression and figure control. It is also shown that using Modal Cost Analysis (MCA) on the closed loop modes of the optimally controlled system allows the construction of reduced control policies which feedback only those closed loop coordinates which are most critical to the quadratic control performance criterion. In this manner, the modes which need to be controlled are deduced from truncations of the optimal controller.

  12. Multivariable flexible modelling for estimating complete, smoothed life tables for sub-national populations.

    PubMed

    Rachet, Bernard; Maringe, Camille; Woods, Laura M; Ellis, Libby; Spika, Devon; Allemani, Claudia

    2015-12-16

    The methods currently available to estimate age- and sex-specific mortality rates for sub-populations are subject to a number of important limitations. We propose two alternative multivariable approaches: a relational model and a Poisson model both using restricted cubic splines. We evaluated a flexible Poisson and flexible relational model against the Elandt-Johnson approach in a simulation study using 100 random samples of population and death counts, with different sampling proportions and data arrangements. Estimated rates were compared to the original mortality rates using goodness-of-fit measures and life expectancy. We further investigated an approach for determining optimal knot locations in the Poisson model. The flexible Poisson model outperformed the flexible relational and Elandt-Johnson methods with the smallest sample of data (1%). With the largest sample of data (20%), the flexible Poisson and flexible relational models performed comparably, though the flexible Poisson model displayed a slight advantage. Both approaches tended to underestimate infant mortality and thereby overestimate life expectancy at birth. The flexible Poisson model performed much better at young ages when knots were fixed a priori. For ages 30 and above, results were similar to the model with no fixed knots. The flexible Poisson model is recommended because it derives robust and unbiased estimates for sub-populations without making strong assumptions about age-specific mortality profiles. Fixing knots a priori in the final model greatly improves fit at the young ages.

  13. Bending induced electrical response variations in ultra-thin flexible chips and device modeling

    NASA Astrophysics Data System (ADS)

    Heidari, Hadi; Wacker, Nicoleta; Dahiya, Ravinder

    2017-09-01

    Electronics that conform to 3D surfaces are attracting wider attention from both academia and industry. The research in the field has, thus far, focused primarily on showcasing the efficacy of various materials and fabrication methods for electronic/sensing devices on flexible substrates. As the device response changes are bound to change with stresses induced by bending, the next step will be to develop the capacity to predict the response of flexible systems under various bending conditions. This paper comprehensively reviews the effects of bending on the response of devices on ultra-thin chips in terms of variations in electrical parameters such as mobility, threshold voltage, and device performance (static and dynamic). The discussion also includes variations in the device response due to crystal orientation, applied mechanics, band structure, and fabrication processes. Further, strategies for compensating or minimizing these bending-induced variations have been presented. Following the in-depth analysis, this paper proposes new mathematical relations to simulate and predict the device response under various bending conditions. These mathematical relations have also been used to develop new compact models that have been verified by comparing simulation results with the experimental values reported in the recent literature. These advances will enable next generation computer-aided-design tools to meet the future design needs in flexible electronics.

  14. Real-time dynamics and control strategies for space operations of flexible structures

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alvin, K. F.; Alexander, S.

    1993-01-01

    This project (NAG9-574) was meant to be a three-year research project. However, due to NASA's reorganizations during 1992, the project was funded only for one year. Accordingly, every effort was made to make the present final report as if the project was meant to be for one-year duration. Originally, during the first year we were planning to accomplish the following: we were to start with a three dimensional flexible manipulator beam with articulated joints and with a linear control-based controller applied at the joints; using this simple example, we were to design the software systems requirements for real-time processing, introduce the streamlining of various computational algorithms, perform the necessary reorganization of the partitioned simulation procedures, and assess the potential speed-up realization of the solution process by parallel computations. The three reports included as part of the final report address: the streamlining of various computational algorithms; the necessary reorganization of the partitioned simulation procedures, in particular the observer models; and an initial attempt of reconfiguring the flexible space structures.

  15. Adaptive Strategies for Controls of Flexible Arms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yuan, Bau-San

    1989-01-01

    An adaptive controller for a modern manipulator has been designed based on asymptotical stability via the Lyapunov criterion with the output error between the system and a reference model used as the actuating control signal. Computer simulations were carried out to test the design. The combination of the adaptive controller and a system vibration and mode shape estimator show that the flexible arm should move along a pre-defined trajectory with high-speed motion and fast vibration setting time. An existing computer-controlled prototype two link manipulator, RALF (Robotic Arm, Large Flexible), with a parallel mechanism driven by hydraulic actuators was used to verify the mathematical analysis. The experimental results illustrate that assumed modes found from finite element techniques can be used to derive the equations of motion with acceptable accuracy. The robust adaptive (modal) control is implemented to compensate for unmodelled modes and nonlinearities and is compared with the joint feedback control in additional experiments. Preliminary results show promise for the experimental control algorithm.

  16. Why did the meerkat cross the road? Flexible adaptation of phylogenetically-old behavioural strategies to modern-day threats.

    PubMed

    Perony, Nicolas; Townsend, Simon W

    2013-01-01

    Risk-sensitive adaptive spatial organisation during group movement has been shown to efficiently minimise the risks associated with external ecological threats. Whether animals can draw on such behaviours when confronted with man-made threats is generally less clear. We studied road-crossing in a wild, but habituated, population of meerkats living in the Kalahari Desert, South Africa. We found that dominant females, the core member in meerkat social systems, led groups to the road significantly more often than subordinates, yet were consistently less likely to cross first. Our results suggest that a reshuffling occurs in progression order when meerkat groups reach the road. By employing a simple model of collective movement, we have shown that risk aversion alone may be sufficient to explain this reshuffling, but that the risk aversion of dominant females toward road crossing is significantly higher than that of subordinates. It seems that by not crossing first, dominant females avoid occupying the most risky, exposed locations, such as at the front of the group--a potential selfish strategy that also promotes the long-term stability and hence reproductive output of their family groups. We argue that our findings support the idea that animals can flexibly apply phylogenetically-old behavioural strategies to deal with emerging modern-day problems.

  17. Why Did the Meerkat Cross the Road? Flexible Adaptation of Phylogenetically-Old Behavioural Strategies to Modern-Day Threats

    PubMed Central

    Perony, Nicolas; Townsend, Simon W.

    2013-01-01

    Risk-sensitive adaptive spatial organisation during group movement has been shown to efficiently minimise the risks associated with external ecological threats. Whether animals can draw on such behaviours when confronted with man-made threats is generally less clear. We studied road-crossing in a wild, but habituated, population of meerkats living in the Kalahari Desert, South Africa. We found that dominant females, the core member in meerkat social systems, led groups to the road significantly more often than subordinates, yet were consistently less likely to cross first. Our results suggest that a reshuffling occurs in progression order when meerkat groups reach the road. By employing a simple model of collective movement, we have shown that risk aversion alone may be sufficient to explain this reshuffling, but that the risk aversion of dominant females toward road crossing is significantly higher than that of subordinates. It seems that by not crossing first, dominant females avoid occupying the most risky, exposed locations, such as at the front of the group – a potential selfish strategy that also promotes the long-term stability and hence reproductive output of their family groups. We argue that our findings support the idea that animals can flexibly apply phylogenetically-old behavioural strategies to deal with emerging modern-day problems. PMID:23441144

  18. Fabrication of transistors on flexible substrates: from mass-printing to high-resolution alternative lithography strategies.

    PubMed

    Moonen, Pieter F; Yakimets, Iryna; Huskens, Jurriaan

    2012-11-02

    In this report, the development of conventional, mass-printing strategies into high-resolution, alternative patterning techniques is reviewed with the focus on large-area patterning of flexible thin-film transistors (TFTs) for display applications. In the first part, conventional and digital printing techniques are introduced and categorized as far as their development is relevant for this application area. The limitations of conventional printing guides the reader to the second part of the progress report: alternative-lithographic patterning on low-cost flexible foils for the fabrication of flexible TFTs. Soft and nanoimprint lithography-based patterning techniques and their limitations are surveyed with respect to patterning on low-cost flexible foils. These show a shift from fabricating simple microlense structures to more complicated, high-resolution electronic devices. The development of alternative, low-temperature processable materials and the introduction of high-resolution patterning strategies will lead to the low-cost, self-aligned fabrication of flexible displays and solar cells from cheaper but better performing organic materials.

  19. Nonlinear Flutter Aspects of the Flexible HSCT Semispan Model

    NASA Technical Reports Server (NTRS)

    Hajj, Muhammad R.; Silva, Walter A.

    2003-01-01

    The nonlinear aspects that lead to the flutter of an High-Speed Civil Transport (HSCT) Flexible Semispan Model are analyzed. A hierarchy of spectral moments was used to determine the characteristics of the aerodynamic loading and structural strains and motions. The results show that the frequency of the bending motion of the wing varied significantly as the Mach number was increased between 0.90 and 0.97. Examination of the pressure coefficients in terms of mean value and fluctuations showed that the flow characteristics over the wing changed significantly around a Mach number of 0.97. A strong shock was identified near the trailing edge. Nonlinear analysis of the pressure fluctuations, under these conditions, showed nonlinear coupling involving low-frequency components at pressure locations where the mean value was at a local minimum. This shows that the aerodynamic forces acting on the model had nonlinearly coupled frequency components. The results presented here show how nonlinear analysis tools can be used to identify nonlinear aspects of the flutter phenomenon which are needed in the validation of nonlinear computational methodologies. Keywords: Nonlinear aeroelasticity, Flutter, Bispectrum.

  20. A Flexible Bayesian Model for Testing for Transmission Ratio Distortion

    PubMed Central

    Casellas, Joaquim; Manunza, Arianna; Mercader, Anna; Quintanilla, Raquel; Amills, Marcel

    2014-01-01

    Current statistical approaches to investigate the nature and magnitude of transmission ratio distortion (TRD) are scarce and restricted to the most common experimental designs such as F2 populations and backcrosses. In this article, we describe a new Bayesian approach to check TRD within a given biallelic genetic marker in a diploid species, providing a highly flexible framework that can accommodate any kind of population structure. This model relies on the genotype of each offspring and thus integrates all available information from either the parents’ genotypes or population-specific allele frequencies and yields TRD estimates that can be corroborated by the calculation of a Bayes factor (BF). This approach has been evaluated on simulated data sets with appealing statistical performance. As a proof of concept, we have also tested TRD in a porcine population with five half-sib families and 352 offspring. All boars and piglets were genotyped with the Porcine SNP60 BeadChip, whereas genotypes from the sows were not available. The SNP-by-SNP screening of the pig genome revealed 84 SNPs with decisive evidences of TRD (BF > 100) after accounting for multiple testing. Many of these regions contained genes related to biological processes (e.g., nucleosome assembly and co-organization, DNA conformation and packaging, and DNA complex assembly) that are critically associated with embryonic viability. The implementation of this method, which overcomes many of the limitations of previous approaches, should contribute to fostering research on TRD in both model and nonmodel organisms. PMID:25271302

  1. Distinct Tensile Response of Model Semi-flexible Elastomer Networks

    NASA Astrophysics Data System (ADS)

    Aguilera-Mercado, Bernardo M.; Cohen, Claude; Escobedo, Fernando A.

    2011-03-01

    Through coarse-grained molecular modeling, we study how the elastic response strongly depends upon nanostructural heterogeneities in model networks made of semi-flexible chains exhibiting both regular and realistic connectivity. Idealized regular polymer networks have been shown to display a peculiar elastic response similar to that of super-tough natural materials (e.g., organic adhesives inside abalone shells). We investigate the impact of chain stiffness, and the effect of including tri-block copolymer chains, on the network's topology and elastic response. We find in some systems a dual tensile response: a liquid-like behavior at small deformations, and a distinct saw-tooth shaped stress-strain curve at moderate to large deformations. Additionally, stiffer regular networks exhibit a marked hysteresis over loading-unloading cycles that can be deleted by heating-cooling cycles or by performing deformations along different axes. Furthermore, small variations of chain stiffness may entirely change the nature of the network's tensile response from an entropic to an enthalpic elastic regime, and micro-phase separation of different blocks within elastomer networks may significantly enhance their mechanical strength. This work was supported by the American Chemical Society.

  2. Mental health professional experiences of the flexible assertive community treatment model: a grounded theory study.

    PubMed

    Lexén, Annika; Svensson, Bengt

    2016-08-01

    Despite the lack of evidence for effectiveness of the Flexible Assertive Community Treatment (Flexible ACT), the model is considered feasible and is well received by mental health professionals. No current studies have adequately examined mental health professional experiences of working with Flexible ACT. The aim of this study was to explore mental health professional experiences of working with the Flexible ACT model compared with standard care. The study was guided by grounded theory and based on the interviews with 19 theoretically chosen mental health professionals in Swedish urban areas primarily working with consumers with psychosis, who had worked with the Flexible ACT model for at least 6 months. The analysis resulted in the core category: "Flexible ACT and the shared caseload create a common action space" and three main categories: (1) "Flexible ACT fills the need for a systematic approach to crisis intervention"; (2) "Flexible ACT has advantages in the psychosocial working environment"; and (3) "Flexible ACT increases the quality of care". Mental health professionals may benefit from working with the Flexible ACT model through decreased job-strain and stress, increased feeling of being in control over their work situation, and experiences of providing higher quality of care.

  3. Control system design for flexible structures using data models

    NASA Technical Reports Server (NTRS)

    Irwin, R. Dennis; Frazier, W. Garth; Mitchell, Jerrel R.; Medina, Enrique A.; Bukley, Angelia P.

    1993-01-01

    The dynamics and control of flexible aerospace structures exercises many of the engineering disciplines. In recent years there has been considerable research in the developing and tailoring of control system design techniques for these structures. This problem involves designing a control system for a multi-input, multi-output (MIMO) system that satisfies various performance criteria, such as vibration suppression, disturbance and noise rejection, attitude control and slewing control. Considerable progress has been made and demonstrated in control system design techniques for these structures. The key to designing control systems for these structures that meet stringent performance requirements is an accurate model. It has become apparent that theoretically and finite-element generated models do not provide the needed accuracy; almost all successful demonstrations of control system design techniques have involved using test results for fine-tuning a model or for extracting a model using system ID techniques. This paper describes past and ongoing efforts at Ohio University and NASA MSFC to design controllers using 'data models.' The basic philosophy of this approach is to start with a stabilizing controller and frequency response data that describes the plant; then, iteratively vary the free parameters of the controller so that performance measures become closer to satisfying design specifications. The frequency response data can be either experimentally derived or analytically derived. One 'design-with-data' algorithm presented in this paper is called the Compensator Improvement Program (CIP). The current CIP designs controllers for MIMO systems so that classical gain, phase, and attenuation margins are achieved. The center-piece of the CIP algorithm is the constraint improvement technique which is used to calculate a parameter change vector that guarantees an improvement in all unsatisfied, feasible performance metrics from iteration to iteration. The paper also

  4. Comparative performance of high-fidelity training models for flexible ureteroscopy: Are all models effective?

    PubMed

    Mishra, Shashikant; Sharma, Rajan; Kumar, Akhilesh; Ganatra, Pradeep; Sabnis, Ravindra B; Desai, Mahesh R

    2011-10-01

    We performed a comparative study of high-fidelity training models for flexible ureteroscopy (URS). Our objective was to determine whether high-fidelity non-virtual reality (VR) models are as effective as the VR model in teaching flexible URS skills. Twenty-one trained urologists without clinical experience of flexible URS underwent dry lab simulation practice. After a warm-up period of 2 h, tasks were performed on a high-fidelity non-VR (Uro-scopic Trainer™; Endo-Urologie-Modell™) and a high-fidelity VR model (URO Mentor™). The participants were divided equally into three batches with rotation on each of the three stations for 30 min. Performance of the trainees was evaluated by an expert ureteroscopist using pass rating and global rating score (GRS). The participants rated a face validity questionnaire at the end of each session. The GRS improved statistically at evaluation performed after second rotation (P<0.001 for batches 1, 2 and 3). Pass ratings also improved significantly for all training models when the third and first rotations were compared (P<0.05). The batch that was trained on the VR-based model had more improvement on pass ratings on second rotation but could not achieve statistical significance. Most of the realistic domains were higher for a VR model as compared with the non-VR model, except the realism of the flexible endoscope. All the models used for training flexible URS were effective in increasing the GRS and pass ratings irrespective of the VR status.

  5. Language Learning Strategies and Its Training Model

    ERIC Educational Resources Information Center

    Liu, Jing

    2010-01-01

    This paper summarizes and reviews the literature regarding language learning strategies and it's training model, pointing out the significance of language learning strategies to EFL learners and an applicable and effective language learning strategies training model, which is beneficial both to EFL learners and instructors, is badly needed.

  6. Strategies for Accommodating Individuals Styles and Preferences in Flexible Learning Programmes

    ERIC Educational Resources Information Center

    Sadler-Smith, Eugene; J. Smith, Peter

    2004-01-01

    There has been a considerable growth in the use of flexible methods of delivery for workplace learning and development. However, in designing programmes of flexible learning there is often the assumption that learners will exhibit uniformity in the ways in which they process and organise information (cognitive style), in their predispositions…

  7. Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator.

    PubMed

    Dubay, Rickey; Hassan, Marwan; Li, Chunying; Charest, Meaghan

    2014-09-01

    This paper presents a unique approach for active vibration control of a one-link flexible manipulator. The method combines a finite element model of the manipulator and an advanced model predictive controller to suppress vibration at its tip. This hybrid methodology improves significantly over the standard application of a predictive controller for vibration control. The finite element model used in place of standard modelling in the control algorithm provides a more accurate prediction of dynamic behavior, resulting in enhanced control. Closed loop control experiments were performed using the flexible manipulator, instrumented with strain gauges and piezoelectric actuators. In all instances, experimental and simulation results demonstrate that the finite element based predictive controller provides improved active vibration suppression in comparison with using a standard predictive control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Polymer-assisted metal deposition (PAMD): a full-solution strategy for flexible, stretchable, compressible, and wearable metal conductors.

    PubMed

    Yu, You; Yan, Casey; Zheng, Zijian

    2014-08-20

    Metal interconnects, contacts, and electrodes are indispensable elements for most applications of flexible, stretchable, and wearable electronics. Current fabrication methods for these metal conductors are mainly based on conventional microfabrication procedures that have been migrated from Si semiconductor industries, which face significant challenges for organic-based compliant substrates. This Research News highlights a recently developed full-solution processing strategy, polymer-assisted metal deposition (PAMD), which is particularly suitable for the roll-to-roll, low-cost fabrication of high-performance compliant metal conductors (Cu, Ni, Ag, and Au) on a wide variety of organic substrates including plastics, elastomers, papers, and textiles. This paper presents i) the principles of PAMD, and how to use it for making ii) flexible, stretchable, and wearable conductive metal electrodes, iii) patterned metal interconnects, and d) 3D stretchable and compressible metal sponges. A critical perspective on this emerging strategy is also provided.

  9. Dynamic modeling and control of multibody mechanical systems which are structurally flexible

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.; Chen, J.-L.

    1992-01-01

    This paper concerns the dynamic modeling and control of multibody, open-chained, structurally flexible, mechanical systems where the bodies are connected by revolute joints. The equations of motion are formulated based on a matrix form of Lagrange's equations for inertial quasi-coordinates. Each body is treated as a substructure of the system. For the purposes of simulation and control, the equations of motion are separated into two sets of equations using a perturbation approach: one to describe large rigid-body motions of the articulated system and the other to describe small linear motions of the bodies about the large motions. A biologically natural control strategy is used for vibration suppression and tracking the prescribed motion.

  10. Mode Selection Techniques in Variable Mass Flexible Body Modeling

    NASA Technical Reports Server (NTRS)

    Quiocho, Leslie J.; Ghosh, Tushar K.; Frenkel, David; Huynh, An

    2010-01-01

    In developing a flexible body spacecraft simulation for the Launch Abort System of the Orion vehicle, when a rapid mass depletion takes place, the dynamics problem with time varying eigenmodes had to be addressed. Three different techniques were implemented, with different trade-offs made between performance and fidelity. A number of technical issues had to be solved in the process. This paper covers the background of the variable mass flexibility problem, the three approaches to simulating it, and the technical issues that were solved in formulating and implementing them.

  11. Comparison of some modeling and control issues for a flexible two link manipulator.

    PubMed

    Zhang, X; Xu, W; Nair, S S

    2004-10-01

    The nonlinear dynamics of a flexible two link manipulator presents a challenging modeling and control problem with its lumped actuator dynamics coupled with distributed link dynamics. Issues related to modeling uncertainty and control robustness as well as a good understanding of the experimental issues are essential for advanced modeling and control for such systems. This paper reports some of the advanced modeling, control, and experimental issues for a flexible two link manipulator, including some novel approaches developed by the authors.

  12. The response of flexible manipulators to a new computed torque control strategy: Simulation results

    NASA Astrophysics Data System (ADS)

    Looke, T. D.; Bayoumi, M. M.; Farooq, M.

    The need for faster and lighter autonomous and teleoperated robots, especially in military land, undersea, and space applications, requires control algorithms which account for the elastic response of lightweight, flexible structures. The numerical analysis and testing of these control algorithms further requires accurate simulation techniques. The finite element simulation method generally yields very accurate predictions of the transient dynamic response of flexible structures to applied loads. It is shown that a standard finite element simulation package (ANSYS) may be used to test computed torque and adaptive feedback control algorithms for multi-link flexible manipulators. The response of one- and two-link, planar and non-planar flexible manipulators to computed torque algorithms is illustrated. The results demonstrate the usefulness of the new computed torque approach.

  13. Flexible modeling frameworks to replace small ensembles of hydrological models and move toward large ensembles?

    NASA Astrophysics Data System (ADS)

    Addor, Nans; Clark, Martyn P.; Mizukami, Naoki

    2017-04-01

    Climate change impacts on hydrological processes are typically assessed using small ensembles of hydrological models. That is, a handful of hydrological models are typically driven by a larger number of climate models. Such a setup has several limitations. Because the number of hydrological models is small, only a small proportion of the model space is sampled, likely leading to an underestimation of the uncertainties in the projections. Further, sampling is arbitrary: although hydrological models should be selected to provide a representative sample of existing models (in terms of complexity and governing hypotheses), they are instead usually selected based on legacy reasons. Furthermore, running several hydrological models currently constitutes a practical challenge because each model must be setup and calibrated individually. Finally, and probably most importantly, the differences between the projected impacts cannot be directly related to differences between hydrological models, because the models are different in almost every possible aspect. We are hence in a situation in which different hydrological models deliver different projections, but for reasons that are mostly unclear, and in which the uncertainty in the projections is probably underestimated. To overcome these limitations, we are experimenting with the flexible modeling framework FUSE (Framework for Understanding Model Errors). FUSE enables to construct conceptual models piece by piece (in a "pick and mix" approach), so it can be used to generate a large number of models that mimic existing models and/or models that differ from other models in single targeted respect (e.g. how baseflow is generated). FUSE hence allows for controlled modeling experiments, and for a more systematic and exhaustive sampling of the model space. Here we explore climate change impacts over the contiguous USA on a 12km grid using two groups of three models: the first group involves the commonly used models VIC, PRMS and HEC

  14. Smoothed particle hydrodynamics and element bending group modeling of flexible fibers interacting with viscous fluids.

    PubMed

    Yang, Xiufeng; Liu, Moubin; Peng, Shiliu

    2014-12-01

    This paper presents a smoothed particle hydrodynamics (SPH) and element bending group (EBG) coupling method for modeling the interaction of flexible fibers with moving viscous fluids. SPH is a well-developed mesh-free particle method for simulating viscous fluid flows. EBG is also a particle method for modeling flexible bodies. The interaction of flexible fibers with moving viscous fluids is rendered through the interaction of EBG particles for flexible fiber and SPH particles for fluid. In numerical simulation, flexible fibers of different lengths are immersed in a moving viscous fluid driven by a body force. The drag force on the fiber obtained from SPH-EBG simulation agrees well with experimental observations. It is shown that the flexible fiber demonstrates three typical bending modes, including the U-shaped mode, the flapping mode, and the closed mode, and that the flexible fiber experiences a drag reduction due to its reconfiguration by bending. It is also found that the U4/3 drag scaling law for a flexible fiber is only valid for the U-shaped mode, but not valid for the flapping and closed modes. The results indicate that the reconfiguration of a flexible fiber is caused by the fluid force acting on it, while vortex shedding is of importance in the translations of bending modes.

  15. Reconciling Flexible Staffing Models with Inclusive Governance and Management

    ERIC Educational Resources Information Center

    Whitchurch, Celia; Gordon, George

    2013-01-01

    Higher education managers are under increasing pressure from governments to reduce costs by adopting more flexible staffing practices and tensions can arise as institutions seek to sustain motivation and morale across a diversifying workforce. This paper considers how institutional management and governance practices facilitate innovative…

  16. The rigid-flexible nonlinear robotic manipulator: Modeling and control

    NASA Astrophysics Data System (ADS)

    Fenili, André; Balthazar, José Manoel

    2011-05-01

    The State-Dependent Riccati Equation (SDRE) control of a nonlinear rigid-flexible two link robotic manipulator is investigated. Different cases are considered assuming small deviations and large deviations from the desired final states. The nonlinear governing equations of motion are coupled, providing considerable excitation of all the nonlinear terms. The results present satisfactory final states but also undesirable overshoot.

  17. A Binding Model and Similarity for Flexible Modular Proteins

    NASA Astrophysics Data System (ADS)

    Máté, Gabriell; Feinauer, Christoph J.; Hofmann, Andreas; Goldt, Sebastian; Liu, Lei; Heermann, Dieter W.

    2013-03-01

    Modular proteins are one of the most commonly found disordered protein motifs. An example is CTCF, a protein that has been named the master waver of the genome i.e., the organizer of the 3D structure of the chromosomes. Using NMR and numerical simulations, much progress has been made in understanding their various functions and ways of binding. Modular proteins are often composed of protein modules interconnected by flexible linkers. They can be imagined as ``beads on a string.'' We argue that when the number of beads is small, these structures behave like a self avoiding random walk. Nevertheless, when binding to a target, linkers can fold in more ordered and stable states. At the same time, folding can influence functional roles. We show that the flexibility of the linkers can boost binding affinity. As a result of flexibility, the conformations of these proteins before and after binding are different. So this implies that generic binding site prediction methods may fail. To deal with this we introduce a new methodology to characterize and compare these flexible structures. Employing topological concepts we propose a method which intrinsically fuses topology and geometry. GM gratefully acknowledges support from the HGS-MathComp and the RTG 1653.

  18. Mining Social Entrepreneurship Strategies Using Topic Modeling.

    PubMed

    Chandra, Yanto; Jiang, Li Crystal; Wang, Cheng-Jun

    2016-01-01

    Despite the burgeoning research on social entrepreneurship (SE), SE strategies remain poorly understood. Drawing on extant research on the social activism and social change, empowerment and SE models, we explore, classify and validate the strategies used by 2,334 social entrepreneurs affiliated with the world's largest SE support organization, Ashoka. The results of the topic modeling of the social entrepreneurs' strategy profiles reveal that they employed a total of 39 change-making strategies that vary across resources (material versus symbolic strategies), specificity (general versus specific strategies), and mode of participation (mass versus elite participation strategies); they also vary across fields of practice and time. Finally, we identify six meta-SE strategies-a reduction from the 39 strategies-and identify four new meta-SE strategies (i.e., system reform, physical capital development, evidence-based practices, and prototyping) that have been overlooked in prior SE research. Our findings extend and deepen the research into SE strategies and offer a comprehensive model of SE strategies that advances theory, practice and policy making.

  19. A comparative study of velocity increment generation between the rigid body and flexible models of MMET

    SciTech Connect

    Ismail, Norilmi Amilia

    2016-02-01

    The motorized momentum exchange tether (MMET) is capable of generating useful velocity increments through spin–orbit coupling. This study presents a comparative study of the velocity increments between the rigid body and flexible models of MMET. The equations of motions of both models in the time domain are transformed into a function of true anomaly. The equations of motion are integrated, and the responses in terms of the velocity increment of the rigid body and flexible models are compared and analysed. Results show that the initial conditions, eccentricity, and flexibility of the tether have significant effects on the velocity increments of the tether.

  20. On the modeling, and open loop control of a rotating thin flexible beam

    NASA Astrophysics Data System (ADS)

    Choura, Slim; Jayasuriya, Suhada; Medick, Matthew A.

    1989-12-01

    A set of governing differential equations is derived for the inplane motion of a rotating thin flexible beam. The beam is assumed to be linearly elastic and is connected to a rigid hub driven by a torque motor. Both flexural and extensional effects are included in the derivation. This coupling due to flexure and extension is usually neglected in studies dealing with the control of such a system. Models for typical control studies are often derived by utilizing an assumed mode approach where the mode shapes are obtained by solving the Euler-Bernoulli beam equation for flexural vibrations, with clamped-free or pinned-free boundary conditions. The coupled equations developed in this paper are used to demonstrate that typical models in control studies give satisfactory results up to a critical rotational speed. For the case where these coupled equations are specialized to simple flexure only, valid for low angular speeds, a unique feedforward control strategy can be derived. This is an open loop control strategy that enables total elimination of an a priori specified vibratory mode from the gross motion in a finite critical time.

  1. Dynamic Behavior of Wind Turbine by a Mixed Flexible-Rigid Multi-Body Model

    NASA Astrophysics Data System (ADS)

    Wang, Jianhong; Qin, Datong; Ding, Yi

    A mixed flexible-rigid multi-body model is presented to study the dynamic behavior of a horizontal axis wind turbine. The special attention is given to flexible body: flexible rotor is modeled by a newly developed blade finite element, support bearing elasticities, variations in the number of teeth in contact as well as contact tooth's elasticities are mainly flexible components in the power train. The couple conditions between different subsystems are established by constraint equations. The wind turbine model is generated by coupling models of rotor, power train and generator with constraint equations together. Based on this model, an eigenproblem analysis is carried out to show the mode shape of rotor and power train at a few natural frequencies. The dynamic responses and contact forces among gears under constant wind speed and fixed pitch angle are analyzed.

  2. Flexible biogas production for demand-driven energy supply--feeding strategies and types of substrates.

    PubMed

    Mauky, Eric; Jacobi, H Fabian; Liebetrau, Jan; Nelles, Michael

    2015-02-01

    Purpose of this work was the evaluation of demand driven biogas production. In laboratory-scale experiments it could be demonstrated that with diurnal flexible feeding and specific combination of substrates with different degradation kinetics biogas can be produced highly flexible in CSTR systems. Corresponding to the feedings the diurnal variation leads to alternations of the methane, carbon dioxide and acid concentrations as well as the pH-value. The long-time process stability was not negatively affected by the dynamic feeding regime at high OLRs of up to 6 kg VS m(-3) d(-1). It is concluded that the flexible gas production can give the opportunity to minimize the necessary gas storage capacity which can save investments for non-required gas storage at site.

  3. Telestroke network business model strategies.

    PubMed

    Fanale, Christopher V; Demaerschalk, Bart M

    2012-10-01

    Our objective is to summarize the evidence that supports the reliability of telemedicine for diagnosis and efficacy in acute stroke treatment, identify strategies for funding the development of a telestroke network, and to present issues with respect to economic sustainability, cost effectiveness, and the status of reimbursement for telestroke.

  4. Model predictive control of attitude maneuver of a geostationary flexible satellite based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    TayyebTaher, M.; Esmaeilzadeh, S. Majid

    2017-07-01

    This article presents an application of Model Predictive Controller (MPC) to the attitude control of a geostationary flexible satellite. SIMO model has been used for the geostationary satellite, using the Lagrange equations. Flexibility is also included in the modelling equations. The state space equations are expressed in order to simplify the controller. Naturally there is no specific tuning rule to find the best parameters of an MPC controller which fits the desired controller. Being an intelligence method for optimizing problem, Genetic Algorithm has been used for optimizing the performance of MPC controller by tuning the controller parameter due to minimum rise time, settling time, overshoot of the target point of the flexible structure and its mode shape amplitudes to make large attitude maneuvers possible. The model included geosynchronous orbit environment and geostationary satellite parameters. The simulation results of the flexible satellite with attitude maneuver shows the efficiency of proposed optimization method in comparison with LQR optimal controller.

  5. Model Flexibility Analysis Does Not Measure the Persuasiveness of a Fit.

    PubMed

    Evans, Nathan J; Howard, Zachary L; Heathcote, Andrew; Brown, Scott D

    2017-02-02

    Recently, Veksler, Myers, and Gluck (2015) proposed model flexibility analysis as a method that "aids model evaluation by providing a metric for gauging the persuasiveness of a given fit" (p. 755) Model flexibility analysis measures the complexity of a model in terms of the proportion of all possible data patterns it can predict. We show that this measure does not provide a reliable way to gauge complexity, which prevents model flexibility analysis from fulfilling either of the 2 aims outlined by Veksler et al. (2015): absolute and relative model evaluation. We also show that model flexibility analysis can even fail to correctly quantify complexity in the most clear cut case, with nested models. We advocate for the use of well-established techniques with these characteristics, such as Bayes factors, normalized maximum likelihood, or cross-validation, and against the use of model flexibility analysis. In the discussion, we explore 2 issues relevant to the area of model evaluation: the completeness of current model selection methods and the philosophical debate of absolute versus relative model evaluation. (PsycINFO Database Record

  6. Nonlinear model and attitude dynamics of flexible spacecraft with large amplitude slosh

    NASA Astrophysics Data System (ADS)

    Deng, Mingle; Yue, Baozeng

    2017-04-01

    This paper is focused on the nonlinearly modelling and attitude dynamics of spacecraft coupled with large amplitude liquid sloshing dynamics and flexible appendage vibration. The large amplitude fuel slosh dynamics is included by using an improved moving pulsating ball model. The moving pulsating ball model is an equivalent mechanical model that is capable of imitating the whole liquid reorientation process. A modification is introduced in the capillary force computation in order to more precisely estimate the settling location of liquid in microgravity or zero-g environment. The flexible appendage is modelled as a three dimensional Bernoulli-Euler beam and the assumed modal method is employed to derive the nonlinear mechanical model for the overall coupled system of liquid filled spacecraft with appendage. The attitude maneuver is implemented by the momentum transfer technique, and a feedback controller is designed. The simulation results show that the liquid sloshing can always result in nutation behavior, but the effect of flexible deformation of appendage depends on the amplitude and direction of attitude maneuver performed by spacecraft. Moreover, it is found that the liquid sloshing and the vibration of flexible appendage are coupled with each other, and the coupling becomes more significant with more rapid motion of spacecraft. This study reveals that the appendage's flexibility has influence on the liquid's location and settling time in microgravity. The presented nonlinear system model can provide an important reference for the overall design of the modern spacecraft composed of rigid platform, liquid filled tank and flexible appendage.

  7. Radial Maze Analog for Pigeons: Evidence for Flexible Coding Strategies May Result from Faulty Assumptions

    ERIC Educational Resources Information Center

    Gipson, Cassandra D.; DiGian, Kelly A.; Miller, Holly C.; Zentall, Thomas R.

    2008-01-01

    Previous research with the radial maze has found evidence that rats can remember both places that they have already been (retrospective coding) and places they have yet to visit (prospective coding; Cook, R. G., Brown, M. F., & Riley, D. A. (1985). Flexible memory processing by rats: Use of prospective and retrospective information in the radial…

  8. Use of Multiple Regression in Counseling Psychology Research: A Flexible Data-Analytic Strategy.

    ERIC Educational Resources Information Center

    Wampold, Bruce E.; Freund, Richard D.

    1987-01-01

    Explains multiple regression, demonstrates its flexibility for analyzing data from various designs, and discusses interpretation of results from multiple regression analysis. Presents regression equations for single independent variable and for two or more independent variables, followed by a discussion of coefficients related to these. Compares…

  9. Radial Maze Analog for Pigeons: Evidence for Flexible Coding Strategies May Result from Faulty Assumptions

    ERIC Educational Resources Information Center

    Gipson, Cassandra D.; DiGian, Kelly A.; Miller, Holly C.; Zentall, Thomas R.

    2008-01-01

    Previous research with the radial maze has found evidence that rats can remember both places that they have already been (retrospective coding) and places they have yet to visit (prospective coding; Cook, R. G., Brown, M. F., & Riley, D. A. (1985). Flexible memory processing by rats: Use of prospective and retrospective information in the radial…

  10. The Flexibility of the Curriculum as a Strategy for Exercising Social Justice in Public Universities

    ERIC Educational Resources Information Center

    Molina García, Amelia; Andrade Lara, José Luis; Ponce Crespo, Christian

    2015-01-01

    This paper is guided by two principal ideas, the first one is about curriculum flexibility in the context of globalization and the second one is about the function of generating skills for the job market. Both are challenges that the Institutions for Undergraduate Education (IES) have to face in training their alumni. In this case we considered as…

  11. Flexible backbone sampling methods to model and design protein alternative conformations.

    PubMed

    Ollikainen, Noah; Smith, Colin A; Fraser, James S; Kortemme, Tanja

    2013-01-01

    Sampling alternative conformations is key to understanding how proteins work and engineering them for new functions. However, accurately characterizing and modeling protein conformational ensembles remain experimentally and computationally challenging. These challenges must be met before protein conformational heterogeneity can be exploited in protein engineering and design. Here, as a stepping stone, we describe methods to detect alternative conformations in proteins and strategies to model these near-native conformational changes based on backrub-type Monte Carlo moves in Rosetta. We illustrate how Rosetta simulations that apply backrub moves improve modeling of point mutant side-chain conformations, native side-chain conformational heterogeneity, functional conformational changes, tolerated sequence space, protein interaction specificity, and amino acid covariation across protein-protein interfaces. We include relevant Rosetta command lines and RosettaScripts to encourage the application of these types of simulations to other systems. Our work highlights that critical scoring and sampling improvements will be necessary to approximate conformational landscapes. Challenges for the future development of these methods include modeling conformational changes that propagate away from designed mutation sites and modulating backbone flexibility to predictively design functionally important conformational heterogeneity. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Methods in Enzymology: “Flexible backbone sampling methods to model and design protein alternative conformations”

    PubMed Central

    Ollikainen, Noah; Smith, Colin A.; Fraser, James S.; Kortemme, Tanja

    2013-01-01

    Sampling alternative conformations is key to understanding how proteins work and engineering them for new functions. However, accurately characterizing and modeling protein conformational ensembles remains experimentally and computationally challenging. These challenges must be met before protein conformational heterogeneity can be exploited in protein engineering and design. Here, as a stepping stone, we describe methods to detect alternative conformations in proteins and strategies to model these near-native conformational changes based on backrub-type Monte Carlo moves in Rosetta. We illustrate how Rosetta simulations that apply backrub moves improve modeling of point mutant side chain conformations, native side chain conformational heterogeneity, functional conformational changes, tolerated sequence space, protein interaction specificity, and amino acid co-variation across protein-protein interfaces. We include relevant Rosetta command lines and RosettaScripts to encourage the application of these types of simulations to other systems. Our work highlights that critical scoring and sampling improvements will be necessary to approximate conformational landscapes. Challenges for the future development of these methods include modeling conformational changes that propagate away from designed mutation sites and modulating backbone flexibility to predictively design functionally important conformational heterogeneity. PMID:23422426

  13. Mining Social Entrepreneurship Strategies Using Topic Modeling

    PubMed Central

    2016-01-01

    Despite the burgeoning research on social entrepreneurship (SE), SE strategies remain poorly understood. Drawing on extant research on the social activism and social change, empowerment and SE models, we explore, classify and validate the strategies used by 2,334 social entrepreneurs affiliated with the world’s largest SE support organization, Ashoka. The results of the topic modeling of the social entrepreneurs’ strategy profiles reveal that they employed a total of 39 change-making strategies that vary across resources (material versus symbolic strategies), specificity (general versus specific strategies), and mode of participation (mass versus elite participation strategies); they also vary across fields of practice and time. Finally, we identify six meta-SE strategies―a reduction from the 39 strategies―and identify four new meta-SE strategies (i.e., system reform, physical capital development, evidence-based practices, and prototyping) that have been overlooked in prior SE research. Our findings extend and deepen the research into SE strategies and offer a comprehensive model of SE strategies that advances theory, practice and policy making. PMID:26998970

  14. Dynamics modeling of multibody flexible systems with traveling multi-point joints

    NASA Technical Reports Server (NTRS)

    Messac, Achille; Herman, Deborah

    1991-01-01

    This paper presents a general methodology for modeling the dynamics of a flexible structure which moves on the surface of another flexible structure. The relative motion of the two bodies need not follow a straight line, nor need the contact surfaces be planar in their undeformed state. A model reduction approach is also developed, which makes the methodology applicable to large structural systems. The Space Station Freedom Mobile Transporter represents one such system, when attached to the Shuttle Orbiter. Numerical examples are provided.

