Science.gov

Sample records for flexible pavement performance

  1. Flexible pavement performance evaluation using deflection criteria

    NASA Astrophysics Data System (ADS)

    Wedner, R. J.

    1980-04-01

    Flexible pavement projects in Nebraska were monitored for dynamic deflections, roughness, and distress for six consecutive years. Present surface conditions were characterized and data for evaluating rehabilitation needs, including amount of overlay, were provided. Data were evaluated and factors were isolated for determining the structural adequacy of flexible pavements, evaluating existing pavement strength and soil subgrade conditions, and determining overlay thickness requirements. Terms for evaluating structural condition for pavement sufficiently ratings were developed and existing soil support value and subgrade strength province maps were evaluated.

  2. Evaluation of flexible pavement performance life in Florida. Final research report, October 1993--June 1998

    SciTech Connect

    Ping, W.V.; He, Y.

    1998-06-01

    The pavement performance life provides information on how long a particular pavement type will typically last before it needs rehabilitation. This study presents the research effort to estimate the average flexible pavement performance life in Florida. Two data files of Pavement Condition Survey (PCS) and Work Program Administration (WPA) were used for this study. SAS programs were applied to analyze and manipulate these two data files. The pavement performance condition curves were developed for a large sample size of pavement sections based on the polynomial model. The average pavement performance lives were evaluated for each pavement group based on the performance curves. The results of the evaluation showed that the primary system had longer average performance life than the interstate system. Generally, the polynomial model performed well in fitting the data. The pavement performance curve indicates that if M and R are performed while the pavement is still in the `slow rate of deterioration` phase, life cycle cost may be reduced.

  3. Permanent deformation of flexible pavements

    NASA Astrophysics Data System (ADS)

    Brown, S. F.; Broderick, B. V.; Pappin, J. W.

    1980-06-01

    Seven pairs of pavements with granular bases were tested under controlled conditions. One pavement in each pair contained fabric inclusions. An improved testing facility was developed, including: (1) servo-hydraulic system for the loading carriage; (2) amplification and read-out system for pressure cells; (3) linearizing unit for strain coils; (4) transducers for measuring vertical and resilient deflection; (5) techniques for measuring in situ strain on fabric inclusions; (6) extensive use of nuclear density meter to monitor pavement and foundation materials. The following conclusions are drawn: (1) No improvement in performance resulted from fabric inclusions. (2) No consistent reduction in in-situ stresses, resilient strains, or permanent strains was observed as a result of fabric inclusion. (3) No consistent improvement in densities resulted from fabric inclusions. (4) Some slip apparently occurred between fabric and soil on those pavements which involved large deformations. The slip occurred between fabric and crushed limestone base rather than between fabric and silty-clay subgrade.

  4. Performance of a movable flexible pipe-encapsulated FBG sensor developed for shape monitoring of multi-layered pavement structure

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Liu, Wanqiu; Zhou, Zhi

    2014-03-01

    The large span and heterogeneous components of multi-layered pavement structure usually bring about stochastic damage, and many modern approaches, such as ground penetrating radar, integral imaging and optical fiber sensing technology, have been employed to detect the degeneration mechanism. Restricted by the cost and universality, novel elements for pavement monitoring are in high demand. Optical fiber sensing technology for high sensitivity, long stability, anti-corrosion and resistance to water erosion then is considered. Therefore, a movable FBG sensor located in flexible pipe is developed, which has long stroke inside inner wall of the hollow pipe, and a full-scale shape of the structure could be sketched just with one FBG. Theoretical and experimental methods about establishing the relationship between wavelength variable and curvature have been provided, and function about reconfiguring the coordinate is converted to a mathematic question. Move over, transfer error modification has been taken into account for modify related error. Multi-layered pavement model embedded with this sensor will be accomplished to inspect its performance in later work. The work in the paper affords a feasible method for shape monitoring and would be potentially valuable for the maintenance and inverse design of pavement structure.

  5. Mechanistic design concepts for conventional flexible pavements

    NASA Astrophysics Data System (ADS)

    Elliott, R. P.; Thompson, M. R.

    1985-02-01

    Mechanical design concepts for convetional flexible pavement (asphalt concrete (AC) surface plus granular base/subbase) for highways are proposed and validated. The procedure is based on ILLI-PAVE, a stress dependent finite element computer program, coupled with appropriate transfer functions. Two design criteria are considered: AC flexural fatigue cracking and subgrade rutting. Algorithms were developed relating pavement response parameters (stresses, strains, deflections) to AC thickness, AC moduli, granular layer thickness, and subgrade moduli. Extensive analyses of the AASHO Road Test flexible pavement data are presented supporting the validity of the proposed concepts.

  6. Teaching Methodology of Flexible Pavement Materials and Pavement Systems

    ERIC Educational Resources Information Center

    Mehta, Yusuf; Najafi, Fazil

    2004-01-01

    Flexible pavement materials exhibit complex mechanical behavior, in the sense, that they not only show stress and temperature dependency but also are sensitive to moisture conditions. This complex behavior presents a great challenge to the faculty in bringing across the level of complexity and providing the concepts needed to understand them. The…

  7. Effects of temperature and water on pavement performance

    SciTech Connect

    Badu-Tweneboah, K.; Tia, M.; Ruth, B.E.; Richardson, J.M.; Armaghani, J.M.

    1987-01-01

    The 12 papers in the report deal with the following areas: procedures for estimation of asphalt-concrete pavement moduli at in-situ temperatures; stress caused by temperature gradient in portland-cement concrete pavements; characterizing temperature effects for pavement analysis and design; temperature response of concrete pavements; an examination of environmental versus load effects on pavements; moisture in portland-cement concrete; effect of rainfall on the performance of continuously reinforced concrete pavements in Texas; effect of moisture on the structural performance of a crushed-limestone road base; water-induced distress in flexible pavement in a wet tropical climate; an evaluation of design high-water clearances for pavements; economic impact of pavement subsurface drainage; use of open-graded, free-draining layers in pavement systems; a national synthesis report.

  8. Geotextiles in Flexible Pavement Construction

    ERIC Educational Resources Information Center

    Alungbe, Gabriel D.

    2004-01-01

    People everywhere in the developed world regularly drive on paved roads. Learning about the construction techniques and materials used in paving benefits technology and construction students. This article discusses the use of geosynthetic textiles in pavement construction. It presents background on pavements and describes geotextiles and drainage…

  9. Analysis and design optimization of flexible pavement

    SciTech Connect

    Mamlouk, M.S.; Zaniewski, J.P.; He, W.

    2000-04-01

    A project-level optimization approach was developed to minimize total pavement cost within an analysis period. Using this approach, the designer is able to select the optimum initial pavement thickness, overlay thickness, and overlay timing. The model in this approach is capable of predicting both pavement performance and condition in terms of roughness, fatigue cracking, and rutting. The developed model combines the American Association of State Highway and Transportation Officials (AASHTO) design procedure and the mechanistic multilayer elastic solution. The Optimization for Pavement Analysis (OPA) computer program was developed using the prescribed approach. The OPA program incorporates the AASHTO equations, the multilayer elastic system ELSYM5 model, and the nonlinear dynamic programming optimization technique. The program is PC-based and can run in either a Windows 3.1 or a Windows 95 environment. Using the OPA program, a typical pavement section was analyzed under different traffic volumes and material properties. The optimum design strategy that produces the minimum total pavement cost in each case was determined. The initial construction cost, overlay cost, highway user cost, and total pavement cost were also calculated. The methodology developed during this research should lead to more cost-effective pavements for agencies adopting the recommended analysis methods.

  10. Evaluation of base widening methods on flexible pavements in Wyoming

    NASA Astrophysics Data System (ADS)

    Offei, Edward

    The surface transportation system forms the biggest infrastructure investment in the United States of which the roadway pavement is an integral part. Maintaining the roadways can involve rehabilitation in the form of widening, which requires a longitudinal joint between the existing and new pavement sections to accommodate wider travel lanes, additional travel lanes or modification to shoulder widths. Several methods are utilized for the joint construction between the existing and new pavement sections including vertical, tapered and stepped joints. The objective of this research is to develop a formal recommendation for the preferred joint construction method that provides the best base layer support for the state of Wyoming. Field collection of Dynamic Cone Penetrometer (DCP) data, Falling Weight Deflectometer (FWD) data, base samples for gradation and moisture content were conducted on 28 existing and 4 newly constructed pavement widening projects. A survey of constructability issues on widening projects as experienced by WYDOT engineers was undertaken. Costs of each joint type were compared as well. Results of the analyses indicate that the tapered joint type showed relatively better pavement strength compared to the vertical joint type and could be the preferred joint construction method. The tapered joint type also showed significant base material savings than the vertical joint type. The vertical joint has an 18% increase in cost compared to the tapered joint. This research is intended to provide information and/or recommendation to state policy makers as to which of the base widening joint techniques (vertical, tapered, stepped) for flexible pavement provides better pavement performance.

  11. Pavement performance equations. Final report

    SciTech Connect

    Mahoney, J.P.; Kay, R.K.; Jackson, N.C.

    1988-03-01

    The WSDOT PMS data base was used to develop regression equations for three pavement surface types: bituminous surface treatments, asphalt concrete, and portland-cement concrete. The primary regression equations developed were to predict Pavement Condition Rating (PCR) which is a measure of the pavement surface distress (ranges from 100 (no distress) to below 0 (extensive distress)). Overall, the equations fit the data rather well given the expected variation of pavement performance information. The relative effects of age (time since construction or reconstruction) were illustrated for the three surface types.

  12. Structural response of LVR flexible pavements at Mn/ROAD project

    SciTech Connect

    Garg, N.; Thompson, M.R.

    1999-05-01

    Pavement surface deflection basins provide valuable information for the structural evaluation of flexible pavements. Surface deflection measurements are rapid, inexpensive, and nondestructive and are used frequently as an indicator of pavement structural capability and performance potential. In this study, falling weight deflectometer testing results on the conventional flexible pavements (asphalt concrete surface, granular base/subbase) and aggregate-surface/surface-treated test sections in the low-volume road loop at the Minnesota Road Research Project (Mn/ROAD) were analyzed to evaluate the effect of granular material quality on the pavement structural response. Asphalt concrete (AC) modulus and subgrade ``break-point`` modulus were back-calculated using algorithms previously developed at the University of Illinois. The surface deflections were normalized to the same AC modulus and subgrade modulus. The analyses show a limited effect of granular material quality on the pavement deflection response in the case of conventional flexible pavements. Because of higher granular layer stresses, the granular material quality effects on the pavement surface deflection response of surface-treated/aggregate-surface pavements are significant. Increased AC thickness reduces the effect of granular base quality on the pavement deflection response.

  13. The effect of loading time on flexible pavement dynamic response: a finite element analysis

    NASA Astrophysics Data System (ADS)

    Yin, Hao; Solaimanian, Mansour; Kumar, Tanmay; Stoffels, Shelley

    2007-12-01

    Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.

  14. Study on Flexible Pavement Failures in Soft Soil Tropical Regions

    NASA Astrophysics Data System (ADS)

    Jayakumar, M.; Chee Soon, Lee

    2015-04-01

    Road network system experienced rapid upgrowth since ages ago and it started developing in Malaysia during the colonization of British due to its significant impacts in transportation field. Flexible pavement, the major road network in Malaysia, has been deteriorating by various types of distresses which cause descending serviceability of the pavement structure. This paper discusses the pavement condition assessment carried out in Sarawak and Sabah, Malaysia to have design solutions for flexible pavement failures. Field tests were conducted to examine the subgrade strength of existing roads in Sarawak at various failure locations, to assess the impact of subgrade strength on pavement failures. Research outcomes from field condition assessment and subgrade testing showed that the critical causes of pavement failures are inadequate design and maintenance of drainage system and shoulder cross fall, along with inadequate pavement thickness provided by may be assuming the conservative value of soil strength at optimum moisture content, whereas the exiting and expected subgrade strengths at equilibrium moisture content are far below. Our further research shows that stabilized existing recycled asphalt and base materials to use as a sub-base along with bitumen stabilized open graded base in the pavement composition may be a viable solution for pavement failures.

  15. ACAA pavement manual. Recommended practice: Coal fly ash in pozzolanic stabilized mixtures for flexible pavement systems

    SciTech Connect

    Not Available

    1991-01-01

    The purpose of this manual is to guide pavement design engineers, materials engineers, and construction managers in the design and construction of flexible pavement systems in which low- to high-strength Pozzolanic Stabilized Mixtures' ( PSMs') serve as base layers. A PSM incorporates coal fly ash in combination with activators, aggregates and water. Each of three design methods is useful for determining the thickness of a PSM base layer for a flexible pavement system: Method A - American Association of State Highway and Transportation Officials (AASHTO) flexible pavement design procedures, using structural layer coefficients; Method B - Mechanistic pavement design procedures, using resilient modulus values for the pavement layers; and Method C - A combination of Method A and Method B, using mechanistic design concepts for determining pavement layer coefficients. PSMs offer several advantages: PSMs are strong, durable mixtures using locally available materials; PSMs are economically competitive with properly engineered full-depth asphalt or crushed stone base courses; PSMs are suited to stabilizing recycled base mixtures; and PSMs are placed and compacted with conventional construction equipment. To provide the needed guidance for capturing the long-term service and cost-saving features of a PSM design, this manual details the following: a procedure for proportioning PSMs; thickness design procedures which include base layer and asphalt wearing course; and proven techniques for PSM mixing and base layer construction.

  16. Predicting in-service fatigue life of flexible pavements based on accelerated pavement testing

    NASA Astrophysics Data System (ADS)

    Guo, Runhua

    Pavement performance prediction in terms of fatigue cracking and surface rutting are essential for any mechanistically-based pavement design method. Traditionally, the estimation of the expected fatigue field performance has been based on the laboratory bending beam test. Full-scale Accelerated Pavement Testing (APT) is an alternative to laboratory testing leading to advances in practice and economic savings for the evaluation of new pavement configurations, stress level related factors, new materials and design improvements. This type of testing closely simulates field conditions; however, it does not capture actual performance because of the limited ability to address long-term phenomena. The same pavement structure may exhibit different response and performance under APT than when in-service. Actual field performance is better captured by experiments such as Federal Highway Administration's Long-Term Pavement Performance (LTPP) studies. Therefore, to fully utilize the benefits of APT, there is a need for a methodology to predict the long-term performance of in-service pavement structures from the results of APT tests that will account for such differences. Three models are generally suggested to account for the difference: shift factors, statistical and mechanistic approaches. A reliability based methodology for fatigue cracking prediction is proposed in this research, through which the three models suggested previously are combined into one general approach that builds on their individual strengths to overcome some of the shortcomings when the models are applied individually. The Bias Correction Factor (BCF) should account for all quantifiable differences between the fatigue life of the pavement site under APT and in-service conditions. In addition to the Bias Correction Factor, a marginal shifty factor, M, should be included to account for the unquantifiable differences when predicting the in-service pavement fatigue life from APT. The Bias Correction Factor

  17. Influence of mixture composition on the noise and frictional characteristics of flexible pavements

    NASA Astrophysics Data System (ADS)

    Kowalski, Karol J.

    Both traffic noise and wet pavement-tire friction are mainly affected by the tire/pavement interaction. Existing laboratory test methods allow for evaluation of polishing resistance of the aggregates only. Currently, there is no generally accepted standardized laboratory test method to address noise related issues and the overall frictional properties of pavements (including macrotexture). In this research, which included both laboratory and field components, friction and noise properties of the flexible (asphalt) pavements were investigated. As a part of this study, a laboratory device to polish asphalt specimens was developed and the procedure to evaluate mixture frictional properties was proposed. Following this procedure, forty-six different Superpave mixtures (each utilizing a different aggregate blends), one stone matrix asphalt (SMA) mixture and one porous friction course (PFC) mixture were tested. Six of the above mixes (four Superpave mixtures, SMA mixture and PFC mixture) were selected for laboratory noise testing. This testing was performed using a one-of-a-kind tester called the Tire/Pavement Test Apparatus (TPTA). In addition, the field sections constructed using Superpave, SMA and PFC mixtures were also periodically tested for friction and noise. Field measurements included testing of total of 23 different asphalt and two concrete pavements. The field friction testing was performed using both portable CTM and DFT devices and the (ASTM E 274) locked wheel friction trailer. The laboratory friction testing was performed using CTM and DFT devices only. The results of both field and laboratory friction measurements were used to develop an International Friction Index (IFI)-based frictional requirement for laboratory friction measurements. The results collected in the course of the study indicate that the IFI-based flag values could be successfully used in place of SN-based flag values to characterize frictional characteristics of pavements.

  18. Performance of pavements designed with low-cost materials

    NASA Astrophysics Data System (ADS)

    Grau, R. W.; Yrjanson, W. A.; Packard, R. G.; Barksdale, R. D.; Potts, C. F.; Ruth, B. E.; Smith, L. L.; Huddleston, I. J.; Vinson, T. S.; Hicks, R. G.

    1980-04-01

    The following areas are discussed. Utilization of marginal aggregate materials for secondary road surface layers; econocrete pavements; current practices; construction and performance of sand-asphalt bases and performance of sand-asphalt and limerock pavements in Florida. Cement stabilization of degrading aggregates use of crushed stone screenings in highway construction (abridgement); and sulfur-asphalt pavement technology are also reviewed.

  19. Re-evaluation of the AASHTO-flexible pavement design equation with neural network modeling.

    PubMed

    Tiğdemir, Mesut

    2014-01-01

    Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance. PMID:25397962

  20. Re-Evaluation of the AASHTO-Flexible Pavement Design Equation with Neural Network Modeling

    PubMed Central

    Tiğdemir, Mesut

    2014-01-01

    Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance. PMID:25397962

  1. Re-evaluation of the AASHTO-flexible pavement design equation with neural network modeling.

    PubMed

    Tiğdemir, Mesut

    2014-01-01

    Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance.

  2. A numerical model for flexible pavements rut depth evolution with time

    NASA Astrophysics Data System (ADS)

    Allou, Fatima; Chazallon, Cyrille; Hornych, Pierre

    2007-01-01

    A simplified method has been developed for the finite elements modelling of flexible pavements rut depth evolution with time. This method is based on the shakedown theory established by Zarka for metallic structures. The yield surface of Drucker-Prager and the plastic potential of Von Mises have been used. The simplified method determines straightforwardly the purely elastic state or the elastic shakedown state or the plastic shakedown state. The calibration of the simplified method with two unbound granular materials for roads under repeated loads triaxial tests, is explained. Then, a finite elements modelling of a flexible pavement has been carried out. Calculations of 2D and 3D have been performed and rut depth evolutions with time are shown, which underline the capabilities of the model to take into account the accumulation of plastic strains along the loading cycles. Copyright

  3. Performance of continuously reinforced concrete pavements: Volume 6 -- CRC pavement design, construction, and performance. Final report, August 1990--December 1994

    SciTech Connect

    Zollinger, D.G.; Buch, N.; Xin, D.; Soares, J.

    1999-02-01

    This report is one of a series of reports prepared as part of a recent study sponsored by the Federal Highway Administration (FHWA) aimed at updating the state-of-the-art of the design, construction, maintenance, and rehabilitation of continuous reinforced concrete (CRC) pavements. The scope of work of the FHWA study included the following: (1) Conduct of a literature review and preparation of an annotated bibliography on CRC pavements and CRC overlays. (2) Conduct of a field investigation and laboratory testing related to 23 existing in-service pavement sections. This was done to evaluate the effect of various design features on CRC pavement performance, to identify any design or construction related problems, and to recommend procedures to improve CRC pavement technology. (3) Evaluation of the effectiveness of various maintenance and rehabilitation strategies for CRC pavements. (4) Preparation of a Summary Report on the current state of the practice for CRC pavements. Each of the above four items is addressed in a separate report. The following reports have been prepared under this study: Performance of CRC Pavements. Volume 1: Summary of Practice and Annotated Bibliography. Volume 2: Field Investigation of CRC Pavements. Volume 3: Analysis and Evaluation of Field Test Data. Volume 4: Resurfacing for CRC Pavements. Volume 5: Maintenance and Repair of CRC Pavements. Volume 6: CRC Pavement Design, Construction, and Performance. Volume 7: Summary. This report is Volume 6 in the series.

  4. Recent advances in the evaluation of the strength and deformation properties of flexible pavements using GPR

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; Bianchini Ciampoli, Luca; Benedetto, Andrea; Alani, Amir M.; Loizos, Andreas; D'Amico, Fabrizio

    2016-04-01

    Even though there is plenty of literature contributions related to the non-destructive evaluation of road pavements using ground-penetrating radar (GPR), with several purposes spanning from the layer thicknesses evaluation to the detection of highly wet spots in the subsurface, there is still a lack of highly-reliable results concerning the mechanical assessment of road pavements, by using this technology. This work endeavours to face this topic and proposes a semi-empirical model for predicting the elastic modulus of a flexible pavement, by employing GPR. Data were collected over three different road sections within the districts of Madrid and Guadalajara, Spain. In particular, GPR surveys were carried out at the speed of traffic over the roads N320 and N211 in the district of Gadalajara and the road N320 in the district of Madrid, for a total of 39 kilometers, approximately. In particular, air-coupled radar systems with a 1000 MHz center frequency antenna and two different 2000 MHz center frequency antennas, mounted onto an instrumented vehicle, were here employed. The calibration of the model was then performed by exploiting ground-truth data coming from other non-destructive technologies. In more details, an instrumented lorry equipped with a curviameter, namely, a deflection tool capable to collect and process continuously and in real time the mechanical response of the flexible pavement, was used in the above road sections. Promising results are here presented, and the potential of GPR for monitoring the mechanical performances of a road network is also proved. Acknowledgement The Authors thank COST, for funding the Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar."

  5. Deterioration modeling for condition assessment of flexible pavements considering extreme weather events

    NASA Astrophysics Data System (ADS)

    Hashemi Tari, Yasamin; Shahini Shamsabadi, Salar; Birken, Ralf; Wang, Ming

    2015-04-01

    Accurate pavement management systems are essential for states' Department Of Transportation and roadway agencies to plan for cost-effective maintenance and repair (M and R) strategies. Pavement deterioration model is an imperative component of any pavement management system since the future budget and M and R plans would be developed based on the predicted pavement performance measures. It is crucial for the pavement deterioration models to consider the factors that significantly aggravate the pavement condition. While many studies have highlighted the impact of different environmental, load, and pavement's structure on the life cycle of the pavement, effect of extreme weather events such as Floods and Snow Storms have often been overlooked. In this study, a pavement deterioration model is proposed which would consider the effect of traffic loads, climate conditions, and extreme weather events. Climate, load and performance data has been compiled for over twenty years and for eight states using the Long Term Pavement Performance (LTPP) and National Oceanic and Atmospheric Administration (NOAA) databases. A stepwise regression approach is undertaken to quantify the effect of the extreme weather events, along with other influential factors on pavement performance in terms of International Roughness Index (IRI). Final results rendered more than 90% correlation with the quantified impact values of extreme weather events.

  6. Monitoring the performance of geosynthetic materials within pavement systems using MEMS

    NASA Astrophysics Data System (ADS)

    Attoh-Okine, Nii O.; Ayenu-Prah, Albert Y.; Mensah, Stephen A.

    2005-05-01

    Geosynthetic materials have found useful applications when unbound aggregates have been placed on cohesive soil with very weak subgrade. They have also been successfully used in retarding reflective cracking in both flexible and composite pavements. There are many applications of geosynthetics in pavement engineering yet there is considerable lack of understanding in the behavior of the material. Geosynthetic materials exhibit very peculiar properties in the area of tensile strength and reinforcement. MEMS are miniature sensing or actuating devices that can interact with other environments (provided no adverse reaction occurs) to either obtain information or alter it. With remote query capability, it appears such devices can be embedded in pavement systems as testing and monitoring tools. The aim of this paper is to propose both field and laboratory methods for monitoring geotextile performance using MEMS.

  7. Asphaltic concrete overlays of rigid and flexible pavements

    NASA Astrophysics Data System (ADS)

    Kinchen, R. W.; Temple, W. H.

    1980-10-01

    The development of a mechanistic approach to overlay thickness selection is described. The procedure utilizes a deflection analysis to determine pavement rehabilitation needs. Design guides for selecting the overlay thickness are presented. Tolerable deflection-traffic load relationships and the deflection attenuation properties of asphaltic concrete were developed, representing the subgrade support conditions and properties of materials used in Louisiana. All deflection measurements on asphaltic concrete were corrected for the effect of temperature. Deflection measurements taken before and after overlay were also adjusted to minimize the effects of seasonal subgrade moisture variation.

  8. Improving rutting resistance of pavement structures using geosynthetics: an overview.

    PubMed

    Mirzapour Mounes, Sina; Karim, Mohamed Rehan; Khodaii, Ali; Almasi, Mohammad Hadi

    2014-01-01

    A pavement structure consists of several layers for the primary purpose of transmitting and distributing traffic loads to the subgrade. Rutting is one form of pavement distresses that may influence the performance of road pavements. Geosynthetics is one type of synthetic materials utilized for improving the performance of pavements against rutting. Various studies have been conducted on using different geosynthetic materials in pavement structures by different researchers. One of the practices is a reinforcing material in asphalt pavements. This paper intends to present and discuss the discoveries from some of the studies on utilizing geosynthetics in flexible pavements as reinforcement against permanent deformation (rutting). PMID:24526919

  9. Improving rutting resistance of pavement structures using geosynthetics: an overview.

    PubMed

    Mirzapour Mounes, Sina; Karim, Mohamed Rehan; Khodaii, Ali; Almasi, Mohammad Hadi

    2014-01-01

    A pavement structure consists of several layers for the primary purpose of transmitting and distributing traffic loads to the subgrade. Rutting is one form of pavement distresses that may influence the performance of road pavements. Geosynthetics is one type of synthetic materials utilized for improving the performance of pavements against rutting. Various studies have been conducted on using different geosynthetic materials in pavement structures by different researchers. One of the practices is a reinforcing material in asphalt pavements. This paper intends to present and discuss the discoveries from some of the studies on utilizing geosynthetics in flexible pavements as reinforcement against permanent deformation (rutting).

  10. Improving Rutting Resistance of Pavement Structures Using Geosynthetics: An Overview

    PubMed Central

    Karim, Mohamed Rehan; Khodaii, Ali; Almasi, Mohammad Hadi

    2014-01-01

    A pavement structure consists of several layers for the primary purpose of transmitting and distributing traffic loads to the subgrade. Rutting is one form of pavement distresses that may influence the performance of road pavements. Geosynthetics is one type of synthetic materials utilized for improving the performance of pavements against rutting. Various studies have been conducted on using different geosynthetic materials in pavement structures by different researchers. One of the practices is a reinforcing material in asphalt pavements. This paper intends to present and discuss the discoveries from some of the studies on utilizing geosynthetics in flexible pavements as reinforcement against permanent deformation (rutting). PMID:24526919

  11. Pavement management

    SciTech Connect

    Ross, F.R.; Connor, B.; Lytton, R.L.; Darter, M.I.; Shahin, M.Y.

    1982-01-01

    The 11 papers in this report deal with the following areas: effect of pavement roughness on vehicle fuel consumption; rational seasonal load restrictions and overload permits; state-level pavement monitoring program; data requirements for long-term monitoring of pavements as a basis for development of multiple regression relations; simplified pavement management at the network level; combined priority programming of maintenance and rehabilitation for pavement networks; Arizona pavement management system: Phase 2-verification of performance prediction models and development of data base; overview of paver pavement management system; economic analysis of field implementation of paver pavement management system; development of a statewide pavement maintenance management system; and, prediction of pavement maintenance expenditure by using a statistical cost function.

  12. An elastoplastic model based on the shakedown concept for flexible pavements unbound granular materials

    NASA Astrophysics Data System (ADS)

    Habiballah, Taha; Chazallon, Cyrille

    2005-05-01

    Nowadays, the problem of rutting of flexible pavements linked to permanent deformations occurring in the unbound layers is taken into account only by mechanistic empirical formulas. Finite element modelling of realistic boundary value problems with incremental rheological models will lead to unrealistic calculation time for large cycle numbers. The objective of the authors is to present a simplified model which can be used to model the flexible pavements rutting with the finite elements framework. This method is based on the shakedown theory developed by Zarka which is usually associated to materials like steels. It has been adapted for granular materials by introducing a yield surface taking into account the mean stress influence on the mechanical behaviour and a dependency of the hardening modulus with the stress state. The Drucker-Prager yield surface has been used with a non-associated flow rule. Comparisons with repeated load triaxial tests carried out on a subgrade soil have been done. These comparisons underline the capabilities of the model to take into account the cyclic behaviour of unbound materials for roads. Finally, a discussion, dealing with the use of the simplified method within a finite element modelling of a full-scale experiment, is presented.

  13. Assessment of porous asphalt pavement performance: hydraulics and water quality

    NASA Astrophysics Data System (ADS)

    Briggs, J. F.; Ballestero, T. P.; Roseen, R. M.; Houle, J. J.

    2005-05-01

    The objective of this study is to focus on the water quality treatment and hydraulic performance of a porous asphalt pavement parking lot in Durham, New Hampshire. The site was constructed in October 2004 to assess the suitability of porous asphalt pavement for stormwater management in cold climates. The facility consists of a 4-inch asphalt open-graded friction course layer overlying a high porosity sand and gravel base. This base serves as a storage reservoir in-between storms that can slowly infiltrate groundwater. Details on the design, construction, and cost of the facility will be presented. The porous asphalt pavements is qualitatively monitored for signs of distress, especially those due to cold climate stresses like plowing, sanding, salting, and freeze-thaw cycles. Life cycle predictions are discussed. Surface infiltration rates are measured with a constant head device built specifically to test high infiltration capacity pavements. The test measures infiltration rates in a single 4-inch diameter column temporarily sealed to the pavement at its base. A surface inundation test, as described by Bean, is also conducted as a basis for comparison of results (Bean, 2004). These tests assess infiltration rates soon after installation, throughout the winter, during snowmelt, after a winter of salting, sanding, and plowing, and after vacuuming in the spring. Frost penetration into the subsurface reservoir is monitored with a frost gauge. Hydrologic effects of the system are evaluated. Water levels are monitored in the facility and in surrounding wells with continuously logging pressure transducers. The 6-inch underdrain pipe that conveys excess water in the subsurface reservoir to a riprap pad is also continuously monitored for flow. Since porous asphalt pavement systems infiltrate surface water into the subsurface, it is important to assess whether water quality treatment performance in the subsurface reservoir is adequate. The assumed influent water quality is

  14. Statistical methods for pavement performance curve building, historical analysis, data sampling and storage. Final report, May 1997--July 1998

    SciTech Connect

    Zimmerman, K.A.; Bahulkar, A.M.

    1998-08-01

    The use of a pavement management system provides a state highway agency with the tools necessary to conduct a multi-year analysis of the maintenance and rehabilitation needs within the state based on both current needs and expected future conditions. In order to adequately predict future conditions, pavement performance models must be developed to reflect the deterioration trends of the agency`s pavements. At the time the SDDOT pavement management system was implemented in 1994, the Department developed a new condition rating system to evaluate the existing conditions of the state maintained pavements. At the same time, expert-based pavement performance models were developed to approximate the deterioration patterns of the highways based on pavement families (groupings of pavements with similar characteristics). A recommendation from that study (SD93-14) was to update the curves based on historical performance once sufficient data had been collected.

  15. Statistical methods for pavement performance curve building, historical analysis, data sampling and storage: Appendix D. Final report

    SciTech Connect

    1998-08-01

    The technical memorandum is intended to discuss the detailed procedure required for carrying out the statistical analyses of historical pavement condition data for building pavement performance curves. This chapter assumes the availability of the historical data in a spreadsheet format (Microsoft{trademark} Excel) that has been retrieved from the master (pavement management system) database.

  16. Contributions of performance-graded asphalt to low temperature cracking resistance of pavements. Final report

    SciTech Connect

    Loh, S.W.; Olek, J.

    1999-05-01

    The purpose of this research was to study and evaluate the role that asphalt cracking. As part of the Strategic Highway Research Program (SHRP) new specifications for asphalt binders were developed that are based on the performance of the material. The asphalt binder graded and specified according to these new performance-based specifications is called PG binder. These new specifications are commonly referred to as Superpave (Superior Performing Asphalt Pavement) binder specifications. A section of Interstate 64 in southern Indiana was experiencing severe low temperature cracking before it was reconstructed over the summers of 1995 and 1996. The binder used in the new pavement mixes was PG material. Dynamic Shear Rheometer (DSR) tests, Bending Beam Rheometer (BBR) tests, and viscosity tests were performed on this binder. Comparisons were made between test results obtained from the binders in the old pavement and the new pavement. All tests and comparisons were based on the Superpave binder specifications.

  17. Performance Prediction of the NCAT Test Track Pavements Using Mechanistic Models

    NASA Astrophysics Data System (ADS)

    LaCroix, Andrew Thomas

    In the pavement industry in the United States of America, there is an increasing desire to improve the pavement construction quality and life for new and rehabilitated pavements. In order to improve the quality of the pavements, the Federal Highway Administration (FHWA) has pursued a performance-related specification (PRS) for over 20 years. The goal of PRS is to provide material and construction (M/C) properties that correlate well with pavement performance. In order to improve upon the PRS projects developed in WesTrack (NCHRP 9-20) and the MEPDG-based PRS (NCHRP 9-22), a set of PRS tests and models are proposed to provide a critical link between pavement performance and M/C properties. The PRS testing is done using the asphalt mixture performance tester (AMPT). The proposed PRS focuses on rutting and fatigue cracking of asphalt mixtures. The mixtures are characterized for their stiffness, fatigue behavior, and rutting resistance using a dynamic modulus (|E*|) test, a fatigue test, and a triaxial stress sweep (TSS) test, respectively. Information from the fatigue test characterizes the simplified viscoelastic continuum damage (S-VECD) model. Once the stiffness is reduced to a certain level, the material develops macro-cracks and fails. The TSS test is used to characterize a viscoplastic (VP) model. The VP model allows the prediction of the rut depth beneath the center of the wheel. The VECD and VP models are used within a layered viscoelastic (LVE) pavement model to predict fatigue and rutting performance of pavements. The PRS is evaluated by comparing the predictions to the field performance at the NCAT pavement test track in Opelika, Alabama. The test track sections evaluated are part of the 2009 test cycle group experiment, which focused on WMA, high RAP (50%), and a combination of both. The fatigue evaluation shows that all sections would last at least 18 years at the same traffic rate. The sections do not show any cracking, suggesting the sections are well

  18. Performance of concrete pavements containing recycled concrete aggregate. Interim report, October 1993-October 1996

    SciTech Connect

    Wade, M.J.; Cuttell, G.D.; Vandenbossche, J.M.; Yu, H.T.; Smith, K.D.

    1997-03-01

    This interim report documents the field performance of nine concrete pavement projects that incorporate recycled concrete aggregate (RCA) in the construction of the pavement. Multiple sections were evaluated on many of the nine projects, due to perceived differences in performance levels or variations in pavement design (such as the use of virgin aggregate or the inclusion of dowel bars). All told, a total of 17 sections (of which 12 contain RCA) were subjected to an extensive field testing program, consisting of pavement condition surveys, drainage surveys, falling weight deflectometer (FWD) testing, coring, and serviceability assessments. A minimum of eight cores were retrieved from each section for laboratory evaluation of compressive strength, split tensile strength, dynamic elastic modulus, static elastic modulus, and thermal coefficient of expansion, as well as for volumetric surface testing and petrographic analyses.

  19. Relating tensile, bending, and shear test data of asphalt binders to pavement performance

    SciTech Connect

    Chen, J.S.; Tsai, C.J.

    1998-12-01

    Eight different asphalt binders representing a wide range of applications for pavement construction were tested in uniaxial tension, bending, and shear stresses. Theoretical analyses were performed in this study to covert the data from the three engineering tests to stiffness moduli for predicting pavement performance. At low temperatures, high asphalt stiffness may induce pavement thermal cracking; thus, the allowable maximum stiffness was set at 1,000 MPa. At high temperatures, low asphalt stiffness may lead to pavement rutting (ruts in the road); master curves were constructed to rank the potential for rutting in the asphalts. All three viscoelastic functions were shown to be interchangeable within the linear viscoelastic region. When subjected to large deformation in the direct tension test, asphalt binders behaved nonlinear viscoelastic in which the data under bending, shear and tension modes were not comparable. The asphalts were, however, found toe exhibit linear viscoelasticity up to the failure point in the steady-state strain region.

  20. PERFORMANCE-BASED CONTRACTING IN CONSTRUCTION PHASE AND MAINTENANCE PHASE OF PAVEMENT

    NASA Astrophysics Data System (ADS)

    Yoshida, Takeshi

    Performance-based contracting for pavement in Japan started as performance warranties in construction phase, in 1999. Recently, road agencies have recognized the applicability of this type of contracting in outsourcing of maintenance activities. The objectives of this study are to clarify the issues of performance specifying in construction phase and maintenance phase of pavement, and to propose measures to be taken. This paper, with the recognition that the life of each pavement depends on performance standards for various attributes, reviews domestic and foreign examples of performance-based contracting. A performance standard based on the average of current practices can enhance product quality and service life with a warranty contract. Repair thresholds and response time for each deficiency should be considered as performance standards in maintenance phase.

  1. Monitoring pavement response and performance using in-situ instrumentation

    SciTech Connect

    Chen, D.H.; Bilyeu, J.; Hugo, F.

    1999-07-01

    The purpose of this paper is to present the effectiveness of in-situ instrumentation on diagnosing the pavement layer conditions under full-scale accelerated traffic loading. The test section is an in-service pavement (US281) in Jacksboro, Texas. Multi-Depth Deflectometers (MDDs) are used to measure both permanent deformations and transient deflections, caused by accelerated traffic loading and Falling Weight Deflectometers (MDDs) are used to measure both permanent deformations and transient deflections, caused by accelerated traffic loading and Falling Weight Deflectometer (FWD) tests. Four different FWD loads of 25, 40, 52, and 67 kN were applied in close proximity to the MDDs at various traffic loading intervals to determine pavement conditions. It was found that the majority of rutting occurred in the newly recycled asphalt mix. The aged ({gt}40 years) underlying base and subgrade layers contributed less than 30% to overall rutting. Only the top recycled Asphalt layer underwent notable deterioration due to traffic loading. Up to 1.5 million axle repetitions, the test pad responded to FWD load almost linearly, not only over the whole pavement system but also within individual layers. However, under higher FWD loads, the percentage of total deflection contributed by the subgrade increased.

  2. Water Quality Performance of Three Side-by-Side Permeable Pavement Surface Materials: Three Year Update

    EPA Science Inventory

    Communities are increasingly installing structural low impact development (LID) practices to mange stormwater and reduce pollutant loads associated with stormwater runoff. Permeable pavement is a LID practice that has limited research on working-scale, side-by-side performance o...

  3. Layered pavement systems

    NASA Astrophysics Data System (ADS)

    Numerous aspects of the mechanical and structural response of layered pavement systems are discussed. Subgrade moduli for soil that exhibits nonlinear behavior are predicted. The use of a pressure meter test to predict modulus is discussed. Load equivalency factors of triaxial loading for flexible pavements is discussed, as well as a constitutive equation for the permanent strain of sand subjected to cyclic loading.

  4. Sulfur extended asphalt pavement evaluation in the State of Washington: SR 270 highway pavement performance report

    NASA Astrophysics Data System (ADS)

    Mahoney, J. P.; Terrel, R. L.; Cook, J. C.

    1982-11-01

    The placement and performance of sulfur extended asphalt (SEA) paving mixtures at a highway test site (SR 270) near Pullman, Washington is summarized. The mixture and structural designs and construction details are included. This is followed by a discussion of the data collection and analysis accomplished over a three year evaluation period (1979-1982). A major experimental feature of the study was the use of 0.100 (conventional asphalt concrete), 30/70 and 40/60 SEA binder ratios (sulfur/asphalt ratios are expressed as weight percents in the experimental paving mixtures.

  5. Hydraulic and treatment performance of pervious pavements under variable drying and wetting regimes.

    PubMed

    Yong, C F; Deletic, A; Fletcher, T D; Grace, M R

    2011-01-01

    Pervious pavements are an effective stormwater treatment technology. However, their performance under variable drying and wetting conditions have yet to be tested, particularly under a continuous time scale. This paper reports on the clogging behaviour and pollutant removal efficiency of three pervious pavement types over 26 accelerated years. These pavements were monolithic porous asphalt (PA), Permapave (PP) and modular Hydrapave (HP). Over a cycle of 13 days, the period of which was equivalent to the average annual Brisbane, Australia rainfall (1,200 mm), the pavements were randomly dosed with four different flows. Drying events of 3 h duration were simulated during each flow. Inflow and outflow samples were collected and analysed for Total Suspended Solids (TSS), Total Phosphorus (TP) and Total Nitrogen (TN). To evaluate the rate of clogging, a 1 in 5 year Brisbane storm event was simulated in the 6th, 8th, 12th, 16th, 20th and 24th week. Under normal dosing conditions, none of the pavements showed signs of clogging even after 15 years. However, under storm conditions, both PA and HP started to clog after 12 years, while PP showed no signs of clogging after 26 years. The drying and various flow events showed no effects in TSS removal, with all systems achieving a removal of approximately 100%. The average TP removal was 20% for all flows except for low flow, which had a significant amount of leaching over time. Leaching from TN was also observed during all flows except high flow. The TSS, TP and TN results observed during storm events were similar to that of high flow.

  6. Effects of an uncrushed base layer on pavement performance. Final report

    SciTech Connect

    Johnson, E.G.; Hicks, R.G.

    1987-06-01

    In 1974, the Alaska Department of Highways decided to save money and fuel by removing the base course and placing the asphalt-concrete surface directly on the surface of the Glenn Highway Widening project. The original two lanes had been constructed with a crushed-base course in 1969, thus providing an excellent comparison of the performance of the two bases. Results showed that the uncrushed base course performed better than the crushed-base course: the resilient modulus was higher and the permanent deformation was lower. The uncrushed base is apparently superior because of a larger maximum particle size and greater maximum density. An analysis of the future performance of the roadway with equal thickness of asphalt indicates that the pavement over the uncrushed base would have a longer life than the pavement over the crushed base by 54%.

  7. Temporal evolution modeling of hydraulic and water quality performance of permeable pavements

    NASA Astrophysics Data System (ADS)

    Huang, Jian; He, Jianxun; Valeo, Caterina; Chu, Angus

    2016-02-01

    A mathematical model for predicting hydraulic and water quality performance in both the short- and long-term is proposed based on field measurements for three types of permeable pavements: porous asphalt (PA), porous concrete (PC), and permeable inter-locking concrete pavers (PICP). The model was applied to three field-scale test sites in Calgary, Alberta, Canada. The model performance was assessed in terms of hydraulic parameters including time to peak, peak flow and water balance and a water quality variable (the removal rate of total suspended solids). A total of 20 simulated storm events were used for model calibration and verification processes. The proposed model can simulate the outflow hydrographs with a coefficient of determination (R2) ranging from 0.762 to 0.907, and normalized root-mean-square deviation (NRMSD) ranging from 13.78% to 17.83%. Comparison of the time to peak flow, peak flow, runoff volume and TSS removal rates between the measured and modeled values in model verification phase had a maximum difference of 11%. The results demonstrate that the proposed model is capable of capturing the temporal dynamics of the pavement performance. Therefore, the model has great potential as a practical modeling tool for permeable pavement design and performance assessment.

  8. Pavement evaluation and rehabilitation

    SciTech Connect

    Ali, N.A.; Khosla, N.P.; Johnson, E.G.; Hicks, R.G.; Uzan, J.

    1987-01-01

    The 20 papers in this report deal with the following areas: determination of layer moduli using a falling weight deflectometer; evaluation of effect of uncrushed base layers on pavement performance; the effect of contact area shape and pressure distribution on multilayer systems response; sensitivity analysis of selected backcalculation procedures; performance of a full-scale pavement design experiment in Jamaica; subsealing and load-transfer restoration; development of a demonstration prototype expert system for concrete pavement evaluation; numerical assessment of pavement test sections; development of a distress index and rehabilitation criteria for continuously reinforced concrete pavements using discriminant analysis; a mechanistic model for thermally induced reflection cracking of portland cement concrete pavement with reinforced asphalt concrete overlay; New Mexico study of interlayers used in reflective crack control; status of the South Dakota profilometer; incorporating the effects of tread pattern in a dynamic tire excitation mechanism; external methods for evaluating shock absorbers for road-roughness measurements; factor analysis of pavement distresses for surface condition predictions; development of a utility evaluation for nondestructive-testing equipment used on asphalt-concrete pavements; estimating the life of asphalt overlays using long-term pavement performance data; present serviceability-roughness correlations using rating panel data; video image distress analysis technique for Idaho transportation department pavement-management system; acceptability of shock absorbers for road roughness-measuring trailers.

  9. Pavement base drain evaluation

    NASA Astrophysics Data System (ADS)

    Hoffman, G. L.

    1981-06-01

    Portions of a highway drainage system design was revised. Essentially, the longitudinal drainage trench was moved closer to the pavement/shoulder joint, and the fine concrete sand layer was eliminated as a trench backfill material. The specified backfill material is a coarser crushed aggregate (pea gravel). An evaluation of the effects of these changes on pavement performance is given and the new pavement base drain system is compared to the older pipe foundation underdrain system at the same site.

  10. Pavement condition data analysis

    SciTech Connect

    Zaniewski, J.P.; Hudson, S.W.; Hudson, W.R.

    1987-07-01

    This paper describes a computer methodology for analyzing pavement condition data to define inputs for pavement management systems. This system of programs was developed during a Federal Highway Administration research project. In the project, eight state highway departments were studied to determine the types of pavement condition data collected, procedures used for collecting data, the inputs to the states' pavement management systems, and computer programs used by the states to analyze raw pavement condition data. Several of the programs were assembled into the Method for Analyzing Pavement Condition, MAPCON, during a project performed at Pennsylvania State University. These and other existing or new programs (a total of 18) were identified, tested, modified, and incorporated onto a MS/DOS microcomputer system. MAPCON guides the user through selection of analysis method, raw data entry, and data analysis.

  11. Thermal stresses of flexible pavement with consideration of temperature-dependent material characteristics using stiffness matrix method

    NASA Astrophysics Data System (ADS)

    Geng, Litao; Ren, Ruibo; Zhong, Yang; Xu, Qian

    2011-02-01

    The asphalt pavement is regarded as a multilayered elastic half space axisymmetrical body. By introducing the relationship between material characteristics and temperature into the fundamental equations of thermoelasticity and using mathematic methods of Laplace and Hankel integral transformation, the stiffness matrix for a layer is derived firstly. Then the global stiffness matrix is established for multilayered elastic half space using the finite element concepts in which layers are completely contacted. Therefore, explicit solution for thermal stresses of the asphalt pavement is obtained from the solution of the algebra equation formed by global stiffness matrix and the inverse Hankel and Laplace integral transformation. Because the elements of matrix do not include positive exponential function, the calculation is not overflowed and the shortages of transfer matrix method are overcome. This approach serves as a better model for real pavement structure as it takes into account the relationships between the material characteristics and temperature in the pavement system.

  12. Relationships between laboratory measured HMA material and mixture properties and pavement performance at WesTrack

    NASA Astrophysics Data System (ADS)

    Hand, Adam J. T.

    For years researchers and practitioners alike in the pavements and materials industry have attempted to establish relationships between laboratory measured material and mixture properties and actual pavement performance. The ultimate goal of any highway agency is to have performance related specifications, which require such relationships. This sounds simple enough, but in reality such a task is not so simple due to the extremely complex behavior of hot mix asphalt. Due to the fact that it takes many years to evaluate new materials and methodologies, the use of accelerated loading facilities such as WesTrack for evaluation purposes becomes very advantageous. The research presented here produces multiple permanent deformation performance relationships for the WesTrack project, some of which may be extended to other environments. An attempt to develop similar fatigue performance relationships was unsuccessful due partially to the lack of fatigue distress at WesTrack to date. Additionally, mix design and some quality control data summaries are presented for the project along with an investigation into a potential cause of the premature rutting of coarse Superpave mixes. The investigation resulted in the development of precision statements for the ASTM D5821-95 coarse aggregate angularity test method and a better understanding of the sensitivity of coarse Superpave mixtures.

  13. General outlook of pavement and vehicle dynamics

    SciTech Connect

    Mamlouk, M.S.

    1997-11-01

    The interaction between vehicle and pavement is complex since pavement roughness excites the dynamic forces generated by vehicles, while these dynamic forces simultaneously increase the pavement roughness. The objective of this paper is to provide an overview of the results of recent research related to pavement and vehicle dynamics and their interaction and to evaluate their potential use in the design and management of pavements. Pavement dynamic models are capable of determining stresses, strains, and deflections in various directions when harmonic, pulse, or transient loads are applied. Vehicle dynamic models simulate the effect of pavement roughness on the inertia of various vehicle components. These models can predict the dynamic forces produced by different axles and wheels of traveling vehicles at different locations along the pavement. Pavement response computed using dynamic models matches field measurements closer than those computed using static models. The concept of vehicle-pavement interaction can be applied to weigh-in-motion, pavement design and performance, and vehicle regulations.

  14. Water quality and quantity assessment of pervious pavements performance in experimental car park areas.

    PubMed

    Sañudo-Fontaneda, Luis A; Charlesworth, Susanne M; Castro-Fresno, Daniel; Andres-Valeri, Valerio C A; Rodriguez-Hernandez, Jorge

    2014-01-01

    Pervious pavements have become one of the most used sustainable urban drainage system (SUDS) techniques in car parks. This research paper presents the results of monitoring water quality from several experimental car park areas designed and constructed in Spain with bays made of interlocking concrete block pavement, porous asphalt, polymer-modified porous concrete and reinforced grass with plastic and concrete cells. Moreover, two different sub-base materials were used (limestone aggregates and basic oxygen furnace slag). This study therefore encompasses the majority of the materials used as permeable surfaces and sub-base layers all over the world. Effluent from the test bays was monitored for dissolved oxygen, pH, electric conductivity, total suspended solids, turbidity and total petroleum hydrocarbons in order to analyze the behaviour shown by each combination of surface and sub-base materials. In addition, permeability tests were undertaken in all car parks using the 'Laboratorio Caminos Santander' permeameter and the Cantabrian Portable Infiltrometer. All results are presented together with the influence of surface and sub-base materials on water quality indicators using bivariate correlation statistical analysis at a confidence level of 95%. The polymer-modified porous concrete surface course in combination with limestone aggregate sub-base presented the best performance. PMID:24718346

  15. Water quality and quantity assessment of pervious pavements performance in experimental car park areas.

    PubMed

    Sañudo-Fontaneda, Luis A; Charlesworth, Susanne M; Castro-Fresno, Daniel; Andres-Valeri, Valerio C A; Rodriguez-Hernandez, Jorge

    2014-01-01

    Pervious pavements have become one of the most used sustainable urban drainage system (SUDS) techniques in car parks. This research paper presents the results of monitoring water quality from several experimental car park areas designed and constructed in Spain with bays made of interlocking concrete block pavement, porous asphalt, polymer-modified porous concrete and reinforced grass with plastic and concrete cells. Moreover, two different sub-base materials were used (limestone aggregates and basic oxygen furnace slag). This study therefore encompasses the majority of the materials used as permeable surfaces and sub-base layers all over the world. Effluent from the test bays was monitored for dissolved oxygen, pH, electric conductivity, total suspended solids, turbidity and total petroleum hydrocarbons in order to analyze the behaviour shown by each combination of surface and sub-base materials. In addition, permeability tests were undertaken in all car parks using the 'Laboratorio Caminos Santander' permeameter and the Cantabrian Portable Infiltrometer. All results are presented together with the influence of surface and sub-base materials on water quality indicators using bivariate correlation statistical analysis at a confidence level of 95%. The polymer-modified porous concrete surface course in combination with limestone aggregate sub-base presented the best performance.

  16. Long-term stormwater quantity and quality performance of permeable pavement systems.

    PubMed

    Brattebo, Benjamin O; Booth, Derek B

    2003-11-01

    This study examined the long-term effectiveness of permeable pavement as an alternative to traditional impervious asphalt pavement in a parking area. Four commercially available permeable pavement systems were evaluated after 6 years of daily parking usage for structural durability, ability to infiltrate precipitation, and impacts on infiltrate water quality. All four permeable pavement systems showed no major signs of wear. Virtually all rainwater infiltrated through the permeable pavements, with almost no surface runoff. The infiltrated water had significantly lower levels of copper and zinc than the direct surface runoff from the asphalt area. Motor oil was detected in 89% of samples from the asphalt runoff but not in any water sample infiltrated through the permeable pavement. Neither lead nor diesel fuel were detected in any sample. Infiltrate measured 5 years earlier displayed significantly higher concentrations of zinc and significantly lower concentrations of copper and lead.

  17. Performance of pervious pavement parking bays storing rainwater in the north of Spain.

    PubMed

    Gomez-Ullate, E; Bayon, J R; Coupe, S; Castro-Fresno, D

    2010-01-01

    Pervious pavements are drainage techniques that improve urban water management in a sustainable manner. An experimental pervious pavement parking area has been constructed in the north of Spain (Santander), with the aim of harvesting good quality rainwater. Forty-five pervious pavement structures have been designed and constructed to measure stored water quantity and quality simultaneously. Ten of these structures are specifically constructed with different geotextile layers for improving water storage within the pavements. Following the confirmation in previous laboratory experiments that the geotextile influenced on water storage, two different geosynthetics (Inbitex and a One Way evaporation control membrane) and control pervious pavements with no geotextile layers were tested in the field. Weather conditions were monitored in order to find correlations with the water storage within the pervious pavement models tested. During one year of monitoring the three different pervious pavement types tested remained at their maximum storage capacity. The heavy rain events which occurred during the experimental period caused evaporation rates within the pervious pavements to be not significant, but allowed the researchers to observe certain trends in the water storage. Temperature was the most closely correlated weather factor with the level of the water stored within the pervious pavements tested.

  18. Pavement performance monitoring using Dynamic Cone Penetrometer and Geogauge during construction

    NASA Astrophysics Data System (ADS)

    Ahsan, Ahmed Nawal

    Proper design life of road network system requires adequate quality control measures during the construction process to ensure proper material quality and sufficient strength in between the materials. Laboratory tests are often time consuming and sometimes, are not practical while the construction work is going on, in-situ techniques can efficiently evaluate the material properties through simple and less time consuming procedures. Dynamic Cone Penetrometer and Geogauge can play a vital role as an in-situ testing equipment because both have the potential to measure the change in material properties through field tests being performed in the field. Both in-situ techniques was not extensively used in North Texas area. Frequent use of these two equipment during the construction process can expedite the whole construction process because both are hand-held devices and can be conducted within a short amount of time, often in minutes. For this study, Dynamic Cone Penetrometer and Geogauge was used to assess the material properties from the tests performed on five construction sites of Horseshoe Project around Dallas, TX. Several points across the width of the pavement have been considered to perform these in-situ tests along with Nuclear Density Gauge test in two of these sites. A thorough analysis has been conducted for the material properties to be determined. Dynamic Cone Penetrometer and Geogauge both were consistent to measure the change in in-place material characteristics of the pavement materials. The design thickness of cement treated base layer where the tests were being performed was 6". DCP was efficient enough to detect the layer thickness up to a proximity of 0.5 inch and was also able to distinguish layer anomalies between the pavement layers. Cement stabilized base layer provided with a DCPI value which ranges from 0.5 mm/blow to 8 mm/blow whereas, DCPI values were observed to remain within a range of 2 mm/blow to 22 mm/ blow. For the top 6" cement

  19. Generating enhanced site topography data to improve permeable pavement performance assessment methods - presentation

    EPA Science Inventory

    Permeable pavement surfaces are infiltration based stormwater control measures (SCM) commonly applied in parking lots to decrease impervious area and reduce runoff volume. Many are not optimally designed however, as little attention is given to draining a large enough contributin...

  20. Estimating flexible pavement maintenance and rehabilitation fund requirements for a transportation network. Research report (Interim) September 1984-February 1988

    SciTech Connect

    Stein, A.; Scullion, T.

    1988-02-01

    In the early 1980's the Texas State Department of Highways and Public Transportation implemented its Pavement Evaluation System. The system was designed to (a) document trends in network condition and (b) generate a one-year estimate of rehabilitation funding. The information generated by the system was used for many purposes including funding request, project prioritization and documenting the consequences of changes in funding levels. However, a limitation of the system was its inability to project future conditions and make multi-year needs estimates. This is the subject of the report. Regression equations were built for each major distress type from a pavement data base containing a 10-year history of condition trends from over 350 random sections in Texas. These equations were used to age individual sections that did not qualify for maintenance or rehabilitation in a particular year. A simple decision tree was developed to estimate the maintenance requirements if rehabilitation is not warranted. The decision-tree represents the opinions of experienced maintenance engineers. A case study and sensitivity analysis are presented.

  1. Sulfur extended asphalt pavement evaluation in the State of Washington: Executive summary of SR270 highway pavement performance

    NASA Astrophysics Data System (ADS)

    Mahoney, J. P.

    1982-11-01

    This executive summary overviews the placement and performance of sulfur extended asphalt (SEA) paving mixtures at a highway test site (SR 270) near Pullman, Washington. This summary is the sixth and last report of this study.

  2. Hydrologic and Pollutant Removal Performance of a Full-Scale, Fully Functional Permeable Pavement Parking Lot

    EPA Science Inventory

    In accordance with the need for full-scale, replicated studies of permeable pavement systems used in their intended application (parking lot, roadway, etc.) across a range of climatic events, daily usage conditions, and maintenance regimes to evaluate these systems, the EPA’s Urb...

  3. Stormwater infiltration and surface runoff pollution reduction performance of permeable pavement layers.

    PubMed

    Niu, Zhi-Guang; Lv, Zhi-Wei; Zhang, Ying; Cui, Zhen-Zhen

    2016-02-01

    In this paper, the laboratory-scale permeable pavement layers, including a surface permeable brick layer, coarse sand bedding layers (thicknesses = 2, 3.5, and 5 cm), and single-graded gravel sub-base layers (thicknesses = 15, 20, 25, and 30 cm), were built to evaluate stormwater infiltration and surface runoff pollution reduction performance. And, the infiltration rate (I) and concentrations of suspended solids (SS), total phosphorus (TP), chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were measured under the simulated rainfall intensity of 72.4 mm/h over duration of 60 min. The results indicate that the thickness factor primarily influences the infiltration rate and pollutant removal rate. The highest steady infiltration rate was for surface brick layer 51.0 mm/h, for 5-cm sand bedding layer 32.3 mm/h, and for 30-cm gravel sub-base layer 42.3 mm/h, respectively. The SS average removal rate was relative higher (79.8 ∼ 98.6 %) for all layers due to the interception and filtration. The average removal rates of TP and COD were for surface layer 71.2 and 24.1 %, for 5-cm bedding layer 54.8 and 9.0 %, and for 20-cm sub-base layer 72.2 and 26.1 %. Ammonia nitrogen and TN cannot steadily be removed by layers according to the experiment results. The optimal thickness of bedding sands was 5 cm, and that of sub-base gravels was 20 ∼ 30 cm. PMID:26429141

  4. Stormwater infiltration and surface runoff pollution reduction performance of permeable pavement layers.

    PubMed

    Niu, Zhi-Guang; Lv, Zhi-Wei; Zhang, Ying; Cui, Zhen-Zhen

    2016-02-01

    In this paper, the laboratory-scale permeable pavement layers, including a surface permeable brick layer, coarse sand bedding layers (thicknesses = 2, 3.5, and 5 cm), and single-graded gravel sub-base layers (thicknesses = 15, 20, 25, and 30 cm), were built to evaluate stormwater infiltration and surface runoff pollution reduction performance. And, the infiltration rate (I) and concentrations of suspended solids (SS), total phosphorus (TP), chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were measured under the simulated rainfall intensity of 72.4 mm/h over duration of 60 min. The results indicate that the thickness factor primarily influences the infiltration rate and pollutant removal rate. The highest steady infiltration rate was for surface brick layer 51.0 mm/h, for 5-cm sand bedding layer 32.3 mm/h, and for 30-cm gravel sub-base layer 42.3 mm/h, respectively. The SS average removal rate was relative higher (79.8 ∼ 98.6 %) for all layers due to the interception and filtration. The average removal rates of TP and COD were for surface layer 71.2 and 24.1 %, for 5-cm bedding layer 54.8 and 9.0 %, and for 20-cm sub-base layer 72.2 and 26.1 %. Ammonia nitrogen and TN cannot steadily be removed by layers according to the experiment results. The optimal thickness of bedding sands was 5 cm, and that of sub-base gravels was 20 ∼ 30 cm.