  15. Dynamics modeling of multibody flexible systems with traveling multi-point joints

    NASA Technical Reports Server (NTRS)

    Messac, Achille; Herman, Deborah

    1991-01-01

    This paper presents a general methodology for modeling the dynamics of a flexible structure which moves on the surface of another flexible structure. The relative motion of the two bodies need not follow a straight line, nor need the contact surfaces be planar in their undeformed state. A model reduction approach is also developed, which makes the methodology applicable to large structural systems. The Space Station Freedom Mobile Transporter represents one such system, when attached to the Shuttle Orbiter. Numerical examples are provided.

  16. A novel approach to the modelling and control of flexible robot arms

    NASA Technical Reports Server (NTRS)

    Ding, Xuru; Tarn, Tzyh-Jong; Bejczy, Antal K.

    1988-01-01

    A general dynamic model of a two-link Euler-Bernoulli beam flexible robot arm is presented in the form of partial-differential-integral equations. Observations are made on important properties of the dynamic model. The resulting infinite-dimensional system is then input-output decoupled and partially linearized by a diffeomorphic state transformation and nonlinear state feedback. The local stability issue is addressed for a one-link flexible robot arm.

  17. A novel approach to the modelling and control of flexible robot arms

    NASA Technical Reports Server (NTRS)

    Ding, Xuru; Tarn, Tzyh-Jong; Bejczy, Antal K.

    1988-01-01

    A general dynamic model of a two-link Euler-Bernoulli beam flexible robot arm is presented in the form of partial-differential-integral equations. Observations are made on important properties of the dynamic model. The resulting infinite-dimensional system is then input-output decoupled and partially linearized by a diffeomorphic state transformation and nonlinear state feedback. The local stability issue is addressed for a one-link flexible robot arm.

  18. A flexible, parallel model of natural language generation

    SciTech Connect

    Ward, N.

    1991-01-01

    This paper describes a structured connectionist system for natural language generation. FIG, short for Flexible Incremental Generator, is based on a single network which encodes lexical knowledge, syntactic knowledge, and world knowledge. In the initial state, some nodes representing concepts are sources of activation: this represents the input. Activation flows from these nodes to nodes representing words via the various knowledge structures of the network. When the network settles, the most high activated word is selected and emitted, activation levels are updated to represent the current state. This process of settle, emit, and update repeats until all of the input has been conveyed. An utterance is simply the result of successive word choices.

  19. Flexible defense strategies: competition modifies investment in behavioral vs. morphological defenses.

    PubMed

    Teplitsky, Céline; Laurila, Anssi

    2007-07-01

    Competition is predicted to affect the expression of inducible defenses, but because costs of behavioral and morphological antipredator defenses differ along resource gradients, its effects on defenses may depend on the traits considered. We tested the predictions from different defense models in tadpoles of the common frog Rana temporaria, which exhibit both types of defenses. In an outdoor experiment, we exposed the tadpoles to nonlethal predators (Aeshna dragonfly larvae) and to a gradient of intraspecific competition. Morphological responses did not follow any of the expected patterns, since investment in defense was not affected by resource level. Instead, tail depth decreased in the absence of predators. Behavioral defenses followed a state-dependent model. Overall, the defense strategy of the tadpoles revealed a shift from morphological and behavioral defenses at low tadpole density to morphological defense only at high density. This difference probably reflects the different efficiency of the defenses. Hiding is an effective means of defense, but it is unsustainable when resources are scarce. Morphological responses become more important with increasing density to compensate for the increase in behavioral risk-taking. Our results indicate that competition can strongly affect reaction norms of inducible defenses and highlight the importance of integrating ecological parameters that affect the cost-benefit balance of phenotypic plasticity.

  20. Measuring Model Flexibility with Parameter Space Partitioning: An Introduction and Application Example

    ERIC Educational Resources Information Center

    Pitt, Mark A.; Myung, Jay I.; Montenegro, Maximiliano; Pooley, James

    2008-01-01

    A primary criterion on which models of cognition are evaluated is their ability to fit empirical data. To understand the reason why a model yields a good or poor fit, it is necessary to determine the data-fitting potential (i.e., flexibility) of the model. In the first part of this article, methods for comparing models and studying their…

  1. Measuring Model Flexibility with Parameter Space Partitioning: An Introduction and Application Example

    ERIC Educational Resources Information Center

    Pitt, Mark A.; Myung, Jay I.; Montenegro, Maximiliano; Pooley, James

    2008-01-01

    A primary criterion on which models of cognition are evaluated is their ability to fit empirical data. To understand the reason why a model yields a good or poor fit, it is necessary to determine the data-fitting potential (i.e., flexibility) of the model. In the first part of this article, methods for comparing models and studying their…

  2. Space robots with flexible appendages: Dynamic modeling, coupling measurement, and vibration suppression

    NASA Astrophysics Data System (ADS)

    Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin

    2017-05-01

    For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.

  3. Comprehensive modeling and control of flexible flapping wing micro air vehicles

    NASA Astrophysics Data System (ADS)

    Nogar, Stephen Michael

    Flapping wing micro air vehicles hold significant promise due to the potential for improved aerodynamic efficiency, enhanced maneuverability and hover capability compared to fixed and rotary configurations. However, significant technical challenges exist to due the lightweight, highly integrated nature of the vehicle and coupling between the actuators, flexible wings and control system. Experimental and high fidelity analysis has demonstrated that aeroelastic effects can change the effective kinematics of the wing, reducing vehicle stability. However, many control studies for flapping wing vehicles do not consider these effects, and instead validate the control strategy with simple assumptions, including rigid wings, quasi-steady aerodynamics and no consideration of actuator dynamics. A control evaluation model that includes aeroelastic effects and actuator dynamics is developed. The structural model accounts for geometrically nonlinear behavior using an implicit condensation technique and the aerodynamic loads are found using a time accurate approach that includes quasi-steady, rotational, added mass and unsteady effects. Empirically based parameters in the model are fit using data obtained from a higher fidelity solver. The aeroelastic model and its ingredients are compared to experiments and computations using models of higher fidelity, and indicate reasonable agreement. The developed control evaluation model is implemented in a previously published, baseline controller that maintains stability using an asymmetric wingbeat, known as split-cycle, along with changing the flapping frequency and wing bias. The model-based controller determines the control inputs using a cycle-averaged, linear control design model, which assumes a rigid wing and no actuator dynamics. The introduction of unaccounted for dynamics significantly degrades the ability of the controller to track a reference trajectory, and in some cases destabilizes the vehicle. This demonstrates the

  4. Multistate Model Builder (MSMB): a flexible editor for compact biochemical models

    PubMed Central

    2014-01-01

    Background Building models of molecular regulatory networks is challenging not just because of the intrinsic difficulty of describing complex biological processes. Writing a model is a creative effort that calls for more flexibility and interactive support than offered by many of today’s biochemical model editors. Our model editor MSMB — Multistate Model Builder — supports multistate models created using different modeling styles. Results MSMB provides two separate advances on existing network model editors. (1) A simple but powerful syntax is used to describe multistate species. This reduces the number of reactions needed to represent certain molecular systems, thereby reducing the complexity of model creation. (2) Extensive feedback is given during all stages of the model creation process on the existing state of the model. Users may activate error notifications of varying stringency on the fly, and use these messages as a guide toward a consistent, syntactically correct model. MSMB default values and behavior during model manipulation (e.g., when renaming or deleting an element) can be adapted to suit the modeler, thus supporting creativity rather than interfering with it. MSMB’s internal model representation allows saving a model with errors and inconsistencies (e.g., an undefined function argument; a syntactically malformed reaction). A consistent model can be exported to SBML or COPASI formats. We show the effectiveness of MSMB’s multistate syntax through models of the cell cycle and mRNA transcription. Conclusions Using multistate reactions reduces the number of reactions need to encode many biochemical network models. This reduces the cognitive load for a given model, thereby making it easier for modelers to build more complex models. The many interactive editing support features provided by MSMB make it easier for modelers to create syntactically valid models, thus speeding model creation. Complete information and the installation package can be

  5. Strategies for developing competency models.

    PubMed

    Marrelli, Anne F; Tondora, Janis; Hoge, Michael A

    2005-01-01

    There is an emerging trend within healthcare to introduce competency-based approaches in the training, assessment, and development of the workforce. The trend is evident in various disciplines and specialty areas within the field of behavioral health. This article is designed to inform those efforts by presenting a step-by-step process for developing a competency model. An introductory overview of competencies, competency models, and the legal implications of competency development is followed by a description of the seven steps involved in creating a competency model for a specific function, role, or position. This modeling process is drawn from advanced work on competencies in business and industry.

  6. Modeling and control of a hydraulically actuated flexible-prismatic link robot

    SciTech Connect

    Love, L.; Kress, R.; Jansen, J.

    1996-12-01

    Most of the research related to flexible link manipulators to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long reach systems. This manuscript describes a new hydraulically actuated, long reach manipulator with a flexible prismatic link at Oak Ridge National Laboratory (ORNL). Focus is directed towards both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies.

  7. Development of a low-cost wireless controller for flexible sampling strategies based on real-time flow monitoring

    NASA Astrophysics Data System (ADS)

    Queloz, Pierre; Besuchet, Jonathan; Rao, P. Suresh C.; Rinaldo, Andrea

    2013-04-01

    Even if models are able to predict more and more accurately pollutant discharge in streams, surface water sampling remains a very common practice to monitor substance concentrations and loads in streams and to calibrate models. However, as this method is temporally and spatially punctual, monitoring a whole catchment requires multiple sampling sites with time-distributed samples. Instruments are expensive, and sample collection, on-site interventions and maintenance are costly and time-consuming, in particular if the experimental site is remote. Another issue is the estimation of the discharge loads of a pollutant, especially for non-chemostatic compounds; their hydrograph-related chemical dynamics may be miss-evaluated when a rapid storm occurs using a time-paced sampling strategy with large sampling intervals. Many manufacturers provide discharge gauges (pressure probes or ultra-sonic sensors) or other instruments (rain gauge, chemical probes, etc.) that can be coupled with automatic water samplers in order to program an event-paced sampling. However, automatic samplers usually provide limited programming options that may not meet the needs of the experimenter of a specific catchment. The concept presented here proposes to use a simple microcontroller board in order to determine the timing of the samples by sending electrical pulses to a conventional automatic sampler with input capability. The flow level is measured by a low-cost ultrasonic sensor and sent to the microcontroller, which will process the signal according to user and site-custom parameters. For example, a simple power-law recession model can be apply to approximate the duration of the recession period given the maximal discharge rate measured for a storm. The sample intervals can thereafter be set in order to distribute all the bottles available over the total recession duration. The microcontroller sends a pulse (grab sample query) to the sampler at every sample time calculated by the program. A

  8. Third-order polynomial model for analyzing stickup state laminated structure in flexible electronics

    NASA Astrophysics Data System (ADS)

    Meng, Xianhong; Wang, Zihao; Liu, Boya; Wang, Shuodao

    2017-05-01

    Laminated hard-soft integrated structures play a significant role in the fabrication and development of flexible electronics devices. Flexible electronics have advantageous characteristics such as soft and light-weight, can be folded, twisted, flipped inside-out, or be pasted onto other surfaces of arbitrary shapes. In this paper, an analytical model is presented to study the mechanics of laminated hard-soft structures in flexible electronics under a stickup state. Third-order polynomials are used to describe the displacement field, and the principle of virtual work is adopted to derive the governing equations and boundary conditions. The normal strain and the shear stress along the thickness direction in the bi-material region are obtained analytically, which agree well with the results from finite element analysis. The analytical model can be used to analyze stickup state laminated structures, and can serve as a valuable reference for the failure prediction and optimal design of flexible electronics in the future.

  9. Active Position Control of a Flexible Smart Beam Using Internal Model Control

    NASA Astrophysics Data System (ADS)

    LEE, Y.-S.; ELLIOTT, S. J.

    2001-05-01

    The problem of controlling the position at the tip of a flexible cantilever beam to follow a command signal is considered, by using a pair of piezoelectric actuators at the clamped end. The beam is lightly damped and so the natural transient response is rather long, and also since the sensor and actuator are not collocated, the plant response is non-minimum phase. Two control strategies were investigated. The first involved conventional PID control in which the feedback gains were adjusted to give the fastest closed-loop response to a step input. The second control strategy was based on an internal model control (IMC) architecture. The control filter in the IMC controller was a digital FIR device designed to minimize the expectation of the mean square tracking error. In practice, such smart beams could be exposed to temperature fluctuations and changes in geometry. The effect of these variations on the stability was studied and it is shown that the need for robustness to such variations leads to a limitation in the performance of an IMC controller. The improvement in the stability robustness by incorporating control effort weighting into the cost function being minimized was investigated, as was the incorporation of modelling delay in the design of the IMC control filter. The IMC controller designed for the beam was found to have much reduced settling times to a step input compared with those of the PID controller while maintaining good robustness to changes in temperature. However, the extremely low damping of the experimental beam made it difficult to implement an accurate plant model in practice.

  10. Efficient and Flexible Strategy Use on Multi-Digit Sums: A Choice/No-Choice Study

    ERIC Educational Resources Information Center

    Torbeyns, Joke; Verschaffel, Lieven

    2013-01-01

    This study analysed children's use of mental computation strategies and standard written algorithms in the domain of multi-digit addition and subtraction, using the choice/no-choice method. Twenty-one Flemish fourth-graders (M[subscript Age] =9y10m) solved problem-items that either stimulated the use of mental computation strategies or a standard…

  11. Efficient and Flexible Strategy Use on Multi-Digit Sums: A Choice/No-Choice Study

    ERIC Educational Resources Information Center

    Torbeyns, Joke; Verschaffel, Lieven

    2013-01-01

    This study analysed children's use of mental computation strategies and standard written algorithms in the domain of multi-digit addition and subtraction, using the choice/no-choice method. Twenty-one Flemish fourth-graders (M[subscript Age] =9y10m) solved problem-items that either stimulated the use of mental computation strategies or a standard…

  12. A new minimum-time control law for a one-mode model of a flexible slewing structure

    NASA Technical Reports Server (NTRS)

    Barbieri, Enrique; Ozguner, Umit

    1993-01-01

    We describe the construction of a new minimum-time control law for a single-axis, undamped, one-mode model of a flexible slewing structure. The set of necessary and sufficient conditions for optimality are developed using phase-plane techniques, and are given in terms of the vibration frequencies and the rigid-body states. This effectively provides the switching hypersurface in four-dimensional space. The resulting control strategy has the advantage that can be implemented on-line since no a priori computation of switching times is required.

  13. Modeling Parallelization and Flexibility Improvements in Skill Acquisition: From Dual Tasks to Complex Dynamic Skills

    ERIC Educational Resources Information Center

    Taatgen, Niels

    2005-01-01

    Emerging parallel processing and increased flexibility during the acquisition of cognitive skills form a combination that is hard to reconcile with rule-based models that often produce brittle behavior. Rule-based models can exhibit these properties by adhering to 2 principles: that the model gradually learns task-specific rules from instructions…

  14. Modeling Parallelization and Flexibility Improvements in Skill Acquisition: From Dual Tasks to Complex Dynamic Skills

    ERIC Educational Resources Information Center

    Taatgen, Niels

    2005-01-01

    Emerging parallel processing and increased flexibility during the acquisition of cognitive skills form a combination that is hard to reconcile with rule-based models that often produce brittle behavior. Rule-based models can exhibit these properties by adhering to 2 principles: that the model gradually learns task-specific rules from instructions…

  15. Biomimetic Hybridization of Kevlar into Silk Fibroin: Nanofibrous Strategy for Improved Mechanic Properties of Flexible Composites and Filtration Membranes.

    PubMed

    Lv, Lili; Han, Xiangsheng; Zong, Lu; Li, Mingjie; You, Jun; Wu, Xiaochen; Li, Chaoxu

    2017-08-22

    Silk, one of the strongest natural biopolymers, was hybridized with Kevlar, one of the strongest synthetic polymers, through a biomimetic nanofibrous strategy. Regenerated silk materials have outstanding properties in transparency, biocompatibility, biodegradability and sustainability, and promising applications as diverse as in pharmaceutics, electronics, photonic devices and membranes. To compete with super mechanic properties of their natural counterpart, regenerated silk materials have been hybridized with inorganic fillers such as graphene and carbon nanotubes, but frequently lose essential mechanic flexibility. Inspired by the nanofibrous strategy of natural biomaterials (e.g., silk fibers, hemp and byssal threads of mussels) for fantastic mechanic properties, Kevlar was integrated in regenerated silk materials by combining nanometric fibrillation with proper hydrothermal treatments. The resultant hybrid films showed an ultimate stress and Young's modulus two times as high as those of pure regenerated SF films. This is not only because of the reinforcing effect of Kevlar nanofibrils, but also because of the increasing content of silk β-sheets. When introducing Kevlar nanofibrils into the membranes of silk nanofibrils assembled by regenerated silk fibroin, the improved mechanic properties further enabled potential applications as pressure-driven nanofiltration membranes and flexible substrates of electronic devices.

  16. 2'-Alkynylnucleotides: A Sequence- and Spin Label-Flexible Strategy for EPR Spectroscopy in DNA.

    PubMed

    Haugland, Marius M; El-Sagheer, Afaf H; Porter, Rachel J; Peña, Javier; Brown, Tom; Anderson, Edward A; Lovett, Janet E

    2016-07-27

    Electron paramagnetic resonance (EPR) spectroscopy is a powerful method to elucidate molecular structure through the measurement of distances between conformationally well-defined spin labels. Here we report a sequence-flexible approach to the synthesis of double spin-labeled DNA duplexes, where 2'-alkynylnucleosides are incorporated at terminal and internal positions on complementary strands. Post-DNA synthesis copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions with a variety of spin labels enable the use of double electron-electron resonance experiments to measure a number of distances on the duplex, affording a high level of detailed structural information.

  17. First order coupled dynamic model of flexible space structures with time-varying configurations

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Li, Dongxu; Jiang, Jianping

    2017-03-01

    This paper proposes a first order coupled dynamic modeling method for flexible space structures with time-varying configurations for the purpose of deriving the characteristics of the system. The model considers the first time derivative of the coordinate transformation matrix between the platform's body frame and the appendage's floating frame. As a result it can accurately predict characteristics of the system even if flexible appendages rotate with complex trajectory relative to the rigid part. In general, flexible appendages are fixed on the rigid platform or forced to rotate with a slow angular velocity. So only the zero order of the transformation matrix is considered in conventional models. However, due to neglecting of time-varying terms of the transformation matrix, these models introduce severe error when appendages, like antennas, for example, rotate with a fast speed relative to the platform. The first order coupled dynamic model for flexible space structures proposed in this paper resolve this problem by introducing the first time derivative of the transformation matrix. As a numerical example, a central core with a rotating solar panel is considered and the results are compared with those given by the conventional model. It has been shown that the first order terms are of great importance on the attitude of the rigid body and dynamic response of the flexible appendage.

  18. Two modeling strategies for empirical Bayes estimation.

    PubMed

    Efron, Bradley

    2014-05-01

    Empirical Bayes methods use the data from parallel experiments, for instance observations Xk ~ (Θ k , 1) for k = 1, 2, …, N, to estimate the conditional distributions Θ k |Xk . There are two main estimation strategies: modeling on the θ space, called "g-modeling" here, and modeling on the×space, called "f-modeling." The two approaches are de- scribed and compared. A series of computational formulas are developed to assess their frequentist accuracy. Several examples, both contrived and genuine, show the strengths and limitations of the two strategies.

  19. Exemplars, Prototypes, and the Flexibility of Classification Models

    ERIC Educational Resources Information Center

    Olsson, Henrik; Wennerholm, Pia; Lyxzen, Urban

    2004-01-01

    J. P. Minda and J. D. Smith (2001) showed that a prototype model outperforms an exemplar model, especially in larger categories or categories that contained more complex stimuli. R. M. Nosofsky and S. R. Zaki (2002) showed that an exemplar model with a response-scaling mechanism outperforms a prototype model. The authors of the current study…

  20. A Flexible Latent Trait Model for Response Times in Tests

    ERIC Educational Resources Information Center

    Ranger, Jochen; Kuhn, Jorg-Tobias

    2012-01-01

    Latent trait models for response times in tests have become popular recently. One challenge for response time modeling is the fact that the distribution of response times can differ considerably even in similar tests. In order to reduce the need for tailor-made models, a model is proposed that unifies two popular approaches to response time…

  1. Variable strategy model of the human operator

    NASA Astrophysics Data System (ADS)

    Phillips, John Michael

    Human operators often employ discontinuous or "bang-bang" control strategies when performing large-amplitude acquisition tasks. The current study applies Variable Structure Control (VSC) techniques to model human operator behavior during acquisition tasks. The result is a coupled, multi-input model replicating the discontinuous control strategy. In the VSC formulation, a switching surface is the mathematical representation of the operator's control strategy. The performance of the Variable Strategy Model (VSM) is evaluated by considering several examples, including the longitudinal control of an aircraft during the visual landing task. The aircraft landing task becomes an acquisition maneuver whenever large initial offsets occur. Several different strategies are explored in the VSM formulation for the aircraft landing task. First, a switching surface is constructed from literal interpretations of pilot training literature. This approach yields a mathematical representation of how a pilot is trained to fly a generic aircraft. This switching surface is shown to bound the trajectory response of a group of pilots performing an offset landing task in an aircraft simulator study. Next, front-side and back-side landing strategies are compared. A back-side landing strategy is found to be capable of landing an aircraft flying on either the front side or back side of the power curve. However, the front-side landing strategy is found to be insufficient for landing an aircraft flying on the back side. Finally, a more refined landing strategy is developed that takes into the account the specific aircraft's dynamic characteristics. The refined strategy is translated back into terminology similar to the existing pilot training literature.

  2. Takagi-Sugeno Fuzzy Model-Based Control of Spacecraft with Flexible Appendage

    NASA Astrophysics Data System (ADS)

    Ayoubi, Mohammad A.; Sendi, Chokri

    2015-06-01

    This paper presents a Takagi-Sugeno (T-S) fuzzy model-based approach to model and control a rigid spacecraft with flexible antenna. First, the equations of motion of the flexible spacecraft, which are based on Lagrange equations and given in terms of quasi-coordinates and the Rayleigh-Ritz method, are briefly reviewed. Then, the T-S fuzzy modeling and the parallel distributed compensation control technique are introduced. We utilize full state-feedback and optimal H∞ robustness performance via a T-S fuzzy model to achieve position and attitude stabilization, vibration suppression, and disturbance rejection objectives. Finally, this technique is applied to the flexible spacecraft equations of motion resulting in a nonlinear controller. The controller produces an asymptotically stable closed-loop system which is robust to external disturbances and has a simple structure for straightforward implementation. Numerical simulation is provided for performance evaluation of the proposed controller design.

  3. The Development of a Modular-Flexible Schedule Model and Its Utilization in Building a New Secondary School Physics Curriculum.

    ERIC Educational Resources Information Center

    Fezler, Lloyd LeRoy

    The primary purpose of this study was to develop a secondary school physics curriculum guide for use within a modular-flexible schedule framework. A secondary aspect was to design and model modular-flexible schedule specifically for physics instruction. Information regarding flexible scheduled programs was obtained by visiting 17 secondary schools…

  4. Dynamic Modeling of the SMAP Rotating Flexible Antenna

    NASA Technical Reports Server (NTRS)

    Nayeri, Reza D.

    2012-01-01

    Dynamic model development in ADAMS for the SMAP project is explained: The main objective of the dynamic models are for pointing error assessment, and the control/stability margin requirement verifications

  5. Dynamic Modeling of the SMAP Rotating Flexible Antenna

    NASA Technical Reports Server (NTRS)

    Nayeri, Reza D.

    2012-01-01

    Dynamic model development in ADAMS for the SMAP project is explained: The main objective of the dynamic models are for pointing error assessment, and the control/stability margin requirement verifications

  6. The CAOS model: a physically based, flexible hydrological model for the mesoscale

    NASA Astrophysics Data System (ADS)

    Westhoff, Martijn; Zehe, Erwin

    2014-05-01

    Hydrological models are not only tools to predict discharge, but they are also hypotheses of how a catchment functions with respect to rainfall-runoff behaviour. In this work in progress, we present a new (physically based) model concept that should ultimately be suitable to run at the mesoscale. To be able to run it efficiently on the mesoscale, the model cannot be too complex. Yet, we wanted it physically based, with explicit incorporation of dissipative structures, such as macropores and lateral preferential flow paths. Besides water fluxes it should also be able to simulate solute concentrations and energy fluxes. This helps to parameterize the model while the model is also thermodynamically consistent, meaning that it is suitable to test thermodynamic optimality principles (such as maximum entropy production principle). With these constraints in mind, we developed a model where, in each subroutine, flow is modelled in only one dimension (vertical for the unsaturated zone and lateral for subsurface storm flow, groundwater flow and stream flow routines, making the model multiple 1-D), decreasing computation time significantly. The code is developed in an object oriented way, leading to more flexibility to test different model structures. For example, we will demonstrate the effect on simulated rapid subsurface flow for different mathematical descriptions (i.e. the Darcy-Weisbach equation vs. the diffusive wave and kinematic wave equation). For this study, the model will also be evaluated for hillslopes in three different geological settings within the Attert Basin in Luxembourg.

  7. High precision NC lathe feeding system rigid-flexible coupling model reduction technology

    NASA Astrophysics Data System (ADS)

    Xuan, He; Hua, Qingsong; Cheng, Lianjun; Zhang, Hongxin; Zhao, Qinghai; Mao, Xinkai

    2017-08-01

    This paper proposes the use of dynamic substructure method of reduction of order to achieve effective reduction of feed system for high precision NC lathe feeding system rigid-flexible coupling model, namely the use of ADAMS to establish the rigid flexible coupling simulation model of high precision NC lathe, and then the vibration simulation of the period by using the FD 3D damper is very effective for feed system of bolt connection reduction of multi degree of freedom model. The vibration simulation calculation is more accurate, more quickly.

  8. Krylov vector methods for model reduction and control of flexible structures

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1992-01-01

    Krylov vectors and the concept of parameter matching are combined here to develop model-reduction algorithms for structural dynamics systems. The method is derived for a structural dynamics system described by a second-order matrix differential equation. The reduced models are shown to have a promising application in the control of flexible structures. It can eliminate control and observation spillovers while requiring only the dynamic spillover terms to be considered. A model-order reduction example and a flexible structure control example are provided to show the efficacy of the method.

  9. Learning strategies: a synthesis and conceptual model

    NASA Astrophysics Data System (ADS)

    Hattie, John A. C.; Donoghue, Gregory M.

    2016-08-01

    The purpose of this article is to explore a model of learning that proposes that various learning strategies are powerful at certain stages in the learning cycle. The model describes three inputs and outcomes (skill, will and thrill), success criteria, three phases of learning (surface, deep and transfer) and an acquiring and consolidation phase within each of the surface and deep phases. A synthesis of 228 meta-analyses led to the identification of the most effective strategies. The results indicate that there is a subset of strategies that are effective, but this effectiveness depends on the phase of the model in which they are implemented. Further, it is best not to run separate sessions on learning strategies but to embed the various strategies within the content of the subject, to be clearer about developing both surface and deep learning, and promoting their associated optimal strategies and to teach the skills of transfer of learning. The article concludes with a discussion of questions raised by the model that need further research.

  10. Flight dynamics simulation modeling and control of a large flexible tiltrotor aircraft

    NASA Astrophysics Data System (ADS)

    Juhasz, Ondrej

    A high order rotorcraft mathematical model is developed and validated against the XV-15 and a Large Civil Tiltrotor (LCTR) concept. The mathematical model is generic and allows for any rotorcraft configuration, from single main rotor helicopters to coaxial and tiltrotor aircraft. Rigid-body and inflow states, as well as flexible wing and blade states are used in the analysis. The separate modeling of each rotorcraft component allows for structural flexibility to be included, which is important when modeling large aircraft where structural modes affect the flight dynamics frequency ranges of interest, generally 1 to 20 rad/sec. Details of the formulation of the mathematical model are given, including derivations of structural, aerodynamic, and inertial loads. The linking of the components of the aircraft is developed using an approach similar to multibody analyses by exploiting a tree topology, but without equations of constraints. Assessments of the effects of wing flexibility are given. Flexibility effects are evaluated by looking at the nature of the couplings between rigid-body modes and wing structural modes and vice versa. The effects of various different forms of structural feedback on aircraft dynamics are analyzed. A proportional-integral feedback on the structural acceleration is deemed to be most effective at both improving the damping and reducing the overall excitation of a structural mode. A model following control architecture is then implemented on full order flexible LCTR models. For this aircraft, the four lowest frequency structural modes are below 20 rad/sec, and are thus needed for control law development and analysis. The impact of structural feedback on both Attitude-Command, Attitude-Hold (ACAH) and Translational Rate Command (TRC) response types are investigated. A rigid aircraft model has optimistic performance characteristics, and a control system designed for a rigid aircraft could potentially destabilize a flexible one. The various

  11. Distributed parameter modeling for the control of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr.

    1990-01-01

    The use of FEMs of spacecraft structural dynamics is a common practice, but it has a number of shortcomings. Distributed-parameter models offer an alternative, but present both advantages and difficulties. First, the model order does not have to be reduced prior to the inclusion of control system dynamics. This advantage eliminates the risk involved with model 'order reduction'. Second, distributed parameter models inherently involve fewer parameters, thereby enabling more accurate parameter estimation using experimental data. Third, it is possible to include the damping in the basic model, thereby increasing the accuracy of the structural damping. The difficulty in generating distributed parameter models of complex spacecraft configurations has been greatly alleviated by the use of PDEMOD, BUNVIS-RG, or DISTEL. PDEMOD is being developed for simultaneously modeling structural dynamics and control system dynamics.

  12. Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS

    USGS Publications Warehouse

    Bolker, Benjamin M.; Gardner, Beth; Maunder, Mark; Berg, Casper W.; Brooks, Mollie; Comita, Liza; Crone, Elizabeth; Cubaynes, Sarah; Davies, Trevor; de Valpine, Perry; Ford, Jessica; Gimenez, Olivier; Kéry, Marc; Kim, Eun Jung; Lennert-Cody, Cleridy; Magunsson, Arni; Martell, Steve; Nash, John; Nielson, Anders; Regentz, Jim; Skaug, Hans; Zipkin, Elise

    2013-01-01

    1. Ecologists often use nonlinear fitting techniques to estimate the parameters of complex ecological models, with attendant frustration. This paper compares three open-source model fitting tools and discusses general strategies for defining and fitting models. 2. R is convenient and (relatively) easy to learn, AD Model Builder is fast and robust but comes with a steep learning curve, while BUGS provides the greatest flexibility at the price of speed. 3. Our model-fitting suggestions range from general cultural advice (where possible, use the tools and models that are most common in your subfield) to specific suggestions about how to change the mathematical description of models to make them more amenable to parameter estimation. 4. A companion web site (https://groups.nceas.ucsb.edu/nonlinear-modeling/projects) presents detailed examples of application of the three tools to a variety of typical ecological estimation problems; each example links both to a detailed project report and to full source code and data.

  13. Two modeling strategies for empirical Bayes estimation

    PubMed Central

    Efron, Bradley

    2014-01-01

    Empirical Bayes methods use the data from parallel experiments, for instance observations Xk ~ 𝒩 (Θk, 1) for k = 1, 2, …, N, to estimate the conditional distributions Θk|Xk. There are two main estimation strategies: modeling on the θ space, called “g-modeling” here, and modeling on the×space, called “f-modeling.” The two approaches are de- scribed and compared. A series of computational formulas are developed to assess their frequentist accuracy. Several examples, both contrived and genuine, show the strengths and limitations of the two strategies. PMID:25324592

  14. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    NASA Astrophysics Data System (ADS)

    Martinez, N.; Michoud, G.; Cario, A.; Ollivier, J.; Franzetti, B.; Jebbar, M.; Oger, P.; Peters, J.

    2016-09-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  15. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    PubMed Central

    Martinez, N.; Michoud, G.; Cario, A.; Ollivier, J.; Franzetti, B.; Jebbar, M.; Oger, P.; Peters, J.

    2016-01-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure. PMID:27595789

  16. The Strategies of Modeling in Biology Education

    ERIC Educational Resources Information Center

    Svoboda, Julia; Passmore, Cynthia

    2013-01-01

    Modeling, like inquiry more generally, is not a single method, but rather a complex suite of strategies. Philosophers of biology, citing the diverse aims, interests, and disciplinary cultures of biologists, argue that modeling is best understood in the context of its epistemic aims and cognitive payoffs. In the science education literature,…

  17. The Strategies of Modeling in Biology Education

    ERIC Educational Resources Information Center

    Svoboda, Julia; Passmore, Cynthia

    2013-01-01

    Modeling, like inquiry more generally, is not a single method, but rather a complex suite of strategies. Philosophers of biology, citing the diverse aims, interests, and disciplinary cultures of biologists, argue that modeling is best understood in the context of its epistemic aims and cognitive payoffs. In the science education literature,…

  18. Reading Strategy Instruction through Mental Modelling

    ERIC Educational Resources Information Center

    Pani, Susmita

    2004-01-01

    Focus in recent times on realistic pedagogy implies that we can no longer depend on a transmission model of training, either for teachers or learners. We need to develop strategies that will help teachers and learners to be co-participators in the learning process. Mental modelling is one technique suggested in this article. It is a technique…

  19. Stability analysis, modeling, simulation and experimental testing of an EMS Maglev system with structural flexibility

    NASA Astrophysics Data System (ADS)

    Hanasoge, Aravind M.

    Vehicle-guideway interaction studies of Magnetically Levitated (Maglev) vehicles indicate that structural flexibility can adversely affect the overall stability and performance of such systems. This is one of the reasons why guideways are generally made very rigid. This in turn leads to increased cost of the overall system since guideway construction forms a significant portion of the overall cost. In this dissertation, the influence of structural flexibility on the stability of Electromagnetic Suspension (EMS) Maglev systems is studied. It is shown how inherently unstable and flexible structure EMS Maglev systems can achieve guaranteed stability by using collocated actuators and sensors, along with de-centralized Proportional plus Derivative (PD) controllers. These results are valid even in the presence of Track/Guideway flexibility. A detailed dynamic model is developed for the EMS Maglev demonstration system (Test Bogie) currently under research and development at Old Dominion University (ODU). This model incorporates structural dynamics with flexible modes of vibration, non-linear electrodynamics, feedback controllers, discrete time implementation, noise filters and disturbance inputs. This model is validated via real time experimental testing. The model thus validated is used for simulation case studies involving levitation and lateral disturbance, lateral control, and centralized control.

  20. Testing Strategies for Model-Based Development

    NASA Technical Reports Server (NTRS)

    Heimdahl, Mats P. E.; Whalen, Mike; Rajan, Ajitha; Miller, Steven P.

    2006-01-01

    This report presents an approach for testing artifacts generated in a model-based development process. This approach divides the traditional testing process into two parts: requirements-based testing (validation testing) which determines whether the model implements the high-level requirements and model-based testing (conformance testing) which determines whether the code generated from a model is behaviorally equivalent to the model. The goals of the two processes differ significantly and this report explores suitable testing metrics and automation strategies for each. To support requirements-based testing, we define novel objective requirements coverage metrics similar to existing specification and code coverage metrics. For model-based testing, we briefly describe automation strategies and examine the fault-finding capability of different structural coverage metrics using tests automatically generated from the model.

  1. Resonator modeling by field tracing: a flexible approach for fully vectorial laser resonator modeling

    NASA Astrophysics Data System (ADS)

    Asoubar, Daniel; Wyrowski, Frank; Schweitzer, Hagen; Hellmann, Christian; Kuhn, Michael

    2014-05-01

    Nowadays lasers cover a broad spectrum of applications, like laser material processing, metrology and communications. Therefore a broad variety of different lasers, containing various active media and resonator setups, are used to provide high design flexibility. The optimization of such multi-parameter laser setups requires powerful simulation techniques. In literature mainly three practical resonator modeling techniques can be found: Rigorous techniques, e.g. the finite element method (FEM), approximated solutions based on paraxial Gaussian beam tracing by ABCD matrices and the Fox and Li algorithm are used to analyze transversal resonator modes. All of these existing approaches have in common, that only a single simulation technique is used for the whole resonator. In contrast we reformulate the scalar Fox and Li integral equation for resonator eigenmode calculation into a fully vectorial field tracing operator equation. This allows the flexible combination of different modeling techniques in different subdomains of the resonator. The work introduces the basic concepts of field tracing in resonators to calculate vectorial, transversal eigenmodes of stable and unstable resonators.

  2. NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Marks, Virginia B. (Compiler); Keckler, Claude R. (Compiler)

    1994-01-01

    Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach.

  3. A flexible and efficient multi-model framework in support of water management

    NASA Astrophysics Data System (ADS)

    Wolfs, Vincent; Tran Quoc, Quan; Willems, Patrick

    2016-05-01

    Flexible, fast and accurate water quantity models are essential tools in support of water management. Adjustable levels of model detail and the ability to handle varying spatial and temporal resolutions are requisite model characteristics to ensure that such models can be employed efficiently in various applications. This paper uses a newly developed flexible modelling framework that aims to generate such models. The framework incorporates several approaches to model catchment hydrology, rivers and floodplains, and the urban drainage system by lumping processes on different levels. To illustrate this framework, a case study of integrated hydrological-hydraulic modelling is elaborated for the Grote Nete catchment in Belgium. Three conceptual rainfall-runoff models (NAM, PDM and VHM) were implemented in a generalized model structure, allowing flexibility in the spatial resolution by means of an innovative disaggregation/aggregation procedure. They were linked to conceptual hydraulic models of the rivers in the catchment, which were developed by means of an advanced model structure identification and calibration procedure. The conceptual models manage to emulate the simulation results of a detailed full hydrodynamic model accurately. The models configured using the approaches of this framework are well-suited for many applications in water management due to their very short calculation time, interfacing possibilities and adjustable level of detail.

  4. Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models

    PubMed Central

    2011-01-01

    Background When the mortality among a cancer patient group returns to the same level as in the general population, that is, the patients no longer experience excess mortality, the patients still alive are considered "statistically cured". Cure models can be used to estimate the cure proportion as well as the survival function of the "uncured". One limitation of parametric cure models is that the functional form of the survival of the "uncured" has to be specified. It can sometimes be hard to find a survival function flexible enough to fit the observed data, for example, when there is high excess hazard within a few months from diagnosis, which is common among older age groups. This has led to the exclusion of older age groups in population-based cancer studies using cure models. Methods Here we have extended the flexible parametric survival model to incorporate cure as a special case to estimate the cure proportion and the survival of the "uncured". Flexible parametric survival models use splines to model the underlying hazard function, and therefore no parametric distribution has to be specified. Results We have compared the fit from standard cure models to our flexible cure model, using data on colon cancer patients in Finland. This new method gives similar results to a standard cure model, when it is reliable, and better fit when the standard cure model gives biased estimates. Conclusions Cure models within the framework of flexible parametric models enables cure modelling when standard models give biased estimates. These flexible cure models enable inclusion of older age groups and can give stage-specific estimates, which is not always possible from parametric cure models. PMID:21696598

  5. Can Flexible Non-Linear Modeling Tell Us Anything New about Educational Productivity?

    ERIC Educational Resources Information Center

    Baker, Bruce D.