  5. High performance flexible electronics for biomedical devices.

    PubMed

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.

  6. Field Performance of Asphalt Pavements with New Technologies in Northern Nevada

    NASA Astrophysics Data System (ADS)

    Faeth, Benjamin Michael

    The Regional Transportation Commission (RTC) of the Washoe Valley Area has been tasked to determine if three advanced asphalt pavement technologies and one modified aggregate gradation are suitable for implementation within Reno, Stead, and Sparks Nevada. This was accomplished through research and test roads and Intersections to determine if Recycled Asphalt Pavement (RAP), Warm Mix Asphalt (WMA), Polymer-Modified Asphalt Binder, and the Type 2-R aggregate gradation were succeeding in their design plans. Over the course of several years the streets being used by RTC to test the technologies are succeeding within their design lifespans, and the Intersections being used to test the Type 2-R aggregate gradation are showing significant resistance to rutting. Due to the roads and Intersections not being more than 10 years old, these conclusions are subject to change over time.

  7. Flexibility and Performance of Parallel File Systems

    NASA Technical Reports Server (NTRS)

    Kotz, David; Nieuwejaar, Nils

    1996-01-01

    As we gain experience with parallel file systems, it becomes increasingly clear that a single solution does not suit all applications. For example, it appears to be impossible to find a single appropriate interface, caching policy, file structure, or disk-management strategy. Furthermore, the proliferation of file-system interfaces and abstractions make applications difficult to port. We propose that the traditional functionality of parallel file systems be separated into two components: a fixed core that is standard on all platforms, encapsulating only primitive abstractions and interfaces, and a set of high-level libraries to provide a variety of abstractions and application-programmer interfaces (API's). We present our current and next-generation file systems as examples of this structure. Their features, such as a three-dimensional file structure, strided read and write interfaces, and I/O-node programs, are specifically designed with the flexibility and performance necessary to support a wide range of applications.

  8. Artificial intelligence modeling to evaluate field performance of photocatalytic asphalt pavement for ambient air purification.

    PubMed

    Asadi, Somayeh; Hassan, Marwa; Nadiri, Ataallah; Dylla, Heather

    2014-01-01

    In recent years, the application of titanium dioxide (TiO₂) as a photocatalyst in asphalt pavement has received considerable attention for purifying ambient air from traffic-emitted pollutants via photocatalytic processes. In order to control the increasing deterioration of ambient air quality, urgent and proper risk assessment tools are deemed necessary. However, in practice, monitoring all process parameters for various operating conditions is difficult due to the complex and non-linear nature of air pollution-based problems. Therefore, the development of models to predict air pollutant concentrations is very useful because it can provide early warnings to the population and also reduce the number of measuring sites. This study used artificial neural network (ANN) and neuro-fuzzy (NF) models to predict NOx concentration in the air as a function of traffic count (Tr) and climatic conditions including humidity (H), temperature (T), solar radiation (S), and wind speed (W) before and after the application of TiO₂ on the pavement surface. These models are useful for modeling because of their ability to be trained using historical data and because of their capability for modeling highly non-linear relationships. To build these models, data were collected from a field study where an aqueous nano TiO₂ solution was sprayed on a 0.2-mile of asphalt pavement in Baton Rouge, LA. Results of this study showed that the NF model provided a better fitting to NOx measurements than the ANN model in the training, validation, and test steps. Results of a parametric study indicated that traffic level, relative humidity, and solar radiation had the most influence on photocatalytic efficiency.

  9. Architectural modifications for flexible supercapacitor performance optimization

    NASA Astrophysics Data System (ADS)

    Keskinen, Jari; Lehtimäki, Suvi; Dastpak, Arman; Tuukkanen, Sampo; Flyktman, Timo; Kraft, Thomas; Railanmaa, Anna; Lupo, Donald

    2016-09-01

    We have developed material and architectural alternatives for flexible supercapacitors and investigated their effect on practical performance. The substrate alternatives include paperboard as well as various polyethylene terephthalate (PET) films and laminates, with aqueous NaCl electrolyte used in all devices. In all the supercapacitors, activated carbon is used as the active layer and graphite ink as the current collector, with various aluminium or copper structures applied to enhance the current collectors' conductivity. The capacitance of the supercapacitors was between 0.05 F and 0.58 F and their equivalent series resistance (ESR) was from <1 Ω to 14 Ω, depending mainly on the current collector structure. Furthermore, leakage current and selfdischarge rates were defined and compared for the various architectures. The barrier properties of the supercapacitor encapsulation have a clear correlation with leakage current, as was clearly shown by the lower leakage in devices with an aluminium barrier layer. A cycle life test showed that after 40000 charge-discharge cycles the capacitance decreases by less than 10%.

  10. Performance of an enhanced pervious pavement system loaded with large volumes of hydrocarbons.

    PubMed

    Newman, Alan P; Puehmeier, Tim; Shuttleworth, Andy; Pratt, Christopher J

    2014-01-01

    Five litres of lubricating oil and two 8.5 litre batches of diesel were deposited on each of two hydraulically isolated experimental enhanced pervious pavement parking bays. The 50 mm aggregate subbases of the two bays were of either recycled concrete or crushed limestone. The bays were constructed in such a way that a near-surface gravity separator was created by the arranging of the outlet pipes such that a permanent pool of water was maintained in the system and water could only enter from below the level of any floating oil. Dissolved/dispersed hydrocarbons were measured at acceptable concentrations when monitoring was carried out over a period of approximately 5 months. The maximum concentration was 7.2 mg/l and of all the samples collected only 3% exceeded the 5 mg/l limit applied in the UK for a class 1 interceptor, and the majority of samples had hydrocarbon concentrations of less than 2 mg/l. Much more significant is the fact that no free product was discharged from either system up to the time the experiment was dismantled 2 years from the first oil application despite the fact that sufficient hydrocarbon had been added to each pavement to produce a film on a water surface of over 500 hectares. PMID:25225930

  11. Performance of an enhanced pervious pavement system loaded with large volumes of hydrocarbons.

    PubMed

    Newman, Alan P; Puehmeier, Tim; Shuttleworth, Andy; Pratt, Christopher J

    2014-01-01

    Five litres of lubricating oil and two 8.5 litre batches of diesel were deposited on each of two hydraulically isolated experimental enhanced pervious pavement parking bays. The 50 mm aggregate subbases of the two bays were of either recycled concrete or crushed limestone. The bays were constructed in such a way that a near-surface gravity separator was created by the arranging of the outlet pipes such that a permanent pool of water was maintained in the system and water could only enter from below the level of any floating oil. Dissolved/dispersed hydrocarbons were measured at acceptable concentrations when monitoring was carried out over a period of approximately 5 months. The maximum concentration was 7.2 mg/l and of all the samples collected only 3% exceeded the 5 mg/l limit applied in the UK for a class 1 interceptor, and the majority of samples had hydrocarbon concentrations of less than 2 mg/l. Much more significant is the fact that no free product was discharged from either system up to the time the experiment was dismantled 2 years from the first oil application despite the fact that sufficient hydrocarbon had been added to each pavement to produce a film on a water surface of over 500 hectares.

  12. High-Performance Flexible Waveguiding Photovoltaics

    PubMed Central

    Chou, Chun-Hsien; Chuang, Jui-Kang; Chen, Fang-Chung

    2013-01-01

    The use of flat-plane solar concentrators is an effective approach toward collecting sunlight economically and without sun trackers. The optical concentrators are, however, usually made of rigid glass or plastics having limited flexibility, potentially restricting their applicability. In this communication, we describe flexible waveguiding photovoltaics (FWPVs) that exhibit high optical efficiencies and great mechanical flexibility. We constructed these FWPVs by integrating poly-Si solar cells, a soft polydimethylsiloxane (PDMS) waveguide, and a TiO2-doped backside reflector. Optical microstructures that increase the light harvesting ability of the FWPVs can be fabricated readily, through soft lithography, on the top surface of the PDMS waveguide. Our optimized structure displayed an optical efficiency of greater than 42% and a certified power conversion efficiency (PCE) of 5.57%, with a projected PCE as high as approximately 18%. This approach might open new avenues for the harvesting of solar energy at low cost with efficient, mechanically flexible photovoltaics. PMID:23873225

  13. Effects of Using Silica Fume and Polycarboxylate-Type Superplasticizer on Physical Properties of Cementitious Grout Mixtures for Semiflexible Pavement Surfacing

    PubMed Central

    Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S.; Katman, Herdayati; Husain, Nadiah Md

    2014-01-01

    Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout. PMID:24526911

  14. Effects of using silica fume and polycarboxylate-type superplasticizer on physical properties of cementitious grout mixtures for semiflexible pavement surfacing.

    PubMed

    Koting, Suhana; Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S; Ibrahim, Mohd Rasdan; Katman, Herdayati; Husain, Nadiah Md

    2014-01-01

    Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout.

  15. Effects of using silica fume and polycarboxylate-type superplasticizer on physical properties of cementitious grout mixtures for semiflexible pavement surfacing.

    PubMed

    Koting, Suhana; Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S; Ibrahim, Mohd Rasdan; Katman, Herdayati; Husain, Nadiah Md

    2014-01-01

    Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout. PMID:24526911

  16. In-depth study of cold in-place recycled-pavement performance. Volume 1. Final report. Rept. for Dec 88-Oct 90

    SciTech Connect

    Scholz, T.V.; Hicks, R.G.; Rogge, D.F.

    1990-12-01

    Oregon has developed a mix design procedure for cold in-place recycled (CIR) asphalt concrete pavements. The procedure involves estimation of an initial emulsion content based on gradation of recycled asphalt pavement (RAP), asphalt content of RAP, and penetration and viscosity of recovered asphalt. When an estimated emulsion content is determined, Marshall-sized specimens are prepared for a range of emulsion contents with the range centered on the estimated emulsion content. Hveem and Marshall stability, resilient modulus, and index of retained modulus (IRM) tests are performed on the specimens and a design emulsion content is selected based upon these results. Because of variations in RAP properties, continual need for field adjustments, and the difficulty of interpreting mix property test results, only the estimation part of the procedure is currently implemented. The paper describes the mix design procedure and presents lab results demonstrating the difficulty of choosing emulsion content based on Hveem and Marshall stability, resilient modulus and IRM. Data comparing design emulsion content with actual emulsion contents used in the field are presented. Selection of water content is discussed. Test results of mix properties monitored over time are presented, demonstrating the curing of the emulsion. Performance data for CIR pavements constructed from 1984 through 1988 are presented as well as initial results of an attempt to use lime during recycling to correct a stripped pavement. A construction and inspection manual is presented as a separate document.

  17. In-situ infiltration performance of different permeable pavements in a employee used parking lot--A four-year study.

    PubMed

    Kumar, Kuldip; Kozak, Joseph; Hundal, Lakhwinder; Cox, Albert; Zhang, Heng; Granato, Thomas

    2016-02-01

    Permeable pavements are being adopted as a green solution in many parts of the world to manage urban stormwater quantity and quality. This paper reports on the measured in-situ infiltration performance over a four-year period since construction and use of three permeable parking sections (permeable pavers, permeable concrete and permeable asphalt) of an employee car parking lot. There was only a marginal decline in infiltration rates of all three pavements after one year of use. However, between years two to four, the infiltration rates declined significantly due to clogging of pores either by dry deposition of particles and/or shear stress of vehicles driving and degrading the permeable surfaces; during the last two years, a greater decline was also observed in driving areas of the parking lots compared to parking slots, where minimal wear and tear are expected. Maintenance strategies were employed to reclaim some of the lost infiltration rate of the permeable pavements to limited success. Despite this decline, the infiltration rates were still four to five times higher than average rainstorm intensity in the region. Thus, these permeable pavement parking lots may have significant ecological importance due to their ability to infiltrate rainwater quickly, reduce the runoff in the catchment area, and also dampen runoff peak flows that could otherwise enter the collection system for treatment in a combined sewer area. PMID:26606196

  18. In-situ infiltration performance of different permeable pavements in a employee used parking lot--A four-year study.

    PubMed

    Kumar, Kuldip; Kozak, Joseph; Hundal, Lakhwinder; Cox, Albert; Zhang, Heng; Granato, Thomas

    2016-02-01

    Permeable pavements are being adopted as a green solution in many parts of the world to manage urban stormwater quantity and quality. This paper reports on the measured in-situ infiltration performance over a four-year period since construction and use of three permeable parking sections (permeable pavers, permeable concrete and permeable asphalt) of an employee car parking lot. There was only a marginal decline in infiltration rates of all three pavements after one year of use. However, between years two to four, the infiltration rates declined significantly due to clogging of pores either by dry deposition of particles and/or shear stress of vehicles driving and degrading the permeable surfaces; during the last two years, a greater decline was also observed in driving areas of the parking lots compared to parking slots, where minimal wear and tear are expected. Maintenance strategies were employed to reclaim some of the lost infiltration rate of the permeable pavements to limited success. Despite this decline, the infiltration rates were still four to five times higher than average rainstorm intensity in the region. Thus, these permeable pavement parking lots may have significant ecological importance due to their ability to infiltrate rainwater quickly, reduce the runoff in the catchment area, and also dampen runoff peak flows that could otherwise enter the collection system for treatment in a combined sewer area.

  19. Predicting pavement distress in oil field areas

    SciTech Connect

    Mason, J.M.; Scullion, T.; Stampley, B.E.

    1984-05-01

    A study on oil field traffic characteristics was performed and a procedure was developed for assessing current and future effects of oil field truck traffic on surface-treated (stage construction type) pavements. A computer program calculates several types of pavement distress and serviceability parameters to evaluate pavement performance under various axle load repetitions. Stepwise regression analysis of 132 surface-treated pavement sections led to the development of individual distress equations for rutting, raveling, flushing, alligator cracking, patching, longitudinal and transverse cracking, and failures (potholes). The versatility of the program provides a means of anticipating early pavement failures due to increased axle load repetitions. The program also provides the basic framework for computing the effects of other ''special-use'' truck traffic demands.

  20. Predicting pavement distress in oil field areas

    SciTech Connect

    Mason, J.M.; Scullion, T.; Stampley, B.E.

    1983-05-01

    A study on oil field traffic characteristics was performed and a procedure was developed for assessing current and future effects of oil field truck traffic on surface-treated (stage construction type) pavements. A computer program calculates several types of pavement distress and serviceability parameters to evaluate pavement performance under various axle load repetitions. Stepwise regression analysis of 132 surface-treated pavement sections led to the development of individual distress equations for rutting, raveling, flushing, alligator cracking, patching, longitudinal and transverse cracking, and failures (potholes). The versatility of the program provides a means of anticipating early pavement failures due to increased axle load repetitions. The program also provides the basic framework for computing the effects of other ''special-use'' truck traffic demands.

  1. A Study on the Estimation of the Performance of Sediment Pavement and the Required Function of the Farm Road in a Paddy Area

    NASA Astrophysics Data System (ADS)

    Ogata, Hidehiko; Noda, Tomoyuki; Sakamoto, Yasufumi; Shinotsuka, Masanori; Kamada, Osamu; Nakamura, Kazuaki

    The pavement rate of the farm road which becomes important in activities of agricultural production, circulation of agricultural products and rural life is low. There are many farm roads to which the function of traveling performance, traveling comfort and prevention of the damage of agricultural products in transportation is not secured. Maintenance including improvement in the pavement rate of a farm road must be economically carried out based on the service environment, the circumference environment and the required function according to the kind of farm road. In this research, the problem of the farm road in a paddy area was extracted from the questionnaire to a land improvement district as an administrator, and the conditions which should be taken into consideration in maintenance of a farm road were clarified. The problem of a farm road is deformation of a road surface and a request is a period which does not need to repair. Moreover, the present performance of ground property and road surface of sediment pavement on-farm road was evaluated. Positive correlation is between the standard deviation of modulus of elasticity of the soil and surface roughness, negative correlation is between the modulus of elasticity of the soil in the rut and rutting depth.

  2. Flexibility of movement organization in piano performance.

    PubMed

    Furuya, Shinichi; Altenmüller, Eckart

    2013-01-01

    Piano performance involves a large repertoire of highly skilled movements. The acquisition of these exceptional skills despite innate neural and biomechanical constraints requires a sophisticated interaction between plasticity of the neural system and organization of a redundant number of degrees of freedom (DOF) in the motor system. Neuroplasticity subserving virtuosity of pianists has been documented in neuroimaging studies investigating effects of long-term piano training on structure and function of the cortical and subcortical regions. By contrast, recent behavioral studies have advanced the understanding of neuromuscular strategies and biomechanical principles behind the movement organization that enables skilled piano performance. Here we review the motor control and biomechanics literature, introducing the importance of describing motor behaviors not only for understanding mechanisms responsible for skillful motor actions in piano playing, but also for advancing diagnosis and rehabilitation of movement disorders caused by extensive piano practice. PMID:23882199

  3. Flexibility of movement organization in piano performance

    PubMed Central

    Furuya, Shinichi; Altenmüller, Eckart

    2013-01-01

    Piano performance involves a large repertoire of highly skilled movements. The acquisition of these exceptional skills despite innate neural and biomechanical constraints requires a sophisticated interaction between plasticity of the neural system and organization of a redundant number of degrees of freedom (DOF) in the motor system. Neuroplasticity subserving virtuosity of pianists has been documented in neuroimaging studies investigating effects of long-term piano training on structure and function of the cortical and subcortical regions. By contrast, recent behavioral studies have advanced the understanding of neuromuscular strategies and biomechanical principles behind the movement organization that enables skilled piano performance. Here we review the motor control and biomechanics literature, introducing the importance of describing motor behaviors not only for understanding mechanisms responsible for skillful motor actions in piano playing, but also for advancing diagnosis and rehabilitation of movement disorders caused by extensive piano practice. PMID:23882199

  4. Flexibility of movement organization in piano performance.

    PubMed

    Furuya, Shinichi; Altenmüller, Eckart

    2013-01-01

    Piano performance involves a large repertoire of highly skilled movements. The acquisition of these exceptional skills despite innate neural and biomechanical constraints requires a sophisticated interaction between plasticity of the neural system and organization of a redundant number of degrees of freedom (DOF) in the motor system. Neuroplasticity subserving virtuosity of pianists has been documented in neuroimaging studies investigating effects of long-term piano training on structure and function of the cortical and subcortical regions. By contrast, recent behavioral studies have advanced the understanding of neuromuscular strategies and biomechanical principles behind the movement organization that enables skilled piano performance. Here we review the motor control and biomechanics literature, introducing the importance of describing motor behaviors not only for understanding mechanisms responsible for skillful motor actions in piano playing, but also for advancing diagnosis and rehabilitation of movement disorders caused by extensive piano practice.

  5. Flexibility.

    ERIC Educational Resources Information Center

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  6. Digital image processing as a tool for pavement distress evaluation

    NASA Astrophysics Data System (ADS)

    Georgopoulos, A.; Loizos, A.; Flouda, A.

    The information obtained through accurate condition assessment of pavement surface distress data is needed as an essential input to any decision making process concerning pavement management policy. At the same time technological advances in automated inspection systems provide the opportunity to automate the collection and evaluation of the pavement surface condition. In this paper a method developed jointly by the Laboratories of Highway Engineering and Photogrammetry of the National Technical University of Athens is described and proposed. The method involves digital image processing techniques to provide suitable digital imagery as input to specialised software developed especially for this project. This software determines objectively and fully automatically the type, the extent and the severity of surface crackings for flexible road pavements. The proposed method presenten substantial agreement, when compared with systematic visual ratings of existing pavement crackings carried out according to the internationally accepted requirements for airfield and road pavement of the Federal Aviation Administration (FAA).

  7. High-performance, flexible, deployable array development for space applications

    NASA Technical Reports Server (NTRS)

    Gehling, Russell N.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-01-01

    Flexible, deployable arrays are an attractive alternative to conventional solar arrays for near-term and future space power applications, particularly due to their potential for high specific power and low storage volume. Combined with low-cost flexible thin-film photovoltaics, these arrays have the potential to become an enabling or an enhancing technology for many missions. In order to expedite the acceptance of thin-film photovoltaics for space applications, however, parallel development of flexible photovoltaics and the corresponding deployable structure is essential. Many innovative technologies must be incorporated in these arrays to ensure a significant performance increase over conventional technologies. For example, innovative mechanisms which employ shape memory alloys for storage latches, deployment mechanisms, and array positioning gimbals can be incorporated into flexible array design with significant improvement in the areas of cost, weight, and reliability. This paper discusses recent activities at Martin Marietta regarding the development of flexible, deployable solar array technology. Particular emphasis is placed on the novel use of shape memory alloys for lightweight deployment elements to improve the overall specific power of the array. Array performance projections with flexible thin-film copper-indium-diselenide (CIS) are presented, and government-sponsored solar array programs recently initiated at Martin Marietta through NASA and Air Force Phillips Laboratory are discussed.

  8. Implementation and Validation of the Viscoelastic Continuum Damage Theory for Asphalt Mixture and Pavement Analysis in Brazil

    NASA Astrophysics Data System (ADS)

    Nascimento, Luis Alberto Herrmann do

    the asphalt mixtures' fatigue performance. In the second step, the S-VECD test protocol was used to characterize the asphalt mixtures used in the 27 selected Fundao project test sections and subjected to real traffic loading. Thus, the asphalt mixture properties, pavement structure data, traffic loading, and climate were input into the LVECD program for pavement fatigue cracking performance simulations. The simulation results showed good agreement with the field-observed distresses. Then, a damage shift approach, based on the initial simulated damage growth rate, was introduced in order to obtain a unique relationship between the LVECD-simulated shifted damage and the pavement-observed fatigue cracked areas. This correlation was fitted to a power form function and defined as the averaged reduced damage-to-cracked area transfer function. The last step consisted of using the averaged reduced damage-to-cracked area transfer function that was developed in the Fundao project to predict pavement fatigue cracking in 17 National MEPDG project test sections. The procedures for the material characterization and pavement data gathering adopted in this step are similar to those used for the Fundao project simulations. This research verified that the transfer function defined for the Fundao project sections can be used for the fatigue performance predictions of a wide range of pavements all over Brazil, as the predicted and observed cracked areas for the National MEPDG pavements presented good agreement, following the same trends found for the Fundao project pavement sites. Based on the prediction errors determined for all 44 pavement test sections (Fundao and National MEPDG test sections), the proposed framework's prediction capability was determined so that reliability-based solutions can be applied for flexible pavement design. It was concluded that the proposed LVECD program framework has very good fatigue cracking prediction capability.

  9. Rubber modified and performance based asphalt binder pavements: I-5 Nisqually River to Gravelly Lake. Post construction report

    SciTech Connect

    Pierce, L.M.

    1996-01-01

    The report describes the construction of asphalt pavements made with three types of asphalt binders. The three types of binders were PBA-6, PBA-6GR (ground rubber), and AR4000W. The two modified binders, PBA-6 and PBA-6GR, are being evaluated to determine their resistance to rutting as compared to the conventional binder, AR4000W.

  10. Three Permeable Pavements Performances for Priority Metal Pollutants and Metals associated with Deicing Chemicals from Edison Parking Lot, NJ - abstract

    EPA Science Inventory

    The U.S. Environmental Protection Agency constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each p...

  11. Three Permeable Pavements Performances for Priority Metal Pollutants and Metals Associated with Deicing Chemicals from Edison Parking Lot, NJ

    EPA Science Inventory

    The U.S. Environmental Protection Agency constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each p...

  12. Hydrologic and Pollutant Removal Performance of a Full-Scale, Fully Functional Permeable Pavement Parking Lot - paper

    EPA Science Inventory

    To meet the need for long-term, full-scale, replicated studies of permeable pavement systems used in their intended application (parking lot, roadway, etc.) across a range of climatic events, daily usage conditions, and maintenance regimes to evaluate these systems, the EPA’s Urb...

  13. Effects of structure flexibility on horizontal axis wind turbine performances

    NASA Astrophysics Data System (ADS)

    Coiro, D. P.; Daniele, E.; Scherillo, F.

    2013-10-01

    This work illustrates the effects of flexibility of rotor blades and turbine tower on the performances of an horizontal axis wind turbine (HAWT) designed by our ADAG research group, by means of several example applied on a recent project for a active pitch controlled upwind 60 kW HAWT. The influence of structural flexibility for blade only, tower only and blade coupled with tower configuration is investigated using an aero-elastic computer-aided engineering (CAE) tool for horizontal axis wind turbines named FAST developed at National Renewable Energy Laboratory (NREL) of USA. For unsteady inflow conditions in front of the isolated HAWT the performances in rigid and flexible operation mode are computed and compared in order to illustrate the limitation included within a classical rigid body approach to wind turbine simulation.

  14. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.

    PubMed

    Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2015-01-01

    Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells. PMID:26039484

  15. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.

    PubMed

    Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2015-01-01

    Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells.

  16. Utilize Cementitious High Carbon Fly Ash (CHCFA) to Stabilize Cold In-Place Recycled (CIR) Asphalt Pavement as Base Coarse

    SciTech Connect

    Wen, Haifang; Li, Xiaojun; Edil, Tuncer; O'Donnell, Jonathan; Danda, Swapna

    2011-02-05

    The purpose of this study was to evaluate the performance of cementitious high carbon fly ash (CHCFA) stabilized recycled asphalt pavement as a base course material in a real world setting. Three test road cells were built at MnROAD facility in Minnesota. These cells have the same asphalt surface layers, subbases, and subgrades, but three different base courses: conventional crushed aggregates, untreated recycled pavement materials (RPM), and CHCFA stabilized RPM materials. During and after the construction of the three cells, laboratory and field tests were carried out to characterize the material properties. The test results were used in the mechanistic-empirical pavement design guide (MEPDG) to predict the pavement performance. Based on the performance prediction, the life cycle analyses of cost, energy consumption, and greenhouse gasses were performed. The leaching impacts of these three types of base materials were compared. The laboratory and field tests showed that fly ash stabilized RPM had higher modulus than crushed aggregate and RPM did. Based on the MEPDG performance prediction, the service life of the Cell 79 containing fly ash stabilized RPM, is 23.5 years, which is about twice the service life (11 years) of the Cell 77 with RPM base, and about three times the service life (7.5 years) of the Cell 78 with crushed aggregate base. The life cycle analysis indicated that the usage of the fly ash stabilized RPM as the base of the flexible pavement can significantly reduce the life cycle cost, the energy consumption, the greenhouse gases emission. Concentrations of many trace elements, particularly those with relatively low water quality standards, diminish over time as water flows through the pavement profile. For many elements, concentrations below US water drinking water quality standards are attained at the bottom of the pavement profile within 2-4 pore volumes of flow.

  17. Performance analysis of flexible DSSC with binder addition

    NASA Astrophysics Data System (ADS)

    Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur

    2016-04-01

    Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO2 powder, butanol, and HCl were mixed for preparation of TiO2 paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO2 paste was deposited on ITO-PET plastic substrate with area of 1x1 cm2 by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyze morphology and surface area of the TiO2 photoelectrode microstructures. Dyed TiO2 photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.

  18. Overall Thermal Performance of Flexible Piping Under Simulated Bending Conditions

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Flexible, vacuum-insulated transfer lines for low-temperature applications have higher thermal losses than comparable rigid lines. Typical flexible piping construction uses corrugated tubes, inner and outer, with a multilayer insulation (MLI) system in the annular space. Experiments on vacuum insulation systems in a flexible geometry were conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. The effects of bending were simulated by causing the inner tube to be eccentric with the outer tube. The effects of spacers were simulated in a controlled way by inserting spacer tubes for the length of the cylindrical test articles. Two material systems, standard MLI and a layered composite insulation (LCI), were tested under the full range of vacuum levels using a liquid nitrogen boiloff calorimeter to determine the apparent thermal conductivity (k-value). The results indicate that the flexible piping under simulated bending conditions significantly degrades the thermal performance of the insulation system. These data are compared to standard MLI for both straight and flexible piping configurations. The definition of an overall k-value for actual field installations (k(sub oafi)) is described for use in design and analysis of cryogenic piping systems.

  19. Influence of inflow angle on flexible flap aerodynamic performance

    NASA Astrophysics Data System (ADS)

    Y Zhao, H.; Ye, Z.; Li, Z. M.; Li, C.

    2013-12-01

    Large scale wind turbines have larger blade lengths and weights, which creates new challenges for blade design. This paper selects NREL S809 airfoil, and uses the parameterized technology to realize the flexible trailing edge deformation, researches the dynamic aerodynamic characteristics in the process of continuous flexible deformation, analyses the influence of inflow angle on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With inflow angle increases, dynamic lift-drag coefficient hysteresis loop shape deviation occurs, even turns into different shapes. Appropriate swing angle can improve the flap lift coefficient, but may cause early separation of flow. To improve the overall performance of wind turbine blades, different angular control should be used at different cross sections, in order to achieve the best performance.

  20. Pavement management and weigh-in-motion. Transportation research record

    SciTech Connect

    Cation, K.A.; Shahin, M.Y.; Scullion, T.; Lytton, R.L.; Butt, A.A.

    1987-01-01

    The 15 papers in the report deal with the following areas: development of a preventive maintenance algorithm for use in pavement-management systems; pavement-performance prediction model using the Markov Process; roadway modeling and data conversion for a transportation-facilities information system; development of a methodology to estimate pavement maintenance and repair costs for different ranges of pavement-condition index; new techniques for modeling pavement deterioration; pavement management at the local government level; a comprehensive ranking system for local-agency pavement management; expert system as a part of pavement management; MAPCON: a pavement-evaluation data-analysis computer system; a microcomputer procedure to analyze axle load limits and pavement damage responsibility; selected results from the first three years of the Oregon automatic monitoring demonstration project; automated acquisition of truck-tire pressure data; calibration and accuracy testing of weigh-in-motion systems; accuracy and tolerances of weigh-in-motion systems; on-site calibration of weigh-in-motion systems.

  1. Flexible body dynamic stability for high performance aircraft

    NASA Technical Reports Server (NTRS)

    Goforth, E. A.; Youssef, H. M.; Apelian, C. V.; Schroeder, S. C.

    1991-01-01

    Dynamic equations which include the effects of unsteady aerodynamic forces and a flexible body structure were developed for a free flying high performance fighter aircraft. The linear and angular deformations are assumed to be small in the body reference frame, allowing the equations to be linearized in the deformation variables. Equations for total body dynamics and flexible body dynamics are formulated using the hybrid coordinate method and integrated in a state space format. A detailed finite element model of a generic high performance fighter aircraft is used to generate the mass and stiffness matrices. Unsteady aerodynamics are represented by a rational function approximation of the doublet lattice matrices. The equations simplify for the case of constant angular rate of the body reference frame, allowing the effect of roll rate to be studied by computing the eigenvalues of the system. It is found that the rigid body modes of the aircraft are greatly affected by introducing a constant roll rate, while the effect on the flexible modes is minimal for this configuration.

  2. Asphalt in Pavement Maintenance.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    Maintenance methods that can be used equally well in all regions of the country have been developed for the use of asphalt in pavement maintenance. Specific information covering methods, equipment and terminology that applies to the use of asphalt in the maintenance of all types of pavement structures, including shoulders, is provided. In many…

  3. Precast concrete pavements

    NASA Astrophysics Data System (ADS)

    Rollings, R. S.; Chou, Y. T.

    1981-11-01

    This report reviewed published literature on precast concrete pavements and found that precast concrete pavements have had some limited application in airfields, roads, and storage areas. This review of past experience and an analytical study of precast slabs concluded that existing design and construction techniques can be adapted for use with precast concrete pavements, but more work is needed to develop effective and easily constructed load transfer designs for slab joints. Precast concrete does not offer any advantage for conventional pavements due to its high cost and surface roughness, but it may find applications for special problems such as construction in adverse weather, subgrade settlement, temporary pavements that need to be relocated, and military operations.

  4. Pavement management practices. Final report

    SciTech Connect

    Peterson, D.E.

    1987-11-01

    This synthesis will be of interest to pavement designers, maintenance engineers, and others responsible for the management of highway pavements. Information is presented on pavement management systems - the established, documented procedures used to treat all activities involved in providing and sustaining pavements in an acceptable condition. As highway agencies focus more attention on maintenance and rehabilitation of highway networks, the use of some form of a pavement management system becomes increasingly important. This report of the Transportation Research Board describes the features, applicability, and used of a pavement management system and recommends five general steps for implementing a new pavement management system or improving an existing system.

  5. Advanced self-healing asphalt composites in the pavement performance field: mechanisms at the nano level and new repairing methodologies.

    PubMed

    Agzenai, Yahya; Pozuelo, Javier; Sanz, Javier; Perez, Ignacio; Baselga, Juan

    2015-01-01

    In an effort to give a global view of this field of research, in this mini-review we highlight the most recent publications and patents focusing on modified asphalt pavements that contain certain reinforcing nanoparticles which impart desirable thermal, electrical and mechanical properties. In response to the increasing cost of asphalt binder and road maintenance, there is a need to look for alternative technologies and new asphalt composites, able to self-repair, for preserving and renewing the existing pavements. First, we will focus on the self-healing property of asphalt, the evidences that support that healing takes place immediately after the contact between the faces of a crack, and how the amount of healing can be measured in both the laboratory and the field. Next we review the hypothetical mechanisms of healing to understand the material behaviour and establish models to quantify the damage-healing process. Thereafter, we outline different technologies, nanotechnologies and methodologies used for self-healing paying particular attention to embedded micro-capsules, new nano-materials like carbon nanotubes and nano-fibres, ionomers, and microwave and induction heating processes.

  6. Enhanced Performance in Flexible Binder-free SWCNT Membrane EDLC

    NASA Astrophysics Data System (ADS)

    Ma, Danhao; Shetty, Pralav; Adu, Kofi; Rajagopalan, Ramakrishnan

    2013-03-01

    We present results on an aqueous symmetric double layer electrochemical capacitor (EDLC) constructed with flexible binder-free single wall carbon (SWCNTs) membrane as electrodes. The capacitors were cycled from 0 to 1V @ 10 A/g for 10,000 cycles with 99.9% coulombic efficiency and 94% energy efficiency, and 100% depth of discharge. The power performance of the aqueous symmetric SWCNTs membrane capacitor is almost 100 -1000 times better than commercial non-aqueous EDLC capacitors. This work is supported by the Pennsylvania State, Altoona College Undergraduate Research Program and the Pennsylvania State Materials Research Institute at University Park, PA

  7. Semiconducor wires and ribbons for high performance flexible electronics.

    SciTech Connect

    Sun, Y.; Baca, A. J.; Ahn, J.-H.; Meitl, M.; Menard, E.; Kim, H.-S; Choi, W.; Kim, D.-H; Huang, Y.; Rogers, J. A.; Center for Nanoscale Materials; Univ. of Illinois

    2008-01-01

    This article reviews the properties, fabrication and assembly of inorganic semiconductor materials that can be used as active building blocks to form high-performance transistors and circuits for flexible and bendable large-area electronics. Obtaining high performance on low temperature polymeric substrates represents a technical challenge for macroelectronics. Therefore, the fabrication of high quality inorganic materials in the form of wires, ribbons, membranes, sheets, and bars formed by bottom-up and top-down approaches, and the assembly strategies used to deposit these thin films onto plastic substrates will be emphasized. Substantial progress has been made in creating inorganic semiconducting materials that are stretchable and bendable, and the description of the mechanics of these form factors will be presented, including circuits in three-dimensional layouts. Finally, future directions and promising areas of research will be described.

  8. Developing Flexible, High Performance Polymers with Self-Healing Capabilities

    NASA Technical Reports Server (NTRS)

    Jolley, Scott T.; Williams, Martha K.; Gibson, Tracy L.; Caraccio, Anne J.

    2011-01-01

    Flexible, high performance polymers such as polyimides are often employed in aerospace applications. They typically find uses in areas where improved physical characteristics such as fire resistance, long term thermal stability, and solvent resistance are required. It is anticipated that such polymers could find uses in future long duration exploration missions as well. Their use would be even more advantageous if self-healing capability or mechanisms could be incorporated into these polymers. Such innovative approaches are currently being studied at the NASA Kennedy Space Center for use in high performance wiring systems or inflatable and habitation structures. Self-healing or self-sealing capability would significantly reduce maintenance requirements, and increase the safety and reliability performance of the systems into which these polymers would be incorporated. Many unique challenges need to be overcome in order to incorporate a self-healing mechanism into flexible, high performance polymers. Significant research into the incorporation of a self-healing mechanism into structural composites has been carried out over the past decade by a number of groups, notable among them being the University of I1linois [I]. Various mechanisms for the introduction of self-healing have been investigated. Examples of these are: 1) Microcapsule-based healant delivery. 2) Vascular network delivery. 3) Damage induced triggering of latent substrate properties. Successful self-healing has been demonstrated in structural epoxy systems with almost complete reestablishment of composite strength being achieved through the use of microcapsulation technology. However, the incorporation of a self-healing mechanism into a system in which the material is flexible, or a thin film, is much more challenging. In the case of using microencapsulation, healant core content must be small enough to reside in films less than 0.1 millimeters thick, and must overcome significant capillary and surface

  9. Modeling the Hydrologic Processes of a Permeable Pavement System

    EPA Science Inventory

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has be...

  10. Pervious Pavement System Evaluation

    EPA Science Inventory

    Porous pavement is a low impact development stormwater control. The Urban Watershed Management Branch is evaluating interlocking concrete pavers as a popular implementation. The pavers themselves are impermeable, but the spaces between the pavers are backfilled with washed, grade...

  11. Performance and system flexibility of the CDF Hardware Event Builder

    SciTech Connect

    Shaw, T.M.; Schurecht, K.; Sinervo, P.

    1991-11-01

    The CDF Hardware Event Builder [1] is a flexible system which is built from a combination of three different 68020-based single width Fastbus modules. The system may contain as few as three boards or as many as fifteen, depending on the specific application. Functionally, the boards receive a command to read out the raw event data from a set of Fastbus based data buffers (``scanners``), reformat data and then write the data to a Level 3 trigger/processing farm which will decide to throw the event away or to write it to tape. The data acquisition system at CDF will utilize two nine board systems which will allow an event rate of up to 35 Hz into the Level 3 trigger. This paper will present detailed performance factors, system and individual board architecture, and possible system configurations.

  12. Performance and system flexibility of the CDF Hardware Event Builder

    SciTech Connect

    Shaw, T.M.; Schurecht, K. ); Sinervo, P. . Dept. of Physics)

    1991-11-01

    The CDF Hardware Event Builder (1) is a flexible system which is built from a combination of three different 68020-based single width Fastbus modules. The system may contain as few as three boards or as many as fifteen, depending on the specific application. Functionally, the boards receive a command to read out the raw event data from a set of Fastbus based data buffers ( scanners''), reformat data and then write the data to a Level 3 trigger/processing farm which will decide to throw the event away or to write it to tape. The data acquisition system at CDF will utilize two nine board systems which will allow an event rate of up to 35 Hz into the Level 3 trigger. This paper will present detailed performance factors, system and individual board architecture, and possible system configurations.

  13. High-performance flexible microwave passives on plastic

    NASA Astrophysics Data System (ADS)

    Ma, Zhenqiang; Seo, Jung-Hun; Cho, Sang June; Zhou, Weidong

    2014-06-01

    We report the demonstration of bendable inductors, capacitors and switches fabricated on a polyethylene terephthalate (PET) substrate that can operate at high microwave frequencies. By employing bendable dielectric and single crystalline semiconductor materials, spiral inductors and metal-insulator-metal (MIM) capacitors with high quality factors and high resonance frequencies and single-pole, single-throw (SPST) switches were archived. The effects of mechanical bending on the performance of inductors, capacitors and switches were also measured and analyzed. We further investigated the highest possible resonance frequencies and quality factors of inductors and capacitors and, high frequency responses and insertion loss. These demonstrations will lead to flexible radio-frequency and microwave systems in the future.

  14. Dynamic pavement deflection

    NASA Astrophysics Data System (ADS)

    Rand, D. W.; Jacobs, K. M.

    1981-06-01

    Dynamic pavement deflection measurements for bituminous concrete pavements of two and three-quarter, five and seven-eights, and seven and one-half inches in thickness under moving axle loads of 15,000, 18,000, and 22,000 pounds were obtained at speeds of 10, 25 and 45 miles per hour. The results were analyzed and compared to Benkelman beam measurements. The data indicate that slow moving loads have greater adverse effect (larger deflections) on the pavement than the high speed loads. The results also show that the bituminous pavement undergoes numerous vertical fluctuations and bending as the front and rear axles approached the point of measurement. The magnitude of the vertical displacement was measured via the means of an accelerometer and double integrator. When values of the dynamic deflections were in the magnitude of 0.07 through 0.10 inches, there was evidence of pavement failure. When the deflection values were above 0.10 inches pavement failures were distinct.

  15. Increasing Flexibility in Energy Code Compliance: Performance Packages

    SciTech Connect

    Hart, Philip R.; Rosenberg, Michael I.

    2015-06-30

    Energy codes and standards have provided significant increases in building efficiency over the last 38 years, since the first national energy code was published in late 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. As the code matures, the prescriptive path becomes more complicated, and also more restrictive. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. Performance code paths are increasing in popularity; however, there remains a significant design team overhead in following the performance path, especially for smaller buildings. This paper focuses on development of one alternative format, prescriptive packages. A method to develop building-specific prescriptive packages is reviewed based on a multiple runs of prototypical building models that are used to develop parametric decision analysis to determines a set of packages with equivalent energy performance. The approach is designed to be cost-effective and flexible for the design team while achieving a desired level of energy efficiency performance. A demonstration of the approach based on mid-sized office buildings with two HVAC system types is shown along with a discussion of potential applicability in the energy code process.

  16. Overview of the Arizona Quiet Pavement Program

    NASA Astrophysics Data System (ADS)

    Donavan, Paul; Scofield, Larry

    2005-09-01

    The Arizona Quiet Pavement Pilot Program (QP3) was initially implemented to reduce highway related traffic noise by overlaying most of the Phoenix metropolitan area Portland cement concrete pavement with a one inch thick asphalt rubber friction coarse. With FHWA support, this program represents the first time that pavement surface type has been allowed as a noise mitigation strategy on federally funded projects. As a condition of using pavement type as a noise mitigation strategy, ADOT developed a ten-year, $3.8 million research program to evaluate the noise reduction performance over time. Historically, pavement surface type was not considered a permanent solution. As a result, the research program was designed to specifically address this issue. Noise performance is being evaluated through three means: (1) conventional roadside testing within the roadway corridor (e.g., far field measurements within the right-of-way) (2) the use of near field measurements, both close proximity (CPX) and sound intensity (SI); and (3) far field measurements obtained beyond the noise barriers within the surrounding neighborhoods. This paper provides an overview of the program development, presents the research conducted to support the decision to overlay the urban freeway, and the status of current research.

  17. The Relationship Between of Manufacturing Flexibility, Innovation Capability, and Operational Performance in Indonesian Manufacturing SMEs

    NASA Astrophysics Data System (ADS)

    Purwanto, U. S.; Raihan

    2016-02-01

    This study examined the relationship between manufacturing flexibility competence and operational performance with technological innovation capability as mediator variables. A survey method was applied to collect data pertaining to the variables being investigated. The findings indicated that manufacturing flexibility competence is positively associated with technological innovation capability and operational performance. The findings also suggested that technological innovation capability types mediated positively to the operational performance implication of manufacturing flexibility competence. This implies that manufacturing organizations pursuing manufacturing flexibility competence need to develop technological innovation capability in obtaining a high operational performance.

  18. Functionality Enhancement of Industrialized Optical Fiber Sensors and System Developed for Full-Scale Pavement Monitoring

    PubMed Central

    Wang, Huaping; Liu, Wanqiu; He, Jianping; Xing, Xiaoying; Cao, Dandan; Gao, Xipeng; Hao, Xiaowei; Cheng, Hongwei; Zhou, Zhi

    2014-01-01

    Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements. PMID:24854060

  19. Sulfur-extended asphalt pavement: a three-year progress report. Final report

    SciTech Connect

    Van Bramer, T.F.

    1986-10-01

    This report documents post-construction performance of a sulfur-extended asphalt (SEA) pavement and a conventional pavement used as a control, monitored over a 3-year period. The SEA pavement used 30% sulfur by total weight of the binder. Both pavements were placed under New York State specifications during the summer of 1980 on Rtes 118 and 202 in Westchester County, New York. After 3 years, overall condition of both the SEA and control pavements was satisfactory. The two did not differ significantly in deflection, rutting, friction, or aggregate degradation. Data obtained from analysis of pavement cores showed that the stability of the SEA mix was equal to or higher than that of the control at all ages. Similarly, its resilient modulus was greater at all ages and temperatures. Although tensile-strength ratios measured for both mixes indicated a potential for stripping, virtually none was observed in any of the field cores for either pavement at any age.

  20. Functionality enhancement of industrialized optical fiber sensors and system developed for full-scale pavement monitoring.

    PubMed

    Wang, Huaping; Liu, Wanqiu; He, Jianping; Xing, Xiaoying; Cao, Dandan; Gao, Xipeng; Hao, Xiaowei; Cheng, Hongwei; Zhou, Zhi

    2014-05-19

    Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.

  1. Pervious Pavement System Evaluation

    EPA Science Inventory

    Pervious pavement is a low impact development stormwater control. The Urban Watershed Management Branch of the U.S. Environmental Protection Agency in Edison, NJ, is evaluating concrete pavers as a popular implementation. The pollutant removal of a bench-scale permeable interlo...

  2. Evaluation of a highway pavement using non destructive tests: Falling Weight Deflectometer and Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Marecos, Vania; Fontul, Simona; de Lurdes Antunes, Maria

    2015-04-01

    This paper presents the results of the application of Falling Weight Deflectometer (FWD) and Ground Penetrating Radar (GPR) to assess the bearing capacity of a rehabilitated flexible highway pavement that began to show the occurrence of cracks in the surface layer, about one year after the improvement works. A visual inspection of the surface of the pavement was performed to identify and characterize the cracks. Several core drills were done to analyse the cracks propagation in depth, these cores were also used for GPR data calibration. From the visual inspection it was concluded that the development of the cracks were top-down and that the cracks were located predominantly in the wheel paths. To determine the thickness of the bituminous and granular layers GPR tests were carried out using two horn antennas of 1,0 GHz and 1,8 GHz and a radar control unit SIR-20, both from GSSI. FWD load tests were performed on the wheel paths and structural models were established, based on the deflections measured, through back calculation. The deformation modulus of the layers was calculated and the bearing capacity of the pavement was determined. Summing up, within this study the GPR was used to continuously detect the layer thickness and the GPR survey data was calibrated with core drills. The results showed variations in the bituminous layer thickness in comparison to project data. From the load tests it was concluded that the deformation modulus of the bituminous layers were also vary variable. Limitations on the pavement bearing capacity were detected in the areas with the lower deformation modulus. This abstract is of interest for COST Action TU1208 Civil Engineering Applications of Ground Penetrating Radar.

  3. Experimental pavement using household waste slag

    SciTech Connect

    Kouda, Masahiro

    1996-12-31

    Municipal wastes used to be simply landfilled, but because of increasing difficulty in finding disposal sites, it became common practice to incinerate wastes and landfill the ash. In view of rapidly dwindling landfill sites, the author thought that the landfill site problem might be solved by finding a way to utilize slag made from incinerator ash. In this paper, a method for utilizing water-granulated slag as an asphalt pavement material is discussed. On the basis of laboratory test results, trial paving using base course materials consisting of crushed stone and 25 or 50% slag was carried out, paying attention primarily to bearing capacity. Marshall tests and fatigue resistance tests were conducted to determine the optimum content of water-granulated slag, and it was concluded that quality comparable to that of conventional asphalt concrete was attained at the slag content of 25% or less and that no problem would arise if the slag content was kept at 60% or less of the fine aggregate content. The mix proportions thus determined were also tested through experimental paving. A follow-up study to evaluate the durability of the experimental pavements confirmed that the experimental pavements were comparable in performance with conventional asphalt concrete pavements. This paper also reports on some problems encountered that need to be solved before utilizing water-granulated slag.

  4. Asphalt pavement surfaces and asphalt mixtures. Transportation research record

    SciTech Connect

    1996-12-31

    The papers in this volume, which deal with asphalt pavement surfaces and asphalt mixtures, should be of interest to state and local construction, design, materials, and research engineers as well as contractors and material producers. The papers in Part 1 include discussions of pavement smoothness specifications and skidding characteristics. The first four papers in Part 2 were submitted in response to a call for papers for a session at the 75th Annual Meeting of the Transportation Research Board on low-temperature properties of hot-mix asphalt. The next eight are on the influence of volumetric and strength properties on the performance of hot-mix asphalt. In the following three papers, the topics covered are the complex modulus of asphalt concrete, cold in-place asphalt recycling, and polymer modification of asphalt pavements in Ontario. The last two papers were presented in a session on relationship of materials characterization to accelerated pavement performance testing.

  5. Analysis of Instrumentation Selection and Placement to Monitor the Hydrologic Performance of Permeable Pavement Systems and Bioinfiltration Areas at the Edison Environmental Center in New Jersey

    EPA Science Inventory

    In 2009, the U.S. Environmental Protection Agency constructed a 0.4-ha (1-ac) parking lot surfaced with three different permeable pavement types (interlocking concrete pavers, porous concrete, and porous asphalt) and six bioinfiltration areas with three different drainage area to...

  6. Stormwater quality performance of a macro-pervious pavement car park installation equipped with channel drain based oil and silt retention devices.

    PubMed

    Newman, Alan Paul; Aitken, Douglas; Antizar-Ladislao, Blanca

    2013-12-15

    This paper reports the results of a two year field monitoring exercise intended to investigate the pollution abatement capabilities of a novel system which offers an alternative to the, now well established, pervious pavement system as a source control device for stormwater management. The aim of this study was to determine the effectiveness of a live installation of a macro-pervious pavement system (MPPS) (operated as a visitors' car park at a prison in Central Scotland) in retaining and treating a range of pollutants which originate from automobile use or become concentrated on the parking surface from the wider environment. The MPPS is a sub-class of pervious pavement system where the vast majority of the surface is impermeable. It directs stormwater into a pervious sub surface storage/attenuation zone through a series of distinct infiltration points fast enough to prevent flooding during the design storm. In the particular system studied here the infiltration points consist of a network of oil/silt separation devices with extensive further pollutant retention/degradation provided during the passage of stormwater through the sub surface zone. Approximately 12 months after the car park was completed a sampling regime was instigated in which grab samples were collected at intervals from each of the three sub catchments whilst, simultaneously, samples were collected directly from the, pollutant retaining, infiltration devices. Through investigation of samples collected at the upstream end of the system, the retention of significant amounts of hydrocarbons and heavy metals in the initial collection devices has been illustrated and the analysis of effluent samples collected at the outlet points indicate that the system is capable of producing effluent which is of a standard comparable to that expected from a traditional pervious pavement system and is acceptable for direct release into a surface water receptor. The system offers the opportunity to accrue the benefits

  7. Environmental assessment of pavement infrastructure: A systematic review.

    PubMed

    Inyim, Peeraya; Pereyra, Jose; Bienvenu, Michael; Mostafavi, Ali

    2016-07-01

    Through a critical review and systematic analysis of pavement life cycle assessment (LCA) studies published over the past two decades, this study shows that the available information regarding the environmental impacts of pavement infrastructure is not sufficient to determine what pavement type is more environmentally sustainable. Limitations and uncertainties related to data, system boundary and functional unit definitions, consideration of use and maintenance phase impacts, are identified as the main reasons for inconsistency of reported results in pavement LCA studies. The study outcomes also highlight the need for advancement of knowledge pertaining to: (1) utilization of performance-adjusted functional units, (2) accurate estimation of use, maintenance, and end-of-life impacts, (3) incorporation of the dynamic and uncertain nature of pavement condition performance in impact assessment; (4) development of region-specific inventory data for impact estimation; and (5) consideration of a standard set of impact categories for comparison of environmental performance of different pavement types. Advancing the knowledge in these areas is critical in providing consistent and reliable results to inform decision-making toward more sustainable roadway infrastructure. PMID:27045541

  8. Environmental assessment of pavement infrastructure: A systematic review.

    PubMed

    Inyim, Peeraya; Pereyra, Jose; Bienvenu, Michael; Mostafavi, Ali

    2016-07-01

    Through a critical review and systematic analysis of pavement life cycle assessment (LCA) studies published over the past two decades, this study shows that the available information regarding the environmental impacts of pavement infrastructure is not sufficient to determine what pavement type is more environmentally sustainable. Limitations and uncertainties related to data, system boundary and functional unit definitions, consideration of use and maintenance phase impacts, are identified as the main reasons for inconsistency of reported results in pavement LCA studies. The study outcomes also highlight the need for advancement of knowledge pertaining to: (1) utilization of performance-adjusted functional units, (2) accurate estimation of use, maintenance, and end-of-life impacts, (3) incorporation of the dynamic and uncertain nature of pavement condition performance in impact assessment; (4) development of region-specific inventory data for impact estimation; and (5) consideration of a standard set of impact categories for comparison of environmental performance of different pavement types. Advancing the knowledge in these areas is critical in providing consistent and reliable results to inform decision-making toward more sustainable roadway infrastructure.

  9. Flexible carbon nanotube films for high performance strain sensors.

    PubMed

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  10. Flexible Carbon Nanotube Films for High Performance Strain Sensors

    PubMed Central

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  11. Field performance of maintenance treatments constructed with reclaimed asphalt pavement (RAP). Final research report, September 1992-August 1994

    SciTech Connect

    Estakhri, C.K.

    1994-11-01

    In the study, RAP was blended with recycling emulsions and conventional maintenance mixtures in attempts to improve its field performance as a maintenance mixture. RAP was also mixed with stabilizers and used as a base material in maintenance projects. Several field experiments were constructed throughout the state, and the report documents their performance.

  12. Fatigue behavior of rubber modified pavements. Final report, 1994-1996

    SciTech Connect

    Raad, L.; Saboundjian, S.

    1997-05-01

    Over the last 15 years, a number of rubberized pavement projects have been built in Alaska. Initial laboratory and field investigations sponsored by the Alaska Department of Transportation and Public Facilities (AKDOT&PF) and conducted by Raad et al. (1995) indicated improved fatigue performance of the rubberized sections in comparison with conventional asphalt concrete pavements. The report presents the results of a follow-up investigation to develop design equations for rubberized pavements in Alaska.

  13. Pavement roughness and skid properties

    NASA Astrophysics Data System (ADS)

    Road roughness and roadway safety as it relates to both surface and air transportation are discussed. The role of road roughness in vehicle ride, the measurement of roughness, the evaluation of riding confort, and the effect of grooving pavements are discussed. The effects of differential pavement friction on the response of cars in skidding maneuvers is discussed.

  14. Environmental interactions of Sulphlex pavement.

    PubMed

    Ferenbaugh, R W; Gladney, E S; Soholt, L F; Lyall, K A; Kimber Wallwork-Barber, M; Herman, L E

    1992-01-01

    Sulphlex, a mixture of elemental sulfur and plasticizers, has been considered for use as an asphalt substitute in road construction. Because this material contains substantial quantities of elemental sulfur, it is a potential substrate for growth of sulfur-oxidising bacteria. Experiments, performed to determine the susceptibility of Sulphlex in Sulphlex-containing media to degradation by Thiobacillus thiooxidans, resulted in breakdown of the Sulphlex material and concomitant production of acid. In concurrent studies, plants were grown in Sulphlex-amended soils. These plants exhibited higher sulfur content and reduced productivity as compared with plants grown in unamended soils, indicating that Sulphlex was being broken down in the soil and that the breakdown products were apparently having a detrimental effect on plant productivity. These experiments indicate that naturally occurring sulfur-oxidising bacteria have the potential to break down Sulphlex paving material, resulting in adverse effects on both the structural integrity of the pavement and the local environment. PMID:15091995

  15. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals

    PubMed Central

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J.; Zhang, Yanliang

    2016-01-01

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm2 with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications. PMID:27615036

  16. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals.

    PubMed

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J; Zhang, Yanliang

    2016-01-01

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm(2) with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications. PMID:27615036

  17. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals.

    PubMed

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J; Zhang, Yanliang

    2016-09-12

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm(2) with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.

  18. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals

    NASA Astrophysics Data System (ADS)

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J.; Zhang, Yanliang

    2016-09-01

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm2 with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.

  19. Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors.

    PubMed

    Guo, Yunlong; Wang, Ting; Chen, Fanhong; Sun, Xiaoming; Li, Xiaofeng; Yu, Zhongzhen; Wan, Pengbo; Chen, Xiaodong

    2016-06-01

    A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully interconnected and deposited onto flexible PET substrates to form hierarchical nanocomposite (PPANI/rGO-FPANI) network films. The assembled flexible, transparent electronic gas sensor exhibits high sensing performance towards NH3 gas concentrations ranging from 100 ppb to 100 ppm, reliable transparency (90.3% at 550 nm) for the PPANI/rGO-FPANI film (6 h sample), fast response/recovery time (36 s/18 s), and robust flexibility without an obvious performance decrease after 1000 bending/extending cycles. The excellent sensing performance could probably be ascribed to the synergetic effects and the relatively high surface area (47.896 m(2) g(-1)) of the PPANI/rGO-FPANI network films, the efficient artificial neural network sensing channels, and the effectively exposed active surfaces. It is expected to hold great promise for developing flexible, cost-effective, and highly sensitive electronic sensors with real-time analysis to be potentially integrated into wearable flexible electronics. PMID:27249547

  20. Urban pavement surface temperature. Comparison of numerical and statistical approach

    NASA Astrophysics Data System (ADS)

    Marchetti, Mario; Khalifa, Abderrahmen; Bues, Michel; Bouilloud, Ludovic; Martin, Eric; Chancibaut, Katia

    2015-04-01

    The forecast of pavement surface temperature is very specific in the context of urban winter maintenance. to manage snow plowing and salting of roads. Such forecast mainly relies on numerical models based on a description of the energy balance between the atmosphere, the buildings and the pavement, with a canyon configuration. Nevertheless, there is a specific need in the physical description and the numerical implementation of the traffic in the energy flux balance. This traffic was originally considered as a constant. Many changes were performed in a numerical model to describe as accurately as possible the traffic effects on this urban energy balance, such as tires friction, pavement-air exchange coefficient, and infrared flux neat balance. Some experiments based on infrared thermography and radiometry were then conducted to quantify the effect fo traffic on urban pavement surface. Based on meteorological data, corresponding pavement temperature forecast were calculated and were compared with fiels measurements. Results indicated a good agreement between the forecast from the numerical model based on this energy balance approach. A complementary forecast approach based on principal component analysis (PCA) and partial least-square regression (PLS) was also developed, with data from thermal mapping usng infrared radiometry. The forecast of pavement surface temperature with air temperature was obtained in the specific case of urban configurtation, and considering traffic into measurements used for the statistical analysis. A comparison between results from the numerical model based on energy balance, and PCA/PLS was then conducted, indicating the advantages and limits of each approach.

  1. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper.

    PubMed

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-05-26

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

  2. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    PubMed Central

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-01-01

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials. PMID:26006731

  3. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    NASA Astrophysics Data System (ADS)

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-05-01

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

  4. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    PubMed

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete. PMID:24316812

  5. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    PubMed

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete.

  6. Pavement recycling. Executive summary and report

    SciTech Connect

    1995-10-01

    The Federal Highway Administration (FHWA) initiated Demonstration Project 39 (DP 39) Recycling Asphalt Pavements in June 1976. The project showed that asphalt pavement recycling was a technically viable rehabitation technique, and it was estimated that the use of reclaimed asphalt pavement (RAP) would amount to approximately 15 percent of the total hot-mix asphalt (HMA) production by the mid-1980s. It was expected that most of the asphalt pavement removed would be reused in new pavement construction or overlays.

  7. Flexibility of Expressive Timing in Repeated Musical Performances

    PubMed Central

    Demos, Alexander P.; Lisboa, Tânia; Chaffin, Roger

    2016-01-01

    Performances by soloists in the Western classical tradition are normally highly prepared, yet must sound fresh and spontaneous. How do musicians manage this? We tested the hypothesis that they achieve the necessary spontaneity by varying the musical gestures that express their interpretation of a piece. We examined the tempo arches produced by final slowing at the ends of phrases in performances of J. S. Bach’s No. 6 (Prelude) for solo cello (12 performances) and the Italian Concerto (Presto) for solo piano (eight performances). The performances were given by two experienced concert soloists during a short time period (3½ months for the Prelude, 2 weeks for the Presto) after completing their preparations for public performance. We measured the tempo of each bar or half-bar, and the stability of tempo across performances (difference of the tempo of each bar/half bar from each of the other performances). There were phrase arches for both tempo and stability with slower, less stable tempi at beginnings and ends of phrases and faster, more stable tempi mid-phrase. The effects of practice were complex. Tempo decreased overall with practice, while stability increased in some bars and decreased in others. One effect of practice may be to imbue well-learned, automatic motor sequences with freshness and spontaneity through cognitive control at phrase boundaries where slower tempi and decreased stability provide opportunities for slower cognitive processes to modulate rapid automatic motor sequences. PMID:27757089

  8. The effect of ankle muscle strength and flexibility on dolphin kick performance in competitive swimmers.

    PubMed

    Willems, Tine M; Cornelis, Justien A M; De Deurwaerder, Lien E P; Roelandt, Filip; De Mits, Sophie

    2014-08-01

    The velocity of a swimmer is determined by biomechanical and bioenergetics factors. However, little is known about the effect of ankle flexibility on dolphin kick performance. Next to this, scientific evidence is lacking concerning the influence of ankle muscle strength. Therefore, the aim of this study was to investigate the effect of ankle flexibility and muscle strength on dolphin kick performance in competitive swimmers. Ankle range of motion (ROM) and ankle muscle strength were measured in 26 healthy competitive swimmers. The effect of both was assessed on the swimmer's velocity and lower extremity joint angles during three maximal dolphin kick trials. Additionally, the effect of a flexibility restriction by a tape on the dolphin kick performance was assessed. Correlations were calculated between the flexibility, muscle strength and dolphin kick performance and differences were investigated between the unrestricted and restricted condition. Muscle strength of dorsal flexors and internal rotators were positively significantly correlated with the velocity. Active and passive plantar flexion ROM and internal rotation ROM were not significantly correlated. A plantar flexion-internal rotation restriction during the dolphin kick showed a significant decrease in velocity. This restriction was associated with a changed movement pattern in the knee towards more flexion. The results suggest that dolphin kick velocity might be enhanced by ankle muscle strength exercises and that subjects with a restricted ankle flexibility might profit from a flexibility program. PMID:24984154

  9. Small-scale accelerated pavement testing

    SciTech Connect

    Kim, S.M.; Hugo, F.; Roesset, J.M.

    1998-03-01

    This paper presents the results of a study conducted to explore the use of small-scale models of accelerated pavement testing (APT) devices to evaluate the performance of pavements in conjunction with full-scale tests. The motivation for the study was the availability of a model mobile load simulator (MMLS), which had been built originally to illustrate the operation of the full-scale mobile load simulator (MLS) under design at the time. The scaling requirements will be different depending on whether dynamic (inertia), viscous, or gravity effects are important. One must thus decide which one of these effects controls the behavior to try to reproduce it exactly. In the preliminary tests conducted with the MMLS, emphasis had been placed in reproducing accurately the viscoelastic behavior of the asphalt layer. The possibility of obtaining valid results, even if similitude is not maintained in relation to inertia forces, is explored in this paper. The effects of load frequency or velocity and the effects of layer thicknesses are studied. The total thickness of the model pavement, which must be finite, and its effects on displacements and strains are also considered. It is concluded that even when full similitude is not satisfied it is possible to obtain valid results that can be extrapolated to predict prototype performance if one were interested primarily in the behavior of the asphalt layer. Preliminary analyses should be conducted, however, to guide on the selection of the model dimensions.

  10. Thermal Insulation Performance of Flexible Piping for Use in HTS Power Cables

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 K are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.

  11. Thermal Performance of Composite Flexible Blanket Insulations for Hypersonic Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1993-01-01

    This paper describes the thermal performance of a Composite Flexible Blanket Insulation (C.F.B.I.) considered for potential use as a thermal protection system or thermal insulation for future hypersonic vehicles such as the National Aerospace Plane (N.A.S.P.). Thermophysical properties for these insulations were also measured including the thermal conductivity at various temperatures and pressures and the emissivity of the fabrics used in the flexible insulations. The thermal response of these materials subjected to aeroconvective heating from a plasma arc is also described. Materials tested included two surface variations of the insulations, and similar insulations coated with a Protective Ceramic Coating (P.C.C.). Surface and backface temperatures were measured in the flexible insulations and on Fibrous Refractory Composite Insulation (F.R.C.I.) used as a calibration model. The uncoated flexible insulations exhibited good thermal performance up to 35 W/sq cm. The use of a P.C.C. to protect these insulations at higher heating rates is described. The results from a computerized thermal analysis model describing thermal response of those materials subjected to the plasma arc conditions are included. Thermal and optical properties were determined including thermal conductivity for the rigid and flexible insulations and emissivity for the insulation fabrics. These properties were utilized to calculate the thermal performance of the rigid and flexible insulations at the maximum heating rate.

  12. Evaluation of Surface and Subsurface Processes in Permeable Pavement Infiltration Trenches

    EPA Science Inventory

    The hydrologic performance of permeable pavement systems can be affected by clogging of the pavement surface and/or clogging at the interface where the subsurface storage layer meets the underlying soil. As infiltration and exfiltration are the primary functional mechanisms for ...

  13. Effects of reclaimed asphalt pavement on indirect tensile strength test of conditioned foamed asphalt mix

    NASA Astrophysics Data System (ADS)

    Yati Katman, Herda; Rasdan Ibrahim, Mohd; Yazip Matori, Mohd; Norhisham, Shuhairy; Ismail, Norlela

    2013-06-01

    This paper presents the results of Indirect Tensile Strength (ITS) Test for samples prepared with reclaimed asphalt pavement (RAP). Samples were conditioned in water at 25°C for 24 hours prior to testing. Results show that recycled aggregate from reclaimed asphalt pavement performs as well as virgin aggregate.

  14. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films

    NASA Astrophysics Data System (ADS)

    Choi, Bong Gill; Chang, Sung-Jin; Kang, Hyun-Wook; Park, Chan Pil; Kim, Hae Jin; Hong, Won Hi; Lee, Sanggap; Huh, Yun Suk

    2012-07-01

    Solid-state flexible energy storage devices hold the key to realizing portable and flexible electronic devices. Achieving fully flexible energy storage devices requires that all of the essential components (i.e., electrodes, separator, and electrolyte) with specific electrochemical and interfacial properties are integrated into a single solid-state and mechanically flexible unit. In this study, we describe the fabrication of solid-state flexible asymmetric supercapacitors based on an ionic liquid functionalized-chemically modified graphene (IL-CMG) film (as the negative electrode) and a hydrous RuO2-IL-CMG composite film (as the positive electrode), separated with polyvinyl alcohol-H2SO4 electrolyte. The highly ordered macroscopic layer structures of these films arising through direct flow self-assembly make them simultaneously excellent electrical conductors and mechanical supports, allowing them to serve as flexible electrodes and current collectors in supercapacitor devices. Our asymmetric supercapacitors have been optimized with a maximum cell voltage up to 1.8 V and deliver a high energy density (19.7 W h kg-1) and power density (6.8 kW g-1), higher than those of symmetric supercapacitors based on IL-CMG films. They can operate even under an extremely high rate of 10 A g-1 with 79.4% retention of specific capacitance. Their superior flexibility and cycling stability are evident in their good performance stability over 2000 cycles under harsh mechanical conditions including twisted and bent states. These solid-state flexible asymmetric supercapacitors with their simple cell configuration could offer new design and fabrication opportunities for flexible energy storage devices that can combine high energy and power densities, high rate capability, and long-term cycling stability.Solid-state flexible energy storage devices hold the key to realizing portable and flexible electronic devices. Achieving fully flexible energy storage devices requires that all of the

  15. A performance comparison of integration algorithms in simulating flexible structures

    NASA Technical Reports Server (NTRS)

    Howe, R. M.

    1989-01-01

    Asymptotic formulas for the characteristic root errors as well as transfer function gain and phase errors are presented for a number of traditional and new integration methods. Normalized stability regions in the lambda h plane are compared for the various methods. In particular, it is shown that a modified form of Euler integration with root matching is an especially efficient method for simulating lightly-damped structural modes. The method has been used successfully for structural bending modes in the real-time simulation of missiles. Performance of this algorithm is compared with other special algorithms, including the state-transition method. A predictor-corrector version of the modified Euler algorithm permits it to be extended to the simulation of nonlinear models of the type likely to be obtained when using the discretized structure approach. Performance of the different integration methods is also compared for integration step sizes larger than those for which the asymptotic formulas are valid. It is concluded that many traditional integration methods, such as RD-4, are not competitive in the simulation of lightly damped structures.

  16. Pervious Pavement System Evaluation- Abstract

    EPA Science Inventory

    Porous pavement is a low impact development stormwater control. The Urban Watershed Management Branch is evaluating interlocking concrete pavers as a popular implementation. The pavers themselves are impermeable, but the spaces between the pavers are backfilled with washed, gra...

  17. Stormwater quality of spring-summer-fall effluent from three partial-infiltration permeable pavement systems and conventional asphalt pavement.

    PubMed

    Drake, Jennifer; Bradford, Andrea; Van Seters, Tim

    2014-06-15

    This study examined the spring, summer and fall water quality performance of three partial-infiltration permeable pavement (PP) systems and a conventional asphalt pavement in Ontario. The study, conducted between 2010 and 2012, compared the water quality of effluent from two Interlocking Permeable Concrete Pavements (AquaPave(®) and Eco-Optiloc(®)) and a Hydromedia(®) Pervious Concrete pavement with runoff from an Asphalt control pavement. The usage of permeable pavements can mitigate the impact of urbanization on receiving surface water systems through quantity control and stormwater treatment. The PP systems provided excellent stormwater treatment for petroleum hydrocarbons, total suspended solids, metals (copper, iron, manganese and zinc) and nutrients (total-nitrogen and total-phosphorus) by reducing event mean concentrations (EMC) as well as total pollutant loadings. The PPs significantly reduced the concentration and loading of ammonia (NH4(+)+NH3), nitrite (NO2(-)) and organic-nitrogen (Org-N) but increased the concentration and loading of nitrate (NO3(-)). The PP systems had mixed performances for the treatment of phosphate (PO4(3-)). The PP systems increased the concentration of sodium (Na) and chloride (Cl) but EMCs remained well below recommended levels for drinking water quality. Relative to the observed runoff, winter road salt was released more slowly from the PP systems resulting in elevated spring and early-summer Cl and Na concentrations in effluent. PP materials were found to introduce dissolved solids into the infiltrating stormwater. The release of these pollutants was verified by additional laboratory scale testing of the individual pavement and aggregate materials at the University of Guelph. Pollutant concentrations were greatest during the first few months after construction and declined rapidly over the course of the study.

  18. Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors

    NASA Astrophysics Data System (ADS)

    Guo, Yunlong; Wang, Ting; Chen, Fanhong; Sun, Xiaoming; Li, Xiaofeng; Yu, Zhongzhen; Wan, Pengbo; Chen, Xiaodong

    2016-06-01

    A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully interconnected and deposited onto flexible PET substrates to form hierarchical nanocomposite (PPANI/rGO-FPANI) network films. The assembled flexible, transparent electronic gas sensor exhibits high sensing performance towards NH3 gas concentrations ranging from 100 ppb to 100 ppm, reliable transparency (90.3% at 550 nm) for the PPANI/rGO-FPANI film (6 h sample), fast response/recovery time (36 s/18 s), and robust flexibility without an obvious performance decrease after 1000 bending/extending cycles. The excellent sensing performance could probably be ascribed to the synergetic effects and the relatively high surface area (47.896 m2 g-1) of the PPANI/rGO-FPANI network films, the efficient artificial neural network sensing channels, and the effectively exposed active surfaces. It is expected to hold great promise for developing flexible, cost-effective, and highly sensitive electronic sensors with real-time analysis to be potentially integrated into wearable flexible electronics.A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully

  19. GPR used in combination with other NDT methods for assessing pavements in PPP projects

    NASA Astrophysics Data System (ADS)

    Loizos, Andreas; Plati, Christina

    2014-05-01

    In the recent decades, Public-Private Partnerships (PPP) has been adopted for highway infrastructure procurement in many countries. PPP projects typically take the form of a section of highway and connecting roadways which are to be construction and managed for a given concession period. Over the course of the highway concession period, the private agency takes over the pavement maintenance and rehabilitation duties. On this purpose, it is critical to find the most cost effective way to maintain the infrastructure in compliance with the agreed upon performance measures and a Pavement Management Systems (PMS) is critical to the success of this process. For the prosperous operation of a PMS it is necessary to have appropriate procedures for pavement monitoring and evaluation, which is important in many areas of pavement engineering. Non Destructive Testing (NDT) has played a major role in pavement condition monitoring, assessments and evaluation accomplishing continuous and quick collection of pavement data. The analysis of this data can lead to indicators related to trigger values (criteria) that define the pavement condition based on which the pavement "health" is perceived helping decide whether there is the need or not to intervene in the pavement. The accomplished perception appoints required management activities for preserving pavements in favor not only of the involved highway/road agencies but also of users' service. Amongst NDT methods Ground Penetrating Radar (GPR) seems to be a very powerful toll, as it provides a range of condition and construction pavement information. It can support effectively the implementation of PMS activities in the framework of pavement monitoring and evaluation. Given that, the present work aims to the development and adaptation of a protocol for the use of GPR in combination with other NDT methods, such as Falling Weight Deflectometer (FWD), for assessing pavements in PPP projects. It is based on the experience of Laboratory of

  20. Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole

    NASA Astrophysics Data System (ADS)

    Chen, Yanli; Du, Lianhuan; Yang, Peihua; Sun, Peng; Yu, Xiang; Mai, Wenjie

    2015-08-01

    Here, we report robust, flexible CNT-based supercapacitor (SC) electrodes fabricated by electrodepositing polypyrrole (PPy) on freestanding vacuum-filtered CNT film. These electrodes demonstrate significantly improved mechanical properties (with the ultimate tensile strength of 16 MPa), and greatly enhanced electrochemical performance (5.6 times larger areal capacitance). The major drawback of conductive polymer electrodes is the fast capacitance decay caused by structural breakdown, which decreases cycling stability but this is not observed in our case. All-solid-state SCs assembled with the robust CNT/PPy electrodes exhibit excellent flexibility, long lifetime (95% capacitance retention after 10,000 cycles) and high electrochemical performance (a total device volumetric capacitance of 4.9 F/cm3). Moreover, a flexible SC pack is demonstrated to light up 53 LEDs or drive a digital watch, indicating the broad potential application of our SCs for portable/wearable electronics.

  1. Pervious Pavement System Evaluation-Poster

    EPA Science Inventory

    Pervious pavement is a low impact development stormwater control. The Environmental Protection Agency's Urban Watershed Management Branch is evaluating interlocking concrete pavingstone pervious pavement systems. The pavingstones themselves are impermeable, but the spaces between...

  2. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  3. Investigation of factors affecting asphalt pavement recycling and asphalt compatibility

    SciTech Connect

    Venable, R.L.; Petersen, J.C.; Robertson, R.E.; Plancher, H.

    1983-03-01

    Both economic and environmental factors dictate that asphalt pavement be recycled. Many recycling projects have been completed using a variety of recycling additives, but little work has been done on the physiochemical aspects of pavement recycling. The present exploratory study was undertaken to better define the physiochemical variables of recycling. Objectives of the present study include: (1) to determine if molecular structuring in the asphalt binder could be observed in oxidized (air-aged) asphalt-aggregate briquets, and if so, how was structuring affected during briquits, and if so, how was structuring affected during briquet recycling and (2) to determine if recycling agents penetrate the strongly adsorbed asphalt layer on the aggregate surface. Differences were seen in asphalt component compatibility as judged by the state of peptization parameters. In extreme cases the values of the parameters correlated with properties of asphalts of known compatibility; however, a relationship between the parameters determined on a series of asphalts in pavements was not established. The parameters might be useful in evaluating additives for pavement recycling; however, more systems need to be studied to fully assess their potential usefulness. Finally, the parameters need to be correlated with performance-related measurements such as asphalt rheological and mix properties. Examination of the parameters and their changes on asphalt oxidative aging may also be informative with regard to asphalt durability inasmuch as oxidation-induced changes are a major cause of asphalt pavement failure.

  4. The Effects of Cognitive Flexibility and Openness to Change on College Students' Academic Performance

    ERIC Educational Resources Information Center

    Lin, Ya-Wei

    2013-01-01

    This research investigated the relationship between cognitive flexibility and openness to change and their effects on academic performance among college students at National Taiwan University in Taipei, Taiwan. Using a quantitative purposeful sampling strategy, data were collected in classroom settings from 770 undergraduate voluntary…

  5. The Ability of Psychological Flexibility and Job Control to Predict Learning, Job Performance, and Mental Health

    ERIC Educational Resources Information Center

    Bond, Frank W.; Flaxman, Paul E.

    2006-01-01

    This longitudinal study tested the degree to which an individual characteristic, psychological flexibility, and a work organization variable, job control, predicted ability to learn new skills at work, job performance, and mental health, amongst call center workers in the United Kingdom (N = 448). As hypothesized, results indicated that job…

  6. Towards a new generation of mission planning systems: Flexibility and performance

    NASA Technical Reports Server (NTRS)

    Gasquet, A.; Parrod, Y.; Desaintvincent, A.

    1994-01-01

    This paper presents some new approaches which are required for a better adequacy of Mission Planning Systems. In particular, the performance flexibility and genericity issues are discussed based on experience acquired through various Mission Planning systems developed by Matra Marconi Space.

  7. A high speed profiler based slab curvature index for jointed concrete pavement curling and warping analysis

    NASA Astrophysics Data System (ADS)

    Byrum, Christopher Ronald

    One of the biggest gaps of missing knowledge between accurate structural modeling of concrete pavement slab behavior and real pavement behavior is accounting for slab warping (locked-in curvature and moisture gradient effects) and curling (temperature gradient effects). Curling and warping are curvatures that can be present in a PCC slab that can cause corners and edges, or mid panel, of the slab to lift off of the ground resulting in relatively high deflection and stress in the system. The least understood type of curvature in slabs is apparent locked-in curvature, which can become excessive and control the overall behavior of the pavement system. This project is focused on quantifying slab curvatures and the effects of apparent locked-in curvature on the behavior and long-term performance of pavement systems. A high-speed profile analysis technique for detecting the amount of slab curvatures along pavement wheel paths is described. This signal processing technique can detect relatively small curvature variations in high-speed pavement elevation profiles obtained at normal highway operating speeds using special vehicles. A resulting curvature detection algorithm is applied to the Federal Highway Administration (FHWA) Long Term Pavement Performance (LTPP) database high-speed pavement profiles for jointed concrete pavements. The range and nature of slab curvatures detected in the profiles is described. The calculated locked-in curvature at the various pavement sites is compared to LTPP database information to evaluate curvature effects on pavement deterioration rates and the relation between site parameters and locked-in curvature. The significance of slab curvature is shown through statistics and predictive models developed for various pavement distress modes. It is shown that the amount of curvature locked into concrete slabs is one of the strongest factors in the FHWA LTPP data correlated to deterioration of pavements. This study shows that preventing locked

  8. Impact of pavement conditions on crash severity.

    PubMed

    Li, Yingfeng; Liu, Chunxiao; Ding, Liang

    2013-10-01

    Pavement condition has been known as a key factor related to ride quality, but it is less clear how exactly pavement conditions are related to traffic crashes. The researchers used Geographic Information System (GIS) to link Texas Department of Transportation (TxDOT) Crash Record Information System (CRIS) data and Pavement Management Information System (PMIS) data, which provided an opportunity to examine the impact of pavement conditions on traffic crashes in depth. The study analyzed the correlation between several key pavement condition ratings or scores and crash severity based on a large number of crashes in Texas between 2008 and 2009. The results in general suggested that poor pavement condition scores and ratings were associated with proportionally more severe crashes, but very poor pavement conditions were actually associated with less severe crashes. Very good pavement conditions might induce speeding behaviors and therefore could have caused more severe crashes, especially on non-freeway arterials and during favorable driving conditions. In addition, the results showed that the effects of pavement conditions on crash severity were more evident for passenger vehicles than for commercial vehicles. These results provide insights on how pavement conditions may have contributed to crashes, which may be valuable for safety improvement during pavement design and maintenance. Readers should notice that, although the study found statistically significant effects of pavement variables on crash severity, the effects were rather minor in reality as suggested by frequency analyses.

  9. Research of infrared laser based pavement imaging and crack detection

    NASA Astrophysics Data System (ADS)

    Hong, Hanyu; Wang, Shu; Zhang, Xiuhua; Jing, Genqiang

    2013-08-01

    Road crack detection is seriously affected by many factors in actual applications, such as some shadows, road signs, oil stains, high frequency noise and so on. Due to these factors, the current crack detection methods can not distinguish the cracks in complex scenes. In order to solve this problem, a novel method based on infrared laser pavement imaging is proposed. Firstly, single sensor laser pavement imaging system is adopted to obtain pavement images, high power laser line projector is well used to resist various shadows. Secondly, the crack extraction algorithm which has merged multiple features intelligently is proposed to extract crack information. In this step, the non-negative feature and contrast feature are used to extract the basic crack information, and circular projection based on linearity feature is applied to enhance the crack area and eliminate noise. A series of experiments have been performed to test the proposed method, which shows that the proposed automatic extraction method is effective and advanced.

  10. Flexible conducting polymer/reduced graphene oxide films: synthesis, characterization, and electrochemical performance

    NASA Astrophysics Data System (ADS)

    Yang, Wenyao; Zhao, Yuetao; He, Xin; Chen, Yan; Xu, Jianhua; Li, Shibin; Yang, Yajie; Jiang, Yadong

    2015-05-01

    In this paper, we demonstrate the preparation of a flexible poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonate)/reduced graphene oxide (PEDOT-PSS/RGO) film with a layered structure via a simple vacuum filtered method as a high performance electrochemical electrode. The PEDOT-PSS/RGO films are characterized by scanning electron microscopy (SEM), X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectrometry. The results indicate that a layer-ordered structure is constructed in this nanocomposite during the vacuum filtering process. The electrochemical performances of the flexible films are characterized by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge. The results reveal that a 193.7 F/g highly specific capacitance of nanocomposite film is achieved at a current density of 500 mA/g. This flexible and self-supporting nanocomposite film exhibits excellent cycling stability, and the capacity retention is 90.6 % after 1000 cycles, which shows promising application as high-performance electrode materials for flexible energy-storage devices.

  11. Pavement recycling guidelines for state and local governments: Participant`s reference book. Final report, September 1995--December 1997

    SciTech Connect

    Kandhal, P.S.; Mallick, R.B.

    1997-12-01

    Recycling or reuse of existing asphalt pavement materials to produce new pavement materials has the following advantages: (1) reduced costs of construction, (2) conservation of aggregate and binder, (3) preservation of the existing pavement geometrics, (4) preservation of the environment, and (5) conservation of energy. This document was prepared to provide the following information on recycling of asphalt pavements: (1) performance data, (2) legislation/specification limits, (3) selection of pavement for recycling and recycling strategies, (4) economics of recycling, and (5) structural design of recycled pavements. The following recycling methods have been included: hot-mix asphalt recycling (both batch and drum plants), asphalt surface recycling, hot-in-place recycling, cold-mix asphalt recycling, and full depth reclamation. Materials and mix design, construction methods and equipment, case histories and quality control/quality assurance have been discussed for all recycling methods.

  12. Fatigue properties of rubber modified pavements. Final report

    SciTech Connect

    Raad, L.; Saboundjian, S.; Yuan, X.

    1995-05-01

    This report presents results of a study to determine the fatigue behavior of rubber modified pavements in Alaska in comparison with conventional asphalt concrete pavements. Laboratory studies were conducted on field specimens using the flexural fatigue test in the controlled-displacement mode. Tests were performed at 72 deg F and 40 deg F. Tested materials include (1) conventional HMA with AC 2.5 and AC 5; (2) PlusRide RUMAC with AC 5; (3) asphalt-rubber concrete with AC 2.5 (wet Process); and (4) rubberized asphalt-rubber concrete with AC 2.5 (wet/dry process).

  13. Use of Ground Penetrating Radar at the FAA's National Airport Pavement Test Facility

    NASA Astrophysics Data System (ADS)

    Injun, Song

    2015-04-01

    The Federal Aviation Administration (FAA) in the United States has used a ground-coupled Ground Penetrating Radar (GPR) at the National Airport Pavement Test Facility (NAPTF) since 2005. One of the primary objectives of the testing at the facility is to provide full-scale pavement response and failure information for use in airplane landing gear design and configuration studies. During the traffic testing at the facility, a GSSI GPR system was used to develop new procedures for monitoring Hot Mix Asphalt (HMA) pavement density changes that is directly related to pavement failure. After reviewing current setups for data acquisition software and procedures for identifying different pavement layers, dielectric constant and pavement thickness were selected as dominant parameters controlling HMA properties provided by GPR. A new methodology showing HMA density changes in terms of dielectric constant variations, called dielectric sweep test, was developed and applied in full-scale pavement test. The dielectric constant changes were successfully monitored with increasing airplane traffic numbers. The changes were compared to pavement performance data (permanent deformation). The measured dielectric constants based on the known HMA thicknesses were also compared with computed dielectric constants using an equation from ASTM D4748-98 Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar. Six inches diameter cylindrical cores were taken after construction and traffic testing for the HMA layer bulk specific gravity. The measured bulk specific gravity was also compared to monitor HMA density changes caused by aircraft traffic conditions. Additionally this presentation will review the applications of the FAA's ground-coupled GPR on embedded rebar identification in concrete pavement, sewer pipes in soil, and gage identifications in 3D plots.

  14. Evaluation of a new construction pavement section using the mechanistic-empirical pavement design guide

    NASA Astrophysics Data System (ADS)

    Lowe, Justin

    The AASHTO Mechanistic-Empirical Design Guide (MEPDG) is one of several "next generation" pavement design approaches intended to address limitations of older empirical methods. This research investigated the capabilities and performance of the MEPDG through analyses of an empirically-designed section of NH Route 16, which the New Hampshire Department of Transportation (NHDOT) indicated may be under-designed. MEPDG distress predictions indicate that the pavement section should achieve a service life of at least 10 years. This was supported by the fatigue analysis of the base course, which also indicated that the pavement may have been damaged by traffic loads prior to the completion of the surface course. During this research, a number of limitations and model behaviors of the MEPDG were observed, some with significant importance to this analysis and to future projects within New Hampshire. Because implementation and full realization of the MEPDG requires significant investment, the results of this research should be considered before undertaking steps towards adoption of the software.

  15. Monitoring Strategies in Permeable Pavement Systems to Optimize Maintenance Scheduling

    EPA Science Inventory

    As the surface in a permeable pavement system clogs and performance decreases, maintenance is required to preserve the design function. Currently, guidance is limited for scheduling maintenance on an as needed basis. Previous research has shown that surface clogging in a permea...

  16. Measuring Clogging with Pressure Transducers in Permeable Pavement Strips

    EPA Science Inventory

    Two issues that have a negative affect on the long term hydrologic performance of permeable pavement systems are surface clogging and clogging at the interface with the underlying soil. Surface clogging limits infiltration capacity and results in bypass if runoff rate exceeds in...

  17. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

    PubMed

    Nakata, Toshiyuki; Liu, Hao

    2012-02-22

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements. PMID:21831896

  18. Effect of Back Contact and Rapid Thermal Processing Conditions on Flexible CdTe Device Performance

    SciTech Connect

    Mahabaduge, Hasitha; Meysing, D. M.; Rance, Will L.; Burst, James M.; Reese, Matthew O.; Wolden, C. A.; Gessert, Timothy A.; Metzger, Wyatt K.; Garner, S.; Barnes, Teresa M.

    2015-06-14

    Flexible CdTe solar cells on ultra-thin glass substrates can enable new applications that require high specific power, unique form-factors, and low manufacturing costs. To be successful, these cells must be cost competitive, have high efficiency, and have high reliability. Here we present back contact processing conditions that enabled us to achieve over 16% efficiency on flexible Corning (R) Willow (R) Glass substrates. We used co-evaporated ZnTe:Cu and Au as our back contact and used rapid thermal processing (RTP) to activate the back contact. Both the ZnTe to Cu ratio and the RTP activation temperature provide independent control over the device performance. We have investigated the influence of various RTP conditions to Cu activation and distribution. Current density-voltage, capacitance-voltage measurements along with device simulations were used to examine the device performance in terms of ZnTe to Cu ratio and rapid thermal activation temperature.

  19. Solution-processed high-performance colloidal quantum dot tandem photodetectors on flexible substrates

    SciTech Connect

    Jiang, Zhenyu; You, Guanjun; Wang, Li; Liu, Jie; Xu, Jian; Hu, Wenjia; Zhang, Yu

    2014-08-28

    We report a high-performance colloidal quantum dot (CQD)-based near-infrared tandem photodetector fabricated on flexible substrates via solution-processed method. The tandem photodetector on poly(ethylene terephthalate) substrates exhibited low dark current and high detectivities over ∼8.8 × 10{sup 11} Jones at near infrared range at −0.5 V bias and over ∼10{sup 13} Jones near 0 bias. The critical bend radii of ∼8 mm and ∼3 mm have been demonstrated for tensile and compressive bending, respectively. The performance of photodetectors remains stable under mechanical stress, making PbSe CQD material a promise candidate for flexible infrared sensing applications.

  20. Use of Time Domain Reflectometers (TDRs) in Permeable Pavement Systems to Predict Maintenance Needs and Effectiveness

    EPA Science Inventory

    As the surface in permeable pavement systems clogs, infiltration capacity decreases, so maintenance is required to maintain hydrologic performance. There is limited direct guidance for determining when maintenance is needed to prevent surface runoff bypass. Research is being co...

  1. The Concrete and Pavement Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  2. High Performance, Robust Control of Flexible Space Structures: MSFC Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Whorton, M. S.

    1998-01-01

    Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed H2/H(infinity) optimization to synthesize a set of controllers explicitly trading between nominal performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H2/H(infinity) design method than either H2 or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures.

  3. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-11-01

    The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H+) and hydroxide (OH-) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H+ and OH- ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the relative resistance variations of the sensor increases linearly with increasing the pH values in the range from 5 to 9 and the response time ranges from 0.2 s to 22.6 s. The pH sensor also shows high performance in mechanical bendability, which benefited from the combination of flexible PET substrates and SWNTs. The SWNT-based flexible pH sensor demonstrates great potential in a wide range of areas due to its simple structure, excellent performance, low power consumption, and compatibility with integrated circuits.

  4. The sports performance application of vibration exercise for warm-up, flexibility and sprint speed.

    PubMed

    Cochrane, Darryl

    2013-01-01

    Since the turn of the 21st century, there has been a resurgence of vibration technology to enhance sport science especially for power and force development. However, vibration exercise has been trialled in other areas that are central to athlete performance such as warm-up, flexibility and sprint speed. Therefore, the aim of this review was to attempt to gain a better understanding of how acute and short-term vibration exercise may impact on warm-up, flexibility and sprint speed. The importance of warming up for sporting performance has been well documented and vibration exercise has the capability to be included or used as a standalone warm-up modality to increase intramuscular temperature at a faster rate compared to other conventional warm-up modalities. However, vibration exercise does not provide any additional neurogenic benefits compared to conventional dynamic and passive warm-up interventions. Vibration exercise appears to be a safe modality that does not produce any adverse affects causing injury or harm and could be used during interval and substitution breaks, as it would incur a low metabolic cost and be time-efficient compared to conventional warm-up modalities. Acute or short-term vibration exercise can enhance flexibility and range of motion without having a detrimental effect on muscle power, however it is less clear which mechanisms may be responsible for this enhancement. It appears that vibration exercise is not capable of improving sprint speed performance; this could be due to the complex and dynamic nature of sprinting where the purported increase in muscle power from vibration exercise is probably lost on repeated actions of high force generation. Vibration exercise is a safe modality that produces no adverse side effects for injury or harm. It has the time-efficient capability of providing coaches, trainers, and exercise specialists with an alternative modality that can be implemented for warm-up and flexibility either in isolation or in

  5. Preliminary evaluation of LTPP continuously reinforced concrete (CRC) pavement test sections. Final report, February 1995--October 1998

    SciTech Connect

    Tayabji, S.D.; Selezneva, O.; Jiang, Y.J.

    1999-07-01

    As part of the study reported here, analysis of data from the LTPP GPS-5 test sections was conducted to identify factors that influence long-term crack spacing in continuously reinforced concrete (CRC) pavements and to determine that effect of crack spacing on pavement performance. Data from the 85 test sections from the GPS-5 experiment were analyzed.

  6. Flexible high-performance all-inkjet-printed inverters: organo-compatible and stable interface engineering.

    PubMed

    Chung, Seungjun; Jang, Mi; Ji, Seon-Beom; Im, Hwarim; Seong, Narkhyeon; Ha, Jewook; Kwon, Soon-Ki; Kim, Yun-Hi; Yang, Hoichang; Hong, Yongtaek

    2013-09-14

    High-performance all-inkjet-printed organic inverters are fabricated on flexible substrates. By introducing end-functionalized polystyrene on both surfaces of inkjet-printed source/drain Ag electrodes and poly(4-vinylphenol) dielectrics, organic-compatible and hydroxyl-free interfaces between those layers and 6,13-bis(triisopropylsilylethynyl)pentacene drastically reduce the interfacial trap and contact resistance. The resulting organic inverters show a full up-down switching performance and a high voltage gain of 19.8.

  7. Plasmonic photosensitization of polyaniline prepared by a novel process for high-performance flexible photodetector.

    PubMed

    Barman, Tapan; Pal, Arup R

    2015-02-01

    We report the synthesis of a polyaniline (PAni)-gold nanoparticle (AuNP) composite thin film in a single step. A flexible high-performance visible photodetector is constructed using PAni-AuNP composite with low loading of AuNP, and optoelectronic properties of the device are evaluated. The present study demonstrates that a plasmonic hybrid nanocomposite prepared by a single-step novel plasma-based dry process could solve the low lifetime and performance-related issues of organic optoelectronic devices.

  8. Design and performance of an ultra-flexible two-photon microscope for in vivo research

    PubMed Central

    Mayrhofer, Johannes M.; Haiss, Florent; Haenni, Dominik; Weber, Stefan; Zuend, Marc; Barrett, Matthew J. P.; Ferrari, Kim David; Maechler, Philipp; Saab, Aiman S.; Stobart, Jillian L.; Wyss, Matthias T.; Johannssen, Helge; Osswald, Harald; Palmer, Lucy M.; Revol, Vincent; Schuh, Claus-Dieter; Urban, Claus; Hall, Andrew; Larkum, Matthew E.; Rutz-Innerhofer, Edith; Zeilhofer, Hanns Ulrich; Ziegler, Urs; Weber, Bruno

    2015-01-01

    We present a cost-effective in vivo two-photon microscope with a highly flexible frontend for in vivo research. Our design ensures fast and reproducible access to the area of interest, including rotation of imaging plane, and maximizes space for auxiliary experimental equipment in the vicinity of the animal. Mechanical flexibility is achieved with large motorized linear stages that move the objective in the X, Y, and Z directions up to 130 mm. 360° rotation of the frontend (rotational freedom for one axis) is achieved with the combination of a motorized high precision bearing and gearing. Additionally, the modular design of the frontend, based on commercially available optomechanical parts, allows straightforward updates to future scanning technologies. The design exceeds the mobility of previous movable microscope designs while maintaining high optical performance. PMID:26600989

  9. Design and performance of an ultra-flexible two-photon microscope for in vivo research.

    PubMed

    Mayrhofer, Johannes M; Haiss, Florent; Haenni, Dominik; Weber, Stefan; Zuend, Marc; Barrett, Matthew J P; Ferrari, Kim David; Maechler, Philipp; Saab, Aiman S; Stobart, Jillian L; Wyss, Matthias T; Johannssen, Helge; Osswald, Harald; Palmer, Lucy M; Revol, Vincent; Schuh, Claus-Dieter; Urban, Claus; Hall, Andrew; Larkum, Matthew E; Rutz-Innerhofer, Edith; Zeilhofer, Hanns Ulrich; Ziegler, Urs; Weber, Bruno

    2015-11-01

    We present a cost-effective in vivo two-photon microscope with a highly flexible frontend for in vivo research. Our design ensures fast and reproducible access to the area of interest, including rotation of imaging plane, and maximizes space for auxiliary experimental equipment in the vicinity of the animal. Mechanical flexibility is achieved with large motorized linear stages that move the objective in the X, Y, and Z directions up to 130 mm. 360° rotation of the frontend (rotational freedom for one axis) is achieved with the combination of a motorized high precision bearing and gearing. Additionally, the modular design of the frontend, based on commercially available optomechanical parts, allows straightforward updates to future scanning technologies. The design exceeds the mobility of previous movable microscope designs while maintaining high optical performance.

  10. Transferable self-welding silver nanowire network as high performance transparent flexible electrode.

    PubMed

    Zhu, Siwei; Gao, Yuan; Hu, Bin; Li, Jia; Su, Jun; Fan, Zhiyong; Zhou, Jun

    2013-08-23

    High performance transparent electrodes (TEs) with figures-of-merit as high as 471 were assembled using ultralong silver nanowires (Ag NWs). A room-temperature plasma was employed to enhance the conductivity of the Ag NW TEs by simultaneously removing the insulating PVP layer coating on the NWs and welding the junctions tightly. Furthermore, we developed a general way to fabricate TEs regardless of substrate limitations by transferring the as-fabricated Ag NW network onto various substrates directly, and the transmittance can remain as high as 91% with a sheet resistivity of 13 Ω/sq. The highly robust and stable flexible TEs will have broad applications in flexible optoelectronic and electronic devices.

  11. Hydrodynamic analysis, performance assessment, and actuator design of a flexible tail propulsor in an artificial alligator

    NASA Astrophysics Data System (ADS)

    Philen, Michael; Neu, Wayne

    2011-09-01

    The overall objective of this research is to develop analysis tools for determining actuator requirements and assessing viable actuator technology for design of a flexible tail propulsor in an artificial alligator. A simple hydrodynamic model that includes both reactive and resistive forces along the tail is proposed and the calculated mean thrust agrees well with conventional estimates of drag. Using the hydrodynamic model forces as an input, studies are performed for an alligator ranging in size from 1 cm to 2 m at swimming speeds of 0.3-1.8 body lengths per second containing five antagonistic pairs of actuators distributed along the length of the tail. Several smart materials are considered for the actuation system, and preliminary analysis results indicate that the acrylic electroactive polymer and the flexible matrix composite actuators are potential artificial muscle technologies for the system.

  12. Automated management for pavement inspection system (AMPIS)

    NASA Astrophysics Data System (ADS)

    Chung, Hung Chi; Girardello, Roberto; Soeller, Tony; Shinozuka, Masanobu

    2003-08-01

    An automated in-situ road surface distress surveying and management system, AMPIS, has been developed on the basis of video images within the framework of GIS software. Video image processing techniques are introduced to acquire, process and analyze the road surface images obtained from a moving vehicle. ArcGIS platform is used to integrate the routines of image processing and spatial analysis in handling the full-scale metropolitan highway surface distress detection and data fusion/management. This makes it possible to present user-friendly interfaces in GIS and to provide efficient visualizations of surveyed results not only for the use of transportation engineers to manage road surveying documentations, data acquisition, analysis and management, but also for financial officials to plan maintenance and repair programs and further evaluate the socio-economic impacts of highway degradation and deterioration. A review performed in this study on fundamental principle of Pavement Management System (PMS) and its implementation indicates that the proposed approach of using GIS concept and its tools for PMS application will reshape PMS into a new information technology-based system providing a convenient and efficient pavement inspection and management.

  13. An Approach for Nonlinear Fatigue Damage Evaluation in Asphalt Pavements

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Pabitra; Thongram, Sonika

    2016-08-01

    Fatigue due to vehicular loads is one of the primary distress mechanisms in asphalt pavements. It happens primarily due to deterioration in asphalt material with load repetitions. Degradation of asphalt material may be evaluated using different parameters. In view of degradation, the incremental damage in a given pavement section would be different for different repetitions, even with same loadings. Therefore, the damage progression becomes nonlinear with repetitions. Accounting such nonlinearity in damage accumulation, and based on different damage evaluation parameters, this paper presents an equivalent approach for fatigue damage evaluation in asphalt pavements. Traditional fatigue equation adopted in mechanistic-empirical pavement design has been used in the present work. Four different criteria, namely number of load repetitions, asphalt stiffness reduction, strain enhancement and fatigue life reduction with repetitions are considered for damage estimation. The proposed approach could estimate same value of nonlinear damage, irrespective of the criteria used. The simplest form of criterion i.e. the number of load repetitions can be used for fatigue performance evaluation. Probabilistically, the damage propagation is also correlated and assessed with the failure probability.

  14. High-performance flexible graphene aptasensor for mercury detection in mussels.

    PubMed

    An, Ji Hyun; Park, Seon Joo; Kwon, Oh Seok; Bae, Joonwon; Jang, Jyongsik

    2013-12-23

    Mercury (Hg) is highly toxic but has been widely used for numerous domestic applications, including thermometers and batteries, for decades, which has led to fatal outcomes due to its accumulation in the human body. Although many types of mercury sensors have been developed to protect the users from Hg, few methodologies exist to analyze Hg(2+) ions in low concentrations in real world samples. Herein, we describe the fabrication and characterization of liquid-ion gated field-effect transistor (FET)-type flexible graphene aptasensor with high sensitivity and selectivity for Hg. The field-induced responses from the graphene aptasensor had excellent sensing performance, and Hg(2+) ions with very low concentration of 10 pM could be detected, which is 2-3 orders of magnitude more sensitive than previously reported mercury sensors using electrochemical systems. Moreover, the aptasensor showed a highly specific response to Hg(2+) ions in mixed solutions. The flexible graphene aptasensor showed a very rapid response, providing a signal in less than 1 s when the Hg(2+) ion concentration was altered. Specificity to Hg(2+) ions was demonstrated in real world samples (in this case samples derived from mussels). The aptasensor was fabricated by transferring chemical vapor deposition (CVD)-grown graphene onto a transparent flexible substrate, and the structure displayed excellent mechanical durability and flexiblility. This graphene-based aptasensor has potential for detecting Hg exposure in human and in the environment.

  15. Flexibility in metabolic rate and activity level determines individual variation in overwinter performance.

    PubMed

    Auer, Sonya K; Salin, Karine; Anderson, Graeme J; Metcalfe, Neil B

    2016-11-01

    Energy stores are essential for the overwinter survival of many temperate and polar animals, but individuals within a species often differ in how quickly they deplete their reserves. These disparities in overwinter performance may be explained by differences in their physiological and behavioral flexibility in response to food scarcity. However, little is known about whether individuals exhibit correlated or independent changes in these traits, and how these phenotypic changes collectively affect their winter energy use. We examined individual flexibility in both standard metabolic rate and activity level in response to food scarcity and their combined consequences for depletion of lipid stores among overwintering brown trout (Salmo trutta). Metabolism and activity tended to decrease, yet individuals exhibited striking differences in their physiological and behavioral flexibility. The rate of lipid depletion was negatively related to decreases in both metabolic and activity rates, with the smallest lipid loss over the simulated winter period occurring in individuals that had the greatest reductions in metabolism and/or activity. However, changes in metabolism and activity were negatively correlated; those individuals that decreased their SMR to a greater extent tended to increase their activity rates, and vice versa, suggesting among-individual variation in strategies for coping with food scarcity.

  16. Graphene/carbon black hybrid film for flexible and high rate performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Wang, Yaming; Chen, Junchen; Cao, Jianyun; Liu, Yan; Zhou, Yu; Ouyang, Jia-Hu; Jia, Dechang

    2014-12-01

    Reduced graphene oxide/carbon black (rGO/CB) hybrid films with different carbon black (CB) contents are prepared by a simple vacuum filtration method. The CB particles evenly distribute between the graphene layers, not only preventing the compact restack of rGO sheets but also providing electrical contact between the base planes of rGO sheets. As expected, the as-prepared rGO/CB hybrid film shows enhanced rate capability when compared with rGO film. Furthermore, a solid-state flexible supercapacitor has been constructed with the optimized rGO/CB hybrid film by using polyvinyl alcohol (PVA)/H2SO4 gel as electrolyte and Au coated PET film as current collector and mechanical support. The solid-state flexible supercapacitor shows a specific capacitance of 112 F g-1 at a scan rate of 5 mV s-1, and excellent rate performance with a specific capacitance of 79.6 F g-1 at a high scan rate of 1 V s-1. Moreover, the flexible solid-state supercapacitor exhibits good cycling stability with capacitance retention of 94% after 3000 cycles in normal state plus 2000 cycles in bent state.

  17. Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices

    PubMed Central

    Polat, Emre O.; Balci, Osman; Kakenov, Nurbek; Uzlu, Hasan Burkay; Kocabas, Coskun; Dahiya, Ravinder

    2015-01-01

    This work demonstrates an attractive low-cost route to obtain large area and high-quality graphene films by using the ultra-smooth copper foils which are typically used as the negative electrodes in lithium-ion batteries. We first compared the electronic transport properties of our new graphene film with the one synthesized by using commonly used standard copper foils in chemical vapor deposition (CVD). We observed a stark improvement in the electrical performance of the transistors realized on our graphene films. To study the optical properties on large area, we transferred CVD based graphene to transparent flexible substrates using hot lamination method and performed large area optical scanning. We demonstrate the promise of our high quality graphene films for large areas with ~400 cm2 flexible optical modulators. We obtained a profound light modulation over a broad spectrum by using the fabricated large area transparent graphene supercapacitors and we compared the performance of our devices with the one based on graphene from standard copper. We propose that the copper foils used in the lithium-ion batteries could be used to obtain high-quality graphene at much lower-cost, with the improved performance of electrical transport and optical properties in the devices made from them. PMID:26578425

  18. Study of flexible fin and compliant joint stiffness on propulsive performance: theory and experiments.

    PubMed

    Kancharala, A K; Philen, M K

    2014-09-01

    The caudal fin is a major source of thrust generation in fish locomotion. Along with the fin stiffness, the stiffness of the joint connecting the fish body to the tail plays a major role in the generation of thrust. This paper investigates the combined effect of fin and joint flexibility on propulsive performance using theoretical and experimental studies. For this study, fluid-structure interaction of the fin has been modeled using the 2D unsteady panel method coupled with nonlinear Euler-Bernoulli beam theory. The compliant joint has been modeled as a torsional spring at the leading edge of the fin. A comparison of self-propelled speed and efficiency with parameters such as heaving and pitching amplitude, oscillation frequency, flexibility of the fin and the compliant joint is reported. The model also predicts the optimized stiffnesses of the compliant joint and the fin for maximum efficiency. Experiments have been carried out to determine the effect of fin and joint stiffness on propulsive performance. Digital image correlation has been used to measure the deformation of the fins and the measured deformation is coupled with the hydrodynamic model to predict the performance. The predicted theoretical performance behavior closely matches the experimental values. PMID:24737004

  19. Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices.

    PubMed

    Polat, Emre O; Balci, Osman; Kakenov, Nurbek; Uzlu, Hasan Burkay; Kocabas, Coskun; Dahiya, Ravinder

    2015-01-01

    This work demonstrates an attractive low-cost route to obtain large area and high-quality graphene films by using the ultra-smooth copper foils which are typically used as the negative electrodes in lithium-ion batteries. We first compared the electronic transport properties of our new graphene film with the one synthesized by using commonly used standard copper foils in chemical vapor deposition (CVD). We observed a stark improvement in the electrical performance of the transistors realized on our graphene films. To study the optical properties on large area, we transferred CVD based graphene to transparent flexible substrates using hot lamination method and performed large area optical scanning. We demonstrate the promise of our high quality graphene films for large areas with ~400 cm(2) flexible optical modulators. We obtained a profound light modulation over a broad spectrum by using the fabricated large area transparent graphene supercapacitors and we compared the performance of our devices with the one based on graphene from standard copper. We propose that the copper foils used in the lithium-ion batteries could be used to obtain high-quality graphene at much lower-cost, with the improved performance of electrical transport and optical properties in the devices made from them. PMID:26578425

  20. Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Polat, Emre O.; Balci, Osman; Kakenov, Nurbek; Uzlu, Hasan Burkay; Kocabas, Coskun; Dahiya, Ravinder

    2015-11-01

    This work demonstrates an attractive low-cost route to obtain large area and high-quality graphene films by using the ultra-smooth copper foils which are typically used as the negative electrodes in lithium-ion batteries. We first compared the electronic transport properties of our new graphene film with the one synthesized by using commonly used standard copper foils in chemical vapor deposition (CVD). We observed a stark improvement in the electrical performance of the transistors realized on our graphene films. To study the optical properties on large area, we transferred CVD based graphene to transparent flexible substrates using hot lamination method and performed large area optical scanning. We demonstrate the promise of our high quality graphene films for large areas with ~400 cm2 flexible optical modulators. We obtained a profound light modulation over a broad spectrum by using the fabricated large area transparent graphene supercapacitors and we compared the performance of our devices with the one based on graphene from standard copper. We propose that the copper foils used in the lithium-ion batteries could be used to obtain high-quality graphene at much lower-cost, with the improved performance of electrical transport and optical properties in the devices made from them.

  1. Investigation of mechanical properties of pavement through electromagnetic techniques

    NASA Astrophysics Data System (ADS)

    Benedetto, Andrea; Tosti, Fabio; D'Amico, Fabrizio

    2014-05-01

    Ground-penetrating radar (GPR) is considered as one of the most flexible geophysical tools that can be effectively and efficiently used in many different applications. In the field of pavement engineering, GPR can cover a wide range of uses, spanning from physical to geometrical inspections of pavements. Traditionally, such inferred information are integrated with mechanical measurements from other traditional (e.g. plate bearing test) or non-destructive (e.g. falling weight deflectometer) techniques, thereby resulting, respectively, in time-consuming and low-significant measurements, or in a high use of technological resources. In this regard, the new challenge of retrieving mechanical properties of road pavements and materials from electromagnetic measurements could represent a further step towards a greater saving of economic resources. As far as concerns unpaved and bound layers it is well-known that strength and deformation properties are mostly affected, respectively, by inter-particle friction and cohesion of soil particles and aggregates, and by bitumen adhesion, whose variability is expressed by the Young modulus of elasticity. In that respect, by assuming a relationship between electromagnetic response (e.g. signal amplitudes) and bulk density of materials, a reasonable correlation between mechanical and electric properties of substructure is therefore expected. In such framework, a pulse GPR system with ground-coupled antennae, 600 MHz and 1600 MHz centre frequencies was used over a 4-m×30-m test site composed by a flexible pavement structure. The horizontal sampling resolution amounted to 2.4×10-2 m. A square regular grid mesh of 836 nodes with a 0.40-m spacing between the GPR acquisition tracks was surveyed. Accordingly, a light falling weight deflectometer (LFWD) was used for measuring the elastic modulus of pavement at each node. The setup of such instrument consisted of a 10-kg falling mass and a 100-mm loading plate so that the influence domain

  2. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    PubMed

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability.

  3. Terra Flexible Blanket Solar Array Deployment, On-Orbit Performance and Future Applications

    NASA Technical Reports Server (NTRS)

    Kurland, Richard; Schurig, Hans; Rosenfeld, Mark; Herriage, Michael; Gaddy, Edward; Keys, Denney; Faust, Carl; Andiario, William; Kurtz, Michelle; Moyer, Eric; Day, John H. (Technical Monitor)

    2000-01-01

    The Terra spacecraft (formerly identified as EOS AM1) is the flagship in a planned series of NASA/GSFC (Goddard Space Flight Center) Earth observing system satellites designed to provide information on the health of the Earth's land, oceans, air, ice, and life as a total ecological global system. It has been successfully performing its mission since a late-December 1999 launch into a 705 km polar orbit. The spacecraft is powered by a single wing, flexible blanket array using single junction (SJ) gallium arsenide/germanium (GaAs/Ge) solar cells sized to provide five year end-of-life (EOL) power of greater than 5000 watts at 127 volts. It is currently the highest voltage and power operational flexible blanket array with GaAs/Ge cells. This paper briefly describes the wing design as a basis for discussing the operation of the electronics and mechanisms used to achieve successful on-orbit deployment. Its orbital electrical performance to date will be presented and compared to analytical predictions based on ground qualification testing. The paper concludes with a brief section on future applications and performance trends using advanced multi-junction cells and weight-efficient mechanical components. A viewgraph presentation is attached that outlines the same information as the paper and includes more images of the Terra Spacecraft and its components.

  4. Terra Flexible Blanket Solar Array Deployment, On-Orbit Performance and Future Applications

    NASA Technical Reports Server (NTRS)

    Kurland, Richard; Schurig, Hans; Rosenfeld, Mark; Herriage, Michael; Gaddy, Edward; Keys, Denney; Faust, Carl; Andiario, William; Kurtz, Michelle; Moyer, Eric; Day, John H. (Technical Monitor)

    2000-01-01

    The Terra spacecraft (formerly identified as EOS AM1) is the flagship in a planned series of NASA/GSFC (Goddard Space Flight Center) Earth observing system satellites designed to provide information on the health of the Earth's land, oceans, air, ice, and life as a total ecological global system. It has been successfully performing its mission since a late-December 1999 launch into a 705 km polar orbit. The spacecraft is powered by a single wing, flexible blanket array using single junction (SJ) gallium arsenide/germanium (GaAs/Ge) solar cells sized to provide five year end-of-life (EOL) power of greater than 5000 watts at 127 volts. It is currently the highest voltage and power operational flexible blanket array with GaAs/Ge cells. This paper briefly describes the wing design as a basis for discussing the operation of the electronics and mechanisms used to achieve successful on-orbit deployment. Its orbital electrical performance to date will be presented and compared to analytical predictions based on ground qualification testing. The paper concludes with a brief section on future applications and performance trends using advanced multi-junction cells and weight-efficient mechanical components.

  5. Modeling and performance evaluation of flexible manufacturing systems using Petri nets

    SciTech Connect

    Callotta, M.P.; Cimenez, C.; Tazza, M.

    1996-12-31

    A timed Petri net approach is used to model resource allocation-utilization-release patterns for performance evaluation. First, simple resource utilization sequences are derived from a directed graph representing the process plan of parts. Second, the place-transitions sequences are connected introducing places whose marking models the resources needed to perform the manufacturing operation indicated in the process plan. Time is introduced as a permanence time of tokens at the place-transition sequence, modeling the utilization time of resources. The corresponding model leads to a simultaneous resource possession problem. Finally, flow equations for the description of the quantitative behavior of the resulting timed Petri net are presented. A major conclusion of the paper is that performance evaluation can be adequately abstracted and analytically solved, in a simple way, even in presence of complicating factors like resource sharing and routing flexibility in process plans.

  6. Flexible nanocrystal-coated glass fibers for high-performance thermoelectric energy harvesting.

    PubMed

    Liang, Daxin; Yang, Haoran; Finefrock, Scott W; Wu, Yue

    2012-04-11

    Recent efforts on the development of nanostructured thermoelectric materials from nanowires (Boukai, A. I.; et al. Nature 2008, 451, (7175), 168-171; Hochbaum, A. I.; et al. Nature 2008, 451, (7175), 163-167) and nanocrystals (Kim, W.; et al. Phys. Rev. Lett. 2006, 96, (4), 045901; Poudel, B.; et al. Science 2008, 320, (5876), 634-638; Scheele, M.; et al. Adv. Funct. Mater. 2009, 19, (21), 3476-3483; Wang, R. Y.; et al. Nano Lett. 2008, 8, (8), 2283-2288) show the comparable or superior performance to the bulk crystals possessing the same chemical compositions because of the dramatically reduced thermal conductivity due to phonon scattering at nanoscale surface and interface. Up to date, the majority of the thermoelectric devices made from these inorganic nanostructures are fabricated into rigid configuration. The explorations of truly flexible composite-based flexible thermoelectric devices (See, K. C.; et al. Nano Lett. 2010, 10, (11), 4664-4667) have thus far achieved much less progress, which in principle could significantly benefit the conversion of waste heat into electricity or the solid-state cooling by applying the devices to any kind of objects with any kind of shapes. Here we report an example using a scalable solution-phase deposition method to coat thermoelectric nanocrystals onto the surface of flexible glass fibers. Our investigation of the thermoelectric properties yields high performance comparable to the state of the art from the bulk crystals and proof-of-concept demonstration also suggests the potential of wrapping the thermoelectric fibers on the industrial pipes to improve the energy efficiency.

  7. Reinforcement of asphalt concrete pavement by segments of exhausted fiber used for sorption of oil spill

    NASA Astrophysics Data System (ADS)

    Lukashevich, V. N.; Efanov, I. N.

    2015-01-01

    The paper is aimed at construction of the experimental road pavement made of dispersed reinforced asphalt concrete. Electronic paramagnetic resonance, infrared spectroscopy and fluorescent bitumen studies were used to prove that disperse reinforcement of asphalt concrete mixtures with fibers of exhausted sorbents reduce the selective filtration of low polymeric fractions of petroleum bitumen and improve its properties in the adsorption layer. Sesquioxides are neutralized as catalysts aging asphalt binder. This leads to improvement in the elasticity of bitumen films at low temperatures and provide better crack resistance of coatings to reduce the intensity of the aging of asphalt binder, and, therefore, to increase the durability of road pavements. The experimental road pavement made of dispersed reinforced asphalt concrete operated during 4 years and demonstrated better transport- performance properties in comparison with the analogue pavements.

  8. Preliminary evaluation of the lifecycle costs and market barriers of reflective pavements

    SciTech Connect

    Ting, M.; Koomey, J.G.; Pomerantz, M.