    2001-01-01

    Explores whether flexible nonlinear models (including neural networks and genetic algorithms) can reveal otherwise unexpected patterns of relationship in typical school-productivity data. Applying three types of algorithms alongside regression modeling to school-level data in 183 elementary schools proves the hypothesis and reveals new directions…

  6. Can Flexible Non-Linear Modeling Tell Us Anything New about Educational Productivity?

    ERIC Educational Resources Information Center

    Baker, Bruce D.

    2001-01-01

    Explores whether flexible nonlinear models (including neural networks and genetic algorithms) can reveal otherwise unexpected patterns of relationship in typical school-productivity data. Applying three types of algorithms alongside regression modeling to school-level data in 183 elementary schools proves the hypothesis and reveals new directions…

  7. Reducing model uncertainty effects in flexible manipulators through the addition of passive damping

    NASA Technical Reports Server (NTRS)

    Alberts, T. E.

    1987-01-01

    An important issue in the control of practical systems is the effect of model uncertainty on closed loop performance. This is of particular concern when flexible structures are to be controlled, due to the fact that states associated with higher frequency vibration modes are truncated in order to make the control problem tractable. Digital simulations of a single-link manipulator system are employed to demonstrate that passive damping added to the flexible member reduces adverse effects associated with model uncertainty. A controller was designed based on a model including only one flexible mode. This controller was applied to larger order systems to evaluate the effects of modal truncation. Simulations using a Linear Quadratic Regulator (LQR) design assuming full state feedback illustrate the effect of control spillover. Simulations of a system using output feedback illustrate the destabilizing effect of observation spillover. The simulations reveal that the system with passive damping is less susceptible to these effects than the untreated case.

  8. Integrated modeling and control of flexible aircraft wings

    NASA Astrophysics Data System (ADS)

    Wehr, Dagmara Anna

    Structural control for vibration reduction has important applications in many research areas, including the effect of earthquakes on buildings and aerodynamic forces on aircraft stability and performance. Both passive and active control techniques have been implemented, with the best solution usually involving a passive approach followed by an active one. This thesis presents an integrated modeling and controller design approach. Modal Cost Analysis (MCA) and Output Covariance Constraint (OCC) control are used to reduce a high-order aeroelastic wing model to establish the best controller for the reduced-order model, with a constraint on the covariance of the vibration outputs. MCA seeks to keep the modes that have the highest contribution to a given cost function. Using iterations on the two processes will allow a lower-order controller to be designed and result in the same performance. The OCC and MCA methods and their respective algorithms are presented, and an approach to integrate the two procedures is given. NASA's model used in this thesis is applied to the MCA and OCC algorithms using MATLAB. A 40 th-order wing model is derived. The model reduction technique initially reduces the system to a 12th order one. A simulation of the OCC algorithm is performed on the reduced-order model and applied to the full-order model. The controller resulting in the best closed-loop performance is shown to significantly reduce the vibrations due to wind. A corresponding weighting matrix used in OCC is then used for a second round of MCA to further reduce the model to an 8th order model. A lower-order controller designed for this second model is shown to similarly reduce the output vibrations.

  9. A flexible count data regression model for risk analysis.

    PubMed

    Guikema, Seth D; Coffelt, Jeremy P; Goffelt, Jeremy P

    2008-02-01

    In many cases, risk and reliability analyses involve estimating the probabilities of discrete events such as hardware failures and occurrences of disease or death. There is often additional information in the form of explanatory variables that can be used to help estimate the likelihood of different numbers of events in the future through the use of an appropriate regression model, such as a generalized linear model. However, existing generalized linear models (GLM) are limited in their ability to handle the types of variance structures often encountered in using count data in risk and reliability analysis. In particular, standard models cannot handle both underdispersed data (variance less than the mean) and overdispersed data (variance greater than the mean) in a single coherent modeling framework. This article presents a new GLM based on a reformulation of the Conway-Maxwell Poisson (COM) distribution that is useful for both underdispersed and overdispersed count data and demonstrates this model by applying it to the assessment of electric power system reliability. The results show that the proposed COM GLM can provide as good of fits to data as the commonly used existing models for overdispered data sets while outperforming these commonly used models for underdispersed data sets.

  10. Chempy: A flexible chemical evolution model for abundance fitting

    NASA Astrophysics Data System (ADS)

    Rybizki, J.; Just, A.; Rix, H.-W.; Fouesneau, M.

    2017-02-01

    Chempy models Galactic chemical evolution (GCE); it is a parametrized open one-zone model within a Bayesian framework. A Chempy model is specified by a set of 5-10 parameters that describe the effective galaxy evolution along with the stellar and star-formation physics: e.g. the star-formation history (SFH), the feedback efficiency, the stellar initial mass function (IMF) and the incidence of supernova of type Ia (SN Ia). Chempy can sample the posterior probability distribution in the full model parameter space and test data-model matches for different nucleosynthetic yield sets, performing essentially as a chemical evolution fitting tool. Chempy can be used to confront predictions from stellar nucleosynthesis with complex abundance data sets and to refine the physical processes governing the chemical evolution of stellar systems.

  11. Modeling structure and flexibility of Candida antarctica lipase B in organic solvents

    PubMed Central

    Trodler, Peter; Pleiss, Jürgen

    2008-01-01

    Background The structure and flexibility of Candida antarctica lipase B in water and five different organic solvent models was investigated using multiple molecular dynamics simulations to describe the effect of solvents on structure and dynamics. Interactions of the solvents with the protein and the distribution of water molecules at the protein surface were examined. Results The simulated structure was independent of the solvent, and had a low deviation from the crystal structure. However, the hydrophilic surface of CALB in non-polar solvents decreased by 10% in comparison to water, while the hydrophobic surface is slightly increased by 1%. There is a large influence on the flexibility depending on the dielectric constant of the solvent, with a high flexibility in water and a low flexibility in organic solvents. With decreasing dielectric constant, the number of surface bound water molecules significantly increased and a spanning water network with an increasing size was formed. Conclusion The reduced flexibility of Candida antarctica lipase B in organic solvents is caused by a spanning water network resulting from less mobile and slowly exchanging water molecules at the protein-surface. The reduced flexibility of Candida antarctica lipase B in organic solvent is not only caused by the interactions between solvent-protein, but mainly by the formation of a spanning water network. PMID:18254946

  12. Adaptive Flexibility and Maladaptive Routines in Selecting Fast and Frugal Decision Strategies

    ERIC Educational Resources Information Center

    Broder, Arndt; Schiffer, Stefanie

    2006-01-01

    Decision routines unburden the cognitive capacity of the decision maker. In changing environments, however, routines may become maladaptive. In 2 experiments with a hypothetical stock market game (n = 241), the authors tested whether decision routines tend to persist at the level of decision strategies rather than at the level of options in…

  13. Adaptive Flexibility and Maladaptive Routines in Selecting Fast and Frugal Decision Strategies

    ERIC Educational Resources Information Center

    Broder, Arndt; Schiffer, Stefanie

    2006-01-01

    Decision routines unburden the cognitive capacity of the decision maker. In changing environments, however, routines may become maladaptive. In 2 experiments with a hypothetical stock market game (n = 241), the authors tested whether decision routines tend to persist at the level of decision strategies rather than at the level of options in…

  14. Flexible and fixed mathematical models describing growth patterns of chukar partridges

    NASA Astrophysics Data System (ADS)

    Aygün, Ali; Narinç, Doǧan

    2016-04-01

    In animal science, the nonlinear regression models for growth curve analysis ofgrowth patterns are separated into two groups called fixed and flexible according to their point of inflection. The aims of this study were to compare fixed and flexible growth functions and to determine the best fit model for the growth data of chukar partridges. With this aim, the growth data of partridges were modeled with widely used models, such as Gompertz, Logistic, Von Bertalanffy as well as the flexible functions, such as, Richards, Janoschek, Levakovich. So as to evaluate growth functions, the R2 (coefficient of determination), adjusted R2 (adjusted coefficient of determination), MSE (mean square error), AIC (Akaike's information criterion) and BIC (Bayesian information criterion) goodness of fit criteria were used. It has been determined that the best fit model from the point of chukar partridge growth data according to mentioned goodness of fit criteria is Janoschek function which has a flexible structure. The Janoschek model is not only important because it has a higher number of parameters with biological meaning than the other functions (the mature weight and initial weight parameters), but also because it was not previously used in the modeling of the chukar partridge growth.

  15. Flexibility need prompts installation of Zeepipe modeling system

    SciTech Connect

    Thaule, S.B.; Postvoll, W.

    1998-03-23

    Installation by den norske stats oljeselskap A.S. (Statoil) of a powerful pipeline-modeling system on Zeepipe has allowed this major North Sea gas pipeline to meet the growing demands and seasonal variations of the European gas market. The Troll gas-sales agreement (TGSA) in 1986 called for large volumes of Norwegian gas to begin arriving from the North Sea Sleipner East field in october 1993. It is important to Statoil to maintain regular gas delivers from its integrated transport network. In addition, high utilization of transport capacity maximizes profits. In advance of operations, Statoil realized that state-of-the-art supervisory control and data acquisition (scada) and pipeline-modeling systems (PMS) would be necessary to meet its goals and to remain the most efficient North Sea operator. The paper describes the linking of Troll and Zeebrugge, contractual issues, the supervisory system, the scada module, pipeline modeling, real-time model, look-ahead model, predictive model, and model performance.

  16. Integrated Model Reduction and Control of Aircraft with Flexible Wings

    NASA Technical Reports Server (NTRS)

    Swei, Sean Shan-Min; Zhu, Guoming G.; Nguyen, Nhan T.

    2013-01-01

    This paper presents an integrated approach to the modeling and control of aircraft with exible wings. The coupled aircraft rigid body dynamics with a high-order elastic wing model can be represented in a nite dimensional state-space form. Given a set of desired output covariance, a model reduction process is performed by using the weighted Modal Cost Analysis (MCA). A dynamic output feedback controller, which is designed based on the reduced-order model, is developed by utilizing output covariance constraint (OCC) algorithm, and the resulting OCC design weighting matrix is used for the next iteration of the weighted cost analysis. This controller is then validated for full-order evaluation model to ensure that the aircraft's handling qualities are met and the uttering motion of the wings suppressed. An iterative algorithm is developed in CONDUIT environment to realize the integration of model reduction and controller design. The proposed integrated approach is applied to NASA Generic Transport Model (GTM) for demonstration.

  17. An Analytical Model for Predicting Stab Resistance of Flexible Woven Composites

    NASA Astrophysics Data System (ADS)

    Hou, Limin; Sun, Baozhong; Gu, Bohong

    2013-08-01

    Flexible woven composites have been widely used in geotextiles and light weight building structures. The stab resistance behavior of the flexible woven composite is an important factor for the application design. This paper reports an analytical model for predicting stab resistance of flexible woven composites under perpendicular stab with a blunt steel penetrator. The analytical model was established based on the microstructure and the deformation shape of the flexible woven composite under normal penetration. During the quasi-static stab penetration, the strain energies of warp and weft yarns and resins have been calculated. The stab resistance was calculated from the strain energies of the flexible woven composite. Furthermore, the contributions of the warp and weft yarns, resins to the stab resistance have been analyzed. It was found the three constituents have near the same contribution to the stab resistance. The higher value of weaving density, strength of yarns and especially the higher strength coating resins will lead the higher stab resistance. With the analytical model, the stab resistance would be expected to be designed in an efficient way with an acceptable precision.

  18. Maximum likelihood estimation for distributed parameter models of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Taylor, L. W., Jr.; Williams, J. L.

    1989-01-01

    A distributed-parameter model of the NASA Solar Array Flight Experiment spacecraft structure is constructed on the basis of measurement data and analyzed to generate a priori estimates of modal frequencies and mode shapes. A Newton-Raphson maximum-likelihood algorithm is applied to determine the unknown parameters, using a truncated model for the estimation and the full model for the computation of the higher modes. Numerical results are presented in a series of graphs and briefly discussed, and the significant improvement in computation speed obtained by parallel implementation of the method on a supercomputer is noted.

  19. Discrete and continuous dynamics modeling of a mass moving on a flexible structure

    NASA Technical Reports Server (NTRS)

    Herman, Deborah Ann

    1992-01-01

    A general discrete methodology for modeling the dynamics of a mass that moves on the surface of a flexible structure is developed. This problem was motivated by the Space Station/Mobile Transporter system. A model reduction approach is developed to make the methodology applicable to large structural systems. To validate the discrete methodology, continuous formulations are also developed. Three different systems are examined: (1) simply-supported beam, (2) free-free beam, and (3) free-free beam with two points of contact between the mass and the flexible beam. In addition to validating the methodology, parametric studies were performed to examine how the system's physical properties affect its dynamics.

  20. Kane's equations of flexible multibody systems with tree structure - A computer-oriented modeling approach

    NASA Astrophysics Data System (ADS)

    Jin, Liang; Bauer, Helmut F.

    1991-09-01

    Kane's dynamical model of flexible multibody space systems with tree structure is developed in this paper. The system topology is restricted to a tree configuration which is defined as an arbitrary set of flexible and rigid bodies connected by hinges characterizing relative translations and rotations of two adjoining bodies. The relative translational velocities, angular velocities, and the differential of model coordinates are selected as the generalized velocities. The motion equations of minimum dimension are derived via Kane's method. The resulting equations are suitable for automatic generation and computer simulation.

  1. Unsymmetric Lanczos model reduction and linear state function observer for flexible structures

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1991-01-01

    This report summarizes part of the research work accomplished during the second year of a two-year grant. The research, entitled 'Application of Lanczos Vectors to Control Design of Flexible Structures' concerns various ways to use Lanczos vectors and Krylov vectors to obtain reduced-order mathematical models for use in the dynamic response analyses and in control design studies. This report presents a one-sided, unsymmetric block Lanczos algorithm for model reduction of structural dynamics systems with unsymmetric damping matrix, and a control design procedure based on the theory of linear state function observers to design low-order controllers for flexible structures.

  2. A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls.

    PubMed

    Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning

    2016-03-01

    Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results.

  3. Folding in a semi-flexible lattice model for Crambin

    NASA Astrophysics Data System (ADS)

    Shi, Guangjie; Farris, Alfred C. K.; Wüst, Thomas; Landau, David P.

    2016-01-01

    Using the Replica-Exchange Wang-Landau sampling method, we investigated and compared three different coarse-grained lattice protein models for the small, hydrophobic protein Crambin. We show that slight extensions of the HP lattice protein model, including the stiffness of bonds can lead to a significant decrease in ground-state degeneracies (up to 5 orders of magnitudes). Moreover, the ground-state structures begin to bear resemblance to native structures observed in real Crambin.

  4. Fast Flexible Modeling of RNA Structure Using Internal Coordinates

    PubMed Central

    Flores, Samuel Coulbourn; Sherman, Michael A.; Bruns, Christopher M.; Eastman, Peter; Altman, Russ Biagio

    2015-01-01

    Modeling the structure and dynamics of large macromolecules remains a critical challenge. Molecular dynamics (MD) simulations are expensive because they model every atom independently, and are difficult to combine with experimentally derived knowledge. Assembly of molecules using fragments from libraries relies on the database of known structures and thus may not work for novel motifs. Coarse-grained modeling methods have yielded good results on large molecules but can suffer from difficulties in creating more detailed full atomic realizations. There is therefore a need for molecular modeling algorithms that remain chemically accurate and economical for large molecules, do not rely on fragment libraries, and can incorporate experimental information. RNABuilder works in the internal coordinate space of dihedral angles and thus has time requirements proportional to the number of moving parts rather than the number of atoms. It provides accurate physics-based response to applied forces, but also allows user-specified forces for incorporating experimental information. A particular strength of RNABuilder is that all Leontis-Westhof basepairs can be specified as primitives by the user to be satisfied during model construction. We apply RNABuilder to predict the structure of an RNA molecule with 160 bases from its secondary structure, as well as experimental information. Our model matches the known structure to 10.2 Angstroms RMSD and has low computational expense. PMID:21778523

  5. Flexible operation strategy for environment control system in abnormal supply power condition

    NASA Astrophysics Data System (ADS)

    Liping, Pang; Guoxiang, Li; Hongquan, Qu; Yufeng, Fang

    2017-04-01

    This paper establishes an optimization method that can be applied to the flexible operation of the environment control system in an abnormal supply power condition. A proposed conception of lifespan is used to evaluate the depletion time of the non-regenerative substance. The optimization objective function is to maximize the lifespans. The optimization variables are the allocated powers of subsystems. The improved Non-dominated Sorting Genetic Algorithm is adopted to obtain the pareto optimization frontier with the constraints of the cabin environmental parameters and the adjustable operating parameters of the subsystems. Based on the same importance of objective functions, the preferred power allocation of subsystems can be optimized. Then the corresponding running parameters of subsystems can be determined to ensure the maximum lifespans. A long-duration space station with three astronauts is used to show the implementation of the proposed optimization method. Three different CO2 partial pressure levels are taken into consideration in this study. The optimization results show that the proposed optimization method can obtain the preferred power allocation for the subsystems when the supply power is at a less-than-nominal value. The method can be applied to the autonomous control for the emergency response of the environment control system.

  6. Consumption of crustaceans by megaherbivorous dinosaurs: dietary flexibility and dinosaur life history strategies.

    PubMed

    Chin, Karen; Feldmann, Rodney M; Tashman, Jessica N

    2017-09-21

    Large plant-eating dinosaurs are usually presumed to have been strictly herbivorous, because their derived teeth and jaws were capable of processing fibrous plant foods. This inferred feeding behavior offers a generalized view of dinosaur food habits, but rare direct fossil evidence of diet provides more nuanced insights into feeding behavior. Here we describe fossilized feces (coprolites) that demonstrate recurring consumption of crustaceans and rotted wood by large Late Cretaceous dinosaurs. These multi-liter coprolites from the Kaiparowits Formation are primarily composed of comminuted conifer wood tissues that were fungally degraded before ingestion. Thick fragments of laminar crustacean cuticle are scattered within the coprolite contents and suggest that the dinosaurian defecators consumed sizeable crustaceans that sheltered in rotting logs. The diet of decayed wood and crustaceans offered a substantial supply of plant polysaccharides, with added dividends of animal protein and calcium. Nevertheless, it is unlikely that the fossilized fecal residues depict year-round feeding habits. It is more reasonable to infer that these coprolites reflected seasonal dietary shifts-possibly related to the dinosaurs' oviparous breeding activities. This surprising fossil evidence challenges conventional notions of herbivorous dinosaur diets and reveals a degree of dietary flexibility that is consistent with that of extant herbivorous birds.

  7. Stratified high-throughput screening sets enable flexible screening strategies from a single plated collection.

    PubMed

    Nissink, J Willem M; Schmitt, Stefan; Blackburn, Sam; Peters, Stephen

    2014-03-01

    Customized compound picking and plating of very large corporate screening decks (many 100,000s) for high-throughput screening is generally restricted, both from a time and cost perspective. Here we present a stratified screening deck with accompanying plating design for use with very large corporate compound collections. The deck is plated as a whole, but copies for screening can be downsized flexibly and quickly on the fly, without the need for repicking of physical samples. We show that such downsized sets maximize returns and yield results superior to randomly picked subsets of the same size. For the proposed stratified plating design, structurally diverse subsets that cover the full collection in terms of compound diversity and favorable compound properties can be produced economically and quickly from the full set of master plates. The design was implemented globally at AstraZeneca in 2009 and has enabled substantial cost-saving in screening campaigns, as set size requirements can be met on a per-screen basis, using a single, preplated master deck.

  8. Phenotypic flexibility in the energetic strategy of the greater white-toothed shrew, Crocidura russula.

    PubMed

    Oliveira, Flávio G; Tapisso, Joaquim T; Monarca, Rita I; Cerveira, Ana M; Mathias, Maria L

    2016-02-01

    The balance between energetic acquisition and expenditure depends on the amount of energy allocated to biological functions such as thermoregulation, growth, reproduction and behavior. Ambient temperature has a profound effect on this balance, with species inhabiting colder climates often needing to invest more energy in thermoregulation to maintain body temperature. This leads to local behavioral and physiological adaptations that increase energetic efficiency. In this study, we investigated the role of activity, behavior and thermogenic capacity in the ability of the greater white-toothed shrew, Crocidura russula, to cope with seasonal changes. Individuals were captured in the Sintra-Cascais Natural Park, a Mediterranean region, and separated into three experimental groups: a control group, acclimated to a 12L:12D photoperiod and temperature of 18-20°C; a winter group, acclimatized to natural winter fluctuations of light and temperature; and a summer group, acclimatized to natural summer fluctuations of light and temperature. No differences were found in resting metabolic rate and nonshivering thermogenesis between the three groups. However, winter shrews significantly reduced their activity, particularly at night, compared to the control and summer groups. Differences in torpor use were also found between groups, with winter shrews entering torpor more frequently and during shorter periods of time than summer and control shrews. Our results indicate C. russula from Sintra relies on the flexibility of energy saving mechanisms, namely daily activity level and torpor use, to cope with seasonal changes in a Mediterranean climate, rather than mechanisms involving body heat production.

  9. Fixed and Flexible: Coexistence of Obligate and Facultative Migratory Strategies in a Freshwater Fish

    PubMed Central

    Brodersen, Jakob; Chapman, Ben B.; Nilsson, P. Anders; Skov, Christian; Hansson, Lars-Anders; Brönmark, Christer

    2014-01-01

    Migration is an important event in many animal life histories, but the degree to which individual animals participate in seasonal migrations often varies within populations. The powerful ecological and evolutionary consequences of such partial migration are now well documented, but the underlying mechanisms are still heavily debated. One potential mechanism of partial migration is between-individual variation in body condition, where animals in poor condition cannot pay the costs of migration and hence adopt a resident strategy. However, underlying intrinsic traits may overrule such environmental influence, dictating individual consistency in migratory patterns. Unfortunately, field tests of individual consistency compared to the importance of individual condition on migratory propensity are rare. Here we analyse 6 years of field data on roach migration, gathered by tagging almost 3000 individual fish and monitoring their seasonal migrations over extended periods of time. Our aims were to provide a field test of the role of condition in wild fish for migratory decisions, and also to assess individual consistency in migratory tendency. Our analyses reveal that (1) migratory strategy, in terms of migration/residency, is highly consistent within individuals over time and (2) there is a positive relationship between condition and the probability of migration, but only in individuals that adopt a migratory strategy at some point during their lives. However, life-long residents do not differ in condition to migrants, hence body condition is only a good predictor of migratory tendency in fish with migratory phenotypes and not a more general determinant of migratory tendency for the population. As resident individuals can achieve very high body condition and still remain resident, we suggest that our data provides some of the first field evidence to show that both facultative and obligate strategies can co-exist within populations of migratory animals. PMID:24594698

  10. A Flexible Atmospheric Modeling Framework for the CESM

    SciTech Connect

    Randall, David; Heikes, Ross; Konor, Celal

    2014-11-12

    We have created two global dynamical cores based on the unified system of equations and Z-grid staggering on an icosahedral grid, which are collectively called UZIM (Unified Z-grid Icosahedral Model). The z-coordinate version (UZIM-height) can be run in hydrostatic and nonhydrostatic modes. The sigma-coordinate version (UZIM-sigma) runs in only hydrostatic mode. The super-parameterization has been included as a physics option in both models. The UZIM versions with the super-parameterization are called SUZI. With SUZI-height, we have completed aquaplanet runs. With SUZI-sigma, we are making aquaplanet runs and realistic climate simulations. SUZI-sigma includes realistic topography and a SiB3 model to parameterize the land-surface processes.

  11. PSO-MISMO modeling strategy for multistep-ahead time series prediction.

    PubMed

    Bao, Yukun; Xiong, Tao; Hu, Zhongyi

    2014-05-01

    Multistep-ahead time series prediction is one of the most challenging research topics in the field of time series modeling and prediction, and is continually under research. Recently, the multiple-input several multiple-outputs (MISMO) modeling strategy has been proposed as a promising alternative for multistep-ahead time series prediction, exhibiting advantages compared with the two currently dominating strategies, the iterated and the direct strategies. Built on the established MISMO strategy, this paper proposes a particle swarm optimization (PSO)-based MISMO modeling strategy, which is capable of determining the number of sub-models in a self-adaptive mode, with varying prediction horizons. Rather than deriving crisp divides with equal-size s prediction horizons from the established MISMO, the proposed PSO-MISMO strategy, implemented with neural networks, employs a heuristic to create flexible divides with varying sizes of prediction horizons and to generate corresponding sub-models, providing considerable flexibility in model construction, which has been validated with simulated and real datasets.

  12. Collective Molecular Superrotation: A Model for Extremely Flexible Molecules Applied to Protonated Methane

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-11-01

    The concept of molecular structure is traditionally considered to be virtually fundamental. However, it breaks down in extremely flexible molecules, whose dynamics are governed by large-amplitude motions. For the dynamics of molecules with free internal rotations, we therefore propose a five-dimensional rigid rotor model, with states characterized by two generalized angular momentum quantum numbers and a rotational constant B . The quantum numbers characterize a 5D angular-momentum vector, super-j , which describes collective rotations that involve both the internal and the overall rotation. This model predicts the lowest energy states of the prototypical, extremely flexible molecule, CH5+ . Both energies and symmetries compare very favorably to recent experimental results. The respective assignment to the new quantum numbers indicates the validity of our concept of collective rotations in extremely flexible molecules.

  13. Flutter suppression control law synthesis for the Active Flexible Wing model

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Perry, Boyd, III; Noll, Thomas E.

    1989-01-01

    The Active Flexible Wing Project is a collaborative effort between the NASA Langley Research Center and Rockwell International. The objectives are the validation of methodologies associated with mathematical modeling, flutter suppression control law development and digital implementation of the control system for application to flexible aircraft. A flutter suppression control law synthesis for this project is described. The state-space mathematical model used for the synthesis included ten flexible modes, four control surface modes and rational function approximation of the doublet-lattice unsteady aerodynamics. The design steps involved developing the full-order optimal control laws, reducing the order of the control law, and optimizing the reduced-order control law in both the continuous and the discrete domains to minimize stochastic response. System robustness was improved using singular value constraints. An 8th order robust control law was designed to increase the symmetric flutter dynamic pressure by 100 percent. Preliminary results are provided and experiences gained are discussed.

  14. A geometry and texture coupled flexible generalization of urban building models

    NASA Astrophysics Data System (ADS)

    Zhang, Man; Zhang, Liqiang; Takis Mathiopoulos, P.; Xie, Wenqing; Ding, Yusi; Wang, Hao

    2012-06-01

    In the past, numerous research efforts have focused on generalization of city building models. However, a generic procedure for creating flexible generalization results supporting the fast and efficient update of original building models with various complexities is still an open problem. Moreover, building clusters created in previously published generalization methods are not flexible enough to meet the various requirements for both legible and realistic visualization. Motivated by these observations, this paper proposes a new method for generating a flexible generalization outcome which enables convenient updating of original building models. It also proposes a flexible preprocessing of this generalized information to render a legible and realistic urban scene. This is accomplished by introducing a novel component structure, termed as FEdge, particularly designed for efficiently managing the geometry and texture information in building cluster instances (both original building models and building clusters) during the generalization, visualization and updating processes. Furthermore, a multiple representation structure, referred to as Evolved Buffer-Tree (EBT), is also introduced. The purpose of the EBT is to organize building cluster instances and to employ more flexible LODs for both legible and realistic visualization of urban scenes. FEdge has an intuitive planar shape which can be effectively used in representing rough 3D facade composed by detailed continuous meshes. Each FEdge is given a unique identifier, referred to as FEdge Index. In the proposed generalization scheme, firstly each original building model treated as a building cluster instance is abstracted and presented as FEdge Indices. These FEdge Indices are then used for producing generalized building cluster instances in the EBT portably, and to support convenient model updating and flexible preprocessing of the generalization results for renderable building cluster instances. Secondly, to achieve

  15. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  16. Pseudoabsence Generation Strategies for Species Distribution Models

    PubMed Central

    Hanberry, Brice B.; He, Hong S.; Palik, Brian J.

    2012-01-01

    Background Species distribution models require selection of species, study extent and spatial unit, statistical methods, variables, and assessment metrics. If absence data are not available, another important consideration is pseudoabsence generation. Different strategies for pseudoabsence generation can produce varying spatial representation of species. Methodology We considered model outcomes from four different strategies for generating pseudoabsences. We generating pseudoabsences randomly by 1) selection from the entire study extent, 2) a two-step process of selection first from the entire study extent, followed by selection for pseudoabsences from areas with predicted probability <25%, 3) selection from plots surveyed without detection of species presence, 4) a two-step process of selection first for pseudoabsences from plots surveyed without detection of species presence, followed by selection for pseudoabsences from the areas with predicted probability <25%. We used Random Forests as our statistical method and sixteen predictor variables to model tree species with at least 150 records from Forest Inventory and Analysis surveys in the Laurentian Mixed Forest province of Minnesota. Conclusions Pseudoabsence generation strategy completely affected the area predicted as present for species distribution models and may be one of the most influential determinants of models. All the pseudoabsence strategies produced mean AUC values of at least 0.87. More importantly than accuracy metrics, the two-step strategies over-predicted species presence, due to too much environmental distance between the pseudoabsences and recorded presences, whereas models based on random pseudoabsences under-predicted species presence, due to too little environmental distance between the pseudoabsences and recorded presences. Models using pseudoabsences from surveyed plots produced a balance between areas with high and low predicted probabilities and the strongest relationship between

  17. Pseudoabsence generation strategies for species distribution models.

    PubMed

    Hanberry, Brice B; He, Hong S; Palik, Brian J

    2012-01-01

    Species distribution models require selection of species, study extent and spatial unit, statistical methods, variables, and assessment metrics. If absence data are not available, another important consideration is pseudoabsence generation. Different strategies for pseudoabsence generation can produce varying spatial representation of species. We considered model outcomes from four different strategies for generating pseudoabsences. We generating pseudoabsences randomly by 1) selection from the entire study extent, 2) a two-step process of selection first from the entire study extent, followed by selection for pseudoabsences from areas with predicted probability <25%, 3) selection from plots surveyed without detection of species presence, 4) a two-step process of selection first for pseudoabsences from plots surveyed without detection of species presence, followed by selection for pseudoabsences from the areas with predicted probability <25%. We used Random Forests as our statistical method and sixteen predictor variables to model tree species with at least 150 records from Forest Inventory and Analysis surveys in the Laurentian Mixed Forest province of Minnesota. Pseudoabsence generation strategy completely affected the area predicted as present for species distribution models and may be one of the most influential determinants of models. All the pseudoabsence strategies produced mean AUC values of at least 0.87. More importantly than accuracy metrics, the two-step strategies over-predicted species presence, due to too much environmental distance between the pseudoabsences and recorded presences, whereas models based on random pseudoabsences under-predicted species presence, due to too little environmental distance between the pseudoabsences and recorded presences. Models using pseudoabsences from surveyed plots produced a balance between areas with high and low predicted probabilities and the strongest relationship between density and area with predicted

  18. Flexible Finite-Element Modeling of Global Geomagnetic Depth Sounding

    NASA Astrophysics Data System (ADS)

    Ribaudo, Joseph Thomas

    Time-varying primary magnetic fields generated outside Earth by the magnetospheric ring current induce electrical currents in Earth's interior, which give rise to secondary magnetic fields with a complementary geometry. Geomagnetic depth sounding involves the analysis of magnetic field data to compute frequency-dependent response functions which yield information about the electrical conductivity of Earth's interior. I explore methods and results of forward-modeling global electromagnetic induction under a variety of assumptions about Earth conductivity and the spatial structure of the primary field. I begin by developing computational tools to perform time- and frequency-domain simulations of global induction in models with arbitrary conductivity and primary field structure using FlexPDE, a general-purpose software package that employs the finite-element method to solve partial differential equations. The method is shown to produce solutions with better than 1% accuracy when the simulated fields and response functions are compared to analytic solutions for a variety of problems in electromagnetic induction, and to qualitatively reproduce fields and response functions measured by satellites and observatories. The technique is employed in combination with analytic methods to explore the effect on the response of Earth models to primary fields with asymmetric structure. Standard methods of producing response functions from scalar and vector magnetic data are compared, and scalar methods are found to generate responses with significantly greater spatial bias for models with non-zonal fields. I develop the mathematical formulation for including Earth-rotation in the forward models, and use it to calculate frequency-dependent estimates of the amount of non-zonal structure required to produce previously reported local-time bias in empirical satellite response functions. Because it is difficult to validate solutions to induction problems that lack analytic solutions, we

  19. Flexible Modeling of Epidemics with an Empirical Bayes Framework

    PubMed Central

    Brooks, Logan C.; Farrow, David C.; Hyun, Sangwon; Tibshirani, Ryan J.; Rosenfeld, Roni

    2015-01-01

    Seasonal influenza epidemics cause consistent, considerable, widespread loss annually in terms of economic burden, morbidity, and mortality. With access to accurate and reliable forecasts of a current or upcoming influenza epidemic’s behavior, policy makers can design and implement more effective countermeasures. This past year, the Centers for Disease Control and Prevention hosted the “Predict the Influenza Season Challenge”, with the task of predicting key epidemiological measures for the 2013–2014 U.S. influenza season with the help of digital surveillance data. We developed a framework for in-season forecasts of epidemics using a semiparametric Empirical Bayes framework, and applied it to predict the weekly percentage of outpatient doctors visits for influenza-like illness, and the season onset, duration, peak time, and peak height, with and without using Google Flu Trends data. Previous work on epidemic modeling has focused on developing mechanistic models of disease behavior and applying time series tools to explain historical data. However, tailoring these models to certain types of surveillance data can be challenging, and overly complex models with many parameters can compromise forecasting ability. Our approach instead produces possibilities for the epidemic curve of the season of interest using modified versions of data from previous seasons, allowing for reasonable variations in the timing, pace, and intensity of the seasonal epidemics, as well as noise in observations. Since the framework does not make strict domain-specific assumptions, it can easily be applied to some other diseases with seasonal epidemics. This method produces a complete posterior distribution over epidemic curves, rather than, for example, solely point predictions of forecasting targets. We report prospective influenza-like-illness forecasts made for the 2013–2014 U.S. influenza season, and compare the framework’s cross-validated prediction error on historical data to

  20. Flexible Modeling of Epidemics with an Empirical Bayes Framework.

    PubMed

    Brooks, Logan C; Farrow, David C; Hyun, Sangwon; Tibshirani, Ryan J; Rosenfeld, Roni

    2015-08-01

    Seasonal influenza epidemics cause consistent, considerable, widespread loss annually in terms of economic burden, morbidity, and mortality. With access to accurate and reliable forecasts of a current or upcoming influenza epidemic's behavior, policy makers can design and implement more effective countermeasures. This past year, the Centers for Disease Control and Prevention hosted the "Predict the Influenza Season Challenge", with the task of predicting key epidemiological measures for the 2013-2014 U.S. influenza season with the help of digital surveillance data. We developed a framework for in-season forecasts of epidemics using a semiparametric Empirical Bayes framework, and applied it to predict the weekly percentage of outpatient doctors visits for influenza-like illness, and the season onset, duration, peak time, and peak height, with and without using Google Flu Trends data. Previous work on epidemic modeling has focused on developing mechanistic models of disease behavior and applying time series tools to explain historical data. However, tailoring these models to certain types of surveillance data can be challenging, and overly complex models with many parameters can compromise forecasting ability. Our approach instead produces possibilities for the epidemic curve of the season of interest using modified versions of data from previous seasons, allowing for reasonable variations in the timing, pace, and intensity of the seasonal epidemics, as well as noise in observations. Since the framework does not make strict domain-specific assumptions, it can easily be applied to some other diseases with seasonal epidemics. This method produces a complete posterior distribution over epidemic curves, rather than, for example, solely point predictions of forecasting targets. We report prospective influenza-like-illness forecasts made for the 2013-2014 U.S. influenza season, and compare the framework's cross-validated prediction error on historical data to that of a

  1. Pilot modeling, modal analysis, and control of large flexible aircraft

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1984-01-01

    The issues to be addressed are threefold. The first deals with the question of whether dynamic aeroelastic effects can significantly impact piloted flight dynamics. For example, if one were to explore this problem experimentally, what mathematical model would be appropriate to use in the simulation? What modes, for example, should be included in the simulation, or what linear model should be used in the control synthesis? The second question deals with the appropriate design criteria or design objectives. In the case of active control, for example, what would be the design objectives for the control synthesis if aeroelastic effects are a problem? The outline of the topics includes a description of a model analysis methodology aimed at answering the question of the significance of higher order dynamics. Secondly, a pilot vehicle analysis of some experimental data addresses the question of ""What's important in the task?'' The experimental data will be presented briefly, followed by the results of an open-loop modal analysis of the generic vehicle configurations in question. Finally, one of the vehicles will be augmented via active control and the results presented.

  2. Models of the Sociocultural Strategies of Today's College Students

    ERIC Educational Resources Information Center

    Gritsenko, G. D.; Maslova, T. F.

    2013-01-01

    Survey data suggest that there are several models of sociocultural strategy used by Russian students, each with a specific hierarchy of values. A typical model is the traditionalist strategy, although the achievement-oriented strategy is also quite widespread.

  3. Models of the Sociocultural Strategies of Today's College Students

    ERIC Educational Resources Information Center

    Gritsenko, G. D.; Maslova, T. F.

    2013-01-01

    Survey data suggest that there are several models of sociocultural strategy used by Russian students, each with a specific hierarchy of values. A typical model is the traditionalist strategy, although the achievement-oriented strategy is also quite widespread.

  4. An Evaluation of the Pavement Condition Index Prediction Model for Flexible Airfield Pavements.

    DTIC Science & Technology

    1983-09-01

    NO. 3 . RECiPIENT’S CATALOG NUMBER LSSR 11-83 LID,_ 13 -______9_ 4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED AN EVALUATION OF THE...Flexible Models. ......... 42 Current Model Development ...........54 Dronen Model................67 Conclusion ................... 71 iv CHAPTER Page 3 ...13 2-2 General Guide for Establishing Rigid Pavement Condition................16 2- 3 Types of Distress in Airfield Pavement

  5. Development of a flexible strategy towards FR900482 and the mitomycins.

    PubMed

    Trost, Barry M; O'Boyle, Brendan M; Torres, Wildeliz; Ameriks, Michael K

    2011-07-04

    FR900482 and the mitomycins are two intriguing classes of alkaloid natural products that have analogous biological mechanisms and obvious structural similarity. Both classes possess potent anticancer activity, a feature that has led to their investigation and implementation for the clinical treatment of human cancer. Given the structural similarity between these natural products, we envisioned a common synthetic strategy by which both classes could be targeted through assembling the mitomycin skeleton prior to further oxidative functionalization. Realization of this strategy with respect to FR900482 was accomplished through the synthesis of 7-epi-FR900482, which displayed equal potency relative to the natural product against two human cancer cell lines. With the challenging goal of a synthesis of either mitomycin or FR900482 in mind, several methodologies were explored. While not all of these methods ultimately proved useful for our synthetic goal, a number of them led to intriguing findings that provide a more complete understanding of several methodologies. In particular, amination via π-allyl palladium complexes for the synthesis of tetrahydroquinolines, eight-membered heterocycle formation via carbonylative lactamization, and amination through late-stage C-H insertion via rhodium catalysis all featured prominently in our synthetic studies.

  6. Development of a Flexible Strategy Toward FR900482 and the Mitomycins

    PubMed Central

    O’Boyle, Brendan M.; Torres, Wildeliz; Ameriks, Michael K.