    2001-11-21

    The objective of this study is to evaluate the life cycle costs and market barriers associated with using reflective paving materials in streets and parking lots as a way to reduce the urban heat island effect. We calculated and compared the life cycle costs of conventional asphalt concrete (AC) pavements to those of other existing pavement technologies with higher reflectivity-portland cement concrete (PCC), porous pavements, resin pavements, AC pavements using light-colored chip seals, and AC pavements using light-colored asphalt emulsion additives. We found that for streets and parking lots, PCC can provide a cost-effective alternative to conventional AC when severely damaged pavements must be completely reconstructed. We also found that rehabilitating damaged AC streets and intersections with thin overlays of PCC (ultra-thin white topping) can often provide a cost-effective alternative to standard rehabilitation techniques using conventional AC. Chip sealing is a common maintenance treatment for low-volume streets which, when applied using light-colored chips, could provide a reflective pavement surface. If the incremental cost of using light-colored chips is low, this chip sealing method could also be cost-effective, but the incremental costs of light-colored chips are as of yet uncertain and expected to vary. Porous pavements were found to have higher life cycle costs than conventional AC in parking lots, but several cost-saving features of porous pavements fell outside the boundaries of this study. Resin pavements were found to be only slightly more expensive than conventional AC, but the uncertainties in the cost and performance data were large. The use of light-colored additives in asphalt emulsion seal coats for parking lot pavements was found to be significantly more expensive than conventional AC, reflecting its current niche market of decorative applications. We also proposed two additional approaches to increasing the reflectivity of conventional AC

  9. Flexible Pillared Graphene-Paper Electrodes for High-Performance Electrochemical Supercapacitors

    SciTech Connect

    Wang, Gongkai; Sun, Xiang; Lu, Fengyuan; Sun, Hongtao; Yu, Mingpeng; Jiang, Weilin; Liu, Changsheng; Lian, Jie

    2011-12-08

    Flexible graphene paper (GP) pillared by carbon black (CB) nanoparticles using a simple vacuum filtration method is developed as a high-performance electrode material for supercapacitors. Through the introduction of CB nanoparticles as spacers, the self-restacking of graphene sheets during the filtration process is mitigated to a great extent. The pillared GP-based supercapacitors exhibit excellent electrochemical performances and cyclic stabilities compared with GP without the addition of CB nanoparticles. At a scan rate of 10 mV s-1, the specific capacitance of the pillared GP is 138 F g-1 and 83.2 F g-1 with negligible 3.85% and 4.35% capacitance degradation after 2000 cycles in aqueous and organic electrolytes, respectively. At an extremely fast scan rate of 500 mV s-1, the specific capacitance can reach 80 F g-1 in aqueous electrolyte. No binder is needed for assembling the supercapacitor cells and the pillared GP itself may serve as a current collector due to its intrinsic high electrical conductivity. Finally, the pillared GP has great potential in the development of promising flexible and ultralight-weight supercapacitors for electrochemical energy storage.

  10. Improvement of the aerodynamic performance by wing flexibility and elytra--hind wing interaction of a beetle during forward flight.

    PubMed

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung

    2013-08-01

    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486

  11. Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight

    PubMed Central

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung

    2013-01-01

    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486

  12. Improvement of the aerodynamic performance by wing flexibility and elytra--hind wing interaction of a beetle during forward flight.

    PubMed

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung

    2013-08-01

    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight.

  13. The effects of stretching on the flexibility, muscle performance and functionality of institutionalized older women.

    PubMed

    Gallon, D; Rodacki, A L F; Hernandez, S G; Drabovski, B; Outi, T; Bittencourt, L R; Gomes, A R S

    2011-03-01

    Stretching has been widely used to increase the range of motion. We assessed the effects of a stretching program on muscle-tendon length, flexibility, torque, and activities of daily living of institutionalized older women. Inclusion/exclusion criteria were according to Mini-Mental State Examination (MMSE) (>13), Barthel Index (>13) and Lysholm Scoring Scale (>84). Seventeen 67 ± 9 year-old elderly women from a nursing home were divided into 2 groups at random: the control group (CG, N = 9) participated in enjoyable cultural activities; the stretching group (SG, N = 8) performed active stretching of hamstrings, 4 bouts of 1 min each. Both groups were supervised three times per week over a period of 8 weeks. Peak torque was assessed by an isokinetic method. Both groups were evaluated by a photogrammetric method to assess muscle-tendon length of uni- and biarticular hip flexors and hamstring flexibility. All measurements were analyzed before and after 8 weeks by two-way ANOVA with the level of significance set at 5%. Hamstring flexibility increased by 30% in the SG group compared to pre-training (76.5 ± 13.0° vs 59.5 ± 9.0°, P = 0.0002) and by 9.2% compared to the CG group (76.5 ± 13.0° vs 64.0 ± 12.0°, P = 0.0018). Muscle-tendon lengths of hip biarticular flexor muscles (124 ± 6.8° vs 118.3 ± 7.6°, 5.0 ± 7.0%, P = 0.031) and eccentric knee extensor peak torque were decreased in the CG group compared to pre-test values (-49.4 ± 16.8 vs -60.5 ± 18.9 Nm, -15.7 ± 20%, P = 0.048). The stretching program was sufficient to increase hamstring flexibility and a lack of stretching can cause reduction of muscle performance.

  14. Scalable fabrication of high-performance and flexible graphene strain sensors

    NASA Astrophysics Data System (ADS)

    Tian, He; Shu, Yi; Cui, Ya-Long; Mi, Wen-Tian; Yang, Yi; Xie, Dan; Ren, Tian-Ling

    2013-12-01

    Graphene strain sensors have promising prospects of applications in detecting human motion. However, the shortage of graphene growth and patterning techniques has become a challenging issue hindering the application of graphene strain sensors. Therefore, we propose wafer-scale flexible strain sensors with high-performance, which can be fabricated in one-step laser scribing. The graphene films could be obtained by directly reducing graphene oxide film in a Light-Scribe DVD burner. The gauge factor (GF) of the graphene strain sensor (10 mm × 10 mm square) is 0.11. In order to enhance the GF further, graphene micro-ribbons (20 μm width, 0.6 mm long) has been used as strain sensors, of which the GF is up to 9.49. The devices may conform to various application requirements, such as high GF for low-strain applications and low GF for high deformation applications. The work indicates that laser scribed flexible graphene strain sensors could be widely used in medical-sensing, bio-sensing, artificial skin and many other areas.Graphene strain sensors have promising prospects of applications in detecting human motion. However, the shortage of graphene growth and patterning techniques has become a challenging issue hindering the application of graphene strain sensors. Therefore, we propose wafer-scale flexible strain sensors with high-performance, which can be fabricated in one-step laser scribing. The graphene films could be obtained by directly reducing graphene oxide film in a Light-Scribe DVD burner. The gauge factor (GF) of the graphene strain sensor (10 mm × 10 mm square) is 0.11. In order to enhance the GF further, graphene micro-ribbons (20 μm width, 0.6 mm long) has been used as strain sensors, of which the GF is up to 9.49. The devices may conform to various application requirements, such as high GF for low-strain applications and low GF for high deformation applications. The work indicates that laser scribed flexible graphene strain sensors could be widely used

  15. A test of porous pavement effectiveness on clay soils during natural storm events.

    PubMed

    Dreelin, Erin A; Fowler, Laurie; Ronald Carroll, C

    2006-02-01

    Porous pavements allow precipitation to infiltrate through the pavement to the soil, reducing the volume of stormwater runoff produced at a site. However, porous pavements are not widely used on fine-grained soils due to concerns about their performance. Our objective was to investigate the efficacy of porous pavements in controlling stormwater runoff on clay soils. We compared the performance of an asphalt parking lot and a porous pavement parking lot of grass pavers in Athens, Georgia, USA, over relatively small and low-intensity rain events. The porous lot produced 93% less runoff than the asphalt lot. The total volume of runoff at the porous lot was significantly less than the asphalt lot (t = 2.96, p = 0.009). Turbidity was significantly greater at the asphalt lot (t = 6.18, p < 0.001) whereas conductivity was significantly higher at the porous lot (t = 2.31, p = 0.03). Metal and nutrient concentrations were below detection limits at both lots during seven of nine small storm events. During events in which we could detect pollutants, calcium, zinc, silica, and total phosphorus concentrations were higher at the asphalt lot whereas total nitrogen concentrations were greater at the porous lot. Our results suggest porous pavements are a viable option for reducing stormwater runoff and some pollutants from small storms or the first flush from large storms on clay soils.

  16. Statistical classification of road pavements using near field vehicle rolling noise measurements.

    PubMed

    Paulo, Joel Preto; Coelho, J L Bento; Figueiredo, Mário A T

    2010-10-01

    Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.

  17. Bunched akaganeite nanorod arrays: Preparation and high-performance for flexible lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Peng, Shaomin; Yu, Lin; Sun, Ming; Cheng, Gao; Lin, Ting; Mo, Yudi; Li, Zishan

    2015-11-01

    Significant effort has been made to explore high-performance anode materials for flexible lithium-ion batteries. We report a facile hydrothermal route to synthesis self-organized bunched akaganeite (β-FeOOH) nanorod arrays directly grown on carbon cloth (CC/β-FeOOH NRAs). Interestingly, the single nanorod is assembled by numerous small nanowires. A possible growth mechanism for this unique structure is proposed. Owning to the essential crystal structure of β-FeOOH (body-centered cubic), porous morphology, high surface area and direct growth on current collector, the prepared CC/β-FeOOH NRAs manifest a very high reversible capacity of ≈2840 mAh g-1 (2.21 mAh cm-2), remarkable rate capability 568 mAh g-1 (0.43 mAh cm-2) at 10C, stable cycling performance and greater mechanical strength.

  18. Fabrication of Flexible, Redoxable, and Conductive Nanopillar Arrays with Enhanced Electrochemical Performance.

    PubMed

    Yang, MinHo; Hong, Seok Bok; Yoon, Jo Hee; Kim, Dong Seok; Jeong, Soon Woo; Yoo, Dong Eun; Lee, Tae Jae; Lee, Kyoung G; Lee, Seok Jae; Choi, Bong Gill

    2016-08-31

    Highly ordered and flexible nanopillar arrays have received considerable interest for many applications of electrochemical devices because of their unique mechanical and structural properties. Here, we report on highly ordered polyoxometalate (POM)-doped polypyrrole (Ppy) nanopillar arrays produced by soft lithography and subsequent electrodeposition. As-prepared POM-Ppy/nanopillar films show superior electrochemical performances for pseudocapacitor and enzymeless electrochemical sensor applications and good mechanical properties, which allowed them to be easily bent and twisted. Regarding electrochemical characteristics for pseudocapacitive electrodes, the POM-Ppy/nanopillar electrodes are capable of delivering high areal capacitance of 77.0 mF cm(-2), high rate performance, and good cycle life of ∼100% retention over 3500 cycles even when bent. Moreover, the study suggests that the POM-Ppy/nanopillar electrodes have an excellent electrocatalytic activity toward hydrogen.

  19. Fabrication of Flexible, Redoxable, and Conductive Nanopillar Arrays with Enhanced Electrochemical Performance.

    PubMed

    Yang, MinHo; Hong, Seok Bok; Yoon, Jo Hee; Kim, Dong Seok; Jeong, Soon Woo; Yoo, Dong Eun; Lee, Tae Jae; Lee, Kyoung G; Lee, Seok Jae; Choi, Bong Gill

    2016-08-31

    Highly ordered and flexible nanopillar arrays have received considerable interest for many applications of electrochemical devices because of their unique mechanical and structural properties. Here, we report on highly ordered polyoxometalate (POM)-doped polypyrrole (Ppy) nanopillar arrays produced by soft lithography and subsequent electrodeposition. As-prepared POM-Ppy/nanopillar films show superior electrochemical performances for pseudocapacitor and enzymeless electrochemical sensor applications and good mechanical properties, which allowed them to be easily bent and twisted. Regarding electrochemical characteristics for pseudocapacitive electrodes, the POM-Ppy/nanopillar electrodes are capable of delivering high areal capacitance of 77.0 mF cm(-2), high rate performance, and good cycle life of ∼100% retention over 3500 cycles even when bent. Moreover, the study suggests that the POM-Ppy/nanopillar electrodes have an excellent electrocatalytic activity toward hydrogen. PMID:27548355

  20. Ultrafast laser trimming for reduced device leakage in high performance OTFT semiconductors for flexible displays

    NASA Astrophysics Data System (ADS)

    Karnakis, Dimitris; Cooke, Michael D.; Chan, Y. F.; Ogier, Simon D.

    2013-03-01

    Organic semiconductors (OSC) are solution processable synthetic materials with high carrier mobility that promise to revolutionise flexible electronics manufacturing due to their low cost, lightweight and high volume low temperature printing in reel-to-reel (R2R) [1] for applications such as flexible display backplanes (Fig.1), RFID tags, and logic/memory devices. Despite several recent technological advances, organic thin film transistor (OTFT) printing is still not production-ready due to limitations mainly with printing resolution on dimensionally unstable substrates and device leakage that reduces dramatically electrical performance. OTFTs have the source-drain in ohmic contact with the OSC material to lower contact resistance. If they are unpatterned, a leakage pathway from source to drain develops which results in non-optimum on/off currents and not controllable device uniformity (Fig.2). DPSS lasers offer several key advantages for OTFT patterning including maskless, non-contact, dry patterning, scalable large area operation with precision registration, well-suited to R2R manufacturing at overall μm size resolutions. But the thermal management of laser processing is very important as the devices are very sensitive to heat and thermomechanical damage [2]. This paper discusses 343nm picosecond laser ablation trimming of 50nm thick PTAA, TIPS pentacene and other semiconductor compounds on thin 50nm thick metal gold electrodes in a top gate configuration. It is shown that with careful optimisation, a suitable process window exists resulting in clean laser structuring without damage to the underlying layers while also containing laser debris. Several order of magnitude improvements were recorded in on/off currents up to 106 with OSC mobilities of 1 cm2/Vsec, albeit at slightly higher than optimum threshold voltages which support demanding flexible display backplane applications.

  1. Pervious Pavement System Evaluation-Paper

    EPA Science Inventory

    The use of a pervious pavement can be effective as a low impact development stormwater control. The Urban Watershed Management Branch is evaluating interlocking concrete paver systems as a type of porous pavement. Although the pavers are impermeable, the spaces between the pave...

  2. High Performance All-Solid-State Flexible Micro-Pseudocapacitor Based on Hierarchically Nanostructured Tungsten Trioxide Composite.

    PubMed

    Huang, Xuezhen; Liu, Hewei; Zhang, Xi; Jiang, Hongrui

    2015-12-23

    Microsupercapacitors (MSCs) are promising energy storage devices to power miniaturized portable electronics and microelectromechanical systems. With the increasing attention on all-solid-state flexible supercapacitors, new strategies for high-performance flexible MSCs are highly desired. Here, we demonstrate all-solid-state, flexible micropseudocapacitors via direct laser patterning on crack-free, flexible WO3/polyvinylidene fluoride (PVDF)/multiwalled carbon nanotubes (MWCNTs) composites containing high levels of porous hierarchically structured WO3 nanomaterials (up to 50 wt %) and limited binder (PVDF, <25 wt %). The work leads to an areal capacitance of 62.4 mF·cm(-2) and a volumetric capacitance of 10.4 F·cm(-3), exceeding that of graphene based flexible MSCs by a factor of 26 and 3, respectively. As a noncarbon based flexible MSC, hierarchically nanostructured WO3 in the narrow finger electrode is essential to such enhancement in energy density due to its pseudocapacitive property. The effects of WO3/PVDF/MWCNTs composite composition and the dimensions of interdigital structure on the performance of the flexible MSCs are investigated. PMID:26618406

  3. High Performance All-Solid-State Flexible Micro-Pseudocapacitor Based on Hierarchically Nanostructured Tungsten Trioxide Composite.

    PubMed

    Huang, Xuezhen; Liu, Hewei; Zhang, Xi; Jiang, Hongrui

    2015-12-23

    Microsupercapacitors (MSCs) are promising energy storage devices to power miniaturized portable electronics and microelectromechanical systems. With the increasing attention on all-solid-state flexible supercapacitors, new strategies for high-performance flexible MSCs are highly desired. Here, we demonstrate all-solid-state, flexible micropseudocapacitors via direct laser patterning on crack-free, flexible WO3/polyvinylidene fluoride (PVDF)/multiwalled carbon nanotubes (MWCNTs) composites containing high levels of porous hierarchically structured WO3 nanomaterials (up to 50 wt %) and limited binder (PVDF, <25 wt %). The work leads to an areal capacitance of 62.4 mF·cm(-2) and a volumetric capacitance of 10.4 F·cm(-3), exceeding that of graphene based flexible MSCs by a factor of 26 and 3, respectively. As a noncarbon based flexible MSC, hierarchically nanostructured WO3 in the narrow finger electrode is essential to such enhancement in energy density due to its pseudocapacitive property. The effects of WO3/PVDF/MWCNTs composite composition and the dimensions of interdigital structure on the performance of the flexible MSCs are investigated.

  4. Fabrication of high-performance flexible alkaline batteries by implementing multiwalled carbon nanotubes and copolymer separator.

    PubMed

    Wang, Zhiqian; Wu, Zheqiong; Bramnik, Natalia; Mitra, Somenath

    2014-02-12

    A flexible alkaline battery with multiwalled carbon nanotube (MWCNT) enhanced composite electrodes and polyvinyl alcohol (PVA)-poly (acrylic acid) (PAA) copolymer separator has been developed. Purified MWCNTs appear to be the most effective conductive additive, while the flexible copolymer separator not only enhances flexibility but also serves as electrolyte storage. PMID:24510667

  5. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.

    PubMed

    Han, Ning; Yang, Zai-xing; Wang, Fengyun; Dong, Guofa; Yip, SenPo; Liang, Xiaoguang; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2015-09-16

    Among many available photovoltaic technologies at present, gallium arsenide (GaAs) is one of the recognized leaders for performance and reliability; however, it is still a great challenge to achieve cost-effective GaAs solar cells for smart systems such as transparent and flexible photovoltaics. In this study, highly crystalline long GaAs nanowires (NWs) with minimal crystal defects are synthesized economically by chemical vapor deposition and configured into novel Schottky photovoltaic structures by simply using asymmetric Au-Al contacts. Without any doping profiles such as p-n junction and complicated coaxial junction structures, the single NW Schottky device shows a record high apparent energy conversion efficiency of 16% under air mass 1.5 global illumination by normalizing to the projection area of the NW. The corresponding photovoltaic output can be further enhanced by connecting individual cells in series and in parallel as well as by fabricating NW array solar cells via contact printing showing an overall efficiency of 1.6%. Importantly, these Schottky cells can be easily integrated on the glass and plastic substrates for transparent and flexible photovoltaics, which explicitly demonstrate the outstanding versatility and promising perspective of these GaAs NW Schottky photovoltaics for next-generation smart solar energy harvesting devices.

  6. High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres

    NASA Astrophysics Data System (ADS)

    Javed, Muhammad Sufyan; Dai, Shuge; Wang, Mingjun; Guo, Donglin; Chen, Lin; Wang, Xue; Hu, Chenguo; Xi, Yi

    2015-07-01

    Molybdenum sulfide (MoS2) hierarchical nanospheres are synthesized using a hydrothermal method and characterized by X-ray powder diffraction, Brunauer-Emmett-Teller, scanning electron microscopy and transmission electron microscopy. The prepared MoS2 is used to fabricate solid state flexible supercapacitors which show excellent electrochemical performance such as high capacitance 368 F g-1 at a scan rate of 5 mV s-1 and high power density of 128 W kg-1 at energy density of 5.42 Wh kg-1. The fabricated supercapacitor presents good characteristics such as lightweight, low cast, portability, high flexibility, and long term cycling stability by retaining 96.5% after 5000 cycles at constant discharge current of 0.8 mA. Electrochemical impedance spectroscopy (EIS) results reveal low resistance and suggest that MoS2 nanospheres would be a promising candidate for supercapacitors. Three charged supercapacitors connected in series can light 8 red color commercial light emitting diodes (LEDs) for 2 min, demonstrating its capability as a good storage device.

  7. An application of smart dust for pavement condition monitoring

    NASA Astrophysics Data System (ADS)

    Ferzli, Nadim A.; Ivey, Richard A.; King, Timothy; Sandburg, Colby J.; Pei, Jin-Song; Zaman, Musharraf M.; Refai, Hazem H.; Lin, Hung, Jr.; Landrum, Aaron; Victor, Rory

    2006-03-01

    Pavement maintenance is vital for travel safety; detecting road weather conditions using a wireless sensing network poses many challenges due to the harsh environment. This paper presents some preliminary results of an ongoing effort of applying "Smart Dust" sensor network for monitoring pavement temperature and moisture condition to detect icy road condition. Careful considerations yield effective solutions to various hardware and software development issues including the selection of sensors and antenna, design of casing, interfacing motes with alien sensors and programming of motes. A series of experiments is carried out to study traffic interference to packet delivery performance of a small-scale sensor network in a pseudo-field environment. In addition, several overnight tests are conducted to study the performance of motes operated under a power efficient condition. The results are analyzed and challenges are identified in this smart sensing application. The aforementioned research activities would benefit robust real-world implementations of off-the-shelf sensor network products.

  8. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    SciTech Connect

    Guan, Jie; Minh, Nguyen

    2007-02-21

    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.

  9. High performance low temperature carbon composite catalysts for flexible dye sensitized solar cells.

    PubMed

    Hashmi, Syed Ghufran; Halme, Janne; Saukkonen, Tapio; Rautama, Eeva-Leena; Lund, Peter

    2013-10-28

    Roll-to-roll manufacturing of dye sensitized solar cells (DSSCs) requires efficient and low cost materials that adhere well on the flexible substrates used. In this regard, different low temperature carbon composite counter electrode (CE) catalyst ink formulations for flexible DSSCs were developed that can be simply and quickly coated on plastic substrates and dried below 150 °C. The CEs were investigated in terms of photovoltaic performance in DSSCs by current-voltage measurements, mechanical adhesion properties by bending and tape tests, electro-catalytic performance by electrochemical impedance spectroscopy and microstructure by electron microscopy. In the bending and tape tests, PEDOT-carbon composite catalyst layers exhibited higher elasticity and better adhesion on all the studied substrates (ITO-PET and ITO-PEN plastic, and FTO-glass), compared to a binder free carbon composite and a TiO2 binder enriched carbon composite, and showed lower charge transfer resistance (1.5-3 Ω cm(2)) than the traditional thermally platinized CE (5 Ω cm(2)), demonstrating better catalytic performance for the tri-iodide reduction reaction. Also the TiO2 binder enriched carbon composite showed good catalytic characteristics and relatively good adhesion on ITO-PET, but on ITO-PEN its adhesion was poor. A DSSC with the TiO2 binder enriched catalyst layer reached 85% of the solar energy conversion efficiency of the reference DSSC based on the traditional thermally platinized CE. Based on the aforementioned characteristics, these carbon composites are promising candidates for replacing the platinum catalyst in a high volume roll-to-roll manufacturing process of DSSCs. PMID:24042582

  10. High-performance flexible electrode based on electrodeposition of polypyrrole/MnO2 on carbon cloth for supercapacitors

    NASA Astrophysics Data System (ADS)

    Fan, Xingye; Wang, Xiaolei; Li, Ge; Yu, Aiping; Chen, Zhongwei

    2016-09-01

    A highly flexible electrodes based on electrodeposited MnO2 and polypyrrole composite on carbon cloth is designed and developed by a facile in-situ electrodeposition technique. Such flexible composite electrodes with multiply layered structure possess a high specific capacitance of 325 F g-1 at a current density of 0.2 A g-1, and an excellent rate capability with a capacitance retention of 70% at a high current density of 5.0 A g-1. The superior electrochemical performance is mainly due to the unique electrode with improved ion- and electron-transportation pathways as well as the efficient utilization of active materials and electrode robustness. The excellent electrochemical performance and the low cost property endow this flexible nanocomposite electrode with great promise in applications of flexible supercapacitors.

  11. Can We Build a Truly High Performance Computer Which is Flexible and Transparent?

    PubMed Central

    Rojas, Jhonathan P.; Torres Sevilla, Galo A.; Hussain, Muhammad M.

    2013-01-01

    State-of-the art computers need high performance transistors, which consume ultra-low power resulting in longer battery lifetime. Billions of transistors are integrated neatly using matured silicon fabrication process to maintain the performance per cost advantage. In that context, low-cost mono-crystalline bulk silicon (100) based high performance transistors are considered as the heart of today's computers. One limitation is silicon's rigidity and brittleness. Here we show a generic batch process to convert high performance silicon electronics into flexible and semi-transparent one while retaining its performance, process compatibility, integration density and cost. We demonstrate high-k/metal gate stack based p-type metal oxide semiconductor field effect transistors on 4 inch silicon fabric released from bulk silicon (100) wafers with sub-threshold swing of 80 mV dec−1 and on/off ratio of near 104 within 10% device uniformity with a minimum bending radius of 5 mm and an average transmittance of ~7% in the visible spectrum. PMID:24018904

  12. Greenhouse gas emissions of alternative pavement designs: framework development and illustrative application.

    PubMed

    Liu, Xiaoyu; Cui, Qingbin; Schwartz, Charles

    2014-01-01

    Pavement rehabilitation is carbon intensive and the choice of pavement type is a critical factor in controlling greenhouse gas (GHG) emissions. The existing body of knowledge is not able to support decision-making on pavement choice due to a lack of consensus on the system boundaries, the functional units and the estimation periods. Excessive data requirements further inhibit the generalization of the existing methodologies for design evaluation at the early planning stage. This study proposes a practical life-cycle GHG estimation approach, which is arguably effective to benchmark pavement emissions given project bid tabulation. A set of case studies conducted for this study suggest that recycled asphalt pavement (e.g., foam stabilized base (FSB), and warm mix asphalt (WMA)) would prevent up to 50% of GHGs from the initial construction phase. However, from a life-cycle perspective, pavement emissions are dictated largely by the traffic characteristics and the analysis period for the use phase. The benefits from using recycled materials (e.g., FSB) are likely to diminish if the recycled products do not perform as well as those properly proportioned with less recycled materials, or if the recycled materials are locally unavailable. When the AADT reaches 10,000, use phase releases more than 97% of the life cycle emissions and the emissions difference among alternative designs will be within 1%.

  13. Recycling asphalt pavements. January 1975-January 1990 (a Bibliography from the COMPENDEX data base). Report for January 1975-January 1990

    SciTech Connect

    Not Available

    1990-03-01

    This bibliography contains citations concerning the recycling of asphalt-containing pavement materials. Articles include examples of recycling asphalt pavements; performance testing of recycled paving; methods including cold in-place, cold off-site, and hot-mix recycling; additives in recycled pavement for better performance; use of scrap roofing asphalt in conjunction with recycled paving; economics of recycling; process design; and process variables. Recycling of other materials is considered in related bibliographies. (Contains 130 citations fully indexed and including a title list.)

  14. Field evaluation of in-situ test technology for Q(C)/Q(A) during construction of pavement layers and embankments

    NASA Astrophysics Data System (ADS)

    Nazzal, Munir Darwish

    2007-12-01

    This dissertation documents the results of an extensive research study that was conducted to characterize the behavior of geogrid reinforced base course materials. The research was conducted through an experimental testing and numerical modeling programs. The experimental testing program included performing different laboratory tests to evaluate the effect of various factors on the performance geogrid reinforced base course materials. Finite element models were also developed to investigate the benefits of placing geogrids within the base course layer in a flexible pavement structure. The results of the experimental testing demonstrated that the inclusion of the geogrid reinforcement layer(s) improved the compressive strength and stiffness of base course materials under static loading. This improvement was more pronounced at higher strain levels. Furthermore, the results showed that the geogrid significantly reduced the base course material permanent deformation under cyclic loading, but it did not show appreciable effect on their resilient deformation. The results also showed that for stress levels less than the plastic shakedown stress limit, the geogrid had a minimum contribution to the permanent deformation resistance during primary post-compaction stage; however, it significantly increased this resistance during the secondary stage. The results also showed that the change in the moisture content of the base material altered its state of stress; this significantly affected the geogrid improvement. The finite modeling program showed that the geogrid reinforcement reduced the lateral, vertical, and shear strains within the base course and subgrade layers. Furthermore, the geogrid had appreciable reduction in permanent deformation for pavement sections built on top of weak subgrade soils with medium to thin base layer thickness; with the thin base layer thickness showing greater values of improvement. However, negligible to modest reinforcement effect on permanent

  15. Effects of labeling on preschoolers' explicit false belief performance: outcomes of cognitive flexibility or inhibitory control?

    PubMed

    Low, Jason; Simpson, Samantha

    2012-01-01

    Executive function mechanisms underpinning language-related effects on theory of mind understanding were examined in a sample of 165 preschoolers. Verbal labels were manipulated to identify relevant perspectives on an explicit false belief task. In Experiment 1 with 4-year-olds (N = 74), false belief reasoning was superior in the fully and protagonist-perspective labeled conditions compared to the child-perspective and nondescript labeling conditions. In Experiment 2 with 3-year-olds (N = 53), labeling the nondominant belief only biased attentional inertia. In Experiment 3 testing generalization in 4-year-olds (N = 38), labeling manipulations translated to improved performance on a second label-free explicit false belief task. These outcomes fit a cognitive flexibility account whereby age changes in the effects of labeling turn on formulating sophisticated conceptual representations.

  16. Influence of landing gear flexibility on aircraft performance during ground roll

    NASA Technical Reports Server (NTRS)

    Sivaramakrishnan, M. M.

    1981-01-01

    An analysis is made of the influence of landing gear deflection characteristics on aircraft performance on the ground up to rotation. A quasi-steady dynamic equilibrium state is assumed, including other simplifying assumptions such as calm air conditions and normal aircraft lift and drag. Ground incidence is defined as the angle made by the mean aerodynamic chord of the wing with respect to the ground plane, and equations are given for force and balance which determine the quasi-equilibrium conditions for the aircraft during ground roll. Results indicate that the landing gear deflections lead to a substantial increase in the angle of attack, and the variation in the ground incidence due to landing gear flexibility could be as much as + or - 50%, and the reduction in tail load requirements almost 25%.

  17. High-performance flexible nanoporous Si-carbon nanotube paper anodes for micro-battery applications.

    PubMed

    Biserni, Erika; Scarpellini, Alice; Bassi, Andrea Li; Bruno, Paola; Zhou, Yun; Xie, Ming

    2016-06-17

    Nanoporous Si has been grown by pulsed laser deposition on a free-standing carbon nanotube (CNT) paper sheet for micro-battery anodes. The Si deposition shows conformal coverage on the CNT paper, and the Si-CNT paper anodes demonstrate high areal capacity of ∼1000 μAh cm(-2) at a current density of 54 μA cm(-2), while 69% of its initial capacity is preserved when the current density is increased by a factor 10. Excellent stability without capacity decay up to 1000 cycles at a current density of 1080 μA cm(-2) is also demonstrated. After bending along the diameter of the circular paper disc many times, the Si-CNT paper anodes preserve the same morphology and show promising electrochemical performance, indicating that nanoporous Si-CNT paper anodes can find application for flexible micro-batteries.

  18. Coupling flexible solar cell with parabolic trough solar-concentrator-prototype design and performance

    NASA Astrophysics Data System (ADS)

    Panin, Alexander; Bergquist, Jonathon

    2007-10-01

    Solar cells are still too expensive (5-20/watt) to compete with traditional fossil fuel power generating methods (˜1/watt). Parabolic trough solar concentrator has the advantage of modest concentration ratio (10-100) which is well suited for coupling with solar cell. Thus using small area solar cell placed in the focal line of parabolic trough may be economically viable alternative to flat solar panels. We experiment with flexible solar cell (backed by water cooling pipe) placed in the focus of parabolic trough reflector. Another advantage of parabolic trough concentrator is very relaxed tracking requirement. For example, east-west oriented concentrator (aligned with the ecliptic plane) does not even need any tracking during core 4-6 hours around noon (when maximum illumination is available). The design and the performance of the prototype, as well as possible economical benefits of full scale projects are discussed in the presentation.

  19. High-performance flexible nanoporous Si-carbon nanotube paper anodes for micro-battery applications

    NASA Astrophysics Data System (ADS)

    Biserni, Erika; Scarpellini, Alice; Li Bassi, Andrea; Bruno, Paola; Zhou, Yun; Xie, Ming

    2016-06-01

    Nanoporous Si has been grown by pulsed laser deposition on a free-standing carbon nanotube (CNT) paper sheet for micro-battery anodes. The Si deposition shows conformal coverage on the CNT paper, and the Si-CNT paper anodes demonstrate high areal capacity of ˜1000 μAh cm-2 at a current density of 54 μA cm-2, while 69% of its initial capacity is preserved when the current density is increased by a factor 10. Excellent stability without capacity decay up to 1000 cycles at a current density of 1080 μA cm-2 is also demonstrated. After bending along the diameter of the circular paper disc many times, the Si-CNT paper anodes preserve the same morphology and show promising electrochemical performance, indicating that nanoporous Si-CNT paper anodes can find application for flexible micro-batteries.

  20. Characterizing performances of solder paste printing process at flexible manufacturing lines

    NASA Astrophysics Data System (ADS)

    Siew, Jit Ping; Low, Heng Chin; Teoh, Ping Chow

    2015-02-01

    Solder paste printing (SPP) has been a challenge on printed circuit board (PCB) manufacturing, evident by the proliferation of solder paste inspection equipment, or substituted by rigorous non-value added activity of manual inspections. The objective of this study is to characterize the SPP performance of various products manufactured in flexible production lines with different equipment configurations, and determine areas for process improvement. The study began by collecting information on SPP performance relative to component placement (CP) process, and to the proportion of mixed products. Using a clustering algorithm to group similar elements together, SPP performance across all product-production line pairs are statistically modeled to discover the trend and the influential factors. The main findings are: (a) Ratio of overall dpku for CP and SPP processes are 2:1; (b) logistic regression models of SPP performance indicated that only effects of product-production line and solder paste printer configuration are significant; (c) PCB circuitry design with BGA components and single solder paste printer line configurations generated the highest monthly defects, with the highest variation in the latter.

  1. Characterizing performances of solder paste printing process at flexible manufacturing lines

    SciTech Connect

    Siew, Jit Ping; Low, Heng Chin; Teoh, Ping Chow

    2015-02-03

    Solder paste printing (SPP) has been a challenge on printed circuit board (PCB) manufacturing, evident by the proliferation of solder paste inspection equipment, or substituted by rigorous non-value added activity of manual inspections. The objective of this study is to characterize the SPP performance of various products manufactured in flexible production lines with different equipment configurations, and determine areas for process improvement. The study began by collecting information on SPP performance relative to component placement (CP) process, and to the proportion of mixed products. Using a clustering algorithm to group similar elements together, SPP performance across all product-production line pairs are statistically modeled to discover the trend and the influential factors. The main findings are: (a) Ratio of overall dpku for CP and SPP processes are 2:1; (b) logistic regression models of SPP performance indicated that only effects of product-production line and solder paste printer configuration are significant; (c) PCB circuitry design with BGA components and single solder paste printer line configurations generated the highest monthly defects, with the highest variation in the latter.

  2. Defect analysis and mechanical performance of plasma-deposited thin films on flexible polycarbonate substrates

    NASA Astrophysics Data System (ADS)

    Patel, Rakhi P.; Wolden, Colin A.

    2013-03-01

    A simple solvent-etch based technique is developed to visualize and quantify defects in transparent thin films deposited on flexible polymer substrates. This approach is used to characterize defects in as-deposited films and to monitor their evolution as a function of applied and repetitive bending. Thin films investigated include sputtered indium tin oxide (ITO) and alumina-silicone nanolaminates fabricated by plasma-enhanced chemical vapor deposition. It is shown that the use of nanolaminate architectures reduces the defect density by two orders of magnitude relative to a single alumina layer. The pinhole density increases when nanolaminates are subjected to applied stress, and at a critical density of ˜10/mm2 the isolated defects coalesce into macroscopic cracks. In the case of ITO an optimum film thickness is identified that balances electronic performance with mechanical integrity. Conductivity correlates with defect density, and the films displayed very similar performance under tensile and compressive strain. A critical radius of curvature of 0.75 in. was identified, but films cycled below the threshold strain demonstrated robust performance, with only negligible changes in resistivity through 2000 bending cycles. The strong performance under strain is attributed to the amorphous nature of the sputtered ITO.

  3. Effect of Lumbar Spine Manipulation on Asymptomatic Cyclist Sprint Performance and Hip Flexibility

    PubMed Central

    Olson, Eric; Bodziony, Michael; Ward, John; Coats, Jesse; Koby, Bradley; Goehry, Doug

    2014-01-01

    Objective The purpose of this study was to measure the impact of midlumbar spinal manipulation on asymptomatic cyclist sprint performance and hip flexibility. Methods Twelve cyclists were equally randomized into an AB:BA crossover study design after baseline testing. Six participants were in the AB group, and 6 were in the BA group. The study involved 1 week of rest in between each of the 3 tested conditions: baseline testing (no intervention prior to testing), condition A (bilateral midlumbar spine manipulation prior to testing), and condition B (sham acupuncture prior to testing, as a control). Testing was blinded and involved a sit-and-reach test followed by a 0.5-km cycle ergometer sprint test against 4-kp resistance. Outcome measures were sit-and-reach distance, time to complete 0.5 km, maximum heart rate, and rating of perceived exertion. An additional 8 cyclists were recruited and used as a second set of controls that engaged in 3 testing sessions without any intervention to track test acclimation. An analysis of variance was used to compare dependent variables under each of the 3 conditions for the experimental group and control group #1, and a repeated-measures analysis of variance was used to analyze test acclimation in control group #2. Results Lumbar spine manipulation did not demonstrate statistically significant between-group changes in sit-and-reach (P = .765), 0.5-km sprint performance time (P = .877), maximum exercise heart rate (P = .944), or rating of perceived exertion (P = .875). Conclusions The findings of this preliminary study showed that midlumbar spinal manipulation did not improve hip flexibility or cyclist power output of asymptomatic participants compared with an acupuncture sham and no-treatment control groups. PMID:25435836

  4. AN OPTIMAL MAINTENANCE MANAGEMENT MODEL FOR AIRPORT CONCRETE PAVEMENT

    NASA Astrophysics Data System (ADS)

    Shimomura, Taizo; Fujimori, Yuji; Kaito, Kiyoyuki; Obama, Kengo; Kobayashi, Kiyoshi

    In this paper, an optimal management model is formulated for the performance-based rehabilitation/maintenance contract for airport concrete pavement, whereby two types of life cycle cost risks, i.e., ground consolidation risk and concrete depreciation risk, are explicitly considered. The non-homogenous Markov chain model is formulated to represent the deterioration processes of concrete pavement which are conditional upon the ground consolidation processes. The optimal non-homogenous Markov decision model with multiple types of risk is presented to design the optimal rehabilitation/maintenance plans. And the methodology to revise the optimal rehabilitation/maintenance plans based upon the monitoring data by the Bayesian up-to-dating rules. The validity of the methodology presented in this paper is examined based upon the case studies carried out for the H airport.

  5. Full scale demonstration of air-purifying pavement.

    PubMed

    Ballari, M M; Brouwers, H J H

    2013-06-15

    Experiments concerning a full-scale demonstration of air purifying pavement in Hengelo, The Netherlands, are reported. The full width of the street was provided with concrete pavement containing TiO₂ over a length of 150 m ("DeNOx street"). Another part of the street, about 100 m, was paved with normal paving blocks ("Control street"). The outdoor monitoring was done during 26 days for a period exceeding one year, and measured parameters included traffic intensity, NO, NO₂ and ozone concentrations, temperature, relative humidity, wind speed and direction, and the visible and UV light irradiance. Prior and parallel to these field measurements, the used blocks were also measured in the lab to assess their performance. The NOx concentration was, on average, 19% (considering the whole day) and 28% (considering only afternoons) lower than the obtained values in the Control street. Under ideal weather conditions (high radiation and low relative humidity) a NOx concentration decrease of 45% could be observed.

  6. Performance improvement in flexible polymer solar cells based on modified silver nanowire electrode

    NASA Astrophysics Data System (ADS)

    Wang, Danbei; Zhou, Weixin; Liu, Huan; Ma, Yanwen; Zhang, Hongmei

    2016-08-01

    In this work, an efficient flexible polymer solar cell was achieved by controlling the UV-ozone treatment time of silver nanowires (Ag NWs) used in the electrode and combined with other modification materials. Through optimizing the time of UV-ozone treatment, it is shown that Ag NWs electrode treated by UV-ozone for 10 s improves the power conversion efficiency (PCE) of the device based on the blend of poly(3-hexylthiophene)(P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) from 0.76% to 1.34%. After treatment by UV-ozone, Ag NWs electrodes exhibit several promising characteristics, including high optical transparency, low sheet resistance and superior surface work function. As a consequence, the performance of devices utilizing 10 s UV-ozone-treated Ag NWs with PEDOT:PSS or MoO3 as composite anode showed higher PCEs of 2.77% (2.73%) compared with that for Ag NW electrodes without UV-ozone treatment. In addition, a PCE of 5.97% in flexible polymer solar cells based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl](PBDTTT-EFT):[6, 6]-phenyl C71-butyric acid methyl ester (PC71BM) as a photoactive layer was obtained.

  7. Assessment of highway pavements using GPR

    NASA Astrophysics Data System (ADS)

    Plati, Christina; Loizos, Andreas

    2015-04-01

    Highway infrastructure is a prerequisite for a functioning economy and social life. Highways, often prone to congestion and disruption, are one of the aspects of a modern transport network that require maximum efficiency if an integrated transport network, and sustainable mobility, is to be achieved. Assessing the condition of highway structures, to plan subsequent maintenance, is essential to allow the long-term functioning of a road network. Optimizing the methods used for such assessment will lead to better information being obtained about the road and underlying ground conditions. The condition of highway structures will be affected by a number of factors, including the properties of the highway pavement, the supporting sub-base and the subgrade (natural ground), and the ability to obtain good information about the entire road structure, from pavement to subgrade, allows appropriate maintenance programs to be planned. The maintenance of highway pavements causes considerable cost and in many cases obstruction to traffic flow. In this situation, methods that provide information on the present condition of pavement structure non-destructively and economically are of great interest. It has been shown that Ground-Penetrating-Radar (GPR), which is a Non Destructive Technique (NDT), can deliver information that is useful for the planning of pavement maintenance activities. More specifically GPR is used by pavement engineers in order to determine physical properties and characteristics of the pavement structure, information that is valuable for the assessment of pavement condition. This work gives an overview on the practical application of GPR using examples from highway asphalt pavements monitoring. The presented individual applications of GPR pavement diagnostics concern structure homogeneity, thickness of pavement layers, dielectric properties of asphalt materials etc. It is worthwhile mentioning that a number of applications are standard procedures, either

  8. High-performance carbon nanotube thin-film transistors on flexible paper substrates

    NASA Astrophysics Data System (ADS)

    Liu, Na; Yun, Ki Nam; Yu, Hyun-Yong; Shim, Joon Hyung; Lee, Cheol Jin

    2015-03-01

    Single-walled carbon nanotubes (SWCNTs) are promising materials as active channels for flexible transistors owing to their excellent electrical and mechanical properties. However, flexible SWCNT transistors have never been realized on paper substrates, which are widely used, inexpensive, and recyclable. In this study, we fabricated SWCNT thin-film transistors on photo paper substrates. The devices exhibited a high on/off current ratio of more than 106 and a field-effect mobility of approximately 3 cm2/V.s. The proof-of-concept demonstration indicates that SWCNT transistors on flexible paper substrates could be applied as low-cost and recyclable flexible electronics.

  9. High-performance carbon nanotube thin-film transistors on flexible paper substrates

    SciTech Connect

    Liu, Na; Yun, Ki Nam; Yu, Hyun-Yong; Lee, Cheol Jin; Shim, Joon Hyung

    2015-03-09

    Single-walled carbon nanotubes (SWCNTs) are promising materials as active channels for flexible transistors owing to their excellent electrical and mechanical properties. However, flexible SWCNT transistors have never been realized on paper substrates, which are widely used, inexpensive, and recyclable. In this study, we fabricated SWCNT thin-film transistors on photo paper substrates. The devices exhibited a high on/off current ratio of more than 10{sup 6} and a field-effect mobility of approximately 3 cm{sup 2}/V·s. The proof-of-concept demonstration indicates that SWCNT transistors on flexible paper substrates could be applied as low-cost and recyclable flexible electronics.

  10. Biofuel production system with operation flexibility: Evaluation of economic and environmental performance under external disturbance

    NASA Astrophysics Data System (ADS)

    Kou, Nannan

    grain) into a single primary product (ethanol). The traditional lower efficient (i.e. lower ethanol yield per bushel of corn and higher capital cost) wet-mill plant has a more diverse and adjustable product portfolio i.e. corn syrup, starch, and ethanol. The fact that only the dry-mill corn ethanol plants have bankrupted while the wet-mill corn ethanol plants have survived the late 2000s economy recession suggests that the higher conversion efficiency achieved by the dry-mill production mode has jeopardized operational flexibility, a design operational feature I agree that is indispensable for the biofuel plant's long term profit and viability. Based on the analysis of corn ethanol production, operational flexibility has been proposed as a key strategy for the next generation biofuel plants to improve its lifetime economic performance, as well as to enhance its survivability under external disturbances. This strategy requires the biofuel plant to adopt a flexible feedstock management, making it possible to utilize alternative types of biomass feedstock when the primary feedstock supply is disturbed. Biofuel plants also need to produce a wider range of final products that could meet the preference variation that either comes from the energy market or from the subsidy policy. Aspen Plus model based numerical simulations have been carried out for a thermochemical ethanol plant and a Fischer Tropsch plant (both are assumed to be located in southwest Indiana) to test this strategy under the external disturbances of extreme weather impact, different energy price projections and various subsidy policy combinations. For the thermochemical ethanol plant, effects of extreme weather conditions are mainly evaluated. It has been shown that this strategy could effectively increase the net present value of the biofuel plant and significantly decrease the GHG emission comparing with the traditional single-feedstock strategy, when the extreme weather conditions are considered. It has

  11. Decoupling Actions from Consequences: Dorsal Hippocampal Lesions Facilitate Instrumental Performance, but Impair Behavioral Flexibility in Rats.

    PubMed

    Busse, Sebastian; Schwarting, Rainer K W

    2016-01-01

    The present study is part of a series of experiments, where we analyze why and how damage of the rat's dorsal hippocampus (dHC) can enhance performance in a sequential reaction time task (SRTT). In this task, sequences of distinct visual stimulus presentations are food-rewarded in a fixed-ratio-13-schedule. Our previous study (Busse and Schwarting, 2016) had shown that rats with lesions of the dHC show substantially shorter session times and post-reinforcement pauses (PRPs) than controls, which allows for more practice when daily training is kept constant. Since sequential behavior is based on instrumental performance, a sequential benefit might be secondary to that. In order to test this hypothesis in the present study, we performed two experiments, where pseudorandom rather than sequential stimulus presentation was used in rats with excitotoxic dorsal hippocampal lesions. Again, we found enhanced performance in the lesion-group in terms of shorter session times and PRPs. During the sessions we found that the lesion-group spent less time with non-instrumental behavior (i.e., grooming, sniffing, and rearing) after prolonged instrumental training. Also, such rats showed moderate evidence for an extinction impairment under devalued food reward conditions and significant deficits in a response-outcome (R-O)-discrimination task in comparison to a control-group. These findings suggest that facilitatory effects on instrumental performance after dorsal hippocampal lesions may be primarily a result of complex behavioral changes, i.e., reductions of behavioral flexibility and/or alterations in motivation, which then result in enhanced instrumental learning. PMID:27375453

  12. Decoupling Actions from Consequences: Dorsal Hippocampal Lesions Facilitate Instrumental Performance, but Impair Behavioral Flexibility in Rats

    PubMed Central

    Busse, Sebastian; Schwarting, Rainer K. W.

    2016-01-01

    The present study is part of a series of experiments, where we analyze why and how damage of the rat’s dorsal hippocampus (dHC) can enhance performance in a sequential reaction time task (SRTT). In this task, sequences of distinct visual stimulus presentations are food-rewarded in a fixed-ratio-13-schedule. Our previous study (Busse and Schwarting, 2016) had shown that rats with lesions of the dHC show substantially shorter session times and post-reinforcement pauses (PRPs) than controls, which allows for more practice when daily training is kept constant. Since sequential behavior is based on instrumental performance, a sequential benefit might be secondary to that. In order to test this hypothesis in the present study, we performed two experiments, where pseudorandom rather than sequential stimulus presentation was used in rats with excitotoxic dorsal hippocampal lesions. Again, we found enhanced performance in the lesion-group in terms of shorter session times and PRPs. During the sessions we found that the lesion-group spent less time with non-instrumental behavior (i.e., grooming, sniffing, and rearing) after prolonged instrumental training. Also, such rats showed moderate evidence for an extinction impairment under devalued food reward conditions and significant deficits in a response-outcome (R-O)-discrimination task in comparison to a control-group. These findings suggest that facilitatory effects on instrumental performance after dorsal hippocampal lesions may be primarily a result of complex behavioral changes, i.e., reductions of behavioral flexibility and/or alterations in motivation, which then result in enhanced instrumental learning. PMID:27375453

  13. Lattice Strain Induced Remarkable Enhancement in Piezoelectric Performance of ZnO-Based Flexible Nanogenerators.

    PubMed

    Zhang, Yang; Liu, Caihong; Liu, Jingbin; Xiong, Jie; Liu, Jingyu; Zhang, Ke; Liu, Yudong; Peng, Mingzeng; Yu, Aifang; Zhang, Aihua; Zhang, Yan; Wang, Zhiwei; Zhai, Junyi; Wang, Zhong Lin

    2016-01-20

    In this work, by employing halogen elements (fluorine, chlorine, bromine, and iodine) as dopant we demonstrate a unique strategy to enhance the output performance of ZnO-based flexible piezoelectric nanogenerators. For a halogen-doped ZnO nanowire film, dopants and doping concentration dependent lattice strain along the ZnO c-axis are established and confirmed by the EDS, XRD, and HRTEM analysis. Although lattice strain induced charge separation was theoretically proposed, it has not been experimentally investigated for wurtzite structured ZnO nanomaterials. Tuning the lattice strain from compressive to tensile state along the ZnO c-axis can be achieved by a substitution of halogen dopant from fluorine to other halogen elements due to the ionic size difference between dopants and oxygen. With its focus on a group of nonmetal element induced lattice strain in ZnO-based nanomaterials, this work paves the way for enhancing the performance of wurtzite-type piezoelectric semiconductor nanomaterials via lattice strain strategy which can be employed to construct piezoelectric nanodevices with higher efficiency in a cost-effective manner.

  14. A modified analytical model to study the sensing performance of a flexible capacitive tactile sensor array

    NASA Astrophysics Data System (ADS)

    Liang, Guanhao; Wang, Yancheng; Mei, Deqing; Xi, Kailun; Chen, Zichen

    2015-03-01

    This paper presents a modified analytical model to study the sensing performance of a flexible capacitive tactile sensor array, which utilizes solid polydimethylsiloxane (PDMS) film as the dielectric layer. To predict the deformation of the sensing unit and capacitance changes, each sensing unit is simplified into a three-layer plate structure and divided into central, edge and corner regions. The plate structure and the three regions are studied by the general and modified models, respectively. For experimental validation, the capacitive tactile sensor array with 8  ×  8 (= 64) sensing units is fabricated. Experiments are conducted by measuring the capacitance changes versus applied external forces and compared with the general and modified models’ predictions. For the developed tactile sensor array, the sensitivity predicted by the modified analytical model is 1.25%/N, only 0.8% discrepancy from the experimental measurement. Results demonstrate that the modified analytical model can accurately predict the sensing performance of the sensor array and could be utilized for model-based optimal capacitive tactile sensor array design.

  15. A Flexible, High Performance Service-Oriented Architecture for Detecting Cyber Attacks

    SciTech Connect

    Wynne, Adam S.; Gorton, Ian; Almquist, Justin P.; Chatterton, Jack; Thurman, David A.

    2008-02-01

    The next generation of intrusion detection and cyber defense technologies must be highly flexible so that deployed solutions can be quickly modified to detect new attack scenarios. They must also be able to provide the performance necessary to monitor traffic from high speed networks, and scale to enterprise wide deployments. In this paper we describe our experiences in creating a production application for cyber situational awareness. The application exploits the capabilities of several independently developed components and integrates them using SIFT (Scalable Information Fusion and Triage), a service-oriented architecture (SOA) designed for creating domain-independent, enterprise scale analytical applications. SIFT exploits a common design pattern for composing analytical components, and extends an existing messaging platform with scaling capabilities. We describe the design of the application, and provide a performance analysis that demonstrates the capabilities of the SIFT platform. The paper concludes by discussing the lessons we have learned from this project, and outlines the architecture of the MeDICI, the next generation of our enterprise analytics platforms.

  16. Feasibility Study on Thermal-Hydraulic Performance of Innovative Water Reactor for Flexible Fuel Cycle (FLWR)

    SciTech Connect

    Akira, Ohnuki; Kazuyuki, Takase; Masatoshi, Kureta; Hiroyuki, Yoshida; Hidesada, Tamai; Wei, Liu; Toru, Nakatsuka; Takeharu, Misawa; Hajime, Akimoto

    2006-07-01

    R and D project to investigate thermal-hydraulic performance in tight-lattice rod bundles of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) is started at Japan Atomic Energy Agency (JAEA) in collaboration with power company, reactor vendors, universities since 2002. The FLWR can attain the favorable characteristics such as effective utilization of uranium resources, multiple recycling of plutonium, high burn-up and long operation cycle, based on matured LWR technologies. MOX fuel assemblies with tight lattice arrangement are used to increase the conversion ratio by reducing the moderation of neutron. Increasing the in-core void fraction also contributes to the reduction of neutron moderation. The confirmation of thermal-hydraulic feasibility is one of the most important R and D items for the FLWR because of the tight lattice configuration. In this paper, we will show the R and D plan and summarize experimental studies. The experimental study is performed mainly using large-scale (37-rod bundle) test facility. Most important objective of the large-scale test is to resolve a fundamental subject whether the core cooling under a tight-lattice configuration is feasible. The characteristics of critical power and flow behavior are investigated under different geometrical configuration and boundary conditions. The configuration parameter is the gap between rods (FY2004) and the rod bowing (FY2005). We have confirmed the thermal-hydraulic feasibility from the experimental results. (authors)

  17. Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide.

    PubMed

    Bhavanasi, Venkateswarlu; Kumar, Vipin; Parida, Kaushik; Wang, Jiangxin; Lee, Pooi See

    2016-01-13

    Ferroelectric materials have attracted interest in recent years due to their application in energy harvesting owing to its piezoelectric nature. Ferroelectric polymers are flexible and can sustain larger strains compared to inorganic counterparts, making them attractive for harvesting energy from mechanical vibrations. Herein, we report, for the first time, the enhanced piezoelectric energy harvesting performance of the bilayer films of poled poly(vinylidene fluoride-trifluoroethylene) [PVDF-TrFE] and graphene oxide (GO). The bilayer film exhibits superior energy harvesting performance with a voltage output of 4 V and power output of 4.41 μWcm(-2) compared to poled PVDF-TrFE films alone (voltage output of 1.9 V and power output of 1.77 μWcm(-2)). The enhanced voltage and power output in the presence of GO film is due to the combined effect of electrostatic contribution from graphene oxide, residual tensile stress, enhanced Young's modulus of the bilayer films, and the presence of space charge at the interface of the PVDF-TrFE and GO films, arising from the uncompensated polarization of PVDF-TrFE. Higher Young's modulus and dielectric constant of GO led to the efficient transfer of mechanical and electrical energy.

  18. Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide.

    PubMed

    Bhavanasi, Venkateswarlu; Kumar, Vipin; Parida, Kaushik; Wang, Jiangxin; Lee, Pooi See

    2016-01-13

    Ferroelectric materials have attracted interest in recent years due to their application in energy harvesting owing to its piezoelectric nature. Ferroelectric polymers are flexible and can sustain larger strains compared to inorganic counterparts, making them attractive for harvesting energy from mechanical vibrations. Herein, we report, for the first time, the enhanced piezoelectric energy harvesting performance of the bilayer films of poled poly(vinylidene fluoride-trifluoroethylene) [PVDF-TrFE] and graphene oxide (GO). The bilayer film exhibits superior energy harvesting performance with a voltage output of 4 V and power output of 4.41 μWcm(-2) compared to poled PVDF-TrFE films alone (voltage output of 1.9 V and power output of 1.77 μWcm(-2)). The enhanced voltage and power output in the presence of GO film is due to the combined effect of electrostatic contribution from graphene oxide, residual tensile stress, enhanced Young's modulus of the bilayer films, and the presence of space charge at the interface of the PVDF-TrFE and GO films, arising from the uncompensated polarization of PVDF-TrFE. Higher Young's modulus and dielectric constant of GO led to the efficient transfer of mechanical and electrical energy. PMID:26693844

  19. High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride

    NASA Astrophysics Data System (ADS)

    Song, Seung-Wan; Lee, Ki-Chang; Park, Ho-Young

    2016-10-01

    Rapidly growing interest and demand for wearable electronics require the development of flexible and lightweight all-solid-state batteries as power sources that guarantee high performance and safety with the absence of the risk of fire or explosion that can occur with traditional liquid electrolyte systems. Herein, we successfully fabricate new flexible all-solid-state microbatteries integrating a solid electrolyte film of lithium boron oxynitride (LiBON) on a flexible substrate using sophisticated thin-film fabrication technology. The new microbattery of Li/LiBON/LiCoO2 exhibits excellent mechanical integrity even under severe bending and twisting test conditions, enabling the realization of flexible microbatteries. The microbatteries demonstrate superior electrochemical cycling stability relative to conventional batteries, delivering an outstanding capacity retention of 90% on the 1000th cycle. Furthermore, operation at various temperatures from -10 °C to +60 °C and fast charging within 3-6 min are achieved. With various types of flexible substrates, the microbatteries can provide diverse opportunities for flexible and wearable electronics.

  20. Replacing Lectures by Text-Based Flexible Learning: Students' Performance and Perceptions.

    ERIC Educational Resources Information Center

    Green, John

    2002-01-01

    Presents the results of an extended evaluation program designed to test the effectiveness of text-based flexible learning as a replacement for 30-50% of the lectures in certain modules in conventional undergraduate courses in the School of Life Sciences at Napier University. Concludes that text-based flexible learning is an effective alternative…

  1. The Impact of a Flexible Assessment System on Students' Motivation, Performance and Attitude

    ERIC Educational Resources Information Center

    Pacharn, Parunchana; Bay, Darlene; Felton, Sandra

    2013-01-01

    We examine a flexible assessment system that allows students to determine the weights allocated to each course component and to re-allocate the weights in response to achieved scores. The flexibility is intended to encourage students' participation in the learning process, thereby promoting self-regulated learning skills. We compare this…

  2. Development of a fiber optic pavement subgrade strain measurement system

    NASA Astrophysics Data System (ADS)

    Miller, Craig Emerson

    2000-11-01

    This dissertation describes the development of a fiber optic sensing system to measure strains within the soil subgrade of highway pavements resulting from traffic loads. The motivation to develop such a device include improvements to: (1)all phases of pavement design, (2)theoretical models used to predict pavement performance, and (3)pavement rehabilitation. The design of the sensing system encompasses selecting an appropriate transducer design as well as the development of optimal optical and demodulation systems. The first is spring based, which attempts to match its spring stiffness to that of the soil-data indicate it is not an optimal transducer design. The second transducer implements anchoring plates attached to two telescoping tubes which allows the soil to be compacted to a desired density between the plates to dictate the transducer's behavior. Both transducers include an extrinsic Fabry- Perot cavity to impose the soil strains onto a phase change of the optical signal propagating through the cavity. The optical system includes a low coherence source and allows phase modulation via path length stretching by adding a second interferometer in series with the transducer, resulting in a path matched differential interferometer. A digitally implemented synthetic heterodyne demodulator based on a four step phase stepping algorithm is used to obtain unambiguous soil strain information from the displacement of the Fabry-Perot cavity. The demodulator is calibrated and characterized by illuminating the transducer with a second long coherence source of different wavelength. The transducer using anchoring plates is embedded within cylindrical soil specimens of varying soil types and soil moisture contents. Loads are applied to the specimen and resulting strains are measured using the embedded fiber optic gage and LVDTs attached to the surface of the specimen. This experimental verification is substantiated using a finite element analysis to predict any differences

  3. Path planning for machine vision assisted, teleoperated pavement crack sealer

    SciTech Connect

    Kim, Y.S.; Haas, C.T.; Greer, R.

    1998-03-01

    During the last few years, several teleoperated and machine-vision-assisted systems have been developed in construction and maintenance areas such as pavement crack sealing, sewer pipe rehabilitation, excavation, surface finishing, and materials handling. This paper presents a path-planning algorithm used for a machine-vision-assisted automatic pavement crack sealing system. In general, path planning is an important task for optimal motion of a robot whether its environment is structured or unstructured. Manual path planning is not always possible or desirable. A simple greedy path algorithm is utilized for optimal motion of the automated pavement crack sealer. Some unique and broadly applicable computational tools and data structures are required to implement the algorithm in a digital image domain. These components are described, then the performance of the algorithm is compared with the implicit manual path plans of system operators. The comparison is based on computational cost versus overall gains in crack-sealing-process efficiency. Applications of this work in teleoperation, graphical control, and other infrastructure maintenance areas are also suggested.

  4. Guidelines and specifications for the use of reclaimed aggregates in pavement. Final report

    SciTech Connect

    Chini, S.A.; Kuo, S.S.; Duxbury, J.P.; Monteiro, F.M.B.R.; Mbwambo, W.J.

    1998-08-01

    The project focused on evaluating the performance of recycled concrete for use as a base material under hot mix asphalt pavements and as an aggregate in Portland cement concrete pavements. In order to meet this objective, several goals were established. First, published literature on RCA was reviewed and a survey of State Highway Agencies (SHA) was performed to determine the extent of use of RCA in highway projects. Second, the RCA was tested at the FDOT Material Lab in Gainesville, Florida, to determine the material properties. Third, by using the output from the falling weight deflectometer test along with the KENSLABS and KENLAYER computer programs (Huang, 1993), a theoretical analysis was performed to predict the number of repetitions before the pavements failed in both the fatigue and permanent deformation criteria. Lastly, nine design sections involving HMA and PCC pavements were constructed at the University of Central Florida`s Circular Accelerated Test Track (UCF-CATT) to evaluate the response of the pavement sections made with RCA under actual dual-wheel loading.

  5. The Edison Environmental Center Permeable Pavement Site

    EPA Science Inventory

    This a presentation for a Community Outreach Event called "Chemistry Works and Celebration of International Year of Chemistry." It will review the permeable pavement research project at the Edison Environmental center.

  6. Pervious Pavement System Evaluation- Abstract 1

    EPA Science Inventory

    Porous pavement is a low impact development stormwater control. The Urban Watershed Management Branch is evaluating interlocking concrete pavers as a popular implementation. The pavers themselves are impermeable, but the spaces between the pavers are backfilled with washed, gra...

  7. Permeable Pavement Research - Edison, New Jersey

    EPA Science Inventory

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  8. High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films

    NASA Astrophysics Data System (ADS)

    Liu, Yuqing; Weng, Bo; Razal, Joselito M.; Xu, Qun; Zhao, Chen; Hou, Yuyang; Seyedin, Shayan; Jalili, Rouhollah; Wallace, Gordon G.; Chen, Jun

    2015-11-01

    Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm-2 was achieved at a scan rate of 10 mV s-1 using the composite electrode with a high mass loading (8.49 mg cm-2), indicating the potential to be used in practical applications. To demonstrate this applicability, a roll-up supercapacitor device was constructed, which illustrated the operation of a green LED light for 20 seconds when fully charged.

  9. 'Bucky gel' of multiwalled carbon nanotubes as electrodes for high performance, flexible electric double layer capacitors.

    PubMed

    Singh, Manoj K; Kumar, Yogesh; Hashmi, S A

    2013-11-22

    We report the preparation of a gelled form of multiwalled carbon nanotubes (MWCNTs) with an ionic liquid 1-butyl-1-methyl pyrrolidinium bis(trifluoromethane sulfonyl)imide (BMPTFSI)), referred to as 'bucky gel', to be used as binderless electrodes in electrical double layer capacitors (EDLCs). The characteristics of gelled MWCNTs are compared with pristine MWCNTs using transmission electron microscopy, x-ray diffraction and Raman studies. A gel polymer electrolyte film consisting of a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and BMPTFSI, exhibiting a room temperature ionic conductivity of 1.5 × 10(-3) S cm(-1), shows its suitability as an electrolyte/separator in flexible EDLCs. The performance of EDLCs, assembled with bucky gel electrodes, using impedance spectroscopy, cyclic voltammetry and charge-discharge analyses, are compared with those fabricated with pristine MWCNT-electrodes. An improvement in specific capacitance (from 19.6 to 51.3 F g(-1)) is noted when pristine MWCNTs are replaced by gelled MWCNT-binderless electrodes. Although the rate performance of the EDLCs with gelled MWCNT-electrodes is reduced, the pulse power of the device is sufficiently high (~10.5 kW kg(-1)). The gelled electrodes offer improvements in energy and power densities from 2.8 to 8.0 Wh kg(-1) and 2.0 to 4.7 kW kg(-1), respectively. Studies indicate that the gel formation of MWCNTs with ionic liquid is an excellent route to obtain high-performance EDLCs.

  10. Reducing traffic noise with quieter pavements

    NASA Astrophysics Data System (ADS)

    Donavan, Paul

    2005-09-01

    In recent years, interest has increased in the use of pavement type to reduce traffic noise. This has been driven by public concern over noise from freeways and state transportation agencies' interest in using pavement instead of sound walls to mitigate traffic noise. Beginnings of the recent interest go back to 1998 with the formation of the Institute for Safe, Quiet & Durable Highways at Purdue University and the initiation long-term research by the California Department of Transportation (Caltrans) on the effectiveness of quieter pavements. In 2002, the State of Arizona announced plans to overlay 115 miles of concrete freeway in the greater Phoenix area with a quieter asphalt rubber surface. This turned into the first Quiet Pavement Pilot Program in partnership between Federal Highway Administration (FHWA) and the Arizona Department of Transportation. Since that time, the FHWA in cooperation with the American Association of State Highway Transportation Agencies conducted a fact finding ``Scan'' tour in Europe to evaluate their quiet pavement technology and policy. This was followed by the first comparative tire/pavement noise testing in the US and Europe using the same procedures and test tires. The results, issues, and future directions surrounding these activities will be discussed.

  11. Materials and device structures for high-performance poly OLEDs on flexible plastic substrates

    NASA Astrophysics Data System (ADS)

    Hong, Yongtaek; Hong, Zhiyong; Kanicki, Jerzy

    2001-02-01

    Organic polymer light-emitting devices (Poly OLEDs) with the bi-layer thin film structures have been fabricated on both glass and flexible plastic substrates. The structural, optical, and electrical properties of each organic polymer layer have been optimized for the Poly OLED optimum electrical performances. The spin coating technique was used to fabricate our devices. An alternating co-polymer of poly (9, 9'-dihexyl fluorene-2, 7-diyl) and poly (benzothiadiazole 2, 5-diyl) (PHF-BTD), and poly (9-hexyl carbazole-3, 6-diyl) (PC6) have been used as light emitting and hole transporting polymer, respectively. The combination of the optical and cyclic voltammetry (CV) and analysis has been used to develop the band diagram for our Poly OLEDs. For our polymers, the oxidation/reduction processes are well defined and clearly observed in the CV spectra. This allows a direct comparison of the polymers band gaps determined by both the optical and electrical methods. The photoluminescence and electroluminescence emission peaks are both located around 570 nm, and maximum brightness up to 2000 cd/m2 was obtained. Turn-on voltages of approximately 16 and approximately 20 V, acceptable emission efficiencies of approximately 5.5 and approximately 4.2 cd/A, good power efficiencies of approximately 0.9 and 0.6 lm/W, and acceptable external quantum efficiencies of 1.8 and 1.6% have been obtained for OLEDs fabricated on both glass and plastic substrates, respectively.

  12. Optimization of thermoelectric performance in semiconducting polymers for understanding charge transport and flexible thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Glaudell, Anne; Chabinyc, Michael

    2014-03-01

    Organic electronic materials have been widely considered for a variety of energy conversion applications, from photovoltaics to LEDs. Only very recently have organic materials been considered for thermoelectric applications - converting between temperature gradients and electrical potential. The intrinsic disorder in semiconducting polymers leads to an inherently low thermal conductivity, a key parameter in thermoelectric performance. The ability to solution deposit on flexible substrates opens up niche applications including personal cooling and conformal devices. Here work is presented on the electrical conductivity and thermopower of thin film semiconducting polymers, including P3HT and PBTTT-C14. Thermoelectric properties are explored over a wide range of conductivities, from nearly insulating to beyond 100 S/cm, enabled by employing different doping mechanisms, including molecular charge-transfer doping with F4TCNQ and vapor doping with a fluoroalkyl trichlorosilane (FTS). Temperature-dependent measurements suggest competing charge transport mechanisms, likely due to the mixed ordered/disordered character of these polymers. These results show promise for organic materials for thermoelectric applications, and recent results on thin film devices will also be presented.

  13. A biodegradable gel electrolyte for use in high-performance flexible supercapacitors.

    PubMed

    Moon, Won Gyun; Kim, Gil-Pyo; Lee, Minzae; Song, Hyeon Don; Yi, Jongheop

    2015-02-18

    Despite the significant advances in solid polymer electrolytes used for supercapacitors, intractable problems including poor ionic conductivity and low electrochemical performance limit the practical applications. Herein, we report a facile approach to synthesize a NaCl-agarose gel electrolyte for use in flexible supercapacitors. The as-prepared agarose hydrogel consists of a three-dimensional chemically interconnected agarose backbone and oriented interparticular submicropores filled with water. The interconnected agarose matrix acts as a framework that provides mechanical stability to the gel electrolyte and hierarchical porous networks for optimized ion transport. The developed pores with the water filler provide an efficient ionic pathway to the storage sites of electrode. With these properties, the gel electrolyte enables the supercapacitor to have a high specific capacitance of 286.9 F g(-1) and a high rate capability that is 80% of specific capacitance obtained in the case of a liquid electrolyte at 100 mV s(-1). In addition, attributed to the simple procedure and its components, the gel electrolyte is highly scalable, cost-effective, safe, and nontoxic. Thus, the developed gel electrolyte has the potential for use in various energy storage and delivery systems. PMID:25622040

  14. State-of-the art guideline manual for design, quality control and construction of Sulfur-Extended-Asphalt (SEA) pavements

    NASA Astrophysics Data System (ADS)

    McBee, W. C.; Sullivan, T. A.; Izatt, J. O.

    1980-08-01

    Sulfur-Extended-Asphalt (SEA) binders save asphalt, a potential energy source, by replacing some asphalt in conventional flexible pavement mixes with sulfur. These new binders appear to possess properties comparable to asphalt. The guideline manual discussed provides the highway community in both public and private organizations with the most definitive state-of-the-art guidelines extant for using these binders. Information on design, construction, quality control, equipment, mixing plants, specifications, and safety is included. Administrators and professionals in pavement construction, design, maintenance, and materials testing will be the personnel who are most interested in the manual.

  15. Study of the durability of demolition aggregates on pavements

    NASA Astrophysics Data System (ADS)

    Bachir, Melbouci; Fazia, Boudjemia

    2009-06-01

    This work is an experimental contribution to the study of durability of various materials coming from the demolition of buildings for their use in the flexible infrastructures of pavements. However, these pavements undergo traffic loading which causes, in the long time permanent deformations and settlements thus generating significant degradations of materials. Various recent works aim at characterizing these materials. This work falls under this scope and gives an approach of the mechanical behavior and the response of these last to repetitive loadings. After identification of materials and the determination of the characteristics of hardness and durability, we studied their mechanical behavior with cyclic shearing on these three materials (aggregates of concrete, brick and concrete block). These tests enabled us to analyze the mechanisms which occur through the various parameters related to loading (the amplitude and the repetition of loading, the parameters related to materials (the water content, the density and the grain size distribution). The study of the durability of these materials consists on quantifying the degradation rate of the grains after the various tests and the grain size distribution which governs the amplitude of crushing.

  16. Mechanical properties of high performance fibers vis-a-vis applications in flexible structural composites

    NASA Astrophysics Data System (ADS)

    Sharma, Varunesh

    Some of the critical properties of high performance organic fibers and fiber assemblies have been addressed vis-a-vis their applications in flexible structural composites. These include: tensile properties; mechanical properties under complex modes of deformation; creep at high tensile loads; changes in physical properties due to thermo-mechanical/chemical treatments used in manufacturing of reinforced rubber goods. The axial elastic modulus of fibers and tautly twisted filament assemblies of high performance organic polymers have been measured along with their crystalline orientation distributions. Based on well established procedures in continuum mechanics of axially symmetric structures, a quantitative relationship has been derived to relate the axial elastic modulus to the second and fourth moment of average crystalline orientation distribution. The latter was determined by X-ray diffraction measurements with yarns. This model, valid for single-phase materials, has been found to provide an excellent fit of data from twisted yams of aromatic polyamide and highly ordered polyethylene fibers, with a wide range of overall crystalline orientation distributions. An important property of concern in engineering applications of polymeric filament assemblies of high performance organic fibers is creep. In this study, creep deformation data of gel-spun Ultra High Molecular Weight Polyethylne (UHMWPE) SpectraRTM 1000 yams have been fitted to a model obtained through an empirical mechanical analog of the viscoelastic process. The non-linear viscoelastic model composed of stress-dependent non-linear mechanical analogs qualitatively predicted the creep response to a series of step-loads applied on the UHMWPE yarns. To understand the mechanical properties of high performance organic fibers under combined bending and extension, a simple pin-test procedure has been employed to characterize fibers and twisted yarns. The results obtained from the test have been interpreted with

  17. Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances

    NASA Astrophysics Data System (ADS)

    Chen, Mengting; Zhang, Ling; Duan, Shasha; Jing, Shilong; Jiang, Hao; Luo, Meifang; Li, Chunzhong

    2014-03-01

    New flexible and conductive materials (FCMs) comprising a quartz fiber cloth (QFC) reinforced multi-walled carbon nanotubes (MWCNTs)-carbon aerogel (QMCA) and poly(dimethylsiloxane) (PDMS) have been successfully prepared. The QMCA-PDMS composite with a very low loading of MWCNTs (~1.6 wt%) demonstrates enhanced performance in tensile strength (129.6 MPa), modulus (3.41 GPa) and electromagnetic interference (EMI) shielding efficiency (SE) (~16 dB in X-band (8.2-12.4 GHz) region). Compared to the QC (where MWCNTs were simply deposited on the QFCs without forming aerogel networks) based PDMS composite, a ~120%, 330% and 178% increase of tensile strength, modulus, and EMI SE was obtained, respectively. Moreover, the EMI SE of the QMCA-PDMS composite can further reach 20 dB (a SE level needed for commercial applications) with only 2 wt% MWCNTs. Furthermore, the conductivity of the QMCA-PDMS laminate can reach 1.67 S cm-1 even with very low MWCNTs (1.6 wt%), which still remains constant even after 5000 times bending and exhibits an increase of ~170% than that of MWCNT-carbon aerogel (MCA)-PDMS at 20% strain. Such intriguing performances are mainly attributed to their unique networks in QMCA-PDMS composites. In addition, these features can also protect electronics against harm from external forces and EMI, giving the brand-new FCMs huge potential in next-generation devices, like E-skin, robot joints and so on.New flexible and conductive materials (FCMs) comprising a quartz fiber cloth (QFC) reinforced multi-walled carbon nanotubes (MWCNTs)-carbon aerogel (QMCA) and poly(dimethylsiloxane) (PDMS) have been successfully prepared. The QMCA-PDMS composite with a very low loading of MWCNTs (~1.6 wt%) demonstrates enhanced performance in tensile strength (129.6 MPa), modulus (3.41 GPa) and electromagnetic interference (EMI) shielding efficiency (SE) (~16 dB in X-band (8.2-12.4 GHz) region). Compared to the QC (where MWCNTs were simply deposited on the QFCs without forming

  18. Thermal stability analysis under embankment with asphalt pavement and cement pavement in permafrost regions.

    PubMed

    Junwei, Zhang; Jinping, Li; Xiaojuan, Quan

    2013-01-01

    The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results. PMID:24027444

  19. Thermal stability analysis under embankment with asphalt pavement and cement pavement in permafrost regions.

    PubMed

    Junwei, Zhang; Jinping, Li; Xiaojuan, Quan

    2013-01-01

    The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results.

  20. Thermal Stability Analysis under Embankment with Asphalt Pavement and Cement Pavement in Permafrost Regions

    PubMed Central

    Jinping, Li; Xiaojuan, Quan

    2013-01-01

    The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results. PMID:24027444

  1. Performance of pre-deformed flexible piezoelectric cantilever in energy harvesting

    NASA Astrophysics Data System (ADS)

    Wang, Pengyingkai; Sui, Li; Shi, Gengchen; Liu, Guohua

    2016-05-01

    This paper proposes a novel structure for pre-rolled flexible piezoelectric cantilevers that use wind energy to power a submunition electrical device. Owing to the particular installation position and working environment, the submunition piezoelectric cantilever should be rolled when not working, but this pre-rolled state can alter the energy harvesting performance. Herein, a working principle and installation method for piezoelectric cantilevers used in submunitions are introduced. To study the influence of the pre-rolled state, pre-rolled piezoelectric cantilevers of different sizes were fabricated and their performances were studied using finite element analysis simulations and experiments. The simulation results show that the resonance frequency and stiffness of the pre-rolled structure is higher than that of a flat structure. Results show that, (1) for both the pre-rolled and flat cantilever, the peak voltage will increase with the wind speed. (2) The pre-rolled cantilever has a higher critical wind speed than the flat cantilever. (3) For identical wind speeds and cantilever sizes, the peak voltage of the flat cantilever (45 V) is less than that of the pre-rolled cantilever (56 V). (4) Using a full-bridge rectifier, the output of the pre-rolled cantilever can sufficiently supply a 10 μF capacitor, whose output voltage may be up to 23 V after 10 s. These results demonstrate that the pre-rolled piezoelectric cantilever and its installation position used in this work are more suitable for submunition, and its output sufficiently meets submunition requirements.

  2. Performance Potential of Grinding Tools on Flexible Backing Produced of Grains with the Controlled Form

    NASA Astrophysics Data System (ADS)

    Shatko, D. B.; Lyukshin, V. S.; Bakumenko, V. N.

    2016-08-01

    The paper provides consideration to the approaches to designing new grinding tools on flexible backing - flap grinding wheels and grinding belts having abrasive grains with certain form and orientation in their structure. Methods to estimate the shape of abrasive grains have been analyzed. Experimental data has been presented how the form of a grain affects characteristics of tools on flexible backing. Recommendations on practical application of new tools have been given

  3. Evaluation of Flexible Array Station Performance and Ambient Noise Analysis Using 500 Days of Continuous Recordings

    NASA Astrophysics Data System (ADS)

    Alvarez, M. G.; Anderson, K.; Arias-Dotson, E.; Fowler, J.; Woodward, R.

    2008-12-01

    Within the NSF funded EarthScope USArray program, the Flexible Array (FA) is a pool of campaign seismic instruments for Principal Investigator-driven studies to augment the Transportable Array footprint in imaging key geophysical targets at higher resolution. In this study we evaluate the performance of FA stations using data recorded from the EarthScope CAFÉ experiment in western Washington. Using this unique data set, we create a reference point on how well portable broadband stations perform for an extended continuous period of over 500 days (150:2006 - 50:2008) . All instrumentation that comprise the CAFE experiment is essentially new, of the same type and deployed using a uniform installation technique. The performance of 60 stations is analyzed; 46 stations are broadband, equipped with Guralp CMG 3T and Reftek R130's, the remainder equipped with short period Guralp CMG 40T1Hz and the same data acquisition system. The information used for this evaluation is derived from three sources; detailed field service notes kindly provided by the PI's (Ken Creager, Stephane Rondenay, Geoff Abers), data reports from the IRIS Data Management Center, and the actual time series data. The data return (based on data archived at the DMC w/o any problems) for this experiment is calculated to be 94.5% . The various failures through time are segregated into logical categories where trends in deployment techniques and equipment failures are quantified. Using McNamara statistical analysis to characterize background seismic noise, probability density functions were computed for 25 CAFE stations spanning over 500 days of recording beginning in mid 2006. Results from each station were then combined to produce a network wide characterization of the background noise level. For the same time period, PSD's for 35 nearby Transportable Array stations were also computed and combined into a single system wide PSD. Both installation types perform remarkable well with some differences being

  4. Establishing optimal project-level strategies for pavement maintenance and rehabilitation - A framework and case study

    NASA Astrophysics Data System (ADS)

    Irfan, Muhammad; Bilal Khurshid, Muhammad; Bai, Qiang; Labi, Samuel; Morin, Thomas L.

    2012-05-01

    This article presents a framework and an illustrative example for identifying the optimal pavement maintenance and rehabilitation (M&R) strategy using a mixed-integer nonlinear programming model. The objective function is to maximize the cost-effectiveness expressed as the ratio of the effectiveness to the cost. The constraints for the optimization problem are related to performance, budget, and choice. Two different formulations of effectiveness are derived using treatment-specific performance models for each constituent treatment of the strategy; and cost is expressed in terms of the agency and user costs over the life cycle. The proposed methodology is demonstrated using a case study. Probability distributions are established for the optimization input variables and Monte Carlo simulations are carried out to yield optimal solutions. Using the results of these simulations, M&R strategy contours are developed as a novel tool that can help pavement managers quickly identify the optimal M&R strategy for a given pavement section.

  5. Highly Flexible Freestanding Porous Carbon Nanofibers for Electrodes Materials of High-Performance All-Carbon Supercapacitors.

    PubMed

    Liu, Ying; Zhou, Jinyuan; Chen, Lulu; Zhang, Peng; Fu, Wenbin; Zhao, Hao; Ma, Yufang; Pan, Xiaojun; Zhang, Zhenxing; Han, Weihua; Xie, Erqing

    2015-10-28

    Highly flexible porous carbon nanofibers (P-CNFs) were fabricated by electrospining technique combining with metal ion-assistant acid corrosion process. The resultant fibers display high conductivity and outstanding mechanical flexibility, whereas little change in their resistance can be observed under repeatedly bending, even to 180°. Further results indicate that the improved flexibility of P-CNFs can be due to the high graphitization degree caused by Co ions. In view of electrode materials for high-performance supercapacitors, this type of porous nanostructure and high graphitization degree could synergistically facilitate the electrolyte ion diffusion and electron transportation. In the three electrodes testing system, the resultant P-CNFs electrodes can exhibit a specific capacitance of 104.5 F g(-1) (0.2 A g(-1)), high rate capability (remain 56.5% at 10 A g(-1)), and capacitance retention of ∼94% after 2000 cycles. Furthermore, the assembled symmetric supercapacitors showed a high flexibility and can deliver an energy density of 3.22 Wh kg(-1) at power density of 600 W kg(-1). This work might open a way to improve the mechanical properties of carbon fibers and suggests that this type of freestanding P-CNFs be used as effective electrode materials for flexible all-carbon supercapacitors.

  6. Effect of TiO2 Particle Size on the Performance of Flexible Dye Sensitized Solar Cells.

    PubMed

    Li, Zhen-yu; Akhtar, M Shaheer; Yang, O-bong

    2015-09-01

    The size TiO2 nanoparticles was controlled by changing the concentration of titanium tetraisopropanolate (TTIP) and utilized as light scattering particles in the efficient flexible photoelectrodes for flexible dye sensitized solar cells (DSSCs). The flexible photoelectrodes were prepared by TiO2 nanoparticles (-25 nm) paste with different concentrations of ethanolic TTIP solution. The addition of TTIP produced the bigger TiO2 nanoparticles, which significantly enhanced the dye absorption of flexible TiO2 photoelectrode. The fabricated flexible DSSCs showed the reasonable conversion efficiency of 2.50% with short circuit current (J(sc)) of 6.3 mA/cm2, open circuit voltage (V(oc)) of 0.720 V and fill factor (FF) of 0.55. The improvement in photovoltaic performance with 25 wt% TTIP might due to uniform distribution of small TiO2 nanoparticles over the big particles to lead the enhancement in the surface area, resulting in the high dye absorption and light harvesting efficiency. PMID:26716227

  7. Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes.

    PubMed

    Deng, Bing; Hsu, Po-Chun; Chen, Guanchu; Chandrashekar, B N; Liao, Lei; Ayitimuda, Zhawulie; Wu, Jinxiong; Guo, Yunfan; Lin, Li; Zhou, Yu; Aisijiang, Mahaya; Xie, Qin; Cui, Yi; Liu, Zhongfan; Peng, Hailin

    2015-06-10

    Transparent conductive film on plastic substrate is a critical component in low-cost, flexible, and lightweight optoelectronics. Industrial-scale manufacturing of high-performance transparent conductive flexible plastic is needed to enable wide-ranging applications. Here, we demonstrate a continuous roll-to-roll (R2R) production of transparent conductive flexible plastic based on a metal nanowire network fully encapsulated between graphene monolayer and plastic substrate. Large-area graphene film grown on Cu foil via a R2R chemical vapor deposition process was hot-laminated onto nanowires precoated EVA/PET film, followed by a R2R electrochemical delamination that preserves the Cu foil for reuse. The encapsulated structure minimized the resistance of both wire-to-wire junctions and graphene grain boundaries and strengthened adhesion of nanowires and graphene to plastic substrate, resulting in superior optoelectronic properties (sheet resistance of ∼8 Ω sq(-1) at 94% transmittance), remarkable corrosion resistance, and excellent mechanical flexibility. With these advantages, long-cycle life flexible electrochromic devices are demonstrated, showing up to 10000 cycles.

  8. Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes.

    PubMed

    Deng, Bing; Hsu, Po-Chun; Chen, Guanchu; Chandrashekar, B N; Liao, Lei; Ayitimuda, Zhawulie; Wu, Jinxiong; Guo, Yunfan; Lin, Li; Zhou, Yu; Aisijiang, Mahaya; Xie, Qin; Cui, Yi; Liu, Zhongfan; Peng, Hailin

    2015-06-10

    Transparent conductive film on plastic substrate is a critical component in low-cost, flexible, and lightweight optoelectronics. Industrial-scale manufacturing of high-performance transparent conductive flexible plastic is needed to enable wide-ranging applications. Here, we demonstrate a continuous roll-to-roll (R2R) production of transparent conductive flexible plastic based on a metal nanowire network fully encapsulated between graphene monolayer and plastic substrate. Large-area graphene film grown on Cu foil via a R2R chemical vapor deposition process was hot-laminated onto nanowires precoated EVA/PET film, followed by a R2R electrochemical delamination that preserves the Cu foil for reuse. The encapsulated structure minimized the resistance of both wire-to-wire junctions and graphene grain boundaries and strengthened adhesion of nanowires and graphene to plastic substrate, resulting in superior optoelectronic properties (sheet resistance of ∼8 Ω sq(-1) at 94% transmittance), remarkable corrosion resistance, and excellent mechanical flexibility. With these advantages, long-cycle life flexible electrochromic devices are demonstrated, showing up to 10000 cycles. PMID:26020567

  9. Establishing a Dynamics Performance Envelope of a Flexible Tethered Satellite System for Planar and Non-Coplanar Models.

    NASA Astrophysics Data System (ADS)

    Teik Hong, Aaron Aw; Varatharajoo, Renuganth

    A Tethered Satellite System (TSS) can be considered as a flexible in-orbit system. However, TSS is typically modelled as a rigid tethered system due to the complexity of its mathematical treatments. In this paper, mathematical models for a flexible tethered satellite system in both planar and co-planar states are developed. The flexible tethered satellite system consists of three rigid bodies with two flexible tethers each connecting two rigid bodies with one located in the centre serving as the mothership. The TSS motion includes tether deformations, rotational dynamics, and orbital mechanics. Three materials (e.g., tungsten wire, Spectra-2000, and diamond) that are commonly used for the tether are proposed as the reference materials; and it should be noted that the tether will undergo a spinning motion as well in the motorized option. In addition, the air drag perturbation is also considered since the entire TSS is flown around Low Earth Orbit (LEO), whereby the air-drag perturbation is dominant. A comprehensive analysis was performed for planar and non-coplanar models in order to establish a dynamics performance envelope with respect to the tether’s tension at different altitudes and air-drag. Bubnov-Galerkin method was employed in order to linearize the non-linear governing equations of elastic vibrations; and once the modal coordinates were obtained, they were substituted according to the equations corresponding to the energy conservation principle. Further, Lagrangian dynamics was utilized to establish the equations of motion of the entire TSS based on the chosen generalized coordinates. The proposed models were treated numerically and analysed accordingly. Then, a comparison study between the coplanar and non-coplanar models was done and the differences in their performances were observed and discussed. Although all materials have their own safe operation boundaries, the flexible TSS using Diamond shows a better dynamics performance than the other TSS

  10. A Comparison of Masticatory Performance and Efficiency of Complete Dentures Made with High Impact and Flexible Resins: A Pilot Study

    PubMed Central

    Bhoyar, Anjali; Mishra, Sunil Kumar; Yadav, Naveen S.; Mahajan, Harsh

    2015-01-01

    Background In patients with extensive tooth loss, restoration of masticatory function and aesthetics is main concern for a prosthodontist. Aim of Study This study aimed to evaluate and compare differences in masticatory efficiency of patients treated with complete dentures made with either high impact or flexible resins. Setting and Design The sample size consisted of 10 study subjects. Two sets of dentures first conventional followed by flexible dentures were fabricated for each subject and both the sets of dentures were accessed for masticatory performance and efficiency. Materials and Methods This study compared the masticatory performance and efficiency of dentures by means of standardized mesh sieves. Masticatory efficiency was calculated by recording the total number of chewing cycles and time required to completely swallow a standardized food item. A patient satisfaction questionnaire was given and evaluated. Statistical Analysis Used The statistical analyses were performed using Z-test of Proportion and Paired t-test. Results The masticatory performance ratio was found to be more for hard food in conventional dentures. The values of masticatory performance ratios for soft food, time and number of masticatory strokes were indicating better masticatory efficiency of conventional dentures. Conclusion Though masticatory efficiency and performance were found to be better for patient’s dentures made with Polymethyl methacrylate (PMMA), a statistically significant number of patients reported that the flexible dentures were more satisfying than the conventional dentures. PMID:26266213

  11. Assessing Green Infrastructure Performance Using Remote Hydologic Monitoring Measures

    EPA Science Inventory

    Two locations in Cincinnati were instrumented with level sensing technologies to measure stormwater flow in porous pavement and bioretention areas. Results indicate good performance of porous pavement and a cost effective application of technology to measure those flows. Result...

  12. High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites

    NASA Astrophysics Data System (ADS)

    He, Shuijian; Chen, Wei

    2014-09-01

    The syntheses and capacitance performances of ultralight and flexible MnO2/carbon foam (MnO2/CF) hybrids are systematically studied. Flexible carbon foam with a low mass density of 6.2 mg cm-3 and high porosity of 99.66% is simply obtained by carbonization of commercially available and low-cost melamine resin foam. With the high porous carbon foam as framework, ultrathin MnO2 nanosheets are grown through in situ redox reaction between KMnO4 and carbon foam. The three-dimensional (3D) MnO2/CF networks exhibit highly ordered hierarchical pore structure. Attributed to the good flexibility and ultralight weight, the MnO2/CF nanomaterials can be directly fabricated into supercapacitor electrodes without any binder and conductive agents. Moreover, the pseudocapacitance of the MnO2 nanosheets is enhanced by the fast ion diffusion in the three-dimensional porous architecture and by the conductive carbon foam skeleton as well as good contact of carbon/oxide interfaces. Supercapacitor based on the MnO2/CF composite with 3.4% weight percent of MnO2 shows a high specific capacitance of 1270.5 F g-1 (92.7% of the theoretical specific capacitance of MnO2) and high energy density of 86.2 Wh kg-1. The excellent capacitance performance of the present 3D ultralight and flexible nanomaterials make them promising candidates as electrode materials for supercapacitors.

  13. Conjunction of Conducting Polymer Nanostructures with Macroporous Structured Graphene Thin Films for High-Performance Flexible Supercapacitors.

    PubMed

    Memon, Mushtaque A; Bai, Wei; Sun, Jinhua; Imran, Muhammad; Phulpoto, Shah Nawaz; Yan, Shouke; Huang, Yong; Geng, Jianxin

    2016-05-11

    Fabrication of hybridized structures is an effective strategy to promote the performances of graphene-based composites for energy storage/conversion applications. In this work, macroporous structured graphene thin films (MGTFs) are fabricated on various substrates including flexible graphene papers (GPs) through an ice-crystal-induced phase separation process. The MGTFs prepared on GPs (MGTF@GPs) are recognized with remarkable features such as interconnected macroporous configuration, sufficient exfoliation of the conductive RGO sheets, and good mechanical flexibility. As such, the flexible MGTF@GPs are demonstrated as a versatile conductive platform for depositing conducting polymers (CPs), e.g., polyaniline (PAn), polypyrrole, and polythiophene, through in situ electropolymerization. The contents of the CPs in the composite films are readily controlled by varying the electropolymerization time. Notably, electrodeposition of PAn leads to the formation of nanostructures of PAn nanofibers on the walls of the macroporous structured RGO framework (PAn@MGTF@GPs): thereafter, the PAn@MGTF@GPs display a unique structural feature that combine the nanostructures of PAn nanofibers and the macroporous structures of RGO sheets. Being used as binder-free electrodes for flexible supercapacitors, the PAn@MGTF@GPs exhibit excellent electrochemical performance, in particular a high areal specific capacity (538 mF cm(-2)), high cycling stability, and remarkable capacitive stability to deformation, due to the unique electrode structures. PMID:27110720

  14. Conjunction of Conducting Polymer Nanostructures with Macroporous Structured Graphene Thin Films for High-Performance Flexible Supercapacitors.

    PubMed

    Memon, Mushtaque A; Bai, Wei; Sun, Jinhua; Imran, Muhammad; Phulpoto, Shah Nawaz; Yan, Shouke; Huang, Yong; Geng, Jianxin

    2016-05-11

    Fabrication of hybridized structures is an effective strategy to promote the performances of graphene-based composites for energy storage/conversion applications. In this work, macroporous structured graphene thin films (MGTFs) are fabricated on various substrates including flexible graphene papers (GPs) through an ice-crystal-induced phase separation process. The MGTFs prepared on GPs (MGTF@GPs) are recognized with remarkable features such as interconnected macroporous configuration, sufficient exfoliation of the conductive RGO sheets, and good mechanical flexibility. As such, the flexible MGTF@GPs are demonstrated as a versatile conductive platform for depositing conducting polymers (CPs), e.g., polyaniline (PAn), polypyrrole, and polythiophene, through in situ electropolymerization. The contents of the CPs in the composite films are readily controlled by varying the electropolymerization time. Notably, electrodeposition of PAn leads to the formation of nanostructures of PAn nanofibers on the walls of the macroporous structured RGO framework (PAn@MGTF@GPs): thereafter, the PAn@MGTF@GPs display a unique structural feature that combine the nanostructures of PAn nanofibers and the macroporous structures of RGO sheets. Being used as binder-free electrodes for flexible supercapacitors, the PAn@MGTF@GPs exhibit excellent electrochemical performance, in particular a high areal specific capacity (538 mF cm(-2)), high cycling stability, and remarkable capacitive stability to deformation, due to the unique electrode structures.

  15. High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Wang, Yanyan; Zhang, Yafei

    2016-11-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) have received increasing attention. It's a great challenge to fabricate high-performance flexible solid-state supercapacitors with high areal and volumetric energy storage capability, superior electron and ion conductivity, robust mechanical flexibility, as well as long term stability. Herein, we report a facile method to fabricate flexible ASSSCs based on densely-packed reduced graphene oxide (rGO)/polypyrrole nanoparticle (PPy NP) hybrid papers with a sandwich framework, which consists of well-separated and continuously-aligned rGO sheets. The incorporation of PPy NPs not only provides pseudocapacitance but also facilitates the infiltration of gel electrolyte. The assembled ASSSCs possess maximum areal and volumetric specific capacitances of 477 mF/cm2 and 94.9 F/cm3 at 0.5 mA/cm2. They also exhibit little capacitance deviation under different bending states, excellent cycling stability, small leakage current and low self-discharge characteristics. Additionally, the maximum areal and volumetric energy densities of 132.5 μWh/cm2 and 26.4 mWh/cm3 are achieved, which indicate that this hybrid paper is a promising candidate for high-performance flexible energy storage devices.

  16. Inkjet printing of flexible high-performance carbon nanotube transparent conductive films by ``coffee ring effect''

    NASA Astrophysics Data System (ADS)

    Shimoni, Allon; Azoubel, Suzanna; Magdassi, Shlomo

    2014-09-01

    Transparent and flexible conductors are a major component in many modern optoelectronic devices, such as touch screens for smart phones, displays, and solar cells. Carbon nanotubes (CNTs) offer a good alternative to commonly used conductive materials, such as metal oxides (e.g. ITO) for flexible electronics. The production of transparent conductive patterns, and arrays composed of connected CNT ``coffee rings'' on a flexible substrate poly(ethylene terephthalate), has been reported. Direct patterning is achieved by inkjet printing of an aqueous dispersion of CNTs, which self-assemble at the rim of evaporating droplets. After post-printing treatment with hot nitric acid, the obtained TCFs are characterized by a sheet resistance of 156 Ω sq-1 and transparency of 81% (at 600 nm), which are the best reported values obtained by inkjet printing of conductive CNTs. This makes such films very promising as transparent conductors for various electronic devices, as demonstrated by using an electroluminescent device.

  17. Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films.

    PubMed

    Kanninen, Petri; Luong, Nguyen Dang; Sinh, Le Hoang; Anoshkin, Ilya V; Tsapenko, Alexey; Seppälä, Jukka; Nasibulin, Albert G; Kallio, Tanja

    2016-06-10

    Transparent and flexible energy storage devices have garnered great interest due to their suitability for display, sensor and photovoltaic applications. In this paper, we report the application of aerosol synthesized and dry deposited single-walled carbon nanotube (SWCNT) thin films as electrodes for an electrochemical double-layer capacitor (EDLC). SWCNT films exhibit extremely large specific capacitance (178 F g(-1) or 552 μF cm(-2)), high optical transparency (92%) and stability for 10 000 charge/discharge cycles. A transparent and flexible EDLC prototype is constructed with a polyethylene casing and a gel electrolyte. PMID:27122323

  18. Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Kanninen, Petri; Dang Luong, Nguyen; Hoang Sinh, Le; Anoshkin, Ilya V.; Tsapenko, Alexey; Seppälä, Jukka; Nasibulin, Albert G.; Kallio, Tanja

    2016-06-01

    Transparent and flexible energy storage devices have garnered great interest due to their suitability for display, sensor and photovoltaic applications. In this paper, we report the application of aerosol synthesized and dry deposited single-walled carbon nanotube (SWCNT) thin films as electrodes for an electrochemical double-layer capacitor (EDLC). SWCNT films exhibit extremely large specific capacitance (178 F g‑1 or 552 μF cm‑2), high optical transparency (92%) and stability for 10 000 charge/discharge cycles. A transparent and flexible EDLC prototype is constructed with a polyethylene casing and a gel electrolyte.

  19. Evaluation of non-metallic fiber reinforced concrete in new full depth pcc pavements. Final report

    SciTech Connect

    Ramakrishnan, V.; Tolmare, N.S.

    1998-12-30

    This final report presents the construction and performance evaluation of a new full depth pavement, constructed with a new type non-metallic fiber reinforced concrete (NMFRC). The mixture proportions used, the quality control tests conducted for the evaluation of the fresh and hardened concrete properties, the procedure used for mixing, transporting, placing, consolidating, finishing, and curing of the concrete are described. Periodic inspection of the full depth pavement was done and this report includes the results of these inspections. The feasibility of using this NMFRC in the construction of highway structures has been discussed. The new NMFRC with enhanced fatigue, impact resistance, modulus of rupture, ductility and toughness properties is suitable for the construction of full depth pavements. However, a life-cycle cost analysis shows that NMFRC is not a favorable choice, because of it`s high initial cost.

  20. Pavement Sealcoat, PAHs, and the Environment

    NASA Astrophysics Data System (ADS)

    Van Metre, P. C.; Mahler, B. J.

    2011-12-01

    Recent research by the USGS has identified coal-tar-based pavement sealants as a major source of polycyclic aromatic hydrocarbons (PAHs) to the environment. Coal-tar-based sealcoat is commonly used to coat parking lots and driveways and is typically is 20-35 percent coal tar pitch, a known human carcinogen. Several PAHs are suspected mutagens, carcinogens, and (or) teratogens. In the central and eastern U.S. where the coal-tar-based sealants dominate use, sum-PAH concentration in dust particles from sealcoated pavement is about 1,000 times higher than in the western U.S. where the asphalt-based formulation is prevalent. Source apportionment modeling indicates that particles from sealcoated pavement are contributing the majority of the PAHs to recent lake sediment in 35 U.S. urban lakes and are the primary cause of upward trends in PAHs in many of these lakes. Mobile particles from parking lots with coal-tar-based sealcoat are tracked indoors, resulting in elevated PAH concentrations in house dust. In a recently completed study, volatilization fluxes of PAHs from sealcoated pavement were estimated to be about 60 times fluxes from unsealed pavement. Using a wide variety of methods, the author and colleagues have shown that coal-tar-based sealcoat is a major source of PAHs to the urban environment and might pose risks to aquatic life and human health.

  1. User's guide: Cold-mix recycling of asphalt concrete pavements. Final report

    SciTech Connect

    Shoenberger, J.E.

    1992-09-01

    This guide provides the technical information required to implement the application of cold-mix recycling of asphalt concrete pavements. Included are details on areas on application, benefits/advantages, limitations/disadvantages, and costs associated with this technology. Information is provided on two demonstration sites at Fort Gillem, Georgia, and Fort Leavenworth, Kansas. Also provided is information concerning funding, procurement, maintenance, and performance monitoring. A fact sheet on recycling, contract specification example, and references are provided in the appendixes.... Asphalt pavement recycling, Emulsified asphalt cement, Cold milling, In-place cold-mix asphalt recycling, Cold-mix asphalt recycling, Recycling of asphalt.

  2. Spills on Flat Inclined Pavements

    SciTech Connect

    Simmons, Carver S.; Keller, Jason M.; Hylden, Jeff L.

    2004-03-01

    This report describes the general spill phenomenology for liquid spills occurring on relatively impermeable surfaces such as concrete or asphalt pavement and the development and application of a model to describe the time evolution of such spills. The discussion assumes evaporation and degradation are negligible and a homogeneous surface. In such an instance, the inherent interfacial properties determine the spatial extent of liquid spreading with the initial flow being controlled by the release rate of the spill and by the liquids resistance to flow as characterized by its viscosity. A variety of spill scenarios were simulated and successful implementation of the model was achieved. A linear relationship between spill area and spill volume was confirmed. The simulations showed spill rate had little effect on the final spill area. Slope had an insignificant effect on the final spill area, but did modify spill shape considerably. However, a fluid sink on the edge of the simulation domain, representing a storm drain, resulted in a substantial decrease in spill area. A bona fide effort to determine the accuracy of the model and its calculations remain, but comparison against observations from a simple experiment showed the model to correctly determine the spill area and general shape under the conditions considered. Further model verification in the form of comparison against small scale spill experiments are needed to confirm the models validity.

  3. Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants

    USGS Publications Warehouse

    Corsi, Steven R.; Mericas, Dean; Bowman, George

    2012-01-01

    Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.

  4. Pavement friction measurements on nontangent sections of roadways, vol. 1

    NASA Astrophysics Data System (ADS)

    Zimmer, R. A.; Tonda, R. D.

    1983-10-01

    A practical measurement technique for measuring wet-pavement friction for road sections other than the straight, level portions currently measured was developed. Measurements on nontangent sections can be conducted with an ASTM E-274 skid trailer when it accurately measures both the dynamic longitudinal and vertical forces on the test wheel during locked-wheel tests. The limit of performance of an E-274 system is approximately + or - 0.35 g lateral acceleration in the horizontal plane of the test trailer. Nontangent tests should not be attempted unless dynamic vertical forces are determined either by a load cell or translated from accelerations acting on the trailer.

  5. On performance of an oscillating plate underwater propulsion system with variable chordwise flexibility at different depths of submergence

    NASA Astrophysics Data System (ADS)

    Barannyk, Oleksandr; Buckham, Bradley J.; Oshkai, Peter

    2012-01-01

    In this work, an oscillating plate propulsor undergoing a combination of heave translation and pitch rotation is investigated experimentally. The oscillation kinematics are inspired by swimming mechanisms employed by fish and other marine animals. The primary focus was on the propulsive characteristics of such oscillating plates, which were studied by means of direct force measurements in the thrust-producing regime. Experiments were performed at constant Reynolds number and constant heave amplitude. By varying the Strouhal number, the depth of submergence and the chordwise flexibility of the plate, it was possible to investigate corresponding changes in the generated thrust and the hydromechanical efficiency. It was possible to establish a set of parameters, including the driving frequency of the system, the ratio of rigid to flexible segment length of the plate, and the range of Strouhal numbers that led to an overall increase in thrust and efficiency. The experiments, involving plates with various ratios of rigid to flexible segment lengths, showed that greater flexibility increased the propulsive efficiency and thrust compared to an identical motion of the purely rigid plate. By submerging the plate at different depths, it was observed that the proximity of the propulsor to the bottom of the channel led to an overall increase in the thrust coefficient across the oscillation frequencies considered. The flow visualization revealed the formation of large dynamic stall vortices that influenced the wake structure, and suggested that their constructive interaction with trailing edge vortices might lead to overall improvement of thrust and efficiency.

  6. Highly-flexible 3D Li2S/graphene cathode for high-performance lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    He, Jiarui; Chen, Yuanfu; Lv, Weiqiang; Wen, Kechun; Li, Pingjian; Qi, Fei; Wang, Zegao; Zhang, Wanli; Li, Yanrong; Qin, Wu; He, Weidong

    2016-09-01

    Three-dimensional Li2S/graphene hierarchical architecture (3DLG) is synthesized with a facile infiltration method. Highly-crystalline Li2S nanoparticles are deposited homogenously into three-dimensional graphene foam (3DGF) network grown by chemical vapor deposition (CVD), resulting in 3DLG with high surface area, porosity, flexibility and conductivity. The 3DLG is employed as flexible, free-standing and binder-free cathode without metallic current collectors or conducting additives. Due to the unique structure, the 3DLG exhibits a high discharge capacity of 894.7 mAh g-1 at 0.1 C, a high capacity retention of 87.7% after 300 cycles at 0.2 C, and the high-rate capacity up to 4 C reaches 598.6 mAh g-1. The cyclic performance is record-breaking compared to the previous reports on free-standing graphene-Li2S cathodes. Flexible lithium-sulfur batteries based on the high-capacity 3DLG cathode have promising application potentials in flexible electronics, electrical vehicles, etc.

  7. Free-standing and flexible LiMnTiO4/carbon nanotube cathodes for high performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Bao, Yinhua; Zhang, Xingyu; Zhang, Xu; Yang, Le; Zhang, Xinyi; Chen, Haosen; Yang, Meng; Fang, Daining

    2016-07-01

    A flexible, free-standing, and light-weight LiMnTiO4/MWCNT electrode has been prepared by vacuum filtration method for the first time. The as-prepared flexible LiMnTiO4/MWCNT electrode possesses a three-dimensional braiding structure in which LiMnTiO4 particles are well embedded in the twining CNT networks. The novel LiMnTiO4/MWCNT electrodes show tensile strength of 1.34 MPa and 2.04 MPa, when the percentages of MWCNTs reach to 30% and 50%, respectively. This novel flexible electrode exhibits a superior electrochemical property, especially at rate capability and cycling stability. The LiMnTiO4/MWCNT electrode can deliver capacity of 161 mAh g-1 (86.4% retention) after 50 cycles at 0.5C rate. Since the high conductivity from MWCNT networks, the LiMnTiO4/MWCNT electrode can still maintain a capacity of 77 mAh g-1 at 5C rate, which is much higher than that of the conventional electrode fabricated by slurry casting method on Al foil. The features of free-standing, light-weight, and excellent electrochemical performance indicate the potential of using the LiMnTiO4/MWCNT cathode in new-generation flexible lithium ion batteries.

  8. Design of airport pavements for expansive soils

    NASA Astrophysics Data System (ADS)

    McKeen, R. G.

    1981-01-01

    Expansive soil subgrades exhibit volume changes with variation in moisture condition. These changes result in differential movement of airport pavements resting on these soils. Special design procedures must be used to account for the expansive soil activity during equilibration. In addition, special precautions are required to protect the subgrade from moisture variation with climate. Measurement of soil suction is a key step in quantifying moisture-induced soil behavior. Procedures are outlined for suction characterization of the soil and for estimating the in situ differential movement likely to occur under the pavement. Once the wavelength and amplitude characteristics of the differential movement are obtained, design calculations to select the thickness and materials for the pavement may proceed.

  9. Breaking/cracking and seating concrete pavements. Final report

    SciTech Connect

    Thompson, M.R.

    1989-03-01

    This synthesis will be of interest to pavement designers, maintenance engineers, and others interested in reducing reflection cracking of asphalt overlays on portland cement concrete (PCC) pavement. Information is presented on the technique of breaking or cracking of the concrete pavement into small segments before overlaying with asphalt concrete. Asphalt concrete overlays on existing PCC pavements are subject to reflection cracking induced by thermal movements of PCC pavement. The report of the Transportation Research Board discusses the technique of breaking/cracking and seating of the existing PCC before an overlay as a means to reduce or eliminate reflection cracking.

  10. Micro-thermal stress analysis of cement based pavement composite

    SciTech Connect

    Li, G.; Zhao, Y.; Pang, S.S.; Huang, W.

    1998-12-31

    A four-layer sphere model for microscopic thermal analysis was proposed based upon the structural form of cement based pavement composites. Using temperature induced stresses of pavement structure as the external field, the micro-thermal stresses of two types of cement based pavement composite were calculated. The results showed that, by introducing the low stiffness rubberized asphalt in the interphase of coarse aggregate phase and cement mortar phase of Portland cement concrete, the interfacial thermal stresses could be reduced significantly, thus improving crack resistance of the pavement material under low temperature environment. Factors affecting micro-thermal stress of cement based pavement composite were discussed.

  11. Construction of an experimental sulfur-extended-asphalt pavement

    NASA Astrophysics Data System (ADS)

    Dodge, K. S.

    1982-07-01

    The design, placement and collection of initial data from a sulfur extended asphalt (SEA) pavement and a conventional pavement used as a control is documented. The SEA pavement used 30 percent sulfur by total weight of the binder. Mix temperatures, hot bin gradations, and toxic emissions were monitored at the plant and the site throughout placement. Aggregates were collected from the hot bin during production of the control and SEA mixes for use in a Marshall mix design. Cores were extracted from both SEA and control pavements 1 month after placement for laboratory testing. Pavement surface properties were also examined after 1 month of service.

  12. Acute pavement burns: a unique subset of burn injuries: a five-year review of resource use and cost impact.

    PubMed

    Silver, Andrew G; Dunford, Gerrit M; Zamboni, William A; Baynosa, Richard C

    2015-01-01

    This study focuses on the hospital care of a rare subset of burn injuries caused by contact with environmentally heated pavement, to further understand the required use of resources. This article aims to show that pavement burns are typically more severe than their flame/scald counterparts. A retrospective review of patients admitted to the burn center with injuries suffered from contact with hot pavement was performed. Patients were stratified on the presence or absence of altered mental status (AMS) and additional inciting factors. A representative sample of similarly sized flame and scald wounds treated in the same time period was compiled for comparison. Those with pavement burns had a significantly greater requirement for operative intervention, repetitive debridements, overall cost/percent burned, and lengthier hospital stays than those with flame/scald burns. Pavement burn victims with AMS were significantly more likely to require an operation, a greater cost/percent burned, and longer hospital stays than those without AMS. Pavement burns are significantly worse than similarly sized scald/flame burns with regards to length of stay and total hospital costs, and the necessity of initial and repetitive operative intervention. These discrepancies are even greater in patients with AMS as a concomitant inciting factor. It is apparent that these wounds often continue to deepen during a patient's stay, likely because of continued pressure on the wounds while recumbent. As such, this article highly recommends pressure off-loading beds and more aggressive debridement in the treatment of these unique injuries.

  13. Densely-packed graphene/conducting polymer nanoparticle papers for high-volumetric-performance flexible all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Xu, Zhichuan J.; Wang, Yanyan; Zhang, Yafei

    2016-08-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) are one of the most ideal candidates for high-performance flexible power sources. The achievement of high volumetric energy density is highly desired for practical application of this type of ASSSCs. Here, we present a facile method to boost volumetric performances of graphene-based flexible ASSSCs through incorporation of ultrafine polyaniline-poly(4-styrenesulfonate) (PANI-PSS) nanoparticles in reduced graphene oxide (rGO) papers. A compact structure is obtained via intimate contact and π-π interaction between PANI-PSS nanoparticles and rGO sheets. The hybrid paper electrode with the film thickness of 13.5 μm, shows an extremely high volumetric specific capacitance of 272 F/cm3 (0.37 A/cm3 in a three-electrode cell). The assembled ASSSCs show a large volumetric specific capacitance of 217 F/cm3 (0.37 A/cm3 in a two-electrode cell), high volumetric energy and power density, excellent capacitance stability, small leakage current as well as low self-discharge characteristics, revealing the usefulness of this robust hybrid paper for high-performance flexible energy storage devices.

  14. Reduction of traffic and tire/pavement noise: 1st year results of the Arizona Quiet Pavement Program-Site III

    NASA Astrophysics Data System (ADS)

    Reyff, James A.; Donavan, Paul

    2005-09-01

    The Arizona Quiet Pavement Pilot Program overlaid major freeway segments in the Phoenix area with an Asphalt Rubber Friction Course (ARFC). The overlay was placed on various Portland Cement Concrete Pavement (PCCP) textures. Traffic noise reductions were evaluated by performing wayside traffic noise measurements and tire/pavement source level measurements. First year results for three different study sites are presented in this paper. Depending on the texture of the initial PCCP and microphone locations, reductions of up to 12 dBA in wayside traffic noise levels were measured. Similar reductions of tire/pavement source levels were measured. Results of the two methods are compared. Traffic conditions monitored during the measurements were modeled using the Federal Highway Administration's Traffic Noise Model (TNM 2.5) to compare modeled levels to those measured for PCCP and AFRC overlay conditions. The model under predicted levels for PCCP conditions and over predicted levels for AFRC conditions. The magnitude of under or over prediction varied with distance. The effect of propagation was examined and was aided by simultaneous measurements of wind conditions made by Arizona State University. TNM 2.5 was used to identify sound wall heights that were equivalent to the traffic noise reductions provided by the AFRC overlay.

  15. Layer by layer evaluation of a PCC pavement as it was constructed: Comparison of backcalculated values to lab material values. Research investigation (final)

    SciTech Connect

    Netemeyer, R.; Munsell, S.

    1999-02-01

    This study was conducted to observe the background layer strengths of a pavement structure as each layer was constructed and compare these layer strengths to laboratory tested sample strengths. The objective was carried out by gathering Falling Weight Deflectometer deflection data on each sequential layer. The laboratory samples included bulk samples of the base, shelby tube samples of the subgrade, and concrete core samples from the pavement`s structure. Laboratory tests were performed on these extracted samples to estimate the resilient modulus testing on the base samples was not performed because the backcalculated base results were inconclusive and no comparison could be made.

  16. EO-Performance relationships in Reverse Internationalization by Chinese Global Startup OEMs: Social Networks and Strategic Flexibility.

    PubMed

    Chin, Tachia; Tsai, Sang-Bing; Fang, Kai; Zhu, Wenzhong; Yang, Dongjin; Liu, Ren-Huai; Tsuei, Richard Ting Chang

    2016-01-01

    Due to the context-sensitive nature of entrepreneurial orientation (EO), it is imperative to in-depth explore the EO-performance mechanism in China at its critical, specific stage of economic reform. Under the context of "reverse internationalization" by Chinese global startup original equipment manufacturers (OEMs), this paper aims to manifest the unique links and complicated interrelationships between the individual EO dimensions and firm performance. Using structural equation modeling, we found that during reverse internationalization, proactiveness is positively related to performance; risk taking is not statistically associated with performance; innovativeness is negatively related to performance. The proactiveness-performance relationship is mediated by Strategic flexibility and moderated by social networking relationships. The dynamic and complex institutional setting, coupled with the issues of overcapacity and rising labor cost in China may explain why our distinctive results occur. This research advances the understanding of how contingent factors (social network relationships and strategic flexibility) facilitate entrepreneurial firms to break down institutional barriers and reap the most from EO. It brings new insights into how Chinese global startup OEMs draw on EO to undertake reverse internationalization, responding the calls for unraveling the heterogeneous characteristics of EO sub-dimensions and for more contextually-embedded treatment of EO-performance associations.

  17. EO-Performance relationships in Reverse Internationalization by Chinese Global Startup OEMs: Social Networks and Strategic Flexibility

    PubMed Central

    Chin, Tachia; Tsai, Sang-Bing; Fang, Kai; Zhu, Wenzhong; Yang, Dongjin; Liu, Ren-huai; Tsuei, Richard Ting Chang

    2016-01-01

    Due to the context-sensitive nature of entrepreneurial orientation (EO), it is imperative to in-depth explore the EO-performance mechanism in China at its critical, specific stage of economic reform. Under the context of “reverse internationalization” by Chinese global startup original equipment manufacturers (OEMs), this paper aims to manifest the unique links and complicated interrelationships between the individual EO dimensions and firm performance. Using structural equation modeling, we found that during reverse internationalization, proactiveness is positively related to performance; risk taking is not statistically associated with performance; innovativeness is negatively related to performance. The proactiveness-performance relationship is mediated by Strategic flexibility and moderated by social networking relationships. The dynamic and complex institutional setting, coupled with the issues of overcapacity and rising labor cost in China may explain why our distinctive results occur. This research advances the understanding of how contingent factors (social network relationships and strategic flexibility) facilitate entrepreneurial firms to break down institutional barriers and reap the most from EO. It brings new insights into how Chinese global startup OEMs draw on EO to undertake reverse internationalization, responding the calls for unraveling the heterogeneous characteristics of EO sub-dimensions and for more contextually-embedded treatment of EO-performance associations. PMID:27631368

  18. EO-Performance relationships in Reverse Internationalization by Chinese Global Startup OEMs: Social Networks and Strategic Flexibility.

    PubMed

    Chin, Tachia; Tsai, Sang-Bing; Fang, Kai; Zhu, Wenzhong; Yang, Dongjin; Liu, Ren-Huai; Tsuei, Richard Ting Chang

    2016-01-01

    Due to the context-sensitive nature of entrepreneurial orientation (EO), it is imperative to in-depth explore the EO-performance mechanism in China at its critical, specific stage of economic reform. Under the context of "reverse internationalization" by Chinese global startup original equipment manufacturers (OEMs), this paper aims to manifest the unique links and complicated interrelationships between the individual EO dimensions and firm performance. Using structural equation modeling, we found that during reverse internationalization, proactiveness is positively related to performance; risk taking is not statistically associated with performance; innovativeness is negatively related to performance. The proactiveness-performance relationship is mediated by Strategic flexibility and moderated by social networking relationships. The dynamic and complex institutional setting, coupled with the issues of overcapacity and rising labor cost in China may explain why our distinctive results occur. This research advances the understanding of how contingent factors (social network relationships and strategic flexibility) facilitate entrepreneurial firms to break down institutional barriers and reap the most from EO. It brings new insights into how Chinese global startup OEMs draw on EO to undertake reverse internationalization, responding the calls for unraveling the heterogeneous characteristics of EO sub-dimensions and for more contextually-embedded treatment of EO-performance associations. PMID:27631368

  19. Influence of a front buffer layer on the performance of flexible Cadmium sulfide/Cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Mahabaduge, Hasitha Padmika

    Cadmium telluride (CdTe) solar cells have been developing as a promising candidate for large-scale application of photovoltaic energy conversion and have become the most commercially successful polycrystalline thin-film solar module material. In scaling up from small cells to large-area modules, inevitably non-uniformities across the large area will limit the performance of the large cell or module. The effects of these non-uniformities can be reduced by introducing a thin, high-resistivity transparent buffer layer between the conductive electrodes and the semiconductor diode. ZnO is explored in this dissertation as a high-resistivity transparent buffer layer for sputtered CdTe solar cells and efficiencies over 15% have been achieved on commercially available Pilkington TEC15M glass substrates. The highest open-circuit voltage of 0.858V achieved using the optimized ZnO buffer layer is among the best reported in the literature. The properties of ZnO:Al as a buffer are also investigated. We have shown that ZnO:Al can serve both as a transparent conducting oxide layer as well as a high-resistivity transparent layer for CdTe solar cells. ZnO:Al reactively sputtered with oxygen can give the necessary resistivities that allow it to be used as a high-resistivity transparent layer. Glass is the most common choice as the substrate for solar cells fabricated in the superstrate configuration due to its transparency and mechanical rigidity. However flexible substrates offer the advantages of light weight, high flexibility, ease of integrability and higher throughput through roll-to-roll processing over glass. This dissertation presents significant improvements made to flexible CdTe solar cells reporting an efficiency of 14% on clear KaptonRTM flexible polyimide substrates. Our efficiency of 14% is, to our knowledge, the best for any flexible CdTe cell reported in literature.