    2013-01-01

    FR900482 and the mitomycins are two intriguing classes of alkaloid natural products that have analogous biological mechanisms and obvious structural similarity. Both classes possess potent anti-cancer activity, a feature that has led to their investigation and implementation for the clinical treatment of human cancer. Given the structural similarity between these natural products, we envisioned a common synthetic strategy by which both classes could be targeted through assembling the mitomycin skeleton prior to further oxidative functionalization. Realization of this strategy with respect to FR900482 was accomplished through the synthesis of 7-epi-FR900482, which displayed equal potency relative to the natural product against two human cancer cell lines. With the challenging goal of a synthesis of either mitomycin or FR900482 in mind, several methodologies where explored. While not all of these methods ultimately proved useful for our synthetic goal, a number of them led to intriguing findings that provide a more complete understanding of several methodologies. In particular, amination via π-allyl palladium complexes for the synthesis of tetrahydroquinolines, 8-membered heterocycle formation via carbonylative lactamization, and amination through late-stage C-H insertion via rhodium catalysis all featured prominently in our synthetic studies. PMID:21618622

  7. Committed action: an application of the psychological flexibility model to activity patterns in chronic pain.

    PubMed

    McCracken, Lance M

    2013-08-01

    Whether a person with chronic pain avoids activity, persists with activity, or overexerts himself or herself is considered important to the quality of his or her daily functioning. However, results from studies of these activity patterns have not always yielded clear and consistent findings. It is suggested that applying the psychological flexibility model to activity patterns may clarify and integrate research in this area. Psychological flexibility is defined as the ability to persist or to change behavior in a setting of competing psychological influences, guided by goals and dependent on what the situation at hand affords. One aspect of psychological flexibility that appears pertinent to chronic pain is called committed action. Committed action is essentially goal-directed, flexible persistence. The purpose of the current study was to develop a measure of committed action, the committed action questionnaire (CAQ), in people seeking treatment for chronic pain (N = 216), to examine preliminary reliability and validity, and to test how well a summary score from the measure is able to predict patient health and functioning. Results generally support the internal consistency of the CAQ and show that it is correlated with another established component of psychological flexibility. In regression analyses the CAQ was able to account for significant variance in depression, social functioning, mental health, vitality, and general health, beyond the contributions of pain and acceptance of pain. The psychological flexibility model may be useful for understanding patterns of behavior in relation to chronic pain. It appears possible to assess a process in this model called committed action, and this process appears related to important aspects of functioning. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  8. The design, results and future development of the National Energy Strategy Environmental Analysis Model (NESEAM)

    SciTech Connect

    Fisher, R.E.; Boyd, G.A. ); Breed, W.S. . Office of Environmental Analysis)

    1991-01-01

    The National Energy Strategy Environmental Model (NESEAM) has been developed to project emissions for the National Energy Strategy (NES). Two scenarios were evaluated for the NES, a Current Policy Base Case and a NES Action Case. The results from the NES Actions Case project much lower emissions than the Current Policy Base Case. Future enhancements to NESEAM will focus on fuel cycle analysis, including future technologies and additional pollutants to model. NESEAM's flexibility will allow it to model other future legislative issues. 7 refs., 4 figs., 2 tabs.

  9. Application of partial differential equation modeling of the control/structural dynamics of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr.; Rajiyah, H.

    1991-01-01

    Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.

  10. A General and Flexible Approach to Estimating the Social Relations Model Using Bayesian Methods

    ERIC Educational Resources Information Center

    Ludtke, Oliver; Robitzsch, Alexander; Kenny, David A.; Trautwein, Ulrich

    2013-01-01

    The social relations model (SRM) is a conceptual, methodological, and analytical approach that is widely used to examine dyadic behaviors and interpersonal perception within groups. This article introduces a general and flexible approach to estimating the parameters of the SRM that is based on Bayesian methods using Markov chain Monte Carlo…

  11. A Competency-Based Technical Training Model That Embraces Learning Flexibility and Rewards Competency

    ERIC Educational Resources Information Center

    Yasinski, Lee

    2014-01-01

    Today's adult learners are continuously searching for successful programs with added learner flexibility, a positive learning experience, and the best education for their investment. Red Deer College's unique competency based welder apprenticeship training model fulfills this desire for many adult learners.

  12. Latent Class Analysis with Distal Outcomes: A Flexible Model-Based Approach

    ERIC Educational Resources Information Center

    Lanza, Stephanie T.; Tan, Xianming; Bray, Bethany C.

    2013-01-01

    Although prediction of class membership from observed variables in latent class analysis is well understood, predicting an observed distal outcome from latent class membership is more complicated. A flexible model-based approach is proposed to empirically derive and summarize the class-dependent density functions of distal outcomes with…

  13. MODELING THE EFFECTS OF FLEXIBILITY ON THE BINDING OF ENVIRONMENTAL ESTROGENS TO THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the effects of flexibility on the binding of environmental estrogens to the estrogen receptor
    There are many reports of environmental endocrine disruption in the literature, yet it has been difficult to identify the specific chemicals responsible for these effects. ...

  14. A General and Flexible Approach to Estimating the Social Relations Model Using Bayesian Methods

    ERIC Educational Resources Information Center

    Ludtke, Oliver; Robitzsch, Alexander; Kenny, David A.; Trautwein, Ulrich

    2013-01-01

    The social relations model (SRM) is a conceptual, methodological, and analytical approach that is widely used to examine dyadic behaviors and interpersonal perception within groups. This article introduces a general and flexible approach to estimating the parameters of the SRM that is based on Bayesian methods using Markov chain Monte Carlo…

  15. Latent Class Analysis with Distal Outcomes: A Flexible Model-Based Approach

    ERIC Educational Resources Information Center

    Lanza, Stephanie T.; Tan, Xianming; Bray, Bethany C.

    2013-01-01

    Although prediction of class membership from observed variables in latent class analysis is well understood, predicting an observed distal outcome from latent class membership is more complicated. A flexible model-based approach is proposed to empirically derive and summarize the class-dependent density functions of distal outcomes with…

  16. MODELING THE EFFECTS OF FLEXIBILITY ON THE BINDING OF ENVIRONMENTAL ESTROGENS TO THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the effects of flexibility on the binding of environmental estrogens to the estrogen receptor
    There are many reports of environmental endocrine disruption in the literature, yet it has been difficult to identify the specific chemicals responsible for these effects. ...

  17. Application of partial differential equation modeling of the control/structural dynamics of flexible spacecraft

    NASA Astrophysics Data System (ADS)

    Taylor, Lawrence W., Jr.; Rajiyah, H.

    Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.

  18. The Strategies of Modeling in Biology Education

    NASA Astrophysics Data System (ADS)

    Svoboda, Julia; Passmore, Cynthia

    2013-01-01

    Modeling, like inquiry more generally, is not a single method, but rather a complex suite of strategies. Philosophers of biology, citing the diverse aims, interests, and disciplinary cultures of biologists, argue that modeling is best understood in the context of its epistemic aims and cognitive payoffs. In the science education literature, modeling has been discussed in a variety of ways, but often without explicit reference to the diversity of roles models play in scientific practice. We aim to expand and bring clarity to the myriad uses of models in science by presenting a framework from philosopher of biology Jay Odenbaugh that describes five pragmatic strategies of model use in the biological sciences. We then present illustrative examples of each of these roles from an empirical study of an undergraduate biological modeling curriculum, which highlight how students used models to help them frame their research question, explore ideas, and refine their conceptual understanding in an educational setting. Our aim is to begin to explicate the definition of modeling in science in a way that will allow educators and curriculum developers to make informed choices about how and for what purpose modeling enters science classrooms.

  19. Flexible Approximation Model Approach for Bi-Level Integrated System Synthesis

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Kim, Hongman; Ragon, Scott; Soremekun, Grant; Malone, Brett

    2004-01-01

    Bi-Level Integrated System Synthesis (BLISS) is an approach that allows design problems to be naturally decomposed into a set of subsystem optimizations and a single system optimization. In the BLISS approach, approximate mathematical models are used to transfer information from the subsystem optimizations to the system optimization. Accurate approximation models are therefore critical to the success of the BLISS procedure. In this paper, new capabilities that are being developed to generate accurate approximation models for BLISS procedure will be described. The benefits of using flexible approximation models such as Kriging will be demonstrated in terms of convergence characteristics and computational cost. An approach of dealing with cases where subsystem optimization cannot find a feasible design will be investigated by using the new flexible approximation models for the violated local constraints.

  20. Modeling of protein-peptide interactions using the CABS-dock web server for binding site search and flexible docking.

    PubMed

    Blaszczyk, Maciej; Kurcinski, Mateusz; Kouza, Maksim; Wieteska, Lukasz; Debinski, Aleksander; Kolinski, Andrzej; Kmiecik, Sebastian

    2016-01-15

    Protein-peptide interactions play essential functional roles in living organisms and their structural characterization is a hot subject of current experimental and theoretical research. Computational modeling of the structure of protein-peptide interactions is usually divided into two stages: prediction of the binding site at a protein receptor surface, and then docking (and modeling) the peptide structure into the known binding site. This paper presents a comprehensive CABS-dock method for the simultaneous search of binding sites and flexible protein-peptide docking, available as a user's friendly web server. We present example CABS-dock results obtained in the default CABS-dock mode and using its advanced options that enable the user to increase the range of flexibility for chosen receptor fragments or to exclude user-selected binding modes from docking search. Furthermore, we demonstrate a strategy to improve CABS-dock performance by assessing the quality of models with classical molecular dynamics. Finally, we discuss the promising extensions and applications of the CABS-dock method and provide a tutorial appendix for the convenient analysis and visualization of CABS-dock results. The CABS-dock web server is freely available at http://biocomp.chem.uw.edu.pl/CABSdock/.

  1. A model of smoldering combustion applied to flexible polyurethane foams

    NASA Technical Reports Server (NTRS)

    Ohlemiller, T. J.; Rogers, F.; Bellan, J.

    1979-01-01

    Smoldering combustion, particularly in upholstery and bedding materials, has been proven a serious life hazard. The simplest representation of this hazard situation is one-dimensional downward propagation of a smolder wave against a buoyant upflow (cocurrent smolder); the configuration treated here is identical in all respects to this except for the presence of a forced flow replacing the buoyant one. The complex degradation chemistry of the polyurethanes is here reduced to the two major overall reactions of char formation and char oxidation. The model solutions, which are in reasonable agreement with experimental results, show the smolder process to be oxygen-limited, which leads to some very simple trends. More subtle behavior aspects determine actual propagation velocity, fraction of fuel consumed, and apparent equivalence ratio (all of which are variable). The self-insulating character of the smolder wave makes it viable in a wide-ranging set of conditions if the igniting stimulus is sufficiently long. These results have significant implications regarding the problem of smolder prevention or hindrance.

  2. Flexibility in community pharmacy: a qualitative study of business models and cognitive services.

    PubMed

    Feletto, Eleonora; Wilson, Laura K; Roberts, Alison S; Benrimoj, Shalom I

    2010-04-01

    To identify the capacity of current pharmacy business models, and the dimensions of organisational flexibility within them, to integrate products and services as well as the perceptions of viability of these models. Fifty-seven semi-structured interviews were conducted with community pharmacy owners or managers and support staff in 30 pharmacies across Australia. A framework of organisational flexibility was used to analyse their capacity to integrate services and perceptions of viability. Data were analysed using the method of constant comparison by two independent researchers. The study found that Australian community pharmacies have used the four types of flexibility to build capacity in distinct ways and react to changes in the local environment. This capacity building was manifested in four emerging business models which integrate services to varying degrees: classic community pharmacy, retail destination pharmacy, health care solution pharmacy and networked pharmacy. The perception of viability is less focused on dispensing medications and more focused on differentiating pharmacies through either a retail or services focus. Strategic flexibility appeared to offer pharmacies the ability to integrate and sustainably deliver services more successfully than other types, as exhibited by health care solution and networked pharmacies. Active support and encouragement to transition from being dependent on dispensing to implementing services is needed. The study showed that pharmacies where services were implemented and showed success are those strategically differentiating their businesses to become focused health care providers. This holistic approach should inevitably influence the sustainability of services.

  3. Steric confinement and enhanced local flexibility assist knotting in simple models of protein folding.

    PubMed

    Soler, Miguel A; Rey, Antonio; Faísca, Patrícia F N

    2016-09-29

    The chaperonin complex GroEL-GroES is able to accelerate the folding process of knotted proteins considerably. However, the folding mechanism inside the chaperonin cage is elusive. Here we use a combination of lattice and off-lattice Monte Carlo simulations of simple Gō models to study the effect of physical confinement and local flexibility on the folding process of protein model systems embedding a trefoil knot in their native structure. This study predicts that steric confinement plays a specific role in the folding of knotted proteins by increasing the knotting probability for very high degrees of confinement. This effect is observed for protein MJ0366 even above the melting temperature for confinement sizes compatible with the size of the GroEL/GroES chaperonin cage. An enhanced local flexibility produces the same qualitative effects on the folding process. In particular, we observe that knotting probability increases up to 40% in the transition state of protein MJ0366 when flexibility is enhanced. This is underlined by a structural change in the transition state, which becomes devoid of helical content. No relation between the knotting mechanism and flexibility was found in the context of the off-lattice model adopted in this work.

  4. Digestive strategies and food choice in mantled howler monkeys Alouatta palliata mexicana: bases of their dietary flexibility.

    PubMed

    Espinosa-Gómez, Fabiola; Gómez-Rosales, Sergio; Wallis, Ian R; Canales-Espinosa, Domingo; Hernández-Salazar, Laura

    2013-12-01

    Mantled howler monkeys (Alouatta palliata) occupy a wide variety of tropical habitats and are the most folivorous of New World primates. However, their diet may include fruits, buds, petioles, and flowers, as well as leaves, suggesting they must cope with variations in the nutrient composition of their food. We studied the physiological basis of the dietary flexibility of these monkeys by comparing food choice, digestive performance and patterns of digesta flow in six adults, fed diets of either leaves or a mixture of fruit and leaves. Although monkeys ate similar amounts of the two diets, they ingested more digestible protein when offered the leaf diet, on which they lost body mass, but they ingested much more soluble sugars when offered fruit and leaves on which they gained mass. Digestibilities of dry matter, fat, energy and fibre did not differ between diets, but those of crude protein, soluble sugars and minerals were higher on the fruit-leaf diet. Mean retention times in the gut of solute (Co-EDTA) and particulate markers (Cr-mordanted cell walls) did not differ between diets, but on both diets the monkeys retained the particulate marker (mean retention time ca 55 h) for longer than they did the solute marker (MRT ca 50 h). A lack of selective retention of solutes and small particles in the gastro-intestinal tract of howler monkeys probably restricts them to mixed diets but their digestive strategy is sufficiently flexible to allow them to feed on a diet of leaves when fruit is unavailable.

  5. Flexible parametric modelling of cause-specific hazards to estimate cumulative incidence functions

    PubMed Central

    2013-01-01

    Background Competing risks are a common occurrence in survival analysis. They arise when a patient is at risk of more than one mutually exclusive event, such as death from different causes, and the occurrence of one of these may prevent any other event from ever happening. Methods There are two main approaches to modelling competing risks: the first is to model the cause-specific hazards and transform these to the cumulative incidence function; the second is to model directly on a transformation of the cumulative incidence function. We focus on the first approach in this paper. This paper advocates the use of the flexible parametric survival model in this competing risk framework. Results An illustrative example on the survival of breast cancer patients has shown that the flexible parametric proportional hazards model has almost perfect agreement with the Cox proportional hazards model. However, the large epidemiological data set used here shows clear evidence of non-proportional hazards. The flexible parametric model is able to adequately account for these through the incorporation of time-dependent effects. Conclusion A key advantage of using this approach is that smooth estimates of both the cause-specific hazard rates and the cumulative incidence functions can be obtained. It is also relatively easy to incorporate time-dependent effects which are commonly seen in epidemiological studies. PMID:23384310

  6. Modeling and control of a flexible rotor system with AMB-based sustentation.

    PubMed

    Arredondo, I; Jugo, J; Etxebarria, V

    2008-01-01

    In this work the modeling and basic control design process of a rotary flexible spindle hovered by Active Magnetic Bearings (AMB) whose good capabilities for machine-tool industry extensively treated in the literature is presented. The modeling takes into account the three main behavioral characteristics of such magnetically-levitated rotor: the rigid dynamics, the flexible dynamics and the rotating unbalanced motion. Besides, the gyroscopic coupling is also studied proving that in this case, its effects are not significant and can be neglected. Using this model, a stabilizing controller based on symmetry properties is successfully designed for the system and a complete experimental analysis of its performance is carried out. Also, the predictions of the model are compared with the actual measured experimental results on a laboratory set-up based on the MBC500 Rotor Dynamics. Afterwards, a brief study about some nonlinear behavior observed in the system and its effect over the system stability at the critical speed is included.

  7. Methodological developments and strategies for a fast flexible superposition of drug-size molecules.

    PubMed

    Klebe, G; Mietzner, T; Weber, F

    1999-01-01

    An alternative to experimental high through-put screening is the virtual screening of compound libraries on the computer. In absence of a detailed structure of the receptor protein, candidate molecules are compared with a known reference by mutually superimposing their skeletons and scoring their similarity. Since molecular shape highly depends on the adopted conformation, an efficient conformational screening is performed using a knowledge-based approach. A comprehensive torsion library has been compiled from crystal data stored in the Cambridge Structural Database. For molecular comparison a strategy is followed considering shape associated physicochemical properties in space such as steric occupancy, electrostatics, lipophilicity and potential hydrogen-bonding. Molecular shape is approximated by a set of Gaussian functions not necessarily located at the atomic positions. The superposition is performed in two steps: first by a global alignment search operating on multiple rigid conformations and then by conformationally relaxing the best scored hits of the global search. A normalized similarity scoring is used to allow for a comparison of molecules with rather different shape and size. The approach has been implemented on a cluster of parallel processors. As a case study, the search for ligands binding to the dopamine receptor is given.

  8. Methodological developments and strategies for a fast flexible superposition of drug-size molecules

    NASA Astrophysics Data System (ADS)

    Klebe, Gerhard; Mietzner, Thomas; Weber, Frank

    1999-01-01

    An alternative to experimental high through-put screening is the virtual screening of compound libraries on the computer. In absence of a detailed structure of the receptor protein, candidate molecules are compared with a known reference by mutually superimposing their skeletons and scoring their similarity. Since molecular shape highly depends on the adopted conformation, an efficient conformational screening is performed using a knowledge-based approach. A comprehensive torsion library has been compiled from crystal data stored in the Cambridge Structural Database. For molecular comparison a strategy is followed considering shape associated physicochemical properties in space such as steric occupancy, electrostatics, lipophilicity and potential hydrogen-bonding. Molecular shape is approximated by a set of Gaussian functions not necessarily located at the atomic positions. The superposition is performed in two steps: first by a global alignment search operating on multiple rigid conformations and then by conformationally relaxing the best scored hits of the global search. A normalized similarity scoring is used to allow for a comparison of molecules with rather different shape and size. The approach has been implemented on a cluster of parallel processors. As a case study, the search for ligands binding to the dopamine receptor is given.

  9. A new bead-spring model for simulation of semi-flexible macromolecules

    NASA Astrophysics Data System (ADS)

    Saadat, Amir; Khomami, Bamin

    2016-11-01

    A bead-spring model for semi-flexible macromolecules is developed to overcome the deficiencies of the current coarse-grained bead-spring models. Specifically, model improvements are achieved through incorporation of a bending potential. The new model is designed to accurately describe the correlation along the backbone of the chain, segmental length, and force-extension behavior of the macromolecule even at the limit of 1 Kuhn step per spring. The relaxation time of different Rouse modes is used to demonstrate the capabilities of the new model in predicting chain dynamics.

  10. A new bead-spring model for simulation of semi-flexible macromolecules.

    PubMed

    Saadat, Amir; Khomami, Bamin

    2016-11-28

    A bead-spring model for semi-flexible macromolecules is developed to overcome the deficiencies of the current coarse-grained bead-spring models. Specifically, model improvements are achieved through incorporation of a bending potential. The new model is designed to accurately describe the correlation along the backbone of the chain, segmental length, and force-extension behavior of the macromolecule even at the limit of 1 Kuhn step per spring. The relaxation time of different Rouse modes is used to demonstrate the capabilities of the new model in predicting chain dynamics.

  11. Exact performance analytical model for spectrum allocation in flexible grid optical networks

    NASA Astrophysics Data System (ADS)

    Yu, Yiming; Zhang, Jie; Zhao, Yongli; Li, Hui; Ji, Yuefeng; Gu, Wanyi

    2014-03-01

    Dynamic flexible grid optical networks have gained much attention because of the advantages of high spectrum efficiency and flexibility, while the performance analysis will be more complex compared with fixed grid optical networks. An analytical Markov model is first presented in the paper, which can exactly describe the stochastic characteristics of the spectrum allocation in flexible grid optical networks considering both random-fit and first-fit resource assignment policies. We focus on the effect of spectrum contiguous constraint which has not been systematically studied in respect of mathematical modeling, and three major properties of the model are presented and analyzed. The model can expose key performance features and act as the foundation of modeling the Routing and Spectrum Assignment (RSA) problem with diverse topologies. Two heuristic algorithms are also proposed to make it more tractable. Finally, several key parameters, such as blocking probability, resource utilization rate and fragmentation rate are presented and computed, and the corresponding Monte Carlo simulation results match closely with analytical results, which prove the correctness of this mathematical model.

  12. Tracking control strategy for the optoelectronic system on the flexible suspended platform based on backstepping method

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Ma, Jiaguang; Xiao, Jing

    2012-10-01

    To improve the optoelectronic tracking ability and rope-hanged platform attitude stability, against the interact effect between rope-hanged platform and optoelectronic system during system tracking process, the optoelectronic system fixed on rope hanged platform simplified dynamic model, according to the system's Lagrange dynamic model, was established. Backstepping method was employed to design an integrated controller for both optoelectronic system azimuth direction steering and platform attitude stabilizing. To deal with model's uncertainty and disturbance, a sliding mode controller form based exponential reaching law was adopted to structure the integrated controller. Simulation experiments simulated an optoelectronic system with 600mm caliber telescope, whose inertia fluctuation is 6%. The maximal control moment is 15Nm. And the external disturbance and internal friction effected together. When the line of sight(LOS) azimuth angular input is a step signal with 1rad amplitude, the response's overshoot is 6%, and the response time is 6.2s, and the steady state error is less than 4×10-4rad. When the input is a sinusoidal signal of 0.2rad amplitude with 0.0318Hz frequency, the LOS azimuth angular error amplitude is 5. 6×10-4rad. It is concluded that the controller designed in this article has excellent ability and can ensure the system's stability.

  13. Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing.

    PubMed

    Bartnikowski, Nicole; Claes, Lutz E; Koval, Lidia; Glatt, Vaida; Bindl, Ronny; Steck, Roland; Ignatius, Anita; Schuetz, Michael A; Epari, Devakara R

    2016-11-14

    Background and purpose - Constant fixator stiffness for the duration of healing may not provide suitable mechanical conditions for all stages of bone repair. We therefore investigated the influence of stiffening fixation on callus stiffness and morphology in a rat diaphyseal osteotomy model to determine whether healing time was shortened and callus stiffness increased through modulation of fixation from flexible to stiff. Material and methods - An external unilateral fixator was applied to the osteotomized femur and stiffened by decreasing the offset of the inner fixator bar at 3, 7, 14, and 21 days after operation. After 5 weeks, the rats were killed and healing was evaluated with mechanical, histological, and microcomputed tomography methods. Constant fixation stiffness control groups with either stiff or flexible fixation were included for comparison. Results - The callus stiffness of the stiff group and all 4 experimental groups was greater than in the flexible group. The callus of the flexible group was larger but contained a higher proportion of unmineralized tissue and cartilage. The stiff and modulated groups (3, 7, 14, and 21 days) all showed bony bridging at 5 weeks, as well as signs of callus remodeling. Stiffening fixation at 7 and 14 days after osteotomy produced the highest degree of callus bridging. Bone mineral density in the fracture gap was highest in animals in which the fixation was stiffened after 14 days. Interpretation - The predicted benefit of a large robust callus formed through early flexible fixation could not be shown, but the benefits of stabilizing a flexible construct to achieve timely healing were demonstrated at all time points.

  14. Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing

    PubMed Central

    Bartnikowski, Nicole; Claes, Lutz E; Koval, Lidia; Glatt, Vaida; Bindl, Ronny; Steck, Roland; Ignatius, Anita; Schuetz, Michael A; Epari, Devakara R

    2017-01-01

    Background and purpose Constant fixator stiffness for the duration of healing may not provide suitable mechanical conditions for all stages of bone repair. We therefore investigated the influence of stiffening fixation on callus stiffness and morphology in a rat diaphyseal osteotomy model to determine whether healing time was shortened and callus stiffness increased through modulation of fixation from flexible to stiff. Material and methods An external unilateral fixator was applied to the osteotomized femur and stiffened by decreasing the offset of the inner fixator bar at 3, 7, 14, and 21 days after operation. After 5 weeks, the rats were killed and healing was evaluated with mechanical, histological, and microcomputed tomography methods. Constant fixation stiffness control groups with either stiff or flexible fixation were included for comparison. Results The callus stiffness of the stiff group and all 4 experimental groups was greater than in the flexible group. The callus of the flexible group was larger but contained a higher proportion of unmineralized tissue and cartilage. The stiff and modulated groups (3, 7, 14, and 21 days) all showed bony bridging at 5 weeks, as well as signs of callus remodeling. Stiffening fixation at 7 and 14 days after osteotomy produced the highest degree of callus bridging. Bone mineral density in the fracture gap was highest in animals in which the fixation was stiffened after 14 days. Interpretation The predicted benefit of a large robust callus formed through early flexible fixation could not be shown, but the benefits of stabilizing a flexible construct to achieve timely healing were demonstrated at all time points. PMID:27841708

  15. Politeness Strategies Used in Requests--A Cybernetic Model.

    ERIC Educational Resources Information Center

    Kitao, Kenji

    This paper discusses a cybernetic model of politeness strategies used in the process of making a request. The concept of systems, cybernetic models, and politeness strategies are reviewed, and the way they work together in the proposed model is examined. Politeness strategies are communication strategies used to change behavior enough to achieve…

  16. Design, dynamic modelling and experimental validation of a 2DOF flexible antenna sensor

    NASA Astrophysics Data System (ADS)

    Castillo, Claudia F.; Naci Engin, Seref; Feliu Batlle, Vicente

    2014-04-01

    A two-degree-of-freedom flexible antenna sensor platform was designed to physically simulate the ability of a robotic arm, which rapidly reorients and targets itself towards specific surfaces from different approachable angles. An accurate antenna model involves non-linear expressions that represent the system dynamics. Therefore, a comprehensive study along with experimental work has been carried out in order to achieve accurate system identification and validate the dynamic model. The model developed has proven useful in controlling the antenna tip, minimising the effects of the non-linear flexural dynamics and the Coulomb friction. The system was driven by servo motors. Algebraic controllers were developed for the antenna tip to track the reference trajectory. The platform system used encoders to measure the joint angles and a loadcell sensor to obtain the flexible link tip position. To validate the sensory information, the results obtained by the integrated sensors were compared to that of an external camera system.

  17. Error handling strategies in multiphase inverse modeling

    SciTech Connect

    Finsterle, S.; Zhang, Y.

    2010-12-01

    Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.

  18. Flexible strategies for flight control: an active role for the abdomen.

    PubMed

    Dyhr, Jonathan P; Morgansen, Kristi A; Daniel, Thomas L; Cowan, Noah J

    2013-05-01

    Moving animals orchestrate myriad motor systems in response to multimodal sensory inputs. Coordinating movement is particularly challenging in flight control, where animals deal with potential instability and multiple degrees of freedom of movement. Prior studies have focused on wings as the primary flight control structures, for which changes in angle of attack or shape are used to modulate lift and drag forces. However, other actuators that may impact flight performance are reflexively activated during flight. We investigated the visual-abdominal reflex displayed by the hawkmoth Manduca sexta to determine its role in flight control. We measured the open-loop stimulus-response characteristics (measured as a transfer function) between the visual stimulus and abdominal response in tethered moths. The transfer function reveals a 41 ms delay and a high-pass filter behavior with a pass band starting at ~0.5 Hz. We also developed a simplified mathematical model of hovering flight wherein articulation of the thoracic-abdominal joint redirects an average lift force provided by the wings. We show that control of the joint, subject to a high-pass filter, is sufficient to maintain stable hovering, but with a slim stability margin. Our experiments and models suggest a novel mechanism by which articulation of the body or 'airframe' of an animal can be used to redirect lift forces for effective flight control. Furthermore, the small stability margin may increase flight agility by easing the transition from stable flight to a more maneuverable, unstable regime.

  19. Modeling of a flexible beam actuated by shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Shu, Steven G.; Lagoudas, Dimitris C.; Hughes, Declan; Wen, John T.

    1997-06-01

    A thermomechanical model is developed to predict the structural response of a flexible beam with shape memory alloy (SMA) wire actuators. A geometrically nonlinear static analysis is first carried out to investigate the deformed shape of a flexible cantilever beam caused by an externally-attached SMA wire actuated electrically. The actuation force applied by the SMA actuator to the beam is evaluated by solving a coupled problem that combines a thermodynamic constitutive model of SMAs with the heat conduction equation in the SMA and the structural model of the beam. To calculate the temperature history of the SMA actuator for given electrical current input, the heat transfer equation is solved with the electrical resistive heating being modeled as a distributed heat source along the SMA wire. The steps in the formulation are connected together through an iterative scheme that takes into account the static equilibrium of the beam and the constitutive relation of SMAs, thus translating an electrical current history input into beam strain output. The proposed model is used to simulate the experimental results, thus demonstrating the feasibility of using SMA actuators for shape control of active flexible structural systems.

  20. Flexibility on storage-release based distributed hydrologic modeling with object-oriented approach

    NASA Astrophysics Data System (ADS)

    Kang, Kwangmin; Merwade, Venkatesh; Chun, Jong Ahn; Timlin, Dennis

    2016-09-01

    With the availability of advanced hydrologic data in public domain such as remote sensed and climate change scenario data, there is a need for a modeling framework that is capable of using these data to simulate and extend hydrologic processes with multidisciplinary approaches for sustainable water resources management. To address this need, a storage-release based distributed hydrologic model (STORE DHM) is developed based on an object-oriented approach. The model is tested for demonstrating model flexibility and extensibility to know how to well integrate object-oriented approach to further hydrologic research issues, e.g., reconstructing missing precipitation in this study, without changing its main frame. Moreover, the STORE DHM is applied to simulate hydrological processes with multiple classes in the Nanticoke watershed. This study also describes a conceptual and structural framework of object-oriented inheritance and aggregation characteristics under the STORE DHM. In addition, NearestMP (missing value estimation based on nearest neighborhood regression) and KernelMP (missing value estimation based on Kernel Function) are proposed for evaluating STORE DHM flexibility. And then, STORE DHM runoff hydrographs compared with NearestMP and KernelMP runoff hydrographs. Overall results from these comparisons show promising hydrograph outputs generated by the proposed two classes. Consequently, this study suggests that STORE DHM with an object-oriented approach will be a comprehensive water resources modeling tools by adding additional classes for toward developing through its flexibility and extensibility.

  1. The effect of porosity and flexibility on the hydrodynamics behind a mangrove-like root model

    NASA Astrophysics Data System (ADS)

    Kazemi, Amirkhosro; Parry, Samantha; van de Riet, Keith; Curet, Oscar

    2015-11-01

    Mangroves play a prominent role in coastal areas in subtropics regions. Mangrove forests are of special interest to protect shorelines against storm surges, hurricane winds, sea-level rise and tsunamis. In addition, mangroves play a critical role in filtering water and providing habitat to different organisms. In this work we study the complex interaction of water flow and mangrove roots which were modeled with a circular array of cylinders with different spacing between them as well as different configurations. In addition, we modeled the flexibility of the roots by attaching rigid cylinders to torsional connectors. The models were tested in a water tunnel for a range of Reynolds number from 2200 to 12000. In a series of experiments we measured the drag force, instant and mean velocity behind the models. We also performed 2D flow visualization for the models in a flowing soap film setup. The results show that the minimum velocity of the wake is highly dependent on the porosity and flexibility of the roots. We observed that there is a small-scale turbulent region. This turbulence is recombined downstream in a larger vortex structure eventually forming a von Karman vortex street wake. We compare the results from rigid cylinder and the flexible counterpart.

  2. Control strategy for cooperating disparate manipulators: Non-colocated control of disturbances of a flexible arm

    NASA Technical Reports Server (NTRS)

    Lew, Jae Y.

    1991-01-01

    The long term objectives for this research are to use a small robot arm to compliment a large robot arm. Disturbances generated by robot tasks were studied. Available equipment made it convenient to study disturbances generated by an abrasive cut off saw mounted on the tip of a large armed robot, and used to cut through rods and pipes in the range of 0.5 in. to 1.5 in. The abrasive process was modeled as a friction operation. The operation of the cut off saw was performed autonomously and under teleoperated control. The behavior was stable in both cases for a P-D joint control algorithm. It was found that broad band excitation during the cutting operation is capable of exciting arm natural frequencies to above the third natural frequency of the arm. The direction of cut changed the modes excited due to the change in coupling coefficients.

  3. Iron-Clad Fibers: A Metal-Based Biological Strategy for Hard Flexible Coatings

    NASA Astrophysics Data System (ADS)

    Harrington, Matthew J.; Masic, Admir; Holten-Andersen, Niels; Waite, J. Herbert; Fratzl, Peter

    2010-04-01

    The extensible byssal threads of marine mussels are shielded from abrasion in wave-swept habitats by an outer cuticle that is largely proteinaceous and approximately fivefold harder than the thread core. Threads from several species exhibit granular cuticles containing a protein that is rich in the catecholic amino acid 3,4-dihydroxyphenylalanine (dopa) as well as inorganic ions, notably Fe3+. Granular cuticles exhibit a remarkable combination of high hardness and high extensibility. We explored byssus cuticle chemistry by means of in situ resonance Raman spectroscopy and demonstrated that the cuticle is a polymeric scaffold stabilized by catecholato-iron chelate complexes having an unusual clustered distribution. Consistent with byssal cuticle chemistry and mechanics, we present a model in which dense cross-linking in the granules provides hardness, whereas the less cross-linked matrix provides extensibility.

  4. A National Strategy for Advancing Climate Modeling

    SciTech Connect

    Dunlea, Edward; Elfring, Chris

    2012-12-04

    Climate models are the foundation for understanding and projecting climate and climate-related changes and are thus critical tools for supporting climate-related decision making. This study developed a holistic strategy for improving the nation's capability to accurately simulate climate and related Earth system changes on decadal to centennial timescales. The committee's report is a high level analysis, providing a strategic framework to guide progress in the nation's climate modeling enterprise over the next 10-20 years. This study was supported by DOE, NSF, NASA, NOAA, and the intelligence community.

  5. The Experimental Research on E-Learning Instructional Design Model Based on Cognitive Flexibility Theory

    NASA Astrophysics Data System (ADS)

    Cao, Xianzhong; Wang, Feng; Zheng, Zhongmei

    The paper reports an educational experiment on the e-Learning instructional design model based on Cognitive Flexibility Theory, the experiment were made to explore the feasibility and effectiveness of the model in promoting the learning quality in ill-structured domain. The study performed the experiment on two groups of students: one group learned through the system designed by the model and the other learned by the traditional method. The results of the experiment indicate that the e-Learning designed through the model is helpful to promote the intrinsic motivation, learning quality in ill-structured domains, ability to resolve ill-structured problem and creative thinking ability of the students.

  6. Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.

    NASA Technical Reports Server (NTRS)

    Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.

    2014-01-01

    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).

  7. Generalism as a subsistence strategy: advantages and limitations of the highly flexible feeding traits of Pleistocene Stephanorhinus hundsheimensis (Rhinocerotidae, Mammalia)

    NASA Astrophysics Data System (ADS)

    Kahlke, Ralf-Dietrich; Kaiser, Thomas M.

    2011-08-01

    The so-called Hundsheim rhinoceros, Stephanorhinus hundsheimensis, was a very common faunal element of the Early to early Middle Pleistocene period in the western Palaearctic. In this study, individuals from two different central European populations of the Hundsheim rhinoceros were analysed in order to determine whether their local dietary signals could reflect differing food availability between the two populations, and whether such information could provide a better understanding of the ecological role of S. hundsheimensis within corresponding faunal assemblages, and of its principal subsistence strategy in the western Palaearctic. The mesowear traits observed in the studied S. hundsheimensis populations have been interpreted as representing biome-specific signals, indicating grassland vegetation at the site of Süßenborn, and dense to open forests at Voigtstedt (both localities in Germany). The analyses performed on the fossil rhino material demonstrate the most pronounced dietary variability ever established for a single herbivorous ungulate species by mesowear studies. This variability ranges from an attrition dominated grazing regime, to a one of predominantly browsing, and characterises S. hundsheimensis as the most ecologically tolerant rhinoceros of the Palaearctic Plio-Pleistocene. Although such dietary flexibility proved an effective enough subsistence strategy over a period of 600-900 ka (1.4/1.2-0.6/0.5 Myr) in the western Palaearctic, the situation changed dramatically after 0.6 Myr BP, when the new species of rhinoceroses, Stephanorhinus hemitoechus and Stephanorhinus kirchbergensis, appeared and started to compete for both the grass and the browse. For the generalist S. hundsheimensis, this bilateral interference was detrimental to its success in all of its habitats. The successful competition of specialised forms of rhinoceroses, which might have originated as a result of the development of 100 ka periodicity in the global climatic record, is

  8. Dynamic modelling and stability parametric analysis of a flexible spacecraft with fuel slosh

    NASA Astrophysics Data System (ADS)

    Gasbarri, Paolo; Sabatini, Marco; Pisculli, Andrea

    2016-10-01

    Modern spacecraft often contain large quantities of liquid fuel to execute station keeping and attitude manoeuvres for space missions. In general the combined liquid-structure system is very difficult to model, and the analyses are based on some assumed simplifications. A realistic representation of the liquid dynamics inside closed containers can be approximated by an equivalent mechanical system. This technique can be considered a very useful mathematical tool for solving the complete dynamics problem of a space-system containing liquid. Thus they are particularly useful when designing a control system or to study the stability margins of the coupled dynamics. The commonly used equivalent mechanical models are the mass-spring models and the pendulum models. As far as the spacecraft modelling is concerned they are usually considered rigid; i.e. no flexible appendages such as solar arrays or antennas are considered when dealing with the interaction of the attitude dynamics with the fuel slosh. In the present work the interactions among the fuel slosh, the attitude dynamics and the flexible appendages of a spacecraft are first studied via a classical multi-body approach. In particular the equations of attitude and orbit motion are first derived for the partially liquid-filled flexible spacecraft undergoing fuel slosh; then several parametric analyses will be performed to study the stability conditions of the system during some assigned manoeuvers. The present study is propaedeutic for the synthesis of advanced attitude and/or station keeping control techniques able to minimize and/or reduce an undesired excitation of the satellite flexible appendages and of the fuel sloshing mass.

  9. Investigating habits: strategies, technologies and models

    PubMed Central

    Smith, Kyle S.; Graybiel, Ann M.

    2014-01-01

    Understanding habits at a biological level requires a combination of behavioral observations and measures of ongoing neural activity. Theoretical frameworks as well as definitions of habitual behaviors emerging from classic behavioral research have been enriched by new approaches taking account of the identification of brain regions and circuits related to habitual behavior. Together, this combination of experimental and theoretical work has provided key insights into how brain circuits underlying action-learning and action-selection are organized, and how a balance between behavioral flexibility and fixity is achieved. New methods to monitor and manipulate neural activity in real time are allowing us to have a first look “under the hood” of a habit as it is formed and expressed. Here we discuss ideas emerging from such approaches. We pay special attention to the unexpected findings that have arisen from our own experiments suggesting that habitual behaviors likely require the simultaneous activity of multiple distinct components, or operators, seen as responsible for the contrasting dynamics of neural activity in both cortico-limbic and sensorimotor circuits recorded concurrently during different stages of habit learning. The neural dynamics identified thus far do not fully meet expectations derived from traditional models of the structure of habits, and the behavioral measures of habits that we have made also are not fully aligned with these models. We explore these new clues as opportunities to refine an understanding of habits. PMID:24574988

  10. Flexible Web service infrastructure for the development and deployment of predictive models.

    PubMed

    Guha, Rajarshi

    2008-02-01

    The development of predictive statistical models is a common task in the field of drug design. The process of developing such models involves two main steps: building the model and then deploying the model. Traditionally such models have been deployed using Web page interfaces. This approach restricts the user to using the specified Web page, and using the model in other ways can be cumbersome. In this paper we present a flexible and generalizable approach to the deployment of predictive models, based on a Web service infrastructure using R. The infrastructure described allows one to access the functionality of these models using a variety of approaches ranging from Web pages to workflow tools. We highlight the advantages of this infrastructure by developing and subsequently deploying random forest models for two data sets.