  20. High-performance flexible hydrogen sensor made of WS2 nanosheet–Pd nanoparticle composite film

    NASA Astrophysics Data System (ADS)

    Kuru, Cihan; Choi, Duyoung; Kargar, Alireza; Liu, Chin Hung; Yavuz, Serdar; Choi, Chulmin; Jin, Sungho; Bandaru, Prabhakar R.

    2016-05-01

    We report a flexible hydrogen sensor, composed of WS2 nanosheet–Pd nanoparticle composite film, fabricated on a flexible polyimide substrate. The sensor offers the advantages of light-weight, mechanical durability, room temperature operation, and high sensitivity. The WS2–Pd composite film exhibits sensitivity (R 1/R 2, the ratio of the initial resistance to final resistance of the sensor) of 7.8 to 50 000 ppm hydrogen. Moreover, the WS2–Pd composite film distinctly outperforms the graphene–Pd composite, whose sensitivity is only 1.14. Furthermore, the ease of fabrication holds great potential for scalable and low-cost manufacturing of hydrogen sensors.

  1. High-performance flexible hydrogen sensor made of WS₂ nanosheet-Pd nanoparticle composite film.

    PubMed

    Kuru, Cihan; Choi, Duyoung; Kargar, Alireza; Liu, Chin Hung; Yavuz, Serdar; Choi, Chulmin; Jin, Sungho; Bandaru, Prabhakar R

    2016-05-13

    We report a flexible hydrogen sensor, composed of WS2 nanosheet-Pd nanoparticle composite film, fabricated on a flexible polyimide substrate. The sensor offers the advantages of light-weight, mechanical durability, room temperature operation, and high sensitivity. The WS2-Pd composite film exhibits sensitivity (R 1/R 2, the ratio of the initial resistance to final resistance of the sensor) of 7.8 to 50,000 ppm hydrogen. Moreover, the WS2-Pd composite film distinctly outperforms the graphene-Pd composite, whose sensitivity is only 1.14. Furthermore, the ease of fabrication holds great potential for scalable and low-cost manufacturing of hydrogen sensors. PMID:27040653

  2. Monitoring Strategies in Permeable Pavement Systems to Optimize Maintenance Scheduling - abstract

    EPA Science Inventory

    As the surface in a permeable pavement system clogs and performance decreases, maintenance is required to preserve the design function. Currently, guidance is limited for scheduling maintenance on an as needed basis. Previous research has shown that surface clogging in a permea...

  3. Permeable Pavement Research at NRMRL’s Urban Watershed Research Facility

    EPA Science Inventory

    The results of a bench-scale study of a porous pavement parking lot. Flow rates and total suspended solids (TSS) removal are discussed for systems with a geotextile filter fabric liner in place and those without. The systems with a liner have ~20% better TSS removal performance a...

  4. Oxygen modulation of flexible PbS/Pb Schottky junction PEC cells with improved photoelectric performance

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Fan, Libo; Guo, Qiuquan; Shi, Hongcai; Wang, Liwen; Liu, Yujian; Li, Ming; Zhang, Chunli; Yang, Jun; Zheng, Zhi

    2016-09-01

    Flexible photoelectric devices are emerging as a new class of photovoltaic cells. In this study, lead (Pb) foil was used as a flexible substrate to grow in situ lead sulfide (PbS) film with good uniformity and adhesion by a solvothermal elemental direct reaction, resulting in a PbS/Pb Schottky junction formed naturally between the PbS film and underlying Pb foil. We found that the photocurrent response of the photoelectrochemical (PEC) cell was greatly improved through a facile oxygen (O2)-modulation-based post-processing technique. O2 could decompose the organic residue and oxidize the Pb at the interface between the PbS film and Pb foils. Different characterization techniques, including thermogravimetric analysis, differential scanning calorimetry, x-ray diffraction, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, the change in transient photocurrent density (J p) with time (t), dark current-voltage (I-V) and absorption spectra were applied to get a full understanding of the O2 modulation effect. The oxidization treatment of the PbS film could regulate the flow of charge carriers to reduce their recombination, leading to photoresponse enhancement for the PEC cells. In particular, the process could modulate the tunneling current and interface states to optimize dark I-V characteristics. In addition, the magnitude of the barrier height can be tuned by O2 modulation, which was explained by theoretical analysis and calculation. We also demonstrated that the in situ formed PbS film has outstanding adhesion on the flexible Pb substrate. Our film synthesis method and post O2-modulation design as well as the corresponding device assembly may provide a novel perspective to the flexible PCE-cell-related research.

  5. Oxygen modulation of flexible PbS/Pb Schottky junction PEC cells with improved photoelectric performance.

    PubMed

    Wang, Peng; Fan, Libo; Guo, Qiuquan; Shi, Hongcai; Wang, Liwen; Liu, Yujian; Li, Ming; Zhang, Chunli; Yang, Jun; Zheng, Zhi

    2016-09-01

    Flexible photoelectric devices are emerging as a new class of photovoltaic cells. In this study, lead (Pb) foil was used as a flexible substrate to grow in situ lead sulfide (PbS) film with good uniformity and adhesion by a solvothermal elemental direct reaction, resulting in a PbS/Pb Schottky junction formed naturally between the PbS film and underlying Pb foil. We found that the photocurrent response of the photoelectrochemical (PEC) cell was greatly improved through a facile oxygen (O2)-modulation-based post-processing technique. O2 could decompose the organic residue and oxidize the Pb at the interface between the PbS film and Pb foils. Different characterization techniques, including thermogravimetric analysis, differential scanning calorimetry, x-ray diffraction, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, the change in transient photocurrent density (J p) with time (t), dark current-voltage (I-V) and absorption spectra were applied to get a full understanding of the O2 modulation effect. The oxidization treatment of the PbS film could regulate the flow of charge carriers to reduce their recombination, leading to photoresponse enhancement for the PEC cells. In particular, the process could modulate the tunneling current and interface states to optimize dark I-V characteristics. In addition, the magnitude of the barrier height can be tuned by O2 modulation, which was explained by theoretical analysis and calculation. We also demonstrated that the in situ formed PbS film has outstanding adhesion on the flexible Pb substrate. Our film synthesis method and post O2-modulation design as well as the corresponding device assembly may provide a novel perspective to the flexible PCE-cell-related research. PMID:27455067

  6. Oxygen modulation of flexible PbS/Pb Schottky junction PEC cells with improved photoelectric performance

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Fan, Libo; Guo, Qiuquan; Shi, Hongcai; Wang, Liwen; Liu, Yujian; Li, Ming; Zhang, Chunli; Yang, Jun; Zheng, Zhi

    2016-09-01

    Flexible photoelectric devices are emerging as a new class of photovoltaic cells. In this study, lead (Pb) foil was used as a flexible substrate to grow in situ lead sulfide (PbS) film with good uniformity and adhesion by a solvothermal elemental direct reaction, resulting in a PbS/Pb Schottky junction formed naturally between the PbS film and underlying Pb foil. We found that the photocurrent response of the photoelectrochemical (PEC) cell was greatly improved through a facile oxygen (O2)-modulation-based post-processing technique. O2 could decompose the organic residue and oxidize the Pb at the interface between the PbS film and Pb foils. Different characterization techniques, including thermogravimetric analysis, differential scanning calorimetry, x-ray diffraction, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, the change in transient photocurrent density (J p) with time (t), dark current–voltage (I–V) and absorption spectra were applied to get a full understanding of the O2 modulation effect. The oxidization treatment of the PbS film could regulate the flow of charge carriers to reduce their recombination, leading to photoresponse enhancement for the PEC cells. In particular, the process could modulate the tunneling current and interface states to optimize dark I–V characteristics. In addition, the magnitude of the barrier height can be tuned by O2 modulation, which was explained by theoretical analysis and calculation. We also demonstrated that the in situ formed PbS film has outstanding adhesion on the flexible Pb substrate. Our film synthesis method and post O2-modulation design as well as the corresponding device assembly may provide a novel perspective to the flexible PCE-cell-related research.

  7. Oxygen modulation of flexible PbS/Pb Schottky junction PEC cells with improved photoelectric performance.

    PubMed

    Wang, Peng; Fan, Libo; Guo, Qiuquan; Shi, Hongcai; Wang, Liwen; Liu, Yujian; Li, Ming; Zhang, Chunli; Yang, Jun; Zheng, Zhi

    2016-09-01

    Flexible photoelectric devices are emerging as a new class of photovoltaic cells. In this study, lead (Pb) foil was used as a flexible substrate to grow in situ lead sulfide (PbS) film with good uniformity and adhesion by a solvothermal elemental direct reaction, resulting in a PbS/Pb Schottky junction formed naturally between the PbS film and underlying Pb foil. We found that the photocurrent response of the photoelectrochemical (PEC) cell was greatly improved through a facile oxygen (O2)-modulation-based post-processing technique. O2 could decompose the organic residue and oxidize the Pb at the interface between the PbS film and Pb foils. Different characterization techniques, including thermogravimetric analysis, differential scanning calorimetry, x-ray diffraction, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, the change in transient photocurrent density (J p) with time (t), dark current-voltage (I-V) and absorption spectra were applied to get a full understanding of the O2 modulation effect. The oxidization treatment of the PbS film could regulate the flow of charge carriers to reduce their recombination, leading to photoresponse enhancement for the PEC cells. In particular, the process could modulate the tunneling current and interface states to optimize dark I-V characteristics. In addition, the magnitude of the barrier height can be tuned by O2 modulation, which was explained by theoretical analysis and calculation. We also demonstrated that the in situ formed PbS film has outstanding adhesion on the flexible Pb substrate. Our film synthesis method and post O2-modulation design as well as the corresponding device assembly may provide a novel perspective to the flexible PCE-cell-related research.

  8. Impact of magnetic isolation on pointing system performance in the presence of structural flexibility

    NASA Technical Reports Server (NTRS)

    Seller, J.

    1985-01-01

    The inertial pointing stability of a gimbal pointing system (AGS) was compared with a magnetic pointing/gimbal followup system (ASPS), under certain conditions of system structural flexibility and disturbance inputs from the gimbal support structure. Separate 3 degree-of-freedom (3DOF) linear models based on NASTRAN modal flexibility data for the gimbal and support structures were generated for the ASPS configurations. Using the models inertial pointing control loops providing 6dB of gain margin and 45 deg of phase margin were defined for each configuration. The pointing loop bandwidth obtained for the ASPS is more than twice the level achieved for the AGS configuration. The AGS limit is attributed to the gimbal and support structure flexibility. As a result of the higher ASPS pointing loop bandwidth and the disturbance rejection provided by the magnetic isolation ASPS pointing performane is significantly better than that of the AGS system. The low frequency peak of the ASPS transfer function from base disturbance to payload angular motion is almost 60dB lower than AGS low frequency peak.

  9. The acute effects of different whole-body vibration amplitudes and frequencies on flexibility and vertical jumping performance.

    PubMed

    Gerodimos, Vassilis; Zafeiridis, Andreas; Karatrantou, Konstantina; Vasilopoulou, Theodora; Chanou, Konstantina; Pispirikou, Eleni

    2010-07-01

    Frequency and amplitude determine the training load of whole-body vibration (WBV) exercise and thereby possible neuromuscular adaptations. We investigated the effects of amplitude and frequency of a single bout of WBV on flexibility and squat jump performance (SJ) and the time-course of these effects. In the amplitude study, twenty-five females performed three vibration protocols (VPs) for 6 min at frequency of 25Hz and amplitudes of 4 mm, 6 mm, and 8 mm and one control protocol (CP). In the frequency study, eighteen females performed three VPs at 6mm amplitude and frequencies of 15 Hz, 20 Hz, and 30 Hz and one CP. Flexibility and SJ were measured before, immediately-post and 15 min recovery. All protocols were performed on a side-to-side alternating vibration plate. In the amplitude study, flexibility was improved (p<0.01) immediately-post in VP4, VP6, VP8 (31.8+/-8.2, 31.9+/-7.6, 31.5+/-7.9, respectively) and at 15 min recovery (31.6+/-8.1, 31.5+/-7.9, 31.0+/-8.2, respectively) vs. pre-vibration (30.2+/-8.6, 30.3+/-8.1, 30.2+/-8.3, respectively), but remained unchanged in CP (30.6+/-8.3 immediately-post, 30.7+/-8.2 at 15 min vs. 30.4+/-8.2 pre-vibration). In the frequency study, flexibility was improved (p<0.01) immediately-post in VP15, VP20, VP30 (31.5+/-5.2, 31.3+/-5, 31.7+/-5.3, respectively) and at 15 min recovery (31.3+/-5.4, 31.3+/-5.0, 31.3+/-5.3, respectively) vs. pre-vibration (30.6+/-5.4, 30.2+/-5.7, 30.3+/-5.9, respectively), but not in CP (30.7+/-5.1 immediately-post, 30.6+/-5 at 15 min vs. pre-vibration 30.5+/-5.7). There were no significant effects of amplitude or frequency on SJ. In conclusion, a single WBV bout using a side-to-side alternating vibration plate may increase flexibility which persists for at least 15 min, without altering jumping performance. These effects were observed irrespective of frequency and amplitude.

  10. A three-dimensional flexible supercapacitor with enhanced performance based on lightweight, conductive graphene-cotton fabric electrode

    NASA Astrophysics Data System (ADS)

    Zhou, Qianlong; Ye, Xingke; Wan, Zhongquan; Jia, Chunyang

    2015-11-01

    Recently, the topic of developing lightweight, flexible and implantable energy storage systems to address the energy-supply problem of wearable electronics has aroused increasing interests. In this paper, by introducing reduced graphene oxide (rGO), we successfully converted the commercial cotton fabric into free-standing, electrically conductive and electrochemically active fabric. Flexible supercapacitor based on the obtained conductive reduced graphene oxide-carbonized cotton fabric (rGO/CCF) exhibits high capacitance (87.53 mF cm-2 at 2 mV s-1), well cycling stability (89.82% capacitance retention after 1000 charge-discharge cycles) and excellent electrochemical stability (90.5% capacitance retention after 100 bending cycles). Moreover, a macroscopic three-dimensional sandwich-interdigital device structure was designed to enhance the supercapacitor performance. The unique rGO/CCF based sandwich-interdigital structure (SIS) supercapacitor shows a volumetric capacitance of 5.53 F cm-3 at current density of 0.0625 A cm-3 in aqueous electrolyte, which is 1.67 and 4.28 orders higher than the traditional sandwich structure (SS) and interdigital structure (IS) supercapacitor based on the same electrode material and electrolyte. Furthermore, energy density enhancement of the supercapacitor has also been achieved by adopting the well-designed device structure. The original SIS supercapacitor based on the elaborate device structure and high-performance electrode material may provide new design opportunities for flexible energy storage devices.

  11. High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films

    PubMed Central

    Liu, Yuqing; Weng, Bo; Razal, Joselito M.; Xu, Qun; Zhao, Chen; Hou, Yuyang; Seyedin, Shayan; Jalili, Rouhollah; Wallace, Gordon G.; Chen, Jun

    2015-01-01

    Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm−2 was achieved at a scan rate of 10 mV s−1 using the composite electrode with a high mass loading (8.49 mg cm−2), indicating the potential to be used in practical applications. To demonstrate this applicability, a roll-up supercapacitor device was constructed, which illustrated the operation of a green LED light for 20 seconds when fully charged. PMID:26586106

  12. Room temperature synthesis of cobalt-manganese-nickel oxalates micropolyhedrons for high-performance flexible electrochemical energy storage device

    PubMed Central

    Zhang, Yi-Zhou; Zhao, Junhong; Xia, Jing; Wang, Lulu; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2015-01-01

    Cobalt-manganese-nickel oxalates micropolyhedrons were successfully fabricated by a room temperature chemical co-precipitation method. Interestingly, the Co0.5Mn0.4Ni0.1C2O4*nH2O micropolyhedrons and graphene nanosheets have been successfully applied as the positive and negative electrode materials (a battery type Faradaic electrode and a capacitive electrode, respectively) for flexible solid-state asymmetric supercapacitors. More importantly, the as-assembled device achieved a maximum energy density of 0.46 mWh·cm−3, a decent result among devices with similar structures. The as-assembled device showed good flexibility, functioning well under both normal and bent conditions (0°–180°). The resulting device showed little performance decay even after 6000 cycles, which rendered the Co0.5Mn0.4Ni0.1C2O4*nH2O//Graphene device configuration a promising candidate for high-performance flexible solid-state asymmetric supercapacitors in the field of high-energy-density energy storage devices. PMID:25705048

  13. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors.

    PubMed

    Bu, Xiangwei; Wu, Xiaoyan; Zhu, Fujing; Huang, Jiaqi; Ma, Zhen; Zhang, Rui

    2015-11-01

    A novel prescribed performance neural controller with unknown initial errors is addressed for the longitudinal dynamic model of a flexible air-breathing hypersonic vehicle (FAHV) subject to parametric uncertainties. Different from traditional prescribed performance control (PPC) requiring that the initial errors have to be known accurately, this paper investigates the tracking control without accurate initial errors via exploiting a new performance function. A combined neural back-stepping and minimal learning parameter (MLP) technology is employed for exploring a prescribed performance controller that provides robust tracking of velocity and altitude reference trajectories. The highlight is that the transient performance of velocity and altitude tracking errors is satisfactory and the computational load of neural approximation is low. Finally, numerical simulation results from a nonlinear FAHV model demonstrate the efficacy of the proposed strategy.

  14. A comprehensive approach for the assessment of in-situ pavement density using GPR technique

    NASA Astrophysics Data System (ADS)

    Plati, Christina; Georgiou, Panos; Loizos, Andreas

    2013-04-01

    Proper construction of the asphalt pavement is a prerequisite to developing a long lasting roadway that does not require extensive future maintenance. This goal is achieved by verifying that design specifications are met through the use of quality assurance (QA) practices. The in-situ density is regarded as one of the most important controls used to ensure that a pavement being placed is of high quality because it is a good indicator of future performance. In-situ density is frequently assessed utilizing one or more of the following three methods: cores, nuclear density gauge measurements or non-nuclear density gauge measurements. Each of the above mentioned methods, however, have their distinct disadvantages. Cores, for example, are generally considered to be the most accurate means of measuring in-situ density, however, they are a time consuming and destructive test that introduces a defect into asphalt pavements. Because of the destructive nature associated with coring, contractors and agencies have alternatively used non-destructive nuclear and non-nuclear density gauges for quality control purposes. These instruments allow for a more rapid assessment of the in-situ density, allowing measurements to be taken even during the pavement's construction. The disadvantage of these gauges are that they provide density readings only at discrete locations of the asphalt pavement mat, while no consensus exists among pavement researchers on the proper correlation between the gauges and core density. In recent years, numerous alternative methods have been introduced for the assessment of in-situ density, both during asphalt pavement construction and afterwards. These methods include, amongst others, intelligent compaction, thermal imaging and ground penetrating radar (GPR). Among these methods, GPR has been defined as both a technically feasible and promising method for the nondestructive, rapid, and continuous evaluation of in-situ asphalt pavement density based on

  15. Flexible transparent conducting composite films using a monolithically embedded AgNW electrode with robust performance stability

    NASA Astrophysics Data System (ADS)

    Im, Hyeon-Gyun; Jin, Jungho; Ko, Ji-Hoon; Lee, Jaemin; Lee, Jung-Yong; Bae, Byeong-Soo

    2013-12-01

    We report on the performance of an all-in-one flexible hybrid conducting film employing a monolithically embedded AgNW transparent electrode and a high-performance glass-fabric reinforced composite substrate (AgNW-GFRHybrimer film). Specifically, we perform in-depth investigations on the stability of the AgNW-GFRHybrimer film against heat, thermal oxidation, and wet chemicals to demonstrate the potential of the hybrid conducting film as a robust electrode platform for thin-film optoelectronic devices. With the ease of large-area processability, smooth surface topography, and robust performance stability, the AgNW-GFRHybrimer film can be a promising platform for high-performance optoelectronic devices.We report on the performance of an all-in-one flexible hybrid conducting film employing a monolithically embedded AgNW transparent electrode and a high-performance glass-fabric reinforced composite substrate (AgNW-GFRHybrimer film). Specifically, we perform in-depth investigations on the stability of the AgNW-GFRHybrimer film against heat, thermal oxidation, and wet chemicals to demonstrate the potential of the hybrid conducting film as a robust electrode platform for thin-film optoelectronic devices. With the ease of large-area processability, smooth surface topography, and robust performance stability, the AgNW-GFRHybrimer film can be a promising platform for high-performance optoelectronic devices. Electronic supplementary information (ESI) available: Further characteristics of AgNW-GFRHybrimer films and thermal oxidation of AgNW on glass. See DOI: 10.1039/c3nr05348b

  16. Desert pavement study at Amboy, California

    NASA Technical Reports Server (NTRS)

    Williams, S.; Greeley, R.

    1984-01-01

    Desert pavement is a general term describing a surface that typically consists of a thin layer of cm-sized rock fragments set on top of a layer of finer material in which no fragments are found. An understanding of desert pavement is important to planetary geology because they may play a major role in the formation and visibility of various aeolian features such as wind streaks, which are important on Mars and may be important on Venus. A field study was conducted in Amboy, California to determine the formation mechanism of desert pavements. The probable sequence of events for the formation and evolution of a typical desert pavement surface, based on this experiment and the work of others, is as follows. Starting with a layer of surface material consisting of both fine particles and rock fragments, aeolian deflation will rapidly erode the surface until an armored lag is developed, after which aeolian processes become less important. The concentration of fragments then slowly increases as new fragments are brought to the surface from the subsurface and as fragments move downslope by sheet wash. Sheet wash would be responsible for removing very fine particles from the surface and for moving the fragments relative to one another, forming interlocks.

  17. Permeable pavement research – Edison, New Jersey

    EPA Science Inventory

    These are the slides for the New York City Concrete Promotional Council Pervious Concrete Seminar presentation. The basis for the project, the monitoring design and some preliminary monitoring data from the permeable pavement parking lot at the Edison Environmental Center are pre...

  18. Reconstruction of a pavement geothermal deicing system

    SciTech Connect

    Lund, J.W.

    1999-03-01

    In 1948, US 97 in Klamath Falls, Oregon was routed over Esplanade Street to Main Street and through the downtown area. In order to widen the bridge across the US Bureau of Reclamation A Canal and to have the road cross under the Southern Pacific Railroad main north-south line, a new bridge and roadway were constructed at the beginning of this urban route. Because the approach and stop where this roadway intersected Alameda Ave (now Hwy 50 -- Eastside Bypass) caused problems with traffic getting traction in the winter on an adverse 8% grade, a geothermal experiment in pavement de-icing was incorporated into the project. A grid system within the pavement was connected to a nearby geothermal well using a downhole heat exchanger (DHE). The 419-foot well provided heat to a 50-50 ethylene glycol-water solution that ran through the grid system at about 50 gpm. This energy could provide a relatively snow free pavement at an outside temperature of {minus}10 F and snowfall up to 3 inches per hour, at a heat requirement of 41 Btu/hr/ft{sup 2}. Over time, the well temperature dropped from 143 to 98 F at the surface. The bridge and surface pavement, geothermal well, and associated equipment were modified. This paper describes the modifications.

  19. High-performance flexible energy storage and harvesting system for wearable electronics

    NASA Astrophysics Data System (ADS)

    Ostfeld, Aminy E.; Gaikwad, Abhinav M.; Khan, Yasser; Arias, Ana C.

    2016-05-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm2 and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices.

  20. High-performance flexible energy storage and harvesting system for wearable electronics.

    PubMed

    Ostfeld, Aminy E; Gaikwad, Abhinav M; Khan, Yasser; Arias, Ana C

    2016-05-17

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm(2) and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices.

  1. High-performance flexible energy storage and harvesting system for wearable electronics

    PubMed Central

    Ostfeld, Aminy E.; Gaikwad, Abhinav M.; Khan, Yasser; Arias, Ana C.

    2016-01-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm2 and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices. PMID:27184194

  2. Performance of flexible capacitors based on polypyrrole/carbon fiber electrochemically prepared from various phosphate electrolytes

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Han, Gaoyi; Chang, Yunzhen; Li, Miaoyu; Xiao, Yaoming; Zhou, Haihan; Zhang, Ying; Li, Yanping

    2016-11-01

    In order to investigate the influence of electrolytes in electro-deposition solution on the capacitive properties of polypyrrole (PPy), we have chosen phosphoric acid, phosphate, hydrogen phosphate and dihydrogen phosphate as electrolyte in deposition solution respectively and electrochemically deposited PPy on carbon fibers (CFs) via galvanostatic method. The morphologies of the PPy/CFs samples have been characterized by scanning electron microscope. The specific capacitance of PPy/CFs samples has been evaluated in different electrolytes through three-electrode test system. The assembled flexible capacitors by using PPy/CFs as electrodes and H3PO4/polyvinyl alcohol as gel electrolyte have been systematically measured by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The results show that the electrochemical capacitors based on PPy/CFs prepared from deposition solution containing NaH2PO4·2H2O electrolyte exhibit higher specific capacitance, flexibility and excellent stability (retaining 96.8% of initial capacitance after 13,000 cycles), and that three cells connected in series can power a light-emitting diode.

  3. High-performance NiO/Ag/NiO transparent electrodes for flexible organic photovoltaic cells.

    PubMed

    Xue, Zhichao; Liu, Xingyuan; Zhang, Nan; Chen, Hong; Zheng, Xuanming; Wang, Haiyu; Guo, Xiaoyang

    2014-09-24

    Transparent electrodes with a dielectric-metal-dielectric (DMD) structure can be implemented in a simple manufacturing process and have good optical and electrical properties. In this study, nickel oxide (NiO) is introduced into the DMD structure as a more appropriate dielectric material that has a high conduction band for electron blocking and a low valence band for efficient hole transport. The indium-free NiO/Ag/NiO (NAN) transparent electrode exhibits an adjustable high transmittance of ∼82% combined with a low sheet resistance of ∼7.6 Ω·s·q(-1) and a work function of 5.3 eV after UVO treatment. The NAN electrode shows excellent surface morphology and good thermal, humidity, and environmental stabilities. Only a small change in sheet resistance can be found after NAN electrode is preserved in air for 1 year. The power conversion efficiencies of organic photovoltaic cells with NAN electrodes deposited on glass and polyethylene terephthalate (PET) substrates are 6.07 and 5.55%, respectively, which are competitive with those of indium tin oxide (ITO)-based devices. Good photoelectric properties, the low-cost material, and the room-temperature deposition process imply that NAN electrode is a striking candidate for low-cost and flexible transparent electrode for efficient flexible optoelectronic devices.

  4. High-performance flexible energy storage and harvesting system for wearable electronics.

    PubMed

    Ostfeld, Aminy E; Gaikwad, Abhinav M; Khan, Yasser; Arias, Ana C

    2016-01-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm(2) and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices. PMID:27184194

  5. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition.

    PubMed

    Lin, Yuan-Yu; Hsu, Che-Chen; Tseng, Ming-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu

    2015-10-14

    Passivation is a challenging issue for the oxide thin-film transistor (TFT) technologies because it requires prolonged high-temperature annealing treatments to remedy defects produced in the process, which greatly limits its manufacturability as well as its compatibility with temperature-sensitive materials such as flexible plastic substrates. This study investigates the defect-formation mechanisms incurred by atomic layer deposition (ALD) passivation processes on ZnO TFTs, based on which we demonstrate for the first time degradation-free passivation of ZnO TFTs by a TiO2/Al2O3 nanolaminated (TAO) film deposited by a low-temperature (110 °C) ALD process. By combining the TAO passivation film with ALD dielectric and channel layers into an integrated low-temperature ALD process, we successfully fabricate flexible ZnO TFTs on plastics. Thanks to the exceptional gas-barrier property of the TAO film (water vapor transmission rate (WVTR)<10(-6) g m(-2) day(-1)) as well as the defect-free nature of the ALD dielectric and ZnO channel layers, the TFTs exhibit excellent device performance with high stability and flexibility: field-effect mobility>20 cm2 V(-1) s(-1), subthreshold swing<0.4 V decade(-1) after extended bias-stressing (>10,000 s), air-storage (>1200 h), and bending (1.3 cm radius for 1000 times). PMID:26436832

  6. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition.

    PubMed

    Lin, Yuan-Yu; Hsu, Che-Chen; Tseng, Ming-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu

    2015-10-14

    Passivation is a challenging issue for the oxide thin-film transistor (TFT) technologies because it requires prolonged high-temperature annealing treatments to remedy defects produced in the process, which greatly limits its manufacturability as well as its compatibility with temperature-sensitive materials such as flexible plastic substrates. This study investigates the defect-formation mechanisms incurred by atomic layer deposition (ALD) passivation processes on ZnO TFTs, based on which we demonstrate for the first time degradation-free passivation of ZnO TFTs by a TiO2/Al2O3 nanolaminated (TAO) film deposited by a low-temperature (110 °C) ALD process. By combining the TAO passivation film with ALD dielectric and channel layers into an integrated low-temperature ALD process, we successfully fabricate flexible ZnO TFTs on plastics. Thanks to the exceptional gas-barrier property of the TAO film (water vapor transmission rate (WVTR)<10(-6) g m(-2) day(-1)) as well as the defect-free nature of the ALD dielectric and ZnO channel layers, the TFTs exhibit excellent device performance with high stability and flexibility: field-effect mobility>20 cm2 V(-1) s(-1), subthreshold swing<0.4 V decade(-1) after extended bias-stressing (>10,000 s), air-storage (>1200 h), and bending (1.3 cm radius for 1000 times).

  7. High-performance bilayer flexible resistive random access memory based on low-temperature thermal atomic layer deposition

    PubMed Central

    2013-01-01

    We demonstrated a flexible resistive random access memory device through a low-temperature atomic layer deposition process. The device is composed of an HfO2/Al2O3-based functional stack on an indium tin oxide-coated polyethylene terephthalate substrate. After the initial reset operation, the device exhibits a typical bipolar, reliable, and reproducible resistive switching behavior. After a 104-s retention time, the memory window of the device is still in accordance with excellent thermal stability, and a 10-year usage is still possible with the resistance ratio larger than 10 at room temperature and at 85°C. In addition, the operation speed of the device was estimated to be 500 ns for the reset operation and 800 ns for the set operation, which is fast enough for the usage of the memories in flexible circuits. Considering the excellent performance of the device fabricated by low-temperature atomic layer deposition, the process may promote the potential applications of oxide-based resistive random access memory in flexible integrated circuits. PMID:23421424

  8. Intra-seasonal flexibility in avian metabolic performance highlights the uncoupling of basal metabolic rate and thermogenic capacity.

    PubMed

    Petit, Magali; Lewden, Agnès; Vézina, François

    2013-01-01

    Stochastic winter weather events are predicted to increase in occurrence and amplitude at northern latitudes and organisms are expected to cope through phenotypic flexibility. Small avian species wintering in these environments show acclimatization where basal metabolic rate (BMR) and maximal thermogenic capacity (MSUM) are typically elevated. However, little is known on intra-seasonal variation in metabolic performance and on how population trends truly reflect individual flexibility. Here we report intra-seasonal variation in metabolic parameters measured at the population and individual levels in black-capped chickadees (Poecileatricapillus). Results confirmed that population patterns indeed reflect flexibility at the individual level. They showed the expected increase in BMR (6%) and MSUM (34%) in winter relative to summer but also, and most importantly, that these parameters changed differently through time. BMR began its seasonal increase in November, while MSUM had already achieved more than 20% of its inter-seasonal increase by October, and declined to its starting level by March, while MSUM remained high. Although both parameters co-vary on a yearly scale, this mismatch in the timing of variation in winter BMR and MSUM likely reflects different constraints acting on different physiological components and therefore suggests a lack of functional link between these parameters.

  9. Electrochemical Deposition of Nanostructured Manganese Oxide on Carbon Cloth for Flexible High-Performance Supercapacitor Electrodes.

    PubMed

    Huang, Zilong; Zhao, Xin; Ren, Jianli; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua

    2016-06-01

    Well-ordered manganese oxide (MnO2) arrays were directly grown on the treated carbon cloth (CC) though a simple electrochemical deposition method. The structures and the thickness of MnO2 film were controlled by tuning the deposition time. The morphologies and structures of MnO2 deposited on CC were examined by scanning electron microscopy, Raman and X-ray photoelectron spectroscopy. With appropriate reaction time, the MnO2/CC composite demonstrates a high specific capacitance of 291 mF/cm2 and a superior cycling stability at a current density of 0.2 mA/cm2. The specific capacitance shows a little improvement at the first 200 cycles and remains unchanged after continuous 2000 charge/discharge cycles. The MnO2 nanosheet arrays with high degree of ordering, combined with the flexible carbon cloth substrate can coffer great promise for supercapacitor applications. PMID:27427613

  10. Improving electrochemical performance of flexible thin film electrodes with micropillar array structures

    NASA Astrophysics Data System (ADS)

    Myllymaa, Sami; Pirinen, Sami; Myllymaa, Katja; Suvanto, Mika; Pakkanen, Tapani A.; Pakkanen, Tuula T.; Lappalainen, Reijo

    2012-12-01

    For reliable function, bioelectrodes require a stable, low-impedance contact with the target tissue. In biosignal monitoring applications, in which low ion current densities are recorded, it is important to minimize electrode contact impedances. Recently, several flexible electrode concepts have been introduced for single-patient use. These electrodes conform well on the patient skin enabling an artifact-free, low-noise recording. In this study, polydimethylsiloxane (PDMS) elastomer was used as an electrode substrate material. One half of the substrates were surface-patterned with micropillars produced by using micro-working robot-made mold inserts and a replica molding technique. The substrates were subsequently coated with thin films of titanium (Ti), copper (Cu), silver (Ag) or silver-silver chloride (Ag/AgCl). Electrical impedance spectroscopy studies revealed that the micropillar structure caused statistically significant reductions in impedance modulus and phase for each coating candidate. The relative effect was strongest for pure Ag, for which the values of the real part (Z‧) and the imaginary part (Z″) decreased to less than one tenth of the original (smooth) values. However, Ag/AgCl, as expected, proved to be a superior electrode material. Coating with chloride drastically reduced the interfacial impedance compared to pure Ag. Further significant reduction was achieved by the micropillars, since the phase angle declined from 10-13° (for smooth samples, f < 50 Hz) to a value as low as 5°. Equivalent circuit modeling was used to obtain a better understanding of phenomena occurring at various electrode-electrolyte interfaces. The knowledge obtained in this study will be exploited in the further development of flexible electrodes and miniaturized biointerfaces with improved electrochemical characteristics.

  11. Membranes of MnO Beading in Carbon Nanofibers as Flexible Anodes for High-Performance Lithium-Ion Batteries

    PubMed Central

    Zhao, Xin; Du, Yuxuan; Jin, Lei; Yang, Yang; Wu, Shuilin; Li, Weihan; Yu, Yan; Zhu, Yanwu; Zhang, Qinghua

    2015-01-01

    Freestanding yet flexible membranes of MnO/carbon nanofibers are successfully fabricated through incorporating MnO2 nanowires into polymer solution by a facile electrospinning technique. During the stabilization and carbonization processes of the as-spun membranes, MnO2 nanowires are transformed to MnO nanoparticles coincided with a conversion of the polymer from an amorphous state to a graphitic structure of carbon nanofibers. The hybrids consist of isolated MnO nanoparticles beading in the porous carbon and demonstrate superior performance when being used as a binder-free anode for lithium-ion batteries. With an optimized amount of MnO (34.6 wt%), the anode exhibits a reversible capacity of as high as 987.3 mAh g−1 after 150 discharge/charge cycles at 0.1 A g−1, a good rate capability (406.1 mAh g−1 at 3  A g−1) and an excellent cycling performance (655 mAh g−1 over 280 cycles at 0.5 A g−1). Furthermore, the hybrid anode maintains a good electrochemical performance at bending state as a flexible electrode. PMID:26374601

  12. The influence of low-order chord-wise flexibility on the performance of a flapping wing

    NASA Astrophysics Data System (ADS)

    Toomey, Jonathan; Eldredge, Jeff D.

    2008-11-01

    The aerodynamic role of flexible fight structures in airborne creatures is still poorly understood. The objective of this study is to distill the basic phenomena of flapping with deformable wings for their use in the efficient design of bio-inspired flight vehicles. The target of the study is a two-dimensional wing with rigid components connected by damped torsion springs. This simplified structure reduces the complexity of the problem, while retaining the leading-order influence of wing flexion. The motion of the leading portion of the wing is prescribed with hovering-type kinematics, while the trailing portions respond passively. Numerical simulations are performed with a viscous vortex particle method with strongly-coupled structural dynamics. The investigation focuses on the influences of several key parameters: spring stiffness (from rigid to very flexible), the location of axis of rotation, and the timing between the rotational and translational components of the kinematics. The effects are quantified via several performance measures, including production of mean and rms lift, the mean consumption of power, and the lift per unit power. Some important correlations are identified between the input parameters and the performance metrics, the passive wing deflection and the wake structure. It is shown that variation in the rotation phase lead are accompanied by topological changes in the wake vortex dynamics.

  13. Membranes of MnO Beading in Carbon Nanofibers as Flexible Anodes for High-Performance Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Du, Yuxuan; Jin, Lei; Yang, Yang; Wu, Shuilin; Li, Weihan; Yu, Yan; Zhu, Yanwu; Zhang, Qinghua

    2015-09-01

    Freestanding yet flexible membranes of MnO/carbon nanofibers are successfully fabricated through incorporating MnO2 nanowires into polymer solution by a facile electrospinning technique. During the stabilization and carbonization processes of the as-spun membranes, MnO2 nanowires are transformed to MnO nanoparticles coincided with a conversion of the polymer from an amorphous state to a graphitic structure of carbon nanofibers. The hybrids consist of isolated MnO nanoparticles beading in the porous carbon and demonstrate superior performance when being used as a binder-free anode for lithium-ion batteries. With an optimized amount of MnO (34.6 wt%), the anode exhibits a reversible capacity of as high as 987.3 mAh g-1 after 150 discharge/charge cycles at 0.1 A g-1, a good rate capability (406.1 mAh g-1 at 3  A g-1) and an excellent cycling performance (655 mAh g-1 over 280 cycles at 0.5 A g-1). Furthermore, the hybrid anode maintains a good electrochemical performance at bending state as a flexible electrode.

  14. MODELING PAVEMENT DETERIORATION PROCESSES BY POISSON HIDDEN MARKOV MODELS

    NASA Astrophysics Data System (ADS)

    Nam, Le Thanh; Kaito, Kiyoyuki; Kobayashi, Kiyoshi; Okizuka, Ryosuke

    In pavement management, it is important to estimate lifecycle cost, which is composed of the expenses for repairing local damages, including potholes, and repairing and rehabilitating the surface and base layers of pavements, including overlays. In this study, a model is produced under the assumption that the deterioration process of pavement is a complex one that includes local damages, which occur frequently, and the deterioration of the surface and base layers of pavement, which progresses slowly. The variation in pavement soundness is expressed by the Markov deterioration model and the Poisson hidden Markov deterioration model, in which the frequency of local damage depends on the distribution of pavement soundness, is formulated. In addition, the authors suggest a model estimation method using the Markov Chain Monte Carlo (MCMC) method, and attempt to demonstrate the applicability of the proposed Poisson hidden Markov deterioration model by studying concrete application cases.

  15. Response of pavement to freeze-thaw cycles: Lebanon, New Hampshire, regional airport

    NASA Astrophysics Data System (ADS)

    Allen, Wendy L.; Quinn, William F.; Keller, Donald; Eaton, Robert A.

    1989-01-01

    In 1978 reconstruction was begun on the runway of the Lebanon Regional Airport, Lebanon, New Hampshire. The runway had experienced severe differential frost heaving and cracking during the previous three winters, which had resulted in closure of the facility during periods of extreme roughness. Temperature sensors were placed within the newly constructed pavement sections, and during the winters of 1979, 1980, and 1982 temperature data were recorded, and level surveys and repeated plate bearing tests were performed in order to provide data for the investigation. The three pavement sections were constructed to investigate the effect of section thickness on the level of frost protection provided. The sections consisted of 4 in. of asphalt concrete, 6 in. of crushed gravel and 22,30 dn 38 in. of well-graded sand subbase material. The 48-in section provided the highest level of frost protection to the subgrade. However, all three pavement sections maintained resilient stiffness values during the spring thaw period on the order of two to three times that of the pavement before reconstruction. Also, frost heave in all sections was reduced to levels that would not cause difficulty for aircraft using the facility.

  16. Analysis of durability of advanced cementitious materials for rigid pavement construction in California

    SciTech Connect

    Kurtis, K.E.; Monteiro, P.

    1999-04-01

    Caltrans specifications for the construction of rigid pavements require rapid setting, high early strength, superior workability concrete with a desired 30+ year service life. These strict specifications provide the motivations for the investigation of advanced cementitious materials for pavement construction. The cementitious materials under consideration by Caltrans may be classified into four categories: Portland cements and blends, calcium aluminate cements and blends, calcium sulfoaluminate cements, and fly ash-based cements. To achieve the desired 30+ year design life, it is essential to select materials that are expected to exhibit long-term durability. Because most of the cementitious materials under consideration have not been extensively used for pavement construction in the United States, it is essential to characterize the long-term durability of each material. This report provides general information concerning the deleterious reactions that may damage concrete pavements in California. The reactions addressed in this report are sulfate attack, aggregate reactions, corrosion of reinforcing steel, and freeze-thaw action. Specifically, the expected performance of Portland cements and blends, calcium aluminate cements and blends, calcium sulfoaluminate cements, and fly ash-based cements are examined with regard to each of the deleterious reactions listed. Additional consideration is given to any deterioration mechanism that is particular to any of these cement types. Finally, the recommended test program for assessing potential long-term durability with respect to sulfate attack is described.

  17. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.

    PubMed

    Sridhar, Madhu; Kang, Chang-kwon

    2015-06-01

    Fruit flies have flexible wings that deform during flight. To explore the fluid-structure interaction of flexible flapping wings at fruit fly scale, we use a well-validated Navier-Stokes equation solver, fully-coupled with a structural dynamics solver. Effects of chordwise flexibility on a two dimensional hovering wing is studied. Resulting wing rotation is purely passive, due to the dynamic balance between aerodynamic loading, elastic restoring force, and inertial force of the wing. Hover flight is considered at a Reynolds number of Re = 100, equivalent to that of fruit flies. The thickness and density of the wing also corresponds to a fruit fly wing. The wing stiffness and motion amplitude are varied to assess their influences on the resulting aerodynamic performance and structural response. Highest lift coefficient of 3.3 was obtained at the lowest-amplitude, highest-frequency motion (reduced frequency of 3.0) at the lowest stiffness (frequency ratio of 0.7) wing within the range of the current study, although the corresponding power required was also the highest. Optimal efficiency was achieved for a lower reduced frequency of 0.3 and frequency ratio 0.35. Compared to the water tunnel scale with water as the surrounding fluid instead of air, the resulting vortex dynamics and aerodynamic performance remained similar for the optimal efficiency motion, while the structural response varied significantly. Despite these differences, the time-averaged lift scaled with the dimensionless shape deformation parameter γ. Moreover, the wing kinematics that resulted in the optimal efficiency motion was closely aligned to the fruit fly measurements, suggesting that fruit fly flight aims to conserve energy, rather than to generate large forces. PMID:25946079

  18. Effects of DNA probe and target flexibility on the performance of a "signal-on" electrochemical DNA sensor.

    PubMed

    Wu, Yao; Lai, Rebecca Y

    2014-09-01

    We report the effect of the length and identity of a nontarget binding spacer in both the probe and target sequences on the overall performance of a folding-based electrochemical DNA sensor. Six near-identical DNA probes were used in this study; the main differences between these probes are the length (6, 10, or 14 bases) and identity (thymine (T) or adenine (A)) of the spacer connecting the two target binding domains. Despite the differences, the signaling mechanism of these sensors remains essentially the same. The methylene blue (MB)-modified probe assumes a linear unstructured conformation in the absence of the target; upon hybridization to the target, the probe adopts a "close" conformation, resulting in an increase in the MB current. Among the six sensors, the T14 and A14 sensors showed the largest signal increase upon target hybridization, highlighting the significance of probe flexibility on sensor performance. In addition to the target without a midsequence spacer, 12 other targets, each with a different oligo-T or oligo-A spacer, were used to elucidate the effect of target flexibility on the sensors' signaling capacity. For all six sensors, hybridization to targets with a 2- or 3-base spacer resulted in the largest signal increase. Higher signal enhancement was also observed with targets with an oligo-A spacer. For this sensor design, addition of a long nontarget binding spacer to the probe sequence is advantageous, as it provides flexibility for optimal target capture. The length of the spacer in the target sequence, however, should be adequately long to enable efficient hybridization yet does not introduce undesirable electrostatic and crowding effects.

  19. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.

    PubMed

    Sridhar, Madhu; Kang, Chang-kwon

    2015-05-06

    Fruit flies have flexible wings that deform during flight. To explore the fluid-structure interaction of flexible flapping wings at fruit fly scale, we use a well-validated Navier-Stokes equation solver, fully-coupled with a structural dynamics solver. Effects of chordwise flexibility on a two dimensional hovering wing is studied. Resulting wing rotation is purely passive, due to the dynamic balance between aerodynamic loading, elastic restoring force, and inertial force of the wing. Hover flight is considered at a Reynolds number of Re = 100, equivalent to that of fruit flies. The thickness and density of the wing also corresponds to a fruit fly wing. The wing stiffness and motion amplitude are varied to assess their influences on the resulting aerodynamic performance and structural response. Highest lift coefficient of 3.3 was obtained at the lowest-amplitude, highest-frequency motion (reduced frequency of 3.0) at the lowest stiffness (frequency ratio of 0.7) wing within the range of the current study, although the corresponding power required was also the highest. Optimal efficiency was achieved for a lower reduced frequency of 0.3 and frequency ratio 0.35. Compared to the water tunnel scale with water as the surrounding fluid instead of air, the resulting vortex dynamics and aerodynamic performance remained similar for the optimal efficiency motion, while the structural response varied significantly. Despite these differences, the time-averaged lift scaled with the dimensionless shape deformation parameter γ. Moreover, the wing kinematics that resulted in the optimal efficiency motion was closely aligned to the fruit fly measurements, suggesting that fruit fly flight aims to conserve energy, rather than to generate large forces.

  20. Coating graphene paper with 2D-assembly of electrocatalytic nanoparticles: a modular approach toward high-performance flexible electrodes.

    PubMed

    Xiao, Fei; Song, Jibin; Gao, Hongcai; Zan, Xiaoli; Xu, Rong; Duan, Hongwei

    2012-01-24

    The development of flexible electrodes is of considerable current interest because of the increasing demand for modern electronics, portable medical products, and compact energy devices. We report a modular approach to fabricating high-performance flexible electrodes by structurally integrating 2D-assemblies of nanoparticles with freestanding graphene paper. We have shown that the 2D array of gold nanoparticles at oil-water interfaces can be transferred on freestanding graphene oxide paper, leading to a monolayer of densely packed gold nanoparticles of uniform sizes loaded on graphene oxide paper. One major finding is that the postassembly electrochemical reduction of graphene oxide paper restores the ordered structure and electron-transport properties of graphene, and gives rise to robust and biocompatible freestanding electrodes with outstanding electrocatalytic activities, which have been manifested by the sensitive and selective detection of two model analytes: glucose and hydrogen peroxide (H(2)O(2)) secreted by live cells. The modular nature of this approach coupled with recent progress in nanocrystal synthesis and surface engineering opens new possibilities to systematically study the dependence of catalytic performance on the structural parameters and chemical compositions of the nanocrystals.

  1. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries

    PubMed Central

    Zhang, Jianjun; Yue, Liping; Hu, Pu; Liu, Zhihong; Qin, Bingsheng; Zhang, Bo; Wang, Qingfu; Ding, Guoliang; Zhang, Chuanjian; Zhou, Xinhong; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-01-01

    Inspired by Taichi, we proposed rigid-flexible coupling concept and herein developed a highly promising solid polymer electrolyte comprised of poly (ethylene oxide), poly (cyano acrylate), lithium bis(oxalate)borate and robust cellulose nonwoven. Our investigation revealed that this new class solid polymer electrolyte possessed comprehensive properties in high mechanical integrity strength, sufficient ionic conductivity (3 × 10−4 S cm−1) at 60°C and improved dimensional thermostability (up to 160°C). In addition, the lithium iron phosphate (LiFePO4)/lithium (Li) cell using such solid polymer electrolyte displayed superior rate capacity (up to 6 C) and stable cycle performance at 80°C. Furthermore, the LiFePO4/Li battery could also operate very well even at an elevated temperature of 160°C, thus improving enhanced safety performance of lithium batteries. The use of this solid polymer electrolyte mitigates the safety risk and widens the operation temperature range of lithium batteries. Thus, this fascinating study demonstrates a proof of concept of the use of rigid-flexible coupling solid polymer electrolyte toward practical lithium battery applications with improved reliability and safety. PMID:25183416

  2. Self-Assembled N/S Codoped Flexible Graphene Paper for High Performance Energy Storage and Oxygen Reduction Reaction.

    PubMed

    Akhter, Taslima; Islam, Md Monirul; Faisal, Shaikh Nayeem; Haque, Enamul; Minett, Andrew I; Liu, Hua Kun; Konstantinov, Konstantin; Dou, Shi Xue

    2016-01-27

    A novel flexible three-dimensional (3D) architecture of nitrogen and sulfur codoped graphene has been successfully synthesized via thermal treatment of a liquid crystalline graphene oxide-doping agent composition, followed by a soft self-assembly approach. The high temperature process turns the layer-by-layer assembly into a high surface area macro- and nanoporous free-standing material with different atomic configurations of graphene. The interconnected 3D network exhibits excellent charge capacitive performance of 305 F g(-1) (at 100 mV s(-1)), an unprecedented volumetric capacitance of 188 F cm(-3) (at 1 A g(-1)), and outstanding energy density of 28.44 Wh kg(-1) as well as cycle life of 10 000 cycles as a free-standing electrode for an aqueous electrolyte, symmetric supercapacitor device. Moreover, the resulting nitrogen/sulfur doped graphene architecture shows good electrocatalytic performance, long durability, and high selectivity when they are used as metal-free catalyst for the oxygen reduction reaction. This study demonstrates an efficient approach for the development of multifunctional as well as flexible 3D architectures for a series of heteroatom-doped graphene frameworks for modern energy storage as well as energy source applications.

  3. A study of bituminous pavements to determine a correlation between pavement structure designs and tripping of asphalt cement

    NASA Astrophysics Data System (ADS)

    Barton, B. R.

    1984-03-01

    After detecting a few cases of stripping of asphalt cement from the aggregate in bituminous pavement, there was concern that stripping might be a widespread problem in the state. It is agreed that water is the cause of stripping, and it was the opinion of some that pavements on granular bases would be less likely to strip because of supposedly better drainage characteristics. Differently designed pavement structures in all areas of the state were investigated to determine if there is a correlation between base and pavement design and stripping. Stripping was not as widespread as had been feared and there was less stripping in fulldepth bituminous base and pavement constructed over a lime-treated subgrade than in pavements constructed oer granular bases. This was contrary to what some had theorized.

  4. Hybrid green permeable pave with hexagonal modular pavement systems

    NASA Astrophysics Data System (ADS)

    Rashid, M. A.; Abustan, I.; Hamzah, M. O.

    2013-06-01

    Modular permeable pavements are alternatives to the traditional impervious asphalt and concrete pavements. Pervious pore spaces in the surface allow for water to infiltrate into the pavement during rainfall events. As of their ability to allow water to quickly infiltrate through the surface, modular permeable pavements allow for reductions in runoff quantity and peak runoff rates. Even in areas where the underlying soil is not ideal for modular permeable pavements, the installation of under drains has still been shown to reflect these reductions. Modular permeable pavements have been regarded as an effective tool in helping with stormwater control. It also affects the water quality of stormwater runoff. Places using modular permeable pavement has been shown to cause a significant decrease in several heavy metal concentrations as well as suspended solids. Removal rates are dependent upon the material used for the pavers and sub-base material, as well as the surface void space. Most heavy metals are captured in the top layers of the void space fill media. Permeable pavements are now considered an effective BMP for reducing stormwater runoff volume and peak flow. This study examines the extent to which such combined pavement systems are capable of handling load from the vehicles. Experimental investigation were undertaken to quantify the compressive characteristics of the modular. Results shows impressive results of achieving high safety factor for daily life vehicles.

  5. Enhancing the performance of the T-peel test for thin and flexible adhered laminates.

    PubMed

    Padhye, Nikhil; Parks, David M; Slocum, Alexander H; Trout, Bernhardt L

    2016-08-01

    Symmetrically bonded thin and flexible T-peel specimens, when tested on vertical travel machines, can be subject to significant gravitational loading, with the associated asymmetry and mixed-mode failure during peeling. This can cause erroneously high experimental peel forces to be recorded which leads to uncertainty in estimating interfacial fracture toughness and failure mode. To overcome these issues, a mechanical test fixture has been designed, for use with vertical test machines, that supports the unpeeled portion of the test specimen and suppresses parasitic loads due to gravity from affecting the peel test. The mechanism, driven by the test machine cross-head, moves at one-half of the velocity of the cross-head such that the unpeeled portion always lies in the plane of the instantaneous center of motion. Several specimens such as bonded polymeric films, laminates, and commercial tapes were tested with and without the fixture, and the importance of the proposed T-peel procedure has been demonstrated. PMID:27587164

  6. Enhancing flexible fiber filter (3FM) performance using in-line coagulation.

    PubMed

    Lee, J J; Jeong, M K; Im, J H; BenAim, R; Lee, S H; Oh, J E; Woo, H J; Kim, C W

    2006-01-01

    A new packing for deep bed filtration using Flexible Fibers has been proposed and developed on a very large scale for tertiary treatment of wastewater. The purpose of this study is to check the possibility of using this technology for the production of drinking water from surface water. In this study, the feasibility of the fiber filter application on water treatment was examined and the removal efficiency of fiber filter was improved using an in-line coagulant injection method. The experiments were carried out at pilot scale. The filter was packed with bundles of polyamide fibers with a bed porosity of 93%. Nak-dong River was used as the filter influent water and alum, PSOM, and PAC were used as the coagulants. The coagulants were injected by the in-line injection method. Small dosages (1-5 mg/L) of the polymeric coagulants (PSOM and PAC) showed an increase of removal efficiency compared to the operation without coagulants. Specifically, 1 mg/L of PAC showed the longest filtration time. Considering filtration time, filtrate quality, and filtered volume, the filtration velocity of 120 m/hr was chosen as an optimum value. For long-term operations, the effluent quality was 0.4 NTU and the removal efficiency was stable for the given optimum conditions.

  7. Lightweight, Flexible, High-Performance Carbon Nanotube Cables Made by Scalable Flow Coating.

    PubMed

    Mirri, Francesca; Orloff, Nathan D; Forster, Aaron M; Ashkar, Rana; Headrick, Robert J; Bengio, E Amram; Long, Christian J; Choi, April; Luo, Yimin; Walker, Angela R Hight; Butler, Paul; Migler, Kalman B; Pasquali, Matteo

    2016-02-01

    Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with the distributed layout of electronic components in satellites and aircraft. The cable outer conductor (OC) is usually the heaviest component of modern data cables; therefore, exchanging the conventional metallic OC for lower weight materials with comparable transmission characteristics is highly desirable. Carbon nanotubes (CNTs) have recently been proposed to replace the metal components in coaxial cables; however, signal attenuation was too high in prototypes produced so far. Here, we fabricate the OC of coaxial data cables by directly coating a solution of CNTs in chlorosulfonic acid (CSA) onto the cable inner dielectric. This coating has an electrical conductivity that is approximately 2 orders of magnitude greater than the best CNT OC reported in the literature to date. This high conductivity makes CNT coaxial cables an attractive alternative to commercial cables with a metal (tin-coated copper) OC, providing comparable cable attenuation and mechanical durability with a 97% lower component mass. PMID:26791337

  8. Enhancing the performance of the T-peel test for thin and flexible adhered laminates

    NASA Astrophysics Data System (ADS)

    Padhye, Nikhil; Parks, David M.; Slocum, Alexander H.; Trout, Bernhardt L.

    2016-08-01

    Symmetrically bonded thin and flexible T-peel specimens, when tested on vertical travel machines, can be subject to significant gravitational loading, with the associated asymmetry and mixed-mode failure during peeling. This can cause erroneously high experimental peel forces to be recorded which leads to uncertainty in estimating interfacial fracture toughness and failure mode. To overcome these issues, a mechanical test fixture has been designed, for use with vertical test machines, that supports the unpeeled portion of the test specimen and suppresses parasitic loads due to gravity from affecting the peel test. The mechanism, driven by the test machine cross-head, moves at one-half of the velocity of the cross-head such that the unpeeled portion always lies in the plane of the instantaneous center of motion. Several specimens such as bonded polymeric films, laminates, and commercial tapes were tested with and without the fixture, and the importance of the proposed T-peel procedure has been demonstrated.

  9. Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors.

    PubMed

    Choi, Bong Gill; Park, Hoseok; Park, Tae Jung; Yang, Min Ho; Kim, Joon Sung; Jang, Sung-Yeon; Heo, Nam Su; Lee, Sang Yup; Kong, Jing; Hong, Won Hi

    2010-05-25

    We report the preparation of free-standing flexible conductive reduced graphene oxide/Nafion (RGON) hybrid films by a solution chemistry that utilizes self-assembly and directional convective-assembly. The hydrophobic backbone of Nafion provided well-defined integrated structures, on micro- and macroscales, for the construction of hybrid materials through self-assembly, while the hydrophilic sulfonate groups enabled highly stable dispersibility ( approximately 0.5 mg/mL) and long-term stability (2 months) for graphene. The geometrically interlocked morphology of RGON produced a high degree of mechanical integrity in the hybrid films, while the interpenetrating network constructed favorable conduction pathways for charge transport. Importantly, the synergistic electrochemical characteristics of RGON were attributed to high conductivity (1176 S/m), facilitated electron transfer (ET), and low interfacial resistance. Consequently, RGON films obtained the excellent figure of merit as electrochemical biosensing platforms for organophosphate (OP) detection, that is, a sensitivity of 10.7 nA/microM, detection limit of 1.37 x 10(-7) M, and response time of <3 s. In addition, the reliability of RGON biosensors was confirmed by a fatigue test of 100 bending cycles. The strategy described here provides insight into the fabrication of graphene and hybrid nanomaterials from a material perspective, as well as the design of biosensor platforms for practical device applications. PMID:20377244

  10. Lightweight, flexible, high-performance carbon nanotube cables made by scalable flow coating

    DOE PAGESBeta

    Mirri, Francesca; Orloff, Nathan D.; Forser, Aaron M.; Ashkar, Rana; Headrick, Robert J.; Bengio, E. Amram; Long, Christian J.; Choi, April; Luo, Yimin; Hight Walker, Angela R.; et al

    2016-01-21

    Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with the distributed layout of electronic components in satellites and aircraft. The cable outer conductor (OC) is usually the heaviest component of modern data cables; therefore, exchanging the conventional metallic OC for lower weight materials with comparable transmission characteristics is highly desirable. Carbon nanotubes (CNTs) have recently been proposed to replace themore » metal components in coaxial cables; however, signal attenuation was too high in prototypes produced so far. Here, we fabricate the OC of coaxial data cables by directly coating a solution of CNTs in chlorosulfonic acid (CSA) onto the cable inner dielectric. This coating has an electrical conductivity that is approximately 2 orders of magnitude greater than the best CNT OC reported in the literature to date. In conclusion, this high conductivity makes CNT coaxial cables an attractive alternative to commercial cables with a metal (tin-coated copper) OC, providing comparable cable attenuation and mechanical durability with a 97% lower component mass.« less

  11. CdSe/ZnS quantum dot films for high performance flexible lighting and display applications

    NASA Astrophysics Data System (ADS)

    Altintas, Yemliha; Genc, Sinan; Younis Talpur, Mohammad; Mutlugun, Evren

    2016-07-01

    Colloidal quantum dots have attracted significant interest in recent years for lighting and display applications and have recently appeared in high-end market products. The integration of quantum dots with light emitting diodes has made them promising candidates for superior lighting applications with tunable optical characteristics. In this work we propose and demonstrate high quality colloidal quantum dots in their novel free-standing film forms to allow high quality white light generation to address flexible lighting and display applications. High quality quantum dots have been characterized using transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, steady state and time resolved photoluminescence and dynamic light scattering methods. The engineering of colloidal quantum dot composition and its optical properties in stand-alone film form has led to the experimentally high NTSC color gamut of 122.5 (CIE-1931) for display applications, color rendering index of 88.6, luminous efficacy of optical radiation value of 290 lm/Wopt and color temperature of 2763 K for lighting applications.