  11. Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms.

    PubMed

    Chintapalli, Ravi Kiran; Mirkhalaf, Mohammad; Dastjerdi, Ahmad Khayer; Barthelat, Francois

    2014-09-01

    Crocodiles, armadillo, turtles, fish and many other animal species have evolved flexible armored skins in the form of hard scales or osteoderms, which can be described as hard plates of finite size embedded in softer tissues. The individual hard segments provide protection from predators, while the relative motion of these segments provides the flexibility required for efficient locomotion. In this work, we duplicated these broad concepts in a bio-inspired segmented armor. Hexagonal segments of well-defined size and shape were carved within a thin glass plate using laser engraving. The engraved plate was then placed on a soft substrate which simulated soft tissues, and then punctured with a sharp needle mounted on a miniature loading stage. The resistance of our segmented armor was significantly higher when smaller hexagons were used, and our bio-inspired segmented glass displayed an increase in puncture resistance of up to 70% compared to a continuous plate of glass of the same thickness. Detailed structural analyses aided by finite elements revealed that this extraordinary improvement is due to the reduced span of individual segments, which decreases flexural stresses and delays fracture. This effect can however only be achieved if the plates are at least 1000 stiffer than the underlying substrate, which is the case for natural armor systems. Our bio-inspired system also displayed many of the attributes of natural armors: flexible, robust with 'multi-hit' capabilities. This new segmented glass therefore suggests interesting bio-inspired strategies and mechanisms which could be systematically exploited in high-performance flexible armors. This study also provides new insights and a better understanding of the mechanics of natural armors such as scales and osteoderms.

  12. Predictive wall adjustment strategy for two-dimensional flexible walled adaptive wind tunnel: A detailed description of the first one-step method

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Goodyer, Michael J.

    1988-01-01

    Following the realization that a simple iterative strategy for bringing the flexible walls of two-dimensional test sections to streamline contours was too slow for practical use, Judd proposed, developed, and placed into service what was the first Predictive Strategy. The Predictive Strategy reduced by 75 percent or more the number of iterations of wall shapes, and therefore the tunnel run-time overhead attributable to the streamlining process, required to reach satisfactory streamlines. The procedures of the Strategy are embodied in the FORTRAN subroutine WAS (standing for Wall Adjustment Strategy) which is written in general form. The essentials of the test section hardware, followed by the underlying aerodynamic theory which forms the basis of the Strategy, are briefly described. The subroutine is then presented as the Appendix, broken down into segments with descriptions of the numerical operations underway in each, with definitions of variables.

  13. A Rule-Based Modeling for the Description of Flexible and Self-healing Business Processes

    NASA Astrophysics Data System (ADS)

    Boukhebouze, Mohamed; Amghar, Youssef; Benharkat, Aïcha-Nabila; Maamar, Zakaria

    In this paper we discuss the importance of ensuring that business processes are label robust and agile at the same time robust and agile. To this end, we consider reviewing the way business processes are managed. For instance we consider offering a flexible way to model processes so that changes in regulations are handled through some self-healing mechanisms. These changes may raise exceptions at run-time if not properly reflected on these processes. To this end we propose a new rule based model that adopts the ECA rules and is built upon formal tools. The business logic of a process can be summarized with a set of rules that implement an organization’s policies. Each business rule is formalized using our ECAPE formalism (Event-Condition-Action-Post condition- post Event). This formalism allows translating a process into a graph of rules that is analyzed in terms of reliably and flexibility.

  14. Aeroservoelastic wind-tunnel investigations using the active flexible wing model - Status and recent accomplishments

    NASA Technical Reports Server (NTRS)

    Noll, Thomas; Perry, Boyd, III; Tiffany, Sherwood; Cole, Stanley; Buttrill, Carey; Adams, William, Jr.; Houck, Jacob; Srinathkumar, S.

    1989-01-01

    This paper describes the status of the joint NASA/Rockwell Active Flexible Wing Wind-Tunnel Test Program. The objectives of the program are to develop and validate the analysis, design and test methodologies required to apply multifunction active control technology for improving aircraft performance and stability. Major tasks of the program include designing digital multiinput/multioutput flutter-suppression and rolling-maneuver-load-alleviation concepts for a flexible full-span wind-tunnel model, obtaining an experimental data base for the basic model and each control concept, and providing comparisons between experimental and analytical results to validate the methodologies. This program is also providing the opportunity to improve real-time simulation techniques and to gain practical experience with digital control law implementation procedures.

  15. The dynamics and control of large flexible space structures. Part A: Discrete model and modal control

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Sellappan, R.

    1978-01-01

    Attitude control techniques for the pointing and stabilization of very large, inherently flexible spacecraft systems were investigated. The attitude dynamics and control of a long, homogeneous flexible beam whose center of mass is assumed to follow a circular orbit was analyzed. First order effects of gravity gradient were included. A mathematical model which describes the system rotations and deflections within the orbital plane was developed by treating the beam as a number of discretized mass particles connected by massless, elastic structural elements. The uncontrolled dynamics of the system are simulated and, in addition, the effects of the control devices were considered. The concept of distributed modal control, which provides a means for controlling a system mode independently of all other modes, was examined. The effect of varying the number of modes in the model as well as the number and location of the control devices were also considered.

  16. Flexible Virtual Structure Consideration in Dynamic Modeling of Mobile Robots Formation

    NASA Astrophysics Data System (ADS)

    El Kamel, A. Essghaier; Beji, L.; Lerbet, J.; Abichou, A.

    2009-03-01

    In cooperative mobile robotics, we look for formation keeping and maintenance of a geometric configuration during movement. As a solution to these problems, the concept of a virtual structure is considered. Based on this idea, we have developed an efficient flexible virtual structure, describing the dynamic model of n vehicles in formation and where the whole formation is kept dependant. Notes that, for 2D and 3D space navigation, only a rigid virtual structure was proposed in the literature. Further, the problem was limited to a kinematic behavior of the structure. Hence, the flexible virtual structure in dynamic modeling of mobile robots formation presented in this paper, gives more capabilities to the formation to avoid obstacles in hostile environment while keeping formation and avoiding inter-agent collision.

  17. Modeling and bonding-free fabrication of flexible fluidic microactuators with a bending motion

    NASA Astrophysics Data System (ADS)

    Gorissen, Benjamin; Vincentie, Wannes; Al-Bender, Farid; Reynaerts, Dominiek; De Volder, Michaël

    2013-04-01

    Flexible fluidic actuators recently attracted the interest of the microsystem community, especially for soft robotic applications including minimally invasive surgery. These actuators, based on a well-known actuator design where a void is surrounded by an asymmetric elastic structure, can achieve large bending strokes when pressurized. Miniaturized versions of these actuators typically fail due to poor bonding of constituting components, and further, there is little theoretical understanding of these devices. This paper presents a new actuator design which does not require any bonding and provides new insights into the modeling of these actuators. The newly developed production process of the actuators is based on out-of-plane high aspect ratio micromolding, which enables high-throughput bonding-free fabrication. Furthermore, a mathematical model based on Euler-Bernoulli's beam equation with a deformable cross section is developed that shows good agreement with validation experiments on prototypes. These theoretical insights greatly facilitate the design and optimization of flexible bending actuators.

  18. In Pursuit of Fully Flexible Protein-Ligand Docking: Modeling the Bilateral Mechanism of Binding.

    PubMed

    Henzler, Angela M; Rarey, Matthias

    2010-03-15

    Modern structure-based drug design aims at accounting for the intrinsic flexibility of therapeutic relevant targets. Over the last few years a considerable amount of docking approaches that encounter this challenging problem has emerged. Here we provide the readership with an overview of established methods for fully flexible protein-ligand docking and current developments in the field. All methods are based on one of two fundamental models which describe the dynamic behavior of proteins upon ligand binding. Methods for ensemble docking (ED) model the protein conformational change before the ligand is placed, whereas induced-fit docking (IFD) optimizes the protein structure afterwards. A third category of docking approaches is formed by recent approaches that follow both concepts. This categorization allows to comprehensively discover strengths and weaknesses of the individual processes and to extract information for their applicability in real world docking scenarios.

  19. Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments

    NASA Technical Reports Server (NTRS)

    Noll, Thomas E.; Perry, Boyd, III; Tiffany, Sherwood H.; Cole, Stanley R.; Buttrill, Carey S.; Adams, William M., Jr.; Houck, Jacob A.; Srinathkumar, S.; Mukhopadhyay, Vivek; Pototzky, Anthony S.

    1989-01-01

    The status of the joint NASA/Rockwell Active Flexible Wing Wind-Tunnel Test Program is described. The objectives are to develop and validate the analysis, design, and test methodologies required to apply multifunction active control technology for improving aircraft performance and stability. Major tasks include designing digital multi-input/multi-output flutter-suppression and rolling-maneuver-load alleviation concepts for a flexible full-span wind-tunnel model, obtaining an experimental data base for the basic model and each control concept and providing comparisons between experimental and analytical results to validate the methodologies. The opportunity is provided to improve real-time simulation techniques and to gain practical experience with digital control law implementation procedures.

  20. Toward Agile Control of a Flexible-Spine Model for Quadruped Bounding

    DTIC Science & Technology

    2015-01-01

    Toward agile control of a flexible-spine model for quadruped bounding Katie Byla, Brian Satzingera, Tom Strizica, Pat Terrya and Jason Puseyb...step reachable states. Finally, we propose new guidelines for quantifying “ agility ” for legged robots, providing a preliminary framework for...quantifying and improving performance of legged systems. 1. INTRODUCTION One goal in developing legged robot systems is to provide a high degree of agility

  1. Integrated Flight Mechanic and Aeroelastic Modelling and Control of a Flexible Aircraft Considering Multidimensional Gust Input

    DTIC Science & Technology

    2000-05-01

    INTEGRATED FLIGHT MECHANIC AND AEROELASTIC MODELLING AND CONTROL OF A FLEXIBLE AIRCRAFT CONSIDERING MULTIDIMENSIONAL GUST INPUT Patrick Teufel, Martin Hanel...the lateral separation distance have been developed by ’ = matrix of two dimensional spectrum function Eichenbaum 4 and are described by Bessel...Journal of Aircraft, Vol. 30, No. 5, Sept.-Oct. 1993 Relations to Risk Sensitivity, System & Control Letters 11, [4] Eichenbaum F.D., Evaluation of 3D

  2. Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio.

    PubMed

    Kataoka, Takeshi; Tsutahara, Michihisa

    2004-03-01

    We have developed a lattice Boltzmann model for the compressible Navier-Stokes equations with a flexible specific-heat ratio. Several numerical results are presented, and they agree well with the corresponding solutions of the Navier-Stokes equations. In addition, an explicit finite-difference scheme is proposed for the numerical calculation that can make a stable calculation with a large Courant number.

  3. A computational kinematics and evolutionary approach to model molecular flexibility for bionanotechnology

    NASA Astrophysics Data System (ADS)

    Brintaki, Athina N.

    Modeling molecular structures is critical for understanding the principles that govern the behavior of molecules and for facilitating the exploration of potential pharmaceutical drugs and nanoscale designs. Biological molecules are flexible bodies that can adopt many different shapes (or conformations) until they reach a stable molecular state that is usually described by the minimum internal energy. A major challenge in modeling flexible molecules is the exponential explosion in computational complexity as the molecular size increases and many degrees of freedom are considered to represent the molecules' flexibility. This research work proposes a novel generic computational geometric approach called enhanced BioGeoFilter (g.eBGF) that geometrically interprets inter-atomic interactions to impose geometric constraints during molecular conformational search to reduce the time for identifying chemically-feasible conformations. Two new methods called Kinematics-Based Differential Evolution ( kDE) and Biological Differential Evolution ( BioDE) are also introduced to direct the molecular conformational search towards low energy (stable) conformations. The proposed kDE method kinematically describes a molecule's deformation mechanism while it uses differential evolution to minimize the intra-molecular energy. On the other hand, the proposed BioDE utilizes our developed g.eBGF data structure as a surrogate approximation model to reduce the number of exact evaluations and to speed the molecular conformational search. This research work will be extremely useful in enabling the modeling of flexible molecules and in facilitating the exploration of nanoscale designs through the virtual assembly of molecules. Our research work can also be used in areas such as molecular docking, protein folding, and nanoscale computer-aided design where rapid collision detection scheme for highly deformable objects is essential.

  4. A minimum state multibody/FEM approach for modeling flexible orbiting space systems

    NASA Astrophysics Data System (ADS)

    Pisculli, A.; Gasbarri, P.

    2015-05-01

    In the past the deployment of space structures has widely been analyzed by using multibody formulations. The two leading approaches are usually based on the Newton-Euler (NE) formulation and Euler-Lagrange (EL) formulation. Both of them present advantages and drawbacks. The ideal approach for describing multi-body systems can be represented by a combination between NE and EL formulations. This can be obtained by considering the NE formulation for assembling the equation of motion and then by defining the ODE governing equations with the use of a minimum set of variables. In this paper the authors present a mixed NE/EL formulation suitable for synthesizing optimal control strategies during the deploying maneuvers of robotic arms or solar arrays. The proposed method has two main characteristics: (i) the reference frame, which all the bodies motions are referred to, is a floating reference frame attached to the orbiting base platform body; (ii) it leads to a more organic formulation which makes a shifting from the NE to the EL formulations possible, through the use of a Jacobian matrix. In the present work this mixed formulation is derived to describe a fully elastic multi-body spacecraft. Furthermore the presented formulation, complemented with gravity, gravity gradient and generalized gravitational modal forces, will be used to study the dynamic behavior of an orbiting manipulator with flexible appendages. Finally a Reaction Null/Jacobian Transpose control strategy will be applied to control and deploy the robotic arms to grasp an orbiting flexible spacecraft.

  5. Analysis of vibration and frequency transmission of high speed EMU with flexible model

    NASA Astrophysics Data System (ADS)

    Ren, Zun-Song; Yang, Guang; Wang, Shan-Shan; Sun, Shou-Guang

    2014-12-01

    When the operation speed of the high-speed train increases and the weight of the carbody becomes lighter, not only does the sensitivity of the wheel/rail contact get higher, but also the vibration frequency range of the vehicle system gets enlarged and more frequencies are transmitted from the wheelset to the carbody. It is important to investigate the vibration characteristics and the dynamic frequency transmission from the wheel/rail interface to the carbody of the high-speed electric multi-uint (EMU). An elastic highspeed vehicle dynamics model is established in which the carbody, bogieframes, and wheelsets are all dealt with as flexible body. A rigid high-speed vehicle dynamics model is set up to compare with the simulation results of the elastic model. In the rigid vehicle model, the carbody, bogieframes and wheelsets are treated as rigid component while the suspension and structure parameters are the same as used in the elastic model. The dynamic characteristic of the elastic high speed vehicle is investigated in time and frequency domains and the difference of the acceleration, frequency distribution and transmission of the two types of models are presented. The results show that the spectrumpower density of the vehicle decreases from the wheelset to the carbody and the acceleration transmission ratio is approximately from 1% to 10% for each suspension system. The frequency of the wheelset rotation is evident in the vibration of the flexible model and is transmitted from the wheelset to the bogieframe and to the carbody. The results of the flexible model are more reasonable than that of the rigid model. A field test data of the high speed train are presented to verify the simulation results. It shows that the simulation results are coincidentwith the field test data.

  6. Modeling and control for heave dynamics of a flexible wing micro aerial vehicle distributed parameter system

    NASA Astrophysics Data System (ADS)

    Kuhn, Lisa M.

    2011-07-01

    In recent years, much research has been motivated by the idea of biologically-inspired flight. It is a conjecture of the United States Air Force that incorporating characteristics of biological flight into air vehicles will significantly improve the maneuverability and performance of modern aircraft. Although there are studies which involve the aerodynamics, structural dynamics, modeling, and control of flexible wing micro aerial vehicles (MAVs), issues of control and vehicular modeling as a whole are largely unexplored. Modeling with such dynamics lends itself to systems of partial differential equations (PDEs) with nonlinearities, and limited control theory is available for such systems. In this work, a multiple component structure consisting of two Euler-Bernoulli beams connected to a rigid mass is used to model the heave dynamics of an aeroelastic wing MAV, which is acted upon by a nonlinear aerodynamic lift force. We seek to employ tools from distributed parameter modeling and linear control theory in an effort to achieve agile flight potential of flexible, morphable wing MAV airframes. Theoretical analysis of the model is conducted, which includes generating solutions to the eigenvalue problem for the system and determining well-posedness and the attainment of a C 0-semigroup for the linearly approximated model. In order to test the model's ability to track to a desired state and to gain insight into optimal morphing trajectories, two control objectives are employed on the model: target state tracking and morphing trajectory over time.

  7. Behaviorally Modeling Games of Strategy Using Descriptive Q-learning

    DTIC Science & Technology

    2013-01-01

    REPORT Behaviorally Modeling Games of Strategy Using Descriptive Q-learning 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Modeling human decision making... Games of Strategy Using Descriptive Q-learning Report Title ABSTRACT Modeling human decision making in strategic problem domains is challenging with...an unknown automated opponent. Behaviorally Modeling Games of Strategy Using Descriptive Q-learning Roi Ceren Department of Computer Science

  8. Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions

    NASA Astrophysics Data System (ADS)

    Chen, Liqiang; Wang, Jianjun; Han, Qinkai; Chu, Fulei

    2017-09-01

    Rotor systems carried in transportation system or under seismic excitations are considered to have a moving base. To study the dynamic behavior of flexible rotor systems subjected to time-variable base motions, a general model is developed based on finite element method and Lagrange's equation. Two groups of Euler angles are defined to describe the rotation of the rotor with respect to the base and that of the base with respect to the ground. It is found that the base rotations would cause nonlinearities in the model. To verify the proposed model, a novel test rig which could simulate the base angular-movement is designed. Dynamic experiments on a flexible rotor-bearing system with base angular motions are carried out. Based upon these, numerical simulations are conducted to further study the dynamic response of the flexible rotor under harmonic angular base motions. The effects of base angular amplitude, rotating speed and base frequency on response behaviors are discussed by means of FFT, waterfall, frequency response curve and orbits of the rotor. The FFT and waterfall plots of the disk horizontal and vertical vibrations are marked with multiplications of the base frequency and sum and difference tones of the rotating frequency and the base frequency. Their amplitudes will increase remarkably when they meet the whirling frequencies of the rotor system.

  9. Dynamical Modeling and Control Simulation of a Large Flexible Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Du, Wei; Wie, Bong; Whorton, Mark

    2008-01-01

    This paper presents dynamical models of a large flexible launch vehicle. A complete set of coupled dynamical models of propulsion, aerodynamics, guidance and control, structural dynamics, fuel sloshing, and thrust vector control dynamics are described. Such dynamical models are used to validate NASA s SAVANT Simulink-based program which is being used for the preliminary flight control systems analysis and design of NASA s Ares-1 Crew Launch Vehicle. SAVANT simulation results for validating the performance and stability of an ascent phase autopilot system of Ares-1 are also presented.

  10. Total mesorectal excision using a soft and flexible robotic arm: a feasibility study in cadaver models.

    PubMed

    Arezzo, Alberto; Mintz, Yoav; Allaix, Marco Ettore; Arolfo, Simone; Bonino, Marco; Gerboni, Giada; Brancadoro, Margherita; Cianchetti, Matteo; Menciassi, Arianna; Wurdemann, Helge; Noh, Yohan; Althoefer, Kaspar; Fras, Jan; Glowka, Jakob; Nawrat, Zbigniew; Cassidy, Gavin; Walker, Rich; Morino, Mario

    2017-01-01

    Sponsored by the European Commission, the FP7 STIFF-FLOP project aimed at developing a STIFFness controllable Flexible and Learn-able manipulator for surgical operations, in order to overcome the current limitations of rigid-link robotic technology. Herein, we describe the first cadaveric series of total mesorectal excision (TME) using a soft and flexible robotic arm for optic vision in a cadaver model. TME assisted by the STIFF-FLOP robotic optics was successfully performed in two embalmed male human cadavers. The soft and flexible optic prototype consisted of two modules, each measuring 60 mm in length and 14.3 mm in maximum outer diameter. The robot was attached to a rigid shaft connected to an anthropomorphic manipulator robot arm with six degrees of freedom. The controller device was equipped with two joysticks. The cadavers (BMI 25 and 28 kg/m(2)) were prepared according to the Thiel embalming method. The procedure was performed using three standard laparoscopic instruments for traction and dissection, with the aid of a 30° rigid optics in the rear for documentation. Following mobilization of the left colonic flexure and division of the inferior mesenteric vessels, TME was completed down to the pelvic floor. The STIFF-FLOP robotic optic arm seemed to acquire superior angles of vision of the surgical field in the pelvis, resulting in an intact mesorectum in both cases. Completion times of the procedures were 165 and 145 min, respectively. No intraoperative complications occurred. No technical failures were registered. The STIFF-FLOP soft and flexible robotic optic arm proved effective in assisting a laparoscopic TME in human cadavers, with a superior field of vision compared to the standard laparoscopic vision, especially low in the pelvis. The introduction of soft and flexible robotic devices may aid in overcoming the technical challenges of difficult laparoscopic procedures based on standard rigid instruments.

  11. Case Study of Implementation of Flexible Grouping in One School Framed within the Change Based Adoption Model

    ERIC Educational Resources Information Center

    Slaydon, Donda

    2013-01-01

    This case study was designed to investigate the implementation of flexible grouping at one elementary school framed within the Change Based Adoption Model. Using interviews and observations, data were compiled to answer research questions related to the steps taken to implement flexible grouping, challenges faced, overall effects of flexible…

  12. Generalized ``thick'' strip modelling for vortex-induced vibration of long flexible cylinders

    NASA Astrophysics Data System (ADS)

    Bao, Yan; Palocios, Rafael; Sherwin, Spencer; Nektar++ Collaboration

    2015-11-01

    We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip theory-based 2D models, the fluid domain is divided into ``thick'' strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural model of the cylinder. Therefore, this model is able to cover the situations of fully resolved 3D model and 2D strip theory model. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single ``thick'' strip would request the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip-structure interactions. This work is supported by EPSRC grant EP/K037536/1. Acknowledge UK Turbulence Consortium (UKTC) for ARCHER time under EPSRC grant EP/L000261/1.

  13. Extension of the Genetic Algorithm Based Malware Strategy Evolution Forecasting Model for Botnet Strategy Evolution Modeling

    DTIC Science & Technology

    2010-11-01

    survivability strategies in our case) and therefore may be used for predicting and modeling possible future propagation and survivability strategies...malware [5] and in fact possesses characteristics are those of a virus , a worm, and a Trojan [6]. While bots belonging to a certain botnet are...toward smaller botnets with only several hundred to several thousand zombies since big botnets are bad from the standpoint of survivability. It has

  14. District heating strategy model: community manual

    SciTech Connect

    Hrabak, R. A.; Kron, Jr., N. F.; Pferdehirt, W. P.

    1981-10-01

    The US Department of Housing and Urban Development (HUD) and the US Department of Energy (DOE) cosponsor a program aimed at increasing the number of district heating and cooling systems. Twenty-eight communities have received HUD cooperative agreements to aid in a national feasibility assessment of district heating and cooling systems. The HUD/DOE program includes technical assistance provided by Argonne National Laboratory and Oak Ridge National Laboratory. Part of this assistance is a computer program, called the district heating strategy model, that performs preliminary calculations to analyze potential district heating and cooling systems. The model uses information about a community's physical characteristics, current electricity-supply systems, and local economic conditions to calculate heat demands, heat supplies from existing power plants and a new boiler, system construction costs, basic financial forecasts, and changes in air-pollutant emissions resulting from installation of a district heating and cooling system. This report explains the operation of the district heating strategy model, provides simplified forms for organizing the input data required, and describes and illustrates the model's output data. The report is written for three groups of people: (1) those in the HUD/DOE-sponsored communities who will be collecting input data, and studying output data, to assess the potential for district heating and cooling applications in their communiites; (2) those in any other communities who may wish to use the model for the same purpose; and (3) technical-support people assigned by the national laboratories to explain to community personnel how the model is used.

  15. LED luminaire longevity strategy models comparison

    NASA Astrophysics Data System (ADS)

    Lemieux, Hugo; Thibault, Simon; Martel, Alain A.

    2010-08-01

    As energy efficiency becomes more and more important, light-emitting diodes (LEDs) are a promising alternative to traditional lighting. Indeed, the energy efficiency of LEDs is still improving as their luminosity is modulated by current. Moreover, for applications such as exterior lamp posts, their small size, directionality, colors and high frequency response allow to combine them and provide design possibilities which are impossible with any other light source. However, as any lamp, LEDs have a lumen depreciation which is a function of both current and temperature. Thus, to take advantage of the full characteristics of LEDs, LED luminaire longevity strategies must be carefully studied and planned, especially since the IES and CIE guidelines state clearly that the luminaire must maintain the rated recommended light level until the end of the system's operating life. The recommended approach for LED luminaire specification is therefore to use the end-of-life light level when evaluating the luminaire. Different power supply strategies have been simulated to determine which one maximizes energy saving and lifetime. With these results, it appears that active control can save at least 25% in energy, but the best strategy cannot be determined because of uncertainties in luminosity degradation models.

  16. Complex networks repair strategies: Dynamic models

    NASA Astrophysics Data System (ADS)

    Fu, Chaoqi; Wang, Ying; Gao, Yangjun; Wang, Xiaoyang

    2017-09-01

    Network repair strategies are tactical methods that restore the efficiency of damaged networks; however, unreasonable repair strategies not only waste resources, they are also ineffective for network recovery. Most extant research on network repair focuses on static networks, but results and findings on static networks cannot be applied to evolutionary dynamic networks because, in dynamic models, complex network repair has completely different characteristics. For instance, repaired nodes face more severe challenges, and require strategic repair methods in order to have a significant effect. In this study, we propose the Shell Repair Strategy (SRS) to minimize the risk of secondary node failures due to the cascading effect. Our proposed method includes the identification of a set of vital nodes that have a significant impact on network repair and defense. Our identification of these vital nodes reduces the number of switching nodes that face the risk of secondary failures during the dynamic repair process. This is positively correlated with the size of the average degree < k > and enhances network invulnerability.

  17. A new era: performance and limitations of the latest models of flexible ureteroscopes.

    PubMed

    Multescu, Razvan; Geavlete, Bogdan; Geavlete, Petrisor

    2013-12-01

    To comparatively study 3 of the latest models of flexible ureteroscopes using both subjective and objective parameters. Three models of flexible ureteroscopes (Karl Storz Flex-Xc, Olympus URF-Vo, and Wolf Cobra) were evaluated during 90 procedures. For each model, 20 procedures were therapeutic for pyelocaliceal lithiasis and 10 were diagnostic. The maneuverability and visibility were scored and compared, and the irrigation flow and maximal deflection were measured in an ex vivo setting, with an empty working channel and with accessory instruments in place. Instrument durability was also reviewed. All models demonstrated good maneuverability, with a slight advantage for the Flex-Xc. During the diagnostic procedures, failure to access the entire pyelocaliceal system occurred in 2 cases with the URF-Vo, both because of a thin caliceal infundibulum, and in 1 case with the Cobra, because of complex caliceal architecture. Regarding visibility, although the performance of the digital models was relatively similar, the fiberoptic Cobra achieved a lower score. Loss of deflection and irrigation when using the various ancillary instruments was similar for all 3 endoscopes, but the Cobra offered supplementary flow through a secondary channel. The mean deflection loss was 5% for the URF-Vo, 9% for the Flex-Xc, and 10% for the Cobra. The visual quality of the 2 digital models remained unchanged during the study; however, in the fiberoptic ureteroscope, 58 optic fibers were broken. The latest models of flexible ureteroscopes have proved to be effective instruments for upper urinary tract endoscopic interventions. There is still room for improvement, already made possible by the technological advances. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. A Flexible framework for forward and inverse modeling of stormwater control measures

    NASA Astrophysics Data System (ADS)

    Aflaki, S.; Massoudieh, A.

    2016-12-01

    Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However, GI model predictions are being relied upon by many municipalities and State/Local agencies to make decisions about grey vs. green infrastructure improvement planning. Adding complexity to GI modeling frameworks may preclude their use in simpler urban planning situations. Therefore, the goal here was to develop a sophisticated, yet flexible tool that could be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media used in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biophysical processes affecting contaminants such as reactions, and particle-associated transport accurately while maintaining a high degree of flexibly to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated. The process-based model framework developed here can be used to model a diverse range of GI practices such as green roof, retention pond, bioretention, infiltration trench, permeable pavement and other custom-designed combinatory systems. Four demonstration applications covering a diverse range of systems will be presented. The example applications include a evaluating hydraulic performance of a complex bioretention system, hydraulic analysis of porous pavement system, flow colloid-facilitated transport, reactive transport and groundwater recharge underneath an infiltration pond and finally reactive transport and bed-sediment interactions in a wetland system will be presented.

  19. Predicting patient survival after deceased donor kidney transplantation using flexible parametric modelling.

    PubMed

    Li, Bernadette; Cairns, John A; Robb, Matthew L; Johnson, Rachel J; Watson, Christopher J E; Forsythe, John L; Oniscu, Gabriel C; Ravanan, Rommel; Dudley, Christopher; Roderick, Paul; Metcalfe, Wendy; Tomson, Charles R; Bradley, J Andrew

    2016-05-25

    The influence of donor and recipient factors on outcomes following kidney transplantation is commonly analysed using Cox regression models, but this approach is not useful for predicting long-term survival beyond observed data. We demonstrate the application of a flexible parametric approach to fit a model that can be extrapolated for the purpose of predicting mean patient survival. The primary motivation for this analysis is to develop a predictive model to estimate post-transplant survival based on individual patient characteristics to inform the design of alternative approaches to allocating deceased donor kidneys to those on the transplant waiting list in the United Kingdom. We analysed data from over 12,000 recipients of deceased donor kidney or combined kidney and pancreas transplants between 2003 and 2012. We fitted a flexible parametric model incorporating restricted cubic splines to characterise the baseline hazard function and explored a range of covariates including recipient, donor and transplant-related factors. Multivariable analysis showed the risk of death increased with recipient and donor age, diabetic nephropathy as the recipient's primary renal diagnosis and donor hypertension. The risk of death was lower in female recipients, patients with polycystic kidney disease and recipients of pre-emptive transplants. The final model was used to extrapolate survival curves in order to calculate mean survival times for patients with specific characteristics. The use of flexible parametric modelling techniques allowed us to address some of the limitations of both the Cox regression approach and of standard parametric models when the goal is to predict long-term survival.

  20. Certification of a hybrid parameter model of the fully flexible Shuttle Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Barhorst, Alan A.

    1995-01-01

    The development of high fidelity models of mechanical systems with flexible components is in flux. Many working models of these devices assume the elastic motion is small and can be superimposed on the overall rigid body motion. A drawback associated with this type of modeling technique is that it is required to regenerate the linear modal model of the device if the elastic motion is sufficiently far from the base rigid motion. An advantage to this type of modeling is that it uses NASTRAN modal data which is the NASA standard means of modal information exchange. A disadvantage to the linear modeling is that it fails to accurately represent large motion of the system, unless constant modal updates are performed. In this study, which is a continuation of a project started last year, the drawback of the currently used modal snapshot modeling technique is addressed in a rigorous fashion by novel and easily applied means.

  1. Simulation of the evolution of rail corrugation using a rotating flexible wheelset model

    NASA Astrophysics Data System (ADS)

    Vila, Paloma; Fayos, Juan; Baeza, Luis

    2011-11-01

    This paper presents a simulation tool designed for predicting the wear pattern on the running surface of the rails and for studying the evolution of rail corrugation after thousands of wheelset passages. This simulation tool implements a cyclic track model, a rotating flexible wheelset model, a wheel-rail contact model and a wear model. The vehicle-track system is modelled by using a substructuring technique, by which the vehicle, the rails and the sleepers are treated independently of each other and are coupled by the forces transmitted through the wheel-rail contact and the railpad. The vehicle model takes only account of the wheelset since the sprung masses of the vehicle are not relevant in the frequency range analysed. The wheelset model considers the flexibility of the wheelset and the effects associated with rotation. By using the Campbell diagram, two cases have been identified in which the combined effect of two different modes may give rise to higher wheel-rail contact forces and wear.

  2. An analytical model and scaling of chordwise flexible flapping wings in forward flight.

    PubMed

    Kodali, Deepa; Kang, Chang-Kwon

    2016-12-13

    Aerodynamic performance of biological flight characterized by the fluid structure interaction of a flapping wing and the surrounding fluid is affected by the wing flexibility. One of the main challenges to predict aerodynamic forces is that the wing shape and motion are a priori unknown. In this study, we derive an analytical fluid-structure interaction model for a chordwise flexible flapping two-dimensional airfoil in forward flight. A plunge motion is imposed on the rigid leading-edge (LE) of teardrop shape and the flexible tail dynamically deforms. The resulting unsteady aeroelasticity is modeled with the Euler-Bernoulli-Theodorsen equation under a small deformation assumption. The two-way coupling is realized by considering the trailing-edge deformation relative to the LE as passive pitch, affecting the unsteady aerodynamics. The resulting wing deformation and the aerodynamic performance including lift and thrust agree well with high-fidelity numerical results. Under the dynamic balance, the aeroelastic stiffness decreases, whereas the aeroelastic stiffness increases with the reduced frequency. A novel aeroelastic frequency ratio is derived, which scales with the wing deformation, lift, and thrust. Finally, the dynamic similarity between flapping in water and air is established.

  3. Information flow analysis and Petri-net-based modeling for welding flexible manufacturing cell

    NASA Astrophysics Data System (ADS)

    Qiu, T.; Chen, Shanben; Wang, Y. T.; Wu, Lin

    2000-10-01

    Due to the development of advanced manufacturing technology and the introduction of Smart-Manufacturing notion in the field of modern industrial production, welding flexible manufacturing system (WFMS) using robot technology has become the inevitable developing direction on welding automation. In WFMS process, the flexibility for different welding products and the realizing on corresponding welding parameters control are the guarantees for welding quality. Based on a new intelligent arc-welding flexible manufacturing cell (WFMC), the system structure and control policies are studied in this paper. Aiming at the different information flows among every subsystem and central monitoring computer in this WFMC, Petri net theory is introduced into the process of welding manufacturing. With its help, a discrete control model of WFMC has been constructed, in which the system status is regarded as place and the control process is regarded as transition. Moreover, grounded on automation Petri net principle, the judging and utilizing of information obtained from welding sensors are imported into net structure, which extends the traditional Petri net concepts. The control model and policies researched in this paper have established foundation for further intelligent real-time control on WFMC and WFMS.

  4. The role of stoichiometric flexibility in modelling forest ecosystem responses to nitrogen fertilization.

    PubMed

    Meyerholt, Johannes; Zaehle, Sönke

    2015-12-01

    The response of the forest carbon (C) balance to changes in nitrogen (N) deposition is uncertain, partly owing to diverging representations of N cycle processes in dynamic global vegetation models (DGVMs). Here, we examined how different assumptions about the degree of flexibility of the ecosystem's C : N ratios contribute to this uncertainty, and which of these assumptions best correspond to the available data. We applied these assumptions within the framework of a DGVM and compared the results to responses in net primary productivity (NPP), leaf N concentration, and ecosystem N partitioning, observed at 22 forest N fertilization experiments. Employing flexible ecosystem pool C : N ratios generally resulted in the most convincing model-data agreement with respect to production and foliar N responses. An intermediate degree of stoichiometric flexibility in vegetation, where wood C : N ratio changes were decoupled from leaf and root C : N ratio changes, led to consistent simulation of production and N cycle responses to N addition. Assuming fixed C : N ratios or scaling leaf N concentration changes to other tissues, commonly assumed by DGVMs, was not supported by reported data. Between the tested assumptions, the simulated changes in ecosystem C storage relative to changes in C assimilation varied by up to 20%.

  5. A new flexible plug and play scheme for modeling, simulating, and predicting gastric emptying

    PubMed Central

    2014-01-01

    Background In-silico models that attempt to capture and describe the physiological behavior of biological organisms, including humans, are intrinsically complex and time consuming to build and simulate in a computing environment. The level of detail of description incorporated in the model depends on the knowledge of the system’s behavior at that level. This knowledge is gathered from the literature and/or improved by knowledge obtained from new experiments. Thus model development is an iterative developmental procedure. The objective of this paper is to describe a new plug and play scheme that offers increased flexibility and ease-of-use for modeling and simulating physiological behavior of biological organisms. Methods This scheme requires the modeler (user) first to supply the structure of the interacting components and experimental data in a tabular format. The behavior of the components described in a mathematical form, also provided by the modeler, is externally linked during simulation. The advantage of the plug and play scheme for modeling is that it requires less programming effort and can be quickly adapted to newer modeling requirements while also paving the way for dynamic model building. Results As an illustration, the paper models the dynamics of gastric emptying behavior experienced by humans. The flexibility to adapt the model to predict the gastric emptying behavior under varying types of nutrient infusion in the intestine (ileum) is demonstrated. The predictions were verified with a human intervention study. The error in predicting the half emptying time was found to be less than 6%. Conclusions A new plug-and-play scheme for biological systems modeling was developed that allows changes to the modeled structure and behavior with reduced programming effort, by abstracting the biological system into a network of smaller sub-systems with independent behavior. In the new scheme, the modeling and simulation becomes an automatic machine readable and

  6. a Model-Based Autofocus Algorithm for Ultrasonic Imaging Using a Flexible Array

    NASA Astrophysics Data System (ADS)

    Hunter, A. J.; Drinkwater, B. W.; Wilcox, P. D.

    2010-02-01

    Autofocus is a methodology for estimating and correcting errors in the assumed parameters of an imaging algorithm. It provides improved image quality and, therefore, better defect detection and characterization capabilities. In this paper, we present a new autofocus algorithm developed specifically for ultrasonic non-destructive testing and evaluation (NDE). We consider the estimation and correction of errors in the assumed element positions for a flexible ultrasonic array coupled to a specimen with an unknown surface profile. The algorithm performs a weighted least-squares minimization of the time-of-arrival errors in the echo data using assumed models for known features in the specimen. The algorithm is described for point and planar specimen features and demonstrated using experimental data from a flexible array prototype.

  7. Coordination, Organisation and Model-driven Approaches for Dynamic, Flexible, Robust Software and Services Engineering

    NASA Astrophysics Data System (ADS)

    Nieves, Juan Carlos; Padget, Julian; Vasconcelos, Wamberto; Staikopoulos, Athanasios; Cliffe, Owen; Dignum, Frank; Vázquez-Salceda, Javier; Clarke, Siobhán; Reed, Chris

    Enterprise systems are increasingly composed of (and even functioning as) components in a dynamic, digital ecosystem. On the one hand, this new situation requires flexible, spontaneous and opportunistic collaboration activities to be identified and established among (electronic) business parties. On the other, it demands engineering methods that are able to integrate new functionalities and behaviours into running systems composed by active, distributed, interdependent processes. Here we present a multi-level architecture that combines organisational and coordination theories with model driven development, for the implementation, deployment and management of dynamic, flexible and robust service-oriented business applications, combined with a service layer that accommodates semantic service description, fine-grained semantic service discovery and the dynamic adaptation of services to meet changing circumstances.

  8. Dynamic modeling and optimal control of spacecraft with flexible structures undergoing general attitude maneuvers

    NASA Astrophysics Data System (ADS)

    Lin, Yiing-Yuh; Lin, Gern-Liang

    1992-08-01

    In this research, the dynamics and control of a rigid spacecraft with flexible structures were studied for the case of optimal simultaneous multiaxis reorientation. A model spacecraft consisting of a rigid hub in the middle and two solid bodies symmetrically connected to either side of the hub through uniformly distributed flexible beams is considered for the dynamic analysis and control simulation. To optimally reorienting the spacecraft, an optimal nominal control trajectory is found first through an iterative procedure. Linear flexural deformations are assumed for the beam structures and the assumed modes method is applied to find the vibration control law of the beams. The system overall optimal attitude control is achieved by following the open loop optimal reference control trajectory with an stabilizing guidance law.