  12. CdSe/ZnS quantum dot films for high performance flexible lighting and display applications.

    PubMed

    Altintas, Yemliha; Genc, Sinan; Talpur, Mohammad Younis; Mutlugun, Evren

    2016-07-22

    Colloidal quantum dots have attracted significant interest in recent years for lighting and display applications and have recently appeared in high-end market products. The integration of quantum dots with light emitting diodes has made them promising candidates for superior lighting applications with tunable optical characteristics. In this work we propose and demonstrate high quality colloidal quantum dots in their novel free-standing film forms to allow high quality white light generation to address flexible lighting and display applications. High quality quantum dots have been characterized using transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, steady state and time resolved photoluminescence and dynamic light scattering methods. The engineering of colloidal quantum dot composition and its optical properties in stand-alone film form has led to the experimentally high NTSC color gamut of 122.5 (CIE-1931) for display applications, color rendering index of 88.6, luminous efficacy of optical radiation value of 290 lm/Wopt and color temperature of 2763 K for lighting applications. PMID:27284908

  13. Lightweight, Flexible, High-Performance Carbon Nanotube Cables Made by Scalable Flow Coating.

    PubMed

    Mirri, Francesca; Orloff, Nathan D; Forster, Aaron M; Ashkar, Rana; Headrick, Robert J; Bengio, E Amram; Long, Christian J; Choi, April; Luo, Yimin; Walker, Angela R Hight; Butler, Paul; Migler, Kalman B; Pasquali, Matteo

    2016-02-01

    Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with the distributed layout of electronic components in satellites and aircraft. The cable outer conductor (OC) is usually the heaviest component of modern data cables; therefore, exchanging the conventional metallic OC for lower weight materials with comparable transmission characteristics is highly desirable. Carbon nanotubes (CNTs) have recently been proposed to replace the metal components in coaxial cables; however, signal attenuation was too high in prototypes produced so far. Here, we fabricate the OC of coaxial data cables by directly coating a solution of CNTs in chlorosulfonic acid (CSA) onto the cable inner dielectric. This coating has an electrical conductivity that is approximately 2 orders of magnitude greater than the best CNT OC reported in the literature to date. This high conductivity makes CNT coaxial cables an attractive alternative to commercial cables with a metal (tin-coated copper) OC, providing comparable cable attenuation and mechanical durability with a 97% lower component mass.

  14. High-performance flexible ultraviolet photoconductors based on solution-processed ultrathin ZnO/Au nanoparticle composite films

    NASA Astrophysics Data System (ADS)

    Jin, Zhiwen; Gao, Liang; Zhou, Qing; Wang, Jizheng

    2014-03-01

    Transparent ultraviolet (UV) ZnO thin film photoconductors are expected to have great applications in environmental monitoring, large-area displays, and optical communications, and they have drawn enormous interests in recent years. However, at present their performances are not satisfactory: the responsivity R (a parameter characterizing the sensitivity of the device to light) is not high (<1.0 × 103 AW-1), and the transparency T is not high either (<80%). Realizing high R and high T remains a big challenge today. In this paper, by employing solution-processed ultrathin ZnO/Au nanoparticle composite films, R as high as 1.51 × 105 AW-1 and T of over 90% are achieved. High values for detectivity D* and linear dynamic range LDR are also obtained, which are 2.05 × 1015 Jones and 60 dB, respectively. Moreover, such high-performance devices can be fabricated on flexible PET (polyethylene terephthalate) substrates.

  15. Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors.

    PubMed

    Chodankar, Nilesh R; Dubal, Deepak P; Lokhande, Abhishek C; Lokhande, Chandrakant D

    2015-12-15

    The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days. PMID:26397234

  16. Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors.

    PubMed

    Chodankar, Nilesh R; Dubal, Deepak P; Lokhande, Abhishek C; Lokhande, Chandrakant D

    2015-12-15

    The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days.

  17. Structural analyses of a rigid pavement overlaying a sub-surface void

    NASA Astrophysics Data System (ADS)

    Adam, Fatih Alperen

    Pavement failures are very hazardous for public safety and serviceability. These failures in pavements are mainly caused by subsurface voids, cracks, and undulation at the slab-base interface. On the other hand, current structural analysis procedures for rigid pavement assume that the slab-base interface is perfectly planar and no imperfections exist in the sub-surface soil. This assumption would be violated if severe erosion were to occur due to inadequate drainage, thermal movements, and/or mechanical loading. Until now, the effect of erosion was only considered in the faulting performance model, but not with regards to transverse cracking at the mid-slab edge. In this research, the bottom up fatigue cracking potential, caused by the combined effects of wheel loading and a localized imperfection in the form of a void below the mid-slab edge, is studied. A robust stress and surface deflection analysis was also conducted to evaluate the influence of a sub-surface void on layer moduli back-calculation. Rehabilitative measures were considered, which included a study on overlay and fill remediation. A series regression of equations was proposed that provides a relationship between void size, layer moduli stiffness, and the overlay thickness required to reduce the stress to its original pre-void level. The effect of the void on 3D pavement crack propagation was also studied under a single axle load. The amplifications to the stress intensity was shown to be high but could be mitigated substantially if stiff material is used to fill the void and impede crack growth. The pavement system was modeled using the commercial finite element modeling program Abaqus RTM. More than 10,000 runs were executed to do the following analysis: stress analysis of subsurface voids, E-moduli back-calculation of base layer, pavement damage calculations of Beaumont, TX, overlay thickness estimations, and mode I crack analysis. The results indicate that the stress and stress intensity are, on

  18. Multimodal approach to seismic pavement testing

    USGS Publications Warehouse

    Ryden, N.; Park, C.B.; Ulriksen, P.; Miller, R.D.

    2004-01-01

    A multimodal approach to nondestructive seismic pavement testing is described. The presented approach is based on multichannel analysis of all types of seismic waves propagating along the surface of the pavement. The multichannel data acquisition method is replaced by multichannel simulation with one receiver. This method uses only one accelerometer-receiver and a light hammer-source, to generate a synthetic receiver array. This data acquisition technique is made possible through careful triggering of the source and results in such simplification of the technique that it is made generally available. Multiple dispersion curves are automatically and objectively extracted using the multichannel analysis of surface waves processing scheme, which is described. Resulting dispersion curves in the high frequency range match with theoretical Lamb waves in a free plate. At lower frequencies there are several branches of dispersion curves corresponding to the lower layers of different stiffness in the pavement system. The observed behavior of multimodal dispersion curves is in agreement with theory, which has been validated through both numerical modeling and the transfer matrix method, by solving for complex wave numbers. ?? ASCE / JUNE 2004.

  19. New structural systems for zero-maintenance pavements. Volume 2: Analysis of anchored pavements using ANSYS

    NASA Astrophysics Data System (ADS)

    Saxena, S. K.; Militsopoulos, S. G.

    1980-08-01

    A set of procedures to evaluate the response of an anchored pavement subjected to vehicle static loads, moisture variation in the subgrade, and/or temperature variation through the surface of the pavement is presented. These procedures include two computer programs known as FEMESH and ANSYS. The FEMESH program generates rectangular meshes in either a two or three dimensional coordinate system for any prespecified number and spacing of nodes. The ANSYS program evaluates the stresses, strains, and the deflections at all elements in each material included in the analytical model.

  20. Self-poled transparent and flexible UV light-emitting cerium complex-PVDF composite: a high-performance nanogenerator.

    PubMed

    Garain, Samiran; Sinha, Tridib Kumar; Adhikary, Prakriti; Henkel, Karsten; Sen, Shrabanee; Ram, Shanker; Sinha, Chittaranjan; Schmeißer, Dieter; Mandal, Dipankar

    2015-01-21

    Cerium(III)-N,N-dimethylformamide-bisulfate [Ce(DMF)(HSO4)3] complex is doped into poly(vinylidene fluoride) (PVDF) to induce a higher yield (99%) of the electroactive phases (β- and γ-phases) of PVDF. A remarkable enhancement of the output voltage (∼32 V) of a nanogenerator (NG) based on a nonelectrically poled cerium(III) complex containing PVDF composite film is achieved by simple repeated human finger imparting, whereas neat PVDF does not show this kind of behavior. This high electrical output resembles the generation of self-poled electroactive β-phase in PVDF due to the electrostatic interactions between the fluoride of PVDF and the surface-active positive charge cloud of the cerium complex via H-bonding and/or bipolar interaction among the opposite poles of cerium complex and PVDF, respectively. The capacitor charging capability of the flexible NG promises its applicability as piezoelectric-based energy harvester. The cerium(III) complex doped PVDF composite film exhibit an intense photoluminescence in the UV region, which might be due to a participation of electron cloud from negative pole of bipolarized PVDF. This fact may open a new area for prospective development of high-performance energy-saving flexible solid-state UV light emitters. PMID:25523039

  1. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Jeong, Young Gyu

    2014-08-01

    High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ˜0.27 wt. %, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3 wt. % exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films, which were thermally stable up to 250 °C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.

  2. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements

    SciTech Connect

    Yan, Jing; Jeong, Young Gyu

    2014-08-04

    High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ∼0.27 wt. %, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3 wt. % exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films, which were thermally stable up to 250 °C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.

  3. Flexibly Global? Performing Culture and Identity in an Age of Uncertainty

    ERIC Educational Resources Information Center

    Giardina, Michael D.

    2009-01-01

    Presented as a symbolic interactive messy performance text, Michael Giardina sutures himself into and through the landscape of global social relations, including his own interpretive interactions of disconnection and reconnection with place, home, and nation. In so doing, and in these collages of lived textuality, he examines the complex,…

  4. Deep Thinking Increases Task-Set Shielding and Reduces Shifting Flexibility in Dual-Task Performance

    ERIC Educational Resources Information Center

    Fischer, Rico; Hommel, Bernhard

    2012-01-01

    Performing two tasks concurrently is difficult, which has been taken to imply the existence of a structural processing bottleneck. Here we sought to assess whether and to what degree one's multitasking abilities depend on the cognitive-control style one engages in. Participants were primed with creativity tasks that either called for divergent…

  5. Ground rubber use in asphalt paving mixtures: A design and performance evaluation. Executive summary. Final report, 1 July 1991-30 June 1994

    SciTech Connect

    Khosla, N.P.; Malpass, G.A.

    1994-10-01

    The main objectives of the study were: (1) To determine if existing pavement mixture design procedures could be used in the design of rubberized pavements; (2) To determine the performance characteristics of rubberized mixtures in terms of crackng and rutting potential; (3) To compare the performance of rubberized and conventional pavement systems using a computer based performance prediction model; (4) To compare the life cycle costs of rubberized and conventional pavement systems.

  6. High-performance graphene/sulphur electrodes for flexible Li-ion batteries using the low-temperature spraying method

    NASA Astrophysics Data System (ADS)

    Kumar, Pushpendra; Wu, Feng-Yu; Hu, Lung-Hao; Ali Abbas, Syed; Ming, Jun; Lin, Chia-Nan; Fang, Jason; Chu, Chih-Wei; Li, Lain-Jong

    2015-04-01

    Elementary sulphur (S) has been shown to be an excellent cathode material in energy storage devices such as Li-S batteries owing to its very high capacity. The major challenges associated with the sulphur cathodes are structural degradation, poor cycling performance and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling. Tremendous efforts made by others have demonstrated that encapsulation of S materials improves their cycling performance. To make this approach practical for large scale applications, the use of low-cost technology and materials has become a crucial and new focus of S-based Li-ion batteries. Herein, we propose to use a low temperature spraying process to fabricate graphene/S electrode material, where the ink is composed of graphene flakes and the micron-sized S particles prepared by grinding of low-cost S powders. The S particles are found to be well hosted by highly conductive graphene flakes and consequently superior cyclability (~70% capacity retention after 250 cycles), good coulombic efficiency (~98%) and high capacity (~1500 mA h g-1) are obtained. The proposed approach does not require high temperature annealing or baking; hence, another great advantage is to make flexible Li-ion batteries. We have also demonstrated two types of flexible batteries using sprayed graphene/S electrodes.Elementary sulphur (S) has been shown to be an excellent cathode material in energy storage devices such as Li-S batteries owing to its very high capacity. The major challenges associated with the sulphur cathodes are structural degradation, poor cycling performance and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling. Tremendous efforts made by others have demonstrated that encapsulation of S materials improves their cycling performance. To make this approach practical for large scale applications, the use of low-cost technology and materials has become

  7. An All-Solid-State Fiber-Shaped Aluminum-Air Battery with Flexibility, Stretchability, and High Electrochemical Performance.

    PubMed

    Xu, Yifan; Zhao, Yang; Ren, Jing; Zhang, Ye; Peng, Huisheng

    2016-07-01

    Owing to the high theoretical energy density of metal-air batteries, the aluminum-air battery has been proposed as a promising long-term power supply for electronics. However, the available energy density from the aluminum-air battery is far from that anticipated and is limited by current electrode materials. Herein we described the creation of a new family of all-solid-state fiber-shaped aluminum-air batteries with a specific capacity of 935 mAh g(-1) and an energy density of 1168 Wh kg(-1) . The synthesis of an electrode composed of cross-stacked aligned carbon-nanotube/silver-nanoparticle sheets contributes to the remarkable electrochemical performance. The fiber shape also provides the aluminum-air batteries with unique advantages; for example, they are flexible and stretchable and can be woven into a variety of textiles for large-scale applications.

  8. Enhanced performance of flexible nanocrystalline silicon thin-film solar cells using seed layers with high hydrogen dilution.

    PubMed

    Lee, Ji-Eun; Kim, Donghwan; Yoon, Kyung Hoon; Cho, Jun-Sik

    2013-12-01

    Flexible hydrogenated nanocrystalline (nc-Si:H) thin-film solar cells were prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD), and the effect of highly crystalline intrinsic Si seed layers at the initial growth stage of i nc-Si:H absorbers on their structural and electrical properties and on the performance of solar cells was investigated. The crystallization of i nc-Si:H absorbers was significantly enforced by the introduction of highly crystalline seed layers, resulting in the reduction of defect-dense a-Si:H grain boundary and incubation layer thickness. The open circuit voltage of the nc-Si:H solar cells with the seed layers was improved by the decrease of charged defect density in the defect-rich amorphous region.

  9. Peeled-off flexible Cu(In,Ga)Se2 solar cells and Na diffusion effects on cell performances

    NASA Astrophysics Data System (ADS)

    Sadono, Adiyudha; Ogihara, Tomohiro; Hino, Masashi; Yamamoto, Kenji; Yamada, Akira

    2016-07-01

    Na diffusion on Cu(In,Ga)Se2 (CIGS) solar cells fabricated on top of polyimide-coated soda-lime glass (SLG) substrate were investigated. Polyimide-coated SLG that can be used as substrate for fabricating flexible solar cells by peeled-off process, shown to have the same efficiency with SLG reference which is around 12%, indicating diffusion of almost same amount of Na from the substrates into the CIGS. Additional Na incorporation by NaF post-deposition treatment (PDT) were applied to CIGS deposited on substrates with different Na quantity to understand the Na diffusion effect prior and post CIGS deposition. Improvement of cells performance were observed for CIGS deposited on both substrates with or without Na diffusion. Final conversion efficiency of 15% was achieved after PDT for CIGS deposited on Na-contained substrates suggesting that PDT can be used even for CIGS with Na diffusion from the substrate. [Figure not available: see fulltext.

  10. An Efficient Finite Element Framework to Assess Flexibility Performances of SMA Self-Expandable Carotid Artery Stents

    PubMed Central

    Ferraro, Mauro; Auricchio, Ferdinando; Boatti, Elisa; Scalet, Giulia; Conti, Michele; Morganti, Simone; Reali, Alessandro

    2015-01-01

    Computer-based simulations are nowadays widely exploited for the prediction of the mechanical behavior of different biomedical devices. In this aspect, structural finite element analyses (FEA) are currently the preferred computational tool to evaluate the stent response under bending. This work aims at developing a computational framework based on linear and higher order FEA to evaluate the flexibility of self-expandable carotid artery stents. In particular, numerical simulations involving large deformations and inelastic shape memory alloy constitutive modeling are performed, and the results suggest that the employment of higher order FEA allows accurately representing the computational domain and getting a better approximation of the solution with a widely-reduced number of degrees of freedom with respect to linear FEA. Moreover, when buckling phenomena occur, higher order FEA presents a superior capability of reproducing the nonlinear local effects related to buckling phenomena. PMID:26184329

  11. Permeable pavement demonstration site at Edison Environmental Center (Presentation)

    EPA Science Inventory

    There are few studies of full-scale, outdoor, replicated, working pervious pavement systems. More studies of pervious pavement operating in its intended use (parking lot, roadway, etc.) during a range of climatic events, daily usage conditions, and maintenance regimes are necessa...

  12. Research on pavement crack recognition methods based on image processing

    NASA Astrophysics Data System (ADS)

    Cai, Yingchun; Zhang, Yamin

    2011-06-01

    In order to overview and analysis briefly pavement crack recognition methods , then find the current existing problems in pavement crack image processing, the popular methods of crack image processing such as neural network method, morphology method, fuzzy logic method and traditional image processing .etc. are discussed, and some effective solutions to those problems are presented.

  13. Permeable Pavement Research at the Edison Environmental Center

    EPA Science Inventory

    There are few detailed studies of full-scale, replicated, actively-used permeable pavement systems. Practitioners need additional studies of permeable pavement systems in its intended application (parking lot, roadway, etc.) across a range of climatic events, daily usage conditio...

  14. Permeable pavement monitoring at the Edison Environmental Center demonstration site

    EPA Science Inventory

    There are few detailed studies of full-scale, replicated, actively-used pervious pavement systems. Practitioners need additional studies of pervious pavement systems in its intended application (parking lot, roadway, etc.) during a range of climatic events, daily usage conditions...

  15. Permeable Pavement Demonstration at the Edison Environmental Center (Hartford)

    EPA Science Inventory

    In general, there is a lack of full-scale, outdoor, real-world porous pavement studies with system replicates. More studies of porous pavement operating in its intended use (parking lot, roadway, etc.) with climatic events, regular use, and maintenance effects, are necessary. The...

  16. Permeable pavement demonstration at the Edison Environmental Center

    EPA Science Inventory

    There are few studies of full-scale, outdoor, replicated, functioning pervious pavement systems. More studies of pervious pavement operating in its intended use (parking lot, roadway, etc.) during a range of climatic events, daily usage conditions, and maintenance regimes are nec...

  17. Permeable pavement demonstration at the Edison Environmental Center (Hartford, CT)

    EPA Science Inventory

    In general, there is a lack of full-scale, outdoor, real-world porous pavement studies with system replicates. More studies of porous pavement operating in its intended use (parking lot, roadway, etc.) with climatic events, regular use, and maintenance effects, are necessary. The...

  18. Permeable Pavement Monitoring at the Edison Environmental Center Demonstration Site

    EPA Science Inventory

    There are few detailed studies of full-scale, replicated, actively-used pervious pavement systems. Practitioners need additional studies of pervious pavement systems in its intended application (parking lot, roadway, etc.) during a range of climatic events, daily usage conditions...

  19. Full-Depth Asphalt Pavements for Parking Lots and Driveways.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    The latest information for designing full-depth asphalt pavements for parking lots and driveways is covered in relationship to the continued increase in vehicle registration. It is based on The Asphalt Institute's Thickness Design Manual, Series No. 1 (MS-1), Seventh Edition, which covers all aspects of asphalt pavement thickness design in detail,…

  20. Nutrient Infiltrate Concentrations from Three Permeable Pavement Types

    EPA Science Inventory

    While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha...

  1. 211. EQUIPMENT LAYING FIRST LANE OF CONCRETE PAVEMENT NEAR THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    211. EQUIPMENT LAYING FIRST LANE OF CONCRETE PAVEMENT NEAR THE CAPITAL OVERLOOK, 1931. NOTE THE BEGINNING OF BITUMINOUS TYPE OF TEMPORARY PAVEMENT TO ALLOW FOR SETTLEMENT IN HYDRAULIC FILL AREAS. - George Washington Memorial Parkway, Along Potomac River from McLean to Mount Vernon, VA, Mount Vernon, Fairfax County, VA

  2. High-Performance Flexible Solid-State Supercapacitor with an Extended Nanoregime Interface through in Situ Polymer Electrolyte Generation.

    PubMed

    Anothumakkool, Bihag; Torris A T, Arun; Veeliyath, Sajna; Vijayakumar, Vidyanand; Badiger, Manohar V; Kurungot, Sreekumar

    2016-01-20

    Here, we report an efficient strategy by which a significantly enhanced electrode-electrolyte interface in an electrode for supercapacitor application could be accomplished by allowing in situ polymer gel electrolyte generation inside the nanopores of the electrodes. This unique and highly efficient strategy could be conceived by judiciously maintaining ultraviolet-triggered polymerization of a monomer mixture in the presence of a high-surface-area porous carbon. The method is very simple and scalable, and a prototype, flexible solid-state supercapacitor could even be demonstrated in an encapsulation-free condition by using the commercial-grade electrodes (thickness = 150 μm, area = 12 cm(2), and mass loading = 7.3 mg/cm(2)). This prototype device shows a capacitance of 130 F/g at a substantially reduced internal resistance of 0.5 Ω and a high capacitance retention of 84% after 32000 cycles. The present system is found to be clearly outperforming a similar system derived by using the conventional polymer electrolyte (PVA-H3PO4 as the electrolyte), which could display a capacitance of only 95 F/g, and this value falls to nearly 50% in just 5000 cycles. The superior performance in the present case is credited primarily to the excellent interface formation of the in situ generated polymer electrolyte inside the nanopores of the electrode. Further, the interpenetrated nature of the polymer also helps the device to show a low electron spin resonance and power rate and, most importantly, excellent shelf-life in the unsealed flexible conditions. Because the nature of the electrode-electrolyte interface is the major performance-determining factor in the case of many electrochemical energy storage/conversion systems, along with the supercapacitors, the developed process can also find applications in preparing electrodes for the devices such as lithium-ion batteries, metal-air batteries, polymer electrolyte membrane fuel cells, etc. PMID:26697922

  3. Numerical analysis of active chordwise flexibility on the performance of non-symmetrical flapping airfoils

    NASA Astrophysics Data System (ADS)

    Tay, W. B.; Lim, K. B.

    2010-01-01

    This paper investigates the effect of active chordwise flexing on the lift, thrust and propulsive efficiency of three types of airfoils. The factors studied are the flexing center location, standard two-sided flexing as well as a type of single-sided flexing. The airfoils are simulated to flap with four configurations, and the effects of flexing under these configurations are investigated. Results show that flexing is not necessarily beneficial for the performance of the airfoils. However, with the correct parameters, efficiency is as high as 0.76 by placing the flexing centre at the trailing edge. The average thrust coefficient is more than twice as high, from 1.63 to 3.57 with flapping and flexing under the right conditions. Moreover, the single-sided flexing also gives an average lift coefficient as high as 4.61 for the S1020 airfoil. The shape of the airfoil does alter the effect of flexing too. Deviating the flexing phase angle away from 90° does not give a significant improvement to the airfoil’s performance. These results greatly enhance the design of a better performing ornithopter wing.

  4. Friction evaluation of concrete paver blocks for airport pavement applications

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1992-01-01

    The development and use of concrete paver blocks is reviewed and some general specifications for application of this type of pavement surface at airport facilities are given. Two different shapes of interlocking concrete paver blocks installed in the track surface at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are described. Preliminary cornering performance results from testing of 40 x 14 radial-belted and bias-ply aircraft tires are reviewed. These tire tests are part of a larger, ongoing joint NASA/FAA/Industry Surface Traction and Radial Tire (START) Program involving several different tire sizes. Both dry and wet surface conditions were evaluated on the two concrete paver block test surfaces and a conventional, nongrooved Portland cement concrete surface. Future test plans involving evaluation of other concrete paver block designs at the ALDF are indicated.

  5. Monitoring asphalt pavement damages using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Mettas, Christodoulos; Themistocleous, Kyriacos; Neocleous, Kyriacos; Christofe, Andreas; Pilakoutas, Kypros; Hadjimitsis, Diofantos

    2015-06-01

    One of the main issues in the maintenance plans of road agencies or governmental organizations is the early detection of damaged asphalt pavements. The development of a smart and non-destructive systematic technique for monitoring damaged asphalt pavements is considered a main priority to fill this gap. During the 1970's, remote sensing was used to map road surface distress, while during the last decade, remote sensing became more advanced, thereby assisting in the evolution of the identification and mapping of roads. Various techniques were used in order to explore condition, age, weaknesses and imperfections of asphalted pavements. These methods were fairly successful in the classification of asphalted surfaces and in the detection of some of their characteristics. This paper explores the state of the art of using remote sensing techniques for monitoring damaged pavements and some typical spectral profiles of various asphalt pavements in Cyprus area acquired using the SVC1024 field spectroradiometer.

  6. A novel procedure for fabricating flexible screen-printed electrodes with improved electrochemical performance

    NASA Astrophysics Data System (ADS)

    Du, C. X.; Han, L.; Dong, S. L.; Li, L. H.; Wei, Y.

    2016-07-01

    Screen-printed electrodes (SPEs) with improved electrochemical performance were fabricated in this study. The SPEs on hydrophilic surface of polyethylene ethylene terephthalate (PET) film showed better electrochemical behaviour than that on hydrophobic surface. The optimal condition of pretreating fresh SPEs was that alternately dealt with chemical treatment (soaked in 3M NaOH solutions for 1h) and high temperature curing (heated at 120 °C for 15 min) for two times. After chemical treatment, the electrochemical performance of self-made SPEs was better than the commercial three electrodes system. By analyzing cyclic voltammetry (CV) curves, we found that the oxidation peak currents and peak to peak separation reached 407.65 μA and 111.16 mV, which mean the sensitivity and electron transfer rate improved 1.9 times and 3.8 times compared with fresh SPEs, and 2 times and 3 times compared with commercial DropSens (DS) electrodes. The obtained SPEs were stable, convenient and inexpensive, which could be extensively applied for developing novel electrochemical sensors.

  7. Characterizing a porous road pavement using surface impedance measurement: a guided numerical inversion procedure.

    PubMed

    Benoit, Gaëlle; Heinkélé, Christophe; Gourdon, Emmanuel

    2013-12-01

    This paper deals with a numerical procedure to identify the acoustical parameters of road pavement from surface impedance measurements. This procedure comprises three steps. First, a suitable equivalent fluid model for the acoustical properties porous media is chosen, the variation ranges for the model parameters are set, and a sensitivity analysis for this model is performed. Second, this model is used in the parameter inversion process, which is performed with simulated annealing in a selected frequency range. Third, the sensitivity analysis and inversion process are repeated to estimate each parameter in turn. This approach is tested on data obtained for porous bituminous concrete and using the Zwikker and Kosten equivalent fluid model. This work provides a good foundation for the development of non-destructive in situ methods for the acoustical characterization of road pavements.

  8. High performance printed N and P-type OTFTs enabling digital and analog complementary circuits on flexible plastic substrate

    NASA Astrophysics Data System (ADS)

    Jacob, S.; Abdinia, S.; Benwadih, M.; Bablet, J.; Chartier, I.; Gwoziecki, R.; Cantatore, E.; van Roermund, A. H. M.; Maddiona, L.; Tramontana, F.; Maiellaro, G.; Mariucci, L.; Rapisarda, M.; Palmisano, G.; Coppard, R.

    2013-06-01

    This paper presents a printed organic complementary technology on flexible plastic substrate with high performance N and P-type Organic Thin Film Transistors (OTFTs), based on small-molecule organic semiconductors in solution. Challenges related to the integration of both OTFT types in a common complementary flow are addressed, showing the importance of surface treatments. Stability on single devices and on an elementary complementary digital circuit (ring oscillator) is studied, demonstrating that a robust and reliable flow with high electrical performances can be established for printed organic devices. These devices are used to manufacture several analog and digital building blocks. The design is carried out using a model specifically developed for this technology, and taking into account the parametric variability. High-frequency measurements of printed envelope detectors show improved speed performance, resulting from the high mobility of the OTFTs. In addition, a compact dynamic flip-flop and a low-offset comparator are demonstrated, thanks to availability of both n-type and p-type OTFTs in the technology. Measurement results are in good agreement with the simulations. The circuits presented establish a complete library of building blocks for the realization of a printed RFID tag.

  9. High performance flexible double-sided micro-supercapacitors with an organic gel electrolyte containing a redox-active additive.

    PubMed

    Kim, Doyeon; Lee, Geumbee; Kim, Daeil; Yun, Junyeong; Lee, Sang-Soo; Ha, Jeong Sook

    2016-08-25

    In this study, we report the fabrication of a high performance flexible micro-supercapacitor (MSC) with an organic gel electrolyte containing a redox-active additive, referred to as poly(methyl methacrylate)-propylene carbonate-lithium perchlorate-hydroquinone (PMMA-PC-LiClO4-HQ). Hexagonal MSCs fabricated on thin polyethylene terephthalate (PET) films had interdigitated electrodes made of spray-coated multi-walled carbon nanotubes (MWNTs) on Au. The addition of HQ as a redox-active additive enhanced not only the specific capacitance but also the energy density of the MSCs dramatically, which is approximately 35 times higher than that of MSCs without the HQ additive. In addition, both areal capacitance and areal energy density could be doubled by fabrication of double-sided MSCs, where two MSCs are connected in parallel. The double-sided MSCs exhibited stable electrochemical performance during repeated deformation by bending. By dry-transferring the double-sided MSCs based on PMMA-PC-LiClO4-HQ on a deformable polymer substrate, we fabricated a stretchable MSC array, which also retained its electrochemical performance during a uniaxial strain of 40%. Furthermore, a wearable energy storage bracelet made of such an MSC array could operate a μ-LED on the wrist. PMID:27511060

  10. Electrochromic properties and performance of NiOx films and their corresponding all-thin-film flexible devices preparedby reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dong, Dongmei; Wang, Wenwen; Dong, Guobo; Zhang, Fan; He, Yingchun; Yu, Hang; Liu, Famin; Wang, Mei; Diao, Xungang

    2016-10-01

    Nickel oxide (NiOx) thin films were deposited by direct current magnetron sputtering technique onto flexible substrates with various oxygen (O2) partial pressures. The influence of O2 contents during deposition process on film structure, morphology, composition, optical and electrochromic (EC) characteristics of the films were investigated. The EC response for nonstoichiometric NiOx films shows a strong dependence on grain size variations and surface morphology. Finally, the multiple-layer stacks ITO/NiOx/Ta2O5:H/WO3/ITO were sequentially vacuum deposited over flexible polyethylene terephthalate plates based on the optimization of NiOx single layers. A large optical contrast up to 60% and a good durability are obtained for full device. To perform preliminary research on the mechanical properties within flexible devices, we introduced nontrivial changes to the interfacial properties by replacing the glass with flexible polymers. The effects were studied through static bending and the nano-scratch test.

  11. Selection for Growth Performance in Broiler Chickens Associates with Less Diet Flexibility

    PubMed Central

    Pauwels, Jana; Coopman, Frank; Cools, An; Michiels, Joris; Fremaut, Dirk; De Smet, Stefaan; Janssens, Geert P. J.

    2015-01-01

    Global competition for high standard feed-food resources between man and livestock, such as industrial broilers, is a concerning problem. In addition, the low productivity of scavenger chickens in developing countries leaves much to be desired. Changing the ingredients, and therefore, the nutrient composition of feed intake by commercial fed as well as scavenger chickens seems like an obvious solution. In this study, the ability of four broiler chicken breeds to perform on a commercial versus a scavenger diet was tested. The four broiler breeds differed genetically in growth potential. A significant (P < 0.01) negative effect of the scavenger diet on the bodyweight of the fast growing breeds was found and this effect decreased with decreasing growth rate in the other breeds. These differences in bodyweight gain could not be explained by differences in nutrient digestibility but were caused by the lack of ability of the fast growing breeds to increase their feed intake sufficiently. PMID:26042600

  12. Selection for growth performance in broiler chickens associates with less diet flexibility.

    PubMed

    Pauwels, Jana; Coopman, Frank; Cools, An; Michiels, Joris; Fremaut, Dirk; De Smet, Stefaan; Janssens, Geert P J

    2015-01-01

    Global competition for high standard feed-food resources between man and livestock, such as industrial broilers, is a concerning problem. In addition, the low productivity of scavenger chickens in developing countries leaves much to be desired. Changing the ingredients, and therefore, the nutrient composition of feed intake by commercial fed as well as scavenger chickens seems like an obvious solution. In this study, the ability of four broiler chicken breeds to perform on a commercial versus a scavenger diet was tested. The four broiler breeds differed genetically in growth potential. A significant (P < 0.01) negative effect of the scavenger diet on the bodyweight of the fast growing breeds was found and this effect decreased with decreasing growth rate in the other breeds. These differences in bodyweight gain could not be explained by differences in nutrient digestibility but were caused by the lack of ability of the fast growing breeds to increase their feed intake sufficiently.

  13. Effect of redox label tether length and flexibility on sensor performance of displacement-based electrochemical DNA sensors.

    PubMed

    Yu, Zhi-gang; Zaitouna, Anita J; Lai, Rebecca Y

    2014-02-17

    This article summarizes the sensor performance of four electrochemical DNA sensors that exploit the recently developed displacement-replacement sensing motif. In the absence of the target, the capture probe is partially hybridized to the signaling probe at the distal end, positioning the redox label, methylene blue (MB), away from the electrode. In the presence of the target, the MB-modified signaling probe is released; one type of probe is capable of assuming a stem-loop probe (SLP) conformation, whereas the other type adopts a linear probe (LP) conformation. Independent of the sensor architecture, all four sensors showed "signal-on" sensor behavior. Unlike the previous report, here we focused on elucidating the effect of the redox label tether length and flexibility on sensor sensitivity, specificity, selectivity, and reusability. For both SLP and LP sensors, the limit of detection was 10 pM for sensors fabricated using a signaling probe with three extra thymine (T3) bases linked to the MB label. A limit of detection of 100 pM was determined for sensors fabricated using a signaling probe with five extra thymine (T5) bases. The linear dynamic range was between 10 pM and 100 nM for the T3 sensors, and between 100 pM and 100 nM for the T5 sensors. When compared to the LP sensors, the SLP sensors showed higher signal enhancement in the presence of the full-complement target. More importantly, the SLP-T5 sensor was found to be highly specific; it is capable of discriminating between the full complement and single-base mismatch targets even when employed in undiluted blood serum. Overall, these results highlight the advantages of using oligo-T(s) as a tunable linker to control flexibility of the tethered redox label, so as to achieve the desired sensor response.

  14. Changing Feeding Regimes To Demonstrate Flexible Biogas Production: Effects on Process Performance, Microbial Community Structure, and Methanogenesis Pathways.

    PubMed

    Mulat, Daniel Girma; Jacobi, H Fabian; Feilberg, Anders; Adamsen, Anders Peter S; Richnow, Hans-Hermann; Nikolausz, Marcell

    2015-10-23

    Flexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA and mcrA genes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2 levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of the Methanosarcina genus followed by that of the Methanobacterium genus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes.

  15. Changing Feeding Regimes To Demonstrate Flexible Biogas Production: Effects on Process Performance, Microbial Community Structure, and Methanogenesis Pathways

    PubMed Central

    Mulat, Daniel Girma; Jacobi, H. Fabian; Feilberg, Anders; Adamsen, Anders Peter S.; Richnow, Hans-Hermann

    2015-01-01

    Flexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA and mcrA genes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2 levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of the Methanosarcina genus followed by that of the Methanobacterium genus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes. PMID:26497462

  16. Influence of Molecular Structure on the In Vivo Performance of Flexible Rod Polyrotaxanes

    PubMed Central

    2016-01-01

    Polyrotaxanes, a family of rod-shaped nanomaterials comprised of noncovalent polymer/macrocycle assemblies, are being used in a growing number of materials and biomedical applications. Their physiochemical properties can vary widely as a function of composition, potentially leading to different in vivo performance outcomes. We sought to characterize the pharmacokinetic profiles, toxicities, and protein corona compositions of 2-hydroxypropyl-β-cyclodextrin polyrotaxanes as a function of variations in macrocycle threading efficiency, molecular weight, and triblock copolymer core structure. We show that polyrotaxane fate in vivo is governed by the structure and dynamics of their rodlike morphologies, such that highly threaded polyrotaxanes are long circulating and deposit in the liver, whereas lung deposition and rapid clearance is observed for species bearing lower 2-hydroxypropyl-β-cyclodextrin threading percentages. Architecture differences also promote recruitment of different serum protein classes and proportions; however, physiochemical differences have little or no influence on their toxicity. These findings provide important structural insights for guiding the development of polyrotaxanes as scaffolds for biomedical applications. PMID:27387820

  17. Influence of Molecular Structure on the In Vivo Performance of Flexible Rod Polyrotaxanes.

    PubMed

    Collins, Christopher J; Mondjinou, Yawo; Loren, Bradley; Torregrosa-Allen, Sandra; Simmons, Christopher J; Elzey, Bennett D; Ayat, Nadia; Lu, Zheng-Rong; Thompson, David

    2016-09-12

    Polyrotaxanes, a family of rod-shaped nanomaterials comprised of noncovalent polymer/macrocycle assemblies, are being used in a growing number of materials and biomedical applications. Their physiochemical properties can vary widely as a function of composition, potentially leading to different in vivo performance outcomes. We sought to characterize the pharmacokinetic profiles, toxicities, and protein corona compositions of 2-hydroxypropyl-β-cyclodextrin polyrotaxanes as a function of variations in macrocycle threading efficiency, molecular weight, and triblock copolymer core structure. We show that polyrotaxane fate in vivo is governed by the structure and dynamics of their rodlike morphologies, such that highly threaded polyrotaxanes are long circulating and deposit in the liver, whereas lung deposition and rapid clearance is observed for species bearing lower 2-hydroxypropyl-β-cyclodextrin threading percentages. Architecture differences also promote recruitment of different serum protein classes and proportions; however, physiochemical differences have little or no influence on their toxicity. These findings provide important structural insights for guiding the development of polyrotaxanes as scaffolds for biomedical applications. PMID:27387820

  18. Tire Footprint Affects Hydroplaning On Wet Pavement

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1989-01-01

    Recent investigations of tire hydroplaning at highway speeds reveal, in addition to inflation pressure, tire-footprint aspect ratio (FAR), defined as width divided by length of tire surface in contact with pavement, significantly influences speed at which dynamic hydroplaning begins. Tire speeds and forces developed during tests of up to 65 mi/h (105 km/h) were monitored on flooded test surface to identify development of hydroplaning. Study focused on automotive tires because FAR's of automotive tires vary more than those of aircraft tires.

  19. Effectiveness of low impact development practices in two urbanized watersheds: retrofitting with rain barrel/cistern and porous pavement.

    PubMed

    Ahiablame, Laurent M; Engel, Bernard A; Chaubey, Indrajeet

    2013-04-15

    The impacts of urbanization on hydrology and water quality can be minimized with the use of low impact development (LID) practices in urban areas. This study assessed the performance of rain barrel/cistern and porous pavement as retrofitting technologies in two urbanized watersheds of 70 and 40 km(2) near Indianapolis, Indiana. Six scenarios consisting of the watershed existing condition, 25% and 50% implementation of rain barrel/cistern and porous pavement, and 25% rain barrel/cistern combined with 25% porous pavement were evaluated using a proposed LID modeling framework and the Long-Term Hydrologic Impact Assessment (L-THIA)-LID model. The model was calibrated for annual runoff from 1991 to 2000, and validated from 2001 to 2010 for the two watersheds. For the calibration period, R(2) and NSE values were greater than 0.60 and 0.50 for annual runoff and streamflow. Baseflow was not calibrated in this study. During the validation period, R(2) and NSE values were greater than 0.50 for runoff and streamflow, and 0.30 for baseflow in the two watersheds. The various application levels of barrel/cistern and porous pavement resulted in 2-12% reduction in runoff and pollutant loads for the two watersheds. Baseflow loads slightly increased with increase in baseflow by more than 1%. However, reduction in runoff led to reduction in total streamflow and associated pollutant loads by 1-9% in the watersheds. The results also indicate that the application of 50% rain barrel/cistern, 50% porous pavement and 25% rain barrel/cistern combined with 25% porous pavement are good retrofitting options in these watersheds. The L-THIA-LID model can be used to inform management and decision-making for implementation of LID practices at the watershed scale.

  20. Adaptive Road Crack Detection System by Pavement Classification

    PubMed Central

    Gavilán, Miguel; Balcones, David; Marcos, Oscar; Llorca, David F.; Sotelo, Miguel A.; Parra, Ignacio; Ocaña, Manuel; Aliseda, Pedro; Yarza, Pedro; Amírola, Alejandro

    2011-01-01

    This paper presents a road distress detection system involving the phases needed to properly deal with fully automatic road distress assessment. A vehicle equipped with line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital images that will be further processed to identify road cracks. Pre-processing is firstly carried out to both smooth the texture and enhance the linear features. Non-crack features detection is then applied to mask areas of the images with joints, sealed cracks and white painting, that usually generate false positive cracking. A seed-based approach is proposed to deal with road crack detection, combining Multiple Directional Non-Minimum Suppression (MDNMS) with a symmetry check. Seeds are linked by computing the paths with the lowest cost that meet the symmetry restrictions. The whole detection process involves the use of several parameters. A correct setting becomes essential to get optimal results without manual intervention. A fully automatic approach by means of a linear SVM-based classifier ensemble able to distinguish between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal feature vector includes different texture-based features. The parameters are then tuned depending on the output provided by the classifier. Regarding non-crack features detection, results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2. In addition, the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement. PMID:22163717

  1. Flexible copper-stabilized sulfur-carbon nanofibers with excellent electrochemical performance for Li-S batteries

    NASA Astrophysics Data System (ADS)

    Zeng, Linchao; Jiang, Yu; Xu, Jun; Wang, Min; Li, Weihan; Yu, Yan

    2015-06-01

    By rational design, we fabricated a flexible and free-standing copper-immobilized sulfur-porous carbon nanofiber (denoted as S@PCNFs-Cu) electrode by simply impregnating sulfur into electrospun derived Cu embedded porous carbon nanofibers (PCNFs-Cu). The PCNF film with a 3D interconnected structure is used as a conducting matrix to encapsulate sulfur. In addition, the introduction of Cu leads to the formation of a chemical bond between Cu and S, preventing the dissolution of polysulfide during cycling. The micropores and mesopores of PCNF hosts provide free space to accommodate the volume change of S and polysulfide. When used as a cathode material for Li-S batteries, the S@PCNFs-Cu (S content: 52 wt%) exhibits much better electrochemical performance compared to the Cu-free S@PCNF electrode. The S@PCNFs-Cu displays high reversible capacity (680 mA h g-1 after 100 cycles at 50 mA g-1), excellent rate capability (415 mA h g-1 at 1 A g-1) and super Coulombic efficiency of 100%. This strategy of stabilizing S with a small amount of copper nanoparticles can be a very promising method to prepare free-standing cathode material for high-performance Li-S batteries.

  2. Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications

    PubMed Central

    Gupta, Ram K.; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar

    2015-01-01

    Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures. PMID:26482921

  3. Flexible copper-stabilized sulfur-carbon nanofibers with excellent electrochemical performance for Li-S batteries.

    PubMed

    Zeng, Linchao; Jiang, Yu; Xu, Jun; Wang, Min; Li, Weihan; Yu, Yan

    2015-07-01

    By rational design, we fabricated a flexible and free-standing copper-immobilized sulfur-porous carbon nanofiber (denoted as S@PCNFs-Cu) electrode by simply impregnating sulfur into electrospun derived Cu embedded porous carbon nanofibers (PCNFs-Cu). The PCNF film with a 3D interconnected structure is used as a conducting matrix to encapsulate sulfur. In addition, the introduction of Cu leads to the formation of a chemical bond between Cu and S, preventing the dissolution of polysulfide during cycling. The micropores and mesopores of PCNF hosts provide free space to accommodate the volume change of S and polysulfide. When used as a cathode material for Li-S batteries, the S@PCNFs-Cu (S content: 52 wt%) exhibits much better electrochemical performance compared to the Cu-free S@PCNF electrode. The S@PCNFs-Cu displays high reversible capacity (680 mA h g(-1) after 100 cycles at 50 mA g(-1)), excellent rate capability (415 mA h g(-1) at 1 A g(-1)) and super Coulombic efficiency of 100%. This strategy of stabilizing S with a small amount of copper nanoparticles can be a very promising method to prepare free-standing cathode material for high-performance Li-S batteries. PMID:26059471

  4. Designed Construction of a Graphene and Iron Oxide Freestanding Electrode with Enhanced Flexible Energy-Storage Performance.

    PubMed

    Li, Meng; Pan, Feng; Choo, Eugene Shi Guang; Lv, Yunbo; Chen, Yu; Xue, Junmin

    2016-03-23

    In this work, a bendable graphene@iron oxide hybrid film (GFeF) electrode was fabricated through a filtration-assisted self-assembly method. Morphological characterization of GFeF revealed a uniform distribution of iron oxide nanoparticles between graphene nanosheets. Surface chemical characterization confirmed that graphene oxide in the as-prepared hybrid film was effectively reduced after thermal reduction. The electrochemical performance of a GFeF half-cell versus Li/Li(+) exhibited high gravimetric capacity (855.2 mAh g(-1) at 0.02 A g(-1)), high volumetric capacity (1949.9 mAh cm(-3) at 0.02 A g(-1)), and superior cycling stability (93% capacitance retention after 500 cycles). On the basis of such a bendable electrode, a hybrid Li-ion supercapacitor that offers an operation voltage of 3.5 V and delivers a high energy density (129.6 Wh kg(-1)) like a Li-ion battery combined with a high power density (1870 W kg(-1)) like a supercapacitor was fabricated. In addition to the superior energy-storage capability, the as-fabricated prototype pouch cell also exhibited excellent mechanical flexibility and stable electrochemical performances under dynamic bending. The viability of such an energy-storage device provides a possible design pathway for future wearable electronics.

  5. Temporary bond-debond process for manufacture of flexible electronics: Impact of adhesive and carrier properties on performance

    NASA Astrophysics Data System (ADS)

    Haq, Jesmin; Ageno, Scott; Raupp, Gregory B.; Vogt, Bryan D.; Loy, Doug

    2010-12-01

    Manufacturing of microelectronics on flexible substrates is challenged by difficulties in maintaining alignment and conformity of the substrate through deposition, patterning, and etch processes. To address these difficulties, a temporary bond-debond method has been developed for effective automated handling of flexible substrate systems during electronics fabrication. The flexible substrate is temporarily bonded to a rigid carrier, which provides structural support and suppresses bending during processing. The photolithographic alignment of the bonded system is strongly dependent upon the viscoelastic properties of the bonding adhesive. An additional challenge is to control the stress developed during processing; these stresses evolve predominately through thermomechanical property mismatches between the carrier and flexible substrate. To investigate the role of the thermomechanical properties of the carrier and adhesive, the stress, and subsequent bowing of bonded systems (flexible substrate-adhesive-carrier) is examined systematically using different carriers and adhesives. Excellent registration of the flexible circuitry fabricated on the bonded system with low stress can be achieved by using a viscoelastic adhesive with a low loss factor (tan δ) and a carrier with high modulus and coefficient of thermal expansion that is closely matched to the flexible substrate. This bond-debond process enables the high yield fabrication of flexible microelectronics on plastic substrates.

  6. Runoff and infiltration characteristics of pavement structures--review of an extensive monitoring program.

    PubMed

    Illgen, M; Harting, K; Schmitt, T G; Welker, A

    2007-01-01

    The stormwater runoff and infiltration performance of permeable pavements has been systematically evaluated within an intensive monitoring program. The primary objective of the investigation was to generate a broad database, which enables the development of an advanced simulation module for urban drainage modelling. Over 160 field and lab scale experiments have been completed and analyzed for surface runoff and infiltration characteristics. The test series include several pavement types under various boundary conditions such as diverse precipitation impacts, varying surface slope and layer construction as well as different stages of surface clogging and several base and subgrade layer characteristics. The results represent a reliable and comprehensive database that allows profound conclusions and substantial recommendations. PMID:18048986

  7. A review on using crumb rubber in reinforcement of asphalt pavement.

    PubMed

    Mashaan, Nuha Salim; Ali, Asim Hassan; Karim, Mohamed Rehan; Abdelaziz, Mahrez

    2014-01-01

    An immense problem affecting environmental pollution is the increase of waste tyre vehicles. In an attempt to decrease the magnitude of this issue, crumb rubber modifier (CRM) obtained from waste tyre rubber has gained interest in asphalt reinforcement. The use of crumb rubber in the reinforcement of asphalt is considered as a smart solution for sustainable development by reusing waste materials, and it is believed that crumb rubber modifier (CRM) could be an alternative polymer material in improving hot mix asphalt performance properties. In this paper, a critical review on the use of crumb rubber in reinforcement of asphalt pavement will be presented and discussed. It will also include a review on the effects of CRM on the stiffness, rutting, and fatigue resistance of road pavement construction.

  8. A Review on Using Crumb Rubber in Reinforcement of Asphalt Pavement

    PubMed Central

    Mashaan, Nuha Salim; Ali, Asim Hassan; Karim, Mohamed Rehan; Abdelaziz, Mahrez

    2014-01-01

    An immense problem affecting environmental pollution is the increase of waste tyre vehicles. In an attempt to decrease the magnitude of this issue, crumb rubber modifier (CRM) obtained from waste tyre rubber has gained interest in asphalt reinforcement. The use of crumb rubber in the reinforcement of asphalt is considered as a smart solution for sustainable development by reusing waste materials, and it is believed that crumb rubber modifier (CRM) could be an alternative polymer material in improving hot mix asphalt performance properties. In this paper, a critical review on the use of crumb rubber in reinforcement of asphalt pavement will be presented and discussed. It will also include a review on the effects of CRM on the stiffness, rutting, and fatigue resistance of road pavement construction. PMID:24688369

  9. Pavement cracking measurements using 3D laser-scan images

    NASA Astrophysics Data System (ADS)

    Ouyang, W.; Xu, B.

    2013-10-01

    Pavement condition surveying is vital for pavement maintenance programs that ensure ride quality and traffic safety. This paper first introduces an automated pavement inspection system which uses a three-dimensional (3D) camera and a structured laser light to acquire dense transverse profiles of a pavement lane surface when it carries a moving vehicle. After the calibration, the 3D system can yield a depth resolution of 0.5 mm and a transverse resolution of 1.56 mm pixel-1 at 1.4 m camera height from the ground. The scanning rate of the camera can be set to its maximum at 5000 lines s-1, allowing the density of scanned profiles to vary with the vehicle's speed. The paper then illustrates the algorithms that utilize 3D information to detect pavement distress, such as transverse, longitudinal and alligator cracking, and presents the field tests on the system's repeatability when scanning a sample pavement in multiple runs at the same vehicle speed, at different vehicle speeds and under different weather conditions. The results show that this dedicated 3D system can capture accurate pavement images that detail surface distress, and obtain consistent crack measurements in repeated tests and under different driving and lighting conditions.

  10. Evaluation of transverse piezoelectric coefficient of ZnO thin films deposited on different flexible substrates: a comparative study on the vibration sensing performance.

    PubMed

    Joshi, Sudeep; Nayak, Manjunatha M; Rajanna, K

    2014-05-28

    We report on the systematic comparative study of highly c-axis oriented and crystalline piezoelectric ZnO thin films deposited on four different flexible substrates for vibration sensing application. The flexible substrates employed for present experimental study were namely a metal alloy (Phynox), metal (aluminum), polyimide (Kapton), and polyester (Mylar). ZnO thin films were deposited by an RF reactive magnetron sputtering technique. ZnO thin films of similar thicknesses of 700 ± 30 nm were deposited on four different flexible substrates to have proper comparative studies. The crystallinity, surface morphology, chemical composition, and roughness of ZnO thin films were evaluated by respective material characterization techniques. The transverse piezoelectric coefficient (d31) value for assessing the piezoelectric property of ZnO thin films on different flexible substrates was measured by a four-point bending method. ZnO thin films deposited on Phynox alloy substrate showed relatively better material characterization results and a higher piezoelectric d31 coefficient value as compared to ZnO films on metal and polymer substrates. In order to experimentally verify the above observations, vibration sensing studies were performed. As expected, the ZnO thin film deposited on Phynox alloy substrate showed better vibration sensing performance. It has generated the highest peak to peak output voltage amplitude of 256 mV as compared to that of aluminum (224 mV), Kapton (144 mV), and Mylar (46 mV). Therefore, metal alloy flexible substrate proves to be a more suitable, advantageous, and versatile choice for integrating ZnO thin films as compared to metal and polymer flexible substrates for vibration sensing applications. The present experimental study is extremely important and helpful for the selection of a suitable flexible substrate for various applications in the field of sensor and actuator technology.

  11. SafAIRway: an airway training for pulmonologists performing a flexible bronchoscopy with nonanesthesiologist administered propofol sedation

    PubMed Central

    Schulze, Melanie; Grande, Bastian; Kolbe, Michaela; Kriech, Sarah; Nöthiger, Christoph B.; Kohler, Malcolm; Spahn, Donat R.; Franzen, Daniel

    2016-01-01

    Abstract Nonanesthesiologist administered propofol (NAAP) sedation for flexible bronchoscopy is controversial, because there is no established airway management (AM) training for pulmonologists. The aim was to investigate the performance and acceptance of a proposed AM algorithm and training for pulmonologists performing NAAP sedation. The algorithm includes using 3 maneuvers including bag mask ventilation (BMV), laryngeal tube (LT), and needle cricothyrotomy (NCT). During training (consisting of 2 sessions with a break of 9 weeks in between), these maneuvers were demonstrated and exercised, followed by 4 consecutive attempts to succeed with each of these devices. The primary outcome was the improvement of completion time needed for a competent airway. Secondary outcomes were the trainees’ overall reactions to the training and algorithm, and the perceptions of psychological safety (PS). The 23 staff members of the Department of Pulmonology performed a total of 552 attempts at AM procedures (4 attempts at each of the 3 maneuvers in 2 sessions), and returned a total of 42 questionnaires (4 questionnaires were not returned). Median completion times of LT and NCT improved significantly between Sessions 1 and 2 (P = 0.005 and P = 0.04, respectively), whereas BMV was only marginally improved (P = 0.05). Trainees perceived training to be useful and expressed satisfaction with this training and the algorithm. The perception of PS increased after training. An AM algorithm and training for pulmonologists leads to improved technical AM skills, and is considered useful by trainees and raised their perception of PS during training. It thus represents a promising program. PMID:27281093

  12. ‘Bucky gel’ of multiwalled carbon nanotubes as electrodes for high performance, flexible electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Singh, Manoj K.; Kumar, Yogesh; Hashmi, S. A.

    2013-11-01

    We report the preparation of a gelled form of multiwalled carbon nanotubes (MWCNTs) with an ionic liquid 1-butyl-1-methyl pyrrolidinium bis(trifluoromethane sulfonyl)imide (BMPTFSI)), referred to as ‘bucky gel’, to be used as binderless electrodes in electrical double layer capacitors (EDLCs). The characteristics of gelled MWCNTs are compared with pristine MWCNTs using transmission electron microscopy, x-ray diffraction and Raman studies. A gel polymer electrolyte film consisting of a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and BMPTFSI, exhibiting a room temperature ionic conductivity of 1.5 × 10-3 S cm-1, shows its suitability as an electrolyte/separator in flexible EDLCs. The performance of EDLCs, assembled with bucky gel electrodes, using impedance spectroscopy, cyclic voltammetry and charge-discharge analyses, are compared with those fabricated with pristine MWCNT-electrodes. An improvement in specific capacitance (from 19.6 to 51.3 F g-1) is noted when pristine MWCNTs are replaced by gelled MWCNT-binderless electrodes. Although the rate performance of the EDLCs with gelled MWCNT-electrodes is reduced, the pulse power of the device is sufficiently high (˜10.5 kW kg-1). The gelled electrodes offer improvements in energy and power densities from 2.8 to 8.0 Wh kg-1 and 2.0 to 4.7 kW kg-1, respectively. Studies indicate that the gel formation of MWCNTs with ionic liquid is an excellent route to obtain high-performance EDLCs.

  13. Research on pavement roughness based on the laser triangulation

    NASA Astrophysics Data System (ADS)

    Chen, Wenxue; Ni, Zhibin; Hu, Xinhan; Lu, Xiaofeng

    2016-06-01

    Pavement roughness is one of the most important factors for appraising highway construction. In this paper, we choose the laser triangulation to measure pavement roughness. The principle and configuration of laser triangulation are introduced. Based on this technology, the pavement roughness of a road surface is measured. The measurement results are given in this paper. The measurement range of this system is 50 μm. The measurement error of this technology is analyzed. This technology has an important significance to appraise the quality of highway after completion of the workload.

  14. Flexible and free-standing ternary Cd₂GeO₄ nanowire/graphene oxide/CNT nanocomposite film with improved lithium-ion battery performance.

    PubMed

    Wang, Linlin; Zhang, Xiaozhu; Shen, Guozhen; Peng, Xia; Zhang, Min; Xu, Jingli

    2016-03-01

    To realize flexible lithium-ion batteries (LIBs), the design of flexible electrode/current collector materials with high mechanical flexibility, superior conductivity and excellent electrochemical performance and electrical stability are highly desirable. In this work, we developed a new ternary Cd2GeO4 nanowire/graphene oxide/carbon nanotube nanocomposite (Cd2GeO4 NW/GO/CNT) film electrode. Benefiting from the efficient combination of GO and Cd2GeO4 NWs, our Cd2GeO4 NW/GO/CNT composite film exhibits a capacity of 784 mA h g(-1) after 30 cycles at 200 mA g(-1), which is 2.7 times higher than that of Cd2GeO4 NW/CNT film (290 mA h g(-1)). At a higher rate of 400 mA g(-1) and 1 A g(-1), the Cd2GeO4 NW/GO/CNT film delivers a stable capacity of 617 and 397 mA h g(-1), respectively. Even at 2.5 A g(-1), it still exhibits a high rate capacity of 180 mA h g(-1). The flexible Cd2GeO4 NW/GO/CNT film clearly demonstrates good cycling stability and rate performance for anode materials in LIBs. This route may be extended to design other flexible free-standing metal germanate nanocomposite anode materials.