  9. Dynamic modelling and analysis of a magnetically suspended flexible rotor. M.S. Thesis, 1988

    NASA Technical Reports Server (NTRS)

    Mccallum, Duncan C.

    1991-01-01

    A 12-state lumped-element model is presented for a flexible rotor supported by two attractive force electromagnetic journal bearings. The rotor is modeled as a rigid disk with radial mass unbalance mounted on a flexible, massless shaft with internal damping (Jeffcott rotor). The disk is offset axially from the midspan of the shaft. Bearing dynamics in each radial direction are modeled as a parallel combination of a negative (unstable) spring and a linear current-to-force actuator. The model includes translation and rotation of the rigid mass and the first and second bending models of the flexible shaft, and it simultaneously includes internal shaft damping, gyroscopic effects, and the unstable nature of the attractive force magnetic bearings. The model is used to analyze the dependence of the system transmission zeros and open-loop poles on system parameters. The dominant open-loop poles occur in stable/unstable pairs with bandwidth dependent on the ratios of bearing (unstable) stiffnesses to rotor mass and damping dependent on the shaft spin rate. The zeros occur in complex conjugate pairs with bandwidth dependent on the ratios of shaft stiffness to rotor mass and damping dependent on the shaft spin rate. Some of the transmission zeros are non-minimum phase when the spin rate exceeds the shaft critical speed. The transmission zeros and open-loop poles impact the design of magnetic bearing control systems. The minimum loop cross-over frequency of the closed-loop system is the speed of the unstable open-loop poles. For the supercritical shaft spin rates, the presence of non-minimum phase zeros limits the distribution rejection achievable at frequencies near or above the shaft critical speed. Since non-minimum phase transmission zeros can only be changed by changing the system inputs and/or outputs, closed-loop performance is limited for supercritical spin rates unless additional force or torque actuators are added.

  10. Female red colobus monkeys maintain their densities through flexible feeding strategies in logged forests in Kibale National Park, Uganda.

    PubMed

    Milich, Krista M; Stumpf, Rebecca M; Chambers, Josephine M; Chapman, Colin A

    2014-05-01

    Behavioral flexibility allows primates to cope with environmental variability. Quantifying primate responses to human habitat modifications allows an effective means of assessing coping mechanisms. Within Kibale National Park, Uganda, logging led to reduced primate food availability that still exists almost 50 years after the harvest. Following the predictions of the ideal free distribution theory, primate densities are expected to decrease in areas of lower resource availability so that the resources available per individual are equivalent in logged and old-growth areas. However, counter to what would be predicted by the ideal free distribution theory, red colobus monkeys (Procolobus rufomitratus) occur at similar densities in logged and old-growth areas of Kibale. This suggests that either the ecological differences between the two areas are not sufficient to impact red colobus densities or that animals in logged areas are compensating to changes in resource availability by using different foraging strategies. To test between these hypotheses, we examined four groups of red colobus, two in logged and two in old-growth forests, and compared feeding behavior, feeding tree size, and tree productivity. Females in logged areas fed on resources from a greater number of plant species, fed on fewer resources from each species, and spent more time feeding than those in old-growth areas. By expanding their diet, females in logged areas effectively increased the resources available to them, which may contribute to their ability to maintain similar densities to females in old-growth areas. These findings have implications for an evolutionary understanding of how species deal with environmental change and considerations for conservation practices that determine what areas should be prioritized for protection.

  11. The trading rectangle strategy within book models

    NASA Astrophysics Data System (ADS)

    Matassini, Lorenzo

    2001-12-01

    We introduce a model of trading where traders interact through the insertion of orders in the book. This matching mechanism is a collection of the activity of agents: They can trade at the market price or place a limit order. The latter is valid until cancelled by the trader; to this end we introduce a threshold in time after which the probability of the order to be removed is strongly increased. There is essentially no source of randomness and all the traders share a common strategy, what we call trading rectangle. Since there are no fundamentalist rules, it is not so important to identify the right moment to enter in the market. Much more effort is required to decide when to sell. The model is able to reproduce many of the complex phenomena manifested in real stock markets, including the positive correlation between bid/ask spreads and volatility.

  12. New Modelling Strategies For Metal Cutting

    SciTech Connect

    Rosa, Pedro A. R.; Martins, Paulo A. F.; Atkins, Anthony G.

    2007-05-17

    This paper draws from the 'plasticity and friction only' view of metal cutting to the presentation of new modelling strategies based on the interaction between finite elements and modern ductile fracture mechanics. The overall presentation is supported by specially designed orthogonal metal cutting experiments that were performed on Lead test specimens under laboratory-controlled conditions. Comparisons between theoretical predictions and experimental results comprise a wide range of topics such as material flow, cutting forces and specific cutting pressure. The paper demonstrates that while material flow and chip formation can be successfully modelled by traditional 'plasticity and friction only' analyses, the contribution of the fracture work involved in the formation of new surfaces is essential for obtaining good estimates of cutting forces and of the specific cutting pressure.

  13. Dynamic modelling of flexibly supported gears using iterative convergence of tooth mesh stiffness

    NASA Astrophysics Data System (ADS)

    Xue, Song; Howard, Ian

    2016-12-01

    This paper presents a new gear dynamic model for flexibly supported gear sets aiming to improve the accuracy of gear fault diagnostic methods. In the model, the operating gear centre distance, which can affect the gear design parameters, like the gear mesh stiffness, has been selected as the iteration criteria because it will significantly deviate from its nominal value for a flexible supported gearset when it is operating. The FEA method was developed for calculation of the gear mesh stiffnesses with varying gear centre distance, which can then be incorporated by iteration into the gear dynamic model. The dynamic simulation results from previous models that neglect the operating gear centre distance change and those from the new model that incorporate the operating gear centre distance change were obtained by numerical integration of the differential equations of motion using the Newmark method. Some common diagnostic tools were utilized to investigate the difference and comparison of the fault diagnostic results between the two models. The results of this paper indicate that the major difference between the two diagnostic results for the cracked tooth exists in the extended duration of the crack event and in changes to the phase modulation of the coherent time synchronous averaged signal even though other notable differences from other diagnostic results can also be observed.

  14. Modeling and control for vibration suppression of a flexible smart structure

    NASA Astrophysics Data System (ADS)

    Dosch, J.; Leo, D.; Inman, D.

    1993-09-01

    Theoretical and experimental results of the modeling and control of a flexible ribbed antenna are presented. The antenna consists of eight flexible ribs which constitutes a smart antenna in the sense that the actuator and sensors are an integral part of the structure. The antenna exhibits closely space and repeated modes, thus multi-input multi-output (MIMO) control is necessary for controllability and observability of the structure. The structure also exhibits mode localization phenomenon and contains post buckled members making an accurate finite element model of the structure difficult to obtain. An identified MIMO minimum order model of the antenna is synthesized from identified single-input single-output (SISO) transfer functions curve fit in the frequency domain. The identified model is used to design a positive position feedback (PPF) controller that increases damping in all of the modes in the targeted frequency range. Due to the accuracy of the open loop model of the antenna, the closed loop response predicted by the identified model correlates well wtih experimental results.

  15. Modeling and control for vibration suppression of a flexible active structure

    NASA Astrophysics Data System (ADS)

    Dosch, Jeffrey; Leo, Donald; Inman, Daniel

    1995-03-01

    Theoretical and experimental results of the modeling and control of a flexible ribbed antenna are presented. The antenna consists of eight flexible ribs that constitute an active antenna in the sense that the actuators and sensors are an integral part of the structure. The antenna exhibits closely spaced and repeated modes, thus multi-input, multi-output (MIMO) control is necessary for controllability and observability of the structure. The structure also exhibits a mode localization phenomenon and contains postbuckled members making an accurate finite element model of the structure difficult to obtain. An identified MIMO minimum-order model of the antenna is synthesized from identified single-input, single-output transfer functions curve fit in the frequency domain. The identified model is used to design a positive position feedback and H(sub infinity) controller that increases damping in all of the modes in the targeted frequency range. Because of the accuracy of the open-loop model of the antenna, the closed-loop response predicted by the identified model correlates well with experimental results.

  16. Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders

    NASA Astrophysics Data System (ADS)

    Bao, Y.; Palacios, R.; Graham, M.; Sherwin, S.

    2016-09-01

    We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into ;thick; strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural model of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single ;thick; strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip-structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.

  17. Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders

    SciTech Connect

    Bao, Y.; Palacios, R.; Graham, M.; Sherwin, S.

    2016-09-15

    We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural model of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip–structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.

  18. A Flexible Model for Correlated Medical Costs, with Application to Medical Expenditure Panel Survey Data

    PubMed Central

    Chen, Jinsong; Liu, Lei; Shih, Ya-Chen T.; Zhang, Daowen; Severini, Thomas A.

    2016-01-01

    We propose a flexible model for correlated medical cost data with several appealing features. First, the mean function is partially linear. Second, the distributional form for the response is not specified. Third, the covariance structure of correlated medical costs has a semiparametric form. We use extended generalized estimating equations to simultaneously estimate all parameters of interest. B-splines is used to estimate unknown functions, and a modification to Akaike Information Criterion is proposed for selecting knots in spline bases. We apply the model to correlated medical costs in the Medical Expenditure Panel Survey (MEPS) dataset. Simulation studies are conducted to assess the performance of our method. PMID:26403805

  19. A flexible model for correlated medical costs, with application to medical expenditure panel survey data.

    PubMed

    Chen, Jinsong; Liu, Lei; Shih, Ya-Chen T; Zhang, Daowen; Severini, Thomas A

    2016-03-15

    We propose a flexible model for correlated medical cost data with several appealing features. First, the mean function is partially linear. Second, the distributional form for the response is not specified. Third, the covariance structure of correlated medical costs has a semiparametric form. We use extended generalized estimating equations to simultaneously estimate all parameters of interest. B-splines are used to estimate unknown functions, and a modification to Akaike information criterion is proposed for selecting knots in spline bases. We apply the model to correlated medical costs in the Medical Expenditure Panel Survey dataset. Simulation studies are conducted to assess the performance of our method.

  20. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors

    NASA Astrophysics Data System (ADS)

    Recktenwald, Geoff; Deinert, Mark

    2010-03-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

  1. Application of model reference adaptive control to a flexible remote manipulator arm

    NASA Technical Reports Server (NTRS)

    Meldrum, D. R.; Balas, M. J.

    1986-01-01

    An exact modal state-space representation is derived in detail for a single-link, flexible remote manipulator with a noncollocated sensor and actuator. A direct model following adaptive controller is designed to control the torque at the pinned end of the arm so as to command the free end to track a prescribed sinusoidal motion. Conditions that must be satisfied in order for the controller to work are stated. Simulation results to date are discussed along with the potential of the model following adaptive control scheme in robotics and space environments.

  2. System Identification and Model Reduction for a Single-Link Flexible Manipulator

    NASA Astrophysics Data System (ADS)

    LIU, K.; SUN, X.

    2001-05-01

    A new model reduction and updating technique is proposed and applied in modelling of a single-link flexible manipulator. The Observability Range Space Extraction algorithm is used to generate an initial overparameterized state-space model. The identified model is transformed into modal realization. The modal responses of individual modes are evaluated. A new measure is proposed to quantify the contribution of individual modes to the total responses. Using the proposed measure, a reduced order model is obtained by retaining the most significant modes. To improve model accuracy, either the reduced input or output matrix can be recalculated by a proposed method. Several critical issues related to the experimental identification are addressed. Experimental identification results are presented to illustrate the proposed technique.

  3. Investigation of flexibility in Myosin V using a new 3D mechanical model

    NASA Astrophysics Data System (ADS)

    Haghshenas-Jaryani, Mahdi

    2012-02-01

    This paper presents the development of a three dimensional rigid multibody model for the simulation and analysis of motor protein locomotion. The interesting aspect of this model is that it retains the mass properties, in contrast to the commonly used models which omit mass properties at the nano scale. The disproportionate size of the small mass of Myosin V relative to the large viscous friction forces requires a small integration step size that leads to a long simulation run time; however, the proposed model can be numerically integrated in a reasonable amount of time. This paper discusses modeling flexibility in the protein as an extension of the original rigid body model. Empirical studies have shown that Myosin V's neck domain can be considered as three pairs of tandem elements called IQ motifs which can bending at junctures between them. Therefore, each neck is modeled by three rigid bodies connected by ball-and-socket joints together, rather than single rigid body has been used in the previous works. Euler parameters are used to model the orientation of bodies in order to eliminate singularities in the description of orientation. In order to accomplish this, the equations of motion are reduced to minimal form using changing holonomic and non-holonomic constraints applied to the model which represent the normalization of the Euler parameters as well as contact and impact non-penetration conditions. The differences between the dynamic behavior of the new mechanical model, with flexible neck domains, and the original rigid body model are compared using simulation results.

  4. Adaptive nonlinear model predictive control design of a flexible-link manipulator with uncertain parameters

    NASA Astrophysics Data System (ADS)

    Schnelle, Fabian; Eberhard, Peter

    2017-06-01

    This paper presents a novel adaptive nonlinear model predictive control design for trajectory tracking of flexible-link manipulators consisting of feedback linearization, linear model predictive control, and unscented Kalman filtering. Reducing the nonlinear system to a linear system by feedback linearization simplifies the optimization problem of the model predictive controller significantly, which, however, is no longer linear in the presence of parameter uncertainties and can potentially lead to an undesired dynamical behaviour. An unscented Kalman filter is used to approximate the dynamics of the prediction model by an online parameter estimation, which leads to an adaptation of the optimization problem in each time step and thus to a better prediction and an improved input action. Finally, a detailed fuzzy-arithmetic analysis is performed in order to quantify the effect of the uncertainties on the control structure and to derive robustness assessments. The control structure is applied to a serial manipulator with two flexible links containing uncertain model parameters and acting in three-dimensional space.

  5. Control structural interaction testbed: A model for multiple flexible body verification

    NASA Technical Reports Server (NTRS)

    Chory, M. A.; Cohen, A. L.; Manning, R. A.; Narigon, M. L.; Spector, V. A.

    1993-01-01

    Conventional end-to-end ground tests for verification of control system performance become increasingly complicated with the development of large, multiple flexible body spacecraft structures. The expense of accurately reproducing the on-orbit dynamic environment and the attendant difficulties in reducing and accounting for ground test effects limits the value of these tests. TRW has developed a building block approach whereby a combination of analysis, simulation, and test has replaced end-to-end performance verification by ground test. Tests are performed at the component, subsystem, and system level on engineering testbeds. These tests are aimed at authenticating models to be used in end-to-end performance verification simulations: component and subassembly engineering tests and analyses establish models and critical parameters, unit level engineering and acceptance tests refine models, and subsystem level tests confirm the models' overall behavior. The Precision Control of Agile Spacecraft (PCAS) project has developed a control structural interaction testbed with a multibody flexible structure to investigate new methods of precision control. This testbed is a model for TRW's approach to verifying control system performance. This approach has several advantages: (1) no allocation for test measurement errors is required, increasing flight hardware design allocations; (2) the approach permits greater latitude in investigating off-nominal conditions and parametric sensitivities; and (3) the simulation approach is cost effective, because the investment is in understanding the root behavior of the flight hardware and not in the ground test equipment and environment.

  6. Analytical and numerical models to predict the behavior of unbonded flexible risers under torsion

    NASA Astrophysics Data System (ADS)

    Ren, Shao-fei; Xue, Hong-xiang; Tang, Wen-yong

    2016-04-01

    This paper presents analytical and numerical models to predict the behavior of unbonded flexible risers under torsion. The analytical model takes local bending and torsion of tensile armor wires into consideration, and equilibrium equations of forces and displacements of layers are deduced. The numerical model includes lay angle, cross-sectional profiles of carcass, pressure armor layer and contact between layers. Abaqus/Explicit quasi-static simulation and mass scaling are adopted to avoid convergence problem and excessive computation time caused by geometric and contact nonlinearities. Results show that local bending and torsion of helical strips may have great influence on torsional stiffness, but stress related to bending and torsion is negligible; the presentation of anti-friction tapes may have great influence both on torsional stiffness and stress; hysteresis of torsion-twist relationship under cyclic loading is obtained by numerical model, which cannot be predicted by analytical model because of the ignorance of friction between layers.

  7. A leaky-integrator model as a control mechanism underlying flexible decision making during task switching.

    PubMed

    Mitani, Akinori; Sasaki, Ryo; Oizumi, Masafumi; Uka, Takanori

    2013-01-01

    The ability to switch between tasks is critical for animals to behave according to context. Although the association between the prefrontal cortex and task switching has been well documented, the ultimate modulation of sensory-motor associations has yet to be determined. Here, we modeled the results of a previous study showing that task switching can be accomplished by communication from distinct populations of sensory neurons. We proposed a leaky-integrator model where relevant and irrelevant information were stored separately in two integrators and task switching was achieved by leaking information from the irrelevant integrator. The model successfully explained both the behavioral and neuronal data. Additionally, the leaky-integrator model showed better performance than an alternative model, where irrelevant information was discarded by decreasing the weight on irrelevant information, when animals initially failed to commit to a task. Overall, we propose that flexible switching is, in part, achieved by actively controlling the amount of leak of relevant and irrelevant information.

  8. The reduced order model problem in distributed parameter systems adaptive identification and control. [adaptive control of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, C. R., Jr.; Lawrence, D. A.

    1981-01-01

    The reduced order model problem in distributed parameter systems adaptive identification and control is investigated. A comprehensive examination of real-time centralized adaptive control options for flexible spacecraft is provided.

  9. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering

    PubMed Central

    Tria, Giancarlo; Mertens, Haydyn D. T.; Kachala, Michael; Svergun, Dmitri I.

    2015-01-01

    Dynamic ensembles of macromolecules mediate essential processes in biology. Understanding the mechanisms driving the function and molecular interactions of ‘unstructured’ and flexible molecules requires alternative approaches to those traditionally employed in structural biology. Small-angle X-ray scattering (SAXS) is an established method for structural characterization of biological macromolecules in solution, and is directly applicable to the study of flexible systems such as intrinsically disordered proteins and multi-domain proteins with unstructured regions. The Ensemble Optimization Method (EOM) [Bernadó et al. (2007 ▶). J. Am. Chem. Soc. 129, 5656–5664] was the first approach introducing the concept of ensemble fitting of the SAXS data from flexible systems. In this approach, a large pool of macromolecules covering the available conformational space is generated and a sub-ensemble of conformers coexisting in solution is selected guided by the fit to the experimental SAXS data. This paper presents a series of new developments and advancements to the method, including significantly enhanced functionality and also quantitative metrics for the characterization of the results. Building on the original concept of ensemble optimization, the algorithms for pool generation have been redesigned to allow for the construction of partially or completely symmetric oligomeric models, and the selection procedure was improved to refine the size of the ensemble. Quantitative measures of the flexibility of the system studied, based on the characteristic integral parameters of the selected ensemble, are introduced. These improvements are implemented in the new EOM version 2.0, and the capabilities as well as inherent limitations of the ensemble approach in SAXS, and of EOM 2.0 in particular, are discussed. PMID:25866658

  10. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering.

    PubMed

    Tria, Giancarlo; Mertens, Haydyn D T; Kachala, Michael; Svergun, Dmitri I

    2015-03-01

    Dynamic ensembles of macromolecules mediate essential processes in biology. Understanding the mechanisms driving the function and molecular interactions of 'unstructured' and flexible molecules requires alternative approaches to those traditionally employed in structural biology. Small-angle X-ray scattering (SAXS) is an established method for structural characterization of biological macromolecules in solution, and is directly applicable to the study of flexible systems such as intrinsically disordered proteins and multi-domain proteins with unstructured regions. The Ensemble Optimization Method (EOM) [Bernadó et al. (2007 ▶). J. Am. Chem. Soc. 129, 5656-5664] was the first approach introducing the concept of ensemble fitting of the SAXS data from flexible systems. In this approach, a large pool of macromolecules covering the available conformational space is generated and a sub-ensemble of conformers coexisting in solution is selected guided by the fit to the experimental SAXS data. This paper presents a series of new developments and advancements to the method, including significantly enhanced functionality and also quantitative metrics for the characterization of the results. Building on the original concept of ensemble optimization, the algorithms for pool generation have been redesigned to allow for the construction of partially or completely symmetric oligomeric models, and the selection procedure was improved to refine the size of the ensemble. Quantitative measures of the flexibility of the system studied, based on the characteristic integral parameters of the selected ensemble, are introduced. These improvements are implemented in the new EOM version 2.0, and the capabilities as well as inherent limitations of the ensemble approach in SAXS, and of EOM 2.0 in particular, are discussed.

  11. Inter-Vertebral Flexibility of the Ostrich Neck: Implications for Estimating Sauropod Neck Flexibility

    PubMed Central

    Cobley, Matthew J.; Rayfield, Emily J.; Barrett, Paul M.

    2013-01-01

    The flexibility and posture of the neck in sauropod dinosaurs has long been contentious. Improved constraints on sauropod neck function will have major implications for what we know of their foraging strategies, ecology and overall biology. Several hypotheses have been proposed, based primarily on osteological data, suggesting different degrees of neck flexibility. This study attempts to assess the effects of reconstructed soft tissues on sauropod neck flexibility through systematic removal of muscle groups and measures of flexibility of the neck in a living analogue, the ostrich (Struthio camelus). The possible effect of cartilage on flexibility is also examined, as this was previously overlooked in osteological estimates of sauropod neck function. These comparisons show that soft tissues are likely to have limited the flexibility of the neck beyond the limits suggested by osteology alone. In addition, the inferred presence of cartilage, and varying the inter-vertebral spacing within the synovial capsule, also affect neck flexibility. One hypothesis proposed that flexibility is constrained by requiring a minimum overlap between successive zygapophyses equivalent to 50% of zygapophyseal articular surface length (ONP50). This assumption is tested by comparing the maximum flexibility of the articulated cervical column in ONP50 and the flexibility of the complete neck with all tissues intact. It is found that this model does not adequately convey the pattern of flexibility in the ostrich neck, suggesting that the ONP50 model may not be useful in determining neck function if considered in isolation from myological and other soft tissue data. PMID:23967284

  12. Analytical model for stage-discharge estimation in meandering compound channels with submerged flexible vegetation

    NASA Astrophysics Data System (ADS)

    Shan, Yuqi; Liu, Xingnian; Yang, Kejun; Liu, Chao

    2017-10-01

    For overbank flows, submerged flexible vegetation on floodplains increases channel resistance and decreases channel conveyance capability. This study presents an analytical model for estimating the stage-discharge relationship in a meandering compound channel with dense, submerged, flexible vegetation on floodplains under high flow conditions. The mean velocity within a canopy was linked to the depth-averaged velocity, and a relationship between the two velocities was proposed. The governing equation was deduced in curvilinear coordinates, and the lateral shear stresses were found to be negligible, as validated by our experimental measurements in a large-scale meandering channel. Then, analytical solutions of subarea discharges and total discharge were derived by ignoring lateral shear stresses. Measurements from two flume experiments and one field study were used to verify the proposed model. The field case involved a natural river with both submerged and emergent grass on the floodplains. Good agreement between predictions and measurements indicated that the model accurately predicted subarea discharges and the stage-discharge relationships in a meandering compound channel with submerged vegetation. Finally, the predictions of this model were sensitive to the secondary flow parameters in the main channel but insensitive to those on the floodplains.

  13. An intermittent control model of flexible human gait using a stable manifold of saddle-type unstable limit cycle dynamics.

    PubMed

    Fu, Chunjiang; Suzuki, Yasuyuki; Kiyono, Ken; Morasso, Pietro; Nomura, Taishin

    2014-12-06

    Stability of human gait is the ability to maintain upright posture during walking against external perturbations. It is a complex process determined by a number of cross-related factors, including gait trajectory, joint impedance and neural control strategies. Here, we consider a control strategy that can achieve stable steady-state periodic gait while maintaining joint flexibility with the lowest possible joint impedance. To this end, we carried out a simulation study of a heel-toe footed biped model with hip, knee and ankle joints and a heavy head-arms-trunk element, working in the sagittal plane. For simplicity, the model assumes a periodic desired joint angle trajectory and joint torques generated by a set of feed-forward and proportional-derivative feedback controllers, whereby the joint impedance is parametrized by the feedback gains. We could show that a desired steady-state gait accompanied by the desired joint angle trajectory can be established as a stable limit cycle (LC) for the feedback controller with an appropriate set of large feedback gains. Moreover, as the feedback gains are decreased for lowering the joint stiffness, stability of the LC is lost only in a few dimensions, while leaving the remaining large number of dimensions quite stable: this means that the LC becomes saddle-type, with a low-dimensional unstable manifold and a high-dimensional stable manifold. Remarkably, the unstable manifold remains of low dimensionality even when the feedback gains are decreased far below the instability point. We then developed an intermittent neural feedback controller that is activated only for short periods of time at an optimal phase of each gait stride. We characterized the robustness of this design by showing that it can better stabilize the unstable LC with small feedback gains, leading to a flexible gait, and in particular we demonstrated that such an intermittent controller performs better if it drives the state point to the stable manifold, rather

  14. An intermittent control model of flexible human gait using a stable manifold of saddle-type unstable limit cycle dynamics

    PubMed Central

    Fu, Chunjiang; Suzuki, Yasuyuki; Kiyono, Ken; Morasso, Pietro; Nomura, Taishin

    2014-01-01

    Stability of human gait is the ability to maintain upright posture during walking against external perturbations. It is a complex process determined by a number of cross-related factors, including gait trajectory, joint impedance and neural control strategies. Here, we consider a control strategy that can achieve stable steady-state periodic gait while maintaining joint flexibility with the lowest possible joint impedance. To this end, we carried out a simulation study of a heel-toe footed biped model with hip, knee and ankle joints and a heavy head-arms-trunk element, working in the sagittal plane. For simplicity, the model assumes a periodic desired joint angle trajectory and joint torques generated by a set of feed-forward and proportional-derivative feedback controllers, whereby the joint impedance is parametrized by the feedback gains. We could show that a desired steady-state gait accompanied by the desired joint angle trajectory can be established as a stable limit cycle (LC) for the feedback controller with an appropriate set of large feedback gains. Moreover, as the feedback gains are decreased for lowering the joint stiffness, stability of the LC is lost only in a few dimensions, while leaving the remaining large number of dimensions quite stable: this means that the LC becomes saddle-type, with a low-dimensional unstable manifold and a high-dimensional stable manifold. Remarkably, the unstable manifold remains of low dimensionality even when the feedback gains are decreased far below the instability point. We then developed an intermittent neural feedback controller that is activated only for short periods of time at an optimal phase of each gait stride. We characterized the robustness of this design by showing that it can better stabilize the unstable LC with small feedback gains, leading to a flexible gait, and in particular we demonstrated that such an intermittent controller performs better if it drives the state point to the stable manifold, rather

  15. Advantage of Animal Models with Metabolic Flexibility for Space Research Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Griko, Yuri V.; Rask, Jon C.; Raychev, Raycho

    2017-01-01

    As the world's space agencies and commercial entities continue to expand beyond Low Earth Orbit (LEO), novel approaches to carry out biomedical experiments with animals are required to address the challenge of adaptation to space flight and new planetary environments. The extended time and distance of space travel along with reduced involvement of Earth-based mission support increases the cumulative impact of the risks encountered in space. To respond to these challenges, it becomes increasingly important to develop the capability to manage an organism's self-regulatory control system, which would enable survival in extraterrestrial environments. To significantly reduce the risk to animals on future long duration space missions, we propose the use of metabolically flexible animal models as "pathfinders," which are capable of tolerating the environmental extremes exhibited in spaceflight, including altered gravity, exposure to space radiation, chemically reactive planetary environments and temperature extremes. In this report we survey several of the pivotal metabolic flexibility studies and discuss the importance of utilizing animal models with metabolic flexibility with particular attention given to the ability to suppress the organism's metabolism in spaceflight experiments beyond LEO. The presented analysis demonstrates the adjuvant benefits of these factors to minimize damage caused by exposure to spaceflight and extreme planetary environments. Examples of microorganisms and animal models with dormancy capabilities suitable for space research are considered in the context of their survivability under hostile or deadly environments outside of Earth. Potential steps toward implementation of metabolic control technology in spaceflight architecture and its benefits for animal experiments and manned space exploration missions are discussed.

  16. Modeling strategies of ultrasound backscattering by blood

    NASA Astrophysics Data System (ADS)

    Guy, Cloutier; David, Savery; Isabelle, Fontaine; Beng Ghee, Teh

    2002-05-01

    Tissue characterization using ultrasound (US) scattering can allow the identification of relevant cellular biophysical information noninvasively. The characterization of the level of red blood cell (RBC) aggregation is one of the proposed applications. Different modeling strategies have been investigated by our group to better understand the mechanisms of US backscattering by blood, and to propose relevant measurable indices of aggregation. It could be hypothesized from these studies that the microstructure formed by RBC clusters is a main determinant of US backscattered power. The structure factor, which is related to the Fourier transform of the microscopic density function of RBCs, is described and used to explain the scattering behavior for different spatial arrangements of nonaggregated and aggregated RBCs. The microscopic density function was described by the Percus-Yevick approximation (nonaggregated RBCs), and for aggregated RBCs, by the Poisson distribution, the Neyman-Scott point process, and very recently by a flow-dependent rheological model. These statistical and microrheological models allowed the study of US backscattered power as a function of the hematocrit, scatterers' size, insonification frequency, and level of RBC aggregation. Experimental results available from the literature were used to validate the different approaches. [Work supported by Canadian Institutes of Health Research (MOP-36467), HSFQ, FCAR, and FRSQ.

  17. Characterization and modeling of an advanced flexible thermal protection material for space applications

    NASA Technical Reports Server (NTRS)

    Clayton, Joseph P.; Tinker, Michael L.

    1991-01-01

    This paper describes experimental and analytical characterization of a new flexible thermal protection material known as Tailorable Advanced Blanket Insulation (TABI). This material utilizes a three-dimensional ceramic fabric core structure and an insulation filler. TABI is the leading candidate for use in deployable aeroassisted vehicle designs. Such designs require extensive structural modeling, and the most significant in-plane material properties necessary for model development are measured and analytically verified in this study. Unique test methods are developed for damping measurements. Mathematical models are developed for verification of the experimental modulus and damping data, and finally, transverse properties are described in terms of the inplane properties through use of a 12-dof finite difference model of a simple TABI configuration.

  18. Modeling and performance evaluation of flexible manufacturing systems using Petri nets

    SciTech Connect

    Callotta, M.P.; Cimenez, C.; Tazza, M.

    1996-12-31

    A timed Petri net approach is used to model resource allocation-utilization-release patterns for performance evaluation. First, simple resource utilization sequences are derived from a directed graph representing the process plan of parts. Second, the place-transitions sequences are connected introducing places whose marking models the resources needed to perform the manufacturing operation indicated in the process plan. Time is introduced as a permanence time of tokens at the place-transition sequence, modeling the utilization time of resources. The corresponding model leads to a simultaneous resource possession problem. Finally, flow equations for the description of the quantitative behavior of the resulting timed Petri net are presented. A major conclusion of the paper is that performance evaluation can be adequately abstracted and analytically solved, in a simple way, even in presence of complicating factors like resource sharing and routing flexibility in process plans.

  19. Model reference adaptive control of flexible robots in the presence of sudden load changes

    NASA Technical Reports Server (NTRS)

    Steinvorth, Rodrigo; Kaufman, Howard; Neat, Gregory

    1991-01-01

    Direct command generator tracker based model reference adaptive control (MRAC) algorithms are applied to the dynamics for a flexible-joint arm in the presence of sudden load changes. Because of the need to satisfy a positive real condition, such MRAC procedures are designed so that a feedforward augmented output follows the reference model output, thus, resulting in an ultimately bounded rather than zero output error. Thus, modifications are suggested and tested that: (1) incorporate feedforward into the reference model's output as well as the plant's output, and (2) incorporate a derivative term into only the process feedforward loop. The results of these simulations give a response with zero steady state model following error, and thus encourage further use of MRAC for more complex flexibile robotic systems.

  20. Flexible model and spectrum of non-rigid motion in LMF4 fluorides

    NASA Astrophysics Data System (ADS)

    Baranov, L. Ya.; Boldyrev, A. I.

    A flexible model is used to simulate the spectrum of the non-rigid motion in the LiBF4 molecule. It is shown that there are many states having energies below the barrier of rearrangement which can be regarded as anharmonic bending vibrations. A one-well representation of the potential energy surface appears to be a fairly good approximation for describing this part of the spectrum. The tunnelling splittings at these levels are extremely small. At energies above the barrier the level pattern changes radically and highly excited states should be regarded as intramolecular hindered rotation. Differences between the spectra of LMH4 hydrides and LMF4 fluorides are discussed.

  1. Transform methods for precision continuum and control models of flexible space structures

    NASA Technical Reports Server (NTRS)

    Lupi, Victor D.; Turner, James D.; Chun, Hon M.

    1991-01-01

    An open loop optimal control algorithm is developed for general flexible structures, based on Laplace transform methods. A distributed parameter model of the structure is first presented, followed by a derivation of the optimal control algorithm. The control inputs are expressed in terms of their Fourier series expansions, so that a numerical solution can be easily obtained. The algorithm deals directly with the transcendental transfer functions from control inputs to outputs of interest, and structural deformation penalties, as well as penalties on control effort, are included in the formulation. The algorithm is applied to several structures of increasing complexity to show its generality.

  2. Molecular dynamics study of liquid methanol with a flexible three-site model

    SciTech Connect

    Palinkas, G.; Hawlicka, E.; Heinzinger, K.

    1987-07-30

    A new potential is presented which describes the methanol-methanol interactions on the basis of a flexible three-site model. The intramolecular part of the potential has been derived from spectroscopic data. A molecular dynamics study has been performed with this potential at 286 K. The structural properties of liquid methanol calculated from the simulations are in good agreement with X-ray measurements. The average geometrical arrangement of nearest neighbors and their hydrogen bonding are discussed. The potential describes correctly the gas-liquid frequency shifts of the intramolecular vibrations. Several thermodynamic properties calculated from the simulation compare favorably with experimental results.

  3. A salamander's flexible spinal network for locomotion, modeled at two levels of abstraction.

    PubMed

    Knüsel, Jeremie; Bicanski, Andrej; Ryczko, Dimitri; Cabelguen, Jean-Marie; Ijspeert, Auke Jan

    2013-08-01

    Animals have to coordinate a large number of muscles in different ways to efficiently move at various speeds and in different and complex environments. This coordination is in large part based on central pattern generators (CPGs). These neural networks are capable of producing complex rhythmic patterns when activated and modulated by relatively simple control signals. Although the generation of particular gaits by CPGs has been successfully modeled at many levels of abstraction, the principles underlying the generation and selection of a diversity of patterns of coordination in a single neural network are still not well understood. The present work specifically addresses the flexibility of the spinal locomotor networks in salamanders. We compare an abstract oscillator model and a CPG network composed of integrate-and-fire neurons, according to their ability to account for different axial patterns of coordination, and in particular the transition in gait between swimming and stepping modes. The topology of the network is inspired by models of the lamprey CPG, complemented by additions based on experimental data from isolated spinal cords of salamanders. Oscillatory centers of the limbs are included in a way that preserves the flexibility of the axial network. Similarly to the selection of forward and backward swimming in lamprey models via different excitation to the first axial segment, we can account for the modification of the axial coordination pattern between swimming and forward stepping on land in the salamander model, via different uncoupled frequencies in limb versus axial oscillators (for the same level of excitation). These results transfer partially to a more realistic model based on formal spiking neurons, and we discuss the difference between the abstract oscillator model and the model built with formal spiking neurons.

  4. Mass balance modelling of contaminants in river basins: application of the flexible matrix approach.

    PubMed

    Warren, Christopher; Mackay, Don; Whelan, Mick; Fox, Kay

    2007-07-01

    It is useful to have available a variety of catchment-scale water quality models that range in complexity, spatial resolution and data requirements. In a previous paper [Warren, C., Mackay, D., Whelan, M., Fox, K., 2005. Mass balance modelling of contaminants in river basins: a flexible matrix approach. Chemosphere 61, 1458-1467] a series of simple to intermediately complex mass balance models was presented which can be used for tiered exposure assessments in river basins. The connectivity of the segments is expressed using a matrix that permits flexibility in application, enabling the model to be re-segmented and applied to different catchments as required. In this paper, the intermediate models, QWASI matrix-rate constant (QMX-R) and QWASI matrix-fugacity (QMX-F) are used to estimate concentrations of linear alkylbenzene sulfonates (LAS) in the rivers Aire and Calder, UK, and of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the Fraser River basin, Canada. The results compare satisfactorily with monitoring data, suggesting that these QWASI-based models for exposure and risk assessment may be applicable under data-limited conditions. The use of QWASI-based models for regulatory purposes in an evaluative river system is also discussed with reference to assessments of para-dichlorobenzene (pDCB), trichloroethylene (TCE), bis(2-ethylhexyl) phthalate (DEHP) and toluene. It is shown that multi-media QWASI model predictions can be usefully depicted graphically on chemical space diagrams and used to highlight regions in which advection, partitioning to sediments and volatilization may be important determinants of chemical fate in river systems.

  5. Creating Flexible and Sustainable Work Models for Academic Obstetrician-Gynecologists Engaged in Global Health Work.

    PubMed

    Molina, Rose; Boatin, Adeline; Farid, Huma; Luckett, Rebecca; Neo, Dayna; Ricciotti, Hope; Scott, Jennifer

    2017-10-01

    To describe various work models for obstetrics and gynecology global health faculty affiliated with academic medical centers and to identify barriers and opportunities for pursuing global health work. A mixed-methods study was conducted in 2016 among obstetrics and gynecology faculty and leaders from seven academic medical institutions in Boston, Massachusetts. Global health faculty members were invited to complete an online survey about their work models and to participate in semistructured interviews about barriers and facilitators of these models. Department chairs and residency directors were asked to participate in interviews. The survey response rate among faculty was 65.6% (21/32), of which 76.2% (16/21) completed an interview. Five department leaders (45.5% [5/11]) participated in an interview. Faculty described a range of work models with varied time and compensation, but only one third reported contracted time for global health work. The most common barriers to global health work were financial constraints, time limitations, lack of mentorship, need for specialized training, and maintenance of clinical skills. Career satisfaction, creating value for the obstetrics and gynecology department, and work model flexibility were the most important facilitators of sustainable global health careers. The study identified challenges and opportunities to creating flexible and sustainable work models for academic obstetrics and gynecology clinicians engaged in global health work. Additional research and innovation are needed to identify work models that allow for sustainable careers in global women's health. There are opportunities to create professional standards and models for academic global health work in the obstetrics and gynecology specialty.

  6. Development, Analysis and Testing of the High Speed Research Flexible Semispan Model

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Spain, Charles V.; Turnock, David L.; Rausch, Russ D.; Hamouda, M-Nabil; Vogler, William A.; Stockwell, Alan E.

    1999-01-01

    This report presents the work performed by Lockheed Martin Engineering and Sciences (LMES) in support of the High Speed Research (HSR) Flexible Semispan Model (FSM) wind-tunnel test. The test was conducted in order to assess the aerodynamic and aeroelastic character of a flexible high speed civil transport wing. Data was acquired for the purpose of code validation and trend evaluation for this type of wing. The report describes a number of activities in preparing for and conducting the wind-tunnel test. These included coordination of the design and fabrication, development of analytical models, analysis/hardware correlation, performance of laboratory tests, monitoring of model safety issues, and wind-tunnel data acquisition and reduction. Descriptions and relevant evaluations associated with the pretest data are given in sections 1 through 6, followed by pre- and post-test flutter analysis in section 7, and the results of the aerodynamics/loads test in section 8. Finally, section 9 provides some recommendations based on lessons learned throughout the FSM program.

  7. Modeling the transient aerodynamic effects during the motion of a flexible trailing edge

    NASA Astrophysics Data System (ADS)

    Wolff, T.; Seume, J. R.

    2016-09-01

    Wind turbine blades have been becoming longer and more slender during the last few decades. The longer lever arm results in higher stresses at the blade root. Hence, the unsteady loads induced by turbulence, gust, or wind shear increase. One promising way to control these loads is to use flexible trailing edges near the blade tip. The unsteady effects which appear during the motion of a flexible trailing edge must be considered for the load calculation during the design process because of their high influence on aeroelastic effects and hence on the fatigue loads. This is not yet possible in most of the wind turbine simulation environments. Consequently, an empirical model is developed in the present study which accounts for unsteady effects during the motion of the trailing edge. The model is based on Fourier analyses of results generated with Reynolds-Averaged Navier-Stokes (RANS) simulations of a typical thin airfoil with a deformable trailing edge. The validation showed that the model fits Computational Fluid Dynamics (CFD) results simulated with a random time series of the deflection angle.

  8. Flexible Wing Model for Structural Sizing and Multidisciplinary Design Optimization of a Strut-Braced Wing

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.; Naghshineh, Amir H.; Sulaeman, Erwin; Kapania, Rakesh K.; Haftka, Raphael T.

    2000-01-01

    This paper describes a structural and aeroelastic model for wing sizing and weight calculation of a strut-braced wing. The wing weight is calculated using a newly developed structural weight analysis module considering the special nature of strut-braced wings. A specially developed aeroelastic model enables one to consider wing flexibility and spanload redistribution during in-flight maneuvers. The structural model uses a hexagonal wing-box featuring skin panels, stringers, and spar caps, whereas the aerodynamics part employs a linearized transonic vortex lattice method. Thus, the wing weight may be calculated from the rigid or flexible wing spanload. The calculations reveal the significant influence of the strut on the bending material weight of the wing. The use of a strut enables one to design a wing with thin airfoils without weight penalty. The strut also influences wing spanload and deformations. Weight savings are not only possible by calculation and iterative resizing of the wing structure according to the actual design loads. Moreover, as an advantage over the cantilever wing, employment of the strut twist moment for further load alleviation leads to increased savings in structural weight.

  9. Molecular modelling of the three-dimensional structure and conformational flexibility of bacterial lipopolysaccharide.

    PubMed Central

    Kastowsky, M; Gutberlet, T; Bradaczek, H

    1992-01-01

    Molecular modelling techniques have been applied to calculate the three-dimensional architecture and the conformational flexibility of a complete bacterial S-form lipopolysaccharide (LPS) consisting of a hexaacyl lipid A identical to Escherichia coli lipid A, a complete Salmonella typhimurium core oligosaccharide portion, and four repeating units of the Salmonella serogroup B O-specific chain. X-ray powder diffraction experiments on dried samples of LPS were carried out to obtain information on the dimensions of the various LPS partial structures. Up to the Ra-LPS structure, the calculated model dimensions were in good agreement with experimental data and were 2.4 nm for lipid A, 2.8 nm for Re-LPS, 3.5 nm for Rd-LPS, and 4.4 nm for Ra-LPS. The maximum length of a stretched S-form LPS model bearing four repeating units was evaluated to be 9.6 nm; however, energetically favored LPS conformations showed the O-specific chain bent with respect to the Ra-LPS portion and significantly smaller dimensions (about 5.0 to 5.5 nm). According to the calculations, the Ra-LPS moiety has an approximately cylindrical shape and is conformationally well defined, in contrast to the O-specific chain, which was found to be the most flexible portion within the molecule. PMID:1624466

  10. Developing Flexible Discrete Event Simulation Models in an Uncertain Policy Environment

    NASA Technical Reports Server (NTRS)

    Miranda, David J.; Fayez, Sam; Steele, Martin J.

    2011-01-01

    On February 1st, 2010 U.S. President Barack Obama submitted to Congress his proposed budget request for Fiscal Year 2011. This budget included significant changes to the National Aeronautics and Space Administration (NASA), including the proposed cancellation of the Constellation Program. This change proved to be controversial and Congressional approval of the program's official cancellation would take many months to complete. During this same period an end-to-end discrete event simulation (DES) model of Constellation operations was being built through the joint efforts of Productivity Apex Inc. (PAl) and Science Applications International Corporation (SAIC) teams under the guidance of NASA. The uncertainty in regards to the Constellation program presented a major challenge to the DES team, as to: continue the development of this program-of-record simulation, while at the same time remain prepared for possible changes to the program. This required the team to rethink how it would develop it's model and make it flexible enough to support possible future vehicles while at the same time be specific enough to support the program-of-record. This challenge was compounded by the fact that this model was being developed through the traditional DES process-orientation which lacked the flexibility of object-oriented approaches. The team met this challenge through significant pre-planning that led to the "modularization" of the model's structure by identifying what was generic, finding natural logic break points, and the standardization of interlogic numbering system. The outcome of this work resulted in a model that not only was ready to be easily modified to support any future rocket programs, but also a model that was extremely structured and organized in a way that facilitated rapid verification. This paper discusses in detail the process the team followed to build this model and the many advantages this method provides builders of traditional process-oriented discrete

  11. Impact of current speed on mass flux to a model flexible seagrass blade

    NASA Astrophysics Data System (ADS)

    Lei, Jiarui; Nepf, Heidi

    2016-07-01

    Seagrass and other freshwater macrophytes can acquire nutrients from surrounding water through their blades. This flux may depend on the current speed (U), which can influence both the posture of flexible blades (reconfiguration) and the thickness of the flux-limiting diffusive layer. The impact of current speed (U) on mass flux to flexible blades of model seagrass was studied through a combination of laboratory flume experiments, numerical modeling and theory. Model seagrass blades were constructed from low-density polyethylene (LDPE), and 1, 2-dichlorobenzene was used as a tracer chemical. The tracer mass accumulation in the blades was measured at different unidirectional current speeds. A numerical model was used to estimate the transfer velocity (K) by fitting the measured mass uptake to a one-dimensional diffusion model. The measured transfer velocity was compared to predictions based on laminar and turbulent boundary layers developing over a flat plate parallel to flow, for which K∝U0.5 and ∝U, respectively. The degree of blade reconfiguration depended on the dimensionless Cauchy number, Ca, which is a function of both the blade stiffness and flow velocity. For large Ca, the majority of the blade was parallel to the flow, and the measured transfer velocity agreed with laminar boundary layer theory, K∝U0.5. For small Ca, the model blades remained upright, and the flux to the blade was diminished relative to the flat-plate model. A meadow-scale analysis suggests that the mass exchange at the blade scale may control the uptake at the meadow scale.

  12. Rigid-flexible outer sheath model using slider linkage locking mechanism and air pressure for endoscopic surgery.

    PubMed

    Yagi, Akihiko; Matsumiya, Kiyoshi; Masamune, Ken; Liao, Hongen; Dohi, Takeyoshi

    2006-01-01

    The objective of this paper is to develop an outer sheath for flexible endoscopic manipulators. This sheath can switch two states including flexible and rigid, and make a rigid curved path for inserting manipulators. The flexible mode can be curved into a required shape. The rigid mode can hold the shape of the sheath, and then keep the path for instruments. Through the managed path, the flexible manipulators become easy to reach the target. We proposed a serial multi joint model to realize the flexible mechanism. This model is composed of a set of frame units which are connected serially. Each unit can be rotated to a given angle around the center of the joint. We developed a slider-link mechanism and a gear stopper controlled by air pressure for rigid mode. We designed and fabricated the prototype with a diameter of 16 mm and length of 290 mm. The experiment showed that the device could be switched from the flexible mode to the rigid mode when the air pressure was over 150 kPa, and each joint could hold its angle against the maximum 400 mNm. The phantom experiment showed that the flexible devices are possible to transmit the wire tension to the endpoint of the manipulator without changing the curving shape with by the developed outer sheath device.

  13. Assessment of excitation mechanisms and structural flexibility influence in excitation propagation in multi-megawatt wind turbine gearboxes: Experiments and flexible multibody model optimization

    NASA Astrophysics Data System (ADS)

    Helsen, Jan; Marrant, Ben; Vanhollebeke, Frederik; De Coninck, Filip; Berckmans, Dries; Vandepitte, Dirk; Desmet, Wim

    2013-10-01

    Reliable gearbox design calculations require sufficient insight in gearbox dynamics, which is determined by the interaction between the different excitation mechanisms and the gearbox modal behavior. Both external gearbox excitation originating from the wind turbine drive train and internal gearbox excitation are important. Moreover with regard to the modal behavior the different gearbox structural components: planet carrier, shafts and housing are of influence. The main objective of this article is the experimental investigation of the interaction between the different excitation mechanisms and the gearbox modal behavior. The insights gathered are used to prove the need for accurate gear mesh representation and structural flexibility within the corresponding flexible multibody gearbox simulation model. Experiments are conducted on a dynamic 13.2 MW test facility on which two multi-megawatt wind turbine gearboxes are placed back to back and subjected to a speed run-up. Measurement sensors consist of bearing displacement sensors, torque sensors, encoders and accelerometers distributed over the gearbox. Excitation order amplitudes on different locations in the gearbox are determined by means of a Time Varying Discrete Fourier Transform (TVDFT) order tracking on the measured sensor signals. Moreover the propagation of this excitation throughout the gearbox is assessed. Relating the orders to the corresponding excitation source allows the definition of order influence regions within the gearbox. The interaction between the gear mesh order excitation and structural flexibility is shown.

  14. A Flight Dynamics Model for a Multi-Actuated Flexible Rocket Vehicle

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2011-01-01

    A comprehensive set of motion equations for a multi-actuated flight vehicle is presented. The dynamics are derived from a vector approach that generalizes the classical linear perturbation equations for flexible launch vehicles into a coupled three-dimensional model. The effects of nozzle and aerosurface inertial coupling, sloshing propellant, and elasticity are incorporated without restrictions on the position, orientation, or number of model elements. The present formulation is well suited to matrix implementation for large-scale linear stability and sensitivity analysis and is also shown to be extensible to nonlinear time-domain simulation through the application of a special form of Lagrange s equations in quasi-coordinates. The model is validated through frequency-domain response comparison with a high-fidelity planar implementation.

  15. Nonlinear modeling of a long flexible manipulator and control by inertial devices

    NASA Technical Reports Server (NTRS)

    Barbieri, Enrique; Kenny, Sean P.; Montgomery, Raymond C.

    1992-01-01

    The authors consider the modeling and control of a planar, long flexible manipulator that is representative of current space-based robotic arms. The arm is equipped with three actuators: 1) a shoulder motor; 2) a torque wheel at the tip; and 3) a proof-mass actuator at the tip. The goal is to investigate the potential use of inertial devices as control inputs for maneuvering tasks and vibration suppression. The parameters used for the inertial devices at the tip are comparable to those specified for the Mini-Mast facility at the Langley Research Center. A nonlinear distributed parameter model is obtained by the extended Hamilton principle. The associated eigenvalue/eigenfunction problem is solved and a finite-dimensional state space model is assembled. A preliminary design of a linear quadratic regulator is used, and computer simulation results illustrate the benefits of using the proposed actuators.

  16. A model of a flexible anguilliform swimmer driven by a central pattern generator with proprioceptive feedback

    NASA Astrophysics Data System (ADS)

    Hamlet, Christina; Tytell, Eric; Hoffman, Kathleen; Fauci, Lisa

    2015-11-01

    The swimming of a simple vertebrate, the lamprey, can shed light on how a flexible body can couple with a fluid environment to swim rapidly and efficiently. Animals use proprioceptive sensory information to sense how their bodies are bending, and then adjust the neural signals to their muscles to improve performance. We will present recent progress in the development of a computational model of a lamprey swimming in a Navier-Stokes fluid where a simple central pattern generator model, based on phase oscillators, is coupled to the evolving body dynamics of the swimmer through curvature and curvature derivative feedback. Such feedback can be positive (frequency decreasing), negative (frequency increasing), or mixed (positive to one side of the body and negative to the other, or vice versa). We will examine how the emergent swimming behavior and cost of transport depends upon these functional forms of proprioceptive feedback chosen in the model.

  17. A Flexible Hierarchical Bayesian Modeling Technique for Risk Analysis of Major Accidents.

    PubMed

    Yu, Hongyang; Khan, Faisal; Veitch, Brian

    2017-02-28

    Safety analysis of rare events with potentially catastrophic consequences is challenged by data scarcity and uncertainty. Traditional causation-based approaches, such as fault tree and event tree (used to model rare event), suffer from a number of weaknesses. These include the static structure of the event causation, lack of event occurrence data, and need for reliable prior information. In this study, a new hierarchical Bayesian modeling based technique is proposed to overcome these drawbacks. The proposed technique can be used as a flexible technique for risk analysis of major accidents. It enables both forward and backward analysis in quantitative reasoning and the treatment of interdependence among the model parameters. Source-to-source variability in data sources is also taken into account through a robust probabilistic safety analysis. The applicability of the proposed technique has been demonstrated through a case study in marine and offshore industry.

  18. Flexible Modeling of Survival Data with Covariates Subject to Detection Limits via Multiple Imputation.

    PubMed

    Bernhardt, Paul W; Wang, Huixia Judy; Zhang, Daowen

    2014-01-01

    Models for survival data generally assume that covariates are fully observed. However, in medical studies it is not uncommon for biomarkers to be censored at known detection limits. A computationally-efficient multiple imputation procedure for modeling survival data with covariates subject to detection limits is proposed. This procedure is developed in the context of an accelerated failure time model with a flexible seminonparametric error distribution. The consistency and asymptotic normality of the multiple imputation estimator are established and a consistent variance estimator is provided. An iterative version of the proposed multiple imputation algorithm that approximates the EM algorithm for maximum likelihood is also suggested. Simulation studies demonstrate that the proposed multiple imputation methods work well while alternative methods lead to estimates that are either biased or more variable. The proposed methods are applied to analyze the dataset from a recently-conducted GenIMS study.

  19. Flexible models for analysing ring recovery data to estimate survival rates

    USGS Publications Warehouse

    Conroy, M.J.; Hines, J.E.

    1990-01-01

    We describe MULT, a flexible procedure for analysing ring recovery data. The procedure starts with parametric structures similar to, but more general than, those described by Brownie et al. (1985). Particular models, including those in Brownie et al. (1965), can be obtained by imposing constraints on the general parametric structures. Examples of models that are available in MULT include: analysis of ringing data when no birds are ringed in some years; analysis of twice-yearly ringing to estimate interval survivorship; and analysis of ringing data when survivorship is hypothesised to be a function of a covariate measured annually. We use North American ringings of Atlantic Brant (Branta bernicla hrota), Mallard (Anas platyrhynchos), and Ring-necked Ducks (Aythya collaris) to illustrate the above models. MULT is a menu-driven, IBM-PC compatible program, and is available from the second author.

  20. Regulatory network reconstruction using an integral additive model with flexible kernel functions

    PubMed Central

    Novikov, Eugene; Barillot, Emmanuel

    2008-01-01

    Background Reconstruction of regulatory networks is one of the most challenging tasks of systems biology. A limited amount of experimental data and little prior knowledge make the problem difficult to solve. Although models that are currently used for inferring regulatory networks are sometimes able to make useful predictions about the structures and mechanisms of molecular interactions, there is still a strong demand to develop increasingly universal and accurate approaches for network reconstruction. Results The additive regulation model is represented by a set of differential equations and is frequently used for network inference from time series data. Here we generalize this model by converting differential equations into integral equations with adjustable kernel functions. These kernel functions can be selected based on prior knowledge or defined through iterative improvement in data analysis. This makes the integral model very flexible and thus capable of covering a broad range of biological systems more adequately and specifically than previous models. Conclusion We reconstructed network structures from artificial and real experimental data using differential and integral inference models. The artificial data were simulated using mathematical models implemented in JDesigner. The real data were publicly available yeast cell cycle microarray time series. The integral model outperformed the differential one for all cases. In the integral model, we tested the zero-degree polynomial and single exponential kernels. Further improvements could be expected if the kernel were selected more specifically depending on the system. PMID:18218091

  1. RCHILD - an R-package for flexible use of the landscape evolution model CHILD

    NASA Astrophysics Data System (ADS)

    Dietze, Michael

    2014-05-01

    Landscape evolution models provide powerful approaches to numerically assess earth surface processes, to quantify rates of landscape change, infer sediment transfer rates, estimate sediment budgets, investigate the consequences of changes in external drivers on a geomorphic system, to provide spatio-temporal interpolations between known landscape states or to test conceptual hypotheses. CHILD (Channel-Hillslope Integrated Landscape Development Model) is one of the most-used models of landscape change in the context of at least tectonic and geomorphologic process interactions. Running CHILD from command line and working with the model output can be a rather awkward task (static model control via text input file, only numeric output in text files). The package RCHILD is a collection of functions for the free statistical software R that help using CHILD in a flexible, dynamic and user-friendly way. The comprised functions allow creating maps, real-time scenes, animations and further thematic plots from model output. The model input files can be modified dynamically and, hence, (feedback-related) changes in external factors can be implemented iteratively. Output files can be written to common formats that can be readily imported to standard GIS software. This contribution presents the basic functionality of the model CHILD as visualised and modified by the package. A rough overview of the available functions is given. Application examples help to illustrate the great potential of numeric modelling of geomorphologic processes.

  2. Flexible models for spike count data with both over- and under- dispersion.

    PubMed

    Stevenson, Ian H

    2016-08-01

    A key observation in systems neuroscience is that neural responses vary, even in controlled settings where stimuli are held constant. Many statistical models assume that trial-to-trial spike count variability is Poisson, but there is considerable evidence that neurons can be substantially more or less variable than Poisson depending on the stimuli, attentional state, and brain area. Here we examine a set of spike count models based on the Conway-Maxwell-Poisson (COM-Poisson) distribution that can flexibly account for both over- and under-dispersion in spike count data. We illustrate applications of this noise model for Bayesian estimation of tuning curves and peri-stimulus time histograms. We find that COM-Poisson models with group/observation-level dispersion, where spike count variability is a function of time or stimulus, produce more accurate descriptions of spike counts compared to Poisson models as well as negative-binomial models often used as alternatives. Since dispersion is one determinant of parameter standard errors, COM-Poisson models are also likely to yield more accurate model comparison. More generally, these methods provide a useful, model-based framework for inferring both the mean and variability of neural responses.

  3. Economic evaluation in chronic pain: a systematic review and de novo flexible economic model.

    PubMed

    Sullivan, W; Hirst, M; Beard, S; Gladwell, D; Fagnani, F; López Bastida, J; Phillips, C; Dunlop, W C N

    2016-07-01

    There is unmet need in patients suffering from chronic pain, yet innovation may be impeded by the difficulty of justifying economic value in a field beset by data limitations and methodological variability. A systematic review was conducted to identify and summarise the key areas of variability and limitations in modelling approaches in the economic evaluation of treatments for chronic pain. The results of the literature review were then used to support the development of a fully flexible open-source economic model structure, designed to test structural and data assumptions and act as a reference for future modelling practice. The key model design themes identified from the systematic review included: time horizon; titration and stabilisation; number of treatment lines; choice/ordering of treatment; and the impact of parameter uncertainty (given reliance on expert opinion). Exploratory analyses using the model to compare a hypothetical novel therapy versus morphine as first-line treatments showed cost-effectiveness results to be sensitive to structural and data assumptions. Assumptions about the treatment pathway and choice of time horizon were key model drivers. Our results suggest structural model design and data assumptions may have driven previous cost-effectiveness results and ultimately decisions based on economic value. We therefore conclude that it is vital that future economic models in chronic pain are designed to be fully transparent and hope our open-source code is useful in order to aspire to a common approach to modelling pain that includes robust sensitivity analyses to test structural and parameter uncertainty.

  4. A mathematical model of the human metabolic system and metabolic flexibility.

    PubMed

    Pearson, T; Wattis, J A D; King, J R; MacDonald, I A; Mazzatti, D J

    2014-09-01

    In healthy subjects some tissues in the human body display metabolic flexibility, by this we mean the ability for the tissue to switch its fuel source between predominantly carbohydrates in the postprandial state and predominantly fats in the fasted state. Many of the pathways involved with human metabolism are controlled by insulin and insulin-resistant states such as obesity and type-2 diabetes are characterised by a loss or impairment of metabolic flexibility. In this paper we derive a system of 12 first-order coupled differential equations that describe the transport between and storage in different tissues of the human body. We find steady state solutions to these equations and use these results to nondimensionalise the model. We then solve the model numerically to simulate a healthy balanced meal and a high fat meal and we discuss and compare these results. Our numerical results show good agreement with experimental data where we have data available to us and the results show behaviour that agrees with intuition where we currently have no data with which to compare.

  5. Hydrogel core flexible matrix composite (H-FMC) actuators: theory and preliminary modelling

    NASA Astrophysics Data System (ADS)

    Dicker, M. P. M.; Weaver, P. M.; Rossiter, J. M.; Bond, I. P.

    2014-09-01

    The underlying theory of a new actuator concept based on hydrogel core flexible matrix composites (H-FMC) is presented. The key principle that underlines the H-FMC actuator operation is that the three-dimensional swelling of a hydrogel is partially constrained in order to improve the amount of useful work done. The partial constraint is applied to the hydrogel by a flexible matrix composite (FMC) that minimizes the hydrogel's volume expansion while swelling. This constraint serves to maximize the fixed charge density and resulting osmotic pressure, the driving force behind actuation. In addition, for certain FMC fibre orientations the Poisson's ratio of the anisotropic FMC laminate converts previously unused hydrogel swelling in the radial and circumferential directions into useful axial strains. The potential benefit of the H-FMC concept to hydrogel actuator performance is shown through comparison of force-stroke curves and evaluation of improvements in useful actuation work. The model used to achieve this couples chemical and electrical components, represented with the Nernst-Plank and Poisson equations, as well as a linear elastic mechanical material model, encompassing limited geometric nonlinearities. It is found that improvements in useful actuation work in the order of 1500% over bare hydrogel performance are achieved by the H-FMC concept. A parametric study is also undertaken to determine the effect of various FMC design parameters on actuator free strain and blocking stress. A comparison to other actuator concepts is also included.

  6. CSI compensation for reduced-order model based control of a flexible robot manipulator

    NASA Technical Reports Server (NTRS)

    Reisenauer, Brian T.; Balas, Mark J.

    1989-01-01

    In controller design for flexible structures, certain system modes are extremely important for the overall performance of the structure. A reduced-order model (ROM) based control focuses on these modes, providing a viable, active control algorithm for large systems. Unfortunately, unmodeled structure dynamics can interact with the ROM controller (CSI) and cause crippling deterioration of system performance, possibly to the point that system stability is lost. A residual model filter (RMF) eliminates one channel of control structure interaction (CSI), while adding only a simple, second-order filter to the control loop. Thus, the ROM controller can be designed independently, based strictly on performance criteria, and residual mode filters can then be selected to compensate for CSI. A flexible robot manipulator is used for preliminary experimentation with the ROM/RMF design methodology. Since the controller was to be implemented both with, and without compensation for CSI, the ROM control gains are carefully chosen such that closed loop stability is never compromised. In this way, RMF effectiveness is easily evaluated in terms of the improvement in system performance resulting from CSI compensation.

  7. Cognitive flexibility impairment and reduced frontal cortex BDNF expression in the ouabain model of mania.

    PubMed

    Amodeo, Dionisio A; Grospe, Gena; Zang, Hui; Dwivedi, Yogesh; Ragozzino, Michael E

    2017-03-14

    Central infusion of the Na+/K+-ATPase inhibitor, ouabain in rats serves as an animal model of mania because it leads to hyperactivity, as well as reproduces ion dysregulation and reduced brain-derived neurotrophic factor (BDNF) levels similar to that observed in bipolar disorder. Bipolar disorder is also associated with cognitive inflexibility and working memory deficits. It is unknown whether ouabain treatment in rats leads to similar cognitive flexibility and working memory deficits. The present study examined the effects of an intracerebral ventricular infusion of ouabain in rats on spontaneous alternation, probabilistic reversal learning and BDNF expression levels in the frontal cortex. Ouabain treatment significantly increased locomotor activity, but did not affect alternation performance in a Y-maze. Ouabain treatment selectively impaired reversal learning in a spatial discrimination task using an 80/20 probabilistic reinforcement procedure. The reversal learning deficit in ouabain-treated rats resulted from an impaired ability to maintain a new choice pattern (increased regressive errors). Ouabain treatment also decreased sensitivity to negative feedback during the initial phase of reversal learning. Expression of BDNF mRNA and protein levels was downregulated in the frontal cortex which also negatively correlated with regressive errors. These findings suggest that the ouabain model of mania may be useful in understanding the neuropathophysiology that contributes to cognitive flexibility deficits and test potential treatments to alleviate cognitive deficits in bipolar disorder.

  8. Static Aeroelastic and Longitudinal Trim Model of Flexible Wing Aircraft Using Finite-Element Vortex-Lattice Coupled Solution

    NASA Technical Reports Server (NTRS)

    Ting, Eric; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.

  9. Finite element analysis of flexible, rotating blades

    NASA Technical Reports Server (NTRS)

    Mcgee, Oliver G.

    1987-01-01

    A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.

  10. Implementations of a Flexible Framework for Managing Geologic Sequestration Modeling Projects

    SciTech Connect

    White, Signe K.; Gosink, Luke J.; Sivaramakrishnan, Chandrika; Black, Gary D.; Purohit, Sumit; Bacon, Diana H.; Hou, Zhangshuan; Lin, Guang; Gorton, Ian; Bonneville, Alain

    2013-08-06

    Numerical simulation is a standard practice used to support designing, operating, and monitoring CO2 injection projects. Although a variety of computational tools have been developed that support the numerical simulation process, many are single-purpose or platform specific and have a prescribed workflow that may or may not be suitable for a particular project. We are developing an open-source, flexible framework named Velo that provides a knowledge management infrastructure and tools to support modeling and simulation for various types of projects in a number of scientific domains. The Geologic Sequestration Software Suite (GS3) is a version of this framework with features and tools specifically tailored for geologic sequestration studies. Because of its general nature, GS3 is being employed in a variety of ways on projects with differing goals. GS3 is being used to support the Sim-SEQ international model comparison study, by providing a collaborative framework for the modeling teams and providing tools for model comparison. Another customized deployment of GS3 has been made to support the permit application process. In this case, GS3 is being used to manage data in support of conceptual model development and provide documentation and provenance for numerical simulations. An additional customized deployment of GS3 is being created for use by the United States Environmental Protection Agency (US-EPA) to aid in the CO2 injection permit application review process in one of its regions. These use cases demonstrate GS3’s flexibility, utility, and broad applicability

  11. Flexible climate modeling systems: Lessons from Snowball Earth, Titan and Mars

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R. T.

    2007-12-01

    Climate models are only useful to the extent that real understanding can be extracted from them. Most leading- edge problems in climate change, paleoclimate and planetary climate require a high degree of flexibility in terms of incorporating model physics -- for example in allowing methane or CO2 to be a condensible substance instead of water vapor. This puts a premium on model design that allows easy modification, and on physical parameterizations that are close to fundamentals with as little empirical ad-hoc formulation as possible. I will provide examples from two approaches to this problem we have been using at the University of Chicago. The first is the FOAM general circulation model, which is a clean single-executable Fortran-77/c code supported by auxiliary applications in Python and Java. The second is a new approach based on using Python as a shell for assembling building blocks in compiled-code into full models. Applications to Snowball Earth, Titan and Mars, as well as pedagogical uses, will be discussed. One painful lesson we have learned is that Fortran-95 is a major impediment to portability and cross-language interoperability; in this light the trend toward Fortran-95 in major modelling groups is seen as a significant step backwards. In this talk, I will focus on modeling projects employing a full representation of atmospheric fluid dynamics, rather than "intermediate complexity" models in which the associated transports are parameterized.

  12. Flutter of High-Speed Civil Transport Flexible Semispan Model: Time-Frequency Analysis

    NASA Technical Reports Server (NTRS)

    Chabalko, Christopher C.; Hajj, Muhammad R.; Silva, Walter A.

    2006-01-01

    Time/frequency analysis of fluctuations measured by pressure taps and strain gauges in the experimental studies of the flexible semispan model of a high-speed civil transport wing configuration is performed. The interest is in determining the coupling between the aerodynamic loads and structural motions that led to the hard flutter conditions and loss of the model. The results show that, away from the hard flutter point, the aerodynamic loads at all pressure taps near the wing tip and the structural motions contained the same frequency components. On the other hand, in the flow conditions leading to the hard flutter, the frequency content of the pressure fluctuations near the leading and trailing edges varied significantly. This led to contribution to the structural motions over two frequency ranges. The ratio of these ranges was near 2:1, which suggests the possibility of nonlinear structural coupling.

  13. Modelling of bolted connection with flexible yokes used in mining industry

    NASA Astrophysics Data System (ADS)

    Maršálek, Pavel; Horyl, Petr

    2017-07-01

    This paper deals with the computer modelling of tightening of the bolted connection. The analysed bolted connection consisting of the M24 metric thread is used for clamping the flexible yokes that fix the steel segments of the mine yielding support. In mining practise, it is necessary to cause the prescribed pretension in the bolted connection. One of the methods to precisely determine dependency of tightening moment on the pretension in the bolt is the finite element method. The models of the bolt and the nut were created and assembled according to drawings without shape simplification. This work was created on the basis of practical requirements from mining industry and the obtained results will be reflected in the optimization of the bolted connection.

  14. Modeling and control of flow-induced vibrations of a flexible hydrofoil in viscous flow

    NASA Astrophysics Data System (ADS)

    Caverly, Ryan James; Li, Chenyang; Chae, Eun Jung; Forbes, James Richard; Young, Yin Lu

    2016-06-01

    In this paper, a reduced-order model (ROM) of the flow-induced vibrations of a flexible cantilevered hydrofoil is developed and used to design an active feedback controller. The ROM is developed using data from high-fidelity viscous fluid-structure interaction (FSI) simulations and includes nonlinear terms to accurately capture the effect of lock-in. An active linear quadratic Gaussian (LQG) controller is designed based on a linearization of the ROM and is implemented in simulation with the ROM and the high-fidelity viscous FSI model. A controller saturation method is also presented that ensures that the control force applied to the system remains within a prescribed range. Simulation results demonstrate that the LQG controller successfully suppresses vibrations in both the ROM and viscous FSI simulations using a reasonable amount of control force.

  15. Flutter of High-Speed Civil Transport Flexible Semispan Model: Time-Frequency Analysis

    NASA Technical Reports Server (NTRS)

    Chabalko, Christopher C.; Hajj, Muhammad R.; Silva, Walter A.

    2006-01-01

    Time/frequency analysis of fluctuations measured by pressure taps and strain gauges in the experimental studies of the flexible semispan model of a high-speed civil transport wing configuration is performed. The interest is in determining the coupling between the aerodynamic loads and structural motions that led to the hard flutter conditions and loss of the model. The results show that, away from the hard flutter point, the aerodynamic loads at all pressure taps near the wing tip and the structural motions contained the same frequency components. On the other hand, in the flow conditions leading to the hard flutter, the frequency content of the pressure fluctuations near the leading and trailing edges varied significantly. This led to contribution to the structural motions over two frequency ranges. The ratio of these ranges was near 2:1, which suggests the possibility of nonlinear structural coupling.

  16. A flexible model for the mean and variance functions, with application to medical cost data.

    PubMed

    Chen, Jinsong; Liu, Lei; Zhang, Daowen; Shih, Ya-Chen T

    2013-10-30

    Medical cost data are often skewed to the right and heteroscedastic, having a nonlinear relation with covariates. To tackle these issues, we consider an extension to generalized linear models by assuming nonlinear associations of covariates in the mean function and allowing the variance to be an unknown but smooth function of the mean. We make no further assumption on the distributional form. The unknown functions are described by penalized splines, and the estimation is carried out using nonparametric quasi-likelihood. Simulation studies show the flexibility and advantages of our approach. We apply the model to the annual medical costs of heart failure patients in the clinical data repository at the University of Virginia Hospital System.

  17. A distributed finite-element modeling and control approach for large flexible structures

    NASA Technical Reports Server (NTRS)

    Young, K. D.

    1989-01-01

    An unconventional framework is described for the design of decentralized controllers for large flexible structures. In contrast to conventional control system design practice which begins with a model of the open loop plant, the controlled plant is assembled from controlled components in which the modeling phase and the control design phase are integrated at the component level. The developed framework is called controlled component synthesis (CCS) to reflect that it is motivated by the well developed Component Mode Synthesis (CMS) methods which were demonstrated to be effective for solving large complex structural analysis problems for almost three decades. The design philosophy behind CCS is also closely related to that of the subsystem decomposition approach in decentralized control.

  18. Methodology for modeling the mechanical interaction between a reaction wheel and a flexible structure

    NASA Astrophysics Data System (ADS)

    Elias, Laila M.; Dekens, Frank G.; Basdogan, Ipek; Sievers, Lisa A.; Neville, Timothy

    2003-02-01

    This paper presents a modeling methodology used to predict the performance of a flexible structure, such as a space telescope, in the presence of an on-board vibrational disturbance source, such as a reaction wheel assembly (RWA). Both decoupled and coupled analysis methods are presented. The decoupled method relies on blocked RWA disturbances, measured with the RWA hardmounted to a rigid surface. The coupled method corrects the blocked RWA disturbance boundary conditions using 'force filters' which depend on estimates of the interface accelerances of the RWA and spacecraft. Both methods were validated on the Micro-Precision Interferometer testbed at the Jet Propulsion Laboratory. Experimental results are encouraging, indicating that both methods provide sufficient accuracy compared to measured values; however, the coupled method provides the best results when the gyroscopic nature of the spinning RWA is captured in the RWA accelerance model. Additionally, the RWA disturbance cross spectral density terms are found to be influential.

  19. Rigid-flexible coupling dynamic modeling and investigation of a redundantly actuated parallel manipulator with multiple actuation modes

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Song, Yimin; Sun, Tao; Jin, Xueying

    2017-09-01

    A systematic dynamic modeling methodology is presented to develop the rigid-flexible coupling dynamic model (RFDM) of an emerging flexible parallel manipulator with multiple actuation modes. By virtue of assumed mode method, the general dynamic model of an arbitrary flexible body with any number of lumped parameters is derived in an explicit closed form, which possesses the modular characteristic. Then the completely dynamic model of system is formulated based on the flexible multi-body dynamics (FMD) theory and the augmented Lagrangian multipliers method. An approach of combining the Udwadia-Kalaba formulation with the hybrid TR-BDF2 numerical algorithm is proposed to address the nonlinear RFDM. Two simulation cases are performed to investigate the dynamic performance of the manipulator with different actuation modes. The results indicate that the redundant actuation modes can effectively attenuate vibration and guarantee higher dynamic performance compared to the traditional non-redundant actuation modes. Finally, a virtual prototype model is developed to demonstrate the validity of the presented RFDM. The systematic methodology proposed in this study can be conveniently extended for the dynamic modeling and controller design of other planar flexible parallel manipulators, especially the emerging ones with multiple actuation modes.

  20. Programming of a flexible computer simulation to visualize pharmacokinetic-pharmacodynamic models.

    PubMed

    Lötsch, J; Kobal, G; Geisslinger, G

    2004-01-01

    Teaching pharmacokinetic-pharmacodynamic (PK/PD) models can be made more effective using computer simulations. We propose the programming of educational PK or PK/PD computer simulations as an alternative to the use of pre-built simulation software. This approach has the advantage of adaptability to non-standard or complicated PK or PK/PD models. Simplicity of the programming procedure was achieved by selecting the LabVIEW programming environment. An intuitive user interface to visualize the time courses of drug concentrations or effects can be obtained with pre-built elements. The environment uses a wiring analogy that resembles electrical circuit diagrams rather than abstract programming code. The goal of high interactivity of the simulation was attained by allowing the program to run in continuously repeating loops. This makes the program behave flexibly to the user input. The programming is described with the aid of a 2-compartment PK simulation. Examples of more sophisticated simulation programs are also given where the PK/PD simulation shows drug input, concentrations in plasma, and at effect site and the effects themselves as a function of time. A multi-compartmental model of morphine, including metabolite kinetics and effects is also included. The programs are available for download from the World Wide Web at http:// www. klinik.uni-frankfurt.de/zpharm/klin/ PKPDsimulation/content.html. For pharmacokineticists who only program occasionally, there is the possibility of building the computer simulation, together with the flexible interactive simulation algorithm for clinical pharmacological teaching in the field of PK/PD models.

  1. A single flexible tube in a rigid array as a model for fluidelastic instability in tube bundles

    NASA Astrophysics Data System (ADS)

    Khalifa, Ahmed; Weaver, David; Ziada, Samir

    2012-10-01

    Fluidelastic instability is considered the most critical flow induced vibration mechanism in tube and shell heat exchangers, and as such has received the most attention. The present study examines the concept of using a single flexible tube in a rigid array for predicting fluidelastic instability. The experimental work published in the open literature involving the use of a single flexible tube in a rigid array is critically reviewed. Based on this, an experiment is designed to facilitate precise control of the system parameters and to study tube response at different locations in the array. Experiments were conducted using a fully flexible array as well as a single flexible tube in the same rigid array. It is found that a single flexible tube located in the third row of a rigid parallel triangular array becomes fluidelastically unstable at essentially the same threshold as for the fully flexible array. However, when the single flexible tube is located in the first, second, fourth, or fifth rows, no instability behavior is detected. Thus, tube location inside the array significantly affects its fluidelastic stability behavior when tested as a single flexible tube in a rigid array. It is concluded that, in general, fluidelastic instability in tube arrays is caused by a combination of the damping and stiffness mechanisms. In certain cases, a single flexible tube in a rigid array will become fluidelastically unstable and provide a useful model for fundamental research and developing physical insights. However, it must be cautioned that this behavior is a special case and not generally useful for determining the stability limit of tube arrays.

  2. Flexible parametric modelling of the cause-specific cumulative incidence function.

    PubMed

    Lambert, Paul C; Wilkes, Sally R; Crowther, Michael J

    2017-04-30

    Competing risks arise with time-to-event data when individuals are at risk of more than one type of event and the occurrence of one event precludes the occurrence of all other events. A useful measure with competing risks is the cause-specific cumulative incidence function (CIF), which gives the probability of experiencing a particular event as a function of follow-up time, accounting for the fact that some individuals may have a competing event. When modelling the cause-specific CIF, the most common model is a semi-parametric proportional subhazards model. In this paper, we propose the use of flexible parametric survival models to directly model the cause-specific CIF where the effect of follow-up time is modelled using restricted cubic splines. The models provide smooth estimates of the cause-specific CIF with the important advantage that the approach is easily extended to model time-dependent effects. The models can be fitted using standard survival analysis tools by a combination of data expansion and introducing time-dependent weights. Various link functions are available that allow modelling on different scales and have proportional subhazards, proportional odds and relative absolute risks as particular cases. We conduct a simulation study to evaluate how well the spline functions approximate subhazard functions with complex shapes. The methods are illustrated using data from the European Blood and Marrow Transplantation Registry showing excellent agreement between parametric estimates of the cause-specific CIF and those obtained from a semi-parametric model. We also fit models relaxing the proportional subhazards assumption using alternative link functions and/or including time-dependent effects. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Flexibility Support for Homecare Applications Based on Models and Multi-Agent Technology

    PubMed Central

    Armentia, Aintzane; Gangoiti, Unai; Priego, Rafael; Estévez, Elisabet; Marcos, Marga

    2015-01-01

    In developed countries, public health systems are under pressure due to the increasing percentage of population over 65. In this context, homecare based on ambient intelligence technology seems to be a suitable solution to allow elderly people to continue to enjoy the comforts of home and help optimize medical resources. Thus, current technological developments make it possible to build complex homecare applications that demand, among others, flexibility mechanisms for being able to evolve as context does (adaptability), as well as avoiding service disruptions in the case of node failure (availability). The solution proposed in this paper copes with these flexibility requirements through the whole life-cycle of the target applications: from design phase to runtime. The proposed domain modeling approach allows medical staff to design customized applications, taking into account the adaptability needs. It also guides software developers during system implementation. The application execution is managed by a multi-agent based middleware, making it possible to meet adaptation requirements, assuring at the same time the availability of the system even for stateful applications. PMID:26694416

  4. Role of passive deformation on propulsion through a lumped torsional flexibility model

    NASA Astrophysics Data System (ADS)

    Arora, Nipun; Gupta, Amit

    2016-11-01

    Scientists and biologists have been affianced in a deeper examination of insect flight to develop an improved understanding of the role of flexibility on aerodynamic performance. Here, we mimic a flapping wing through a fluid-structure interaction framework based upon a lumped torsional flexibility model. The developed fluid and structural solvers together determine the aerodynamic forces and wing deformation, respectively. An analytical solution to the simplified single-spring structural dynamics equation is established to substantiate simulations. It is revealed that the dynamics of structural deformation is governed by the balance between inertia, stiffness and aerodynamics, where the former two oscillate at the plunging frequency and the latter oscillates at twice the plunging frequency. We demonstrate that an induced phase difference between plunging and passive pitching is responsible for a higher thrust coefficient. This phase difference is also shown to be dependent on aerodynamics to inertia and natural to plunging frequency ratios. For inertia dominated flows, pitching and plunging always remain in phase. As the aerodynamics dominates, a large phase difference is induced which is accountable for a large passive deformation and higher thrust. Authors acknowledge the financial support received from the Aeronautics Research and Development Board (ARDB) under SIGMA Project No. 1705 and thank the IIT Delhi HPC facility for computational resources.