  15. Flexible and free-standing ternary Cd2GeO4 nanowire/graphene oxide/CNT nanocomposite film with improved lithium-ion battery performance

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Zhang, Xiaozhu; Shen, Guozhen; Peng, Xia; Zhang, Min; Xu, Jingli

    2016-03-01

    To realize flexible lithium-ion batteries (LIBs), the design of flexible electrode/current collector materials with high mechanical flexibility, superior conductivity and excellent electrochemical performance and electrical stability are highly desirable. In this work, we developed a new ternary Cd2GeO4 nanowire/graphene oxide/carbon nanotube nanocomposite (Cd2GeO4 NW/GO/CNT) film electrode. Benefiting from the efficient combination of GO and Cd2GeO4 NWs, our Cd2GeO4 NW/GO/CNT composite film exhibits a capacity of 784 mA h g-1 after 30 cycles at 200 mA g-1, which is 2.7 times higher than that of Cd2GeO4 NW/CNT film (290 mA h g-1). At a higher rate of 400 mA g-1 and 1 A g-1, the Cd2GeO4 NW/GO/CNT film delivers a stable capacity of 617 and 397 mA h g-1, respectively. Even at 2.5 A g-1, it still exhibits a high rate capacity of 180 mA h g-1. The flexible Cd2GeO4 NW/GO/CNT film clearly demonstrates good cycling stability and rate performance for anode materials in LIBs. This route may be extended to design other flexible free-standing metal germanate nanocomposite anode materials.

  16. High performance flexible ultraviolet photodetectors based on TiO2/graphene hybrid for irradiation monitoring applications

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Wang, Xiaohong; Kuang, Xuanlin; Xu, Sixing

    2016-07-01

    This paper reports a novel ultraviolet (UV) photodetector based on a TiO2/graphene hybrid, with high responsivity (0.482 A W‑1) at 3 V bias and 330 nm irradiation, which is ~100 times higher than that based on pure TiO2. The collaboration of TiO2 and graphene in the hybrid material contributes to the high performance of the device. To be more specific, graphene provides a large surface area to load sufficient TiO2 nanoparticles, and the generated electrons are instantly collected due to the prominent electrical properties of graphene which can overcome the low quantum efficiency of pristine TiO2 caused by recombination of photo-induced electron–hole pairs. The device was fabricated on a flexible substrate using a facile spraying method that shows the possibility of broadening the future of photodetectors in wearable devices. An on-board interface circuit based on commercial IC components is implemented to collaborate with the photodetector to demonstrate a UV sensing application.

  17. High performance flexible ultraviolet photodetectors based on TiO2/graphene hybrid for irradiation monitoring applications

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Wang, Xiaohong; Kuang, Xuanlin; Xu, Sixing

    2016-07-01

    This paper reports a novel ultraviolet (UV) photodetector based on a TiO2/graphene hybrid, with high responsivity (0.482 A W-1) at 3 V bias and 330 nm irradiation, which is ~100 times higher than that based on pure TiO2. The collaboration of TiO2 and graphene in the hybrid material contributes to the high performance of the device. To be more specific, graphene provides a large surface area to load sufficient TiO2 nanoparticles, and the generated electrons are instantly collected due to the prominent electrical properties of graphene which can overcome the low quantum efficiency of pristine TiO2 caused by recombination of photo-induced electron-hole pairs. The device was fabricated on a flexible substrate using a facile spraying method that shows the possibility of broadening the future of photodetectors in wearable devices. An on-board interface circuit based on commercial IC components is implemented to collaborate with the photodetector to demonstrate a UV sensing application.

  18. Solid-State High Performance Flexible Supercapacitors Based on Polypyrrole-MnO2-Carbon Fiber Hybrid Structure

    PubMed Central

    Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua

    2013-01-01

    A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an “in situ growth for conductive wrapping” and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm−3 at a discharge current density of 0.1 A cm−3 and an energy density of 6.16 × 10−3 Wh cm−3 at a power density of 0.04 W cm−3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the “in situ growth for conductive wrapping” method might be generalized to open up new strategies for designing next-generation energy storage devices. PMID:23884478

  19. Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property

    PubMed Central

    Shi, Shan; Xu, Chengjun; Yang, Cheng; Chen, Yanyi; Liu, Juanjuan; Kang, Feiyu

    2013-01-01

    Flexible asymmetric supercapacitors with excellent electrochemical performance and aesthetic property are realized by using ultrathin two-dimensional (2D) MnO2 and graphene nanosheets as cathode and anode materials, respectively. 2D MnO2 nanosheets (MSs) with a thickness of ca. 2 nm are synthesized with a soft template method for the first time, which achieve a high specific capacitance of 774 F g−1 even after 10000 cycles. Asymmetric supercapacitors based on ultrathin MSs and graphene exhibit a very high energy density up to 97.2 Wh kg−1 with no more than 3% capacitance loss after 10000 cycles in aqueous electrolyte. Most interestingly, we show that the energy storage device can have an aesthetic property. For instance, a “Chinese panda” supercapacitor is capable of lighting up a red light emitting diode. This work has another, quite different aspect that a supercapacitor is no longer a cold industry product, but could have the meaning of art. PMID:24008931

  20. Solid-state high performance flexible supercapacitors based on polypyrrole-MnO2-carbon fiber hybrid structure.

    PubMed

    Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua

    2013-01-01

    A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an "in situ growth for conductive wrapping" and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm(-3) at a discharge current density of 0.1 A cm(-3) and an energy density of 6.16 × 10(-3) Wh cm(-3) at a power density of 0.04 W cm(-3), the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the "in situ growth for conductive wrapping" method might be generalized to open up new strategies for designing next-generation energy storage devices.

  1. Characterization of cementitiously stabilized subgrades for mechanistic-empirical pavement design

    NASA Astrophysics Data System (ADS)

    Solanki, Pranshoo

    Pavements are vulnerable to subgrade layer performance because it acts as a foundation. Due to increase in the truck traffic, pavement engineers are challenged to build more strong and long-lasting pavements. To increase the load-bearing capacity of pavements, subgrade layer is often stabilized with cementitious additives. Thus, an overall characterization of stabilized subgrade layer is important for enhanced short- and long-term pavement performance. In this study, the effect of type and amount of additive on the short-term performance in terms of material properties recommended by the new Mechanistic-Empirical Pavement Design Guide (MEPDG) is examined. A total of four soils commonly encountered as subgrades in Oklahoma are utilized. Results show that the changes in the Mr, ME and UCS values stabilized specimens depend on the soil type and properties of additives. The long-term performance (or durability) of stabilized soil specimens is investigated by conducting freeze-thaw (F-T) cycling, vacuum saturation and tube suction tests on 7-day cured P-, K- and C-soil specimens stabilized with 6% lime, 10% CFA and 10% CKD. This study is motivated by the fact that during the service life of pavement stabilized layers are subjected to F-T cycles and moisture variations. It is found that that UCS value of all the stabilized specimens decreased with increase in the number of F-T cycles. A strong correlation was observed between UCS values retained after vacuum saturation and F-T cycles indicating that vacuum saturation could be used as a time-efficient and inexpensive method for evaluating durability of stabilized soils. In this study, short- and long-term observations from stabilization of sulfate bearing soil with locally available low (CFA), moderate (CKD) and high (lime) calcium-based stabilizers are determined to evaluate and compare the effect of additive type on the phenomenon of sulfate-induced heave. The impact of different factors on the development of the

  2. Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: An excellent structure for high-performance flexible solid-state supercapacitors

    DOE PAGESBeta

    Hu, Nantao; Zhang, Liling; Yang, Chao; Zhao, Jian; Yang, Zhi; Wei, Hao; Liao, Hanbin; Feng, Zhenxing; Fisher, Adrian; Zhang, Yafei; et al

    2016-01-22

    Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance ofmore » 391 F/cm3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm2, and a competitive volumetric capacitance of 25.6 F/cm3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. Lastly, this structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices.« less

  3. Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors

    PubMed Central

    Hu, Nantao; Zhang, Liling; Yang, Chao; Zhao, Jian; Yang, Zhi; Wei, Hao; Liao, Hanbin; Feng, Zhenxing; Fisher, Adrian; Zhang, Yafei; Xu, Zhichuan J.

    2016-01-01

    Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance of 391 F/cm3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm2, and a competitive volumetric capacitance of 25.6 F/cm3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. This structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices. PMID:26795067

  4. Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Nantao; Zhang, Liling; Yang, Chao; Zhao, Jian; Yang, Zhi; Wei, Hao; Liao, Hanbin; Feng, Zhenxing; Fisher, Adrian; Zhang, Yafei; Xu, Zhichuan J.

    2016-01-01

    Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance of 391 F/cm3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm2, and a competitive volumetric capacitance of 25.6 F/cm3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. This structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices.

  5. New structural systems for zero-maintenance pavements. Volume 3: Anchored pavement system designed for Edens Expressway

    NASA Astrophysics Data System (ADS)

    Saxena, S. K.; Militsopoulos, S. G.

    1980-08-01

    The response of the Edens Expressway subjected to mechanical and environmental loads using the anchored pavement concept is discussed. The mechanical and thermal properties of materials that could be encountered in future reconstruction of Edens Expressway are presented in a consistent form for computer programming. These properties are viewed as typical design values during investigation of pavement response. The behavior of the anchored pavement under induced temperature loads and weakening of subgrade (by thawing action) is clearly demonstrated. The example problem provides the input parameters of materials and loads for the analysis, the generation of finite element mesh, and the results of the analysis.

  6. High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes.

    PubMed

    Yan, Jing; Jeong, Young Gyu

    2016-06-22

    Piezoelectric nanogenerators, harvesting energy from mechanical stimuli in our living environments, hold great promise to power sustainable self-sufficient micro/nanosystems and mobile/portable electronics. BaTiO3 as a lead-free material with high piezoelectric coefficient and dielectric constant has been widely examined to realize nanogenerators, capacitors, sensors, etc. In this study, polydimethylsiloxane (PDMS)-based flexible composites including BaTiO3 nanofibers with different alignment modes were manufactured and their piezoelectric performance was examined. For the study, BaTiO3 nanofibers were prepared by an electrospinning technique utilizing a sol-gel precursor and following calcination process, and they were then aligned vertically or horizontally or randomly in PDMS matrix-based nanogenerators. The morphological structures of BaTiO3 nanofibers and their nanogenerators were analyzed by using SEM images. The crystal structures of the nanogenerators before and after poling were characterized by X-ray diffraction. The dielectric and piezoelectric properties of the nanogenerators were investigated as a function of the nanofiber alignment mode. The nanogenerator with BaTiO3 nanofibers aligned vertically in the PDMS matrix sheet achieved high piezoelectric performance of an output power of 0.1841 μW with maximum voltage of 2.67 V and current of 261.40 nA under a low mechanical stress of 0.002 MPa, in addition to a high dielectric constant of 40.23 at 100 Hz. The harvested energy could thus power a commercial LED directly or be stored into capacitors after rectification.

  7. Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors

    NASA Astrophysics Data System (ADS)

    Song, Hao; Fu, Jijiang; Ding, Kang; Huang, Chao; Wu, Kai; Zhang, Xuming; Gao, Biao; Huo, Kaifu; Peng, Xiang; Chu, Paul K.

    2016-10-01

    The hybrid Li-ion electrochemical supercapacitor (Li-HSC) combining the battery-like anode with capacitive cathode is a promising energy storage device boasting large energy and power densities. Orthorhombic Nb2O5 is a good anode material in Li-HSCs because of its large pseudocapacitive Li-ion intercalation capacity. Herein, we report a high-performance, binder-free and flexible anode consisting of long Nb2O5 nanowires and graphene (L-Nb2O5 NWs/rGO). The paper-like L-Nb2O5 NWs/rGO film electrode has a large mass loading of Nb2O5 of 93.5 wt% as well as short solid-state ion diffusion length, and enhanced conductivity (5.1 S cm-1). The hybrid L-Nb2O5 NWs/rGO paper electrode shows a high reversible specific capacity of 160 mA h g-1 at a current density of 0.2 A g-1, superior rate capability with capacitance retention of 60% when the current density increases from 0.2 to 5 A g-1, as well as excellent cycle stability. The Li-HSC device based on the L-Nb2O5/rGO anode and the cathode of biomass-derived carbon nanosheets delivers an energy density of 106 Wh kg-1 at 580 W kg-1 and 32 Wh kg-1 at a large power density of 14 kW kg-1. Moreover, the Li-HSC device exhibits excellent cycling performance without obvious capacitance decay after 1000 cycles.

  8. High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes.

    PubMed

    Yan, Jing; Jeong, Young Gyu

    2016-06-22

    Piezoelectric nanogenerators, harvesting energy from mechanical stimuli in our living environments, hold great promise to power sustainable self-sufficient micro/nanosystems and mobile/portable electronics. BaTiO3 as a lead-free material with high piezoelectric coefficient and dielectric constant has been widely examined to realize nanogenerators, capacitors, sensors, etc. In this study, polydimethylsiloxane (PDMS)-based flexible composites including BaTiO3 nanofibers with different alignment modes were manufactured and their piezoelectric performance was examined. For the study, BaTiO3 nanofibers were prepared by an electrospinning technique utilizing a sol-gel precursor and following calcination process, and they were then aligned vertically or horizontally or randomly in PDMS matrix-based nanogenerators. The morphological structures of BaTiO3 nanofibers and their nanogenerators were analyzed by using SEM images. The crystal structures of the nanogenerators before and after poling were characterized by X-ray diffraction. The dielectric and piezoelectric properties of the nanogenerators were investigated as a function of the nanofiber alignment mode. The nanogenerator with BaTiO3 nanofibers aligned vertically in the PDMS matrix sheet achieved high piezoelectric performance of an output power of 0.1841 μW with maximum voltage of 2.67 V and current of 261.40 nA under a low mechanical stress of 0.002 MPa, in addition to a high dielectric constant of 40.23 at 100 Hz. The harvested energy could thus power a commercial LED directly or be stored into capacitors after rectification. PMID:27237223

  9. Assessment of in-situ compaction degree of HMA pavement surface layers using GPR and novel dielectric properties-based algorithms

    NASA Astrophysics Data System (ADS)

    Georgiou, Panos; Loizos, Fokion

    2015-04-01

    Field compaction of asphalt pavements is ultimately conducted to achieve layer(s) with suitable mechanical stability. However, the achieved degree of compaction has a significant influence on the performance of asphalt pavements. Providing all desirable mixture design characteristics without adequate compaction could lead to premature permanent deformation, excessive aging, and moisture damage; these distresses reduce the useful life of asphalt pavements. Hence, proper construction of an asphalt pavement is necessary to develop a long lasting roadway that will help minimize future maintenance. This goal is achieved by verifying and confirming that design specifications, in this case density specifications are met through the use of Quality Assurance (QA) practices. With respect to in-situ compaction degree of hot mix asphalt (HMA) pavement surface layers, nearly all agencies specify either cored samples or nuclear/ non nuclear density gauges to provide density measurement of the constructed pavement. Typically, a small number of spot tests (with either cores or nuclear gauges) are run and a judgment about the density level of the entire roadway is made based on the results of this spot testing. Unfortunately, density measurement from a small number of spots may not be representative of the density of the pavement mat. Hence, full coverage evaluation of compaction quality of the pavement mat is needed. The Ground Penetrating Radar (GPR), as a Non Destructive Testing (NDT) technique, is an example of a non-intrusive technique that favors over the methods mentioned above for assessing compaction quality of asphalt pavements, since it allows measurement of all mat areas. Further, research studies in recent years have shown promising results with respect to its capability, coupled with the use of novel algorithms based on the dielectric properties of HMA, to predict the in-situ field density. In view of the above, field experimental surveys were conducted to assess the

  10. Laser Scanning on Road Pavements: A New Approach for Characterizing Surface Texture

    PubMed Central

    Bitelli, Gabriele; Simone, Andrea; Girardi, Fabrizio; Lantieri, Claudio

    2012-01-01

    The surface layer of road pavement has a particular importance in relation to the satisfaction of the primary demands of locomotion, such as security and eco-compatibility. Among those pavement surface characteristics, the “texture” appears to be one of the most interesting with regard to the attainment of skid resistance. Specifications and regulations, providing a wide range of functional indicators, act as guidelines to satisfy the performance requirements. This paper describes an experiment on the use of laser scanner techniques on various types of asphalt for texture characterization. The use of high precision laser scanners, such as the triangulation types, is proposed to expand the analysis of road pavement from the commonly and currently used two-dimensional method to a three-dimensional one, with the aim of extending the range of the most important parameters for these kinds of applications. Laser scanners can be used in an innovative way to obtain information on areal surface layer through a single measurement, with data homogeneity and representativeness. The described experience highlights how the laser scanner is used for both laboratory experiments and tests in situ, with a particular attention paid to factors that could potentially affect the survey. PMID:23012535

  11. Laser scanning on road pavements: a new approach for characterizing surface texture.

    PubMed

    Bitelli, Gabriele; Simone, Andrea; Girardi, Fabrizio; Lantieri, Claudio

    2012-01-01

    The surface layer of road pavement has a particular importance in relation to the satisfaction of the primary demands of locomotion, such as security and eco-compatibility. Among those pavement surface characteristics, the "texture" appears to be one of the most interesting with regard to the attainment of skid resistance. Specifications and regulations, providing a wide range of functional indicators, act as guidelines to satisfy the performance requirements. This paper describes an experiment on the use of laser scanner techniques on various types of asphalt for texture characterization. The use of high precision laser scanners, such as the triangulation types, is proposed to expand the analysis of road pavement from the commonly and currently used two-dimensional method to a three-dimensional one, with the aim of extending the range of the most important parameters for these kinds of applications. Laser scanners can be used in an innovative way to obtain information on areal surface layer through a single measurement, with data homogeneity and representativeness. The described experience highlights how the laser scanner is used for both laboratory experiments and tests in situ, with a particular attention paid to factors that could potentially affect the survey. PMID:23012535

  12. ANALYSIS OF GROUP MAINTENANCE STRATEGY -ROAD PAVEMENT AND SEWERAGE PIPES-

    NASA Astrophysics Data System (ADS)

    Tanimoto, Keishi; Sugimoto, Yasuaki; Miyamoto, Shinya; Nada, Hideki; Hosoi, Yoshihiko

    Recently, it is critical to manage deteriorating sewerage and road facilities efficiently and strategically. Since the sewerage pipes are mostly installed under road pavement, the works for the replacement of the sewerage pipes are partially common to the works for the road. This means that the replacement cost can be saved by coordinating the timing of the replacements by sewerage pipe and road pavement. The purpose of the study is to develop the model based on Markov decision process to derive the optimal group maintenance policy so as to minimize lifecycle cost. Then the model is applied to case study area and demonstrated to estimate the lifecycle cost using statistical data such as pipe replacement cost, road pavement rehabilitation cost, and state of deterioration of pipes and road pavement.

  13. Permeable Pavement Demonstration at the Edison Environmental Center - Poster

    EPA Science Inventory

    Poster for the SAB Review detailing the porous pavement parking lot project. The poster describes the design of the parking lot, the research components that were incorporated into the design, and the monitoring plan.

  14. Infiltration performance of engineered surfaces commonly used for distributed stormwater management.

    PubMed

    Valinski, N A; Chandler, D G

    2015-09-01

    Engineered porous media are commonly used in low impact development (LID) structures to mitigate excess stormwater in urban environments. Differences in infiltrability of these LID systems arise from the wide variety of materials used to create porous surfaces and subsequent maintenance, debris loading, and physical damage. In this study, the infiltration capacity of six common materials was tested by multiple replicate experiments with automated mini-disk infiltrometers. The tested materials included porous asphalt, porous concrete, porous brick pavers, flexible porous pavement, engineered soils, and native soils. Porous asphalt, large porous brick pavers, and curb cutout rain gardens showed the greatest infiltration rates. Most engineered porous pavements and soils performed better than the native silt loam soils. Infiltration performance was found to be related more to site design and environmental factors than material choice. Sediment trap zones in both pavements and engineered soil rain gardens were found to be beneficial to the whole site performance. Winter chloride application had a large negative impact on poured in place concrete, making it a poor choice for heavily salted areas. PMID:26140743

  15. Infiltration performance of engineered surfaces commonly used for distributed stormwater management.

    PubMed

    Valinski, N A; Chandler, D G

    2015-09-01

    Engineered porous media are commonly used in low impact development (LID) structures to mitigate excess stormwater in urban environments. Differences in infiltrability of these LID systems arise from the wide variety of materials used to create porous surfaces and subsequent maintenance, debris loading, and physical damage. In this study, the infiltration capacity of six common materials was tested by multiple replicate experiments with automated mini-disk infiltrometers. The tested materials included porous asphalt, porous concrete, porous brick pavers, flexible porous pavement, engineered soils, and native soils. Porous asphalt, large porous brick pavers, and curb cutout rain gardens showed the greatest infiltration rates. Most engineered porous pavements and soils performed better than the native silt loam soils. Infiltration performance was found to be related more to site design and environmental factors than material choice. Sediment trap zones in both pavements and engineered soil rain gardens were found to be beneficial to the whole site performance. Winter chloride application had a large negative impact on poured in place concrete, making it a poor choice for heavily salted areas.

  16. Field environmental evaluation plan for sulfur use in pavements

    NASA Astrophysics Data System (ADS)

    Saylak, D.; Deuel, L. E.; Izatt, J. O.; Jacobs, C.; Zahray, R.; Ham, S.

    1982-07-01

    The use of sulfur in highway paving mixtures is discussed. The evaluation procedures deal with the safety and environmental aspects of storage and handling, formulation, construction, operation and maintenance of highway pavements containing sulfur, including the possible generation of noxious and abnoxious fumes, dust and gases. Methods and equipment for monitoring potential emissions and pollutants are recommended and safety practices for the handling of sulfur and sulfur-modified asphalt mixtures and pavements are discussed.

  17. Recycled materials in asphalt pavements. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-05-01

    The bibliography contains citations concerning the recycling of asphalt pavement materials, and the use of other recycled materials to manufacture asphalt pavement. Articles discuss methods used for recycling bituminous pavement including hot-mix and cold-mix. Materials used to improve recycled pavement, and recycled materials used in asphalt pavement include latexes, rubber scrap such as tires, glass shards, concretes, dusts, waste oils, roofing wastes, sulfur, and metal refining sludges. Testing and evaluation of recycled pavements both in laboratories and in test cases are considered. (Contains a minimum of 160 citations and includes a subject term index and title list.)

  18. Softening agents for recycling asphalt pavement

    SciTech Connect

    Sawatzky, H.; Clelland, F.I.; Farnand, B.A.; Houde, J. Jr.

    1993-08-10

    An asphaltic composition is described consisting essentially of: comminuted aged asphaltic pavement material; an effective amount, from about 2% to about 15 % by weight of a blend of an agent selected from the group consisting of a soft asphalt cement, a conventional asphalt cement, and a cutback asphalt, with a nitrogen-containing, adhesion-improving, anti-stripping agent comprising a sewage sludge-derived oil, or a fraction thereof, said sewage sludge-derived oil comprising a mixture of saturated aliphatic hydrocarbons, monoaromatic hydrocarbons, diaromatic hydrocarbons, polyaromatic hydrocarbons, polar compounds and basic, pyridene-soluble compounds, having the following elemental chemical composition: nitrogen, about 3.4% to about 5% by weight; oxygen, about 5.8% to about 6.9% by weight; sulfur, about 0.3% to about 0.8% by weight; hydrogen, about 9.7% to about 10.4%, and carbon, about 76.9% to about 79.8%.

  19. Influence of pavement condition on horizontal curve safety.

    PubMed

    Buddhavarapu, Prasad; Banerjee, Ambarish; Prozzi, Jorge A

    2013-03-01

    Crash statistics suggest that horizontal curves are the most vulnerable sites for crash occurrence. These crashes are often severe and many involve at least some level of injury due to the nature of the collisions. Ensuring the desired pavement surface condition is one potentially effective strategy to reduce the occurrence of severe accidents on horizontal curves. This study sought to develop crash injury severity models by integrating crash and pavement surface condition databases. It focuses on developing a causal relationship between pavement condition indices and severity level of crashes occurring on two-lane horizontal curves in Texas. In addition, it examines the suitability of the existing Skid Index for safety maintenance of two-lane curves. Significant correlation is evident between pavement condition and crash injury severity on two-lane undivided horizontal curves in Texas. Probability of a crash becoming fatal is appreciably sensitive to certain pavement indices. Data suggested that road facilities providing a smoother and more comfortable ride are vulnerable to severe crashes on horizontal curves. In addition, the study found that longitudinal skid measurement barely correlates with injury severity of crashes occurring on curved portions. The study recommends exploring the option of incorporating lateral friction measurement into Pavement Management System (PMS) databases specifically at curved road segments.

  20. Influence of pavement condition on horizontal curve safety.

    PubMed

    Buddhavarapu, Prasad; Banerjee, Ambarish; Prozzi, Jorge A

    2013-03-01

    Crash statistics suggest that horizontal curves are the most vulnerable sites for crash occurrence. These crashes are often severe and many involve at least some level of injury due to the nature of the collisions. Ensuring the desired pavement surface condition is one potentially effective strategy to reduce the occurrence of severe accidents on horizontal curves. This study sought to develop crash injury severity models by integrating crash and pavement surface condition databases. It focuses on developing a causal relationship between pavement condition indices and severity level of crashes occurring on two-lane horizontal curves in Texas. In addition, it examines the suitability of the existing Skid Index for safety maintenance of two-lane curves. Significant correlation is evident between pavement condition and crash injury severity on two-lane undivided horizontal curves in Texas. Probability of a crash becoming fatal is appreciably sensitive to certain pavement indices. Data suggested that road facilities providing a smoother and more comfortable ride are vulnerable to severe crashes on horizontal curves. In addition, the study found that longitudinal skid measurement barely correlates with injury severity of crashes occurring on curved portions. The study recommends exploring the option of incorporating lateral friction measurement into Pavement Management System (PMS) databases specifically at curved road segments. PMID:23298704

  1. Factors influencing PM 10 emissions from road pavement wear

    NASA Astrophysics Data System (ADS)

    Gustafsson, Mats; Blomqvist, Göran; Gudmundsson, Anders; Dahl, Andreas; Jonsson, Per; Swietlicki, Erik

    Accelerated pavement wear is one of the major environmental disadvantages of studded tyres in northern regions and results in increased levels of PM 10. Measurements of PM 10 in a road simulator hall have been used to study the influence of pavement properties, tyre type and vehicle speed on pavement wear. The test set-up included three different pavements (one granite and two quartzite with different aggregate sizes), three different tyre types (studded, non-studded, and summer tyres) and different speeds (30-70 km h -1). The results show that the granite pavement was more prone to PM 10 production compared to the quartzite pavements. Studded winter tyres yield tens of times higher PM 10 concentrations compared to non-studded winter tyres. Wear from summer tyres was negligible in comparison. It was also shown that wear is strongly dependent on speed; every 10 km h -1 increase yielded an increase of the PM 10 concentration of 680 μg m -3 in one of the simulator experiments.

  2. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  3. High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Balogun, Muhammad-Sadeeq; Wu, Zupeng; Luo, Yang; Qiu, Weitao; Fan, Xiaolei; Long, Bei; Huang, Miao; Liu, Peng; Tong, Yexiang

    2016-03-01

    Flexible lithium ion batteries shows great attention as up-and-coming power source for the development of flexible and wearable electronic devices. However, they lack suitable electrode materials that are capable of withstanding rapid charging/discharging to facilitate high power density lithium ion batteries. In this work, we fabricate three dimensional (3D) nitridated hematite nanorods on a carbon cloth as high-performance anode for flexible lithium ion batteries. Our strategy to modify the surface of Fe2O3 via nitridation is to improve the electrical conductivity of Fe2O3. XPS, Raman spectra and SEM images confirmed the incorporation of nitriated surface. The fabricated device based on the nitridated hematite nanorod anode exhibiting high flexibility and outstanding lithium storage performance with power and energy densities of 24328 W kg-1 and 163 Wh kg-1, respectively at high current density of 10 A g-1. The high power density is due to the nitridation that provide a short lithium ion diffusion length and a high electronic conductivity in the nitridated-hematite nanorods leading to favorable kinetics electrical conductivity and significantly improved its rate capability.

  4. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C.

    PubMed

    Shin, Seong Sik; Yang, Woon Seok; Noh, Jun Hong; Suk, Jae Ho; Jeon, Nam Joong; Park, Jong Hoon; Kim, Ju Seong; Seong, Won Mo; Seok, Sang Il

    2015-01-01

    Fabricating inorganic-organic hybrid perovskite solar cells (PSCs) on plastic substrates broadens their scope for implementation in real systems by imparting portability, conformability and allowing high-throughput production, which is necessary for lowering costs. Here we report a new route to prepare highly dispersed Zn2SnO4 (ZSO) nanoparticles at low-temperature (<100 °C) for the development of high-performance flexible PSCs. The introduction of the ZSO film significantly improves transmittance of flexible polyethylene naphthalate/indium-doped tin oxide (PEN/ITO)-coated substrate from ∼75 to ∼90% over the entire range of wavelengths. The best performing flexible PSC, based on the ZSO and CH3NH3PbI3 layer, exhibits steady-state power conversion efficiency (PCE) of 14.85% under AM 1.5G 100 mW·cm(-2) illumination. This renders ZSO a promising candidate as electron-conducting electrode for the highly efficient flexible PSC applications. PMID:26096202

  5. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C

    NASA Astrophysics Data System (ADS)

    Shin, Seong Sik; Yang, Woon Seok; Noh, Jun Hong; Suk, Jae Ho; Jeon, Nam Joong; Park, Jong Hoon; Kim, Ju Seong; Seong, Won Mo; Seok, Sang Il

    2015-06-01

    Fabricating inorganic-organic hybrid perovskite solar cells (PSCs) on plastic substrates broadens their scope for implementation in real systems by imparting portability, conformability and allowing high-throughput production, which is necessary for lowering costs. Here we report a new route to prepare highly dispersed Zn2SnO4 (ZSO) nanoparticles at low-temperature (<100 °C) for the development of high-performance flexible PSCs. The introduction of the ZSO film significantly improves transmittance of flexible polyethylene naphthalate/indium-doped tin oxide (PEN/ITO)-coated substrate from ~75 to ~90% over the entire range of wavelengths. The best performing flexible PSC, based on the ZSO and CH3NH3PbI3 layer, exhibits steady-state power conversion efficiency (PCE) of 14.85% under AM 1.5G 100 mW.cm-2 illumination. This renders ZSO a promising candidate as electron-conducting electrode for the highly efficient flexible PSC applications.

  6. Enhanced photovoltaic performance of fully flexible dye-sensitized solar cells based on the Nb2O5 coated hierarchical TiO2 nanowire-nanosheet arrays

    NASA Astrophysics Data System (ADS)

    Liu, Wenwu; Hong, Chengxun; Wang, Hui-gang; Zhang, Mei; Guo, Min

    2016-02-01

    Nb2O5 coated hierarchical TiO2 nanowire-sheet arrays photoanode was synthesized on flexible Ti-mesh substrate by using a hydrothermal approach. The effect of TiO2 morphology and Nb2O5 coating layer on the photovoltaic performance of the flexible dye sensitized solar cells (DSSCs) based on Ti-mesh supported nanostructures were systematically investigated. Compared to the TiO2 nanowire arrays (NWAs), hierarchical TiO2 nanowire arrays (HNWAs) with enlarged internal surface area and strong light scattering properties exhibited higher overall conversion efficiency. The introduction of thin Nb2O5 coating layers on the surface of the TiO2 HNWAs played a key role in improving the photovoltaic performance of the flexible DSSC. By separating the TiO2 and electrolyte (I-/I3-), the Nb2O5 energy barrier decreased the electron recombination rate and increased electron collection efficiency and injection efficiency, resulting in improved Jsc and Voc. Furthermore, the influence of Nb2O5 coating amounts on the power conversion efficiency were discussed in detail. The fully flexible DSSC based on Nb2O5 coated TiO2 HNWAs films with a thickness of 14 μm displayed a well photovoltaic property of 4.55% (Jsc = 10.50 mA cm-2, Voc = 0.75 V, FF = 0.58). The performance enhancement of the flexible DSSC is largely attributed to the reduced electron recombination, enlarged internal surface area and superior light scattering ability of the formed hierarchical nanostructures.

  7. Use of stabilized bottom ash for bound layers of road pavements.

    PubMed

    Toraldo, Emanuele; Saponaro, Sabrina; Careghini, Alessandro; Mariani, Edoardo

    2013-05-30

    This paper reports about the lab scale results obtained by using stabilized bottom ash (SBA) from an Italian municipal solid waste incinerator as aggregates in cement-bound mixes and asphalt concretes for road pavements. The investigation focused on SBA content. From the road construction point of view, performance related to compaction, volumetric and mechanical properties were assessed. The environmental aspects were investigated performing leaching tests. The results suggested that SBA satisfied the environmental Italian law for reuse of non-hazardous waste but affected significantly the stress-strain behavior of the final products. Therefore a maximum percentage of 10% was suggested. PMID:23535513

  8. Update to permeable pavement research at the Edison Environmental Center - slides

    EPA Science Inventory

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable...

  9. Update to Permeable Pavement Research at the Edison Environmental Center - abstract

    EPA Science Inventory

    Abstract The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable ...

  10. Update to Permeable Pavement Research at the Edison Environmental Center - abstract

    EPA Science Inventory

    Abstract The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable pavers...

  11. Update to permeable pavement research at the Edison Environmental Center - slides

    EPA Science Inventory

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable paver...

  12. On-site inspections of pavement damages evolution using GPR

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; D'Amico, Fabrizio; Calvi, Alessandro; Benedetto, Andrea

    2014-05-01

    Ground-penetrating radar (GPR) is being increasingly used for pavements maintenance due to the wide range of applications spanning from physical to geometrical inspections, thereby allowing for a reliable diagnosis of the main causes of road structural damages. In this work, an off-ground GPR system was used to investigate a large-scale rural road network. Two sets of surveys were carried out in different time periods, with the main goals to i) localize the most critical sections; ii) monitor the evolution of previous damages and localize newborn deep faults, although not revealed at the pavement surface level; iii) analyze the causes of both evolution and emergence of faults by considering environmental and human factors. A 1-GHz GPR air-launched antenna was linked to an instrumented van for collecting data at traffic speed. Other support techniques (e.g. GPS data logger, odometer, HD video camera) were used for cross-checking,. Such centre frequency of investigation along with a 25-ns time window allow for a signal penetration of 900 mm, consistent with the deepest layer interfaces. The bottom of the array was 400 mm over the surface, with a minimum distance of 1200 mm from the van body. Scan length of maximum 10 km were provided for avoiding heavy computational loads. The rural road network was located in the District of Rieti, 100 km north from Rome, Italy, and mostly develops in a hilly and mountainous landscape. In most of the investigated roads, the carriageway consists in two lanes of 3.75 meters wide and two shoulders of 0.50 meters wide. A typical road section includes a HMA layer (65 mm average thickness), a base layer (100 mm average thickness), and a subbase layer (300 mm average thickness), as described by pavement design charts. The first set of surveys was carried out in two days at the beginning of spring in moderately dry conditions. Overall, 320-km-long inspections were performed in both travel directions, thereby showing a productivity of

  13. Flexible n-Type High-Performance Thermoelectric Thin Films of Poly(nickel-ethylenetetrathiolate) Prepared by an Electrochemical Method.

    PubMed

    Sun, Yuanhui; Qiu, Lin; Tang, Liangpo; Geng, Hua; Wang, Hanfu; Zhang, Fengjiao; Huang, Dazhen; Xu, Wei; Yue, Peng; Guan, Ying-Shi; Jiao, Fei; Sun, Yimeng; Tang, Dawei; Di, Chong-An; Yi, Yuanping; Zhu, Daoben

    2016-05-01

    Flexible thin films of poly(nickel-ethylenetetrathiolate) prepared by an electrochemical method display promising n-type thermoelectric properties with the highest ZT value up to 0.3 at room temperature. Coexistence of high electrical conductivity and high Seebeck coefficient in this coordination polymer is attributed to its degenerate narrow-bandgap semiconductor behavior. PMID:26928813

  14. Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Haihan; Zhai, Hua-Jin; Han, Gaoyi

    2016-08-01

    Ternary composite electrodes based on carbon nanotubes thin films (CNFs)-loaded graphene oxide (GO) supported poly(3,4-ethylenedioxythiophene)- carbon nanotubes (GO/PEDOT-CNTs) have been prepared via a facile one-step electrochemical codeposition method. The effect of long and short CNTs-incorporated composites (GO/PEDOT-lCNTs and GO/PEDOT-sCNTs) on the electrochemical behaviors of the electrodes is investigated and compared. Electrochemical measurements indicate that the incorporation of CNTs effectively improves the electrochemical performances of the GO/PEDOT electrodes. Long CNTs-incorporated GO/PEDOT-lCNTs electrodes have more superior electrochemical behaviors with respect to the short CNTs-incorporated GO/PEDOT-lCNTs electrodes, which can be attributed to the optimized composition and specific microstructures of the former. To verify the feasibility of the prepared composite electrodes for utilization as flexible supercapacitor, a solid-state supercapacitor using the CNFs-loaded GO/PEDOT-lCNTs electrodes is fabricated and tested. The device shows lightweight, ultrathin, and highly flexible features, which also has a high areal and volumetric specific capacitance (33.4 m F cm-2 at 10 mV s-1 and 2.7 F cm-3 at 0.042 A cm-3), superior rate capability, and excellent cycle stability (maintaining 97.5% for 5000 cycles). This highly flexible solid-state supercapacitor has great potential for applications in flexible electronics, roll-up display, and wearable devices.

  15. 23 CFR 972.208 - Federal lands pavement management system (PMS).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... “Pavement Management Guide,” AASHTO, 2001, is available for inspection as prescribed at 49 CFR part 7. It is... 23 Highways 1 2013-04-01 2013-04-01 false Federal lands pavement management system (PMS). 972.208....208 Federal lands pavement management system (PMS). In addition to the requirements provided in §...

  16. 23 CFR 970.208 - Federal lands pavement management system (PMS).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Federal lands pavement management system (PMS). 970.208... Federal lands pavement management system (PMS). In addition to the requirements provided in § 970.204, the...) An inventory of the physical pavement features including the number of lanes, length, width,...

  17. 23 CFR 970.208 - Federal lands pavement management system (PMS).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Federal lands pavement management system (PMS). 970.208... Federal lands pavement management system (PMS). In addition to the requirements provided in § 970.204, the...) An inventory of the physical pavement features including the number of lanes, length, width,...

  18. 23 CFR 972.208 - Federal lands pavement management system (PMS).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... “Pavement Management Guide,” AASHTO, 2001, is available for inspection as prescribed at 49 CFR part 7. It is... 23 Highways 1 2014-04-01 2014-04-01 false Federal lands pavement management system (PMS). 972.208....208 Federal lands pavement management system (PMS). In addition to the requirements provided in §...

  19. 76 FR 67018 - Notice to Manufacturers of Airport In-Pavement Stationary Runway Weather Information Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... Federal Aviation Administration Notice to Manufacturers of Airport In-Pavement Stationary Runway Weather... of In-Pavement Stationary Runway Weather Information Systems. SUMMARY: Projects funded under the... Active or Passive In- Pavement Stationary Runway Weather Information Systems that meet the...

  20. Coaxial CoMoO4 nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Yaping; Liu, Borui; Liu, Qi; Wang, Jun; Li, Zhanshuang; Jing, Xiaoyan; Liu, Lianhe

    2015-09-01

    Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm-2 at a current density of 2 mA cm-2, which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm-2. An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm-2) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg-1 (3.522 mW h cm-3), demonstrating great potential for practical applications in flexible energy storage electronics.Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on

  1. Flexible Scheduling.

    ERIC Educational Resources Information Center

    Davis, Harold S.; Bechard, Joseph E.

    A flexible schedule allows teachers to change group size, group composition, and class length according to the purpose of the lesson. This pamphlet presents various "master" schedules for flexible scheduling: (1) Simple block schedules, (2) back-to-back schedules, (3) interdisciplinary schedules, (4) school-wide block schedules, (5) open-lab…

  2. Flexibility Program

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    These brief guidelines for a muscular flexibility program state that the purpose of such a program is to increase the range of motion in order to avoid injuries and eliminate awkwardness in physical activities. A flexibility program is described as an extension of the warm-up period and should be an ongoing, permanent effort to lengthen muscles. A…

  3. Nondestructive pavement evaluation technique using falling weight deflectometer

    SciTech Connect

    Al-Nageim, H.; Al-Hakim, B.; Lesley, L.

    1996-11-01

    An analytical method to predict the mechanical properties of a multi-layer pavement structure is presented. The development of the model is based on a modified back calculation model, using a finite circular plate resting on an elastic layered system. The deflection of the pavement under the dynamic action of the falling weight deflectometer (FWD) is taken as a function of the load action and the characteristic strength of the layers comprising the system including the friction between the individual layers. The responses of the pavement during the impact loading of the falling weight are measured and analyzed to predict the stress, strain and coefficient of friction between the layers making the system. The results revealed that the model which incorporates the interface of friction coefficient in the back-analysis technique allows for a more accurate calculation of the mechanical properties of the pavements and thus can be used as a quality control to assess the state of adhesion between the pavement layer system.

  4. Evaluation of Variable Refrigerant Flow Systems Performance and the Enhanced Control Algorithm on Oak Ridge National Laboratory s Flexible Research Platform

    SciTech Connect

    Im, Piljae; Munk, Jeffrey D; Gehl, Anthony C

    2015-06-01

    A research project “Evaluation of Variable Refrigerant Flow (VRF) Systems Performance and the Enhanced Control Algorithm on Oak Ridge National Laboratory’s (ORNL’s) Flexible Research Platform” was performed to (1) install and validate the performance of Samsung VRF systems compared with the baseline rooftop unit (RTU) variable-air-volume (VAV) system and (2) evaluate the enhanced control algorithm for the VRF system on the two-story flexible research platform (FRP) in Oak Ridge, Tennessee. Based on the VRF system designed by Samsung and ORNL, the system was installed from February 18 through April 15, 2014. The final commissioning and system optimization were completed on June 2, 2014, and the initial test for system operation was started the following day, June 3, 2014. In addition, the enhanced control algorithm was implemented and updated on June 18. After a series of additional commissioning actions, the energy performance data from the RTU and the VRF system were monitored from July 7, 2014, through February 28, 2015. Data monitoring and analysis were performed for the cooling season and heating season separately, and the calibrated simulation model was developed and used to estimate the energy performance of the RTU and VRF systems. This final report includes discussion of the design and installation of the VRF system, the data monitoring and analysis plan, the cooling season and heating season data analysis, and the building energy modeling study

  5. High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing

    SciTech Connect

    Sanjib, Das; Yang, Bin; Gu, Gong; Joshi, Pooran C; Ivanov, Ilia N; Rouleau, Christopher; Aytug, Tolga; Geohegan, David B; Xiao, Kai

    2015-01-01

    Realizing the commercialization of high-performance and robust perovskite solar cells urgently requires the development of economically scalable processing techniques. Here we report a high-throughput ultrasonic spray-coating (USC) process capable of fabricating perovskite film-based solar cells on glass substrates with power conversion efficiency (PCE) as high as 13.04%. Perovskite films with high uniformity, crystallinity, and surface coverage are obtained in a single step. Moreover, we report USC processing on TiOx/ITO-coated polyethylene terephthalate (PET) substrates to realize flexible perovskite solar cells with PCE as high as 8.02% that are robust under mechanical stress. In this case, an optical curing technique was used to achieve a highly-conductive TiOx layer on flexible PET substrates for the first time. The high device performance and reliability obtained by this combination of USC processing with optical curing appears very promising for roll-to-roll manufacturing of high-efficiency, flexible perovskite solar cells.

  6. Three-Dimensional NiCo2O4@Polypyrrole Coaxial Nanowire Arrays on Carbon Textiles for High-Performance Flexible Asymmetric Solid-State Supercapacitor.

    PubMed

    Kong, Dezhi; Ren, Weina; Cheng, Chuanwei; Wang, Ye; Huang, Zhixiang; Yang, Hui Ying

    2015-09-30

    In this article, we report a novel electrode of NiCo2O4 nanowire arrays (NWAs) on carbon textiles with a polypyrrole (PPy) nanosphere shell layer to enhance the pseudocapacitive performance. The merits of highly conductive PPy and short ion transport channels in ordered NiCo2O4 mesoporous nanowire arrays together with the synergistic effect between NiCo2O4 and PPy result in a high specific capacitance of 2244 F g(-1), excellent rate capability, and cycling stability in NiCo2O4/PPy electrode. Moreover, a lightweight and flexible asymmetric supercapacitor (ASC) device is successfully assembled using the hybrid NiCo2O4@PPy NWAs and activated carbon (AC) as electrodes, achieving high energy density (58.8 W h kg(-1) at 365 W kg(-1)), outstanding power density (10.2 kW kg(-1) at 28.4 W h kg(-1)) and excellent cycling stability (∼89.2% retention after 5000 cycles), as well as high flexibility. The three-dimensional coaxial architecture design opens up new opportunities to fabricate a high-performance flexible supercapacitor for future portable and wearable electronic devices.

  7. Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Lin, Zixia; Zheng, Mingbo; Wang, Tianhe; Yang, Jiazhi; Yuan, Fanshu; Lu, Xiaoyu; Liu, Lin; Sun, Dongping

    2016-03-01

    A three-dimensional (3D) carbonaceous aerogel derived from biomass bacterial cellulose (BC) is introduced as a flexible framework for iron oxides in Li-ion batteries (LIBs). The 3D carbonized BC (CBC) with highly interconnected nanofibrous structure exhibits good electrical conductivity and mechanical stability. The amorphous Fe2O3 is tightly coated on the nanofibers of CBC through a simple in situ thermal decomposition method. The obtained amorphous Fe2O3 anode (denoted as A-Fe2O3@CBC) exhibits stable cycling performance and high rate capability when assembled into a half-cell, which is supposed to benefit from the well-dispersed Fe2O3 nanoshells and the hierarchical pores in A-Fe2O3@CBC composite. The rational design of the nanostructure could improve the transportation of electrons/ions and effectively alleviate volume changes of Fe2O3 during the electrochemical cycling. Meanwhile, the amorphous nature of the Fe2O3 in anode provides an enhanced capacitive-like lithium storage and flexible structure of the active materials, resulting in much higher specific capacity and longer cycle life when compared with its crystalline counterpart. This work provides a promising approach to design and construct the flexible metal oxide anode materials based on 3D carbonaceous aerogel for high-performance LIBs.

  8. Thermal conductance of and heat generation in tire-pavement interface and effect on aircraft braking

    NASA Technical Reports Server (NTRS)

    Miller, C. D.

    1976-01-01

    A finite-difference analysis was performed on temperature records obtained from a free rolling automotive tire and from pavement surface. A high thermal contact conductance between tire and asphalt was found on a statistical basis. Average slip due to squirming between tire and asphalt was about 1.5 mm. Consequent friction heat was estimated as 64 percent of total power absorbed by bias-ply, belted tire. Extrapolation of results to aircraft tire indicates potential braking improvement by even moderate increase of heat absorbing capacity of runway surface.

  9. High Performance Bottom-Gate-Type Amorphous InGaZnO Flexible Transparent Thin-Film Transistors Deposited on PET Substrates at Low Temperature

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Ying; Ye, Wan-Yi; Lin, Yung-Hao; Lou, Li-Ren; Lee, Ching-Ting

    2014-01-01

    The InGaZnO channel layer of bottom-gate-type flexible transparent thin-film transistors was deposited on polyethylene terephthalate substrates using a magnetron radio frequency cosputter system with a single InGaZnO target. The composition of the InGaZnO channel layer was controlled by sputtering at various Ar/O2 gas ratios. A 15-nm-thick SiO y insulator film was used to passivate the InGaZnO channel layer. Much better performances of the passivated devices were obtained, which verified the passivation function. To study the bending stability of the resulting flexible transparent thin-film transistors, a stress test with a bending radius of 1.17 cm for 1,500 s was carried out, which showed a variation in the effective filed-effect mobility and the threshold voltage of the unpassivated and passivated devices being maintained within 10 and 8%, respectively.

  10. Rapid Inspection of Pavement Markings Using Mobile LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Zhang, Haocheng; Li, Jonathan; Cheng, Ming; Wang, Cheng

    2016-06-01

    This study aims at building a robust semi-automated pavement marking extraction workflow based on the use of mobile LiDAR point clouds. The proposed workflow consists of three components: preprocessing, extraction, and classification. In preprocessing, the mobile LiDAR point clouds are converted into the radiometrically corrected intensity imagery of the road surface. Then the pavement markings are automatically extracted with the intensity using a set of algorithms, including Otsu's thresholding, neighbor-counting filtering, and region growing. Finally, the extracted pavement markings are classified with the geometric parameters using a manually defined decision tree. Case studies are conducted using the mobile LiDAR dataset acquired in Xiamen (Fujian, China) with different road environments by the RIEGL VMX-450 system. The results demonstrated that the proposed workflow and our software tool can achieve 93% in completeness, 95% in correctness, and 94% in F-score when using Xiamen dataset.

  11. Low cost pavement marking materials based on plasticized sulfur

    NASA Astrophysics Data System (ADS)

    Dale, J. M.

    1982-04-01

    Pavement marking was made more cost effective by reducing the cost of the marking materials. A low cost marking material based on sulfur was developed. Elemental sulfur is a hard, brittle, crystalline material which, on heating, melts to a thin liquid that can be spray applied. If molten elemental sulfur is spray applied to the road as markings, it will on application solidify, crack and adhere poorly to the road. The first ten high speed trucks that ride over the markings will remove them. To make a useful sulfur based pavement marking material it was necessary to chemically modify (plasticize) the sulfur and mix it with fillers and pigments such that it had all of the characteristics desired of a pavement marking material. Yellow and white formulations were developed. For identification they were given the names YS-EIGHT and WS-EIGHT for the yellow and white formulations.

  12. Laboratory evaluation of microwave-heated asphalt pavement materials

    SciTech Connect

    Al-Ohaly, A.A.

    1987-01-01

    The potential use of microwave energy to heat asphalt mixtures and pavements has begun attracting attention. Microwave heating is rapid, deep and uniform. With microwaves, heat is generated by the treated material under the excitation of an alternating electromagnetic field caused by the passing microwaves. Some materials such as water heat very well with microwaves, while others such as Teflon do not. Asphalt cement is similar to Teflon, but many aggregates seem to possess favorable microwave heating properties. This thesis focuses on pavement materials and their interaction with microwave energy as a heating method. The interaction between asphalt-pavement materials and the applied microwave energy was evaluated in two phases. First, the effect of microwaves on some properties of virgin and recycled mixtures was investigated. Potential benefits to adhesion and water-stripping resistance of asphalt film to aggregate are promising but need further investigation. Secondly, the effect of several mixture variables on microwave heating efficiency was also studied.

  13. Pore-structure models of hydraulic conductivity for permeable pavement

    NASA Astrophysics Data System (ADS)

    Kuang, X.; Sansalone, J.; Ying, G.; Ranieri, V.

    2011-03-01

    SummaryPermeable pavement functions as a porous infrastructure interface allowing the infiltration and evaporation of rainfall-runoff while functioning as a relatively smooth load-bearing surface for vehicular transport. Hydraulic conductivity ( k) of permeable pavement is an important hydraulic property and is a function of the pore structure. This study examines k for a cementitious permeable pavement (CPP) through a series of pore-structure models. Measurements utilized include hydraulic head as well as total porosity, ( ϕ t), effective porosity ( ϕ e), tortuosity ( L e/ L) and pore size distribution (PSD) indices generated through X-ray tomography (XRT). XRT results indicate that the permeable pavement pore matrix is hetero-disperse, with high tortuosity and ϕ t ≠ ϕ e. Power law models of k- ϕ t and k- ϕ e relationships are developed for a CPP mix design. Results indicate that the Krüger, Fair-Hatch, Hazen, Slichter, Beyer and Terzaghi models based on simple pore-structure indices do not reproduce measured k values. The conventional Kozeny-Carman model (KCM), a more parameterized pore-structure model, did not reproduce measured k values. This study proposes a modified KCM utilizing ϕ e, specific surface area (SSA) pe and weighted tortuosity ( L e/ L) w. Results demonstrate that such permeable pavement pore-structure parameters with the modified KCM can predict k. The k results are combined with continuous simulation modeling using historical rainfall to provide nomographs examining permeable pavement as a low impact development (LID) infrastructure component.

  14. Evaluation of multilayered pavement structures from measurements of surface waves

    USGS Publications Warehouse

    Ryden, N.; Lowe, M.J.S.; Cawley, P.; Park, C.B.

    2006-01-01

    A method is presented for evaluating the thickness and stiffness of multilayered pavement structures from guided waves measured at the surface. Data is collected with a light hammer as the source and an accelerometer as receiver, generating a synthetic receiver array. The top layer properties are evaluated with a Lamb wave analysis. Multiple layers are evaluated by matching a theoretical phase velocity spectrum to the measured spectrum. So far the method has been applied to the testing of pavements, but it may also be applicable in other fields such as ultrasonic testing of coated materials. ?? 2006 American Institute of Physics.

  15. Impact of compressed natural gas fueled buses on street pavements

    SciTech Connect

    Yang, D.; Harrison, R.

    1995-07-01

    Capital Metro, the Ausin, Texas transit authority, is currently evaluating a number of CNG fueled buses. As part of the U.S. DOT Region Six University Transportation Centers Program (UTCP), a study was instigated into the scale of incremental pavement consumption associated with the operation of these buses. The study suggests that replacing current vehicles with CNG powered models utilizing aluminum storage tanks would raise average network equivalent single rehabilitation costs across the network of over four percent. Finally, it recommends that full cost study be undertaken with evaluation of the adoption of alternative bus fuels - which includes pavement and environmental impacts.

  16. Tactile pavement for guiding walking direction: An assessment of heading direction and gait stability.

    PubMed

    Pluijter, Nanda; de Wit, Lieke P W; Bruijn, Sjoerd M; Plaisier, Myrthe A

    2015-10-01

    For maintaining heading direction while walking we heavily rely on vision. Therefore, walking in the absence of vision or with visual attention directed elsewhere potentially leads to dangerous situations. Here we investigated whether tactile information from the feet can be used as a (partial) substitute for vision in maintaining a stable heading direction. If so, participants should be better able to keep a constant heading direction on tactile pavement that indicates directionality than on regular flat pavement. However, such a pavement may also be destabilizing. Thus we asked participants to walk straight ahead on regular pavement, and on tactile pavement (tiles with ridges along the walking direction) while varying the amount of vision. We assessed the effects of the type of pavement as well as the amount of vision on the variability of the heading direction as well as gait stability. Both of these measures were calculated from accelerations and angular velocities recorded from a smartphone attached to the participants trunk. Results showed that on tactile pavement participants had a less variations in their heading direction than on regular pavement. The drawback, however, was that the tactile pavement used in this study decreased gait stability. In sum, tactile pavement can be used as a partial substitute for vision in maintaining heading direction, but it can also decrease gait stability. Future work should focus on designing tactile pavement that does provided directional clues, but is less destabilizing. PMID:26344427

  17. Desert pavements and associated rock varnish in the Mojave Desert: How old can they be?

    NASA Astrophysics Data System (ADS)

    Quade, Jay

    2001-09-01

    Desert pavements are common features of arid landscapes and have been widely used as a relative age indicator of the geomorphic surfaces upon which they are developed. In this study I examined the patterns of pavement development as a function of elevation in the Mojave Desert as well as the causes for the gradual disappearance of pavement at high elevations. Pavement density, as measured by percentage of pebble coverage, decreases systematically with elevation gain by ˜3% per 100 m, from 95% coverage below 500 m to less than 60% at 1700 m. Plants appear to be the main agent of pavement disruption; plant density decreases as pavement density increases. Burrowing by rodents and crusting by cryptobiota also disrupt pavement development at higher elevation. During the last glacial maximum, plant communities were displaced 1000 1400 m downward in the Mojave Desert. Pavements today generally do not survive above the blackbush (Coleogyne ramossisma)-sagebrush (Artemisia tridentata) zone. Evidence from packrat middens shows that these and other plants typical of high elevations today grew as low as 300 400 m during the last glacial maximum. I suggest that during the last glacial maximum, desert pavements were confined to the lowest alluvial fans of Death Valley and adjoining low valleys. No alluvial desert pavements above ˜400 m in the region are older than the latest Pleistocene. By the same reasoning, desert varnish on desert pavements above 400 m may all be Holocene in age, except where developed on stable boulders.

  18. Tactile pavement for guiding walking direction: An assessment of heading direction and gait stability.

    PubMed

    Pluijter, Nanda; de Wit, Lieke P W; Bruijn, Sjoerd M; Plaisier, Myrthe A

    2015-10-01

    For maintaining heading direction while walking we heavily rely on vision. Therefore, walking in the absence of vision or with visual attention directed elsewhere potentially leads to dangerous situations. Here we investigated whether tactile information from the feet can be used as a (partial) substitute for vision in maintaining a stable heading direction. If so, participants should be better able to keep a constant heading direction on tactile pavement that indicates directionality than on regular flat pavement. However, such a pavement may also be destabilizing. Thus we asked participants to walk straight ahead on regular pavement, and on tactile pavement (tiles with ridges along the walking direction) while varying the amount of vision. We assessed the effects of the type of pavement as well as the amount of vision on the variability of the heading direction as well as gait stability. Both of these measures were calculated from accelerations and angular velocities recorded from a smartphone attached to the participants trunk. Results showed that on tactile pavement participants had a less variations in their heading direction than on regular pavement. The drawback, however, was that the tactile pavement used in this study decreased gait stability. In sum, tactile pavement can be used as a partial substitute for vision in maintaining heading direction, but it can also decrease gait stability. Future work should focus on designing tactile pavement that does provided directional clues, but is less destabilizing.

  19. Design and implementation of PAVEMON: A GIS web-based pavement monitoring system based on large amounts of heterogeneous sensors data

    NASA Astrophysics Data System (ADS)

    Shahini Shamsabadi, Salar

    A web-based PAVEment MONitoring system, PAVEMON, is a GIS oriented platform for accommodating, representing, and leveraging data from a multi-modal mobile sensor system. Stated sensor system consists of acoustic, optical, electromagnetic, and GPS sensors and is capable of producing as much as 1 Terabyte of data per day. Multi-channel raw sensor data (microphone, accelerometer, tire pressure sensor, video) and processed results (road profile, crack density, international roughness index, micro texture depth, etc.) are outputs of this sensor system. By correlating the sensor measurements and positioning data collected in tight time synchronization, PAVEMON attaches a spatial component to all the datasets. These spatially indexed outputs are placed into an Oracle database which integrates seamlessly with PAVEMON's web-based system. The web-based system of PAVEMON consists of two major modules: 1) a GIS module for visualizing and spatial analysis of pavement condition information layers, and 2) a decision-support module for managing maintenance and repair (Mℝ) activities and predicting future budget needs. PAVEMON weaves together sensor data with third-party climate and traffic information from the National Oceanic and Atmospheric Administration (NOAA) and Long Term Pavement Performance (LTPP) databases for an organized data driven approach to conduct pavement management activities. PAVEMON deals with heterogeneous and redundant observations by fusing them for jointly-derived higher-confidence results. A prominent example of the fusion algorithms developed within PAVEMON is a data fusion algorithm used for estimating the overall pavement conditions in terms of ASTM's Pavement Condition Index (PCI). PAVEMON predicts PCI by undertaking a statistical fusion approach and selecting a subset of all the sensor measurements. Other fusion algorithms include noise-removal algorithms to remove false negatives in the sensor data in addition to fusion algorithms developed for

  20. Comparative Occupational Survey of Civilian and Military Members in the Pavements Maintenance and Construction Equipment Operator Specialties. Final Report for Period 1 October 1975-30 October 1977.

    ERIC Educational Resources Information Center

    Cowan, Douglas K.

    A study was conducted to analyze and compare the job performance of civil service and military pavements maintenance workers and construction equipment operators. A military sample of 2,675 and a civilian sample of 1,974 were surveyed by means of a job inventory checklist and relative time spent rating method. Of the three job types that were…