  5. Fractional derivative and hereditary combined model for memory effects on flexible polyurethane foam

    NASA Astrophysics Data System (ADS)

    Elfarhani, Makram; Jarraya, Abdessalem; Abid, Said; Haddar, Mohamed

    2016-06-01

    In a quasi-static regime with cyclic loading, the force-displacement curve of flexible polyurethane exhibits complicated behavior: nonlinearity, visco-elasticity, hysteresis, residual force, etc. Beside nonlinearity and visco-elasticity, this material displays high dependence on the displacement rate and past loading history. Its dependence on compression rate helps to appropriately identify the force-displacement curve. Based on the new curve identification, the overall foam response is assumed to be a composite of a nonlinear elastic component and a visco-elastic component. The elastic component is expressed as a polynomial function in displacement, while the visco-elastic one is formulated according to the hereditary approach to represent the foam visco-elastic damping force during the loading phase and according to the fractional derivative approach during unloading to represent the visco-elastic residual force in the material. The focus of this study was to develop mathematical formulations and identification parameters to faithfully characterize the visco-elastic behavior of flexible polyurethane foam under multi-cycle compressive tests. A parameter calibration methodology based on the separation of the measurement data of each component force was established. This optimization process helps to avoid the parameter values admixture problem during the phase of numeric calculations of the same component force. The validity of the model results is checked according to the simulation accuracy, the physical significance of results and their agreement with the obtained force-displacement curve identification.

  6. Flexibility Support for Homecare Applications Based on Models and Multi-Agent Technology.

    PubMed

    Armentia, Aintzane; Gangoiti, Unai; Priego, Rafael; Estévez, Elisabet; Marcos, Marga

    2015-12-17

    In developed countries, public health systems are under pressure due to the increasing percentage of population over 65. In this context, homecare based on ambient intelligence technology seems to be a suitable solution to allow elderly people to continue to enjoy the comforts of home and help optimize medical resources. Thus, current technological developments make it possible to build complex homecare applications that demand, among others, flexibility mechanisms for being able to evolve as context does (adaptability), as well as avoiding service disruptions in the case of node failure (availability). The solution proposed in this paper copes with these flexibility requirements through the whole life-cycle of the target applications: from design phase to runtime. The proposed domain modeling approach allows medical staff to design customized applications, taking into account the adaptability needs. It also guides software developers during system implementation. The application execution is managed by a multi-agent based middleware, making it possible to meet adaptation requirements, assuring at the same time the availability of the system even for stateful applications.

  7. Solving the flexible job shop problem by hybrid metaheuristics-based multiagent model

    NASA Astrophysics Data System (ADS)

    Nouri, Houssem Eddine; Belkahla Driss, Olfa; Ghédira, Khaled

    2017-05-01

    The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based clustered holonic multiagent model. First, a neighborhood-based genetic algorithm (NGA) is applied by a scheduler agent for a global exploration of the search space. Second, a local search technique is used by a set of cluster agents to guide the research in promising regions of the search space and to improve the quality of the NGA final population. The efficiency of our approach is explained by the flexible selection of the promising parts of the search space by the clustering operator after the genetic algorithm process, and by applying the intensification technique of the tabu search allowing to restart the search from a set of elite solutions to attain new dominant scheduling solutions. Computational results are presented using four sets of well-known benchmark literature instances. New upper bounds are found, showing the effectiveness of the presented approach.

  8. Cognitive Niches: An Ecological Model of Strategy Selection

    ERIC Educational Resources Information Center

    Marewski, Julian N.; Schooler, Lael J.

    2011-01-01

    How do people select among different strategies to accomplish a given task? Across disciplines, the strategy selection problem represents a major challenge. We propose a quantitative model that predicts how selection emerges through the interplay among strategies, cognitive capacities, and the environment. This interplay carves out for each…

  9. Partitioning of excess mortality in population-based cancer patient survival studies using flexible parametric survival models

    PubMed Central

    2012-01-01

    Background Relative survival is commonly used for studying survival of cancer patients as it captures both the direct and indirect contribution of a cancer diagnosis on mortality by comparing the observed survival of the patients to the expected survival in a comparable cancer-free population. However, existing methods do not allow estimation of the impact of isolated conditions (e.g., excess cardiovascular mortality) on the total excess mortality. For this purpose we extend flexible parametric survival models for relative survival, which use restricted cubic splines for the baseline cumulative excess hazard and for any time-dependent effects. Methods In the extended model we partition the excess mortality associated with a diagnosis of cancer through estimating a separate baseline excess hazard function for the outcomes under investigation. This is done by incorporating mutually exclusive background mortality rates, stratified by the underlying causes of death reported in the Swedish population, and by introducing cause of death as a time-dependent effect in the extended model. This approach thereby enables modeling of temporal trends in e.g., excess cardiovascular mortality and remaining cancer excess mortality simultaneously. Furthermore, we illustrate how the results from the proposed model can be used to derive crude probabilities of death due to the component parts, i.e., probabilities estimated in the presence of competing causes of death. Results The method is illustrated with examples where the total excess mortality experienced by patients diagnosed with breast cancer is partitioned into excess cardiovascular mortality and remaining cancer excess mortality. Conclusions The proposed method can be used to simultaneously study disease patterns and temporal trends for various causes of cancer-consequent deaths. Such information should be of interest for patients and clinicians as one way of improving prognosis after cancer is through adapting treatment

  10. Dyadic Affective Flexibility and Emotional Inertia in Relation to Youth Psychopathology: An Integrated Model at Two Timescales.

    PubMed

    Mancini, Kathryn J; Luebbe, Aaron M

    2016-06-01

    The current review examines characteristics of temporal affective functioning at both the individual and dyadic level. Specifically, the review examines the following three research questions: (1) How are dyadic affective flexibility and emotional inertia operationalized, and are they related to youth psychopathology? (2) How are dyadic affective flexibility and emotional inertia related, and does this relation occur at micro- and meso-timescales? and (3) How do these constructs combine to predict clinical outcomes? Using the Flex3 model of socioemotional flexibility as a frame, the current study proposes that dyadic affective flexibility and emotional inertia are bidirectionally related at micro- and meso-timescales, which yields psychopathological symptoms for youth. Specific future directions for examining individual, dyadic, and cultural characteristics that may influence relations between these constructs and psychopathology are also discussed.

  11. Two- and three-dimensional model and wall data from a flexible-walled transonic test section

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.; Cook, I. D.

    1984-01-01

    Both two- and three-dimensional model testing is being carried out in the transonic flexible-walled wind tunnel test section. The test section has flexible top and bottom walls with rigid sidewalls. Interference is eliminated by adjustments based on data taken at walls in two dimensional models. Cast-7 data will illustrate agreement between various flexible-walled tunnels. In three-dimensional models interference cannot be eliminated but wall adjustments can control and relieve the principal sources of wall-induced errors. Estimates of magnitudes of the control which may be exercised on flow by movement of one wall jack are presented. A wall control algorithm (still in analytic development stage) based on use of this data is described. Brief examples of control of wall-induced perturbations in region of model are given.

  12. Study of design and control of remote manipulators. Modeling manipulator arms with distributed flexibility for design and control

    NASA Technical Reports Server (NTRS)

    Book, W. J.

    1974-01-01

    The interactions of control system and distributed flexible structural dynamics is explored for mechanical arms. A modeling process using 4 x 4 transfer matrices is described which permits the closed loop response of many current arm configurations to be evaluated. Root locus, frequency response, modal shapes, and time impulse response have all been obtained from the digital computer implementation of this model, which is oriented to arm design and allows for easy variation of the arm configuration through data cards. The model corresponds with experimentally observed natural frequencies with an average error of less than 5% in the first three flexible modes in the seven cases considered. The model was used to explore the limits imposed by structural flexibility on a nondimensionalized two link arm with one and two joints for planar motion.

  13. An Overview of Latest Model Reduction and Control Methods of Large Flexible Space Structures

    NASA Technical Reports Server (NTRS)

    Santiago, J. M.; Lange, W. J., Jr.; Jamshidi, M.

    1985-01-01

    The latest trends and theoretical developments involved with the modeling and control of Large Flexible Space Structures (LFSS) are described. The paper addresses first the basic problems, characteristics, and difficulties inherent in modeling and control of LFSS. Major sources of difficulties and errors are the stiffness and damping operators of the dynamic model. Extensions of Linear Quadratic Gaussian (LQG) theory as applied to LFSS are presented, including frequency-shaped cost functionals and perturbation methods. The minimum data/maximum entropy approach which uses a stochastic design model to overcome difficulties found in the LQG-based methods is described. Latest trends in system theory including balanced realization and singular-value analysis are used to determine reduced order controllers and models. Ad hoc methods such as component cost analysis and modal cost analysis are discussed in context with the closed-loop reduction problem of controller order versus performance. The minimum data/maximum entropy approach also addresses controller order versus performance. Those areas of control science and large scale systems that appear to have an important role in understanding and solving LFSS modeling and control are also identified.

  14. Conductance Thin Film Model of Flexible Organic Thin Film Device using COMSOL Multiphysics

    NASA Astrophysics Data System (ADS)

    Carradero-Santiago, Carolyn; Vedrine-Pauléus, Josee

    We developed a virtual model to analyze the electrical conductivity of multilayered thin films placed above a graphene conducting and flexible polyethylene terephthalate (PET) substrate. The organic layers of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole conducting layer, poly(3-hexylthiophene-2,5-diyl) (P3HT), as a p-type, phenyl-C61-butyric acid methyl ester (PCBM) and as n-type, with aluminum as a top conductor. COMSOL Multiphysics was the software we used to develop the virtual model to analyze potential variations and conductivity through the thin-film layers. COMSOL Multiphysics software allows simulation and modeling of physical phenomena represented by differential equations such as heat transfer, fluid flow, electromagnetism, and structural mechanics. In this work, using the AC/DC, electric currents module we defined the geometry of the model and properties for each of the six layers: PET/graphene/PEDOT:PSS/P3HT/PCBM/aluminum. We analyzed the model with varying thicknesses of graphene and active layers (P3HT/PCBM). This simulation allowed us to analyze the electrical conductivity, and visualize the model with varying voltage potential, or bias across the plates, useful for applications in solar cell devices.

  15. Competing quantum effects in the dynamics of a flexible water model.

    PubMed

    Habershon, Scott; Markland, Thomas E; Manolopoulos, David E

    2009-07-14

    Numerous studies have identified large quantum mechanical effects in the dynamics of liquid water. In this paper, we suggest that these effects may have been overestimated due to the use of rigid water models and flexible models in which the intramolecular interactions were described using simple harmonic functions. To demonstrate this, we introduce a new simple point charge model for liquid water, q-TIP4P/F, in which the O-H stretches are described by Morse-type functions. We have parametrized this model to give the correct liquid structure, diffusion coefficient, and infrared absorption frequencies in quantum (path integral-based) simulations. The model also reproduces the experimental temperature variation of the liquid density and affords reasonable agreement with the experimental melting temperature of hexagonal ice at atmospheric pressure. By comparing classical and quantum simulations of the liquid, we find that quantum mechanical fluctuations increase the rates of translational diffusion and orientational relaxation in our model by a factor of around 1.15. This effect is much smaller than that observed in all previous simulations of empirical water models, which have found a quantum effect of at least 1.4 regardless of the quantum simulation method or the water model employed. The small quantum effect in our model is a result of two competing phenomena. Intermolecular zero point energy and tunneling effects destabilize the hydrogen-bonding network, leading to a less viscous liquid with a larger diffusion coefficient. However, this is offset by intramolecular zero point motion, which changes the average water monomer geometry resulting in a larger dipole moment, stronger intermolecular interactions, and a slower diffusion. We end by suggesting, on the basis of simulations of other potential energy models, that the small quantum effect we find in the diffusion coefficient is associated with the ability of our model to produce a single broad O-H stretching

  16. Soft tissue models: easy and inexpensive flexible 3D printing as a help in surgical planning of cardiovascular disorders

    NASA Astrophysics Data System (ADS)

    Starosolski, Zbigniew; Ezon, David S.; Krishnamurthy, Rajesh; Dodd, Nicholas; Heinle, Jeffrey; Mckenzie, Dean E.; Annapragada, Ananth

    2017-03-01

    We developed a technology that allows a simple desktop 3D printer with dual extruder to fabricate 3D flexible models of Major AortoPulmonary Collateral Arteries. The study was designed to assess whether the flexible 3D printed models could help during surgical planning phase. Simple FDM 3D printers are inexpensive, versatile in use and easy to maintain, but complications arise when the designed model is complex and has tubular structures with small diameter less than 2mm. The advantages of FDM printers are cost and simplicity of use. We use precisely selected materials to overcome the obstacles listed above. Dual extruder allows to use two different materials while printing, which is especially important in the case of fragile structures like pulmonary vessels and its supporting structures. The latter should not be removed by hand to avoid a truncation of the model. We utilize the water soluble PVA as a supporting structure and Poro-Lay filament for flexible model of AortoPulmonary collateral arteries. Poro-Lay filament is different as compared to all the other flexible ones like polymer-based. Poro-Lay is rigid while printing and this allows printing of structures small in diameter. It achieves flexibility after washing out of printed model with water. It becomes soft in touch and gelatinous. Using both PVA and Poro-Lay gives a huge advantage allowing to wash out the supporting structures and achieve flexibility in one washing operation, saving time and avoiding human error with cleaning the model. We evaluated 6 models for MAPCAS surgical planning study. This approach is also cost-effective - an average cost of materials for print is less than $15; models are printed in facility without any delays. Flexibility of 3D printed models approximate soft tissues properly, mimicking Aortopulmonary collateral arteries. Second utilization models has educational value for both residents and patients' family. Simplification of 3D flexible process could help in other models

  17. The value of flexibility in conservation financing.

    PubMed

    Lennox, Gareth D; Fargione, Joseph; Spector, Sacha; Williams, Gwyn; Armsworth, Paul R

    2017-06-01

    Land-acquisition strategies employed by conservation organizations vary in their flexibility. Conservation-planning theory largely fails to reflect this by presenting models that are either extremely inflexible-parcel acquisitions are irreversible and budgets are fixed-or extremely flexible-previously acquired parcels can readily be sold. This latter approach, the selling of protected areas, is infeasible or problematic in many situations. We considered the value to conservation organizations of increasing the flexibility of their land-acquisition strategies through their approach to financing deals. Specifically, we modeled 2 acquisition-financing methods commonly used by conservation organizations: borrowing and budget carry-over. Using simulated data, we compared results from these models with those from an inflexible fixed-budget model and an extremely flexible selling model in which previous acquisitions could be sold to fund new acquisitions. We then examined 3 case studies of how conservation organizations use borrowing and budget carry-over in practice. Model comparisons showed that borrowing and budget carry-over always returned considerably higher rewards than the fixed-budget model. How they performed relative to the selling model depended on the relative conservation value of past acquisitions. Both the models and case studies showed that incorporating flexibility through borrowing or budget carry-over gives conservation organizations the ability to purchase parcels of higher conservation value than when budgets are fixed without the problems associated with the selling of protected areas. © 2016 Society for Conservation Biology.

  18. Abrupt Strategy Change Underlies Gradual Performance Change: Bayesian Hierarchical Models of Component and Aggregate Strategy Use.

    PubMed

    Wynton, Sarah K A; Anglim, Jeromy

    2017-04-10

    While researchers have often sought to understand the learning curve in terms of multiple component processes, few studies have measured and mathematically modeled these processes on a complex task. In particular, there remains a need to reconcile how abrupt changes in strategy use can co-occur with gradual changes in task completion time. Thus, the current study aimed to assess the degree to which strategy change was abrupt or gradual, and whether strategy aggregation could partially explain gradual performance change. It also aimed to show how Bayesian methods could be used to model the effect of practice on strategy use. To achieve these aims, 162 participants completed 15 blocks of practice on a complex computer-based task-the Wynton-Anglim booking (WAB) task. The task allowed for multiple component strategies (i.e., memory retrieval, information reduction, and insight) that could also be aggregated to a global measure of strategy use. Bayesian hierarchical models were used to compare abrupt and gradual functions of component and aggregate strategy use. Task completion time was well-modeled by a power function, and global strategy use explained substantial variance in performance. Change in component strategy use tended to be abrupt, whereas change in global strategy use was gradual and well-modeled by a power function. Thus, differential timing of component strategy shifts leads to gradual changes in overall strategy efficiency, and this provides one reason for why smooth learning curves can co-occur with abrupt changes in strategy use. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Distance measurements in model Bis-Gd(III) complexes with flexible “bridge”. Emulation of biological molecules having flexible structure with Gd(III) labels attached

    PubMed Central

    Potapov, A.; Song, Y.; Meade, T. J.; Goldfarb, D.; Astashkin, A.V.; Raitsimring, A.

    2010-01-01

    In this work, we continue to explore Gd(III) as a possible spin label for high field Double Electron Electron Resonance (DEER) based distance measurements in biological molecules with flexible geometry. For this purpose, a bis-Gd(III) complex with a flexible “bridge” was used as a model. The distances in the model were expected to be distributed in the range of 5-26 Å, allowing us to probe the shortest limits of accessible distances which were found to be as small as 13 Å. The upper distance limit for these labels was also evaluated and was found to be about 60 Å. Various pulse duration setups can result in apparent differences in the distribution function derived from DEER kinetics due to short distance limit variations. The advantages, such as the ability to perform measurements at cryogenic temperatures and high repetition rates simultaneously, the use of very short pumping and observation pulses without mutual interference, the lack of orientational selectivity, as well as the shortcomings, such as the limited mw operational frequency range and intrinsically smaller amplitude of oscillation related to dipolar interaction as compared with nitroxide spin labels are discussed. Most probably the use of nitroxide and Gd based labels for distance measurements will be complementary depending on the particulars of the problem and the availability of instrumentation. PMID:20418132

  20. Flexible Learning in a Digital World.

    ERIC Educational Resources Information Center

    Collis, Betty; Moonen, Jef

    2002-01-01

    Defines flexible learning and describes components of flexible learning in higher education, including technology, pedagogy or instructional approach, implementation strategies, and institutional framework. Considers factors constraining learning flexibility; changing student characteristics; and the need for lifelong learning, particularly in the…

  1. A nerve model of greatly increased energy-efficiency and encoding flexibility over the Hodgkin-Huxley model.

    PubMed

    Fohlmeister, Jürgen F

    2009-11-03

    A mammalian "RGC model" (retinal ganglion cells) is distinguished from the Hodgkin-Huxley model by the virtual absence of K-current during, and the virtual absence of Na-current after, the regenerative (rising) phase of the action potential. Both Na- and K-currents remain negligible throughout the interspike interval, whose control is therefore relinquished to stimulus currents. These properties yield a highly flexible and energy-efficient nerve impulse encoder. For the Hodgkin-Huxley model, in contrast, only 15% of the Na-ions enter the axon regeneratively during the action potential (squid giant axon); a wasteful 85% enter during the falling phase. Further, early activation of K-current causes the Na- and K-currents of the action potential to dominate over stimulus currents in controlling the sub-threshold membrane potential (interspike interval). This property makes the Hodgkin-Huxley model an intractable high frequency oscillator, which cannot be converted to flexible impulse encoding. The temperature difference between the squid giant axon (6.3 degrees C) and RGCs (37 degrees C) is bridged by a Q10 analysis, which suggests that an additional molecular gating mechanism of high Q10 - which is not present in the squid - is active in RGCs.

  2. Modelling strategies for controlling SARS outbreaks.

    PubMed Central

    Gumel, Abba B.; Ruan, Shigui; Day, Troy; Watmough, James; Brauer, Fred; van den Driessche, P.; Gabrielson, Dave; Bowman, Chris; Alexander, Murray E.; Ardal, Sten; Wu, Jianhong; Sahai, Beni M.

    2004-01-01

    Severe acute respiratory syndrome (SARS), a new, highly contagious, viral disease, emerged in China late in 2002 and quickly spread to 32 countries and regions causing in excess of 774 deaths and 8098 infections worldwide. In the absence of a rapid diagnostic test, therapy or vaccine, isolation of individuals diagnosed with SARS and quarantine of individuals feared exposed to SARS virus were used to control the spread of infection. We examine mathematically the impact of isolation and quarantine on the control of SARS during the outbreaks in Toronto, Hong Kong, Singapore and Beijing using a deterministic model that closely mimics the data for cumulative infected cases and SARS-related deaths in the first three regions but not in Beijing until mid-April, when China started to report data more accurately. The results reveal that achieving a reduction in the contact rate between susceptible and diseased individuals by isolating the latter is a critically important strategy that can control SARS outbreaks with or without quarantine. An optimal isolation programme entails timely implementation under stringent hygienic precautions defined by a critical threshold value. Values below this threshold lead to control, but those above are associated with the incidence of new community outbreaks or nosocomial infections, a known cause for the spread of SARS in each region. Allocation of resources to implement optimal isolation is more effective than to implement sub-optimal isolation and quarantine together. A community-wide eradication of SARS is feasible if optimal isolation is combined with a highly effective screening programme at the points of entry. PMID:15539347

  3. Thinning strategies for aspen: a prediction model.

    Treesearch

    Donald A. Perala

    1978-01-01

    Derives thinning strategies to maximize volume yields of aspen fiber, sawtimber, and veneer. Demonstrates how yields are affected by growing season climatic variation and periodic defoliation by forest tent caterpillar.

  4. Expectation maximization-based likelihood inference for flexible cure rate models with Weibull lifetimes.

    PubMed

    Balakrishnan, Narayanaswamy; Pal, Suvra

    2016-08-01

    Recently, a flexible cure rate survival model has been developed by assuming the number of competing causes of the event of interest to follow the Conway-Maxwell-Poisson distribution. This model includes some of the well-known cure rate models discussed in the literature as special cases. Data obtained from cancer clinical trials are often right censored and expectation maximization algorithm can be used in this case to efficiently estimate the model parameters based on right censored data. In this paper, we consider the competing cause scenario and assuming the time-to-event to follow the Weibull distribution, we derive the necessary steps of the expectation maximization algorithm for estimating the parameters of different cure rate survival models. The standard errors of the maximum likelihood estimates are obtained by inverting the observed information matrix. The method of inference developed here is examined by means of an extensive Monte Carlo simulation study. Finally, we illustrate the proposed methodology with a real data on cancer recurrence.

  5. Molecular modeling of zinc paddlewheel molecular complexes and the pores of a flexible metal organic framework.

    PubMed

    Alzahrani, Khalid A H; Deeth, Robert J

    2016-04-01

    A new all-atom first-principles force field (FF) is constructed for the bimetallic, four-bladed zinc paddlewheel (ZPW) motif. Zinc-ligand interactions are described via Morse functions and the angular geometry at the metal centers is modeled with a pure ligand-ligand repulsion term. The ZPW-FF is principally based on 15 DFT-optimized model systems of general formula ZnPR.nL, where ZnP is the base Zn2(O2CR)4 unit, R = H, CH3 or CF3, L = NH3 or pyridine, and n = 0, 1 or 2. It correctly generates the distorted tetrahedral coordination of the uncapped [Zn2(O2CR)4] species in their ground states as well as giving reasonable structures and energies for the higher symmetry D4h transition state conformations. The zinc-ligand Morse function reference distance, r 0 , is further refined against 30 complexes located in the Cambridge Structural Database and this FF is applied to pore models of the flexible metal-organic framework (MOF) [Zn(bdc)2(dabco)]n (bdc = 1,4-benzendicarboxylate; dabco = 1,4-diazabicyclo(2.2.2)octane). A single pore model reproduces the unit cell of the evacuated MOF system while a 3×3 grid model is necessary to provide good agreement with the observed pronounced structural changes upon adsorption of either dimethylformamide or benzene.

  6. A Flexible Mathematical Model Platform for Studying Branching Networks: Experimentally Validated Using the Model Actinomycete, Streptomyces coelicolor

    PubMed Central

    Nieminen, Leena; Webb, Steven; Smith, Margaret C. M.; Hoskisson, Paul A.

    2013-01-01

    Branching networks are ubiquitous in nature and their growth often responds to environmental cues dynamically. Using the antibiotic-producing soil bacterium Streptomyces as a model we have developed a flexible mathematical model platform for the study of branched biological networks. Streptomyces form large aggregates in liquid culture that can impair industrial antibiotic fermentations. Understanding the features of these could aid improvement of such processes. The model requires relatively few experimental values for parameterisation, yet delivers realistic simulations of Streptomyces pellet and is able to predict features, such as the density of hyphae, the number of growing tips and the location of antibiotic production within a pellet in response to pellet size and external nutrient supply. The model is scalable and will find utility in a range of branched biological networks such as angiogenesis, plant root growth and fungal hyphal networks. PMID:23441147

  7. Model of rotary-actuated flexible beam with notch filter vibration suppression controller and torque feedforward load compensation controller

    SciTech Connect

    Bills, K.C.; Kress, R.L.; Kwon, D.S.; Baker, C.P.

    1994-12-31

    This paper describes ORNL`s development of an environment for the simulation of robotic manipulators. Simulation includes the modeling of kinematics, dynamics, sensors, actuators, control systems, operators, and environments. Models will be used for manipulator design, proposal evaluation, control system design and analysis, graphical preview of proposed motions, safety system development, and training. Of particular interest is the development of models for robotic manipulators having at least one flexible link. As a first application, models have been developed for the Pacific Northwest Laboratory`s Flexible Beam Test Bed (PNL FBTB), which is a 1-Degree-of-Freedom, flexible arm with a hydraulic base actuator. ORNL transferred control algorithms developed for the PNL FBTB to controlling IGRIP models. A robust notch filter is running in IGRIP controlling a full dynamics model of the PNL test bed. Model results provide a reasonable match to the experimental results (quantitative results are being determined) and can run on ORNL`s Onyx machine in approximately realtime. The flexible beam is modeled as six rigid sections with torsional springs between each segment. The spring constants were adjusted to match the physical response of the flexible beam model to the experimental results. The controller is able to improve performance on the model similar to the improvement seen on the experimental system. Some differences are apparent, most notably because the IGRIP model presently uses a different trajectory planner than the one used by ORNL on the PNL test bed. In the future, the trajectory planner will be modified so that the experiments and models are the same. The successful completion of this work provides the ability to link C code with IGRIP, thus allowing controllers to be developed, tested, and tuned in simulation and then ported directly to hardware systems using the C language.

  8. Modeling ion extraction from a free-plasma surface with a flexible conformal mesh

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley

    2005-04-01

    This paper describes a new method for numerical modeling of extraction of high-current ion beams from a plasma source. The challenge in the application is to satisfy simultaneously requirements for space-charge-limited flow and uniform ion flux. The plasma surface must assume a special shape that is not known in advance. The method involves the use of finite-element techniques coupled with a dynamic conformal mesh. Starting from an initial estimate, the flexible mesh is shifted to achieve uniform flux over the emission surface. The approach achieves high accuracy and has the versatility to handle complex emission surfaces in gridded guns. In contrast to trial-and-error approaches, the method proceeds directly to the optimum solution. The technique can also be applied to determine cathode shapes for uniform-flux electron guns. Benchmark calculations using the Trak two-dimensional ray-tracing code are described. The program automatically carries out the surface search.

  9. Modeling the Multi-Body System Dynamics of a Flexible Solar Sail Spacecraft

    NASA Technical Reports Server (NTRS)

    Kim, Young; Stough, Robert; Whorton, Mark

    2005-01-01

    Solar sail propulsion systems enable a wide range of space missions that are not feasible with current propulsion technology. Hardware concepts and analytical methods have matured through ground development to the point that a flight validation mission is now realizable. Much attention has been given to modeling the structural dynamics of the constituent elements, but to date an integrated system level dynamics analysis has been lacking. Using a multi-body dynamics and control analysis tool called TREETOPS, the coupled dynamics of the sailcraft bus, sail membranes, flexible booms, and control system sensors and actuators of a representative solar sail spacecraft are investigated to assess system level dynamics and control issues. With this tool, scaling issues and parametric trade studies can be performed to study achievable performance, control authority requirements, and control/structure interaction assessments.

  10. Increased flexibility for modeling telemetry and nest-survival data using the multistate framework

    USGS Publications Warehouse

    Devineau, Olivier; Kendall, William L.; Doherty, Paul F.; Shenk, Tanya M.; White, Gary C.; Lukacs, Paul M.; Burnham, Kenneth P.

    2014-01-01

    Although telemetry is one of the most common tools used in the study of wildlife, advances in the analysis of telemetry data have lagged compared to progress in the development of telemetry devices. We demonstrate how standard known-fate telemetry and related nest-survival data analysis models are special cases of the more general multistate framework. We present a short theoretical development, and 2 case examples regarding the American black duck and the mallard. We also present a more complex lynx data analysis. Although not necessary in all situations, the multistate framework provides additional flexibility to analyze telemetry data, which may help analysts and biologists better deal with the vagaries of real-world data collection.

  11. An auditory model based strategy for cochlear implants.

    PubMed

    Nogueira, Waldo; Kátai, András; Harczos, Tamás; Klefenz, Frank; Buechner, Andreas; Edler, Bernd

    2007-01-01

    A physiological and computational model of the human auditory system has been fitted in a signal processing strategy for cochlear implants (CIs). The aim of the new strategy is to obtain more natural sound in CIs by better mimicking the human auditory system. The new strategy was built in three independent stages as proposed in [6]. First a basilar membrane motion model was substituted by the filterbank commonly used in commercial strategies. Second, an inner hair cell model was included in a commercial strategy while maintaining the original filterbank. Third, both the basilar membrane motion and the inner-hair cell model were included in the commercial strategy. This paper analyses the properties and presents results obtained with CI recipients for each algorithm designed.

  12. Tuning the Liquid-Liquid Transition by Modulating the Hydrogen-Bond Angular Flexibility in a Model for Water

    NASA Astrophysics Data System (ADS)

    Smallenburg, Frank; Sciortino, Francesco

    2015-07-01

    We propose a simple extension of the well known ST2 model for water [F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974)] that allows for a continuous modification of the hydrogen-bond angular flexibility. We show that the bond flexibility affects the relative thermodynamic stability of the liquid and of the hexagonal (or cubic) ice. On increasing the flexibility, the liquid-liquid critical point, which in the original ST2 model is located in the no-man's land (i.e., the region where ice is the thermodynamically stable phase) progressively moves to a temperature where the liquid is more stable than ice. Our study definitively proves that the liquid-liquid transition in the ST2 model is a genuine phenomenon, of high relevance in all tetrahedral network-forming liquids, including water.

  13. Residual-flexibility corrections for transient modal rotordynamic models. [Space Shuttle main engine high pressure oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Bates, J. B., III

    1978-01-01

    A modal residual-flexibility approach due to Schwendler and MacNeal (1962) is adapted to account for the 'static' contribution of higher-frequency modes without requiring their integration. It is assumed that each rotor mode acts as a lightly damped second-order system. The additional accuracy provided by residual-flexibility corrections becomes progressively more important as a modal model's actual boundary conditions are forced to deviate from the boundary conditions used to define the rotor's original structural model (stiffness matrix) and its associated eigendata input to the transient modal model. An analysis of the high-pressure-oxygen turbopump of the Space Shuttle main engine shows that the residual-flexibility approach ensures a substantial improvement in accuracy for a relatively moderate increase in computer-time requirements.

  14. Organization of octopus arm movements: a model system for studying the control of flexible arms.

    PubMed

    Gutfreund, Y; Flash, T; Yarom, Y; Fiorito, G; Segev, I; Hochner, B

    1996-11-15

    Octopus arm movements provide an extreme example of controlled movements of a flexible arm with virtually unlimited degrees of freedom. This study aims to identify general principles in the organization of these movements. Video records of the movements of Octopus vulgaris performing the task of reaching toward a target were studied. The octopus extends its arm toward the target by a wave-like propagation of a bend that travels from the base of the arm toward the tip. Similar bend propagation is seen in other octopus arm movements, such as locomotion and searching. The kinematics (position and velocity) of the midpoint of the bend in three-dimensional space were extracted using the direct linear transformation algorithm. This showed that the bend tends to move within a single linear plane in a simple, slightly curved path connecting the center of the animal's body with the target location. Approximately 70% of the reaching movements demonstrated a stereotyped tangential velocity profile. An invariant profile was observed when movements were normalized for velocity and distance. Two arms, extended together in the same behavioral context, demonstrated identical velocity profiles. The stereotyped features of the movements were also observed in spontaneous arm extensions (not toward an external target). The simple and stereotypic appearance of the bend trajectory suggests that the position of the bend in space and time is the controlled variable. We propose that this strategy reduces the immense redundancy of the octopus arm movements and hence simplifies motor control.

  15. A Nerve Model of Greatly Increased Energy-Efficiency and Encoding Flexibility over the Hodgkin-Huxley Model

    PubMed Central

    Fohlmeister, Jurgen F.

    2009-01-01

    A mammalian “RGC model” (retinal ganglion cells) is distinguished from the Hodgkin-Huxley model by the virtual absence of K-current during, and the virtual absence of Na-current after, the regenerative (rising) phase of the action potential. Both Na- and K-currents remain negligible throughout the interspike interval, whose control is therefore relinquished to stimulus currents. These properties yield a highly flexible and energy-efficient nerve impulse encoder. For the Hodgkin-Huxley model, in contrast, only 15 % of the Na-ions enter the axon regeneratively during the action potential (squid giant axon); a wasteful 85 % enter during the falling phase. Further, early activation of K-current causes the Na- and K-currents of the action potential to dominate over stimulus currents in controlling the sub-threshold membrane potential (interspike interval). This property makes the Hodgkin-Huxley model an intractable high frequency oscillator, which cannot be converted to flexible impulse encoding. The temperature difference between the squid giant axon (6.3° C) and RGCs (37° C) is bridged by a Q10 analysis, which suggests that an additional molecular gating mechanism of high Q10 – which is not present in the squid – is active in RGCs. PMID:19596283

  16. The Flexible Global Ocean-Atmosphere-Land system model, Spectral Version 2: FGOALS-s2

    NASA Astrophysics Data System (ADS)

    Bao, Qing; Lin, Pengfei; Zhou, Tianjun; Liu, Yimin; Yu, Yongqiang; Wu, Guoxiong; He, Bian; He, Jie; Li, Lijuan; Li, Jiandong; Li, Yangchun; Liu, Hailong; Qiao, Fangli; Song, Zhenya; Wang, Bin; Wang, Jun; Wang, Pengfei; Wang, Xiaocong; Wang, Zaizhi; Wu, Bo; Wu, Tongwen; Xu, Yongfu; Yu, Haiyang; Zhao, Wei; Zheng, Weipeng; Zhou, Linjiong

    2013-05-01

    The Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2) was used to simulate realistic climates and to study anthropogenic influences on climate change. Specifically, the FGOALS-s2 was integrated with Coupled Model Intercomparison Project Phase 5 (CMIP5) to conduct coordinated experiments that will provide valuable scientific information to climate research communities. The performances of FGOALS-s2 were assessed in simulating major climate phenomena, and documented both the strengths and weaknesses of the model. The results indicate that FGOALS-s2 successfully overcomes climate drift, and realistically models global and regional climate characteristics, including SST, precipitation, and atmospheric circulation. In particular, the model accurately captures annual and semi-annual SST cycles in the equatorial Pacific Ocean, and the main characteristic features of the Asian summer monsoon, which include a low-level southwestern jet and five monsoon rainfall centers. The simulated climate variability was further examined in terms of teleconnections, leading modes of global SST (namely, ENSO), Pacific Decadal Oscillations (PDO), and changes in 19th-20th century climate. The analysis demonstrates that FGOALS-s2 realistically simulates extra-tropical teleconnection patterns of large-scale climate, and irregular ENSO periods. The model gives fairly reasonable reconstructions of spatial patterns of PDO and global monsoon changes in the 20th century. However, because the indirect effects of aerosols are not included in the model, the simulated global temperature change during the period 1850-2005 is greater than the observed warming, by 0.6°C. Some other shortcomings of the model are also noted.

  17. Re-evaluation of the AASHTO-flexible pavement design equation with neural network modeling.

    PubMed

    Tiğdemir, Mesut

    2014-01-01

    Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance.

  18. Re-Evaluation of the AASHTO-Flexible Pavement Design Equation with Neural Network Modeling

    PubMed Central

    Tiğdemir, Mesut

    2014-01-01

    Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance. PMID:25397962

  19. A magnetospheric magnetic field model with flexible current systems driven by independent physical parameters

    NASA Technical Reports Server (NTRS)

    Hilmer, Robert V.; Voigt, Gerd-Hannes

    1995-01-01

    A tilt-dependent magnetic field model of the Earth's magnetosphere with variable magnetopause standoff distance is presented. Flexible analytic representations for the ring and cross-tail currents, each composed of the elements derived from the Tsyganenko and Usmanov (1982) model, are combined with the fully shielded vacuum dipole configurations of Voigt (1981). Although the current sheet does not warp in the y-z plane, changes in the shape and position of the neutral sheet with dipole tilt are consistent with both MHD equilibrium theory and observations. In addition, there is good agreement with observed Delta B profiles and the average equatorial contours of magnetic field magnitude. While the dipole field is rigorously shielded within the defined magnetopause, the ring and cross-tails currents are not similarly confined, consequently, the model's region of validity is limited to the inner magnetosphere. The model depends on four independent external parameters. We present a simple but limited method of simulating several substorm related magnetic field changes associated with the disrupion of the near-Earth cross-tail current sheet and collapse of the midnight magnetotail field region. This feature further facilitates the generation of magnetic field configuration time sequences useful in plasma convection simulations of real magnetospheric events.

  20. A magnetospheric magnetic field model with flexible current systems driven by independent physical parameters

    NASA Technical Reports Server (NTRS)

    Hilmer, Robert V.; Voigt, Gerd-Hannes

    1995-01-01

    A tilt-dependent magnetic field model of the Earth's magnetosphere with variable magnetopause standoff distance is presented. Flexible analytic representations for the ring and cross-tail currents, each composed of the elements derived from the Tsyganenko and Usmanov (1982) model, are combined with the fully shielded vacuum dipole configurations of Voigt (1981). Although the current sheet does not warp in the y-z plane, changes in the shape and position of the neutral sheet with dipole tilt are consistent with both MHD equilibrium theory and observations. In addition, there is good agreement with observed Delta B profiles and the average equatorial contours of magnetic field magnitude. While the dipole field is rigorously shielded within the defined magnetopause, the ring and cross-tails currents are not similarly confined, consequently, the model's region of validity is limited to the inner magnetosphere. The model depends on four independent external parameters. We present a simple but limited method of simulating several substorm related magnetic field changes associated with the disrupion of the near-Earth cross-tail current sheet and collapse of the midnight magnetotail field region. This feature further facilitates the generation of magnetic field configuration time sequences useful in plasma convection simulations of real magnetospheric events.